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Resumo

Os modernos Modelos de Linguagem (e.g., GPT e BERT) fornecem novas abordagens
para Representação de Semântica, encapsulando, em espaços vetoriais, os padrões estatís-
ticos subjacentes aos textos. Entretanto, apesar das pesquisas associadas, ainda existem
lacunas quanto ao uso de modelos de linguagem aplicados a criação, ao gerenciamento e
à análise de textos médicos. Com o objetivo de preencher algumas destas lacunas, neste
trabalho projetamos e analisamos dois tipos de representações semânticas: Anotações
Semânticas e Modelagem de Tópicos. Tais representações viabilizam a incorporação de
significado semântico em formatos de dados interpretáveis por máquinas. Nossas contri-
buições utilizam, como pano de fundo, dados públicos do domínio clínico.

Três de nossas contribuições estão relacionadas às Anotações Semânticas. A primeira
é um modelo de linguagem – que chamamos de Envoy – especializado em Reconhecimento
de Entidades Nomeadas biomédicas. Este modelo serve como base para construir duas
contribuições adicionais associadas com anotações semânticas. O Envoy é acionado pelo
método Harena Semantics (nossa segunda contribuição) para realizar a anotação semân-
tica de conceitos relevantes contidos no texto de entrada. Uma característica distintiva
de nossa abordagem é a superposição de anotações realizadas por humanos com aquelas
inferidas automaticamente pelo Envoy. Em um estudo de caso, aplicamos o Harena Se-
mantics para produzir nossa terceira contribuição: o Paciente Virtual Semântico, uma
representação semântica que modela casos clínicos como uma rede de conceitos conectada
à Web Semântica. Nossos resultados preliminares sugerem um potencial promissor para
o engajamento de criadores de recursos semânticos.

A quarta contribuição diz respeito à Modelagem de Tópicos. Aqui, o modelo Envoy
é utilizado para elicitar tópicos semânticos a fim de representar uma coleção de Casos
Clínicos extraídos do corpus CliCR. Com esse próposito, desenvolvemos uma nova abor-
dagem chamada ABT (Attention-based Topics), uma representação estatística baseada
em modelos de tópicos. Nesta linha, o ABT produz tópicos por meio de uma Agregação
Hierárquica aplicada às sentenças de entrada, representada em um espaço vetorial infe-
rido pelo modelo de linguagem BERT. Os resultados da validação indicam que os tópicos
produzidos exibem: (1) bons valores na métrica Coerência de Tópicos; e (2) diferentes
graus de especialização/generalização, de acordo com o modelo de linguagem utilizado
como base.



Abstract

Modern Language Models (e.g., GPT and BERT) provide new approaches to Semantic
Representation by embedding in vector spaces the statistical patterns underlying texts.
Despite advances in related research, there are gaps concerning the application of language
models to the creation, management and analysis of medical texts. In order to fill some
of these gaps, we designed and analyzed two types of semantic representation, namely,
Semantic Annotations and Topic Modeling. These representations enable the integration
of semantic meaning into machine-interpretable data formats. Our contributions use
public open data from the clinical domain.

Three of our contributions are associated with Semantic Annotations. The first one
is a language model – called Envoy – specialized in biomedical Named Entity Recogni-
tion. The model is used as a basis to construct two additional contributions concerning
Annotations. Envoy is invoked by our Harena Semantics method (which corresponds to
the second contribution) to perform the semantic annotation of relevant concepts inside
medical texts. A distinctive feature of our approach is the superimposition of annotations
added by humans with annotations inferred by the Envoy model. As a case study of
Harena Semantics, we applied it to produce our third contribution: the Semantic Virtual

Patient, a semantic representation that models clinical cases as a network of concepts
linked to the Semantic Web. Our preliminary results suggest a potential for engaging
semantic resource creators.

The fourth contribution concerns Topic Modeling. Here, the Envoy model is used
to elicit semantic topics to represent a collection of Clinical Cases extracted from the
CliCR corpus. To this purpose, we developed a new approach, called ABT (Attention-

based Topics), a statistical representation based on topic models. In this line, ABT
produces topics through a Hierarchical Aggregation applied to the sentences contained
in a given reference corpus, which is represented in a vector space inferred by the BERT
language model. The results of our evaluation showed that the topics produced exhibit:
(1) good values according to the Topics Coherence metric; and (2) different degrees of
generalization/specificity according to the language model used as a basis.
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Chapter 1

Introduction

1.1 Motivation

The arrival of Language Models [18, 17, 38, 146, 98, 13, 115, 23, 116, 120, 46, 3] has pro-
pelled the term “Artificial Intelligence” to international attention. In fact, what everyone
(including the population in general, the press, and countless scientists and politicians)
calls “artificial intelligence” is just a subfield thereof – namely, machine learning using
Large Language Models (LLM) [3, 88, 144].

One of the main reasons for such a technological leap was the establishment of the
Transformer architecture [147]. The Transformer architecture is a Deep Neural Network
capable of holding and processing massive amounts of information more efficiently than
previous approaches. There are many language models based on the Transformer archi-
tecture, for instance, BERT [46] and GPT [120].

In this work, we experiment with BERT-derived models in two Natural Language Pro-
cessing (NLP) applications to produce Semantic Representations [150, 2] for case studies in
the clinical domain: (1) Semantic Annotations [48, 73]; and (2) Topic Modeling [22, 62, 7].
These two distinct applications require processing and analysis of large volumes of textual
information.

This work focuses on technical, practical and theoretical aspects of language models
working with textual constructions for health-related applications. We are specifically
interested in investigating how language models can support the creation, management
and analysis of medical textual data.

1.2 Terminology

Throughout this text, we use specific terms according to the following definitions. From
time to time this will be restated, to help the reader.

• Semantic Representations: The term semantic representation has different meanings
in different contexts, although closely related, in linguistics, philosophy, cognition
sciences, computational linguistics and computer science as a whole. In this work,
we use it to refer to computational techniques to represent human language [150].
A semantic representation “reflects the meaning of the text as it is understood by
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a language speaker. It is produced by information extraction methods that are
reliable and computationally efficient” [2].

• Semantic Annotations: A semantic annotation describes a resource (usually a tex-
tual resource), by means of formal concepts [48]. It is the process to connect some
digital content to the resources of the Semantic Web, towards linking such con-
tents (in particular, text) to networks of ontologies [73]. In our work, annotations
are marked directly on the free-text content of a (clinical) textual construction,
through the usage of markdown-derived tags { } and ( ), following the pattern:
{text}(annotation1, ..., annotationn). The markdown tag curly braces sur-
rounds the text, marking the resource, and is followed by the parenthesis tag indicat-
ing the referred concept. The annotation can refer to an ontological concept – i.e., a
concept formally defined within an ontology – in the form of (ontology:concept)
or refer to a named entity as (entity).

• Topic Model: A topic model is a technique used in information retrieval to extract
hidden semantics from a collection of textual documents by identifying the main
topics referred to within that collection – e.g., see [1]. It is a semantic representation
that gives an overview of a textual collection under analysis. Topic models are
explicit representations [22] that probabilistically associate documents with topics
and topics with words. It explicitly represents the latent semantic structure [7] – or
gist [62] – of a textual collection. Our topic model comprises a set of topics T. Each
topic t ∈ T is characterized by a set of sentences S and a set of words W .

• Language Model: This is a computational abstraction that represents a unit of tex-
tual information (such as a word, a sentence, a paragraph, or a document) through
a numerical vector that encodes the most relevant characteristics of this textual
unit that are typically induced by a deep neural network [146]. This set of relevant
characteristics alludes to a type of semantics grounded on the Distributional Hy-
pothesis [93], which states that words that occur in the same context tend to have
similar meanings. Language models are also known as feature vectors, word repre-
sentations, word embeddings, vector representations, or word vectors [18, 146, 23].

1.3 Context of the Research and Research Questions

The immense amount of textual information available on the internet has the potential to
be used as sources of knowledge ready to be consumed by humans and machines. As has
been repeatedly seen in recent years, in particular with the appearance of deep learning,
such sources of knowledge can leverage human knowledge to new levels. Nevertheless,
despite a large volume of research to process such information, there is still much to be
done, in particular to extract and process such content in order to use it in a reliable
and ethical way. This claim applies to any data type; this thesis is, however, concerned
with textual data only. Hence, from now on, our claims should be considered under this
context, though some can be generalized to other data types – e.g., videos, or sound.



17

One of the main endeavors towards processing of textual big data concerns the ex-
traction of the embodied semantics and its incorporation in machine-interpretable data
formats. Our work is particularly concerned with uncovering the statistical semantics la-
tent in textual information – this also being an important aspect of tools such as ChatGPT
and other language models. In order to accomplish such a goal, it is necessary to approach
many long-standing problems within the information processing research agenda. In this
work, we examine two among such research questions:

(RQ1): How to encode structured semantics directly into textual constructions?

(RQ2): How to reveal and extract the latent semantics which is kept hidden underlying
the statistical patterns occurring in textual constructions?

We have four main contributions to answer these questions, detailed further on in
section 1.5:

1. Envoy, a neural method to recognize biomedical concepts.

2. Harena Semantics, a hybrid method (mixing neural and ontology-based approaches)
to annotate extra semantics into biomedical texts.

3. Semantic Virtual Patient, a semantic representation which encodes clinical cases in
a network of biomedical concepts. This representation is the product of applying the
semantic annotation method that uses the Envoy model as one of its components.

4. Attention-based Topics (ABT), a neural method to elicit topics to summarize a
collection of texts, which can then be used to create semantic representations.

1.3.1 Encoding Semantic Representations

The issues raised by our research questions concern the devising of Semantic Representa-
tions [62] to efficiently encode semantic information in computational abstractions. The
related literature mostly concerns methods grounded on mainly two distinct traditions to
deal with knowledge representation: structured representations and statistical representa-
tions [62]. More generally, the distinction between structured and statistical representa-
tions has roots grounded on the debate between Rationalism and Empiricism perspectives
of epistemology [12, 92].

In this thesis, we propose to address the problem of semantic representation making
use of both types of approaches – namely, structured and statistical – drawn from two
distinct (but increasingly related) research areas:

• Semantic Annotations [48, 73]: a process to link content (in our case, text fragments)
to the network of ontologies hosted on the Semantic Web [19], embedding extra
semantics into content. This line of research provides the means to answer our first
question, since it deals with so-called “external semantics”.
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• Topic Modeling [22, 62, 7]: a method to identify the main topics covered by textual
collections. This line of research involves the second question, since it deals with
inner semantics (aka latent semantics or statistical semantics)

We claim our semantic representations grounded on concepts from these two research
areas can be used in a complementary way to provide computers with means to deal with
semantic meaning. Inner semantics is captured by the statistics in language models, and
outer semantics is added through the use of ontologies.

With this work, we hope to narrow the gap between these two types of semantics: (1)
external semantics to be embedded in textual constructions to enrich their content; and
(2) the inner semantics inherently held in statistical patterns underlying written texts.
More specifically, the main contributions involve two kinds of representation:

• A structured representation: an ontology-based method which adds semantics di-
rectly onto the textual body of free-text constructions.

• A statistical representation: a neural method to extract statistical semantics from
free-text collections.

1.3.2 Case studies applied to the health domain

Our proposal is applied to case studies in the clinical domain, using a variety of biomedical
data sources. Among them, the main data sources used are Clinical Cases [135] (or Case
Reports), which are textual narratives centered on the description of health conditions
and complaints patients. A clinical case can be, among others, associated with depicting
rare diseases, unusual presentation of common conditions, differential diagnosis, decision
making or novel treatments. Typically, a clinical case contains many words referring to
diseases, anatomic features, medicines, symptoms, treatments adopted, etc. Case reports
are moreover a valuable source of health knowledge that may be leveraged as computable
artifacts to feed a wide-range spectrum of applications.

We have used three biomedical data sources along this research:

• The clinical case repository of Harena [45]. The Harena system, designed and de-
veloped by the research group in which this thesis was developed, is an e-learning
environment based on case resolution that is used as a supporting pedagogical tool
for medical students.

• CliCR [135]: a large collection of 10.538 real clinical case reports collected from
BMJ Case Reports. The data span the years 2005–2016.

• ACD: a dataset we have created in order to train/test our method for Biomedical
Named Entity Recognition. We created it from the concatenation of two other
existing datasets: BC5CDR [86] (whose sentences contain chemicals and diseases)
and AnatEM [118] (containing anatomies). Thus, the ACD sentences contain words
referring to the entities: anatomy, chemical (compounds) and diseases.
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1.4 Related Work - a brief overview

This research is concerned with semantic representations, and also involves contributions
in topic elicitation. Thus, related work concerns both issues. Chapter 2 covers additional
related work on Language Models with applications in topic modeling and clinical studies.
This brief overview of related work also contrasts some of the results with our research.

1.4.1 Semantic Annotations and Language Models

In the context of semantic annotations based on Language Models, the work [11] studies
the use of LLMs for annotation of input data to improve accuracy of downstream tasks, like
semantic similarity and semantic search. There are also works comparing the performance
of LLMs and human annotators [104, 24]. Our work proposes to combine both kinds of
annotations (LLM-based and human-performed), fostering human-system interaction and
the potential for community engagement in the construction of semantic resources.

Examples of research that is concerned with semantic annotation of medical data in-
clude [31, 158, 70]. The work of Irwin and coleagues [70] describes a methodology for
creating a semantic representation for information extracted from dental exams. Their
semantic representations are created combining Concept Maps (to represent concepts iden-
tified via a Bayesian method) and semantic networks (to represent relationships among
concepts). Differently, our work is based on a neural network which assigns label proba-
bilities to the words of clinical cases and link it to ontology concepts.

Campillos-Llanos et al., [31] present a tool for annotations of Electronic Health Records
(EHR) based on a hybrid approach combining BERT-based models, ontologies and lexicon-
rules. Unlike this proposal, our work does not rely on rules, thus alleviating the need of
intensive labour by domain experts to specify the rules. Our annotated data is produced
as a by-product of the authoring process by using lightweight tags provided by the Harena
Semantics.

Typically, the semantic annotation process involves some kind of NER (Named En-
tity Recognition) procedure. Lee et al., [84] introduce BioBERT, a BERT-based model
specialized in the biomedical language. BioBERT trained several models to recognize
different named entities (e.g., one model to handle diseases, another one to deal with pro-
teins, and so on). We based our NER implementation on the BioBERT model, extending
it to recognize multiple entities (anatomy, chemicals, and disease) in a single model.

Other initiatives also address NER by extending language models, refining word vec-
tors, or fine-tuning the model to specialized datasets [83, 14, 91, 97]. BERN [77] is a
neural biomedical multi-type NER tool based on the BioBERT model. It uses a sepa-
rate NER model for each entity type, and then combines the results using decision rules
to handle overlapping entities (i.e., when the models tag a term with different tags, for
instance, two models tagging the term “androgen” as gene and chemical). In contrast,
our NER model does not need decision rules, since the language model itself contains the
statistical context to decide which entity is the most likely to occur. This distinction is
due to our model being trained on a dataset containing all the entities of interest, thus
avoiding training one model for each entity.
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1.4.2 Topic Modeling and Language Models

Many methodologies address the Topic Modeling problem, such as Latent Semantic Anal-
ysis (LSA) and Latent Dirichlet Allocation (LDA) [22]. The first one is based on linear
algebra and the latter is a probabilistic model. The LDA uses two complementary dis-
tributions: a topic over words distribution that describes the relationship between topics
and words; and a second distribution that allocates topics to documents [27]. LDA is
one of the most robust and efficient methods for topic modeling. The reader is directed
to [37, 1] for surveys on reviewing and classifying methods for topic models.

In the health context, Song et al., [133] “jointly infer specialist-disease and ICD-coded
diagnoses as the latent topics” from electronic health records. In a subsequent work, Song
et al., [132] “observed distinct temporal evolution patterns of diseases” by analyzing disease
prevalence across different age groups. Wang et al., [151] present a hierarchical topic model
that infers topics at different levels of granularity of phenotypes and subphenotypes.

In another branch of research, Kulkarni et al., [82] investigate the presence of Post
Traumatic Stress Disorder in textual reports on Reddit1 using topic models. Our work,
instead, is applied to Clinical Cases.

Neural Topic Modeling (NTM) [7, 47, 142, 114, 157, 68, 8, 82] is a research trend that
combines topic modeling with Neural Language Models. A neural language model is a
specific type of language model that relies on neural networks. NTM-based works claim
to produce more interpretable topics than prior methods, yielding improvements in the
state-of-the-art concerning topic coherence measure [68].

For instance, Top2vec [7] infers topic vectors by applying vector algebra over the neural
vectors of words and documents embedded in the same vector space. BERTopic [63]
is a topic model based on clusters of documents grouping vectors inferred through the
Sentence-BERT framework [121].

Top2Vec and BERTopic perform best when applied to low-dimensional data, as both
rely on HDBSCAN as their clustering technique. Consequently, they require dimensional-
ity reduction on sentence vectors prior to clustering. In contrast, our approach employs a
hierarchical clustering algorithm, which dispenses with dimensionality reduction and thus
works directly with the original information.

