Modelagem e estudo analítico da equação da onda elástica em um meio VTI
TESE
Português
T/UNICAMP B623m
[Modeling and analytical study of elastic wave equation in an Half VTI mediium]
Campinas, SP : [s.n.], 2012.
70 f.
Orientadoes: Joerg Dietrich Wilhelm Schleicher, Lúcio Tunes dos Santos
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Resumo: No presente trabalho derivamos a equação geral da onda em um meio VTI com anisotropia fraca por meio da linearização do tensor de rigidez em termos do parâmetro de Thomsen ?. A equação da onda resultante é um sistema de três equações diferenciais acopladas em relação ao vetor de posição....
Resumo: No presente trabalho derivamos a equação geral da onda em um meio VTI com anisotropia fraca por meio da linearização do tensor de rigidez em termos do parâmetro de Thomsen ?. A equação da onda resultante é um sistema de três equações diferenciais acopladas em relação ao vetor de posição. Adaptamos a decomposição de Helmholtz e estudamos a propagação da onda em um meio homogêneo VTI. Além disso, usando a teoria do raio de ordem zero, derivamos as equações iconais e de transporte associadas aos modos de onda q-P, q-SV e q-SH. Por fim, reduzimos o problema ao caso pseudo-acústico no qual a velocidade da onda S é nula no eixo de simetria vertical e, com isto, estabelecemos um entendimento mais satisfatório do significado de artefatos que ocorrem nestes meios
Abstract: We derive a general elastic wave equation in weakly anisotropic VTI media by linearizing the expression of the stiffness tensor in terms of the Thomsen parameter ? The resulting wave equation is a system of three coupled differential equations for the three components of the displacement...
Abstract: We derive a general elastic wave equation in weakly anisotropic VTI media by linearizing the expression of the stiffness tensor in terms of the Thomsen parameter ? The resulting wave equation is a system of three coupled differential equations for the three components of the displacement vector. By using the Helmholtz decomposition is possible to study the wave propagation in homogeneous VTI media. In heterogeneous case we use the zero-order ray theory. We derive the associated eikonal and transport equations for q-P, q-SV and q-SH waves. These are finally reduced to the pseudoacoustic case where the vertical S-wave velocity is zero. This allows for a better understanding of the pseudo-S wave artifact in such media