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Resumo
A obesidade e o diabetes mellitus tipo 2 (DM2) vem crescendo consideravelmente em
todo mundo, devido principalmente as alteragdes no estilo de vida e consumo de dietas
hipercaldricas. O DM2 caracteriza-se por uma falha na secrecdo e agdo da insulina,
além de elevacdo nos niveis de glucagon, culminando em hiperglicemia e
desenvolvimento de complica¢des cardiacas, renais, visuais, etc. Diversas estratégias
que modulam a secrecdo e a¢do da insulina/glucagon vem sendo estudadas no
tratamento do DM2 e obesidade, dentre os quais destacamos os &cidos biliares. Os
acidos biliares sao compostos derivados do colesterol que auxiliam no processo
digestivo e, atualmente, sdo reconhecidos como sinalizadores enddcrinos que regulam o
metabolismo energético, glicémico e lipidico. O 4cido biliar conjugado a taurina
(TUDCA) apresenta atividade de chaperona quimica, levando a redugdo do estresse de
reticulo em diversos tipos celulares, incluso células beta pancreaticas. Contudo, o papel
do TUDCA na manuten¢ao da homeostase glicémica ndo foi explorado. Neste trabalho,
usando camundongos C57BL6 submetidos ou ndo a dieta hiperlipidica, buscamos
investigar os efeitos do TUDCA na secrecdo e degradagdo de insulina, bem como na
secrecdo de glucagon. A exposicao de ilhotas pancreaticas ao TUDCA leva a uma
potencializagdo na secrec¢do de insulina estimulada por glicose, efeito ndo acompanhado
de alteragdes eletrofisiologicas mas dependente do aumento intracelular de AMPc. Em
camundongos tratados com dieta hiperlipidica e suplementados com TUDCA durante
15 dias, observamos melhora na tolerdncia a glicose e sensibilidade a insulina,
acompanhado de aumento na expressdo hepatica da IDE e degradacdo da insulina.
Finalmente, a exposicdo de ilhotas pancreaticas, assim como linhagem de células alfa
pancreaticas a-TC1-9, leva a uma redugdo na secrecdo de glucagon frente a glicose,
efeito acompanhado de redugdo nas oscilagdes intracelulares de calcio e abertura dos
canais de Karp. Portanto, concluimos que o TUDCA leva ao aumento na secre¢ao de
insulina estimulada por glicose, além de regular o clearance de insulina via aumento da
expressao hepatica da IDE. Além disso, o TUDCA contribui na manutengdo da
homeostase glicemia via reducdo na secrecdo de glucagon estimulada por glicose,

demonstrando ser uma possivel ferramenta no tratamento da obesidade e DM2.
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Abstract
Obesity and type 2 diabetes mellitus (DM2) have been growing considerably
worldwide, mainly due to changes in lifestyle and consumption of hypercaloric diets.
DM?2 is characterized by a failure in insulin secretion and signaling, besides elevation in
glucagon levels, culminating in hyperglycemia and the development of cardiac, renal,
visual complications, etc. Several strategies that modulate the secretion and action of
insulin / glucagon have been studied in the treatment of DM2 and obesity, among which
we highlight the bile acids. Bile acids are cholesterol-derived compounds that help in
the digestive process and are now recognized as endocrine signals that regulate energy,
glycemic and lipid metabolism. Taurine-conjugated bile acid (TUDCA) exhibits
chemical chaperone activity, leading to the reduction of reticulum stress in several cell
types, including pancreatic beta cells. However, the role of TUDCA in the maintenance
of glycemic homeostasis has not been explored. In this study, using C57BL6 mice
submitted or not the high fat diet, we sought to investigate the effects of TUDCA on
insulin secretion and degradation, as well as on glucagon secretion. Exposure of
pancreatic islets to TUDCA potentiates glucose-stimulated insulin secretion, an effect
not accompanied by electrophysiological changes but dependent on intracellular
increase in cAMP. In mice treated with a high fat diet supplemented with TUDCA for
15 days, we observed an improvement in glucose tolerance and insulin sensitivity,
accompanied by increased hepatic expression of IDE and insulin degradation. Finally,
exposure of pancreatic islets, as well as the lineag a-TC1-9, reduces glucagon secretion
stimulated by glucose, an effect accompanied by reduction in intracellular calcium
oscillations and opening of Katp channels. Therefore, we conclude that TUDCA leads
to increased glucose-stimulated insulin secretion and regulates insulin clearance through
increased hepatic expression of IDE. In addition, TUDCA contributes to the
maintenance of glycemic homeostasis through reduction in glucagon secretion
stimulated by glucose, proving to be a possible tool in the treatment of obesity and

DM2.
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1. Introducao

1.1 Homeostase Glicémica

A glicose ¢ a principal fonte de energia utilizada pelas células de mamiferos,
sendo que o sistema nervoso central, globulos brancos e vermelhos, células da cérnea e
retina utilizam exclusivamente este carboidrato como fonte de energia (/-4). Este acticar
apresenta uma fina regulagdo hormonal pois seu excesso leva a danos celulares e
teciduais, e o desenvolvimento de enfermidades como o diabetes mellitus (DM) (3, 6).
Frente a isso, nosso organismo conta com um conjunto de hormonios que regulam a
concentragdo plasmatica de glicose, dentre os quais destacamos a insulina e glucagon,
com agoes hipoglicemiante e hiperglicemiante, respectivamente (7, §).

A secregdo de insulina pelas células beta ¢ controlada continuamente de acordo
com a concentracdo de nutrientes circulantes, em especial, a glicose (9). Frente a um
aumento na glicemia, ocorre o transporte deste agucar pelas células beta pancreaticas,
através do transportador de glicose (GLUT 2); a glicose entdo ¢é fosforilada a glicose-6-
fosfato pela enzima glicoquinase (GCK) e metabolizada gerando ATP. O resultado ¢ o
aumento da relagio ATP/ADP, que promove o fechamento dos canais de K™ sensiveis
ao ATP (Katp), presentes na membrana da célula beta. A reducdo do efluxo de K*
resulta em despolarizagio da membrana e abertura de canais de Ca®" sensiveis a
voltagem, resultando no influxo deste ion (9-12). O Ca*" é responsdvel pela extrusio
dos granulos contendo insulina, através da ativagdo do complexo proteico SNARE
(Soluble NSF Attachment Protein Receptor) (/3, 14). Além da glicose, outros
metabolitos como os aminodcidos, acidos graxos e corpos cetdnicos estimulam a
secrecao de insulina (/5-18). Ainda, a secre¢do deste hormonio pode ser modulada por
neurotransmissores € hormonios gastrintestinais (/3, /9). O glucagon e a somatostatina,
também secretados pela ilhota pancreatica, exercem agdo estimulatoria e inibitoria,
respectivamente, sobre a secre¢do das células beta (20).

Uma vez secretada, os efeitos principais da insulina sdo no figado, onde inibe a
producdo hepatica de glicose, através das enzimas glicose-6-fosfatase (G6P) e
fosfoenolpiruvato carboxilase (PEPCK) (27), e no musculo e tecido adiposo, onde
estimula a translocacdo do transportador de glicose do tipo 4 (GLUT-4) para a

membrana celular, aumentando assim a captagdo de glicose (22-24). A insulina age
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através do receptor de insulina, uma proteina transmembrana com atividade tirosina
quinase que, uma vez ativado, sofre autofosforilacao e ativa cascatas de sinalizagdo
intracelular. As principais proteinas ativadas pela via da insulina sdo PI3K e Akt,
envolvidas com a translocacao do GLUT-4, além de proliferagcdo e sobrevivéncia celular
(21). No figado também ocorre a degradacdo de insulina, através da enzima IDE
(Insulin Degrading Enzyme) (25). A IDE pertence a classe de metalopeptidases, e sua
ativagdo depende da presenga do ion zinco. Esta proteina ¢ constitutiva, presente em
todos tipos celulares, e também no meio extracelular. Cerca de 50% da insulina
secretada pelo pancreas ¢ degradada em sua primeira passagem pelo figado, além da
IDE degradar outros peptideos como glucagon e amilina. Uma vez ligada ao seu
receptor, a insulina ¢ internalizada e sofre degradagdo em vesiculas endociticas através
da IDE (26).

Por outro lado, a redugdo da concentracdo de glicose no plasma estimula as
células a a secretam o glucagon, que promovera agdes para elevagdo da glicemia (§). A
secre¢do de glucagon apresenta um acoplamento estimulo-secrecdo semelhante ao
observado na secre¢ao de insulina. A redugdo da concentracao extracelular de glicose
estimula a célula a, que transporta a glicose via transportador de glicose do tipo 1
(GLUT-1), e em sequéncia metaboliza este agicar. Ocorre consequente aumento na
razao ATP/ADP, o que promove o fechamento dos canais de Karp. A reducao do efluxo
de K" promove elevagdo da voltagem da membrana da célula a, resultando na abertura
dos canais de Ca®"do tipo T. A entrada de Ca*" por estes canais altera ainda mais o
potencial de membrana, e abre os canais de Na'. O influxo de Na" é necessario para
abertura dos canais de Ca®" tipo L e N, principais responsaveis pela entrada de Ca*" e a
ativa¢do da maquinaria exocitdtica dos granulos contendo glucagon (27-30). Além da
glicose, a secrecdo de glucagon pode ser estimulada por adrenalina e alguns
aminoacidos como arginina.(&)

O glucagon liberado age principalmente no figado, onde ativa receptores
acoplados a proteina G estimulatoria (Gs). Algumas das a¢des do glucagon também
podem ocorrer via receptores acoplados a proteina Gq, ativagdo da fosfolipase C e
consequente formacdo de IP3 e DAG. A acdo resultante do hormonio € estimular a
glicogenodlise por fosforilar e ativar a glicogénio fosforilase e fosforilar e inibir a
glicogénio sintase, bem como aumentar a expressdo das enzimas chaves da

gliconeogénese: glicose-6-fosfatase (G6P) e fosfoenolpiruvato carboxilase (PEPCK)
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(31-33). Dessa forma, as agdes combinadas do glucagon resultam em aumento da
producdo hepatica de glicose. A degradacdo do glucagon ainda ndo estd esclarecida,

mas sabe-se que a IDE participa deste processo (25).

1.2 Obesidade e Diabetes Mellitus

A obesidade e¢ as doencas cronicas nao transmissiveis tém se tornado uma
epidemia em todo mundo, levando os governos a gastarem milhdes em satde publica
por ano (34). O surgimento destas doengas esta relacionado principalmente com
alteragdes no estilo de vida da populacdo, como aumento na ingesta de dietas rica em
gorduras, redugdo ou substituicdo da atividade fisica por atividades sedentarias como os
equipamentos eletronicos, uso de tratamentos farmacoldgicos que levam ao ganho de
peso, além do sono inadequado (35, 36) . Além disso, o desenvolvimento da obesidade
e suas comorbidades pode ter um carater genético, uma vez que o indice de massa
corporal apresenta uma hereditariedade de 40 a 70% (37).

A obesidade medeia inimeras complicagdes sistémicas, € ¢ caracterizada por um
estado de inflamagdo cronico. O excesso na ingesta calorica leva a hipertrofia dos
adipocitos, disfuncdo mitocondrial, estresse oxidativo e estresse de reticulo,
estimulando a liberagdo de citocinas proinflamatorias, adipocinas e consequente
apoptose (38, 39). Este ambiente afeta os tecidos periféricos, induzindo resisténcia
periférica a insulina, hiperinsulinemia, dislipidemias, estresse celular, etc (38, 40).

O excesso de peso esta intimamente relacionado com alteragdes na homeostase
glicémica (47). O ambiente inflamatdrio induz resisténcia a insulina no figado e tecidos
periféricos, juntamente com hipersecre¢do de insulina pelas células beta pancreéticas
(41, 42). A hiperinsulinemia também leva a disfuncdo na cascata de sinaliza¢ao da
insulina, uma vez que a incubacao de tecidos insulino-responsivos com insulina reduz a
atividade tirosina quinase do seu receptor (43, 44). A hiperinsulinemia, associada a
resisténcia a insulina € uma moderada hiperglicemia ¢ conhecido como pré-diabetes (45,
46). Modelos de pré-diabetes também apresentam redu¢do na degradag¢do da insulina,
via redugdo na expressao proteica da IDE. Este efeito reduz o clearance de insulina e
contribui para a hiperinsulinemia (47, 48).

A alta demanda na secre¢do de insulina observada no pré-diabetes induz a
apoptose das células beta pancredticas. Este efeito, associado com a resisténcia a
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insulina, resulta no desenvolvimento do DM2 (47, 49). A degradacdo de insulina
também se encontra reduzida no DM2. Pacientes diabéticos apresentam 24% de reducao
no clearance de insulina (25, 50, 57). Além disso, camundongos knockout para a IDE
hepatica apresentam hiperinsulinemia e posterior desenvolvimento do DM2 (57).

O DM2 afeta também a secrecao de glucagon pelas células alfa pancreaticas.
Pacientes diabéticos apresentam uma falha na supressdo da secrecdo de glucagon
estimulada por glicose, uma vez que possuem elevados niveis do hormonio mesmo em
hiperglicemia (27, 41). As cé€lulas alfa pancreaticas perdem a capacidade de responder a
altas concentragdes de glicose, ¢ apresentam resisténcia a insulina, principal regulador
negativo da secrecdo de glucagon (29). A hiperglucagonemia contribui para o aumento

na produgdo e liberagdo hepatica de glicose, elevando a glicemia (30).