Wu et al., [152] proposes a method that uses dependency matrices to model rela-
tionships between topics, enabling the construction of topic hierarchies. In contrast, our
approach generates topic hierarchies through a simpler process, relying on the successive
steps of the clustering algorithm.

Partially similar to our work, Qiu et al., [119] also present a method that combines
SentenceBERT, a clustering algorithm and TF-IDF, but further prompt engineering to
automatically label the topics.

1https://www.reddit.com/
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1.5 Overview of the methodology and Research Con-

tributions

Our research methodology addresses different kinds of semantics associated with textual
constructions. Our approach is characterized by combining language models with a Topic
Modeling method and Semantic Annotations to produce semantic representations to deal
with inner and outer semantics – thereby contemplating our two Research Questions.
We focus on technical, practical and theoretical aspects of language models working with
clinical case reports to produce and/or to extract semantic meaning.

Our methodology consists of a suite of methods designed to extract and specify se-
mantic meaning in machine-interpretable data models, which serve as a basis for distinct
kinds of semantic representations.

Figure 1.1 depicts an overview of the four main contributions of this thesis, connecting
the methods and models mentioned in section 1.3. The first three contributions (Envoy,
Harena Semantics and the Semantic Virtual Patient) are presented in chapter 3, whereas
the fourth – ABT– appears in chapter 4.

Figure 1.1: A high-level overview of the main thesis contributions.

The first contribution shown in the figure – our Envoy model – is independently used
to construct the subsequent contributions. Envoy is a BERT-based neural network that
trains a language model to identify biomedical concepts inside input texts. We trained
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Envoy using our ACD data collection, which contains sentences pre-annotated with three
types of entities: Anatomy, Chemical and Disease. After the training phase, the model
can recognize these entities in any arbitrary text (i.e., sentences not observed by the model
during its training).

The second contribution – our Harena Semantics – invokes the Envoy model to an-
notate the clinical cases drawn from the Harena clinical cases data repository. The an-
notation method combines the recognized biomedical entities with ontology concepts to
produce the third contribution: the Semantic Virtual Patient, a semantic representation
that models the clinical cases as a network of concepts linked to the Semantic Web.

The figure also portrays our fourth contribution – Attention Based Topics – a method
for topic modeling using the Envoy model as a component to highlight the biomedical
concepts inside collections of clinical cases. As shown in the Figure, the Envoy model
is used to construct the two final representations: the Semantic Virtual Patient and the
Attention-based Topics.

The subsections that follow give more details on the main contributions of this thesis.

1.5.1 Envoy: a language model for Named Entity Recognition

Our first contribution is a Named Entity Recognition (NER) method – which we call Envoy
– to recognize and classify biomedical concepts inside the input textual constructions. The
Envoy model uses a BERT-based language model as a base, enhanced by an extra fine-
tuning layer to perform the NER to identify three types of entities: anatomy, chemical
and disease. Our fine-tuning layer adapts the BERT model to perform a classification of
tokens, instead of language modeling, which is the BERT objective in its original setting.

In order to perform the fine-tuning, we created a dataset called ACD from the con-
catenation of two other existing datasets: BC5CDR (whose sentences contain chemicals
and diseases) and AnatEM (containing anatomies). As such, the ACD sentences contain
words referring to the entities: anatomy, chemical and disease. During the fine-tuning
phase, the model is fed by a total 21.223 ACD sentences, each of which containing up to
128 words. The model achieves a suitable performance after 2 up to 5 complete passes
through the training dataset (i.e., training epochs).

The test set comprises 10.867 sentences from ACD. To identify the optimal setting,
a validation protocol was employed to evaluate the model on the test set across a range
of hyper-parameter configurations. In the best setting, the model achieved a F1 score
around 85%, which is a result comparable to the state-of-the-art NER models at the time
(2020).

1.5.2 Harena Semantics: a framework to embed semantic mean-

ing into textual construction

This second contribution concerns the Harena Semantics framework, which leverages lan-
guage models to help clinical studies. More specifically, it highlights the use of automatic
semantic annotations to enhance knowledge about clinical case reports.
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The Harena Semantics framework is geared towards clinical studies and is aimed to
enable one to annotate semantic concepts directly onto the textual body of clinical case re-
ports. The framework has two main components: (i) Versum, a markdown-based language
which provides a regular schema for semantic annotations; and (ii) a semantic annotation
assistant that automatically recognizes and annotates potential biomedical concepts. The
assistant implements a Named Entity Recognition (NER) task combining concepts recog-
nized both by the language model Envoy and by matches with ontology concepts. This
hybrid approach benefits both from information formally structured within ontologies and
from statistical information underlying the linguistic structure of the clinical case report.
Besides, it enables one to superimpose annotations manually added by humans and the
automatic annotations made by our NER algorithms.

Through this framework, the Harena system aligns with the principles of the Semantic
Web, enabling domain experts to intuitively author clinical cases and annotate them with
semantic concepts, thereby adding a higher level of abstraction to the digital content.
The framework enables the system’s users to cooperate on the gradual building of an
interconnected network of Knowledge Bases.

1.5.3 Semantic Virtual Patient, a semantic representation for

clinical cases

To get a pilot evaluation of the Harena Framework, we conducted a case study in the
context of Medical Education, applying the framework to produce a specific semantic
representation – which we call the Semantic Virtual Patient – that connects clinical case
reports to knowledge bases maintained in the Semantic Web. Ultimately, the knowledge
contained in the clinical case reports is part of an inference network (i.e., the Semantic
Web), which connects digital objects of a multitude of types, such as symptoms and
diseases.

The Semantic Virtual Patient has structured information (in an RDF graph format)
that can be interpreted by machines, expanding the range of potential applications for
clinical cases. For instance: (i) it facilitates the retrieval, reuse, and aggregation of cases
or parts of cases – e.g., enabling queries such as “cases in which the patient experienced
shortness of breath” or “cases where the ECG was fundamental to diagnose a heart dis-
ease”; (ii) data from cases can be used beyond the scope of medical education.

In a usability evaluation, the authors of [110] annotated relevant symptoms and in-
dicated whether they are directly related to the clinical case (e.g., arterial hypertension
and acute onset of chest pain), or key to the diagnosis (e.g., pain radiating to neck and
back), or just distractors to the learner, misleading learners to a wrong direction (e.g.,
symmetric radial pulses is a specific sign but present in only one third of the patients).
Results of this pilot evaluation suggest the framework’s potential to engage users in the
collaborative creation of semantic resources.
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1.5.4 Attention-based Topics, a semantic representation for col-

lections of text

Our fourth contribution, presented in chapter 4, is an approach to the topic modeling
problem called Attention-based Topics (ABT). It relies on neural language models as
computational abstractions to encode (i.e., computationally represent) and to reveal se-
mantic aspects underlying the structure of a given set of textual data.

Although there is extensive work on topic modeling and neural language models, there
is a lack of research to measure, analyze and validate the topics learned. To this end,
ABT enables one to explore the themes covered by an input textual collection and analyze
them as a hierarchical structure of topics.

We have conducted an evaluation using the CliCR corpus, a collection of clinical case
reports described in natural language text. Our validation of ABT relies on observing
the effects, in the output topics, of changing the language model – including our Envoy
model in this validation. Preliminary results show that, although each language model
sometimes produces completely different topics, none of them outperforms the others
regarding the Topic Coherence (TC) metric. Nevertheless, the tree structure of the topic
collection evidences some interesting patterns revealed by each language model.

1.6 Organization of the thesis

This thesis is structured as a collection of papers and their discussion, organized in 6
chapters, following the structure defined by the Institute of Computing, Unicamp.

Chapter 2 is a technical report that provides a bibliographic overview of Neural Net-
works, Deep Neural Networks, Transformers, as well as the history and development of
the so-called Neural Language Models. It concludes with a section that critically analyzes
language models addressing some interdisciplinary aspects [111]. It serves as background
to understand and contextualize the rest of the thesis.

Chapter 3 corresponds to our paper “Harena Semantics: a framework to support Se-
mantic Annotation in Citizen Science systems” published at the 15th International Con-
ference on Health Informatics (HealthInf 2022) [110]. The paper describes a practical
application of neural language models assisting semantic annotation of clinical case re-
ports. It briefly presents the Envoy model and Harena Semantics, also introducing the
concept of Virtual Patients - and thus our first three contributions.

Chapter 4 corresponds to our paper “Semantic Representations based on Topic Mod-
els” submitted for publication (under review) to a journal. The paper analyzes some
characteristics of the ABT method and reports quantitative and qualitative evaluations.
It describes our fourth main contributions, the ABT model. Our evaluation of ABT uses
a series of BERT-related models, including our Envoy model.

Chapter 5 contains a brief discussion of some of our main findings. Additionally, we
examine the difficulties of standardizing validation protocols to evaluate language models
due to their holistic and interdisciplinary nature. Finally, we critically analyze neural
language models as a technological tool that enables vast possibilities of applications on
a diversity of domains.
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Chapter 6 concludes the thesis, highlighting the contributions and some directions for
future work.

Besides the papers in Chapters 2, 3, and 4, others were also published in the course of
this thesis, directly related to this research. There follows a list of publications, including
the ones that compose the thesis.

1. Fagner Leal Pantoja, André Santanchè, and Claudia Bauzer Medeiros. A bibli-
ographic survey of Neural Language Models with applications in topic modeling
and clinical studies. [111] Technical report, Institute of Computing, Unicamp, 2024.
pages 1–26. (Chapter 2)

2. Fagner Leal Pantoja, Marco Antonio de Carvalho Filho, and André Santanchè.
Harena Semantics: a framework to support Semantic Annotation in Citizen Science
systems. [110] Proceedings of the 15th International Conference on Health Informat-

ics (HEALTHINF), 2022. pages 336–343. (Chapter 3)

3. Fagner Leal Pantoja, André Santanchè, and Claudia Bauzer Medeiros. Semantic
Representations based on Topic Models. Submitted to Journal of Universal Com-

puter Science (J.UCS), 2025 (under review). pages 1–25. (Chapter 4)

4. Marcos Felipe de Menezes Mota, Fagner Leal Pantoja, Matheus Silva Mota, Tiago de
Araujo Guerra Grangeia, Marco Antonio de Carvalho Filho, and André Santanchè.
Analytical Design of Clinical Cases for Educational Games. [45] Joint International

Conference on Entertainment Computing and Serious Games (ICEC-JCSG), 2019.
pages 353–365.

5. André Santanchè, Heitor Soares Mattosinho, Marcos Felipe De Menezes Mota, Fag-
ner Leal Pantoja, Gabriel De Freitas Leite, Ana Claudia Tonelli, Fernando Sal-
vetti Valente, Juliana De Castro Solano Martins, Sandro Queirós, Tiago De Araujo
Guerra Grangeia, and Marco Antonio de Carvalho Filho. Virtual Patient Platform
and Data Space for Sharing, Learning, Discussing, and Researching [125]. IEEE In-

ternational Conference on e-Science and Grid Computing (e-Science). 2023. pages
1–10

Finally, we point out that the Harena system and semantics are being used in a series of
research efforts and graduate studies conducted at the Institute of Computing, Unicamp,
jointly with researchers from the Faculty of Medicine and the Faculty of Nursing, as
well as researchers from the Netherlands and Portugal. This shows the potential of our
contribution to other groups, giving margin to additional future perspectives.



26

Chapter 2

A bibliographic survey of Neural

Language Models with applications in

topic modeling and clinical studies

This text presents a literature review of Neural Language Models, which are deep neural
networks to encode a given language. The scope of this review covers two main topics: (i)
Transformers-based Neural Networks, established as state-of-the-art in addressing Natural
Language Processing (NLP) problems and a suitable approach to train language models;
and (ii) Neural Language Models that compress the statistical semantics of textual data
into word vectors. These word vectors computationally represent the basic units of the
language at hand.

In fact, obtaining a computational representation for textual constructs is a long-
standing problem that has challenged diverse NLP approaches. We analyzed the usage
of language models for Topic Modeling and for Semantic Annotation of Virtual Patients.
The establishment of transformers-based language models opens up vast possibilities and
perspectives on interdisciplinary topics. This text concludes with a critical analysis ad-
dressing issues regarding applications based on language models.

2.1 Introduction

Natural Language Processing (NLP) is a field of Computer Science whose goal is to
convert human language into a representation that is interpretable by computers. It is an
interdisciplinary research area that incorporates concepts from various other fields, such
as Statistics and Linguistics.

Manning and Schütze [92] classify NLP methods into statistical and non-statistical
approaches. Statistical approaches rely on patterns that commonly occur in a language,
while non-statistical approaches focus on mapping and computationally implementing the
rules that structure the language. The distinction between statistical and non-statistical
approaches has roots grounded in the philosophical debate surrounding the perspectives
of Rationalism and Empiricism [92].

In the epistemological realm [12], Rationalism claims the ideas of deductive reasoning
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are possible because they are innate, prior to all experience. In turn, Empiricism states
that none of our ideas are innate, and the mind would be a blank tablet when we are
born. Subsequently, Kant considered both the concept of active mind (from rationalism)
and the role of sensations (from empiricism) as essentials in knowledge acquisition. In
turn, Bertrand Russell “explicitly rejected the existence of innate ideas” [12]. The debate
remains open and has led to the development of several philosophical schools.

In the field of Linguistics, the rationalist perspective is characterized by the belief in
the existence of an innate language fixed in the human brain through genetic inheritance.
Advocated by Noam Chomsky [92], rationalism has been crucial to the development of
the theory of Formal Languages, which serves as the foundation for current programming
languages. Formal languages constitute a special class of language that lacks ambiguity
and, therefore, can be interpreted/compiled by computers. The ability to interpret a
language in a non-ambiguous manner is essential for a computer to execute commands
instructed by humans through a programming code [92].

In contrast to programming languages, natural languages are inherently ambiguous,
since a word or phrase can have more than one meaning [61]. In natural language cases,
the empiricist perspective assumes that, instead of pre-constructed linguistic structures,
the human mind possesses generic operations of association, generalization, and pattern
recognition. These cognitive abilities, combined with a rich sensory system, enable humans
to learn detailed language structures. This hypothesis forms the basis of Machine Learning
methods that use statistical models to recognize patterns and complex structures in a
dataset. This statistical approach is grounded in the Information Theory developed by
Claude Shannon [92].

Manning and Schütze [92] point out that “the difference between the approaches is
not absolute but one of degree”, as rationalism believes “the key parts of language are
innate – hardwired in the brain at birth as part of the human genetic inheritance” whereas
empiricism believes in an innate capacity to develop language through generalizations such
that “a baby’s brain begins with general operations for association, pattern recognition,
and generalization, and that these can be applied to a rich sensory input available to the
child to learn the detailed structure of natural language”.

This philosophical debate remains an open question; however, its practical utility is
valuable as it theoretically underpins various areas of computer science.

More recently, statistical approaches have advanced the state-of-the-art in various NLP
tasks. This progress can be attributed to, among other factors: (1) advances in computa-
tional capacity; (2) recent deep neural network models capable of retaining significantly
more information than previously proposed neural models; and (3) the development of
more efficient techniques for handling the vast amount of information available on the
Web.

The rest of this text is organized as follows: Sections 2 and 3 give some background
on foundations of Neural Networks, Deep Neural Networks, Transformers, as well as the
history and development of the so-called Neural Language Models. Sections 4 and 5 review
related work of two case studies that involve neural networks and transformers: Topic
Modeling and Semantic Annotations of virtual patients. Section 6 briefly discusses more
recent work developed in research in Language Models. This is followed by a section that
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critically analyzes language models addressing some interdisciplinary aspects, finishing
with concluding remarks.

2.2 Neural Networks

Several recent advances in the field of Natural Language Processing (NLP) are attributed
to the mellowing of Deep Neural Network models, which are more sophisticated types of
Artificial Neural Networks. This section describes some relevant issues in Neural Network
architectures, followed in the subsequent section by Language Models in the context of
such networks

2.2.1 Artificial Neural Networks

An artificial neural network — a computational abstraction inspired by the biological ner-
vous system — is an interconnected network of artificial neurons organized in layers [81].
Typically, neural networks perform Supervised Learning, where the network receives suc-
cessive sets of pre-labeled training samples and must infer the corresponding output for
each input sample. For example, a neural network can be trained to recognize cancerous
tumors in computed tomography images based on labeled images previously presented to
the model. After this training phase, the neural network is capable of making inferences
about new images that were not observed by the model during its network training.

