Terminal de consulta web

Interpretability analysis of deep models for COVID-19 detection

Interpretability analysis of deep models for COVID-19 detection

Daniel Peixoto Pinto da Silva, Edresson Casanova, Lucas Rafael Stefanel Gris, Marcelo Matheus Gauy4, Arnaldo Candido Junior, Marcelo Finger, Flaviane Romani Fernandes Svartman, Beatriz Raposo de Medeiros, Marcus Vinícius Moreira Martins, Sandra Maria Aluísio, Larissa Cristina Berti, João Paulo...

ARTIGO

Inglês

Agradecimentos: This work was supported by FAPESP grants 2022/16374-6 (MMG), 2020/06443-5 (SPIRA), and 2023/00488-5 (SPIRA-BM) and by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

Abstract: During the coronavirus disease 2019 (COVID-19) pandemic, various research disciplines collaborated to address the impacts of severe acute respiratory syndrome coronavirus-2 infections. This paper presents an interpretability analysis of a convolutional neural network-based model designed... Ver mais

FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP

2020/06443-5; 2022/16374-6; 2023/00488-5

COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPES

001

Aberto

Interpretability analysis of deep models for COVID-19 detection

Daniel Peixoto Pinto da Silva, Edresson Casanova, Lucas Rafael Stefanel Gris, Marcelo Matheus Gauy4, Arnaldo Candido Junior, Marcelo Finger, Flaviane Romani Fernandes Svartman, Beatriz Raposo de Medeiros, Marcus Vinícius Moreira Martins, Sandra Maria Aluísio, Larissa Cristina Berti, João Paulo...

										

Interpretability analysis of deep models for COVID-19 detection

Daniel Peixoto Pinto da Silva, Edresson Casanova, Lucas Rafael Stefanel Gris, Marcelo Matheus Gauy4, Arnaldo Candido Junior, Marcelo Finger, Flaviane Romani Fernandes Svartman, Beatriz Raposo de Medeiros, Marcus Vinícius Moreira Martins, Sandra Maria Aluísio, Larissa Cristina Berti, João Paulo...

    Fontes

    Artificial intelligence in health (Fonte avulsa)