1.3 Acidos biliares (BAs) e homeostase glicémica

Os BAs s3o compostos sintetizados nos hepatocitos, a partir da molécula de
colesterol. Os BAs sdo primeiramente sintetizados na forma de BAs primarios, sendo o
acido colico (CA) e quenodeoxicolico (CDCA) os principais em humanos, € o acido
muricolico (BMCA) e acido colico (CA) em camundongos (52, 53). Uma vez
sintetizados, os BAs sdo conjugados ao aminoacido taurina ou glicina através das
enzimas BAC (Bile acid:CoA synthase) e BAAT (bile acid:amino acid transferase),
efeito que reduz sua toxicidade e aumenta sua solubilidade (52) . Apesar de apresentam
um carater anfipatico, os BAs podem ser divididos em 2 grupos de acordo com sua
afinidade pela dgua. Os hidrofobicos compreendem principalmente BAs como CDCA ¢
CA, que possuem facilidade em cruzar a membrana plasmadtica e sdo mais toxicos. Por
outro lado, os BAs hidrofilicos, composto pelas formas conjugadas a taurina e/ou
glicina, tem maior afinidade por receptores transmembrana uma vez que apresentam
dificuldade para cruzar a mesma (52).

Uma vez sintetizados, esses compostos sdo direcionados por ductos hepéticos até
a vesicula biliar onde ficam armazenados. A presenca de acidos graxos da dieta no
intestino delgado estimula a secrecdo de colecistocinina, hormonio responsavel pelas
contracdes da vesicula biliar e liberacao da bile contendo os BAs (54-56). No intestino,

os BAs sdo fundamentais na absor¢do de lipidios e vitaminas lipossoliiveis, uma vez
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que agem como detergentes quimicos e aumentam a superficie de contato dos lipidios
através da formagao de micelas (57).

Atualmente, os BAs tém se destacado ndo apenas como moléculas que auxiliam
o processo de absor¢cdo de gorduras da dieta, mas como sinalizadores endocrinos que
regulam o metabolismo glicémico, lipidico e energético. Este efeito ocorre devido a
ativacdo de receptores intracelulares e transmembrana para BAs localizados em
praticamente todos os tipos celulares. Dentre os receptores ativados pelos BAs,
destacamos o FXR (Farnesoid X receptor), TGRS (Takeda G Receptor) e S1PR2
(Sphingosin 1 phosphate receptor 2) (53).

O FXR ¢ um receptor com localizagado citossolica, apresentando maior afinidade
por BAs hidrofébicos (54). O FXR regula o metabolismo hepaticos dos BAs, uma vez
que a ativagao deste receptor nos hepatocitos reduz a expressao da enzima Cyp7al (7-a-
hidroxilase), inibindo a sintese de BAs (55, 58). No metabolismo glicémico, o FXR
regula a secre¢do de insulina uma vez que a ativacdo deste receptor em células beta
pancredaticas potencializa a secrecdo de insulina, via fechamento dos canais de Kartp (59).
A linhagem de células beta BPTC6 incubadas por 18 horas com 6E-CDCA, um agonista
especifico do FXR, aumenta a transcri¢ado génica e secrecao de insulina, além de
aumentar a ativagdo da Akt e translocagdo do GLUT-2 para a membrana celular (60).
Camundongos knockout para o FXR em todos tecidos apresentam aumento nos
depositos hepaticos de lipidios e 4cidos graxos livres circulantes, associado com
aumento na glicemia, resisténcia a insulina e intolerancia a glicose (61).

O TGRS ¢ um receptor transmembrana com maior afinidade para BAs
hidrofilicos (56, 62). No figado, o TGRS nao ¢é expresso em hepatdcitos, mas sua
ativagdo protege os coglanciocitos contra apoptose induzida por BAs (63). Em células
beta pancreaticas, a ativacao deste receptor potencializa a secrecdo de insulina
estimulada por glicose (64, 65). Ja em células alfa pancreaticas, o uso do agonista do
TGRS, INT-777, em camundongos diabéticos db/db aumenta a conversdo do pro-
glucagon em GLP-1, efeito que reduz a concentragdo plasmatica de glucagon (66). Este
receptor encontra-se expresso também no intestino, onde estimula a secrecdo de GLP-1
nas células do tipo L (67). Ja no tecido adiposo marrom, a ativagdo do TGRS aumenta o
metabolismo energético, através do aumento na atividade da enzima deiodinase-2, que

converte T4 em sua forma ativa, T3 (68). O tratamento de camundongos diabéticos com
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INT-777 melhora a sensibilidade a insulina e tolerancia a glicose, além de reduzir lesdes
renais (69).

Finalmente, o receptor SIPR2 também apresenta maior afinidade por BAs
hidrofilicos taurina (70) . Este receptor apresenta uma localizagao transmembrana, e sua
ativacao desencadeia cascatas de sinalizacao intracelular que ativam, por exemplo, a via
da insulina (70). No figado, a ativagdo do S1PR2 ativa as proteinas Erk e Akt , que
regulam genes relacionados com o metabolismo lipidico (77). O knockout para o SIPR2
previne parcialmente os efeitos deletérios do tratamento com streptozotocina em
camundongos, com redu¢do nos niveis de glicose plasmatica e apoptose das células beta
pancredticas (72). Em células alfa pancreaticas, o papel do SI1PR2 ainda ndo foi
explorado.

A obesidade ¢ DM2 levam a uma alteragdo no pool de BAs, efeito que reflete
em prejuizos na sinalizagdo intracelular ativada por seus respectivos receptores (53, 73).
Pacientes diabéticos apresentam aumento de até duas vezes no pool de BAs. Contudo,
este pool contém maior concentracdo de BAs hidrofobicos e nao as formas hidrofilicas,
que compreendem os conjugados a taurina e glicina (74) . Camundongos diabéticos
db/db apresentam maior acetilagdo de histonas no promotor do gene Cyp7al, enzima
chave na regulacdo da sintese de BAs. Este feito aumenta a expressdo da Cyp7al e o
pool de BAs, contudo com maior concentracdo de formas hidrofobicas. Apesar de
apresentarem aumento no poo! total de BAs, a obesidade e diabetes alteram a natureza

destes compostos.

1.4 Acido biliar Tauroursodesoxicélico (TUDCA)

O TUDCA ¢ formado nos hepatocitos a partir da conjugagdo do acido biliar
ursodesoxicolico (UDCA) com o aminoacido taurina (Tau). O UDCA e seus
conjugados perfazem 60% do contetido total da bile de ursos, sendo evidenciado que o
TUDCA compreende apenas 0,13% do contetido total de 4cidos biliares no soro de
humanos(75, 76).

Na farmacologia asidtica a primeira descricdo do uso do UDCA ¢ TUDCA no
tratamento de doencas hepaticas foi relatada no Japao e se tornou comum logo apds o
inicio de sua sintese, a partir de acidos cdlicos, em meados dos anos 1950. O UDCA foi
inicialmente prescrito para dissolugdo de calculos biliares, uma vez que esse 4cido biliar
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promove solubilizacdo do colesterol e reducdo de sua saturacdo na bile. Outra
recomendacdo para uso do UDCA e TUDCA ¢ para tratamento de doenca hepatica
colestatica, principalmente cirrose biliar primaria. No entanto, seu uso no tratamento de
doencas hepaticas cresceu incrivelmente apos a descoberta que o tratamento melhora a
acdo de aminotransferases em pacientes com hepatite cronica (52, 77).

O TUDCA apresenta atividade de chaperona quimica, efeito que melhora o
enovelamento proteica e reduz a expressdo de marcadores de estresse de reticulo em
células musculares, cardiacas, auditivas, pancreaticas, pulmonares, etc (77-81).
Linhagem de células Huh7 derivadas de figado humano tratadas com tapsigargina, uma
droga indutora de estresse de reticulo (RE), e incubadas com 100 uM de TUDCA por 18
a 24 h apresentaram reducdo da expressdo de proteinas envolvidas no estresse de
reticulo endoplasmético (RE) e a fragmentagdo do DNA via inibicdo da ativacdo das
proteinas caspase 3 e 7 (80). Camundongos ob/ob tratados com 150 mg/Kg de peso
corporeo de TUDCA por 21 dias apresentaram reducgdo do peso corporal, da glicemia, e
aumento do gasto energético via aumento da sinalizagdo da leptina no hipotalamo (79,
82). O tratamento de camundongos com dieta hiperlipidica associado ao TUDCA
reverte alteracdes no metabolismo glicolipidico hepatico (83). Além disso, o TUDCA
reduziu a expressdo dos marcadores de estresse de RE: p-PERK (protein kinase RNA-
like endoplasmic reticulum kinase) e ATF-6 e preveniu a redugdo da expressdo do
mRNA da pré-pro-insulina de ilhotas isoladas cultivadas por 48h na presenca de altas
concentracgdes de glicose (78). Além disso, o TUDCA preservou a secre¢ao de insulina
e reduziu a apoptose celular de ilhotas isoladas de suinos, tratadas com tapsigargina .

Yang et al (2012) mostraram que o tratamento com TUDCA por 3 semanas (500
mg/Kg de peso corpdreo) via gavagem diminuiu a esteatose hepatica em camundongos
ob/ob via regulagdo de varios genes hepaticos envolvidos na regulacdo da lipogénese.
Ainda, camundongos ob/ob tratados com o TUDCA apresentaram menor expressao das
proteinas da via de estresse de RE: PERK e JNK (c-Jun amino-terminal kinase) no
figado. Estes camundongos obesos que receberam TUDCA também apresentaram maior
sensibilidade periférica a insulina via melhora da ativa¢do da via IRB/IRS-1 e IRS-2/p-
Akt no figado e tecido adiposo (79).

A melhora metabolica evidenciada em modelos experimentais de obesidade que
¢ promovida pelo TUDCA pode estar associada também a ac¢do de hormodnios

tireoidianos. Sabe-se que nos tecidos periféricos a tiroxina (T4) é convertida a
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triidotironina (T3) pela acdo da desiodinase 2 (D2). Evidéncias da literatura
demonstraram que o tratamento de 7 & 48hrs com TUDCA induz aumento da atividade
da D2 e, portanto do T3 em células MSTO-211H. A cultura primaria de células
adiposas marrons na presenca de TUDCA por 24h apresentou aumento da agdo da D2 e
do consumo de oxigénio, ndo tendo efeito sobre células que nao expressavam a D2 (68).

Os BAs tém se destacado como moléculas sinalizadores com agao enddcrina. O
tratamento de camundongos obesos e diabéticos com BAs, principalmente as formas
conjugadas a taurina, além de alteracdes no pool/ de BAs relatado em individuos obesos
e diabéticos, aponta a importancia destes compostos na regulacdo da homeostase
glicémica. O TUDCA age principalmente em vias relacionadas ao estresse de reticulo,
reduzindo apoptose e aumentando a viabilidade celular. O TUDCA também melhora a
homeostase glicémica em camundongos obesos, efeito associado a redug¢do do estresse
de reticulo hepatico e aumento da sinalizacdo de insulina. Contudo, os efeitos deste
composto na secre¢do e degradacdo de insulina, dois processos fundamentais na
manutengdo da normoglicemia, ndo foi explorado; assim como os efeitos deste

composto na secrecao de glucagon, principal hormonio hiperglicemiante.
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2. Objetivos

1. Investigar os efeitos do TUDCA na secre¢do de insulina em células beta

pancreaticas de camundongos (Artigo 01)

2. Investigar os efeitos do TUDCA na secrecdo e degradacdo de insulina em
camundongos submetidos a dieta hiperlipidica, assim como em linhagem celular

hepatica HepG2 (Artigo 02)

3. Investigar os efeitos do TUDCA na secre¢do de glucagon em células alfa

pancreaticas de camundongos e na linhagem celular aTC1-9 (Artigo 03)
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3. Artigo 01

THE BILE ACID TUDCA INCREASES GLUCOSE-INDUCED
INSULIN SECRETION VIA THE cAMP/PKA PATHWAY IN
PANCREATIC BETA CELLS
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3.1 Abstract

Objective: While bile acids are important for the digestion process, they also act
as signaling molecules in many tissues, including the endocrine pancreas, which
expresses specific bile acid receptors that regulate several cell functions. In this study,
we investigated the effects of the conjugated bile acid TUDCA on glucose-stimulated
insulin secretion (GSIS) from pancreatic B-cells.

Methods: Pancreatic islets were isolated from 90-day-old male mice. Insulin
secretion was measured by radioimmunoassay, protein phosphorylation by western blot,
Ca2+ signals by fluorescence microscopy and ATP-dependent K+ (KATP) channels by
electrophysiology.

Results: TUDCA dose-dependently increased GSIS in fresh islets at stimulatory
glucose concentrations but remained without effect at low glucose levels. This effect
was not associated with changes in glucose metabolism, Ca2+ signals or KATP channel
activity; however, it was lost in the presence of a cAMP competitor or a PKA inhibitor.
Additionally, PKA and CREB phosphorylation were observed after 1-hour incubation
with TUDCA. The potentiation of GSIS was blunted by the Ga stimulatory, G protein
subunit-specific inhibitor NF449 and mimicked by the specific TGRS agonist INT-777,
pointing to the involvement of the bile acid G protein-coupled receptor TGRS.

Conclusion: Our data indicates that TUDCA potentiates GSIS through the
cAMP/PKA pathway.

Keywords: B-cell, bile acids, insulin secretion, TUDCA
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3.2 Introduction

Bile acids are molecules derived from cholesterol and synthesized in
hepatocytes. They facilitate the digestion and absorption of dietary lipids and fat-soluble
vitamins and regulate cholesterol excretion and sterol homeostasis. Before secretion into
the gallbladder and duodenum, bile acids undergo a conjugation process with glycine or
taurine, which increases their solubility and decreases the toxicity of these compounds
[1, 2, 3]. In addition to the digestive function of bile acids, the discovery of bile acid
receptors in the last couple of years has emphasized their role as extracellular
messengers, which produce both genomic and non-genomic effects through multiple
signaling pathways [1, 2, 4, 5]. Many tissues, including the endocrine pancreas, express
bile acid receptors [6, 7]. The most important of these receptors are the nuclear receptor
Farnesoid X Receptor (FXR) and the G protein-coupled bile acid receptor TGRS [1, 2,
8].