Example - Sentiment Analysis through Neural Networks Sentiment Analysis
through neural networks is an NLP task whose objective is to classify sentences based
on their sentiment polarity C = Positive,Negative,Neutral. In the training phase,
iteratively the network is fed by pairs of {sentence, label} contained in the training set.
In each training step, let s be the sentence to be classified, y the corresponding label, and h

the output of the classification, representing the class inferred for s by the algorithm. The
sentence s is represented by a feature vector x = (x1, x2, ..., xn). Let θ = (θ1, θ2, ..., θm) be a
vector of parameters (weights) of each neuron. Classification works as follows. Vector x is
propagated through the network’s layers, adjusting the parameters θ of each neuron based
on their contribution to constructing the output y. Figure 2.1 illustrates a neural network
classifying the sentence “I liked this movie”. The neural network produces an output
vector o = (o1, o2, o3) containing the algorithm’s hypotheses regarding the probabilities
of the sentence belonging to each of the possible classes in C, where the highest one is
chosen as the algorithm’s hypothesis h = positive.

Each neuron in the network has a transfer function (or activation function) f(Σ) that
operates on the weight parameter θi of the neuron and the input feature xi, as illustrated
in Figure 2.2. Several transfer functions can be employed, including the sigmoid function:

f(Σ) =
1

1 + e−
∑

n

i=1
θixi

(2.1)

During the training phase, each sentence is fed and processed in a training step. A
training step of a neural network involves two main mechanisms [81]:
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Figure 2.1: Neural network performing sentiment analysis. Adapted from [81].

Figure 2.2: The functioning of the artificial neural unit.

• Forward Propagation: Propagates the sample sentence s through the neural network
until it reaches the final layer. The final layer produces the hypothesis h containing
the probability of s being classified as positive, neutral or negative. The difference
between the hypothesis h inferred by the algorithm and the true class y annotated
in the training set indicates the contribution (or responsibility) of each parameter
θi to the error measured when classifying s.

• Backpropagation: Adjusts each parameter θi based on its contribution to the error
calculated between the hypothesis h and the true class y annotated in the training
set. The larger the contribution of the neuron, the greater the adjustment in its
parameters should be. The magnitude of the adjustment in the parameters θi can
be controlled by the hyperparameter1 η, which typically has a value close to 0.1.

The algorithm completes one training epoch when it processes all the samples in the
training set [81]. The number of epochs is also a hyperparameter. At the end of the
training, the network parameters have been calibrated to solve the task for which it was
trained.

An architecture with at least one hidden layer of neurons (as depicted in Figure 2.1) is

1Hyperparameters are variables that control the overall behavior of the network. Do not confuse with
the term “parameter” that refers to the weights assigned to each neuron in the network.
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known as a Multi-Layer Perceptron [81]. Other models implement different architectures,
transfer functions, propagation mechanisms, etc. Deep neural networks models serve
more robust architectures, including Recurrent Neural Networks, Convolutional Neural
Networks, and the more recently introduced Transformers.

Recurrent Neural Networks

A recurrent neural network is suitable for solving problems with a sequential aspect [123],
as observed in various NLP problems (e.g., sentiment analysis, Named Entity Recognition
(NER), etc.) Recurrent neural networks leverage the inherent sequential aspect in tex-
tual constructs. Broadly speaking, the sequential aspect implies that each term wi in a
given sentence s depends on the preceding term wi−1. For example, for a neural network
handling the sentence “She is excellent at her role as a”, the probability of the next word
being “doctor” is higher than being “and” [143], as illustrated by Equation 2.2.

P (doctor|She is excellent at her role as a) k P (and|She is excellent at her role as a) (2.2)

The Long-Short Term Memory (LSTM) model [65] is a sophisticated type of recurrent
neural network that achieves considerable success in addressing NLP problems due to its
mechanism for deciding which information to retain and which to discard [123]. Thus,
the LSTM is capable of capturing contextual information from terms that are distant
from the term being currently processed. However, the LSTM experiences performance
degradation in scenarios involving very long sentences. This issue is known as Long-Term
Dependencies, which arises when a word depends on words that are far apart in the
sentence.

The LSTM has unidirectional contextual memory, restricting its usage to acquiring
information solely from preceding terms (in the case of the left-to-right version of LSTM)
or solely from subsequent terms (in the right-to-left LSTM) [46]. Additionally, as a
specific type of recurrent neural network, the LSTM faces several challenges during the
training phase, such as gradient explosion and gradient vanishing [112]. Furthermore, the
sequential nature of the LSTM precludes the parallelization of the training process [147].

Despite these limitations, LSTM is often successfully employed in the Sequence Trans-
lation (or sequence-to-sequence) task, which aims to transform a given sequence s of ar-
bitrary length into a corresponding sequence t of pre-defined fixed size n [136]. This
fixed-size representation can be used to perform other NLP tasks (e.g., Language Mod-
eling, Machine Translation, Speech Recognition, Question-Answering) through Transfer
Learning techniques.

A significant advancement in this sequence-to-sequence task (and consequently in the
NLP research field) was accomplished by the Transformer, a novel deep neural network
model that overcomes the issue of long-term dependencies and provides a means to obtain
bidirectional contextual memory. The next section focuses on the Transformer.
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2.2.2 Transformers

The Transformer model, introduced in the paper “Attention is All You Need” [147], ad-
dresses the sequence-to-sequence problem more efficiently than the LSTM. The Trans-
former is a deep neural network model that captures the context through the Attention
Mechanism. With this mechanism, the Transformer has advanced the state-of-the-art in
NLP tasks that can be modeled as an instance of the sequence-to-sequence problem.

The Attention Mechanism The Transformer model overcomes the issue of long-term
dependencies through the attention mechanism, which can capture global dependencies
in the input sentence regardless of the distance between words [147]. Thus, this model
can encode the context of the input sentence into the vector representation produced
as output. The attention mechanism provides the Transformer with the ability to focus
on words that are relevant to achieving the goal of the task being performed. There
are various attention mechanisms [89, 58]. The Transformer specifically employs Self-
Attention (or Intra-Attention), which involves a weighted sum of vectors resulting from
successive linear transformations of the matrices Q, K, and V (query, key, and value,
respectively) [80].

Matrices K and V comprehend the Neural Memory [60, 134]2 in which each row
corresponds to a word (although, in other settings, it could be a character, a sentence,
etc) within the training set, and the columns hold the features in form of distribution of
weights (i.e., probabilities that a feature is relevant) [58] learned by the network. This
distribution accounts for the context learned during the training phase. According to
Geva et al., [60], “each key vector ki captures a particular pattern (or set of patterns) in
the input sequence, and that its corresponding value vector vi represents the distribution
of terms that follows said pattern”.

The core of an attention mechanism is the computation over the matrices K, Q and
V to infer an appropriate context representation. In each training step, the current word
being processed (the query q) is matched against the K and V matrices to search for a
key-value pair corresponding to the given query q. In this training process, the matrices
undergo the series of operations illustrated in Figure 2.3, which is a visual representation
of the Attention Function (Equation 2.3) to map a query and a set of key-value pairs into
an output [147]. Here, we use the notation c to refer to this output vector.

Attention(Q,K, V ) = softmax(
QKT

√
dK

)V (2.3)

The attention mechanism operates over the K, Q, and V matrices in order to high-
light the prominent patterns observed in the training dataset. The mechanism is about
matching the context of a query q (the context of the given sentence) against the most
similar context accumulated on the neural memory of {K,V } whereupon the network
gets information to accomplish the demanded task (e.g., the translation task in the orig-
inal Transformer model [147]). As a byproduct of translation, the attention mechanism

2in fact, initially Geva et al., [60] showed the Feed-Forward sublayer can be seen as a neural memory,
and [134] claimed a Feed-Forward sublayer can be seen as an attention layer, therefore we extend the
concept of neural memory to refer also to the attention layer which holds the matrices K and V
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Figure 2.3: Operations performed by the layers of Self-Attention on the matrices Q, K,
and V . Source: [147]

generates word alignments [89].
As an example, Figure 2.4 shows an alignment matrix derived from translating an

input sentence (in the column) from English to German (in the rows). This matrix helps
to visualize how the attention gets the correspondences between all words in a sentence:
it highlights the “attention” each word in the target sentence pays to the words in the
source sentence.

Figure 2.4: Word alignments derived from a translation task from English to German.
Source: [89]

The original Transformer architecture (Figure 2.5) consists of two stacks of N layers
of Encoders and Decoders. Subsequent researches proposed different architectures [144],
for example encoder-only such as BERT [46], and decoder-only such as GPT [120].

Encoders An Encoder correlates each word pi ∈ s with all other words in the sentence
s. Its result is a fixed-size vector representation c that encapsulates information regarding
the sentence context.

The input sequence flows through the N layers of encoders. Each encoder receives Q,
K, and V from the previous one. Within each encoder, there is a Multi-Head Attention
unit (implementing Equation 2.3) and a Feed-Forward Network. The representation c
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Figure 2.5: Transformer architecture. Source: [147]

generated by the last encoder is then sent to the decoder.

Decoders A Decoder uses the vector c received from the Encoder layers to generate the
translated sequence t. The layers of the decoder are configured similarly to the encoder
concerning the pair of multi-head attention and feed-forward layers. In addition to these,
the decoder has a third layer called Masked Multi-Head Attention, responsible for ensuring
that the decoder obtains information only from the preceding terms in the sequence t to
preserve the auto-regressive property [147].

Multi-Head Attention In the so-called Multi-Head Attention, the Transformer projects
the vectors Q, K, and V into multiple multi-heads with different learned linear projec-
tions. The resulting vectors are concatenated and projected again, resulting in the final
vector representation, as depicted in Figure 2.6. Thus, the Transformer can pay attention
to different representation subspaces at different positions [147], in addition to leveraging
parallel computation.

Transfer Learning Through Transfer Learning techniques, a Transformer can be effec-
tively applied to a range of NLP tasks, despite its initial design for sequence-to-sequence
tasks. This versatility stems from the Transformer’s capability to encode statistical pat-
terns common to various NLP tasks into the matrices K, Q and V .

Fine-Tuning – a form of transfer learning – involves initial training on a source task τi

followed by an adjustment of the learned parameters from τi to be applicable to solving
a target task τj ̸= τi [67]. Through fine-tuning, the parameters of the pre-trained model
are easily adaptable to other NLP tasks. There are several approaches that implement
fine-tuning, such as Google BERT [46] and OpenAI GPT [120].
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Figure 2.6: Schema of Multi-Head Attention. Source: [147]

The reuse of knowledge acquired in performing a generic task was first studied in com-
puter vision research and, with the advent of the Transformer, has been extensively inves-
tigated in NLP [67]. One advancement in NLP was the realization that matrices K and
V learned by the Transformer serve as a universal representation for textual constructs,
capturing prominent syntactic and semantic aspects in the given textual construction.
These aspects reveal idiosyncrasies embedded in the model during its training.

The neural memory of K and V embeds a Neural Language Model, which comprehends
a new generation of Word Representations [146] (also known as Word Vectors, or Word
Embeddings) for use in transfer learning across various work tasks. To our knowledge,
the Transformer is currently the most robust and suitable model for pre-training these
Language Models, which will be further explored in the next section.

2.3 Neural Language Models

This section discusses Language Models in the context of Neural Networks.
Given that each NLP task exhibits a distinct set of relevant features influencing its

behavior and outcomes [81], it is crucial to carefully select an appropriate set of features
to represent sentences given as input to the algorithm that has been selected. This stage
of feature definition, known as Feature Engineering, is one of the major challenges in
developing machine learning algorithms [81] and must be carefully conducted, as it has
a significant impact on the algorithm’s results. These features are typically stored in
Feature Vectors.

In some cases, features are curated by experts, while in other scenarios features are
collected through an automated process. Additionally, the criteria for feature selection
are task-specific. For instance, in the case of Named Entity Recognition (NER), the
features indicating whether a term should be considered a named entity encompass: term
with the first letter capitalized, term preceded by a definite article, grammatical classes
(e.g., noun, proper noun), prefixes and suffixes (e.g., diseases commonly ending with “it”),
foreign words, term position within the sentence, term frequency in the training corpus,
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presence of other entities in the sentence, etc. [105].
Feature engineering often deals with the presence of redundant features, and also

with features that are important in a given context but may not be as relevant in other
contexts, among other obstacles. As a result, feature engineering is typically a costly and
time-consuming process.

There is a recent trend on using Word Representations to alleviate the burden of
effort spent in the feature engineering phase, as they provide efficient text representations
that enhance the performance of classification algorithms applied to NLP tasks. Indeed,
this is a rapidly growing research area that has been experiencing intense development
due to recent advances in Deep Learning methods and the increased capacity for parallel
processing.

2.3.1 Word Vector Representation

Also informally known as Word Embedding, word vector representation is, in summary,
a numeric vector used to represent a unit of text (which can be a word, a document, a
paragraph, etc.) given as input to NLP algorithms. This computational representation of
textual data serves as an alternative to hand-designed feature vectors generated during
the initial feature engineering phase in classical NLP pipelines.

One of the pioneer models of word representation is the One-Hot Vector, which rep-
resents each word as a vector of size |W | (i.e., one vector dimension for each word in the
vocabulary W) containing values of 1 in the dimension corresponding to the given word,
while all other dimensions receive the value 0. Table 2.1 provides an example of a one-hot
vector encoding for four words from a hypothetical vocabulary of size |V | = 6.

Table 2.1: One-hot representation.
heart drug disease therapy kidney chest

heart 1 0 0 0 0 0
drug 0 1 0 0 0 0
... ...

disease 0 0 1 0 0 0
therapy 0 0 0 1 0 0

Unfortunately, the one-hot representation is inefficient due to its high dimensionality
(one dimension for each word in the vocabulary) and its nature as a sparse matrix model,
as each vector is composed of 0 values in most of its dimensions [146]. Distributional
Representations are alternatives to mitigate these drawbacks.

Distributional Representations are generally based on matrices whose values are rela-
tive to the distribution of words in a specific context of that word. A context can be the
entire document, a section of a document, other words nearby or around the word, among
others. Typically, the context is defined in terms of window size and direction [146]. For
instance, a context could be characterized by a window of the last 3 terms preceding each
word, or a window of terms both to the left and right of each word.

In addition to the context, it is necessary to define the metrics to be used. One of the
most common metrics is the co-occurrence of a pair of words, which can be recorded in
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a co-occurrence matrix of dimensions |W | ∗ |W |. Another possibility is to use the widely
adopted Term Frequency – Inverse Document Frequency (TF-IDF), which measures how
discriminative a word is in a given collection of documents, i.e., how frequent a word is
in a given document while being rare in other documents in the collection.

These distributional representations are vectors that, based on the distributional hy-
pothesis [93], contain contextual information generated through word counting, so that
words occurring in the same contexts tend to have similar meanings [13]. Such represen-
tations are suitable for tasks like classification and text retrieval; however, the challenge
remains open to configure them appropriately for use in sequence labeling tasks (such as
NER) [146].

An alternative approach involves generating representations through unsupervised
training. These representations, commonly known as Distributed Representations, are
typically induced using neural language models through training on a Language Modeling
task. Unlike distributional representations that count the frequency of words in a given
context, distributed representations are small – i.e., usually with a size between 50 and
1000 dimensions – and dense [146] – i.e., most dimensions contain values other than 0.

2.3.2 The Language Modeling Task

Language Modeling is an NLP task whose goal is to estimate the probability distribution
of words in a given sentence. Traditionally, this estimation is achieved by predicting
the next word based on the preceding words in the sentence [38] using the chain rule of
probability [17]:

P (w1, w2, ..., wt−1, wt) = P (w1)P (w2|w1)P (w3|w1, w2). . .P (wt|w1, w2, . . . , wt−1) (2.4)

This Equation 2.4 predicts the probability that a word w will be used at position t

following the previous words w1, w2, ..., wt−1 in a given sentence. It is reasonable to expect
that the term “beach” has a higher likelihood than the word “jail” of being the next word
used in the sentence “I like to be in this. . . ”. Stated differently, a language model assesses
the probability of a specified sentence existing within the modeled language [69].

Neural language modeling produces a set of weights (i.e., parameters) that are incre-
mentally adjusted to minimize the loss during network training. The adjusted weights are
used to induce word embeddings, whose similarity to other embeddings in the vocabulary
indicates that these words occur in similar contexts in the given training set [93].

Neural language models implement a form of Unsupervised Learning and therefore
do not require pre-labeled input data. The scarcity of manually annotated resources is
a problem for Supervised Learning-based approaches, as is the case in many NLP algo-
rithms, since generating pre-labeled data can be a costly and time-consuming task [120].

By using unsupervised learning, language models leverage the vast amount of unla-
beled text available on the web, which is an immeasurable source of linguistic knowledge
to be embedded in such models. Unsupervised training allows the model to automatically
learn the latent features associated with syntactic and semantic properties.
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There are many approaches to training language models, such as [18, 38, 98, 115, 23].
In a pioneering work, Bengio et al. [18] proposed a distributed representation model that
effectively overcame the problem known as the Curse of Dimensionality. This problem
was a barrier for training language models using neural networks; in earlier models, each
word in the vocabulary was treated as a random variable which resulted in a network
with a massive number of parameters, making training computationally infeasible due to
the high computational cost involved.

