Aspectos da geometria complexa das variedades bandeira
Marlio Paredes Gutierrez
TESE
Português
(Broch.)
T/UNICAMP P214a
Campinas, SP : [s.n.], 2000.
119p. : il.
Orientador: Caio Jose Coletti Negreiros
Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Resumo: Novas familias de métricas invariantes (1,2)-simpléticas sobre F(n), diferentes das de Kãhler e das parabólicas, são estudadas. Mais precisamente, para cada n maior ou igual a 5 são caracterizadas n - 3 familias n-dimensionais distintas de métricas ir-variantes (1,2)-simpléticas. Cada uma...
Ver mais
Resumo: Novas familias de métricas invariantes (1,2)-simpléticas sobre F(n), diferentes das de Kãhler e das parabólicas, são estudadas. Mais precisamente, para cada n maior ou igual a 5 são caracterizadas n - 3 familias n-dimensionais distintas de métricas ir-variantes (1,2)-simpléticas. Cada uma destas familias corresponde a uma classe de estructuras quase-complexas invariantes distintas sobre F( n). Os casos das variedades F(5), F(6) e F(7) são estudados completamente. Obtem-se as seguintes familias de métricas (1,2)-simpléticas distintas das de Kãhler e das parabólicas: Em F(5), 2 familias 5-paramétricasj em F(6), 4 familias 6-paramétricas, das quais duas generalizam as mencionadas para F(5) e em F(7), 8 familias 7-paramétricas, das quais 4 generalizam as 4 familias mencionadas para F( 6). Estas métricas são usadas para produzir novos exemplos de aplicações harmônicas f: M2- F(n), aplicandoum conhecidoTeorema de Lichnerowicz.
Finalmente, usando resultados de Negreiros estudamos a estabilidade destas aplicações harmônicas Ver menos
Finalmente, usando resultados de Negreiros estudamos a estabilidade destas aplicações harmônicas Ver menos
Abstract: New families of (1,2)-symplectic invariant metrics on F(n), different to the Kililer and parabolic, are presented. Exactly, we characterize n - 3 different n-dimensional families of (1,2)-symplectic invariant metrics, for each n - 5.
Each of them corresponds to a different c1ass of... Ver mais Abstract: New families of (1,2)-symplectic invariant metrics on F(n), different to the Kililer and parabolic, are presented. Exactly, we characterize n - 3 different n-dimensional families of (1,2)-symplectic invariant metrics, for each n - 5.
Each of them corresponds to a different c1ass of invariant almost-complex structure on F (n). The F(5), F(6) and F(7) cases are completely studied. We obtain the following families of (1,2)-symplectic invariant metrics, different to the Kãhler and parabolic: On F(5), two 5-parametric families; on F(6), four 6-parametric families, two of them generalizing the two families of F(5) case
and, on F(7) we obtain eight 7-parametric families, four of them generalizing the four ones of the F(6) case. These metrics are used to produce new examples of harmonic maps f : M2 - F(n), applying a known Theorem due to Lichnerowicz.
Finally, using Negreiros results, the stability of this harmonic maps are studied. Ver menos
Each of them corresponds to a different c1ass of... Ver mais Abstract: New families of (1,2)-symplectic invariant metrics on F(n), different to the Kililer and parabolic, are presented. Exactly, we characterize n - 3 different n-dimensional families of (1,2)-symplectic invariant metrics, for each n - 5.
Each of them corresponds to a different c1ass of invariant almost-complex structure on F (n). The F(5), F(6) and F(7) cases are completely studied. We obtain the following families of (1,2)-symplectic invariant metrics, different to the Kãhler and parabolic: On F(5), two 5-parametric families; on F(6), four 6-parametric families, two of them generalizing the two families of F(5) case
and, on F(7) we obtain eight 7-parametric families, four of them generalizing the four ones of the F(6) case. These metrics are used to produce new examples of harmonic maps f : M2 - F(n), applying a known Theorem due to Lichnerowicz.
Finally, using Negreiros results, the stability of this harmonic maps are studied. Ver menos
Negreiros, Caio José Colletti, 1955-
Orientador
Costa, Celso José da
Avaliador
Fornari, Susana Candida
Avaliador
Silva, Antonio Roberto da
Avaliador
Manerich, Valery
Avaliador
Aspectos da geometria complexa das variedades bandeira
Marlio Paredes Gutierrez
Aspectos da geometria complexa das variedades bandeira
Marlio Paredes Gutierrez
Exemplares
Nº de exemplares: 2
Não existem reservas para esta obra