The activation of FXR can regulate several processes in pancreatic -cells. In the
insulin-producing cell line BTC6, the FXR agonist 6-ethyl-chenodeoxycholic acid (6E-
CDCA) increased the expression of insulin and the glucose-regulated transcription
factor KLF11. It also induced AKT phosphorylation and GLUT-2 translocation to the
plasma membrane, promoting glucose uptake [10]. The activation of FXR by the
taurine-conjugated bile acid taurochenodeoxycholic acid (TCDC) increased glucose-
stimulated insulin secretion (GSIS) in isolated mouse islets. This effect was associated
with the inhibition of ATP-dependent K+ (KATP) channels, changes in B-cell electrical
activity, and increased Ca2+ influx [7]. The use of FXR ligands has also been explored
in the treatment of glucose homeostasis disorders. The FXR ligand 6-cthyl-
chenodeoxycholic acid (6E-CDCA) decreased glucose, triglyceride and cholesterol
levels in db/db mice and Zucker fa/fa rats, improving glucose homeostasis in these
diabetic models [8]. The FXR agonist obeticholic acid (OCA) ameliorated insulin
sensitivity and the metabolic profile in patients with type-2 diabetes [10]. Activation of
the G protein-coupled bile acid receptor TGRS can also regulate pancreatic B-cell
function. The TGRS ligands oleanolic acid (OA) and INT-777 stimulated GSIS in the
insulin-producing cells MIN-6 and human islets [6]. This effect depended on the
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activation of the Goa stimulatory TGRS subunit, increasing adenylyl cyclase activity,
cAMP levels, and cytosolic Ca2+ concentrations [6]. In rodents, synthetic TGRS
agonists diminished plasma glucose and insulin levels and protected against high-fat
diet-induced obesity [11]. TGRS was also shown to be involved in glucose homeostasis
through stimulation of the incretin glucagon-like peptide 1 (GLP-1) secretion [12, 13].

Although bile acids have recently been shown to be signaling messengers that
are able to regulate some cellular processes in the endocrine pancreas, there is little
information regarding their receptors, their molecular mechanisms and the actions
involved. In this study, we analyzed the effects of the taurine-conjugated bile acid
tauroursodeoxycholic acid (TUDCA) on the insulin secretory function of pancreatic -
cells. TUDCA and ursodeoxycholic acid (UDCA) are used for the treatment of different
liver diseases, such as primary biliary cirrhosis and cholesterol gallstones, but they also
seem to have therapeutic potential in non-liver diseases, such as neurological, retinal,
metabolic and myocardial disorders [14, 15]. These effects seem to be associated with
their anti-apoptotic properties. Additionally, studies in experimental models of obesity
have reported that TUDCA can act as a chemical chaperone that ameliorates insulin
resistance by reducing endoplasmic reticulum stress and the unfolded protein response
[16]. Here, we show that TUDCA potentiates GSIS in pancreatic B-cells, likely through
the bile acid receptor TGRS and activation of the cAMP/PKA pathway.

3.3 Materials and methods

Reagents. TUDCA was purchased from Calbiochem (Sao Paulo, SP, BRA, cat.
580549), and 1251 was purchased from Genesis (Sdo Paulo, SP, BRA). Western Blot
reagents were purchased from Bio-Rad (Madrid, Spain), and antibodies were purchased
from Cell Signaling (Barcelona, Spain). The remaining reagents were purchased from
Sigma Chemical (St. Louis, MO, USA).

Animals. All experiments involving animals were approved by the Animal Care
Committee at UNICAMP (License Number: 2234-1) and Miguel Hernandez University
(ref. UMH.IB.IQM.01.13). Male 90-day-old C57Bl/6 mice were obtained from the
breeding colony at UNICAMP and UMH and were maintained at 22 + 1°C on a 12-h

light—dark cycle with free access to food and water. Mice were euthanized in a CO2
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chamber and decapitated for pancreatic islet isolation by collagenase digestion of the
pancreas, as previous described [17].

Insulin secretion. For static insulin secretion, pancreatic islets (4 islets per well)
were incubated for 30 min with Krebs-Bicarbonate buffer (KBB; (in mM) 115 NaCl, 5
KCl, 2.56 CaCl2, 1 MgCl2, 10 NaHCO3, 15 HEPES), supplemented with 5.6 mM
glucose and 0.3 % BSA and equilibrated with a mixture of 95 % 02/5 % CO2 to
regulate the pH at 7.4. After 30 min of preincubation time, the medium was removed
and immediately replaced with fresh KBB medium containing different glucose and
TUDCA concentrations, as well as the different reagents indicated in the experiments.
After 1 h of incubation time, the medium was removed and stored at —20°C. For islet
insulin content, groups of four islets were collected and transferred to tubes containing 1
mL of deionized water, and the islet cells were homogenized using a sonicator
(Brinkmann Instruments, USA). Insulin levels were measured by a radioimmunoassay
(RIA). Total islet protein was assayed using the Bradford dye method [18] with BSA as
the standard curve.

Cytoplasmic Ca2+ oscillations and NAD(P)H fluorescence. For cytoplasmic
Ca2+ oscillations, fresh isolated islets were incubated with fura-2 acetoxymethyl ester
(5 umol/L) for 1 hour at 37°C in KBB buffer that contained 5.6 mM glucose, 0.3 %
BSA and pH 7.4. Islets were then washed with the same medium and placed in a
chamber that was thermostatically regulated at 37°C on the stage of an inverted
microscope (Nikon UK, Kingston, UK). Islets were perfused with albumin-free KBB
that was continuously gassed with 95 % 02/5 % CO2 (pH 7.4). A ratio image was
acquired every 5 s with an ORCA-100 CCD camera (Hammamatsu Photonics, Iberica,
Barcelona, Spain) in conjunction with a Lambda-10-CS dual filter wheel (Sutter
Instrument Company, CA, USA), which was equipped with 340 and 380 nm, 10 nm
bandpass filters and a range of neutral density filters (Omega opticals, Stanmore, UK).
Ca2+-dependent fluorescence in the recordings was displayed as the ratio F340/F380.
The analysis was obtained using ImageMaster3 software (Photon Technology
International, NJ, USA) [19]. Some data were represented as the area under the curve
(AUC) of the last 10 min of the stimuli as a measure of the global Ca2+ entry [20].
NAD(P)H fluorescence was monitored using the same above-mentioned system, but
fresh islets were excited with a 365-nm band pass filter, and the emission was filtered at

445 + 25 nm [21]. An image was acquired every 60 sec.
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Western blot analysis. Groups of 250 isolated islets were incubated in KBB
medium containing 11.1 mM glucose and 50 pM TUDCA. Islets were then
homogenized with 9 uL of Cell Lysis Buffer (Cell Signaling Technology, Danvers,
MA) and incubated for 0, 10, 20, 30 and 60 min in the conditions indicated in the figure
legends. For SDS gel electrophoresis and western blot analysis, the samples were
treated with a Laemmli sample buffer containing dithiothreitol. After heating to 95°C
for 5 min, the proteins were separated by electrophoresis in a 4=—20% Mini Protean Gel
(Bio-Rad, Hercules, CA, USA). Prestained SDS-PAGE standards were included for
molecular mass estimation. Transfer to PVDF membranes was performed in a Trans
Blot Turbo transfer for 7 min at 25 V with TRIS/glycine buffer (Bio-Rad, Hercules, CA,
USA). After the membranes were blocked with 5% non-fat dry milk buffer (5% milk,
10 mM TRIS, 150 mM NaCl and 0.02% Tween 20), they were incubated with a
polyclonal antibody against phosphorylated (p)-CREBSer133 (1:1000; Cell Signaling
#9198), CREB (1:1000; Cell signaling #4820), pPKA CThr197 (1:1000; Cell Signaling
#5661), PKA C-a (1:1000; Cell signaling #4782) or GAPDH (1:1000; Cell Signaling
#5174). GAPDH was used as a control for the experiment. The visualization of specific
protein bands was performed by incubating the membranes with the appropriate
secondary antibodies. Protein bands were revealed by using the Chemi Doc MP System
(Bio-Rad, Hercules, CA, USA), which detects the chemiluminescence. The band
intensities were quantified with Image Lab Lale 4.1 TM Software (Bio-Rad, Hercules,
CA, USA).

Patch-clamp recordings

Islets were dispersed into single cells and cultured as previously described [22].
KATP channel activity was recorded using standard patch-clamp recording procedures.
Currents were recorded by using an Axopatch 200B patch-clamp amplifier (Axon
Instruments Inc., Union City, CA). Patch pipettes were pulled from borosilicate
capillaries (Sutter Instrument Co., Novato, CA) using a flaming/brown micropipette
puller P-97 (Sutter Instrument Co.) with resistance between 3 and 5 M[J when filled
with pipette solutions, as specified below. The bath solution contained 5 mM KCIl, 135
mM NaCl, 2.5 mM CaCl2, 10 mM HEPES, and 1.1 mM MgCI2 (pH 7.4), and it
supplemented with glucose as indicated. The pipette solution contained 140 mM KCI, 1
mM MgCI2, 10 mM HEPES and 1 mM EGTA (pH 7.2). The pipette potential was held
at 0 mV throughout the recording process. KATP channel activity was quantified by
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digitizing 60 sec sections of the current record filtered at 1 kHz and sampled at 10 kHz
by a Digidata 1322A (Axon Instruments Inc., Orleans Drive Sunnyvale, CA, USA) and
calculating the mean NPo during the sweep. Channel activity was defined as the product
of N, the number of functional channels, and Po, the open state probability. Po was
determined by dividing the total time channels spent in the open state by the total
sample time. Values of NPo were normalized relative to the channel activity measured
in control conditions before the application of different substances. Data sampling was
initiated 1 min before (control) and 10-15 min after the application of the test
substances. Experiments were carried out at room temperature (20-24°C). These
experiments were performed at 8 mM glucose, since at 11.1 mM glucose concentrations
the majority of KATP channels are closed [20, 21, 22].

2.7 Statistical analysis. The results are presented as the mean £ SEM for the
number of determinations (n) indicated. Statistical analysis was performed using
Student’s t test or ANOVA with the appropriate post-test using Graph Pad Prism 5.0
software (La Jolla, CA, USA).

3.4 Results

TUDCA stimulates insulin secretion in isolated islets. Mouse pancreatic islets
incubated with TUDCA released more insulin than controls in a glucose-dependent
manner. Although this bile acid had no effect at low concentrations, it increased
glucose-induced insulin secretion (GSIS) at concentrations higher than 10 uM (Fig. 1).
To address the mechanisms involved in the effects of TUDCA on GSIS, we performed
the following experiments at a concentration of 50 pM. In agreement with the previous
result, figure 2A shows that TUDCA increased insulin release from mouse islets
incubated with 11 mM or higher glucose concentrations. The half-maximal effect
(EC50) obtained from the dose-response curve (Fig. 2B) was calculated to be 13.78 +
1.03 mM glucose in islets incubated with TUDCA versus 15.47 £ 0.63 mM in controls.
As indicated by the shift to the left of the dose-response curve and the magnitude of the
secretory responses, TUDCA increased the B-cell responsiveness to glucose, leading to
enhanced GSIS. No differences were observed in the total insulin content between
TUDCA-treated and control cells (Fig. 2C), indicating that changes in insulin release
were not mediated by TUDCA effects on insulin synthesis.
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Figure 1: Effects of different TUDCA concentrations on glucose-induced insulin
secretion from mouse fresh islets. Groups of 4 islets were incubated for 1 h with 2.8,
11.1, or 22.2 mM glucose (G) in the presence or absence of different TUDCA
concentrations. Data are displayed as the mean + SEM of 10-15 islet groups. In all of
the experiments, glucose-induced secretion at 11.1 and 22.2 mM G was found to be
significantly higher compared to that of the basal condition (2.8 mM Q). * and #,
significant differences (p<0.05) compared to the control conditions of 11.1 or 22.2 mM

G, respectively.
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glucose-induced insulin secretion (A, B) and total insulin content (C) from fresh mouse
islets. Groups of 4 islets were incubated for 1 h at different glucose concentrations in
the presence or absence of 50 uM TUDCA (A). EC50 values are also displayed in (B).
Data are displayed as the mean = SEM and were obtained from 10-15 groups of islets
for each glucose concentration. *, significant differences (p<0.05) compared to control

conditions.

