Combinação de descritores locais e globais para recuperação de imagens e vídeos por conteúdo
DISSERTAÇÃO
Português
T/UNICAMP An24c
[Local and global descriptors combinations for content image and videos retrieval]
Campinas, SP : [s.n.], 2012.
58 f. : il.
Orientador: Ricardo da Silva Torres, Hélio Pedrini
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação
Resumo: Recentemente, a fusão de descritores tem sido usada para melhorar o desempenho de sistemas de busca em tarefas de recuperação de imagens e vídeos. Descritores podem ser globais ou locais, dependendo de como analisam o conteúdo visual. A maioria dos trabalhos existentes tem se concentrado na...
Resumo: Recentemente, a fusão de descritores tem sido usada para melhorar o desempenho de sistemas de busca em tarefas de recuperação de imagens e vídeos. Descritores podem ser globais ou locais, dependendo de como analisam o conteúdo visual. A maioria dos trabalhos existentes tem se concentrado na fusão de um tipo de descritor. Este trabalho objetiva analisar o impacto da combinação de descritores locais e globais. Realiza-se um estudo comparativo de diferentes tipos de descritores e todas suas possíveis combinações. Além disso, investigam-se modelos para extração e a comparação das características globais e locais para recuperação de imagens e vídeos e estuda-se a utilização da técnica de programação genética para combinar esses descritores. Experimentos extensivos baseados em um projeto experimental rigoroso mostram que descritores locais e globais complementam-se quando combinados. Além disso, esta combinação produz resultados superiores aos observados para outras combinações e ao uso dos descritores individualmente
Abstract: Recently, fusion of descriptors has become a trend for improving the performance in image and video retrieval tasks. Descriptors can be global or local, depending on how they analyze visual content. Most of existing works have focused on the fusion of a single type of descriptor. Different...
Abstract: Recently, fusion of descriptors has become a trend for improving the performance in image and video retrieval tasks. Descriptors can be global or local, depending on how they analyze visual content. Most of existing works have focused on the fusion of a single type of descriptor. Different from all of them, this work aims at analyzing the impact of combining global and local descriptors. Here, we perform a comparative study of different types of descriptors and all of their possible combinations. Furthermore, we investigate different models for extracting and comparing local and global features of images and videos, and evaluate the use of genetic programming as a suitable alternative for combining local and global descriptors. Extensive experiments following a rigorous experimental design show that global and local descriptors complement each other, such that, when combined, they outperform other combinations or single descriptors