Terminal de consulta web

Data-driven deep-learning forecasting for oil production and pressure

Data-driven deep-learning forecasting for oil production and pressure

Rafael de Oliveira Werneck, Raphael Prates, Renato Moura, Maiara Moreira Gonçalves, Manuel Castro, Aurea Soriano-Vargas, Pedro Ribeiro Mendes Júnior, M. Manzur Hossain, Marcelo Ferreira Zampieri, Alexandre Ferreira, Alessandra Davólio, Denis Schiozer, Anderson Rocha

ARTIGO

Inglês

Agradecimentos: This work was conducted in association with the ongoing Project registered under ANP number 21373-6 as "Desenvolvimento de Técnicas de Aprendizado de Máquina para Análise de Dados Complexos de Produção de um Campo do Pre-Sal" (UNICAMP/Shell Brazil/ANP) funded by Shell Brazil , under... Ver mais
Abstract: Production forecasting plays an important role in oil and gas production, aiding engineers to perform field management. However, this can be challenging for complex reservoirs such as the highly heterogeneous carbonate reservoirs from Brazilian Pre-salt fields. We propose a new setup for... Ver mais

Fechado

Data-driven deep-learning forecasting for oil production and pressure

Rafael de Oliveira Werneck, Raphael Prates, Renato Moura, Maiara Moreira Gonçalves, Manuel Castro, Aurea Soriano-Vargas, Pedro Ribeiro Mendes Júnior, M. Manzur Hossain, Marcelo Ferreira Zampieri, Alexandre Ferreira, Alessandra Davólio, Denis Schiozer, Anderson Rocha

										

Data-driven deep-learning forecasting for oil production and pressure

Rafael de Oliveira Werneck, Raphael Prates, Renato Moura, Maiara Moreira Gonçalves, Manuel Castro, Aurea Soriano-Vargas, Pedro Ribeiro Mendes Júnior, M. Manzur Hossain, Marcelo Ferreira Zampieri, Alexandre Ferreira, Alessandra Davólio, Denis Schiozer, Anderson Rocha

    Fontes

    Journal of petroleum science and engineering

    v. 210, n. art. 109937, Mar. 2022