TUDCA did not alter glucose-regulated NAD(P)H levels, electrical activity
or Ca2+ signals in isolated islets. Several cell processes are involved in GSIS. When
glucose enters P-cells, mitochondrial metabolism increases the cytosolic ATP/ADP
ratio, leading to the closure of the KATP channels, which depolarizes the plasma
membrane potential. This depolarization activates voltage-dependent Ca2+ channels,

triggering a cytosolic Ca2+ rise that stimulates secretion. To study the involvement of
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these processes, we first monitored the glucose-induced changes through NAD(P)H
levels. These levels increase as a result of glycolysis and Krebs cycle activation by
glucose, processes that are coupled to mitochondrial ATP production [23]. When mouse
pancreatic islets were perfused in the presence or absence of the bile acid (Fig. 3A, B),
no differences in glucose-induced NAD(P)H fluorescence levels were detected between
the groups. We also explored the effect of TUDCA on glucose-regulated KATP channel
activity because some bile acids, such as TCDC, have been shown to modulate this
channel in pancreatic B-cells (Dufer 2012). As shown in Figure 3C and D, TUDCA did
not produce any effect on KATP channel activity with 8 mM glucose. These findings
also indicate that TUDCA did not affect mitochondrial metabolism (as observed in
Figure 3A and B) because the KATP channel is highly sensitive to alterations in
mitochondrial function and ATP levels [24]. Diazoxide is a potent KATP channel
opener, which hyperpolarizes the plasma membrane, leading to reduced intracellular
Ca2+ levels and insulin secretion. As expected, diazoxide decreased insulin secretion
induced by 11 mM glucose (Supplementary Fig. 2A). Despite the inhibitory effect of
the KATP channel opener, TUDCA was able to increase insulin secretion in the
presence of diazoxide, suggesting that TUDCA effects are likely mediated by an
alternative pathway that differs from the KATP channel route. Finally, we analyzed the
effect of TUDCA on glucose-induced Ca2+ signals. TUDCA did not generate any effect
when it was acutely applied to mouse islets in basal conditions (Fig. 4A) or after the
generation of a Ca2+ increase with 11 mM glucose (Fig. 4B). No differences were
observed in response to 11.1, 16.7 or 22.2 mM glucose in pancreatic islets continuously
perfused in the presence of 50 uM TUDCA compared to controls either (Fig. 4C—G and
Supplementary. Fig. 1). Thus, it seems that the effect of TUDCA on GSIS is not

mediated by KATP channel-dependent mechanisms or Ca2+ signals.
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Figure 3: TUDCA effects are not mediated by metabolic changes. (A)
Representative records of the changes in NAD(P)H fluorescence (%) in response to 0.5,
5.6, 11.1 or 22.2 mM glucose from fresh mouse islets in the presence or absence of
TUDCA. (B) Increment in NAD(P)H fluorescence (%) for each glucose concentration.
Data are the mean + SEM obtained from 4 to 6 independent experiments. (C, D)
Regulation of KATP channel activity in pancreatic B-cells of mice by 50 puM TUDCA.
TUDCA did not produce any effect on the KATP channel activity at 8 mM glucose. (C)
Records of KATP channel activity in the absence of glucose, 10 min after the
application of 8 mM glucose, 10 min after the application of 8§ mM glucose with 50 uM
TUDCA, and 5 min after the application of 100 uM diazoxide. (D) Percentage of the
KATP channel activity channel elicited by 0 mM glucose, 8 mM glucose, and 8 mM
glucose and 50 uM TUDCA in single B-cells (n=6 cells). **, p[10.01 Student’s t-test
comparing 8 mM glucose and 8 mM glucose + 50 uM TUDCA with 0 mM glucose.
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concentrations. Three independent experiments were performed for each condition. (C,
D) Representative Ca2+ recordings in response to 11.1 or 16.7 mM glucose from fresh

mouse islets. The experiments were performed in a perfusion system in the continuous
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presence or absence of 50 uM TUDCA. The AUC (E, F, G) of Ca2+ is displayed as an

indicator of the global Ca2+ entry for the different glucose concentrations. Data are

shown as the mean + SEM and were obtained from 4 to 6 independent experiments.
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Supplementary Figure 1: TUDCA does not affect glucose-induced Ca2+ signals.
(A, B) Representative Ca2+ recordings from isolated islets showing the effect of
TUDCA at basal (2.8 mM) and stimulatory (22.2 mM) glucose concentrations. Three
independent experiments were performed in each condition. (C——H). The amplitude
and Ca2+ oscillations from 22.2 and all of the glucose concentrations from the
experiments shown in Figure 4. The experiments were performed in a perfusion system
in the continuous presence or absence of 50 uM TUDCA. Data are shown as the mean +

SEM and were obtained from 4 to 6 independent experiments.

The effects of TUDCA on GSIS likely depend on the G protein-coupled bile

acid receptor TGRS. To further investigate the role of TUDCA on intracellular
36



pathways, we also explored the types of bile acid receptors that were involved. Given
that TUDCA has poor affinity for the nuclear receptor FXR [2, 3], we focused on
TGRS, which is a G protein-coupled receptor that couples to the Ga stimulatory subunit,
leading to the activation of adenylyl cyclase, the generation of cAMP and, subsequently,
the activation of PKA [1]. We used NF449, a specific inhibitor of the Ga stimulatory G
protein subunit. This inhibitor did not alter GSIS at 11.1 or 22.2 mM glucose levels
(Fig. 5A and B), yet it abolished the stimulatory effects of TUDCA on GSIS at both
glucose concentrations. Because there are no commercially available TGR5-selective
antagonists [25], we tested the effect of INT-777 (6-alpha-ethyl-23(S)-methyl-cholic
acid, 6-EMCA), a potent and selective TGRS agonist. INT-777 totally mimicked the
TUDCA action of 11 mM glucose, whereas it had no effect at basal glucose
concentrations (Fig. 5B). These results indicate that a G protein-coupled receptor
mediates TUDCA actions, likely via the TGRS bile acid receptor. We also analyzed the
effects of tauro B-muricholic acid (TBPMCA), a natural FXR antagonist, to analyze
whether this receptor participates in the actions of TUDCA. Incubation with TBMCA
did not alter the effect of TUDCA on insulin secretion, indicating that this FXR was not

involved (Supplementary Fig. 2B).
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Figure 5: TUDCA effects on GSIS are mediated by a G protein-coupled receptor.
(A) TUDCA effects on insulin secretion induced by 11.1 and 22.2 mM glucose from
mouse islets were abolished by the Ga stimulatory G protein subunit specific inhibitor
NF449. (B) TUDCA effects on insulin secretion induced by 11.1 mM glucose from

mouse islets were mimicked by the specific TGRS agonist INT-777. Groups of 4 islets
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were used in each measurement. Data are presented as the mean = SEM and were
obtained from 10 to 12 islets groups. *, significant differences (p<0.05) compared to

control conditions.
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Supplementary Figure 2: TUDCA effects on glucose-stimulated insulin secretion
(GSIS) are not mediated by a KATP-dependent mechanism and FXR receptor. (A)
TUDCA effects on insulin secretion induced by 11.1 mM glucose from mouse islets
were partially abolished by diazoxide. (B) TUDCA effects on insulin secretion induced
by 11.1 mM glucose from mouse islets were not abolished by the natural FXR inhibitor
TBMCA. Groups of 4 islets were used in each measurement. Data are displayed as the
mean = SEM and were obtained from 6 to 8 islets groups. * and #, significant

differences (p<0.05) compared to control or control + DZX conditions, respectively.

TUDCA-stimulated insulin secretion is dependent on the cAMP/PKA
pathway. To address whether the cAMP/PKA pathway could be modulated by
TUDCA, we investigated the effect of the PKA inhibitor H89 and (Rp)-cAMP, a
competitive inhibitor of PKA activation by cAMP, on GSIS. In both cases, the
inhibition of the PKA pathway completely blunted the TUDCA actions on GSIS from
mouse pancreatic islet cells (Fig. 6A and B). In addition, to confirm the activation of
this pathway, we analyzed the phosphorylation levels of PKA and its target protein
CREB in a time-dependent manner (Fig. 6C and D). TUDCA enhanced PKA and CREB
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phosphorylation after being incubated for 20 min. In addition, enhanced pPKA content

was also observed after 1 h.
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Figure 6: TUDCA actions on GSIS are mediated by the cAMP/PKA pathway. (A,
B) Effects of TUDCA on GSIS from mouse islets after 1 h were blunted by the PKA
inhibitor H89 (A) or by Rp-cAMP, a competitive inhibitor of PKA activation by cAMP
(B). (C, D) TUDCA incubation for 1 h increases the phosphorylation of PKA (C) and

CREB (D). Groups of 4 islets were used for insulin secretion measurements, and groups

of 250 islets were used in the western blot experiments. Data are shown as the mean +

SEM and were obtained from 10 to 12 groups of islets. *, significant differences

(p<0.05) compared to control conditions.
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3.5 Discussion

The present study shows that the taurine-conjugated bile acid TUDCA has a
positive effect on glucose-induced insulin secretion from mouse isolated pancreatic
islets, whereas it remains without effect at basal glucose levels. This behavior is similar
to that of incretins such as GLP-1. Incretins exhibit an important therapeutic advantage
for glycemic control in diabetes because they act on hyperglycemic conditions without
favoring hypoglycemic episodes [26]. Thus, glucose-dependent TUDCA action on
insulin secretion might be interesting from a therapeutic context. Currently, TUDCA
and ursodeoxycholic acid (UDCA) are used for the treatment of several liver diseases
[14,15]. In contrast to other bile acids, which are cytotoxic, TUDCA and UDCA exhibit
protective properties against apoptosis [27]. Additionally, ongoing research is analyzing
the therapeutic potential of TUDCA to alleviate apoptosis in non-liver diseases, such as
neurological, retinal, metabolic and myocardial disorders [14, 15]. It has been reported
in obese humans and mice that TUDCA ameliorates insulin resistance by reducing
endoplasmic reticulum stress [6]. In addition to all of these beneficial properties, here,
we show that TUDCA potentiates GSIS via bile acid signaling involving the
cAMP/PKA pathway. This effect occurred over a short time period (less than 1 h) and
was not mediated by genomic actions because insulin protein synthesis remained
unchanged (Fig. 1 and 2). It remains to be explored whether in vitro TUDCA effects on
GSIS are also important for in vivo conditions to acutely modulate plasma insulin levels
and glucose homeostasis. It would also be interesting to analyze whether in vivo
treatment with TUDCA alone or in combination with other therapeutic agents could
ameliorate glycemic values in obesity and diabetes animal models.

Although FXR and TGRS are both expressed in mouse pancreatic islets [6, 7, 9],
several findings support that the effects of TUDCA observed in this study were
mediated, at least in part, by TGRS. In contrast to the nuclear FXR receptor, TGRS is a
plasma membrane receptor that is coupled to a G protein (Ga stimulatory), which
activates adenylate cyclase, increasing cAMP levels. This results in PKA activation,
inducing CREB phosphorylation [2, 3, 28]. Our results showed that the effects of
TUDCA on GSIS were blocked when we inhibited both a G protein (Ga stimulatory)
and PKA (Fig. 5 and 6). Additionally, TUDCA actions were mimicked by a TGRS
selective agonist. We also showed that TUDCA increases PKA and CREB
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phosphorylation levels on the same temporal scale as the effects on GSIS. Remarkably,
although TUDCA has been reported to activate TGRS and to induce cAMP production
[29, 30], this hydrophilic bile acid and UDCA are not FXR agonists [2, 30] because the
latter receptor exhibits more affinity for hydrophobic bile acids. Taurine conjugation of
UDCA may also increase its affinity for TGRS [25, 31]. In contrast to the effects of the
FXR agonist TCDC reported in mouse pancreatic islets [7], TUDCA actions on GSIS
were independent of KATP channels and changes to cytosolic Ca2+ levels. These
findings further support the idea that TUDCA affected secretion in the current study by
mechanisms other than FXR activation.

Short-term non-genomic effects on insulin secretion by some bile acids have
been previously reported. The conjugated bile acid TCDC induced insulin release at
high glucose concentrations via FXR activation in mouse B-cells [7]. In MIN-6 cells and
human islets, the TGRS agonists oleanolic (OA) and lithocholic acid (LCA) stimulated
insulin secretion in both basal and stimulatory glucose conditions [6]. TUDCA
enhanced insulin secretion in pig pancreatic islets at high glucose concentrations [32].
In the latter study, the bile acid receptor mediating these TUDCA effects was not
explored. Our findings are in agreement with these studies, showing that TUDCA
stimulates high glucose-induced insulin secretion in the short-term. In BTC6 cells and
human islets, the FXR ligand 6E-CDCA [9] was reported to enhance GSIS after an 18 h
incubation. However, genomic actions were likely involved at these long periods
because this FXR ligand also induced insulin expression.

It has been shown that bile acids can regulate the activity of plasma membrane
ion channels and cytosolic Ca2+ signals in different cell types [31]. In mouse isolated
islets, the FXR agonist TCDC leads to the blockade of KATP channel currents,
stimulating electrical activity and intracellular Ca2+ oscillations [7]. In MIN6 cells,
mouse islets and human islets, different TGRS agonists generate a rise in intracellular
Ca2+ [6]. In this latter work, TGRS activation led to phosphoinositide hydrolysis and
Ca2+ release from intracellular stores. In our study, we did not observe any effects of
TUDCA on KATP channel activity (Fig. 3), Ca2+ signals or intracellular Ca2+ release
(Fig. 4), indicating that these pathways were not involved. It has been shown that the
pharmacological activation of PKA can slightly increase glucose-induced intracellular
Ca2+ concentrations [33]. Because we did not observe any effect on cytosolic Ca2+

levels, it seems that TUDCA may induce PKA activation to a low extent (at least
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compared with a pharmacological agonist) or that PKA-induced activation by TUDCA
preferentially affects the secretory process. Indeed, changes in cAMP levels close to the
plasma membrane and spatial compartmentalization of several components of the
exocytotic process seem to play a major role in GSIS in pancreatic B-cells [34].

TGRS is a G protein-coupled receptor that leads to adenylate cyclase activation
[31]. In the present study, incubation of isolated fresh islets with NF449, a Gas subunit
inhibitor, prevented the effects of TUDCA on GSIS. Likewise, the inhibition of PKA
activity with H89 or Rp-cAMPS resulted in the blockade of TUDCA actions. Finally,
TUDCA led to PKA phosphorylation and activation of its target CREB in isolated
mouse islets in the short-term. All of these findings indicate that the effects of TUDCA
on GSIS are cAMP/PKA-dependent. The role of the cAMP/adenylate cyclase pathway
in GSIS is well known. Elevation of cAMP concentrations potentiates glucose-
dependent insulin secretion through the activation of PKA [33, 35]. PKA
phosphorylation affects the regulation of some proteins involved in exocytosis, thus
stimulating insulin secretion in pancreatic B-cells [35, 36]. The present results are in
agreement with previous studies on enteroendocrine cells showing that TGRS activation
is followed by Gas release and activation of adenylate cyclase, leading to an increase in
cAMP concentration and activation of PKA and CREB [3].

