Modelagem geológica por simplóides de Bézier
Lucas Batista Freitas
TESE
Português
T/UNICAMP F884m
[Geological modeling using Bézier simploids]
Campinas, SP : [s.n.], 2010.
139 p. : il.
Orientador: Stolfi Jorge, Martin Tygel
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação
Resumo: A exploração e monitoramento de um reservatório de petróleo ou gás natural exige conhecimento bastante detalhado das estruturas geológicas da região de interesse. A representação matemática e computacional desse conhecimento é um modelo geofísico. Nesta tese descrevemos um sistema geral para...
Ver mais
Resumo: A exploração e monitoramento de um reservatório de petróleo ou gás natural exige conhecimento bastante detalhado das estruturas geológicas da região de interesse. A representação matemática e computacional desse conhecimento é um modelo geofísico. Nesta tese descrevemos um sistema geral para modelagem geofísica baseado em elementos finitos polinomiais de graus arbitrários. Adotamos uma abordagem comum na indústria, em que a geometria e as propriedades das formações geológicas são representadas por funções definidas por partes, ou splines, que consistem da justaposição de tais elementos. Neste contexto, apresentamos contribuições teóricas e computacionais. A principal contribuição teórica é uma teoria unificada dos elementos simploidais de Bézier, que incluem os tipos de elementos finitos mais comuns na modelagem por malhas - tais como arcos de Bézier, retalhos de Bézier triangulares e retangulares, blocos de Bézier tetraédricos, prismáticos e hexaédricos, e suas generalizações para dimensões arbitrárias, com graus independentes em cada eixo e cada componente. Como parte testa teoria, desenvolvemos fórmulas genéricas explícitas para conversão entre estes vários tipos de blocos, bem como diferenciação, reparametrização afim e elevação de grau. As contribuições computacionais desta tese incluem a implementação dessa teoria na forma de uma biblioteca (BezEl) que permite a representação e manipulação eficiente de malhas de elementos de Bézier simplodais com dimensões e graus arbitrários. Outra contribuição original desta tese é uma metodologia para realizar o traçado eficiente de raios em malhas de elementos simploidais
Ver menos
Abstract: The exploration and monitoring of a hydrocarbon reservoir demand a very detailed knowledge about the geological structures of the target area. The mathematical and computation representation of this knowledge is a geophysical model. In this thesis, we describe a general system for...
Ver mais
Abstract: The exploration and monitoring of a hydrocarbon reservoir demand a very detailed knowledge about the geological structures of the target area. The mathematical and computation representation of this knowledge is a geophysical model. In this thesis, we describe a general system for geophysical modeling based on polynomial finite elements of arbitrary degree. We adopted an approach that is popular in industry, whereby both the geometry and the physical properties of the geological formations are represented by piecewise-defined functions, or splines, that are obtained by the assembly of many such elements. In this context, we present both theoretical and computational contributions. The main theoretical contribution is a unified theory of simploidal Bézier elements, which include the element types most common in mesh based modeling - such as Bézier arcs, triangular and rectangular Bézier patches, tetrahedral, prismatic and hexahedral Bézier blocks, and their generalizations to arbitrary dimensions with independent degrees on each axis and each component. As part of this theory, we developed general explicit formulas for the conversion between these various block types, as well as differentiation, affine reparametrization and degree raising. The computational contributions of this thesis include the implementation of this theory as a library (BezEl) that allows efficient representation and manipulation of meshes of simploidal Bézier elements with arbitrary dimension and degree. Another original contribution of this thesis is a methodology for performing efficient ray tracing in meshes of such simploidal elements
Ver menos
Stolfi, Jorge, 1950-
Orientador
Tygel, Martin, 1946-
Coorientador
Cunha, Maria Cristina de Castro, 1945-
Avaliador
Devloo, Philippe Remy Bernard, 1958-
Avaliador
Silva, Eduardo Fiilpo Ferreira da
Avaliador
Costa, Jessé Carvalho
Avaliador
Modelagem geológica por simplóides de Bézier
Lucas Batista Freitas
Modelagem geológica por simplóides de Bézier
Lucas Batista Freitas
Exemplares
Nº de exemplares: 2
Não existem reservas para esta obra