Investigation of production forecast biases of simulation models in a benchmark case
Vinicius Eduardo Botechia, Ana Teresa Ferreira da Silva Gaspar, Guilherme Daniel Avansi, Alessandra Davolio, Denis José Schiozer
ARTIGO
Inglês
Agradecimentos: This work was carried out in association with the Project registered as BG-07 “Reduction of uncertainties through the incorporation of 4D seismic data in the modeling of the reservoir” (UNICAMP/Shell Brazil/ANP) funded by Shell Brazil under the ANP R&D levy as “Investment Commitment...
Ver mais
Agradecimentos: This work was carried out in association with the Project registered as BG-07 “Reduction of uncertainties through the incorporation of 4D seismic data in the modeling of the reservoir” (UNICAMP/Shell Brazil/ANP) funded by Shell Brazil under the ANP R&D levy as “Investment Commitment to Research and Development”. The authors also would like to thank CMG for software licenses
Ver menos
Reservoir management decisions are often based on simulation models and probabilistic approaches. Thus, the response of the model must be sufficiently accurate to base sound decisions on and fast enough to be practical for methodologies requiring many simulation runs. However, simulation models...
Ver mais
Reservoir management decisions are often based on simulation models and probabilistic approaches. Thus, the response of the model must be sufficiently accurate to base sound decisions on and fast enough to be practical for methodologies requiring many simulation runs. However, simulation models often forecast production rates different to real production rates for various reasons. Two possible causes of these deviations are (1) upscaling (a technique to reduce the computational time of simulation models by reducing the number of grid blocks) and (2) uncertainties (the values established to attributes are different from real values caused by lack of knowledge of real reservoir). Morosov and Schiozer [(2016) applied a closed-loop technique in a benchmark case where decisions taken using the simulation models are applied to a reference case. The optimized production strategy, using simulations models, increased the expected monetary value of the project by about 29%, but the Net Present Value (NPV), calculated using a reference case, decreased by 2%. The real NPV was outside the expected range and revealed that the set of models did not fully represent the real field, even for high-quality history-matched models. The objective of this study is to identify the causes of these discrepancies. To reach this goal, we investigate and analyze both the impact of the upscaling and the uncertainty on production and economic indicators. We use a set of representative models of benchmark UNISIM-I (Avansi and Schiozer, 2015) to consider the effects of uncertainty and upscaling. Our main concern was the uncertainties in the distribution of petrophysical properties that strongly influence the productivity and injectivity of wells, noted by Morosov and Schiozer (2016) as being the main cause for differences among models. Furthermore, to verify the isolated effects of the possible causes of deviation, we use a single model to show only the effects of upscaling, and another set of models showing only the uncertainty. The results showed that the impact of the uncertainties was higher than the upscaling for the studied case. The upscaling generated an optimistic bias for production and economic indicators, but well-correlated with the reference case. The uncertainties significantly affected the production forecasts for this study. This happened because the response of the wells is highly dependent on the petrophysical properties of the model, which varies widely between the different models representing uncertainties and was not adequately depicted by the representative models
Ver menos
Aberto
Investigation of production forecast biases of simulation models in a benchmark case
Vinicius Eduardo Botechia, Ana Teresa Ferreira da Silva Gaspar, Guilherme Daniel Avansi, Alessandra Davolio, Denis José Schiozer
Investigation of production forecast biases of simulation models in a benchmark case
Vinicius Eduardo Botechia, Ana Teresa Ferreira da Silva Gaspar, Guilherme Daniel Avansi, Alessandra Davolio, Denis José Schiozer
Fontes
Oil & gas science & technology: revue de l'Institut Français du Petrole Vol. 73, no. 23 (2018) |