In summary, this study shows an important effect of TUDCA in mouse
pancreatic B-cells. This bile acid increases insulin secretion only at high glucose
concentrations by a mechanism that is mediated by the cAMP/PKA/CREB pathway.
Although our experiments indicate that the TGRS receptor is likely involved in the
effects of TUDCA, we cannot rule out the implication of the FXR receptor and other
signaling pathways.
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4.1 Abstract

Both, insulin secretion and clearance disruption contribute to obesity-induced
hyperinsulinemia. However, the insulin clearance reduction seems to be the mainly
factor in this context. The liver is the major site for insulin degradation, a process
mainly coordinated by the Insulin-degrading enzyme (IDE). The beneficial effects of
taurine conjugated bile acid (TUDCA) on insulin secretion as well as insulin sensitivity
have been recently described. However, the possible role of TUDCA in insulin
clearance had not yet been explored. Here, we demonstrated that treatment for 15 days
with TUDCA reestablished plasma insulin to physiological concentrations in high fat
diet (HFD) mice, a phenomenon associated with increased insulin clearance and liver
IDE expression. TUDCA also increased IDE expression in human hepatic cell line
HepG2. This effect was not observed in the presence of an inhibitor of the hepatic
membrane bile acid receptor, SIPR2, as well as when its downstream proteins were
inhibited, including IR, Pi3K and Akt. These results indicated that treatment with
TUDCA may be helpful to counteract obesity-induced hyperinsulinemia, by increasing
insulin clearance, an effect that seems to be orchestrated by enhanced liver IDE

expression in a mechanism dependent on S1PR2-Insulin pathway activation.
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4.2 Introduction

Obesity is the primary cause of hyperinsulinemia, which increases the risk for
cancer and cardiovascular disease (1,2), and potentiates insulin resistance, that may
trigger type 2 diabetes (T2D) (3). Higher levels of plasma insulin concentration can be
attributed to increased insulin secretion and/or decreased insulin clearance (4,5);
reduced insulin clearance 1is likely the primary factor in obesity-induced
hyperinsulinemia (6).

Insulin clearance occurs mainly in the liver by the Insulin-degrading Enzyme
(IDE), which degrades approximately 50% of insulin in its first passage through the
hepatic portal system (7,8). Mice lacking IDE are hyperinsulinemic at 2 months old,
showing an improved glucose tolerance. However, they develop glucose intolerance as
well as insulin resistance over time (9). This suggests the hyperinsulinemic state, due to
reduced insulin clearance, as a trigger for the development of T2D. In the same way,
Goto-Kakizaki rats, which have a genetic defect at the IDE gene, as well as some T2D
humans, exhibit reduced insulin clearance and augmented plasma insulin
concentrations, prior to the onset of T2D (10,11).

Conversely, insulin sensitizer agents such as physical exercise, bariatric surgery
and pioglitazone treatment have been found to reduce plasma insulin concentrations in
obese rodents, through increased insulin clearance and improved glucose homeostasis
(12-14). However, exercise has a low adherence rate (15), bariatric surgery is an
invasive procedure (16), and pioglitazone treatment has significant side effects (17).

Thus, the use of endogenous molecules that could increase insulin clearance,
without the side effects or adherence concerns, shows potential as a treatment for
hyperinsulinemia. In this context, the taurine conjugated bile acid tauroursodeoxycholic
(TUDCA) has emerged as a possible candidate due to its beneficial effect upon glucose
homeostasis (18-20). In the liver, TUDCA improves insulin sensitivity by reducing
endoplasmic reticulum stress (21,22). TUDCA activates liver insulin signaling by the
interaction with the sphingosine-1-phosphate receptor 2 (S1PR2), resulting in PI3K/Akt
activation (23). However, the effect of TUDCA on insulin clearance as well as upon

hepatic IDE expression has not been clarified yet.

50



Here, using high fat diet (HFD) mice, as an experimental model of
hyperinsulinemia, we demonstrated that TUDCA normalizes their plasma insulin
concentrations by increasing insulin clearance. This effect is probably due to
augmentation of IDE expression in the liver. In in-vitro experiments, using hepatic
human HepG2 cell line, we observed that TUDCA also increases IDE expression, by a
mechanism dependent on the interaction of TUDCA with the S1PR2 receptor, via the
insulin signaling pathway. These findings suggest the treatment with TUDCA as a
promising therapeutic intervention for the control of hyperinsulinemia in obese pre-

diabetic individuals.

4.3 Materials and methods

Reagents. TUDCA was purchased from Calbiochem (Sao Paulo, Brazil, cat.
580549) and Insulin and C-Peptide Elisa Kits were acquired from Millipore (Darmstadt,
Germany, cat. #EZRMI-13K and #EZRMCP2-21K, respectively). Western Blot
reagents were purchased from Bio-Rad (Madrid, Spain) and antibodies were acquired
from Abcam (Cambridge, UK) and Sigma Aldrich (St Louis, MO, USA). The
remaining reagents were purchased from Sigma Aldrich.

Animals. The experiments involving animals were approved by the Animal Care
Committee at UNICAMP (license number: 3815-1) and were conducted in accordance
to the last revision of the National Institutes of Health (NIH) guide for the care and use
of laboratory animal. Male 21-days old C57Bl/6 mice were obtained from the breeding
colony at UNICAMP and maintained at 22 + 1 °C, on a 12-h light-dark cycle. After 1
month, the mice were fed a standard diet (CON) or a High fat diet with 35% fat (HFD)
for 12 weeks. On the last 15 days of these diets, the mice received, i.p., PBS (groups
CON and HFD) or 300 mg/kg TUDCA (groups CON+TUDCA and HFD+TUDCA).
The mice were killed in a CO2 chamber and decapitated for blood collection and
removal of the liver for posterior Western blot analyses.

Glucose and Insulin Tolerance Tests. At the end of treatment with TUDCA, the
mice were subjected to 12-h fasting to performe the GTT. The fasting blood glucose
level were measured (time 0) by a glucometer. After, the mice received an i.p. glucose
load of 2 g/kg body weight and the glycemia was measured at 15, 30, 60 and 120

minutes after the glucose load. For the ITT, the mice were subjected to a 2-h fasting and
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the glycemia was measured before (time 0) and 3, 6, 9, 12, 15 and 18 minutes after the
i.p. administration of 0.75 U/kg insulin load. The KITT was calculated as previously
described 36.

Plasma Insulin and C-peptide measurements. Mouse insulin and C-peptide Elisa
Kits were used to measure plasma insulin and C-peptide. The plasma samples was
obtained by centrifugation of blood samples at 1100 g, 15 min, 4°C. The assays were
performed as indicated on kit protocol. The blood samples for insulin measurements
were collected on fed and fasted state, as well as at the GTT times 0, 15 and 60 min.
The C-peptide were measured in these same plasma samples of GTT, used for insulin
measurements.

Cell culture and treatment. HepG2 liver cell line were cultured in DMEN
(Vitrocell, Campinas, SP, Brazil), enriched with 10% (vol./vol.) fetal bovine serum
(FBS) for 3 days, under a humidified condition with 5% CO2 at 37°C. After that, the
cells were incubated in the presence, or not, of different TUDCA concentrations (T50,
T100 and T200 pM) during 24-h. The concentration of 100 uM was adopted for the
following experiments. The inhibitors of insulin pathway and bile acid receptors were
added when necessary, as describe on figure legends. In the experiments with S961,
MK2206 or Wortmannin, the cells were submitted to a 6-h serum starved before
treatment.

Western blot analysis. Liver samples were collected and homogenized with 500
pL of Cell Lysis Buffer. For HepG2 Western blot, after treatment, the cells were
collected in trypsin/EDTA, washed with PBS, and homogenized in urea anti-
protease/anti-phosphatase buffer. For SDS (sodium dodecyl sulfate) polyacrylamide gel
electrophoresis, all samples were treated with a Laemmli buffer containing
dithiothreitol. After heating to 95°C for 5 min, proteins were separated by
electrophoresis in a 10% polyacrylamide gel. The transfer to nitrocellulose membranes
was performed in a Trans Blot transfer for 2-h in 100V, with Tris/Glycine buffer. After,
the membranes were blocked with 5% non-fat dry milk buffer (5% milk, 10 mM TRIS,
150 mM NaCl and Tween 20 0.02%) during 1-h, and then, they were incubated with a
polyclonal antibody against IDE (Abcam, cat. ab32216). Tubulin (Sigma Aldrich, cat.
6074) was used as control of the experiment. Visualization of specific protein bands
was performed by incubating the membranes with appropriate secondary antibodies.

Protein bands were visualized using the Amersham Imager 600 (GE Healthcare Life
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Sciences, Buckinghamshire, UK) which detects the chemiluminescence. The band
intensities were quantified with the Image J software (National Institutes of Health,
Bethesda, MD, USA).

Statistical analysis. The data were presented as means + standard errors media
(SEM) for 4-8 animals, or obtained for 3 different cells experiments, each one in
triplicate. The comparisons between all groups were performed by one-way Anova
analysis followed by Newman-Keuls test. When the comparisons were determined
between two groups Student’s t-test was adopted. The difference between the groups

were considered statistically significant if P < 0.05.

4.4 Results

TUDCA reduced body weight, fat pads weight and blood glucose in HFD
mice. As expected, body weight was significantly higher in HFD, compared with CON
mice (Table 1). This was accompanied by higher perigonadal and retroperitoneal fat pad
weight, as well as higher fed/fasted blood glucose concentrations. TUDCA treatment
reduced body and fat pad weight in the HFD+TUDCA mice (Table 1). Moreover,
TUDCA treatment returned fed/fasted glucose concentrations to levels similar to the

control mice (Table 1). TUDCA treatment failed to alter all these parameters in

CON+TUDCA mice.

53



Table 1. Final characterization of CON, CON+TUDCA, HFD and HFD+TUDCA

mice.

CON CON+TUDCA  HFD HFD+TUDCA
Body Weight (g) 30.33£1.21* 2968x1482 41.2241.18% 33 88+1 27
Perigonadal fat pad

0314£003* 027620022 1.309+0.10° 0.8746=0.06°
weight (g)
Retroperitoneal fat pad

0.154£001* 013320012 0.630£0.06® 0.336+0.03¢
weight (g)
Fasted Glycemia

00+4 322 91.5+10.02 111+£5.42° 89.38+5 567
(mg/dL)
Fed Glycemia (mg/dL) 1377782 121+6.022 161+2.00° 1386482

Different letters indicate statistically significant differences (One-way ANOVA followed
by Newmans-Keuls posttest. P < 0.05). Data are mean = SEM (n = 4-8).

Table 1. Final characterization of CON, CON+TUDCA, HFD and HFD+TUDCA
mice. Different letters indicate statistically significant differences (One-way ANOVA
followed by Newman-Keuls posttest, P < 0.05). Data are mean = SEM (n = 4-8).

TUDCA improved glucose tolerance and insulin sensitivity in HFD mice. To
investigate the effects of TUDCA on glucose homeostasis, we performed glucose and
insulin tolerance tests (GTT and ITT). After glucose load, during GTT, all groups had a
maximal glucose peak at 15-30 minutes (Figure 1A). However, HFD mice presented
higher glucose concentrations indicating an impairment of glucose tolerance, as judged
by the higher AUC of blood glucose, compared with the other groups (Figure 1B).
Interestingly, HFD+TUDCA mice presented improved glucose tolerance (Figure 1A),
as observed by the lower AUC of blood glucose, during GTT (Figure 1B). HFD group
displayed higher blood glucose during the ITT, compared with CON mice (Figure 1C).
Insulin sensitivity was lower in HFD mice, as judged by the glucose disappearance rate
(KITT) (Figure 1D). The treatment with TUDCA restored insulin sensitivity in
HFD+TUDCA mice (Figure 1D), improving the KITT values (Figure 1D). Finally, we
assessed the plasma insulin levels in the fed and fasted state. The HFD increased plasma
insulin concentrations in both states (Figure 1E and F) and the treatment with TUDCA
restored them in HFD+TUDCA to levels similar to those found in CON mice (Figure
1E and F).

54



(A) (B)

Blood Glucose
(mg/dL)

7~
- CON+TUDCA =
400 HFD < 400007
HFD + TUDCA o
wn .
300 g 30000
= |
200 z 20000
= J
100 S 10000
=
0+ . . . . ~a 0-
0 30 60 90 120
Time (min)

© (D)

Blood Glucose

-~ CON
-= CON + TUDCA
-+ HFD

+« -+ HFD + TUDCA

200

(mg/dL)
insulin tolerance test)
S

Kirr (Rate constant for

o 3 6 9 12 15 18
Time (min)

(E) (F)

Fed Insulin

51 % B CON 1.2
@ HFD =
41 @@ HFD + TUDCA =
< w3 0.8
] - O
34 =
E S E
22 2
N’ E = 0.4
1 =
0- 0.0-

=]
)

N
1

N~
N

0.

l CON
[ CON + TUDCA
@ HFD
@ HFD + TUDCA

@ CON
&= CON + TUDCA
@@ HFD
@ UFD + TUDCA

i CON
@ HFD
@ HFD + TUDCA

Figure 1. TUDCA treatment improves glucose tolerance, insulin resistance and

insulinemia in HFD mice. Blood glucose during GTT (A) and ITT (C). Area under the

curve (AUC) of total blood glucose concentration during GTT (B) and glucose

disappearance rate during ITT (KITT) (D). Plasma insulin in fed (E) and fasting (F)
state. Mice were fed a control diet (CON and CON+TUDCA) or high fat diet (HFD and
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HFD+TUDCA) for 12 weeks, and received or not i.p. 300 mg/kg TUDCA during 15
days, as indicated. Data are mean + SEM (n=4-8). * P < 0.05 vs CON.

