Um estudo topologico sobre aneis de valorização de Dubrovin
Oscar Ricardo Janesch
TESE
Português
T/UNICAMP J254e
Campinas, SP : [s.n.], 1998.
92f. : il.
Orientador: Antonio Jose Engler
Tese (doutorado ) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Resumo: Neste trabalho é feito um estudo topológico dos anéis de valorização de Dubrovin em um anel artiniano simples. A motivação para esta abordagem é o Teorema de Kowalski e Dürbaum, que classifica as V-topologias em um corpo como sendo geradas por anéis de valorização ou por valores absolutos...
Ver mais
Resumo: Neste trabalho é feito um estudo topológico dos anéis de valorização de Dubrovin em um anel artiniano simples. A motivação para esta abordagem é o Teorema de Kowalski e Dürbaum, que classifica as V-topologias em um corpo como sendo geradas por anéis de valorização ou por valores absolutos deste corpo. A partir de um anel de valorização de Dubrovin R do anel artiniano simples Q, é definida a topologia dos R-ideais em Q. Propriedades da topologia dos R-ideais são verificadas, e esta topologia é relacionada com a topologia J(R)-ádica, e com a topologia gerada por uma função valorização em Q. É introduzido o conceito de V-topologias para os anéis artiniano simples, possibilitando classificar tais V-topologias em Q como sendo geradas por anéis de valorização de Dubrovin ou por normas em Q, e provar que toda V-topologia é localmente limitada. As topologias geradas por anéis de valorização de Dubrovin são caracterizadas como topologias localmente limitadas, que possuem uma vizinhança limitada da origem aditivamente fechada e cuja restrição ao centro é uma V-topologia deste corpo
Ver menos
Abstract: Dubrovin valuation rings in simple artinian rings are studied topologically. The motivation is the Theorem due to Kowalski and Dürbaum which ensures that any V-topology over a field is generated by means of a valuation ring or an absolute value of the field. Beginning from Dubrovin...
Ver mais
Abstract: Dubrovin valuation rings in simple artinian rings are studied topologically. The motivation is the Theorem due to Kowalski and Dürbaum which ensures that any V-topology over a field is generated by means of a valuation ring or an absolute value of the field. Beginning from Dubrovin valuation ring R in the simple artinian ring Q, a topology namely R-ideal topology is defined. Properties of the R-ideal topology are proved, and this topology is connected with J(R)-adic topology, and also with the topology produced by a value function in ring Q. The concept of V-topology for artinian simple ring is introducted in order to obtain a classification of V-topologies in Q. These V-topologies are generated exactly by Dubrovin valuation rings or norms in Q. It is also shown that every V-topology in Q is locally bounded. The topologies generated by Dubrovin valuation rings in Q are characterized through locally bounded topologies with a bounded neighbourhood of zero that is closed by sums, and the restriction of this topology over your center is a V-topogical field
Ver menos
Um estudo topologico sobre aneis de valorização de Dubrovin
Oscar Ricardo Janesch
Um estudo topologico sobre aneis de valorização de Dubrovin
Oscar Ricardo Janesch
Exemplares
Nº de exemplares: 2
Não existem reservas para esta obra