Heat exchanger network and plant layout [recurso eletrônico] : sequential and simultaneous design with piping and pumping cost considerations = Trocadores de calor: redes e layout na planta - projeto sequencial e simultâneo considerando custos de tubulação e bombeamento
Valter Bravim Junior
TESE
Inglês
T/UNICAMP B739h
[Trocadores de calor]
Campinas, SP : [s.n.], 2023.
1 recurso online (174 p.) : il., digital, arquivo PDF.
Orientador: Roger Josef Zemp
Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Resumo: A integração energética consiste de uma série de técnicas para reduzir o consumo de utilidades em processos químicos. Uma maneira sistemática para integrar energeticamente um processo químico é através do projeto de Redes de Trocadores de Calor (RTC). A estratégia de projeto normalmente...
Ver mais
Resumo: A integração energética consiste de uma série de técnicas para reduzir o consumo de utilidades em processos químicos. Uma maneira sistemática para integrar energeticamente um processo químico é através do projeto de Redes de Trocadores de Calor (RTC). A estratégia de projeto normalmente adotada na literatura acadêmica considera somente os custos de utilidade e trocadores de calor. Entretanto, as RTCs também são afetadas por diferentes requerimentos do layout da planta do processo químico. Dentre estes requerimentos, a presente tese aborda a localização de trocadores de calor na planta, o acesso para manutenção, o custo de bombeamento assim como o custo e o comprimento de tubulação. O objetivo do presente trabalho foi o desenvolvimento de um conjunto de métodos para considerar os requerimentos mencionados no projeto da RTC. O primeiro método utiliza programação linear para calcular o menor aumento no comprimento de tubulação devido a colocação de um trocador de calor na planta. O resultado produzido por esse método pode ser utilizado para auxiliar o projeto da RTC através da comparação das possíveis combinações entre correntes. Em seguida, um método baseado em programação linear inteira mista foi desenvolvido. O segundo método calcula a localização de trocadores de calor na planta. As localizações são orientadas a minimizar o comprimento de tubulação para transportar as correntes de seus equipamentos iniciais até os finais. O projeto da RTC é adequado para ser realizado sequencialmente com o segundo método. A característica de ser aplicado sequencialmente permitiu que capacidades adicionais fossem desenvolvidas no segundo método. Neste sentido, é possível restringir as localizações a satisfazerem um espaçamento mínimo e um máximo entre trocadores de calor. Além disso, zonas podem ser definidas dentro na planta para limitar as localizações disponíveis para posicionamento dos trocadores de calor. O último método desenvolvido nesta tese funciona simultaneamente com o projeto da RTC. A natureza simultânea permite considerar não comente os custos de utilidades e trocadores de calor, mas também os custos de tubulação e bombeamento. Todos os métodos foram testados em casos de estudo com até oito correntes de processo e dez trocadores de calor. Os modelos matemáticos foram implementados em GAMS e solucionados por meio dos solucionadores CPLEX e DICOPT. Um dos casos de estudo mais demonstrativos foi modelado com 292 variáveis contínua, 136 variáveis discretas e 375 equações. O tempo de solução foi aproximadamente 1 segundo
Ver menos
Abstract:
Heat integration consists of a series of techniques to decrease the utility consumption of chemical processes. A systematic way to heat-integrate a chemical process is through the design of Heat Exchanger Networks (HEN). The design strategy usually adopted in the academic literature... Ver mais Abstract:
Heat integration consists of a series of techniques to decrease the utility consumption of chemical processes. A systematic way to heat-integrate a chemical process is through the design of Heat Exchanger Networks (HEN). The design strategy usually adopted in the academic literature considers only the costs of utilities and heat exchangers. Nonetheless, the HENs are also affected by various requirements of the chemical process plant layout. Among those requirements, the present thesis addresses the location of heat exchangers in the plant, the access for maintenance, the pumping cost as well as the pipe cost and length. The objective of the present work was the development of three methods to consider the mentioned requirements in the HEN design. The first method uses linear programming to calculate the minimum increase in pipe length due to placing a heat exchanger in the plant. The output from the first method can be used to assist the HEN design by comparing the potential stream matches. Secondly, a method based on mixed-integer linear programming was developed. The second method calculates the location of heat exchangers in the plant. The locations are orientated to minimise the pipe length for transporting the streams from their initial to their final pieces of equipment. The