TUDCA increased insulin clearance and IDE expression in the liver of HFD
mice. Plasma insulin concentration is controlled by insulin secretion and insulin
clearance. To measure insulin secretion we assessed the plasma concentration of C-
peptide during GTT. After glucose administration, the HFD group presented increased
C-peptide levels during the test (Figure 2C), as we observed in the AUC graphic (Figure
2D), indicating higher insulin secretion in this group, compared with CON group.
Plasma insulin concentration also was increased in the HFD group (Figure 2A and B),
reducing the C-peptide/insulin ratio. Insulin and C-peptide are co-secreted by the
pancreatic B cells (ratio 1:1); however C-peptide has a longer half-time than insulin,
thus reduction in the C-peptide/insulin ratio indicates a reduced insulin clearance, as we
observed in the HFD mice (Figure 2E and F). The TUDCA treatment, in HFD mice, did
not alter the higher insulin secretion as we observed by the elevated plasma C-peptide
concentration during GTT (Figure 2C and D); however it reduced the plasma insulin
concentration (Figure 2A and B), restoring the C-peptide/insulin ratio to similar levels
of CON (Figure 2E and F), indicating a reestablishment of insulin clearance in these
HFD+TUDCA mice. To elucidate the mechanism whereby TUDCA restored insulin
clearance in HFD mice, we also investigated the IDE expression in the liver of these
mice. As expected, the HFD reduces IDE expression (Figure 3) supporting the lower
insulin clearance in these mice. Interestingly, TUDCA treatment restored the IDE
protein expression, in the HFD+TUDCA mice, to similar levels of CON mice (Figure 3)

explaining, at least in part, the reestablishment of insulin clearance in these mice.
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Figure 2. TUDCA treatment increases insulin clearance in HFD mice. Plasma levels

of insulin (A), C-peptide (C) and the C-peptide/Insulin ratio (E). AUC of plasma insulin

concentration (B), C-Peptide (D) and C-Peptide/Insulin ratio (F). Mice were fed a
control diet (CON) or high fat diet (HFD and HFD+TUDCA) for 12 weeks, and

received or not i.p. 300 mg/kg TUDCA during 15 days, as indicated. Data are mean +

SEM (n=4-8). * P < 0.05 vs CON.
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Figure 3. TUDCA treatment increases IDE expression in HFD mice. Protein
expression of IDE in the liver and its representative immunoblottings images. Mice
were fed a control diet (CON) or high fat diet (HFD and HFD+TUDCA) for 12 weeks,
and received or not i.p. 300 mg/kg TUDCA during 15 days, as indicated. Data are mean
+ SEM (n=4-8). Data are mean + SEM (n=4-8). * P <0.05 vs CON.

TUDCA increased IDE expression in HepG2 cell line by an SIPR2-IR
pathway dependent mechanism. To assess the direct effect of TUDCA on IDE
expression, we performed in vitro experiments using a human liver cell HepG2. First,
we performed a dose-response curve to different concentrations of TUDCA, for 24-h.
We observed that TUDCA increased IDE expression at 50, 100 and 200 pM (Figure
4A). Thus, 100 uM TUDCA was used in the subsequent experiments. It is known that
the activation of the insulin pathway increases IDE expression in neurons 24 and the
bile acid TUDCA activates insulin pathway mainly by SIPR2 receptor in the liver 23.
The Figure 4B shows that in the presence of the S1IPR2 inhibitor JTE-013, TUDCA
failed to increase the expression of IDE. TUDCA also failed to increase IDE expression
in cells incubated with S196, (an IR inhibitor) 25 MK-2206 (an Akt inhibitor) or
Wortmannin (a PI3K inhibitor) 26 (Figure 4C and D, respectively).
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Figure 4. TUDCA modulates IDE expression in HepG2 cells by a SIPR2 -IR
receptor pathway. Protein IDE expression in HepG2 cells treated or not with different
concentrations of TUDCA for 24-h (A). Effect of TUDCA on IDE expression in the
presence of 10 uM sphingosine-1-phosphate receptor 2 inhibitor (JTE-013) (B), 0.1 uM
insulin receptor inhibitor (S961) (C), SuM of Akt inhibitor (MK2206) (D) or 0.1 uM of
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P13k inhibitor (Wortmannin) (D). Data are mean £ SEM (n=4-6). *P < 0.05 vs control

conditions.

4.5 Discussion

The plasma insulin concentration is controlled by the interaction between insulin
secretion and insulin clearance (7,8). Prolonged hyperinsulinemia is associated with
reduced IR tyrosine kinase activity, and the normalization of plasma insulin
concentrations recovers insulin signaling (3). In addition, non-obese mice with over-
expression of the insulin gene present high insulin levels, associated with impaired
insulin sensitivity, and consequently T2D (27). Thus, therapeutic interventions toward
insulin clearance may be relevant. Here, we demonstrate that TUDCA treatment (15
days) ameliorates insulin clearance in HFD mice, probably by increasing IDE
expression in the liver. In addition, we demonstrate that TUDCA increases IDE
expression in hepatic human cell-line HepG2, through a mechanism dependent of the
S1PR2/Insulin pathway.

As already shown (28), we observed that TUDCA treatment decreased body
weight due to a reduction in fat pad deposits associated with improved glucose tolerance
as well as insulin sensitivity. However, the possible role of TUDCA treatment upon
insulin clearance had not been explored yet.

In both the HFD and HFD+TUDCA mice groups, plasma C-peptide
concentrations were increased. In HFD mice, this increase indirectly reflects an
augmented insulin secretion, probably, as a consequence of the insulin resistance (29).
In HFD+TUDCA, which had lower insulin resistance than HFD mice, the increased
insulin secretion may be a direct effect of TUDCA on pancreatic islets (30). Despite the
HFD+TUDCA mice showing increased plasma C-peptide, their plasma insulin
concentration was lower, resulting in a higher plasma C-peptide/insulin ratio. This
suggests TUDCA treatment as an important insulin clearance booster. Our results
indicate that the increased insulin clearance in the HFD+TUDCA mice was probably
due to augmented expression of liver IDE, the most important organ responsible for
insulin clearance(7).

In an attempt to explore the direct effect of TUDCA upon IDE, we incubated the
human hepatic cell line HepG2, with or without TUDCA, and we confirmed that

TUDCA per se increase IDE expression in these cells. These data reinforce our premise
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that bile acid may increase insulin clearance by increasing IDE expression in the liver,
contributing to the normalization of insulin levels in hyperinsulinemic pre-diabetic
mice.

In addition to the well known effects of bile acids as regulators of lipid digestion
and absorption in the small intestine (31), it was suggested that they also act as
hormones, dependent on the bile acid type binding with specific receptors (31-33). In
the hepatic cell TUDCA is a ligand of a G-protein coupled protein receptor called
S1PR2 (23). The biding of TUDCA and other conjugated bile acids to SIPR2 activates
the insulin pathway, at the IR-PI3K-Akt level. In addition, TUDCA also improves liver
insulin signaling by reducing endoplasmic reticulum stress (22). Here, we show that
TUDCA increases insulin clearance in HFD and that this effect seems to be dependent
on S1PR2-IR-PI3K-Akt pathway.

Previous studies have demonstrated that different interventions, which improve
insulin signaling, are associated with increased insulin clearance and IDE expression in
obese mice (13, 13). In fact, neural cell exposure to insulin increased IDE expression,
whereas insulin pathway inhibition, at PI3K level, abolished its effect (24). This
evidence support our findings, about the possible role of insulin pathway over IDE
expression.

Although this evidence indicated that increased insulin-signaling pathway might
induce IDE expression, others studies have proposed a different conception of this
issue, suggesting that IDE expression could also affect the insulin pathway (34).
Likewise, human subjects, with a genetic defect at the IDE gene, develop insulin
resistance and type 2 diabetes (35). In the same way, the Goto-Kakizaki rats, with a
polymorphism at IDE gene, develop hyperinsulinemia, insulin resistance, and ultimately
T2D (10). IDE knockout mice are hyperinsulinemic, which contributes to the
maintenance of a chronic insulin signaling, and as a consequence the insulin negative
feedback, resulting in insulin resistance by reduced IR expression in skeletal muscle,
adipose tissue and liver (9).

Here, we provide evidence that TUDCA may be a therapeutic strategy to
counteract obesity-induced hyperinsulinemia. We found that TUDCA increased insulin
clearance in HFD mice, probably through increased IDE expression in the liver,
reestablishing their plasma insulin levels. Our results also indicated that TUDCA-

induced IDE expression seems to be mediated by S1PR2-Insulin signaling pathway.
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5.1 Abstract

Type 2 diabetes (T2D) is an epidemic that affects 9% of total world population, and is
related to the onset of cardiac disease, renal failure and blindness. T2D is characterized
by a decrease in insulin secretion by pancreatic  cells, as well as insulin resistance on
peripheral tissues. Despite insulin is the main hormone involved in T2D dysfunction,
glucagon is also impaired presenting elevated plasmatic levels, which contributes to
hyperglycemia. Molecules which could interact with glucagon secretion also are
important to T2D treatment. Bile acids have emerged as new endocrine signaling
molecules that regulate glucose, lipid, and energetic metabolism. The taurine conjugated
bile acid TUDCA regulates insulin secretion and signaling, however the effect of this
compound on glucagon secretion is unknow. Here, using isolated pancreatic islets from
C57BI6 mice and the a cell line aTC1-9, we clarify the effects of TUDCA on glucagon
secretion. The exposure of pancreatic islets and aTC1-9 cell line to S0uM TUDCA
reduces glucose induced glucagon secretion. This effect is dependent of activation of
the S1PR2/Insulin pathway, since the inhibition of S1IPR2, PI3K and Akt blunted the
TUDCA effect on glucagon secretion. Moreover, TUDCA increases the activity of
ATP-sensitive potassium channel (KATP) in a population of alpha cells and reduces
calcium oscillations in islets a cells. So, we conclude that the taurine conjugated bile
acid TUDCA reduces glucagon secretion by altering electrical activity and calcium

influx, due to the activation of the SIPR2/Akt pathway.
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5.2 Introduction

Type 2 diabetes (T2D) affects 400 million people around the world, and is the
main cause of cardiac disease, renal failure and blindness [1]. At onset of T2D, there is
an increase in insulin resistance coupled with increased pancreatic islet B-cell insulin
secretion, leading to a normoglycemic/hyperinsulinemic state. Frequently, the islet -
cell undergoes a progressive loss of function, which culminates in apoptosis and
reduction in insulin plasma levels [2, 3]. Moreover, a defect in islet a-cell in the
suppression of glucagon secretion upon hyperglycemic conditions contributes to the
hyperglycemia observed in T2D [4, 5].

Glucagon secretion counteracts the effect of insulin and reverses hypoglycemia
enhancing hepatic glucose output and gluconeogenesis. This hormone is secreted by
pancreatic a cell in response to low glucose concentration, intestinal incretins as GLP-
1/2, aminoacids and the sympathetic hormone adrenaline. As the pancreatic 3 cells, o
cells express an ATP-dependent potassium channels (KATP) that couples the glucose
metabolism to electrical activity. The pancreatic a-cell has a glucose transporter,
SLC2A1, and at low glucose concentrations the KATP channel activity leads the
membrane potential to a level at which Ca2+ and Na+ channels are activated. This
activation leads to an increased Ca2+ influx, which culminates in glucagon secretion [6-
8]. Insulin has a paracrine effect upon a-cell activating the Akt/PI3K signaling pathway,
opening KATP channels, which results in membrane hyperpolarization and subsequent
inhibition of calcium influx, reducing glucagon secretion [9, 10]. Insulin resistance
could affect pancreatic a-cell, preventing the insulin effect on the inhibition of glucagon
secretion which contributes to the hyperglucagonemia observed in type 1 and 2
diabetes.

The main target of glucagon is the liver, where activates a G-protein Coupled
Receptor that enhances cAMP production and subsequently PKA and CREB
phosphorylation resulting in glycogenolysis and gluconeogenesis activation and glucose
release to the blood [11, 12]. Glucagon secretion is altered in all forms of diabetes,
leading to enhanced hepatic glucose output, contributing to hyperglycemia. The
treatment with glucagon receptor antagonists, as well as the knockout of glucagon
receptor (Gegr), improves glucose homeostasis. However, the Gecgr mice presents

elevated glucagon levels and pancreatic a cell hyperplasia [11, 13-15]. Molecules which
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reduce glucagon secretion could be effective on hyperglucagonaemia treatment,
contributing to reduced liver glucose release and glycaemia.

The taurine conjugated bile acid Tauroursodeoxycholic (TUDCA) has emerged
as a potential therapeutic tool in diabetes and obesity treatment. TUDCA protects
pancreatic beta cells from Endoplasmic Reticulum Stress, reducing apoptosis and
increasing viability [16]. The administration of TUDCA in leptin receptor deficient
ob/ob mice, as well as high-fat diet (HFD) models, improves glucose homeostasis by
enhanced insulin signaling in liver [17-19]. TUDCA also increases glucose induced
insulin secretion in pancreatic B cells, and increases energetic metabolism in brown
adipose tissue by the activation of the Deiodinasa 2 enzyme [20, 21]. However, the
effect of this compound on glucagon secretion and pancreatic a cell is unknown.

Here, we demonstrated that acute exposure to TUDCA inhibits glucose -induced
glucagon secretion in mouse isolated islets and o-TC1-9 cell lines. This effect is
probably associated with increased KATP activity and reduced a cell calcium
oscillations, as well as is linked to the activation of the Sphingosine-1-Phosphate

Receptor 2 (S1PR2) and insulin pathway in pancreatic o cells.

5.3 Material and methods

Reagents: TUDCA was purchased from Calbiochem (Sao Paulo, SP, Brazil, cat.
580549), Wortmannin and JTE-013 from TOCRIS (Minneapolis, MN, USA, cat. 1232
and 2392, respectively), MK2206 from ChemCruz (Santa Cruz Biotechnology, Texas,
USA, cat. sc-364537) and glucagon elisa kit was purchased from Mercodia (Uppsala,
Sweden, cat. 10-1271-01). The remaining reagents were purchased from Sigma
Chemical (St. Louis, MO, USA).

