Modelagem fuzzy funcional evolutiva participativa
Elton Mario de Lima
DISSERTAÇÃO
Português
T/UNICAMP L628m
[Evolving participatory learning fuzzy modeling]
Campinas, SP : [s.n.], 2008.
111p. : il.
Orientadores: Fernando Antonio Campos Gomide, Rosangela Ballini
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Resumo: Este trabalho propõe um modelo fuzzy funcional evolutivo que utiliza uma aplicação do aprendizado participativo para a construção de uma base de regras. O aprendizado participativo é um modelo de aprendizado baseado na noção de compatibilidade para a atualização do conhecimento do sistema. O...
Ver mais
Resumo: Este trabalho propõe um modelo fuzzy funcional evolutivo que utiliza uma aplicação do aprendizado participativo para a construção de uma base de regras. O aprendizado participativo é um modelo de aprendizado baseado na noção de compatibilidade para a atualização do conhecimento do sistema. O aprendizado participativo pode ser traduzido em um algoritmo de agrupamento não supervisionado conhecido como agrupamento participativo. O algoritmo intitulado Aprendizado Participativo Evolutivo é proposto para construir um modelo fuzzy funcional evolutivo no qual as regras são obtidas a partir de um algoritmo de agrupamento não supervisionado. O algoritmo utiliza uma versão do agrupamento
participativo para a determinação de uma base de regras correspondente ao modelo funcional do tipo Takagi-Sugeno evolutivo. A partir de uma noção generalizada, o modelo proposto é aplicado em problemas de previsão de séries temporais e os resultados são obtidos para a conhecida série Box-Jenkis, além da previsão de uma série de carga horária de energia elétrica. Os resultados são comparados com o modelo Takagi-Sugeno evolutivo que utiliza a noção de função potencial para agrupar os dados dinâmicamente e com duas abordagens baseadas em redes neurais. Os resultados mostram que o modelo proposto é eficiente e parcimonioso, abrindo potencial para aplicações e estudos futuros. Ver menos
participativo para a determinação de uma base de regras correspondente ao modelo funcional do tipo Takagi-Sugeno evolutivo. A partir de uma noção generalizada, o modelo proposto é aplicado em problemas de previsão de séries temporais e os resultados são obtidos para a conhecida série Box-Jenkis, além da previsão de uma série de carga horária de energia elétrica. Os resultados são comparados com o modelo Takagi-Sugeno evolutivo que utiliza a noção de função potencial para agrupar os dados dinâmicamente e com duas abordagens baseadas em redes neurais. Os resultados mostram que o modelo proposto é eficiente e parcimonioso, abrindo potencial para aplicações e estudos futuros. Ver menos
Abstract: This work introduces an approach to develop evolving fuzzy rule-based models using participatory learning. Participatory learning assumes that learning and beliefs about a system depend on what the learning mechanism knows about the system itself. Participatory learning naturally augments...
Ver mais
Abstract: This work introduces an approach to develop evolving fuzzy rule-based models using participatory learning. Participatory learning assumes that learning and beliefs about a system depend on what the learning mechanism knows about the system itself. Participatory learning naturally augments clustering and yields an e_ective unsupervised fuzzy clustering algorithms for on-line, real time domains and applications. Clustering is an essential step to construct evolving fuzzy models and plays a key role in modeling performance and model quality. A least squares recursive approach to estimate the consequent parameters of the fuzzy rules for on-line modeling is emphasized. Experiments with the classic Box-Jenkins benchmark are conducted to compare the performance of the evolving participatory learning with the evolving fuzzy system modeling approach and alternative fuzzy modeling and neural methods. The experiments show the e_ciency of evolving participatory learning to handle the benchmark problem. The evolving participatory learning method is also used to forecast the average hourly load of an electric generation plant and compared against the evolving fuzzy system modeling using actual data. The results confirm the potential of the evolving fuzzy participatory method to solve real world modeling problems.
Ver menos
Gomide, Fernando Antonio Campos, 1951-
Orientador
Ballini, Rosangela, 1969-
Coorientador
Menezes, Benjamim Rodrigues de
Avaliador
Ohishi, Takaaki, 1955-
Avaliador
Modelagem fuzzy funcional evolutiva participativa
Elton Mario de Lima
Modelagem fuzzy funcional evolutiva participativa
Elton Mario de Lima
Exemplares
Nº de exemplares: 2
Não existem reservas para esta obra