Collobert and Weston [38] introduced a convolutional neural network to jointly train
various NLP tasks through semi-supervised learning. The approach combines unsuper-
vised learning, specifically language modeling, with supervised learning of other tasks in
the pipeline, such as NER, part-of-speech tagging, etc. Therefore, this work demonstrated
how to utilize embeddings learned in an unsupervised manner in the training of supervised
tasks, rather than manually designed features.

Mikolov et al., [98] introduced Word2Vec, a language model with a simple and efficient
neural network that has few hidden layers precisely to minimize the computational com-
plexity caused by the non-linear hidden layer of deep neural network models. Word2Vec
is provided in two similar versions: Continuous Bag-of-Words (CBOW), which predicts
a target word based on the context words (4 words to the left and 4 words to the right)
without considering the order of these words; and Continuous Skip-Gram, which pre-
dicts a target word based on another word within a specified range. Word2Vec captures
different kinds of word similarity, going beyond basic syntax regularities. By employ-
ing simple algebraic operations on the word vectors, it is possible to observe that there
is a similarity between the words “big” and “bigger” in the same way as between the
words “small” and “smaller”. Notably, an intriguing outcome arises from the operation
vector(King)− vector(Man) + vector(Woman) ≈ vector(Queen).

Pennington et al., [115] introduced the GloVe model (Global Vectors for Word Repre-
sentation), which generates global vectors in the sense that they contain statistical infor-
mation regarding the entire training corpus. It employs a hybrid approach that combines
co-occurrence matrices with distributed representations.

Bojanowski et al., [23] described FastText as an extension of the Continuous Skip-
Gram model that incorporates the morphological structure of words. It represents each
word based on its internal sub-terms (e.g., the vector for the word “where” is generated by
summing the vectors of the n-grams <wh, whe, her, ere, re>). Thus, FastText addresses
the Out-of-Vocabulary (OoV) problem by enabling the representation of words not present
in the training set.

The models presented up to this point are considered static embeddings [54, 74, 138],
since they assign a unique representation to each word in the vocabulary, thereby limiting
their ability to handle polysemy (when a word has different meanings depending on the
context in which it appears).
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2.3.3 Context-aware Models

Recent work has considered the so-called context-sensitive word representations [54].
These contextualized language models have dynamic representation spaces, so that a
specific term can have different representations depending on the specifics of the text in
which it is found.

For instance, the Embeddings from Language Models (ELMo) model [116] derives
context from the internal states of a bidirectional LSTM network that traverses both the
right and left contexts of the current term. ELMo concatenates the internal states of the
two layers to produce context-sensitive embeddings from both directions.

The Generative Pre-trained Transformer (GPT) [120] applies the Transformer archi-
tecture to a Language Modeling task to pre-train universal embeddings adaptable to
various NLP tasks—such as Natural Language Inference, Question-Answering, Seman-
tic Similarity, and Text Classification—through Fine-Tuning. Both ELMo and GPT use
unidirectional language models to learn to represent context. The bidirectional context
created by ELMo is a concatenation of two unidirectional contexts learned by different
networks.

The BERT (Bidirectional Encoder Representations from Transformers) model [46] em-
ploys the Transformer architecture to train on the Masked Language Modeling task – a
variation of the traditional Language Modeling seen in Equation 2.4. In this task, the
model receives a training sentence with one of its terms hidden by a mask (e.g., “I like
this [X] and ventilated room”) and it must uncover the term hidden behind the mask.
By accomplishing the task objective of language modeling, the network generates a Bidi-
rectional Context that incorporates information statistically relating each term within
the sentence to all neighboring terms present in the sentence. The language modeling
captures various facets and features — e.g., long-term dependencies, hierarchical rela-
tionships, sentiments — that are relevant to task completion [67]. The awareness of the
bidirectional context is a key aspect that enabled BERT to achieve the state of the art in
11 NLP tasks [46].

2.3.4 Neural Models for Sentences

The arrival of word representations has inspired other approaches to generate vector
representations for larger text segments, such as phrases, sentences, paragraphs, and even
entire documents.

Mikolov et al., [99] proposed a method for encoding idiomatic expressions, i.e., terms or
phrases that have a meaning derived from the composition of their components, which is
different from the meanings of the individual terms. For example, the expression “Boston
Globe” represents the name of a newspaper, and its meaning is distinct from the simple
combination of the individual terms “Boston” and “Globe”. Additionally, the article de-
scribes some interesting properties of the Skip-Gram model, such as the Additive Property,
which yields semantically coherent results. For example, in the vector space produced by
Skip-Gram, the result of vector(Russia) + vector(river) is close to vector(Volga

River), while vector(Germany) + vector(capital) is close to vector(Berlin). Such
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observations suggest that it is possible to obtain a non-obvious understanding of language
by using Vector Arithmetic over word vectors [99].

Through a generalization of Skip-Gram, the SkipThought model [79] encodes a sen-
tence by predicting the surrounding sentences. SkipThought implements an encoder-
decoder model: the encoder maps words to a sentence vector, which is then utilized by
the decoder to predict the surrounding sentences.

Inspired by CBOW [98], the Sent2Vec model [109] generates Sentence Vectors by
averaging the vectors of the constituent n-grams in the input sentence. In fact, sentence
vectors generated by averaging the vectors of all words in the sentence are quite robust
models [76].

The InferSent model [39] employs a BiLSTM siamese network with a final layer of
max-pooling. InterSent works as follows: the model is trained in a supervised fashion us-
ing the Stanford Natural Language Inference (SNLI) dataset [26], surpassing the results
of unsupervised methods such as Skip-Thought. The SNLI dataset comprises 570,000
sentence pairs annotated with labels contradiction, entailment, and neutral. In-
ferSent results suggest that Natural Language Inference (NLI) is a highly suitable task
for sentence embeddings training.

The Sentence-BERT (SBERT) model [121] uses siamese and triplet networks (i.e.,
different networks with tied weights) to generate sentence embeddings. The training step
of Sentence-BERT takes as input a pair of sentences and a similarity value between them.
Initially, Sentence-BERT applies a pooling operation on the BERT embeddings to obtain
a fixed-size representation (usually 768) for each sentence, as shown in Figure 2.7.

Figure 2.7: The architecture of the siamese network of SBERT. Source: [121].

2.4 Neural Networks and Topic Modeling

Topic Modeling [22, 62, 102, 68, 63] is an unsupervised Natural Language Processing
challenge whose problem is discovering topics that represent an overview of the textual
collection under analysis. A topic model explicitly represents the latent semantic struc-
ture [7] – or gist [62] – of a textual collection.

The Topics Model concept refers to a discrete probability distribution describing the
connections between words, topics, and documents [27]. Topics are word combinations
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that demonstrate idiosyncrasies in the linguistic distribution of the corpus under anal-
ysis [25]. Topic models are explicit representations [22] that probabilistically associate
documents with topics and topics with words.

Many methodologies address the Topic Modeling problem, such as Latent Semantic
Analysis (LSA) based on linear algebra and its probabilistic version pLSA. Such methods
apply dimensionality reduction to the documents represented in a Bag-of-Words format.
Bag-of-words representations are adequate since, by hypothesis, word order is not a de-
termining factor in these methods [22].

The Latent Dirichlet Allocation (LDA) [22] is a probabilistic model for discrete data
collections, such as textual data. The LDA uses two complementary distributions: a
topic over words distribution that describes the relationship between topics and words;
and a second distribution that allocates topics to documents [27]. For LDA, a document
is a random mixture of latent topics, which in turn are probability distributions over
vocabulary words. The LDA is a dimensionality reduction technique [22] besides is one
of the most robust and efficient methods for topic modeling.

The inferential machinery of LDA is capable of solving problems modeled in a multi-
level structure, for example, Collaborative Filtering, in which the dataset comprises a
collection of users, which in turn has a list of preferred objects. In this case, users
and objects are analogous to documents and words in the document, respectively [22].
Therefore, LDA applies to problems beyond the textual domain.

Recent works [7, 47, 142, 114, 157, 68, 8, 82] investigate Neural Topic Modeling (NTM),
a current research trend that combines topic modeling with Neural Language Models.
Indeed, this is a rapidly growing area of research. [142, 157] discourse on the similarity
between the topics produced via NTM and other traditional topic models, such as LDA.
NTM-based works claim to produce more interpretable topics than prior methods, yielding
improvements in the state-of-the-art concerning topic coherence measure [68].

Top2vec [7] infers topic vectors by applying vector algebra over the neural vectors
of words and documents embedded in the same vector space. Each topic corresponds
to a centroid of a cluster of documents and takes the closer word vectors as its most
representative words. The approach infers the optimal number of topics through the
HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise)
algorithm.

The TopicBERT [8] topic model recognizes topics combining Transformers, community
detection techniques in graphs, and named entity recognition.

[63] presented the BERTopic model based on clusters of documents grouping vectors
inferred through the Sentence-BERT framework [121]. Subsequently, the approach assigns
the clusters to a c-TF-IDF matrix that indicates the most representative words of each
topic. c-TF-IDF is a variation of the classic TF-IDF algorithm, taking clusters as the
unit of analysis instead of documents.

Although many research efforts use hierarchical clustering algorithms – such as HDB-
SCAN – their focus is not on the hierarchy, as they apply dimensionality reduction that
interferes with hierarchical analysis. We provide an analysis of the inferred hierarchy of
topics and its relationship with the arrival of Language Models based on the Transformer
architecture and its attention mechanism.
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Related works have studied hierarchical structures of topics [78, 71, 156]. In particu-
lar, [78] showed important aspects of the hierarchy of topics and proposed the recursive
Chinese restaurant process (rCRP) method to generate hierarchical topic structures with
unbounded depth and width. Their study analyzed metrics to characterize Hierarchical
Structures to organize topics, such as Hierarchical Affinity and Topic Specialization.

2.5 Neural Networks to Produce Semantically Anno-

tated Virtual Patients

This section explores the use of Neural Networks to help clinical studies. More specifi-
cally, it highlights the use of automatic semantic annotations to enhance knowledge about
Virtual Patients.

2.5.1 Semantic Annotation of Virtual Patients

In this section we give a background about Semantic Web and Named Entity Recognition
(NER) approaches to perform semantic annotation on free-texts.

These topics are the foundations of our method to Semantic Annotation described
on Chapter 3 of this thesis. Our paper “Harena Semantics: a framework to support
Semantic Annotation in Citizen Science systems” [110] published at the 15th International
Conference on Health Informatics 2022 (HealthInf) is based on that chapter. The paper
is intended to enable easy semantic annotation over natural language sequences contained
within Virtual Patients data.

Semantic Annotations

Semantic annotation [73] is the process to connect textual sentences to the resources of the
Semantic Web, towards linking the natural language texts to networks of ontologies. The
Semantic Web is a network designed to be manipulated both by humans and computer
agents. As envisioned by Tim Berners-Lee et al., [19], it is an extension of the current
Word Wide Web (not a separate one), which structures the information in a format that
better enables computers to process their content in a meaningful way.

As far as we know, there is not a standardized, established definition of the approaches
used for semantic annotation. Some works define them as Concept Normalization [97, 50],
Entity Linking [14], Entity Typing [36], and so on.

Usually, the semantic annotation process involves some kind of Named Entity Recog-
nition procedure. Named Entity Recognition (NER) is a Natural Language Processing
(NLP) task to identify and classify entity types, such as People, Organization and Loca-
tion. In the biomedical domain, research works focus on Gene, Protein, Disease, Chemical,
Anatomy, etc.

There are many approaches to implement NER tasks. Recent works using statistical
approaches have leveraged the NER state-of-the-art by using Deep Neural Networks to
learn Language Models [38, 46]. These Language Models encode syntactic and semantic
information in Word Vectors in such a way that those vectors with similar meanings have
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similar representations. One can build NER methods by feeding the word vectors as
feature vectors to a downstream algorithm that decides if it should or not tag a given
term as a named entity.

There are works [6, 84, 4] specializing BERT vectors to the biomedical and clinical
domains. [84] introduce BioBERT, a BERT-based model specialized in biomedical lan-
guage. BioBERT is pre-trained on large-scale biomedical corpora composed of PubMed
abstracts and PMC full-text articles. BioBERT outperformed the state-of-the-art models
in a bunch of experiments over NER tasks. BioBERT trained several models to recognize
different named entities (e.g., one model to handle diseases, another one to deal with pro-
teins, and so on). We based our NER implementation on the BioBERT model, extending
it to recognize multiple entities (anatomy, chemicals, and disease) in a single model.

Other initiatives also address NER by extending language models, refining word vec-
tors, or fine-tuning the model to specialized datasets [14, 91, 97]. BERN [77] is a neural
biomedical multi-type NER tool based on the BioBERT model. The model uses a sepa-
rate NER model for each entity type, and then combines the results using decision rules
to handle overlapping entities (i.e., when the models tag a term with different tags, for
instance, two models tagging the term “androgen” as gene and chemical). Differently,
our NER model does not need decision rules, since the language model itself contains the
statistical context to decide which entity is the most likely to occur. It is due to our model
is trained on a dataset containing all the entities of interest, avoiding training one model
to each entity. The model is based only on a Statistical approach (Empiricist) since does
not rely on pre-defined rules.

Virtual Patients authoring

In the context of Medical Education, a clinical case comprises a medical narrative of situ-
ations occurring in real clinical environments. Lecturers use clinical cases as pedagogical
resources to teach clinical practices to medical students. According to Šuster [135] “a case
report is a detailed description of a clinical case that focuses on rare diseases, unusual
presentation of common conditions and novel treatment methods”.

There is a wide spectrum of strategies to simulate patients for students’ training [40, 57,
29, 137, 34]. The adopted strategy depends on the available resources, the goal expected
from the training, the level of structure in the data and the desired expressiveness of the
clinical narrative of simulation.

Virtual Patients (VP) [40] are designed to present scenarios and narratives of a Clinical
Case, guided by computers. They represent the Clinical Case in a graph of states affording
structured guidance.

The adoption of Virtual Patients enables interesting research. For example, Hege et al.
present a tool to foster the acquisition of clinical reasoning skills through Virtual Patients
and Concept Maps [64].

The OpenLabyrinth [29] is a system for authoring virtual patients. The OLabX
project [43] – an extension of OpenLabyrinth – uses mEducator schema to discover, re-
trieve, share, and reuse medical educational resources.

Our approach to Virtual Patients authoring differs from related work, as it departs
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from a markdown-derived language, apt for human writing, reading, and annotation,
combining it with automatically generated superimposed annotations produced via the
semantic annotation process. In the paper [110] we analyzed semantic annotation within
the Harena system specifically designed to manage a collection of Virtual Patients.

2.6 More recent NLP research

We have witnessed a heated research focus around the release of ChatGPT. The ChatGPT
system uses the models of the GPT family – GPT-3 [120], GPT-4 [3], etc – to perform
text generation in a dialog style [88]. GPT is a decoder-only language model fine-tuned
through Reinforcement Learning from Human Feedback [144].

Recent research focuses on increasing the network size by developing Large Language
Models containing billions of parameters [144]. GPT-3 contains 175 billions of parameters,
Llama 65 B [145], Chinchilla 70B, PaLM 540B, BLOOM 176B [126]. Studies [66, 145]
have found not necessarily the larger model results to best performance at inference time,
but there is a trade-off between the model and dataset sizes such that the best model
would be a smaller model trained longer (i.e., on more samples).

A recent trend is to incorporate language models into larger systems. For example,
DALL-E3 [20] is a system to generate images from text prompts. Sora4 is a system
capable of generating high-fidelity videos from input text based on diffusion models [113].
Gemini [139] is a multimodal model trained on different modalities of data such as image,
audio, and video. However, some systems and applications lack academic references to
describe the techniques employed and details of integrating the theoretical models in the
systems. Usually, the implementation details are referred to in web pages. Many of
the recent research on language models are described in technical reports uploaded to
repositories which do not account for peer-review processes. It hampers the scrutiny of
the real advancements in this research area and the establishment of a reliable ground of
scientific validation.

There are works focusing on demonstrating the linguistic capabilities of language mod-
els. The results of the study by Tenney et al. [141], suggest that the initial layers of
BERT networks concentrate on basic syntactic information, while the higher layers focus
on high-level semantic information. Ettinger [55] applies tests based on psycholinguistic
studies to assess the language models’ ability to capture linguistic features. The results
suggest that probability distributions are sensitive to linguistic distinctions, such as se-
mantic roles, pragmatic reasoning, common sense, etc. These aspects would be evidence
of idiosyncrasies embedded in the model during its training.

Diverse surveys aim to review the methods and techniques employed on the last re-
leased large language models. Other surveys [154, 90, 33] address the evaluation of lan-
guage models. The work of [90] categorizes a bunch of methods for the evaluation of
language models in terms of faithful explainability.

There are works analyzing the language capabilities of language models and comparing

3https://openai.com/dall-e-3
4https://openai.com/sora#research



44

their procedures with the functioning of the human brain. For example, Sejnowski [129]
hypothesized that the intelligence of language models is a mirror that reflects the intel-
ligence of the person using such a system. The paper of [49] claims that, although GPT
models lack mechanisms of consciousness from a cognitive science perspective, they have
already passed the Turing test and therefore can successfully imitate human language
capabilities.