Animals: All experiments involving animals were approved by the Animal Care
Committee at Miguel Hernandez University (Ref. UMH.IB.IQM.01.13). Male 90-day-
old C57Bl/6 mice were obtained from the breeding colony at UMH and were
maintained at 22 + 1 °C on a 12-h light—dark cycle with free access to food and water.
Mice were euthanized in a CO2 chamber and decapitated for pancreatic islet isolation
by collagenase digestion of the pancreas, as previous described.

Cell culture: aTC1-9 cell line was adopted as a model of pancreatic alpha cell,

and purchased from ATCC (Barcelona, Spain, cat. CRL2350). aTC1-9 cell line was
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cultured in a humidified atmosphere containing 5% CO2 and maintained in DMEM
5030 medium, supplemented with 11.1 mM glucose, 15mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), 2mM L-glutamine, 0.lmM non-essential
aminiacids, 1% penicillin/streptomycin and 10% Fetal Bovine Serum (FBS) until 60—
80% confluence. After this period, the cells were submitted to glucagon secretion.

Glucagon secretion: For static glucagon secretion, pancreatic islets (15 islets per
well) or aTC1-9 cell line were recovered for 2 hours in isolation medium containing
11.5mM NaCl, 10mM NaHCO3, 5mM KCI, 1.1mM MgCI26H20, 25mM Hepes and
1.2mM Na2HPO4 supplemented with 5.6mM glucose and 0.25% Bovine serum
albumin (BSA) equilibrated with a mixture of 95% 02/5% CO2 to regulate the pH at
7.4. After that, the islets/cells were pre-incubated for 1hr with Krebs-bicarbonate buffer
(KBB) containing 11.5mM NaCl, 5SmM KCI, 2.56mM CaCl2, 1mM MgCI2, 10mM
NaHCO3, 15mM HEPES, supplemented with 5.6 mmol/L glucose and 0.3% BSA and
equilibrated with a mixture of 95% 02/5% CO2 to regulate the pH at 7.4. After lhr of
preincubation time, the medium was removed and immediately replaced with fresh
KBB medium containing different glucose concentration and 5S0uM TUDCA, as well as
the different reagents indicated in the experiments. After 1 h of incubation time, the
medium was removed and stored at — 80 °C with 15uL Aprotinin. For islet glucagon
and protein content, groups of 15 islets were collected and transferred to tubes
containing 20uL buffer lysis (alcohol-acid), and the islet cells were homogenized using
a sonicator (Brinkmann Instruments). Glucagon levels were measured by Elisa Kit.
Total islet protein was assayed using the Bradford dye method [17] with BSA as the
standard curve.

Calcium oscillations :For cytoplasmic alpha cell Ca2+ oscillations, fresh isolated
islets were recovered for 2hrs in isolation medium. After that, islets were incubated with
4 pumol/L Fluo-4AM probe (Thermo Fisher, Waltham, Massachusetts, USA, cat.
F14201) for 1 hour at 37 °C in KBB buffer that contained 5.6 mmol/L glucose, 0.3%
BSA and pH 7.4. Islets were then washed with the same medium and placed in a
chamber treated with Poli-Lysine, that was thermostatically regulated at 37 °C on the
stage of a confocal microscope Zeiss LSM 510 (Carl Zeiss, Germany). Islets were
perfused with albumin-free KBB that was continuously gassed with 95% 02/5% CO2
(pH 7.4), containing 0.5mM glucose in the presence or absence of 50uM TUDCA and

5uM Adrenaline. The confocal microscope allows the acquisition of sections from 0.5
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and 12.4um. Fluorescence changes were monitored with a 40X immersion microscope
objective, by exciting the calcium probe at 488nm. An image was acquired every 2
seconds. The analysis was obtained using the software from confocal LSM Pascal 5
(Carl Zeiss, Germany).

Patch-Clamp recordings: Islets were dispersed into single cells and cultured as
previously described [21]. KATP channel activity was recorded using standard patch-
clamp recording procedures. Currents were recorded by using an Axopatch 200B patch-
clamp amplifier (Axon Instruments, Union City, CA). Patch pipettes were pulled from
borosilicate capillaries (Sutter Instrument, Novato, CA) using a flaming/brown
micropipette puller P-97 (Sutter Instrument) with resistance between 3 and 5 MQ when
filled with pipette solutions, as specified below. The bath solution contained 5 mmol/L
KCl, 135 mmol/L NaCl, 2.5 mmol/L CaCl2, 10 mmol/L HEPES, and 1.1 mmol/L
MgCl12 (pH 7.4), and it supplemented with glucose as indicated. The pipette solution
contained 140 mmol/L KCI, 1 mmol/L MgCI2, 10 mmol/L HEPES and 1 mmol/L
EGTA (pH 7.2). The pipette potential was held at 0 mV throughout the recording
process. KATP channel activity was quantified by digitizing 60 s sections of the current
record filtered at 1 kHz and sampled at 10 kHz by a Digidata 1322A (Axon Instruments,
Orleans Drive Sunnyvale, CA) and calculating the mean NPo during the sweep.
Channel activity was defined as the product of N, the number of functional channels,
and Po, the open state probability. Po was determined by dividing the total time
channels spent in the open state by the total sample time. Values of NPo were
normalized relative to the channel activity measured in control conditions before the
application of different substances. Data sampling was initiated 1 min before (control)
and 10—15 min after the application of the test substances. Experiments were carried out
at room temperature (20—24 °C). These experiments were performed at 0.5mM glucose,
a stimulatory concentration for pancreatic alpha cell.

Statistical Analysis: The results are presented as the mean + SEM for the number
of determinations (n) indicated. Statistical analysis was performed using Student’s t test
or ANOVA with the appropriate post-test using Graph Pad Prism 5.0 software (La Jolla,
CA).
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5.4 Results

TUDCA reduces glucose induced glucagon secretion in pancreatic a cell and
oaTC1-9 cell line. To determine the effects of TUDCA on glucagon secretion,
pancreatic islets and aTC1-9 cell line were exposed to 50uM TUDCA, concentration
already published for experiments with pancreatic B cells and insulin secretion. In the
presence of low glucose concentration (0.5mM), which stimulates pancreatic a cells,
TUDCA reduces glucose induced glucagon secretion in pancreatic islets (Fig. 1A, B)
and aTCI1-9 cell line (Fig. 1C). Glucagon secretion was inhibited at high glucose
concentrations (11 mM). At these glucose level, TUDCA did not produce any effect.
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Figure 1. The bile acid TUDCA reduces glucose induced glucagon secretion.
Pancreatic islets (A, B) and pancreatic alpha cell line aTC1-9 were exposed for lhr to
0.5 or 11.1mM glucose, in the presence or not of 50uM TUDCA, as indicated in the
graph. Glucagon secretion was measured using an Elisa kit, and normalized by islet

number (A) or protein content (B, C). Data are expressed as mean = SEM from 12

72



wells/condition, obtained from islets of 8 mice. * and ** indicates statistically

significant difference from control condition, p<0.05.

TUDCA modulates electrical activity and calcium signals in pancreatic o
cell. Glucagon secretion in pancreatic o cells is stimulated by low glucose
concentration. These cells maintain a membrane potential of -60mV in low glucose
concentration, opening T-type Ca2+ channels, depolarizing the membrane enough to
activates Na and N-type Ca2+ channels and leading to action potentials. The Ca2+
influx by N-type Ca2+ channels triggers glucagon secretion [6, 7]. We started to
determine if TUDCA could interact with electrical activity in a cells, resulting in
reduced glucagon secretion. The KATP channel experiments shows that in 0.5mM
glucose, pancreatic o cells have a low KATP activity (Fig. 2A, B). However, in the
presence of TUDCA, we observed an increased KATP channel activity. Moreover,
TUDCA reduces the appearance of action currents (Fig. 2A, B), which are indicative of
the formation of action potentials. These effects suggest that TUDCA reduces the firing
of action potentials by increasing KATP channel activity. However, we observed both
effects only in 2 cells out of 5, and thus, the global TUDCA effect on KATP channel
activity is not statistically significant (Fig. 2C). Since these are preliminary results, we
will continue performing more experiments to fully determine these effects.
Concomitantly, TUDCA reduces calcium oscillations in pancreatic alpha cells, effect

that is likely attributed to reduced potential action firing (Fig. 3A).
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calcium probe Fluo-4 for lhr, before exposure to 0.5mM glucose, S0uM TUDCA or
S5uM adrenaline, as indicated in the graph. The calcium pattern (A) and oscillations (B)
were acquired by confocal microscopy. Data are expressed as mean £ SEM, from 53
pancreatic alpha cells, obtained from 10 islets of 4 mice. individual experiments. ***

indicates statistically significant difference from control condition, p<0.05.

The effect of TUDCA on glucagon secretion is dependent of the activation of
the S1PR2, and not by TGRS receptor. To determine the receptors involved in
TUDCA action on pancreatic alpha cell, we decided to investigate the main bile acid
receptors activated by TUDCA, SIPR2 and TGRS. In the liver, TUDCA activates
S1PR2 which in turn is associated with the activation of the insulin pathway. However,
in pancreatic § cells and brown adipose tissue, TUDCA activates the TGRS receptor. In
the presence of the SIPR2 inhibitor JTE-013, TUDCA is unable to reduce glucose-
regulated glucagon secretion (Fig. 4A, B), showing that SIPR2 is essential for TUDCA
action. The TGRS did not have a pharmacological inhibitor, so we tested the effect of an
agonist. Surprisingly, the incubation with INT-777, an agonist of TGRS, increases
glucose-regulated glucagon secretion (Fig. 4C, D), effect opposite to that of TUDCA.
So, these data point to the involvement of SIPR2, and not TGRS, on TUDCA effects.

Moreover, the expression of SIPR2 is showed in Figure 5.
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Figure 4. TUDCA effect on pancreatic alpha cell is dependent of the activation of
Sphingosine-1-Phosphate Receptor 2 (S1PR2), and not TGRS. Mouse pancreatic
islets were pre-incubated 1hr with 10uM JTE-013, inhibitor of the SIPR2, before
exposition to 0.5mM glucose in the presence or absence of 50uM TUDCA, as indicated
on the graph (A, B). Moreover, pancreatic islets were incubated lhr with the TGRS
agonist INT-777 (C, D). The glucagon secretion was measured by Elisa kit, and
normalized by islet number (A, C) or protein content (B, D). Data are expressed as
mean = SEM from 6 wells/condition, obtained from islets of 8 mice. * indicates

statistically significant difference from control condition, p<0.05.
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(A) Glucagon (B) S1PR2

(® DAPI (D)

Figure 5. S1PR2 expression in pancreatic alpha cell from mouse islets.
Immunofluorescence to Glucagon (A), SIPR2 (B), nucleus staining DAPI (C) and the
merge (D). Fresh isolated islets were submitted to dispersion, and the glucagon and

S1PR2 positive cells obtained by Immunofluorescence.

Insulin pathway is also involved in TUDCA action on pancreatic a cells.
Since the activation of SIPR2 in the liver triggers the insulin pathway, we decided to
investigate if the insulin route is also involved in the effects of TUDCA. Pancreatic
islets were preincubated with the PI3K inhibitor Wortmannin, and with the Akt inhibitor
MK2206. Both compounds blunted the effects of TUDCA on glucose-regulated
glucagon secretion (Fig. SA, B), pointing to the involvement of the S1PR2/Insulin
pathway activation by TUDCA in pancreatic a cell.
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Figure 6. The insulin pathway is also involved in the TUDCA action on pancreatic
alpha cells. Mouse pancreatic islets were pre-incubated 1hr with 0.1uM Wortmannin, a
PI3K inhibitor, or 5 uM MK2206, an Akt inhibitor, before exposure to 0.5mM glucose
in the presence or absence of 50uM TUDCA, as indicated on the graph (A, B). The
glucagon secretion was measured by Elisa kit, and normalized by islet number (A) or
protein content (B). Data are expressed as mean £ SEM from 6 wells/condition,
obtained from islets of 6 mice. * indicates statistically significant difference from

control condition, p<0.05.
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5.5 Discussion

T2D is characterized by hyperglycemia due to impaired insulin secretion and
signaling, as well as increased glucagon levels (42, 84). In this context, molecules
which interacts with pancreatic beta and alpha cell has potential therapeutic interest.
TUDCA increases glucose induced insulin secretion as well as insulin signaling (65,
79), and here we demonstrate that this bile acid reduces glucose induced glucagon
secretion, effect associated with S1PR2/Insulin pathway activation, increased Katp
channel activity and reduced calcium oscillations. Besides we did not use diabetic
models to investigate TUDCA'’s effect on this context, the study of TUDCA per se on
glucagon secretion allows the research about molecules that could modulates alpha cell
function and helpful on hyperglucagonemia observed in T1D and T2D.

The bile acids have highlight on metabolic diseases treatment, once the
activation of bile acid receptors FXR, TGRS and S1PR2, mainly, modulates lipidic,
glycemic and energetic metabolism (53). TUDCA and others taurine conjugated bile
acids have a hydrophilic profile, which give them grater affinity by membrane receptors
as TGRS and S1PR2 (52, 71). TUDCA could activates both receptors, however seems
that SIPR2 is responsible by the effects observed, once SIPR2 inhibition blunted the
effects of TUDCA on glucagon secretion. No TGRS inhibitor were used, once no
pharmacological inhibition is commercially available. However, the stimulation of
TGRS by INT-777 for lhr, same time for TUDCA incubation, increases glucose
induced glucagon secretion, effect opposite to TUDCA. TGRS activation leads to
increased AMPc production, which activates a series of intracellular pathways that
acutely, in pancreatic alpha cells, increases glucose induced glucagon secretion (66).

