Metabolic disturbances in the gut-brain axis of a mouse model of MPTP-induced parkinsonism evaluated by nuclear magnetic resonance
Dionísio Pedro Amorim Neto, João Vitor Pereira de Godoy, Katiane Tostes, Beatriz Pelegrini Bosque, Paulla Vieira Rodrigues, Silvana Aparecida Rocco, Mauricio Luis Sforça, Matheus de Castro Fonseca
ARTIGO
Inglês
Agradecimentos: This work was supported by FAPESP (grant number 2018/20014-0, 2018 and 2019/24511-0, 2019)
Abstract: Parkinson's Disease is a synucleinopathy that primarily affects the dopaminergic cells of the central nervous system, leading to motor and gastrointestinal disturbances. However, intestinal peripheral neurons undergo a similar neurodegeneration process, marked by a-synuclein (aSyn)...
Ver mais
Abstract: Parkinson's Disease is a synucleinopathy that primarily affects the dopaminergic cells of the central nervous system, leading to motor and gastrointestinal disturbances. However, intestinal peripheral neurons undergo a similar neurodegeneration process, marked by a-synuclein (aSyn) accumulation and loss of mitochondrial homeostasis. We investigated the metabolic alterations in different biometrics that compose the gut-brain axis (blood, brain, large intestine, and feces) in an MPTP-induced mouse model of sporadic Parkinson's Disease. Animals received escalating administration of MPTP. Tissues and fecal pellets were collected, and the metabolites were identified through the untargeted Nuclear Magnetic Resonance spectroscopic (1H NMR) technique. We found differences in many metabolites from all the tissues evaluated. The differential expression of metabolites in these samples mainly reflects inflammatory aspects, cytotoxicity, and mitochondrial impairment (oxidative stress and energy metabolism) in the animal model used. The direct evaluation of fecal metabolites revealed changes in several classes of metabolites. This data reinforces previous studies showing that Parkinson's disease is associated with metabolic perturbation not only in brain-related tissues, but also in periphery structures such as the gut. In addition, the evaluation of the microbiome and metabolites from gut and feces emerge as promising sources of information for understanding the evolution and progression of sporadic Parkinson's Disease
Ver menos
FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP
2018/20014-0; 2019/24511-0
Fechado
Metabolic disturbances in the gut-brain axis of a mouse model of MPTP-induced parkinsonism evaluated by nuclear magnetic resonance
Dionísio Pedro Amorim Neto, João Vitor Pereira de Godoy, Katiane Tostes, Beatriz Pelegrini Bosque, Paulla Vieira Rodrigues, Silvana Aparecida Rocco, Mauricio Luis Sforça, Matheus de Castro Fonseca
Metabolic disturbances in the gut-brain axis of a mouse model of MPTP-induced parkinsonism evaluated by nuclear magnetic resonance
Dionísio Pedro Amorim Neto, João Vitor Pereira de Godoy, Katiane Tostes, Beatriz Pelegrini Bosque, Paulla Vieira Rodrigues, Silvana Aparecida Rocco, Mauricio Luis Sforça, Matheus de Castro Fonseca
Fontes
Neuroscience (Fonte avulsa) |