Sistemas de Filippov em variedades tridimensionais
Durval Jose Tonon
TESE
Português
T/UNICAMP T61s
[Phippov systems in tridimensional manifolds]
Campinas, SP : [s.n.], 2010.
103 p. : il.
Orientador: Marco Antonio Teixeira
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Resumo: Neste trabalho sistemas dinâmicos descontínuos em variedades tridimensionais são estudados. Descrevemos uma classe de tais sistemas que são localmente estruturalmente estáveis em uma vizinhança de uma singularidade típica. Exibimos nessa etapa uma sub-família de campos do tipo dobra-dobra...
Ver mais
Resumo: Neste trabalho sistemas dinâmicos descontínuos em variedades tridimensionais são estudados. Descrevemos uma classe de tais sistemas que são localmente estruturalmente estáveis em uma vizinhança de uma singularidade típica. Exibimos nessa etapa uma sub-família de campos do tipo dobra-dobra que é estruturalmente estável. Introduzimos os conceitos de A e L-estabilidade, que são pequenas generalizações dos conceitos clássicos de estabilidade assintótica e estabilidade no sentido de Lyapunov, respectivamente. Através de formas normais para as famílias de campos descontínuos de codimensão zero e um, exibimos os subconjuntos de sistemas descontínuos que são A e L-estáveis em uma vizinhança da origem. Destacamos um dos principais objetos de estudo desse trabalho: a singularidade dobra-dobra caso elíptico (T-singularidade). Discutimos algumas propriedades de sua dinâmica como a A-estabilidade para campos do tipo dobra-dobra de codimensão zero, um e dois. Investigamos também a presença de alguns invariantes topológicos, como separatrizes e famílias de órbitas periódicas. Finalmente, analisamos os chamados sistemas com relê. Em especial um sistema com dois relês acoplados é discutido.
Ver menos
Abstract: In this work non-smooth dynamical systems in IR are considered. We describe a class of such systems that are locally structurally stable around a typical singularity. One of our contributions is to exhibit within these class of fold-fold systems a subclass which is structural stable. We...
Ver mais
Abstract: In this work non-smooth dynamical systems in IR are considered. We describe a class of such systems that are locally structurally stable around a typical singularity. One of our contributions is to exhibit within these class of fold-fold systems a subclass which is structural stable. We also introduce the concept of A and L-stability which generalizes the classical concept of asymptotic and Lyapunov stability, respectively. Using normal forms for families of non smooth dynamical systems of codimension zero and one we exhibited subsets of non smooth dynamical systems which are A and L-stable in a neighborhood of the origin. We emphasize that the main object of study within this work is the fold-fold singularity in the elliptical case (T-singularity). We discuss some of its dynamical properties such as A-stability for codimension zero, one and two systems. We also investigate the presence of topological invariants such as séparatrices and families of periodic orbits. Finally we analyze two coupled relay systems.
Ver menos
Teixeira, Marco Antonio, 1944-
Orientador
Rezende, Ketty Abaroa de, 1959-
Avaliador
Garcia, Ronaldo Alves
Avaliador
Silva, Paulo Ricardo da
Avaliador
Carneiro, Mario Jorge Dias
Avaliador
Sistemas de Filippov em variedades tridimensionais
Durval Jose Tonon
Sistemas de Filippov em variedades tridimensionais
Durval Jose Tonon
Exemplares
Nº de exemplares: 2
Não existem reservas para esta obra