S1PR2 is a G-protein coupled receptors activated by sphingosine 1-phosphate-
(S1P), a signaling sphingolipid released from ceramides that regulates cell proliferation,
survival, and transcriptional activation (72). However, in the last years the discovery of
S1PR2 as bile acid receptor has change the overview about this receptor. SIPR2 is
activated by bile acids as TUDCA and TCA, and its activation on liver stimulates
insulin receptor autophosphorylation, resulting in increased PI3K and Akt activation,
regulating gluconeogenic genes, glycogen and fatty acid synthesis, fatty acid oxidation
and bile acid synthesis (7/). On pancreatic alpha cell, insulin receptor activation inhibits

glucose induced glucagon secretion. This effect is due to Akt activation that
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phosphorylates GABA receptors, translocate this receptors to plasma membrane and
change the membrane potential by increasing Katp channel activity, reducing calcium
oscillations and consequently glucagon secretion (28, 30, 85). Once TUDCA activates
ST1PR2 on liver and improves insulin signaling, we supposed that this receptor could be
activated by TUDCA on pancreatic alpha cells, resulting on insulin signaling activation
and reduced glucagon secretion.

The identification of SIPR2 expression on pancreatic alpha cells confirm the
importance of this receptor on glucagon secretion, due to the high fluorescence emitted
by S1PR2 antibody incubation. The use of SIPR2 inhibitor, JTE-013, as well as insulin
pathway inhibitors like Wortmannin and MK2206, confirm that TUDCA use this
pathway to inhibits glucagon secretion, once these inhibitors isolated blunted the effects
of TUDCA. We also confirm that TUDCA could be acting by SIPR2/Insulin dependent
mechanism, once the effects of TUDCA on electrical activity in pancreatic alpha cells is
similar to that observed with insulin.

Electrical activity in alpha cells orchestrates the calcium influx, indispensable on
glucagon granule exocytosis. The Katp channels connects cellular metabolism with
electrical activity, effect that occurs in a small-time scale (30, 86). Patch-Clamp records
allows the fine data acquisition of changes on electrical activity, and TUDCA increases
Katp channel activity in low glucose concentrations. TUDCA also reduce potential
action firing, which reflects on reduced calcium oscillations. On pancreatic beta cells,
TUDCA did not modulates Katp channel activity, and these effect is associated with the
activation of another receptor, TGRS. However, on alpha cells TUDCA seems to
activate SIPR2, and not TGRS, which increases Katp channel activity and results in
membrane hyperpolarization.

TUDCA have demonstrated a series of effects on pathologies. This bile acid is
largely used to treat ocular diseases, hepatic alterations and recently has been used on
glycemic disorders (68, 78, 79, 83, 87). TUDCA treatment in high fat diet model’s
improvers hepatic glycolipid disorders. On pancreatic beta cells, TUDCA reduces
apoptosis and increases glucose induced insulin secretion. Here, we demonstrate that
this taurine conjugated bile acid also regulates alpha cell function, reducing glucose-
induced glucagon secretion by a S1PR2/Insulin pathway dependent mechanism.

TUDCA shows potent therapeutic importance and could be used as a treatment to
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hyperglucagonemia on T1D and T2D, contributing to reduced glucagon secretion and

normoglycemic maintenance.
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6. Discussao

O TUDCA modula a homeostase glicémica, agindo em 6rgdos como figado e
pancreas endocrino. Com este trabalho nés demonstramos que este BA potencializa a
secrecao de insulina estimulada por glicose em células beta pancreaticas, dependente da
via do AMPc/PKA. Na degradacdo de insulina, o TUDCA aumenta a expressdo da IDE
em células HepG2 e figado de camundongos obesos através do receptor S1PR2,
refletindo em melhora na homeostase glicémica. Em células alfa pancreatica, o TUDCA
reduz a secrecdo de glucagon estimulada por glicose, também através do receptor
S1PR2 e mediadas por alteracdes eletrofisiologicas envolvidas com os canais de Ca** e
Kartp.

Os BAs tém se destacado no tratamento de diversas patologias, assim como
obesidade e DM2. Estes compostos levam a redugdo do peso corpdreo e depositos de
gordura (68, 83), aumento na -oxidacdo e redugdo na esteatose hepatica(83), melhora
na tolerancia a glicose e sensibilidade a insulina (79, 81, 83, 88), modulagdo na secre¢ao
de insulina e glucagon (59, 66), além de serem utilizados no tratamento do Alzheimer
(89), doengas cardicas (88), renais (69), visuais (76) e pulmonares (90) em modelos
animais. Estes efeitos sdo decorrentes do uso de BAs conjugados a taurina, como o
TUDCA.

O TUDCA foi inicialmente utilizado no tratamento de doencas hepaticas por
muitos anos (55, 9/). Recentemente, este BA tem sido aplicado no tratamento de
alteragdes na homeostase glicémica, uma vez que o TUDCA reduz o estresse de reticulo
hepatico melhorando a sinalizagdo de insulina, além de proteger as células beta
pancreaticas contra apoptose. Nos demonstramos aqui que, além dos efeitos
supracitados, este BA age diretamente na célula beta, potencializando a secrecdo de
insulina, supostamente pela ativacdo do receptor TGRS. As células beta pancreaticas
expressam o receptor para BAs TGRS, e sua ativacao potencializa a secre¢do de insulina
através do aumento intracelular de AMPc e fosforilacio de PKA (64). O efeito do
TUDCA em potencializar a secrecao de insulina ¢ dependente desta mesma via, pois a
inibicado do AMPc ou PKA impede sua a¢ao na ilhota pancreatica.

A ativacdo da PKA em ilhotas pancreaticas esta relacionada com aumento na
secrecao dos granulos contendo insulina. Este efeito foi observado através do uso de

GLP-1, que também aumenta a producdo intracelular de AMPc e consequente secrecao
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de insulina (/9). O aumento no AMPc induzido pelo GLP-1 ativa a PKA, que
fosforilada estimula a snapina, uma proteina moduladora do processo de exocitose
inicialmente descrita em neurénios (92). A ativagdo da snapina € necessaria para a
interacdo entre as proteinas relacionadas a maquinaria exocitotica, € sua superexpressao
mimetiza os efeitos do GLP-1 em potencializar a secre¢ao de insulina (93). Além disso,
sabe-se que a acdo da PKA na secre¢do de insulina se d4 principalmente no
recrutamento e iniciagdo da exocitose, efeito que ocorre apos o influxo de célcio (94,
95) Estes dados corroboram com os efeitos do TUDCA, aumentando a secre¢ao de
insulina dependente de AMPc/PKA sem alteragao no influxo de calcio. O TUDCA
também mimetiza os efeitos do GLP-1 uma vez que ambos compostos s6 atuam na
secrecao de insulina em altas concentracdes de glicose (96), ndo oferecendo riscos de
hipoglicemia.

Na manuten¢do da glicemia, a insulina ¢ finamente regulada por 3 processos:
secrecdo, sinalizacdo e degradagdo. Os BAs como TUDCA regulam a secrecdo e
sinalizacdo de insulina. Aqui demonstramos pela primeira vez que estes compostos
também regulam o processo de degradacdo de insulina hepatica, via aumento na
expressao da IDE, o que reflete em alteragdes na insulinemia. O papel da IDE na
homeostase glicémica e DM2 ainda ndo estd esclarecido. Contudo, alteragdes na
expressdo desta enzima, assim como na degradacdo da insulina, sdo relatados na
obesidade, pré-diabetes e DM2.

O tratamento de camundongos obesos com pioglatizona ou exercicio fisico,
ambos sensibilizadores da via da insulina, aumenta a expressdo hepatica da IDE e
degradacdo de insulina, efeito que reflete em redugdo de 50% na insulina plasmatica e
20% na glicemia (48, 97). O uso do TUDCA em camundongos obesos levou ao mesmo
efeito observado com pioglatizona ou exercicio, com aumento da expressdao hepatica da
IDE, redugdo da insulina plasmatica e redu¢do na glicemia de jejum e alimentado.
Existe uma associagdo entre a via da insulina e a expressdo da IDE que parece regular
esta enzima e a concentracdo de insulina. O mecanismo de acdo do TUDCA na
modulacdo da expressdo hepatica da IDE foi analisado em linhagem de hepatocitos
HepG2, efeito associado a ativagdo do receptor SIPR2 e da via da insulina, uma vez que
a inibi¢ao desta via impede o aumento na expressao da IDE estimulado pelo TUDCA.

Em neurdnios, a reducdo na sinalizagdo da insulina reflete em redug¢iao na

expressao da IDE. Este efeito esta associado ao aumento nos depodsitos do composto -
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amiloide, um dos alvos da IDE, culminando no desenvolvimento do Alzheimer (89, 98).
O uso do TUDCA no tratamento do Alzheimer foi explorado em camundongos que
apresentam aumento nos depositos B-amildide. O TUDCA reduziu os depositos deste
composto ¢ melhorou a capacidade cognitiva e memoria dos camundongos com
Alzheimer. Apesar do mecanismo de agao do TUDCA nao ser explorado neste contexto,
acreditamos que também seja via aumento na expressao da IDE. Uma vez aumentada, a
IDE consegue degradar o composto B-amildide e reverter os danos ocasionados pelo
Alzheimer.

O TUDCA parece modular também a degradacdo de insulina apds
procedimentos de cirurgia bariatrica. A realizacdo de cirurgias que excluem a por¢ao
inicial do intestino tem sido muito utilizada no tratamento da obesidade e DM2 (99,
100). Apos a realizagdo do procedimento, os pacientes apresentam principalmente
reducdo no peso corpéreo e glicemia. A glicemia sofre reducdo ja nas primeiras
semanas ap6s o procedimento, antes mesmo da perda de peso. Este efeito estd associado
a melhora na sensibilidade hepatica a insulina e consequente aumento na expressao da
IDE e degradagao da insulina (/01). Curiosamente, o TUDCA apresenta aumento de até
36 vezes apos estes tipos de procedimentos e pode estar implicado no aumento na
expressao da IDE (102).

Os efeitos atribuidos ao TUDCA na homeostase glicémica derivam de uma
gama de fatores. Este BA regula a secrecdo (65), sinalizacdo (82) e degradacdo da
insulina. Contudo, sabemos que 0 DM2 ¢ uma desordem bi-hormonal, e que o glucagon
também estd implicado no desenvolvimento ¢ manuten¢do da hiperglicemia nesta
doenga (/03). Frente a isto, n6s analisamos também pela primeira vez se a incubacio
aguda 4 BAs altera a secre¢@o de glucagon estimulada por glicose.

O glucagon, principal hormoénio hiperglicemiante, apresenta elevados niveis em
individuos obesos e diabéticos. Este efeito ¢ decorrente, principalmente, de uma falha
na secrecao de glucagon que perde sua regulagdo frente a glicose e insulina. A falta da
acdo inibitéria da glicose e insulina na secrecdo de glucagon induz a
hiperglucagonemia, que aumenta a liberagdo hepatica de glicose e contribui para a
hiperglicemia (8, 27, 30, 104). Uma vez que a insulina ¢ o principal agente inibitério da
secrecdo de glucagon e que o TUDCA estimula a via da insulina, buscamos investigar

se este BA também regula a secrecao de glucagon em células alfa pancreaticas.
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A incubagdo de ilhotas pancreaticas, assim como células aTC1-9, com TUDCA
reduziu a secrecdo de glucagon. Este efeito foi associado a ativagdo do receptor SIPR2
que ativa a via de sinaliza¢do da insulina na célula alfa. A ativagdo desta via aumenta a
atividade dos canais de Karp, 0 que resulta em hiperpolarizagdo da membrana, redugao
na geracao de potenciais de acdo e consequente reducdo no influxo de calcio (20, 105).
O TUDCA também ativa a sinalizagdo da via da insulina na célula alfa, uma vez que o
uso de inibidores da PI3K e Akt bloquearam seu efeito. Além disso, as alteracdes
observadas na presenca do TUDCA sao semelhantes as desencadeadas pela insulina,
indicando que este composto também age na funcdo da célula alfa pancreatica.

Portanto, o TUDCA modula a homeostase glicémica através da insulina e
glucagon, efeito decorrente da ativagdo dos receptores TGRS em células beta
pancreaticas, ou SIPR2 no figado e células alfa pancreaticas. Este efeito reflete na
regulacdo na concentragdo destes hormoénios, principais reguladores da homeostase

glicémica.
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7. Conclusao

1.

3.

O TUDCA npotencializa a secrecado de insulina em ilhotas isoladas de
camundongos C57Bl6. Este efeito ndo estd relacionado a alteragdes
eletrofisiologicas, como influxo de célcio ou atividade dos canais de Karp, mas

depende da via do AMPc/PKA.

O TUDCA aumenta a degradagdo de insulina em células HepG2 e
camundongos obesos através do aumento na expressdo da IDE. O efeito do
TUDCA em células hepaticas ¢ dependente da ativagdo do receptor SIPR2, e

consequente via da insulina.

O TUDCA reduz a secrecao de glucagon estimulada por glicose em células alfa
pancreaticas, efeito associado a ativagdo do receptor SIPR2, que aumenta a

atividade dos canais de Katp e reduz as oscilagoes de calcio.

Neste contexto, o0 TUDCA parece um candidato promissor para o tratamento de

alteragdes na homeostase glicémica, como o DM2. Através do aumento na secre¢ao,

sinalizacdo e degradagdo de insulina, juntamente com a reducdo na secrecdo de

glucagon, este BA contribui para a manutencdo da normoglicemia. Além disso,

devido a sua baixa toxicidade, e por ser um composto fisiologicamente funcional,

este BA pode ser administrado na tentativa de prevenir ou reverter o DM2, além de

outras patologias como o Alzheimer.
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