Reflexidade de espaços de operadores lineares e espaços de polinomios homogeneos
Mauricio Yudi Miyamura
DISSERTAÇÃO
Português
(Broch.)
T/UNICAMP M699r
[Reflexivity of spaces of linear operators and spaces of homogeneous polynomials]
Campinas, SP : [s.n.], 2007.
59p. : il.
Orientador: Jorge Tulio Mujica Ascui
Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Resumo: Sejam E e F espaços de Banach. Os principais resultados que iremos expor serão teoremas sobre a reflexividade de L (E; F) e P (mE; F).. No capítulo 2, estudamos alguns conceitos básicos da teoria de produtos tensoriais de espaços de Banach. A importância do capítulo 2 para o trabalho seria,...
Ver mais
Resumo: Sejam E e F espaços de Banach. Os principais resultados que iremos expor serão teoremas sobre a reflexividade de L (E; F) e P (mE; F).. No capítulo 2, estudamos alguns conceitos básicos da teoria de produtos tensoriais de espaços de Banach. A importância do capítulo 2 para o trabalho seria, essencialmente, a identificação do espaço de operadores lineares contínuos L (E; F) com o dual do produto tensorial projetivo E ÄpF?. No capítulo 3, que trata de espaços de polinômios homogêneos, incluímos de noções e resultados básicos e estudamos um teorema de linearização que permitirá transferir resultados em espaços de operadores lineares para espaços de polinômios homogêneos.
Ver menos
Ver menos
Abstract: Let E and F be Banach spaces. The main results in this work are theorems concerning the reflexivity of L (E; F) and P (mE; F). In Chapter 2, we study basic concepts of the theory of tensor products of Banach spaces. The importance of Chapter 2 will be, essentially, the identification of...
Ver mais
Abstract: Let E and F be Banach spaces. The main results in this work are theorems concerning the reflexivity of L (E; F) and P (mE; F). In Chapter 2, we study basic concepts of the theory of tensor products of Banach spaces. The importance of Chapter 2 will be, essentially, the identification of the space of continuous linear operators L(E; F) with the dual of the projective tensor product E ÄpF?. In Chapter 3, that deals with homogeneous polynomials, we include basic definitions and results and we study a linearization theorem that will allow to transfer results from spaces of linear operators to spaces of homogeneous polynomials.
Ver menos
Reflexidade de espaços de operadores lineares e espaços de polinomios homogeneos
Mauricio Yudi Miyamura
Reflexidade de espaços de operadores lineares e espaços de polinomios homogeneos
Mauricio Yudi Miyamura
Exemplares
Nº de exemplares: 2
Não existem reservas para esta obra