Cálculo estocástico e transporte paralelo
Roberta Rodrigues Albuquerque
DISSERTAÇÃO
Português
T/UNICAMP AL15c
[Stochastic calculus and parallel translation]
Campinas, SP : [s.n.], 2010.
63 f.
Orientador: Pedro José Catuogno
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Resumo: Neste trabalho estamos interessados no transporte paralelo da geometria diferencial no contexto do cálculo estocástico. Inicialmente resumimos os pontos fundamentais da geometria riemmaniana como as idéias de conexão, curvatura, transporte paralelo, a identidade de Bochner-Weitenböck e o...
Ver mais
Resumo: Neste trabalho estamos interessados no transporte paralelo da geometria diferencial no contexto do cálculo estocástico. Inicialmente resumimos os pontos fundamentais da geometria riemmaniana como as idéias de conexão, curvatura, transporte paralelo, a identidade de Bochner-Weitenböck e o mapa de desenvolvimento de Cartan, em seguida desenvolvemos alguns resultados da geometria estocástica como a fórmula geométrica de Itô, mas para isto inserimos brevemente a chamada geometria de segunda ordem. Ao final, examinaremos o transporte paralelo estocástico em algumas circunstâncias como no mapa de desenvolvimento estocástico, mapa de rolamento estocástico, construção do movimento Browniano em variedades e ainda com fluxos estocásticos na solução da equação de Stratonovich
Ver menos
Abstract: This dissertation is about the stochastic version of the parallel translation in the differential geometry. In the beginning it provides some basic background to Riemannian geometry, for example, the definiton of conexion, curvature, parallel translation, the Bochner-Weitenböck identity...
Ver mais
Abstract: This dissertation is about the stochastic version of the parallel translation in the differential geometry. In the beginning it provides some basic background to Riemannian geometry, for example, the definiton of conexion, curvature, parallel translation, the Bochner-Weitenböck identity and the Cartan's rolling map theorem. After that, it is to dedicate to development of some results on stochastic geometry as the geometric Itô formula, but to do that it is important to study the second order geometry. In the end, it is essential to give attention to stochastic parallel transport in some environment as the Cartan's rolling map in the stochastic context, stochastic rolling constuctions, Brownian motion on manifolds and the stochastic flow as the solution of the Stratonovich equation
Ver menos
Ver menos
Cálculo estocástico e transporte paralelo
Roberta Rodrigues Albuquerque
Cálculo estocástico e transporte paralelo
Roberta Rodrigues Albuquerque
Exemplares
Nº de exemplares: 2
Não existem reservas para esta obra