However, there is neither consensus nor definition about which type of analysis should
be employed to evaluate the language models. This state of affairs is perhaps not sur-
prising, since neural networks are examples of Complex Systems [128] and therefore, are
essentially holistic and interdisciplinary. Thus, neural networks for language models would
be machines “as complex as the systems they model and therefore they will be equally dif-
ficult to analyse” [128]. This situation resembles the difficulty of validating models based
on a relativist, holistic philosophy of science [12]. By such approach the “The criterion
of practical use has taken the place of formal rigor [...] validation becomes a semiformal,
conversational process” than “a matter of formal accuracy”. Therefore, the emergence of
neural language models demand the research and development of new validation methods
to assess their capacities, considering their holistic and interdisciplinary nature.

2.7 Critical Analysis

Up to this point, we concentrated on the Transformer and its capability to handle global
context in input sequences. This advantage enables the Transformer to successfully train
Language Models, leveraging huge amounts of data. However, there are open issues: (i)
the difficulty to interpret [87] the inner workings of neural networks, and consequently, of
transformers; (ii) the distributed nature [128] of Language Models hinders control of the
patterns represented (for example, societal biases [130]).

The Attention Mechanism and the Transformer model have elevated the state-of-the-
art in various NLP tasks that have long been challenges in this research area. Such
improvements suggest that a new level of language understanding can be achieved by
using attention-based models to capture the patterns that structure textual sentences.
The invention of attention-based language models can be stated as a revolution in the NLP
research field, symbolizing a significant technological leap forward in this field. However,
there are different perspectives regarding the actual advancements achieved in a scientific
context beyond computer science.

In a position paper, Bender and Koller [16] argue that language models are not, a priori,
capable of understanding the real meaning of processed texts, as they are trained only
on textual forms (i.e., the linguistic signal). This is based on the definition of meaning
as the relationship between a linguistic form and an intention of communication. This
would imply that there is a portion of meaning attributed to extra-textual information
not present in the training set. The authors draw attention to the imprudent use of
certain terms (such as understanding, comprehension, etc.) as academic terminology
when reporting research results in the field.

On the other hand, Sahlgren and Carlsson [124] argue that if meaning produces effects
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on form, then a language model should at least be able to observe and learn these effects.
This debate addresses issues that have historically been studied in various research

areas. Therefore, it is necessary to analyze the results obtained by this so-called NLP
revolution with caution, as it raises expectations and interests from different actors in
society—companies, states, political groups, and even the public at large.

For example, AlphaFold [5] is a Google project aimed at predicting the 3D structure of
proteins – an essential challenge within Biology [30] – using deep neural networks. These
proteins could be applied in projects for new therapies for infectious diseases, less aller-
genic foods, and also for potential malicious applications—such as the development of toxic
proteins as biological weapons [149]. There are also examples of work in Law [32, 53] or in
Geosciences and Petroleum Engineering [94]. The work by McGuffie and Newhouse [96],
warns about potential language models trained to generate content based on radical ide-
ologies (white supremacy, anti-Semitism, etc.) with the aim of disseminating extremist
thoughts.

Given that neural language models are trained to recognize prominent patterns in the
training set, it is expected that they capture — and consequently reproduce — racist,
classist, sexist, misogynistic, homophobic, xenophobic biases, and other patterns histor-
ically perpetuated in society. For example, the results from Silva et al. [130] indicate
that Transformers exhibit a statistically significant tendency to infer female and Afro-
American subjects in contexts of emotive words, thus highlighting an embedded racial
bias in these opaque-box models.

The existence of bias in neural models raises concerns, in particular in sensitive sit-
uations such as the development of methods for automatic student evaluation [95], the
classification of patients with Opioid Use Disorder using longitudinal health data [56], or
the exploration of the connection between cannabis use and depression disorder through
Twitter post content [155], and so on. Research applying language models to study such
complex and interdisciplinary topics should take into account the knowledge and per-
spectives of other fields to avoid oversimplifications and the establishment of spurious
correlations.

In this sense, it is crucial to address ethical issues in Artificial Intelligence. This
includes implementing best practices for developing open-source Neural Language Models.
This is essential to ensure individual freedom in an era where we store a multitude of
personal information on the Internet. It also helps prevent the complexity [9] of this new
technology from being used to mask biases and interests. Open-source code allows, to some
extent, auditability of inferred classifications and coded rules, enabling the verification of
results.

The introduction of machine learning algorithms everywhere, and NLP in particular,
can impact the way we work, relate, learn, and develop. Therefore, there is a need for
education at all levels aimed at teaching people how to use, understand, develop, and
consume these tools in a healthy manner. Considering the breadth of the impacts that
neural language models can have on human life, a pedagogical project is needed to guide
towards a sustainable and ethical use of neural language models that also serve to address
real and widely discussed societal problems, rather than solely serving the economic and
market interests of the few who hold and dominate this technology.
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2.8 Conclusion

The research efforts over the past decades on neural networks have led to the establishment
of the Transformer model. A key aspect of the Transformer is its awareness of the global
context within the training collection by “paying attention” to all the terms surrounding
the current term being processed (not only to the n-grams to left or right as in the
previously proposed approaches).

In this report, we reviewed the Transformer as a suitable approach to train Lan-
guage Models that efficiently compress the global context of text collections by encoding
the statistical patterns prominent in the language. Diverse long-standing NLP problems
were suddenly solved by approaches applying transformers-based language models. This
demonstrates and corroborates the impressive performance of Neural Language Models.
Here we reviewed two of these tasks: Named Entity Recognition and Topic Modeling.

The arrival of neural language models shed many paths of discovery and improvements
in processes, studies, and scientific discovery. Despite their undeniable success, the com-
plexity and innovation of such technological tools raises concerns about: (i) evaluation of
such models; and (ii) their ethical applicability – as voted by the November 2021 Unesco
Assembly [10]
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Chapter 3

Harena Semantics: a framework to

support Semantic Annotation in

Citizen Science systems

We propose a new approach to support human agents to annotate semantic concepts
in free-text sentences in the biomedical domain. Using our markdown-derived language
called Versum, authors can easily annotate relevant terms while producing content for Cit-
izen Science systems. Besides, an embedded Automatic Annotation Mechanism suggests
semantic concepts for the author. It implements a Named Entity Recognition task using
a hybrid approach: (1) a Transformer-based Deep Neural Network and (2) an Ontology-
based method. We conducted a case study running over content produced in the Harena
e-learning system, which intends to teach Clinical Reasoning to students using Clinical
Cases. Results of this pilot evaluation suggest the potential of Harena Semantics to en-
gage volunteers in the production of semantic, agent-centered resources on crowdsourcing
systems.

3.1 Introduction

In clinical learning environments, professors use Clinical Cases as pedagogical resources
to teach students to solve problems and, consequently, to develop their clinical reasoning
capacities. Usually, Clinical Cases have fictional narratives inspired by real situations
interconnected in a network of unanticipated events commonly occurring in a clinical
environment. This complex information comprises a valuable health knowledge source.

Despite the potential that Clinical Cases have to become an unprecedented Knowledge
Base, there are open challenges concerning: (1) how to handle and process free-text
information contained in the case narrative; and (2) how to integrate and interrelate
complex information fragmented across a plethora of documents on the Web.

Envisaging these challenges, we propose Harena Semantics to construct and curate
Clinical Cases delivering two main contributions:

• Versum: a markdown-based script language that enables authors to annotate se-
mantic concepts inside natural language texts. Via Versum, the semantic annotation
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may be done manually by a human agent (e.g., professors, learners), automatically
by some computer-assisted method, or by a mixture of these methods.

• An Annotation Mechanism which automatically recognizes relevant clinical concepts
within a given sentence following a hybrid approach composed of two independent
algorithms: (1) a Transformer-based Named Entity Recognition (NER) task im-
plemented as a Deep Neural Network [147] and (2) an Ontology-based NER to
link terms from free-text sentences to ontology-related concepts, formally defined as
knowledge graph, which comprises a network of interconnected semantic resources.

We conducted a case study of our framework running over the Harena1 system [45],
an e-learning environment, based on cases resolution, which is used as a supporting peda-
gogical tool in Emergency Medicine courses. Harena represents Clinical Cases in a Virtual
Patient format [40].

The Harena environment comprises a Knowledge Base of clinical cases, besides two
complementary Web-based modes: (1) Interface Author, to enable one to create and
curate artificial Clinical Cases inspired by real-life clinical encounters; and (2) Interface
Player, to execute the simulations of the Clinical Cases narratives.

Through our approach, the Harena system adheres to the Semantic Web, enabling
authors to produce semantic annotations over free-text content of their Clinical Cases.
The authors of Clinical Cases (i.e., the Harena system users) are also Citizen Scientists

who embed medical knowledge in Clinical Case narratives.
Citizen Science projects promote the collection and analysis of scientific data by mem-

bers of the general public and professional scientists. By adhering to the Semantic Web,
Citizen Science systems enable content producers to add a higher level of abstraction
to the crowdsourced information. Harena Semantics enables volunteer users to produce
agent-centered resources (e.g., Clinical Cases and beyond) and therefore cooperate on the
gradual building of an interconnected network of Knowledge Bases. Agent-centered re-
source engagement is one of the three types of engagement in citizen science projects [72]
which have the potential to increase engagement in the early stages of training in a vol-
unteer learning scenario. Preliminary results of this study reinforce the claim about the
need for mechanisms to engage users in the production of agent-centered resources.

The remaining of this paper is organized as follows: Section 3.2 gives some background
foundations and related work; Section 3.3 describes the Harena Semantics framework and
some results of the NER task evaluation; Section 3.4 presents a case study of our approach
running over the Harena system; Section 3.5 presents our concluding remarks.

3.2 Foundations and Related Work

The scope of this review section is twofold. First, we give a background about Clinical
Cases, Virtual Patients, and Semantic Web applied to the Clinical Reasoning research
field. Lastly, we briefly present some concepts of Natural Language Processing (NLP),
Named Entity Recognition (NER), and the just arrived Word Embeddings.

1https://jacinto.harena.org/
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3.2.1 Virtual Patient

In the health context, there is a wide spectrum of strategies to simulate patients for
students’ training [40]. The adopted strategy depends on the available resources, the goal
expected from the training, the level of structure in the data and the desired expressiveness
of the clinical narrative of simulation.

Virtual Patients (VP) are designed to present scenarios and narratives of a Clinical
Case, guided by computers. They represent the Clinical Case in a graph of states affording
structured guidance [40].

By taking advantage of Semantic Web abstraction, OLabX (extended OpenLabyrinth)
uses mEducator schema to discover, retrieve, share, and reuse medical educational re-
sources [43]. Hege et al. present a tool to foster the acquisition of clinical reasoning skills
through Virtual Patients and Concept Maps [64].

Our approach differs from related work, as it departs from a markdown-derived lan-
guage, apt for human writing, reading, and annotation, combining it with automatically
generated superimposed annotations.

3.2.2 Named Entity Recognition

Named Entity Recognition (NER) is a Natural Language Processing (NLP) task to iden-
tify and classify entity types, such as People, Organization and Location, . In the
biomedical domain, research works focus on Gene, Protein, Disease, Chemical, Anatomy,
etc.

There are many approaches to implement NER tasks. Recent works using statistical
approaches have leveraged the NER state-of-the-art by using Deep Neural Networks to
learn Word Embeddings [38, 46]. These neural language models encode syntactic and
semantic information in vectors known as embeds in such a way that those embeds with
similar meanings have similar representations. They feed the algorithm that decides if it
should tag a term within the given sentence as a named entity.

Google released BERT (Bidirectional Encoder Representations from Transformers) [46],
an implementation of the Transformer architecture introduced on the paper “Attention
is all you need” [147]. BERT is pre-trained on the Masked Language Model (MLM), an
unsupervised NLP task whose objective is to predict the hidden word in a given input
sentence. MLM is an expensive task since it requires millions of sample sentences. The
pre-training phase produces the Word Embeddings as a by-product of the task objective.
One can easily reuse BERT embeddings by Fine-Tuning (a Transfer Learning technique)
them in a downstream task (e.g., NER, Question-Answering, Natural Language Infer-
ence). Generally, Fine-Tuning is an inexpensive method since it requires a small labeled
dataset.

BERT produces context-aware Word Embeddings through the Attention Mechanism,
which detects the most representative parts in the whole sentence. The Attention Mech-
anism is a procedure to capture the sentence context based on the statistical relationship
between the current word and every other word in the input sentence, providing a bidirec-
tional context – i.e., interpreting the sentence considering the previous context (left-right
direction) and posterior context (right-left direction). This bidirectional context leveraged
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the state-of-the-art of NER methods since the previous works were capable of dealing with
the context in just one direction [46]. The NLP community sees the rising of transformer-
based Word Embeddings as a revolution in this research field.

There are works [6, 84, 4] specializing BERT-embeddings to the Biomedical and clin-
ical domains. [84] introduce BioBERT, a BERT-based model specialized in biomedical
language. BioBERT is pre-trained on large-scale biomedical corpora composed of PubMed
abstracts and PMC full-text articles. BioBERT outperformed the state-of-the-art models
in a bunch of experiments over NER tasks. BioBERT trained several models to recognize
different named entities (e.g., one model to handle diseases, another one to deal with pro-
teins, and so on). We based our NER implementation on the BioBERT model, extending
it to recognize multiple entities (anatomy, chemicals, and disease) in a single model.

Recent works attempted to join Word Embeddings and Semantic Web ideas. We intend
to contribute to this endeavor by investigating how to superimpose NER annotations
produced by these distinct, although related, research areas. According to our literature
search, there is not a standardized, established definition of ontology-based NER methods.
Some works define them as Concept Normalization [97, 50], Entity Linking [14], Entity
Typing [36], and so on.

[77] present BERN, a neural biomedical multi-type NER tool based on the BioBERT
model. BERN is equipped with probability-based decision rules to treat overlapping en-
tities (polysemy – for instance, one can tag androgen as gene or chemical) and synonyms
(i.e., terms described by multiple names). BERN normalizes the recognized entities as-
signing an ID (linking to controlled vocabularies) to each recognized entity.

Other initiatives also address NER extending BERT, refining the embeddings, or fine-
tunning with specialized datasets [14, 91, 97].

3.3 Harena Semantics

This section presents Harena Semantics, a framework consisting of two complementary
components: (1) a markdown-based language called Versum to enable Citizen Scientists to
create and curate Clinical Cases adherents to Semantic Web; and (2) a hybrid approach
to perform a Named Entity Recognition (NER) task to annotate Clinical Cases with
semantic concept labels.

3.3.1 Versum

Versum enables one to add semantic structure into the free-text content of Clinical Cases,
aiming to allow easy integration of semantic annotations into clinical narratives. By
making explicit the semantic of Clinical Cases, Versum creates pedagogical resources
adherent to the Semantic Web while providing a step forward to a machine-interpretable
representation of the natural human language.

In a previous research paper, Menezes et al. developed the first version of Versum fol-
lowing the Narrative Design approach, which provides elements to enable scenario building
and flow control of narratives.
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In this paper, we release the Annotation Mechanism as an improvement feature of
Versum. The process of semantic annotation using the Versum syntax is straightforward
through a predefined set of reserved markups to add high-level structured information to
the Clinical Case.

Using Versum markups, one can annotate a text fragment as a semantic concept en-
closing it between the curly braces { } followed by the concept label between parenthesis,
e.g., {heart attack}(disease). Moreover, one can link a free-text entity to Knowledge
Bases – e.g., ontologies, controlled vocabularies, taxonomies, thesaurus – through the
namespaces markup.

Figure 3.1 shows three stages of a clinical case being annotated using the Versum.

1. A Clinical Case narrative in free-text format. This Clinical Case was authored in
the Harena system.

2. The Semantic Clinical Case produced from the original free-text Clinical Case. By
annotating with Versum, the narrative becomes more structured and semantically
enriched. These annotations could be manually made by a human agent or by an
automatic process (like the Automatic Annotation Mechanism depicted in the next
Section 3.3.2).

3. A visual representation of the Semantic Clinical Case highlighting the semantic
concepts annotated.

3.3.2 Automatic Annotation Mechanism

Harena Semantics provides a mechanism to automatically annotate the concepts within
the Clinical Case through a hybrid approach:

1. Transformer-based Named Entity Recognition (NER) task to assign labels to clin-
ical terms within a given sentence. This method is based on the Transformer ar-
chitecture, a Deep Neural Network capable of capturing linguistic features based on
statistical inferences.

2. Ontology-based Named Entity Recognition task to link from free-text terms to con-
cepts formally defined on biomedical ontologies.

As output, the Automatic Annotation mechanism produces the class labels to terms
of the sentence given as input, as depicted by Figure 3.2. The labels may be (1) ontology
concepts, (2) named entities, or (3) a combination of them.