HEN design is suitable to be carried out in sequence with the second method. The characteristic of being applied sequentially allowed the capabilities of the second method to be further developed. The locations can be restricted to satisfying a minimum and a maximum spacing between heat exchangers. In addition, zones can be defined within the plant to limit the locations available for heat exchanger placement. The last method developed in this thesis functions simultaneously with the HEN design. The simultaneous nature allows the consideration not only of the costs of utilities and heat exchangers but also those of pipe and pumping. All the methods were tested in case studies with up to eight process streams and ten heat exchangers. The mathematical models were implemented in GAMS and solved by means of CPLEX and DICOPT. One of the most demonstrative case studies was modelled with 292 continuous variables, 136 discrete variables and 375 equations. The solution time was approximately 1 second Ver menos
Heat integration consists of a series of techniques to decrease the utility consumption of chemical processes. A systematic way to heat-integrate a chemical process is through the design of Heat Exchanger Networks (HEN). The design strategy usually adopted in the academic literature... Ver mais Abstract:
Heat integration consists of a series of techniques to decrease the utility consumption of chemical processes. A systematic way to heat-integrate a chemical process is through the design of Heat Exchanger Networks (HEN). The design strategy usually adopted in the academic literature considers only the costs of utilities and heat exchangers. Nonetheless, the HENs are also affected by various requirements of the chemical process plant layout. Among those requirements, the present thesis addresses the location of heat exchangers in the plant, the access for maintenance, the pumping cost as well as the pipe cost and length. The objective of the present work was the development of three methods to consider the mentioned requirements in the HEN design. The first method uses linear programming to calculate the minimum increase in pipe length due to placing a heat exchanger in the plant. The output from the first method can be used to assist the HEN design by comparing the potential stream matches. Secondly, a method based on mixed-integer linear programming was developed. The second method calculates the location of heat exchangers in the plant. The locations are orientated to minimise the pipe length for transporting the streams from their initial to their final pieces of equipment. The
HEN design is suitable to be carried out in sequence with the second method. The characteristic of being applied sequentially allowed the capabilities of the second method to be further developed. The locations can be restricted to satisfying a minimum and a maximum spacing between heat exchangers. In addition, zones can be defined within the plant to limit the locations available for heat exchanger placement. The last method developed in this thesis functions simultaneously with the HEN design. The simultaneous nature allows the consideration not only of the costs of utilities and heat exchangers but also those of pipe and pumping. All the methods were tested in case studies with up to eight process streams and ten heat exchangers. The mathematical models were implemented in GAMS and solved by means of CPLEX and DICOPT. One of the most demonstrative case studies was modelled with 292 continuous variables, 136 discrete variables and 375 equations. The solution time was approximately 1 second Ver menos
Zemp, Roger Josef, 1962-
Orientador
Silva, Marcelo Modesto da
Avaliador
Novazzi, Luis Fernando
Avaliador
Mariano, Adriano Pinto, 1978-
Avaliador
Freitas, Valdir Apolinário de
Avaliador
Heat exchanger network and plant layout [recurso eletrônico] : sequential and simultaneous design with piping and pumping cost considerations = Trocadores de calor: redes e layout na planta - projeto sequencial e simultâneo considerando custos de tubulação e bombeamento
Valter Bravim Junior
Heat exchanger network and plant layout [recurso eletrônico] : sequential and simultaneous design with piping and pumping cost considerations = Trocadores de calor: redes e layout na planta - projeto sequencial e simultâneo considerando custos de tubulação e bombeamento
Valter Bravim Junior