Design of an aftermarket hybridization kit : reducing costs and emissions considering a local driving cycle
Jony Javorski Eckert, Fabio Mazzariol Santiciolli, Ludmila Corrêa de Alkmin e Silva, Fernanda Cristina Corrêa, Franco Giuseppe Dedini
ARTIGO
Inglês
For decades, drivers and fleet managers have been impacted by the instability of fuel prices, the need to save resources and the duty to meet and attain environmental regulations and certifications. Aiming to increase performance and efficiency and reduce emissions and mileage costs, plug-in...
Ver mais
For decades, drivers and fleet managers have been impacted by the instability of fuel prices, the need to save resources and the duty to meet and attain environmental regulations and certifications. Aiming to increase performance and efficiency and reduce emissions and mileage costs, plug-in electric vehicles (PHEVs) have been pointed out as a viable option, but there are gaps related to tools that could improve the numerous existing conventional vehicles. This study presents the design of an aftermarket hybridization kit that converts a vehicle originally driven by a combustion engine into a PHEV. To achieve this goal, an optimization was conducted with the objective of decreasing the cost (regarding fuel consumption and battery charging) to perform a local driving cycle, while attenuating the tailpipe emissions and reducing the battery mass. The torque curves of the electric motors, the battery capacity, the parameters for a gear shifting strategy and the parameters for a power split control were the design variables in the optimization process. This study used the Campinas driving cycle, which was experimentally obtained in a real-world driving scenario. The use of a local driving cycle to tune the design variables of an aftermarket optimization kit is important to achieve a customized product according to the selling location. Among the optimum solutions, the best trade-off configuration was able to decrease the mileage cost in 22.55%, and reduce the tailpipe emissions by 28.4% CO, 33.55% NOx and 19.11% HC, with the addition of a 137 kg battery
Ver menos
FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP
Fechado
DOI: https://doi.org/10.3390/vehicles2010012
Texto completo: https://www.mdpi.com/2624-8921/2/1/12
Design of an aftermarket hybridization kit : reducing costs and emissions considering a local driving cycle
Jony Javorski Eckert, Fabio Mazzariol Santiciolli, Ludmila Corrêa de Alkmin e Silva, Fernanda Cristina Corrêa, Franco Giuseppe Dedini
Design of an aftermarket hybridization kit : reducing costs and emissions considering a local driving cycle
Jony Javorski Eckert, Fabio Mazzariol Santiciolli, Ludmila Corrêa de Alkmin e Silva, Fernanda Cristina Corrêa, Franco Giuseppe Dedini
Fontes
Vehicles Vol. 2, no. 1 (Mar., 2020), p. 210-235 |