Transformer-based Named Entity Recognition

We developed a Transformer-based NER that attends to the contextual information – i.e.,
syntactic and semantic aspects related to the context of a sentence – to decide if it should
label or not a given term as a named entity.
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Figure 3.1: (1) A Clinical Case narrative in free-text format; (2) The Semantic Clinical
Case produced from 1; (3) A visual representation of the Semantic Clinical Case.

This method classifies the sentence terms according to the clinical domain-specific
labels Anatomy, Chemical, and Disease. In order to train the model, we generated a small
labeled corpus called ACD (Anatomy, Chemical, Disease) from the concatenation of the
two pre-existing labeled data sets: BC5CDR [86] and AnatEM [118]. The Disease class
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Figure 3.2: The hybrid approach to NER.

in BC5CDR also includes disease mentions [52], which comprises Signs and Symptoms.
According to [42], BC5CDR and AnatEM do not exhibit a significant overlap between the
training sentences of one dataset and the test sentences of the other one (it would expose
the training algorithm to sentences of the validation set), which indicates the feasibility
of concatenating them. Table 3.1 provides some metrics about the ACD corpus.

Table 3.1: ACD corpus statistics.
Corpus # Sentences Entities # Annotations

Training Test Training Test

ACD 21,223 10,867 Anatomy 9,085 4,616
Chemical 10,550 5,378
Disease 8,428 4,424

We reused the BioBERT-embeddings which are pre-trained on an unsupervised Masked
language Modeling task specialized on biomedical domain (see Section 3.2.2 for more
details). Then, we trained our supervised NER algorithm by adjusting the BioBERT-
embeddings through a Transfer Learning technique called Fine-tuning. Therefore, this
NER algorithm is a semi-supervised method once it reuses the embeddings produced by
an unsupervised source task (i.e., Masked Language Modeling) in a supervised target task
(i.e., NER).

This proposed Deep Neural Network – called Envoy – is a stack of 12 BioBERT
layers plus an extra Fine-Tuning layer liable for specializing the network (by adjusting
the parameters) to recognize the label of each term inside the given input sentence.

The Fine-Tuning process involves adding an extra linear layer to the top of the pre-
trained neural model and adjusting its weights for each sentence on the training dataset.
Each neuron on the first layer processes a token of the input given sentence and forwards
it to the next neuron layer. This process is repeated for each sample sentence on the
training data set.

We released our NER model (specialized to recognize anatomy, chemicals, and dis-
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eases) at: https://huggingface.co/fagner/envoy. The open-source code to extend
the BioBERT language model by fine-tuning it in a multi-class NER model is available
at our fork of BioBERT: https://github.com/faguim/biobert-pytorch.

A REST-based implementation of the Harena Semantics framework can be deployed
as a container: https://github.com/datasci4health-incubator/harena-semantics.

Model Evaluation To validate our approach, we conducted an intrinsic evaluation [148]
measuring the performance of the model at performing the NER task objective. The ex-
perimental setup is as follows:

• Pre-trained Model: We experimented with both biobert_base_cased2 (contain-
ing 768 hidden states, 12 neuron layers and totaling 100 million parameters) and
biobert_large_cased3 (24 layers, 1024 hidden states).

• Learning rate 5e−6 using AdamW optimizer, chosen by considering a threshold be-
tween performance and stability, since high learning rate increases performance while
incurs instability on the training [35].

• Batch size: 32 sentences/batch (i.e., 4 sentences ∗ 128 tokens = 512 tokens/batch).

Among the two versions adopted in the evaluation, the envoy_large version accom-
plished 85,8% of success on the f1 score, while envoy_base 85,5% .

Although envoy_large present better results (lower error rate and higher f1-score),
we released biobert_base as the official version of Harena Semantics due to its smaller
model size (biobert_base is 432 MB, while biobert_large is 1,5 GB) which facilitates
the deployment of Harena Semantics in personal pcs. Another relevant feature of smaller
models is their stability on the training process [103].

Ontology-based Named Entity Recognition

This rule-based NER method uses ontologies as source information to label the sentence
terms with the concept labels formally defined on biomedical ontologies. The algorithm
looks for matches (exacts or partials) between the free-text sentence terms and ontology
concepts. It provides two modes to match against ontologies:

• External ontologies: This mode uses the biontology annotator to match terms
against ontologies stored on the open repository Bioportal [108].

• Local ontologies: This mode uses a RDF database to store RDF triples. We de-
veloped an API called OntoMatch to query the RDF triples through the RDFLib
python library. Ontomatch enables matches based on a range of metrics such as
Levenshtein, Jaccard, Cosine etc.

2https://huggingface.co/dmis-lab/biobert-base-cased-v1.1
3https://huggingface.co/dmis-lab/biobert-large-cased-v1.1/tree/main
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3.4 Case Study on the Harena System

To get a pilot evaluation of Harena Semantics, we conducted a case study running it over
the Harena system [45]. The Medicine course from University of Campinas uses Harena
as a supporting pedagogical tool to situate the individuals in an e-learning environment,
which simulates the context of an Emergency Care Unit [44].

This section presents a process to construct semantically rich Virtual Patients (VPs).
We intend to reinforce the feasibility of a global knowledge network connecting the infor-
mation scattered in different Virtual Patient systems.

This research paper intends to explore ways of increasing the underlying structure of
Virtual Patients towards the glimpse of the Semantic Web. More structured information
can be interpreted by machines, expanding the possibilities of application: (i) it becomes
easier to find, reuse, and group cases and parts of cases – e.g., it becomes possible to
query: cases in which the patient experienced shortness of breath; cases where the ECG
was fundamental to diagnose a heart disease; (ii) data from cases can be used beyond the
scope of training as a Citizen Science data source.

Our approach focuses on building a Semantic Virtual Patient from free-text Clinical
Case narratives. The deployment of a Semantic Virtual Patient potentially facilitates
intelligent searches, complex queries, and easy exchange between institutions. As de-
tailed in previous sections, Harena Semantics identifies clinical concepts and links them
to ontology concepts through the Automatic Annotation Mechanism and Versum tags.
Therefore, it creates a RDF graph representing key knowledge about the virtual patient
and integrating it to an interconnected network of concepts envisioned by the Semantic
Web research area.

To evaluate the feasibility of creating and curating Semantic Virtual Patient using our
framework, we departed from Virtual Patients manually annotated by doctors. These
annotations are part of the case rationale, they relate relevant symptoms to the problem
(disease) narrated on the Clinical Case.

At the authoring process, the author tags relevant symptoms and indicate whether
they are directly related to the clinical case (e.g., arterial hypertension and acute onset
of chest pain), or key to the diagnosis (e.g., pain radiating to neck and back), or just
distractors to the learner which mislead her to a wrong direction (e.g., symmetric radial
pulses is a specific sign but present in only one third of the patients). The diagnosis, which
will be presented in the final of the case presentation as a feedback is also annotated.

Harena can superimpose several layers of annotation in the same text content and
combine them throughout superimposed contexts.

It is possible to assign a context to any segment of text surrounding it by double curly
braces {{ }}. Each context can receive an identifier prefixed by at sign @. Segments with
the same identifier must refer to the same textual content, even though they can afford
distinct superimposed annotations. For example, the three following contexts refer to the
same text fragment through the identifier @symp01:

{{@symp01/ ev id enc e : f i nd ing_re l evanc e

mesh:D000784

A man, 52 years old , r epo r t s he i s
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f e e l i n g { very s t rong ches t pain }/

ev id enc e : c o r r obo ra t e_ f i nd ing / .

}}

{{@symp01

A man, 52 years old , r epo r t s he i s

{ f e e l i n g }( loinc:MTHU021518 ) { very

s t rong }( lo inc:LA28441 −6)

{ ches t pain }( lo inc:LA28842 −5) .

}}

{{@symp01

A man, 52 years o ld , r epo r t s he i s

f e e l i n g very st rong { ches t }( anatomy )

{pain }( d i s e a s e )

}}

The first copy of the segment was annotated by physicians, as previously described.
Besides the context id, it is possible to specify the target of the annotations. In this case,
evidence:finding_relevance mesh:D000784 indicates that the following annotations
point to the relevance of the symptom to the Aortic Dissection disease (mesh:D000784).
The second copy was annotated by the ontology-based annotation mechanism and the
third by the Transformer-based mechanism.

These superimposed annotations are transformed into an RDF Graph [127] as shown
in Figure 3.3. A uniquely identified RDF resource (node in the RDF graph) is associated
with each word. When the annotation refers to a word – e.g., the chest is annotated with
Anatomy (which in turn refers to mesh:D000715) – the related RDF node is connected by
a skos:related association. SKOS - Simple Knowledge Organization System is a data
model for knowledge organization [101].

When annotations refer to a sentence with more than one word – e.g., the sentence
chest pain annotated by the concept Chest pain in the LOINC Document Ontology
(loinc:LA28842-5) – a node aggregating the sentence’s words is created and related to the
concept. An aggregation will reuse already aggregated nodes whenever is possible, as in
the case of the node that aggregates “very strong” and “chest pain” aggregated nodes.

Following this process, annotated content will converge to a semantic RDF profile of
a virtual patient, as shown in Figure 3.4. The diagram shows a simplified version of the
graph presenting an overview of what we call: Semantic Virtual Patient. The case in the
example is related to an aortic dissection – a dangerous injury to the innermost layer of
the aorta, which puts the life of the patient at risk.

In the long term, the produced semantic clinical cases could be used to grasp knowl-
edge from the unstructured text within the clinical narrative. The narrative scripts in a
machine-interpretable format enable sharing, versioning, and crowdsourcing. Such capa-
bilities are needed for a system with clinical case data.
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Figure 3.3: The RDF graph representing a case of Aortic Dissection, built with the support
of Harena Semantics.

Figure 3.4: Key elements of a Semantic Virtual Patient RDF Graph extracted from a
Clinical Case.

3.5 Conclusion

This paper presented Harena Semantics, a framework to enable Citizen Scientists to create
semantic annotations directly into the text narrative of Clinical Cases. By adopting
our approach, the data crowdsourced in Citizen Science systems may incorporate the
information gathered in the Knowledge Network envisioned by the Semantic Web research
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area.
The introduced Automatic Annotation Mechanism benefits both from Rule-based (the

ontology-based NER) and Statistical Learning (the Transformer-based NER) approaches.
Our NER task presents results comparable to the state-of-the-art works in such research
area. Our approach to superimpose annotations enables to combine human and automatic
annotations to produce a knowledge network representing our Semantic Virtual Patient.

The technology stack presented in this paper could serve several purposes. As future
works, we intend to implement a search engine to retrieve Clinical Cases aided by the
support of semantic information. Besides, the Semantic Virtual Patient can also be used
to train inference systems that automatically generate feedback to the users of Learning
Environments. These educational resources must be adherent to pedagogy practices,
therefore it is necessary to develop approaches to involve experts, professors, and scientists
in the creation of these resources. The Harena Semantics is an initiative engaged in such
effort.
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Chapter 4

Semantic Representations based on

Neural Topic Models

A Topic Model is a sophisticated tool to extract statistics-based semantics from the inside
of textual collections. However, in spite of extensive work on topic modeling, including
its evaluation using Large Language Models, there is need for more research to measure,
analyze and validate the topics learned. To this end, we present a Neural Topic Model
called ABT whose goal is to uncover the statistical semantics latent in large corpora.
ABT enables one to explore the themes covered by a given textual collection and analyze
them as a hierarchical structure of topics. Our method is grounded on Neural Language
Models as computational abstractions to encode – i.e., computationally represent – and
to reveal semantic aspects underlying the structure of the textual data. We showcase the
effectiveness of our approach by conducting a case study in the Medical domain, working
with the CliCR dataset, a collection of 10.538 clinical cases, comprising textual narratives
of situations that occurred in real clinical environments. The topics that resulted from our
study highlighted medical concepts that are shown to be effectively used as discriminant
topics within the CliCR dataset according to the language modeled and represented in
the network’s neurons. In this sense, a language model can reveal idiosyncrasies and
patterns previously kept latent in the collection and evidenced by the neural network. We
experimented with different language models to investigate the effects of using specific
tasks to tune the neural network. Although each language model produces completely
different topics, none of them outperforms the others regarding the Topic Coherence
metric. Nevertheless, the tree structure of the topic collection evidences some interesting
patterns revealed by each language model. Our study sheds light on recent findings of
the related literature, which state that the topic coherence metric does not align with
assessments performed by human evaluators.

4.1 Introduction

Topic Modeling [22, 62, 102, 68, 63] is a Natural Language Processing (NLP) task whose
objective is to identify the main topics covered in a textual collection and encode them
succinctly in a computational abstraction referred to as a Topic Model. A topic is said
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to be coherent if the words from such a topic are associated [28], that is, when it brings
together a group of words that make sense when used in the same context, such as the
Biomedical topic formed by the words: {myocardium, coronary, acute, artery, pain}.

A topic model provides an overview of a given textual collection, and is handy when
the massive amount of text prevents a person from reading the entire collection. Fur-
thermore, the resulting topics may be helpful to specific problems in the NLP research
agenda. For example, they can improve diverse tasks, such as Sentiment Analysis, Ma-
chine Translation, and Domain Adaptation of Language Models [27].

Although there is extensive literature on Topic Models, there is still a lack of vali-
dation regarding the coherence, interpretability and organization of the produced topics.
Therefore, in this work we analyze the hierarchical structure underlying the set of topics
and the Topics Coherence measured in each level of the inferred structure.

To this effect, this article presents our Attention Based Topics (ABT) method, a
Neural Topic Modeling approach [7, 63] that identifies the major themes in a given textual
collection. Our method produces topics based on Neural Language Models [46, 121] to
represent the textual collection through multidimensional vectors.

As depicted in Figure 4.1, our method transforms a given collection of textual sentences
C into a set of topics T that encodes the gist of C, according to the following pipeline: (i)
Initially, through a pre-trained language model, the sentences s ∈ C are converted into a
vector representation R

H , which incorporates statistics-based semantics in its vector space
of H dimensions; (ii) next, a Hierarchical Aggregation algorithm clusters the sentence
vectors r ∈ R

H that are close together in the vector space – each cluster becomes the
basis of a topic; (iii) these resulting clusters are allocated to a TFIDF matrix adapted
for topics [63], which correlates them with the significance of each word within the topic
regarding the vocabulary of C. As output, the method assigns to each topic t ∈ T the set
W , which contains its best-ranked words according to the cTFIDF metric.

Input:Textual
Collection C

A
B

T

Step 3: Top Terms Estimation

c-TF-IDF matrix
                    risus  feugiat  felis     ...  nth term

1st cluster/topic     0.8      0.2     0.04    ...         
2nd cluster/topic    0.1      0.9     0.12    ...
3rd cluster/topic    0.56     0.5     0.7      ...

3rd cluster

Step 2: Sentence Clustering

2nd cluster
1st cluster

Step 1: Sentence Modeling

Output: set of Topics T = {t1, t2, t3}

t1

t2

t3

Figure 4.1: An overview of our 3-step pipeline working with a given collection of sentences.
The steps operate over the input collection to produce a set of topics that summarizes it.
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In this way, ABT infers latent topics from contextual information extracted from the
collection, combining two representations used in the process in a complementary way:
the semantic vector space R

768 (related to the language model) and the matrix cTFIDF.
These two representations model statistical patterns observed in the underlying structure
of the textual collection. Paraphrasing the concept of the gist of a document – proposed
by [62] –, we state that our approach encodes the gist of the input collection.

We conducted a case study of our approach, applied to the biomedical domain, using
a collection of Clinical Cases extracted from the CliCR corpus [135]. We validated the
quality of the produced topics by measuring the Topics Coherence metric [122], which
assesses whether the most discriminant words in a set of topics reinforce each other.

We qualitatively evaluated the behavior of the model in terms of topic granularity.
Our method produces topics organized in a Hierarchical Structure underlying the pre-
trained language model. Our approach presents itself as an alternative view to the topic
modeling problem, taking advantage of the context and linguistic knowledge internally
incorporated into the neural network parameters to produce coherent topics with different
granularity options along the path of the hierarchical structure.

The remainder of the text is organized as follows: Section 4.2 discusses background
foundations and related work; Section 4.3 describes our method; Section 4.4 presents
quantitative and qualitative results of a case study of our ABT approach tailored to the
medical domain handling a collection of clinical cases. Finally, Section 4.5 presents our
concluding remarks.

4.2 Background and Literature Review

4.2.1 Definitions and Terminology Adopted

Topic Modeling [22, 62, 102, 68, 63, 1] is an unsupervised Natural Language Processing
challenge whose goal is to discover topics that represent an overview of the textual collec-
tion under analysis. A topic model explicitly represents the latent semantic structure [7]
– or gist [62] – of a textual collection.

A wide range of specific-domain applications can benefit from the topics discovered
using such a model, such as health, cognition studies, social studies, bioinformatics, or
education [75, 82, 68, 27, 62]. For instance, [75] apply topic models to analyze the cor-
relation between individual moral concerns and language usage. In another branch of
research, [82] investigate the presence of Post Traumatic Stress Disorder in textual re-
ports on Reddit1 using topic models.

