Sobre um par de soluções positivas para uma classe de problemas elipticos envolvendo o p-Laplaciano
Edson Alex Arrazola Iriarte
TESE
Português
(Broch.)
T/UNICAMP Ar69s
Campinas, SP : [s.n.], 2004.
81f.
Orientador: Djairo Guedes de Figueiredo
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Resumo: Provamos a existência de um par de soluções positivas para o problema
{-L:lpU = f(x, u) em O
u = O sobre ao, onde L:lpu é o operador p-Laplaciano, O é um domínio limitado em JRN, com fronteira de classe C2. A não linearidade f : O x JR+ -'-+ JR é Caratheodory, "sublinear" em zero, com... Ver mais
{-L:lpU = f(x, u) em O
u = O sobre ao, onde L:lpu é o operador p-Laplaciano, O é um domínio limitado em JRN, com fronteira de classe C2. A não linearidade f : O x JR+ -'-+ JR é Caratheodory, "sublinear" em zero, com... Ver mais
Resumo: Provamos a existência de um par de soluções positivas para o problema
{-L:lpU = f(x, u) em O
u = O sobre ao, onde L:lpu é o operador p-Laplaciano, O é um domínio limitado em JRN, com fronteira de classe C2. A não linearidade f : O x JR+ -'-+ JR é Caratheodory, "sublinear" em zero, com crescimento subcrítico, e satisfaz a condição de Ambrosetti-Rabinowitz. Na primeira parte do trabalho supomos a existência de uma super-solução estrita para provar a existência do par de soluções positivas. A existência da primeira solução é obtida via um processo de minimização clássico. A segunda solução é obtida via argumentos variacionais tais como o Teorema do Passo da Montanha e o Principio Variacional de Ekeland. Na segunda parte do trabalho, usamos técnicas de Simetrização de Schwarz, para determinar condições sobre a não-linearidade f que garantam a existência de uma super-solução estrita, primeiro no caso de uma bola e depois no caso do domínio geral O Ver menos
{-L:lpU = f(x, u) em O
u = O sobre ao, onde L:lpu é o operador p-Laplaciano, O é um domínio limitado em JRN, com fronteira de classe C2. A não linearidade f : O x JR+ -'-+ JR é Caratheodory, "sublinear" em zero, com crescimento subcrítico, e satisfaz a condição de Ambrosetti-Rabinowitz. Na primeira parte do trabalho supomos a existência de uma super-solução estrita para provar a existência do par de soluções positivas. A existência da primeira solução é obtida via um processo de minimização clássico. A segunda solução é obtida via argumentos variacionais tais como o Teorema do Passo da Montanha e o Principio Variacional de Ekeland. Na segunda parte do trabalho, usamos técnicas de Simetrização de Schwarz, para determinar condições sobre a não-linearidade f que garantam a existência de uma super-solução estrita, primeiro no caso de uma bola e depois no caso do domínio geral O Ver menos
Abstract: We prove the existence of a pair of positive solutions for the problem
{-!J.pu = f(x, u) em n
u = O sobre an, where !J.pu is the p-Laplacian operator, n is a bounded domain in IRN with a C2 boundary. The non-linearity f : n x IR+ -+ IR is Caratheodory, "sublinear"in zero, with... Ver mais
{-!J.pu = f(x, u) em n
u = O sobre an, where !J.pu is the p-Laplacian operator, n is a bounded domain in IRN with a C2 boundary. The non-linearity f : n x IR+ -+ IR is Caratheodory, "sublinear"in zero, with... Ver mais
Abstract: We prove the existence of a pair of positive solutions for the problem
{-!J.pu = f(x, u) em n
u = O sobre an, where !J.pu is the p-Laplacian operator, n is a bounded domain in IRN with a C2 boundary. The non-linearity f : n x IR+ -+ IR is Caratheodory, "sublinear"in zero, with subcritical growth, and satisfies the Ambrosetti- Rabinowitz condition. At the first part of the work, we suppose the existence of a strict super-solution to prove the existence of a pair of positive solutions. We obtain the existence of the first positive solution using classical minimization. The second solution is obtained using variational arguments such that The Mountain Pass Theorem and the Ekeland Variational Principle. At the second part of the work, we use Schwarz Symmetrization techniques to obtain conditions about the nonlinearity f such that, it guaranteed the existence of the strict super-solution, first in the case of the ball and then after in the case of the general domain n Ver menos
{-!J.pu = f(x, u) em n
u = O sobre an, where !J.pu is the p-Laplacian operator, n is a bounded domain in IRN with a C2 boundary. The non-linearity f : n x IR+ -+ IR is Caratheodory, "sublinear"in zero, with subcritical growth, and satisfies the Ambrosetti- Rabinowitz condition. At the first part of the work, we suppose the existence of a strict super-solution to prove the existence of a pair of positive solutions. We obtain the existence of the first positive solution using classical minimization. The second solution is obtained using variational arguments such that The Mountain Pass Theorem and the Ekeland Variational Principle. At the second part of the work, we use Schwarz Symmetrization techniques to obtain conditions about the nonlinearity f such that, it guaranteed the existence of the strict super-solution, first in the case of the ball and then after in the case of the general domain n Ver menos
Figueiredo, Djairo Guedes de, 1934-
Orientador
Azizieh, Celine
Avaliador
Gonçalves, Jose Valdo Abreu
Avaliador
Miyagaki, Olimpio Hiroshi
Avaliador
Lopes, Orlando Francisco, 1943-
Avaliador
Sobre um par de soluções positivas para uma classe de problemas elipticos envolvendo o p-Laplaciano
Edson Alex Arrazola Iriarte
Sobre um par de soluções positivas para uma classe de problemas elipticos envolvendo o p-Laplaciano
Edson Alex Arrazola Iriarte
Exemplares
Nº de exemplares: 2
Não existem reservas para esta obra