Modelo de regressão linear mistura de escala normal com ponto de mudança : estimação e diagnóstico
DISSERTAÇÃO
T/UNICAMP H86m
[Scale mixture of normal regression linear regression model with change point]
Campinas, SP : [s.n.], 2014.
138 p. : il.
Orientador: Filidor Edilfonso Vilca Labra
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Resumo: Modelos lineares são frequentemente usados em estatística para descrever a relação entre uma variável resposta e uma ou mais variáveis explicativas, onde geralmente os erros são assumidos como normalmente distribuídos. Além disso, em modelos de regressão linear assume-se que o mesmo modelo...
Resumo: Modelos lineares são frequentemente usados em estatística para descrever a relação entre uma variável resposta e uma ou mais variáveis explicativas, onde geralmente os erros são assumidos como normalmente distribuídos. Além disso, em modelos de regressão linear assume-se que o mesmo modelo linear é válido para todo o conjunto de dados. O modelo pode mudar após um ponto específico e assim um modelo linear com um ponto de mudança poderá ser apropriado para o conjunto de dados. O principal objetivo deste trabalho é estudar alguns aspectos de estimação e análise de diagnóstico em modelos de regressão linear com ponto de mudança sob distribuições de mistura de escala normal. A análise de diagnóstico é baseada nos trabalhos de Cook (1986) e Zhu & Lee (2001). Os resultados obtidos representam uma extensão de alguns resultados apresentados na literatura, ver por exemplo Chen (1998) e Osorio & Galea (2005). Finalmente, estudos de simulação através de simulações Monte Carlo são realizados e exemplos numéricos são apresentados para ilustrar os resultados propostos
Abstract: Linear models are widely used in statistics to describe the relationship between a response variable and one or more explanatory variables, where usually it is assumed the errors are normally distributed. Moreover, in linear regression model is assumed that the same linear model holds for...
Abstract: Linear models are widely used in statistics to describe the relationship between a response variable and one or more explanatory variables, where usually it is assumed the errors are normally distributed. Moreover, in linear regression model is assumed that the same linear model holds for the whole data set, but this is not always valid. The model may change after a specific point, and so a linear model with a change point would be appropriate for data set. The main objective of work is to study some aspect of estimation and analysis of diagnostics in the regression linear with change point model under scale mixture of normal distributions. The analysis of diagnostics is based on the works of Cook (1986) and Zhu & Lee (2001). The results obtained represent a extension of some results obtained in the literature; see for example Chen (1998) and Osorio & Galea (2005). Finally, simulation studies are investigated through Monte Carlo simulations and numerical examples are presented to illustrate the proposed results