The concept of Topics Model refers to a discrete probability distribution describing
the connections between words, topics, and documents [27]. Topics are word combina-
tions that demonstrate idiosyncrasies in the linguistic distribution of the corpus under
analysis [25]. Topic models are explicit representations that probabilistically associate
documents with topics and topics with words [22].

According to [1], there are four categories of topic models: algebraic, fuzzy, probabilis-

1https://www.reddit.com/
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tic, and neural. These different TM categories offer different advantages and are suited for
particular settings. Our work can be characterized as being part of neural topic models.

Many methodologies address the Topic Modeling problem, such as Latent Semantic
Analysis (LSA) based on linear algebra and its probabilistic version pLSA. Such methods
apply dimensionality reduction to the documents represented in a Bag-of-Words format.
Bag-of-words representations are adequate since, by hypothesis, word order is not a de-
termining factor in these methods [22].

Latent Dirichlet Allocation (LDA) [22] is a probabilistic model for discrete data col-
lections, such as textual data. LDA uses two complementary distributions: a topic over
words distribution that describes the relationship between topics and words; and a second
distribution that allocates topics to documents [27]. For LDA, a document is a random
mixture of latent topics, which in turn are probability distributions over vocabulary words.
LDA is a dimensionality reduction technique that is considered one of the most robust
and efficient methods for topic modeling, and applies to problems beyond the textual
domain [22].

4.2.2 Neural Topic Modeling

Neural Topic Modeling (NTM) is a current research trend that combines topic modeling
with Neural Language Models (e.g., [7, 47, 142, 114, 157, 68, 8, 82]). Indeed, this is
a rapidly growing area of research. [142, 157] discuss the similarity between the topics
produced via NTM and other traditional topic models, such as LDA. NTM-based works
claim to produce more interpretable topics than prior methods, yielding improvements in
the state-of-the-art concerning topic coherence measure [68].

Neural Language Models

A language model is a computational abstraction that represents a unit of textual infor-
mation (such as a word, a sentence, a paragraph, or a document) through a numerical
vector that encodes the most relevant characteristics of this textual unit that are typically
induced by a neural network [146]. This set of relevant characteristics alludes to a type of
semantics grounded on the Distributional Hypothesis [93], which deems that words that
occur in the same context tend to have similar meanings.

Language models (also known as feature vectors, word representations, word embed-
dings, vector representations, or word vectors [18, 146, 23]) are typically induced using a
deep neural network [146].

Mikolov et al., [98, 99, 100] presented neural networks to train language models to
represent linguistic regularities in the form of a vector space. This vector space allows one
to perform vector algebra operations and, therefore, infer a kind of semantic-statistical
relationship between the words based on the displacements between the vectors of the
textual collection modeled in the neural network.

Another example of regularity captured through simple algebraic operations on the
vectors of words is the similarity between the words big and bigger in the same way
as between the words small and smaller [98]. There are indications that the linguistic
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regularities captured by the neural models carry apparent syntactic and semantic aspects
preserved in the statistical patterns encoded in the referred semantic vector space.

To the best of our knowledge, the Transformer is currently the most robust and suitable
model for pre-training Language Models, which will be further explored in the next section.

Transformers

The transformer model [147] is a deep neural network that efficiently solves long-date
problems faced by the NLP research area. The Transformer architecture implements the
Attention Mechanism to infer the statistical context of a sentence as a whole – i.e., a
sentence’s global context. This critical gap inherent to previous models has limited their
contexts to a window of few terms around the focus.

The transformer produces a set of characteristic vectors, encoded in the matrix QKV

[147] as a byproduct of the training activity [89]. While training, the characteristic vec-
tors are updated with the contribution of all terms surrounding the current training
term. In this way, the transformer is aware of the bi-directional context of each term
at hand [123] and can guide the attention to the more discriminant terms in the entire
training dataset [89] in both directions. Differently, the previously proposed approaches
(e.g., LSTM) were limited to obtaining information just from one direction, left-to-right
or right-to-left.

The characteristic vectors produced by the transformer can be reused as a univer-
sal representation to accomplish other tasks beyond the original task performed by the
transformer, since the matrix QKV embeds syntactic and semantic aspects that are dis-
criminant to many NLP tasks. During the training phase, the model perceives such
aspects as idiosyncrasies and encodes them in the inferred vector. One can use this lin-
guistic knowledge encapsulated in QKV to perform other tasks through Transfer Learning
techniques [67].

BERT (Bidirectional Encoder Representations from Transformers)

BERT is a neural language model pre-trained on the Masked Language Modeling task
through the Transformer architecture [46]. The pre-training objective is to uncover the
term hidden by a MASK symbol in the sentences given as input (such as “I like this
[MASK] bed”). During this pre-training phase, the network embeds the bidirectional
context associated with the statistical relationship between the given masked term with
all its surrounding terms within the sentence. The context emerges from patterns learned
in all the sample sentences previously observed by the model by performing the language
modeling during the pre-training phase. The language modeling captures a wide range of
resources and facets – e.g., long-term dependencies, hierarchical relationships, sentiments,
and patterns spiked at the writing – directly associated with the source task used in the
pre-training [67].

BERT is a breakthrough model improving the state-of-the-art in many NLP tasks. To
the best of our knowledge, BERT word vectors are one of the most powerful methods to
transform textual information into an effective computational abstraction rich in context-
sensitive information.
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Internally, within the network parameters, BERT maintains a vector space R
H of

multiple H dimensions. Usually, H = 768 depending on the selected version: BERTbase

(H=768, parameters=110M) or BERTlarge (H=1024, parameters=340M) [46].
The BERT vector space RH embeds a 30000 token vocabulary. To put it less abstractly,

Figure 4.2 illustrates BERT space R
768 in a 3-dimensional rendering obtained by using

the Embedding Projector tool2. This 3D picture is drawn after reducing the dimensions
(through a PCA method) from R

768 to R
3, because it is impossible to draw/visualize the

original 768 dimensions.

Figure 4.2: A 3-dimensional picture of the BERT vector space captured by reducing it
from R768 dimensions into R3. This space is internally written in the parameters of the
network. In such a space, how close two terms are, more similar they are, and therefore
probably occur in similar contexts.

In this vector space, the closer two terms are, the more similar they are, and therefore
probably occur in similar contexts. The figure highlights the word "neural" and its more
similar words. It is possible to note two distinguishable groups of words {cognitive,
psychic, genetic, cerebral, Mental, . . . } and {computational, algorithms} standing for
two main contexts: referring to the biological Neural System and to Artificial Neural
Networks from the Computer Science terminology.

It is also worth mentioning the words {##nological, ##rogate, ##raphic, ##lial} in
Figure 4.2 which are used to compose rare and out-of-vocabulary words. These terms are
sub-word units [153], a minimal set of terms that is capable of representing any arbitrary

2https://projector.tensorflow.org/
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word. For example, the word Neurological is not in the vocabulary, it will be processed
into a sequence of sub-word units: {N, ##eur, ##ological}.

The development of such a minimal set of sub-words is another important aspect of
the recent NLP technological leap (besides the Attention Mechanism) and consequently
the Artificial Intelligence. Since creating some kind of word inventory is a long-standing
problem in NLP tasks.

Sentence-BERT

The arrival of word vector spaces (e.g., BERT) has inspired other approaches (e.g.,
SkipThought [79], InferSent [39], Sent2Vec [109] and Sentence-BERT [121]) to gener-
ate language models for larger text segments, such as phrases, sentences, paragraphs, and
even entire documents.

Sentence-BERT (SBERT) is a sentence language model [121] which uses siamese net-
works (i.e., networks with tied weights) to infer sentence vectors from the BERT word
vectors. The training procedure of Sentence-BERT takes a pair of sentences as input,
transforms each one into a sentence vector from the averaging of its word vectors, and
computes the similarity between the two sentence vectors. In the end, both sentences’
vectors are tuned according to this similarity function, so that similar pairs are closer and
dissimilar pairs are further apart.

4.2.3 Relating our study to other work

Our research is centered on topic modeling and on analysis of inherent latent semantics.
Top2vec [7] infers topic vectors by applying vector algebra over the neural vectors

of words and documents embedded in the same vector space. Each topic corresponds
to a centroid of a cluster of documents and takes the closer word vectors as its most
representative words. The approach infers the optimal number of topics through the
HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise)
algorithm.

The work of [8] presented a model which recognizes topics combining Transformers,
community detection techniques in graphs, and named entity recognition.

BERTopic, presented in [63], is a model based on clusters of documents grouping
vectors inferred through the Sentence-BERT framework [121]. It assigns the clusters to a
cTFIDF matrix that indicates the most representative words of each topic. cTFIDF is a
variation of the classic TFIDF algorithm, taking clusters as the unit of analysis, instead
of documents.

Top2vec and BERTopic work best when applied to low-dimensional data since both use
HDBSCAN as the clustering technique. Therefore, both need to apply a dimensionality
reduction on the sentence vectors before clustering them. Our work is similar to that of
BERTopic in modeling the topics as clusters of sentences and using cTFIDF to estimate
the words’ importance in a topic/cluster. As will be seen, we adopted a Hierarchical
Aggregation algorithm instead of HDBSCAN, thereby avoiding dimensionality reduction,
thus working with more original information. Our approach differs as it grounds on a
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hierarchical aggregation algorithm. Hence, it can deal with sentence vectors in their 768
original dimensions.

Although many studies use hierarchical clustering algorithms – such as HDBSCAN –
their focus is not on the hierarchy, as they apply dimensionality reduction that interferes
with hierarchical analysis. We provide an analysis of the inferred hierarchy of topics
and its relationship with Language Models based on the Transformer architecture and its
attention mechanism.

Our analysis relies on hierarchical structures of topics, such as [78, 71, 156]. Our
hierarchical analysis is based on the work of [78], who showed important aspects of the
hierarchy of topics and proposed the recursive Chinese restaurant process (rCRP) method
to generate hierarchical topic structures with unbounded depth and width. We, on the
other hand, produced a hierarchy based on the successive steps of aggregation on the
sentence collection.

4.3 The ABT Method

ABT is a Neural Topic Model proposed by us to uncover the statistical semantics latent
in large corpora. To describe ABT, we formally define the following terms (extending
the notation used by [22] to describe the topic modeling and by [46] to define BERT
representations):

• Word w: the basic unit of a textual construction. Each w is a discrete data item
from the vocabulary V = {w1, w2, ..., wv}.

• Sentence s: a sequence of n words denoted by s = (w1, w2, ..., wn). ABT can work
with words, sentences, documents and documents excerpts.

• Corpus : a collection of m sentences denoted by C = {s1, s2, ..., sm}.

• Representation R
768: a multidimensional vector space of 768 dimensions (the stan-

dard adopted by BERT-based models) representing the m sentences from corpus

C. That is, each vector r ∈ R
768 corresponds to a sentence s ∈ C. There are m

sentence vectors of 768 dimensions.

4.3.1 Overview

The ABT pipeline consists of three successive transformation steps (as previously illus-
trated in Figure 4.1). It takes C as input in plain-text format and does not require any
pre-processing over it.

Step 1: Transform each sentence s ∈ C into a vector representation r ∈ R
768 using

the Sentence-BERT framework [121] to model sentences. The resulting language
model incorporates a semantic space of multiple dimensions – usually 768 or 1024,
depending on the BERT version.
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Step 2: Apply Hierarchical Clustering to R
768 (i.e., the output from Step 1) to

identify a set of disjoint clusters of semantically related sentences. Each cluster
characterizes a latent topic t composed by a sentence set S.

Step 3: Fill the cTFIDF matrix [63] with the significance values of each term within
the topic. Each row of the matrix corresponds to a topic t characterized by a list
W containing the most relevant words in the global context of the collection, i.e.,
recurrent words in the current topic insofar as rare in the other topics.

As output, ABT produces a set of Topics T . Each topic t ∈ T is characterized by its
set of sentences S (inferred through Step 2) and its set of words W (inferred through Step
3).

The remainder of this section gives more details of each step of our method using
the CliCR corpus [135] as the input collection C of a running example. The CliCR is a
corpus of 12.000 case reports (from which we have used 10.538 in our running experiments)
containing descriptions of situations that occur in real clinical environments. Table 4.1
shows some sentences sampled from the CliCR corpus.

Table 4.1: Textual sentences sampled from the titles extracted from the documents in the
CliCR dataset titles of each document.
id Sentence

1 Isolated cranial distortion mimicking caput succedenum from amniotic band disruption without any neurological abnormality
2 Ruptured pseudoaneurysm of the radial artery
3 Pulmonary alveolar microlithiasis
4 Successful pregnancy with autoimmune cirrhosis
...
1000 Intraoral schwannoma – a report of two cases
...
10538 Thrombotic thrombocytopenic purpura in a patient with HIV from Zimbabwe

4.3.2 Step 1: Sentence Modeling

Initially, the framework converts the sentences into vector representations embedding
them in an H-dimensional vector space R

768. It is inferred by the Sentence-BERT3 [121]
framework that allows modeling sentences – e.g., paragraphs, documents – using a model
based on siamese BERT-networks. Sentence-BERT infers a neural sentence model which
projects the sentences into a vector space of H = 768 dimensions (or 1024 depending on
the BERT model version) using a base language model.

As a running example of this step, Figure 4.3 shows the output of this first step by
working with the CliCR corpus using the standard BERT model (i.e, BERT-based-cases4.
In this output vector space R

768, each point (i.e„ vector) represents a clinical case from
the CliCR corpus. In fact, this visualization is a 2-dimensional vector space obtained by
reducing the dimensionality of R768 from its original 786 dimensions into 2 dimensions
(because it is not possible to visualize a vector space of 768 dimensions). We have used

3https://github.com/UKPLab/sentence-transformers
4https://huggingface.co/google-bert/bert-base-cased
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a dimensionality reduction technique called Spectral Embedding [106] implemented using
the Scikit-learn5 Python module.

Figure 4.3: Step 1 output. It represents the CliCR corpus projected in a 2-dimensional
space (obtained by reducing from the original R768 inferred by the BERT model). Each
point represents a clinical case title. In such a space, the closer two points are, the more
similar they are.

Sentence-BERT allows one to use any BERT-based language model. In this section we
use the original BERT model as a running example to illustrate the method. Sentence-
BERT allows using different language models to produce the vectors, inferring different
vector spaces calibrated by specific training tasks. As described later in the Results
Section 4.4, we experimented with five different BERT-based language models (BERT,
BioBERT, BART, all-mpnet-base-v2 and Envoy) to investigate the effects of changing
the base model used. Besides the base model, in this step one can configure other hyper-
parameters: the model dimensionality (768 or 1024) and the maximal input sentence size
(e.g., 128, 512).

4.3.3 Step 2: Hierarchical Sentence Aggregation

This step involves applying a Hierarchical Aggregation on the set of vectors R768 to obtain
clusters of similar sentences. The clustering algorithm (known as hierarchical aggregation)
is an unsupervised method that identifies clusters in a bottom-up approach [81]:

1. initially, each vector r ∈ R
768 defines its cluster;

2. iteratively, the algorithm merges pairs of clusters with the smallest distance from
each other among all the cluster pairs;

3. the process continues until it reaches a certain user-defined threshold of distance d

– a hyperparameter that indirectly determines the number of output clusters;

5https://scikit-learn.org/stable/modules/generated/sklearn.manifold.

SpectralEmbedding.html
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(2069) (4686) (3784)

b)a)

Figure 4.4: a) Dendrogram of the hierarchical clustering of the CliCR corpus modeled by
the SentenceBERT model. The hierarchical aggregation algorithm produces 3 resulting
clusters by defining the distance threshold d = 80. b) Color coded 2d visualization of the
3 clusters of clinical cases. This partitioned space (i.e., the result of step 2) makes explicit
the topics encoded in the network parameters.

4. the algorithm outputs k disjoint clusters corresponding to the set of latent topics T .

In each running of the clustering algorithm, a sentence can only be associated with a
single topic. A challenging aspect of topic modeling approaches is the choice of k. An
analysis of the clusters hierarchy (as presented in Section 4.4.4) can help one understand
the model’s behavior as k increases and the sentences are partitioned into more refined
clusters.

Figure 4.4 illustrates the clustering process over the space produced by the Sentence-
BERT model. Figure 4.4.a presents the dendrogram produced by clustering with d = 80

and Figure 4.4.b illustrates the k = 3 resulting clusters.
Table 4.2 shows selected samples of clinical case titles and their assigned cluster. The

sentences shown in Table 4.2 were chosen to be representative of the output of this step
and to illustrate the similarity within a cluster’s sentences. The sentence from a given
cluster must be more similar to other sentences within the cluster than those of other
clusters. We measured the similarity using the cosine distance between the sentences
within the semantic space.

Table 4.2: Samples of clinical case titles of the 3 clusters produced by the SentenceBERT
model. Each cluster gathers a set of similar sentences according to such a specific language
model.
Cluster Sentence sample

1
Wind direction and mental health: a time-series analysis of weather influences in a patient with anxiety disorder.
Working effectively with patients with comorbid mental illness and substance abuse: a case study using a structured motivational behavioural approach.
Ineffective chronic illness behaviour in a patient with long-term non-psychotic psychiatric illness.

2
Isolated splenic tuberculosis in an immunocompetent patient.
Orbital cellulitis with periorbital abscess secondary to methicillin-resistant Staphylococcus aureus (MRSA) sepsis in an immunocompetent neonate.
Primary orbital chronic granulomatous reaction to deep staphylococcal infection due to trauma in immunocompetent.

3
Novel balloon application for rescue and realignment of a proximal end migrated pipeline flex embolization device into the aneurysmal sac: complication management.
Subarachnoid hemorrhage then thrombosis of posterior inferior cerebellar artery dissection: is early surgical exploration warranted?
Hemorrhagic collision metastasis in a cerebral arteriovenous malformation.

The inferred clusters gather sentences that are similar in certain aspects observed,
captured, and featured by the language model during its pre-training phase. We notice,
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for instance, that cluster 3 contains sentences reporting unusual and rare clinical cases.
Meanwhile, cluster 1 presents sentences associating symptoms and diagnosis.

It is worth mentioning the special scenario of k = 1 (i.e., a single topic to represent
the entire collection). In such a case, it is not possible to assemble the cTFIDF matrix
since it requires at least 2 clusters. Therefore, to create a k = 1 topic the ABT uses a
classical TFIDF matrix, considering each input sentence s ∈ C as a row, which implies a
slightly different topic than those k > 1 created with the cTFIDF matrix.

The resulting clusters form the basis of the semantic representation built by ABT.
We are interested in investigating whether there is a task well suited for topic modeling
and apt to produce an optimal set of clusters. Therefore in the Results Section 4.4, we
experiment with different threshold distances to infer a range of partitions of the input
data set.

4.3.4 Step 3: Representing Topics

Lastly, ABT obtains the most descriptive terms from each cluster – through the cTFIDF
measure, which indicates the relevance of each term within the cluster [63] – and assigns
them to the corresponding topic t ∈ T , according to:

cTFIDFw,t = TFw,t × log(
k

TFw

) (4.1)

Where TFw,t models the frequency of the word w in the topic t. Here, the topic t

is the concatenation of all sentences s in the cluster that corresponds to t. The Inverse
Topic Frequency IDF measures how much information a word w provides to a topic t

by taking the logarithm of the total number of topics k divided by TFw the frequency of
word across all topics. In other words, TFw is the number of topics that contain w.

Then, it fills the cTFIDF matrix by allocating the cluster in the rows and the vo-
cabulaŕy words V = {w1, w2, ..., wv} in the columns, as exemplified in Table 4.3. The
cTFIDF algorithm gives information on how relevant each term is to the referred cluster,
considering the common terms to the cluster insofar as uncommon in other clusters.

Table 4.3: Example of cTFIDF matrix to 3 topics inferred by using the SentenceBERT
model. Each topic contains a list of top words sorted by c-TF-IDF metric. For example,
the top word “mental” from Cluster 1 exhibits cTFIDF = 0.14.
Cluster Term 1 Term 2 Term 3 Term 4 Term 5 Term 6 Term 7 Term 8 Term 9 Term 10 ... Term 7320

1 mental 0.14 guillain 0.12 your 0.12 still 0.10 illness 0.10 kikuchi 0.09 barr 0.08 this 0.08 about 0.08 forget 0.08 ... ´3 0.0
2 immunocompetent 0.26 cardiomyopathy 0.19 cystic 0.15 diffuse 0.15 mutation 0.13 intravenous 0.12 month 0.11 autoimmune 0.10 chemotherapy 0.10 staphylococcus 0.10 ... laptop 0.0
3 aneurysm 0.47 dissection 0.28 arteriovenous 0.19 gastrointestinal 0.18 ruptured 0.14 occlusion 0.14 inferior 0.12 uterine 0.12 vertebral 0.12 maxillary 0.11 ... ´3 0.0

The output produces a set T containing a total of k topics, where each topic t ∈ T is
characterized both by the set W (containing its most discriminant words) and by the set
S (containing its clustered sentences).

Figure 4.5 shows the topics produced in the output of this step, represented in the
vector space by color, and, for each, we present a word cloud with the best-ranked terms
in cTFIDF.

This step allows one to filter out stop-words from the corpus by setting a frequency
threshold – i.e., filter out words appearing above x% in the corpus. In this way, the



71

Figure 4.5: Word clouds of most relevant terms by each topic, inferred using the BERT
model.

method dynamically infers a list of stop words, thus alleviating one of the bottlenecks
inherent in classical approaches that use fixed and predefined stop-word lists [107].

4.4 Evaluation of Results

We applied a type of probing methodology [140] to investigate whether ABT consistently
models some (if any) information associated with the topic model’s phenomena. We have
conducted three distinct evaluations:

1. a quantitative analysis regarding the Topics Coherence metric.

2. a qualitative analysis of the Hierarchy Structure underlying the set of discovered
topics.

3. an ablation study arguing about the misalignment between the metric Topics Co-
herence and human evaluations. Such an issue was originally approached by [68]
and reinforced by the results of our work.

4.4.1 Materials and Methods

To evaluate our approach, we conducted a case study in a collection of Clinical Cases
extracted from the CliCR corpus [135]. Each clinical case from CliCR describes a medical
narrative of situations occurring in real clinical environments. In medical education,
professors use clinical cases as pedagogical resources to teach clinical practices to medical
students. Table 4.4 illustrates some metrics of the CliCR corpus.

As proof of concept, our analysis focused on case titles instead of the entire content
of a clinical case (see Table 4.4). However, ABT is flexible enough to handle larger text
fragments – by improving the Sentence-BERT model to deal with more characters than
the standard 128 BERT-tokens. Although such an improvement is theoretically feasible,
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Table 4.4: The CliCR corpus statistics. A standard BERT-based model of 128 tokens is
enough to handle sentences of the average length of case titles. In turn, the entire content
of a clinical case demands a model able to deal with more BERT tokens.

Number of cases 10.538
Average cases length (characters) 1457
Average cases titles length (characters) 79,12

it would demand more computational resources (e.g., more memory and more powerful
GPUs).

4.4.2 Experimental Setup

We analyzed the use of five BERT-based language models in the first step of the pipeline,
run on a Linux PC with 8 GB of RAM size, Intel i5, programmed in Python.

• BERT: the standard language model [46] designed by Google. We have used the
bert-base-cased version (containing 768 hidden states, 12 neuron layers, and totaling
110 million parameters).

• BioBERT: a biomedical domain-specific language model [84].

• Envoy: a fine-tuned model6 for Named Entity Recognition (NER) task, whose ob-
jective is to identify and classify entity types. This model is tailored to recognize
the following entities: Anatomy, Chemical, and Disease [110].

• BART: a model effective for summarization tasks [85].

• all-mpnet-base-v2: a model7 produced by the sentence-BERT framework [121].

The parameter setting explored an exhaustive search of the following hyper-parameters:

• TFIDF thresholds: {0.1%, 90%, 99%, 100%};

• Number of topics k = {1, 2, 3, ..., 200};

• Number of top words per topic nw = 10, 20, 50.

Reproducibility

Our method is an alternative software-based approach to the topic modeling problem.
The ABT framework consists of software modules (i.e., Steps 1, 2 and 3) that work in
tandem and can be freely parametrized and tuned.

Appendix A presents the Python code of our method. The complete code to reproduce
the reported experiments is available at: https://github.com/lealfp/labPLN/blob/

master/notebooks/topic_modeling/ABT.ipynb.

6https://huggingface.co/fagner/envoy
7https://www.sbert.net/docs/pretrained_models.html
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4.4.3 Quantitative Analysis: Topics Coherence

Topics Coherence is a metric for automatically measuring the quality of a topic by mea-
suring the interpretability of the topic model. The intuition is: a topic said to be coherent
must contain words that are, in some way, associated [28]. Usually, this association is
measured based on the Pointwise Mutual Information (PMI) of two randomly sampled
words from the same sentence [47].

There are several metrics [1, 37] to evaluate topics such as Perplexity, Topic Diversity,
Coverage, and Stability. We have chosen coherence because it is frequently used in the
literature and there are implementations ready to use.

In our work, we have used the Gemsim8 framework to measure topics’ coherence [122].
We have used the cv configuration which combines the indirect cosine measure with NPMI
and Boolean Sliding Window. First, the top words W of a topic t ∈ T are divided in the
subsets W ′ and W∗, according to:

Sone
set = {(W ′,W ∗)|W ′ = wi;wi ∈ W ;W ∗ = W} (4.2)

The subset W ∗ is used to confirm the subset W ′ by comparing words to the total word
set W . Next, probabilities are estimated to W ′ and W ∗ based on word co-occurrence
counts using the Boolean Sliding Window approach, in which a window moves over the
input Corpus C one word token per step. The jth element of the context vector vi of word
wi has NPMI:

vij = NPMI(wi, wj)
µ =





log
P (wi,wj)+ϵ

P (wi)·(wj)

−log(P (wi, wj) + ϵ)





µ

(4.3)

The indirect cosine computes how strong the word set W ∗ supports W ′ comparing the
similarity of the vectors u⃗ and w⃗ (computed with respect to the estimated probabilities),
according to:

scos(u⃗, w⃗) =

∑|W |
i=1 ui · wi

||u⃗2|| · ||w⃗||2
(4.4)

Table 4.5 shows the quality in terms of coherence of some (among fifty) topics produced
in an experiment round of ABT. For instance, the best-ranked topic (row 1) exhibits
coherence score c = 0.81 with some top words as {nose, on, ulcerated, ...}, while the
worst topic (last row) achieves c = 0.66 with some top words as {arteritis, vasculitis,
takayasu, ...}.

Table 4.6 relates the number of topics with the coherence obtained by using a selected
set of language models: BERT, BioBERT, Envoy, BART and all-mpnet-base-v2. We
tested various neural language models to investigate whether using them in ABT’s first
step affects the result, as each language model outputs a set of topics which gathers
similar sentences according to the corresponding model. We are interested in observing
the behavior of our method by applying language models calibrated by different training
tasks: whether better-suited tasks produce more meaningful sets of topics.

8https://radimrehurek.com/gensim/models/coherencemodel.html
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Table 4.5: Some example topics in descending sort of coherence scores. The most relevant
terms describe each topic according to the cTFIDF metric.

Top Words
Topic Coherence 1 2 3 4 5 6 7 8 9 10

1 0.81 nose on ulcerated joints enlarging thumb lip pain lump nodule
2 0.79 sign situation ace slips baggage restart expander unwanted niti aromatic
3 0.78 spotted cat malaria altered fever status adverse poisoning heart eye
4 0.77 around tale just all not more what one double tango
5 0.76 sarcina fluke celsi lancisi ganfort eaten chameleons moth koilonychia fungating

... ...

11 0.73 being sapho mystery light eye shining earnest cry masquerade visitor
12 0.72 tale case stone rhinolith poisoning crying two dangers horse journey
13 0.72 genital retinopathy ocular bull mightier jeweller postendoscopy teary pence argyrosis
14 0.72 pemphigus gangrenosum cutis skin erythema vulgaris vulvar eruption paraneoplastic ichthyosis
15 0.71 tamponade cardiac hypothyroidism sle pancreatitis triumph stemi presenting pericardial causes

... ...

36 0.68 febrile cause unexplained cachexia cyanosis unusual young respiratory neonate premature
37 0.68 lymphohistiocytosis haemophagocytic langerhans histiocytosis cell hlh absent radius thrombocytopenia familial
38 0.67 paediatric population heel emergency common department cause thyroid dogs monodermal
39 0.67 malignancy osseous osteomalacia hypercalcaemia tumours not metaplasia sarcoidosis insulinoma haematological
40 0.67 brachial syndrome compartment neuropathy calf radiculopathy plexus longitudinally claudication quadriceps

... ...

46 0.66 myeloma syphilis presentation atypical paraneoplastic multiple syndrome as neurosyphili typhoid
47 0.66 unusual cause foreign mass body young older man fossa intraocular
48 0.66 haemangioma capillary sclerosing period haemangioblastoma haemangioendothelioma cavernous multinodular epithelioid goitre
49 0.66 fasciitis necrotising thigh limb adenocarcinoma patient neutropaenia dermatologic traumatised marine
50 0.66 arteritis vasculitis takayasu vessel medium giant retinal as cell initial

Table 4.6: Topics Coherence (c) results achieved by ABT (using different neural language
models) in modeling the CliCR corpus. Overall, c tends to stabilize around k > 7.

Number of Topics (k) BERT BioBERT Envoy BART all-mpnet-base-v2

1 0.13 0.13 0.13 0.13 0.13
2 0.81 0.77 0.84 0.85 0.86
3 0.81 0.75 0.75 0.57 0.81
4 0.59 0.73 0.77 0.55 0.77
5 0.57 0.71 0.77 0.54 0.75
6 0.58 0.64 0.75 0.55 0.71
7 0.60 0.57 0.73 0.54 0.67
8 0.60 0.57 0.56 0.55 0.68
9 0.61 0.57 0.54 0.56 0.64
10 0.45 0.59 0.53 0.46 0.61
. . . . . .
50 0.60 0.60 0.61 0.61 0.62
. . . . . .
100 0.62 0.59 0.59 0.62 0.62
. . . . . .
150 0.63 0.60 0.61 0.62 0.61
. . . . . .
200 0.63 0.60 0.62 0.63 0.60

Each row in Table 4.6 shows the coherence achieved by the ABT when experimenting
with the models standing in the columns. For instance, in the first row: all the models
exhibit a similar coherence score c = 0.13 when producing 1 topic. By requesting k = 50

topics, the models show different performances, (e.g., BioBERT achieves c = 0.60 and
Envoy c = 0.61). BioBERT scores c = 0.60 when producing k = 200 topics. These results
are consistent with the non-monotonicity behavior [122] in growing topic sets in which
the coherence of a given topic is increased by adding related sentences and decreased by
adding non-related sentences.



75

These quantitative experiments showed that although models’ performance is consis-
tent across different language models, none completely outperforms the others regarding
coherence results. However, as described in the next section, a qualitative analysis can
reveal differences at the usage of different language models by inferring topics hierarchies.

4.4.4 Qualitative Analysis: Hierarchy Aggregation

The hierarchical aggregation method applied in ABT builds hierarchies (or partitions) of
data that align with the statistical patterns observed by the language model used to infer
the sentences representations. Such a tree-structured hierarchy directly results from the
semantic vector space inferred by the language model. Therefore, the spatial arrangement
of the sentences in the vector representation R

768 directly determines the association
between sentences and topics. In turn, the cTFIDF matrix encodes the associations
between topics and terms by globally estimating the relevance of each vocabulary term
within each topic.

For example, Figure 4.6 shows the hierarchical structure built by successively parti-
tioning the sentence space inferred from the BERT model. In such a picture, we refer
to each topic by its level on the hierarchy added by its index, for example t3,1 ={doctor,
fahr, my, ...} refers to the topic 1 at level 3.
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Figure 4.6: Top of the hierarchical structure produced through ABT using BERT as the
language model in the first step of the pipeline. It is possible to observe some interesting
patterns - such as, topics in the leaves are more specific than those near the root. More-
over, some fusion points are incurring large drops in measured coherence, which indicates
essential points within the clustering process.

The hierarchy (Figure 4.6) reveals and organizes word categories particularly represen-
tative within the textual collection. Moreover, it visually evidences some latent aspects
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captured by such a particular model. Such patterns were hidden in the collection and dis-
covered by the successive steps of aggregation. Each iteration (or level) of the hierarchical
aggregation process discovers new latent patterns configuring a new topic.

The hierarchical structure is consistent with the property of non-monotonicity [122]
in which the coherence of a given topic is increased by adding related sentences and must
decrease by adding non-related sentences, as observed in the hierarchy’s fusion points.
For example, the fusion of topics t7,7 and t7,1 gives rise to topic t6,1 having a lower value
of coherence c = 0.39, which could indicate these sets of sentences are very unrelated.
Conversely, the union of topics t4,4 and t4,2 increases the coherence to c = 0.84 and
considerably changes the coherence of the remaining topics t3,3 and t3,2, which reflects on
an overall increase of coherence from c = 0.59 to c = 0.81 by reducing from 4 to 3 topics.
This indicates that in this case k = 3 is a well suited number of topics to the BERT vector
space.

Interestingly, topic t5,5 (and also its descendants) is formed by many numbers, which
indicates that its sentences may contain numbers. Probably, at the moment to infer a
representation for such sentences in Step 1, the BERT model regarded the presence of
numbers as a discriminant feature in such sentences. Other models may pay attention to
other features.

Departing from this supposition, next Figure 4.7 likens the hierarchies produced by
other language models in order to indirectly observe possible features deemed as discrim-
inant (i.e., latent aspects) by such models. The figure presents the hierarchical structures
of the CliCR corpus according to the other 4 models: Envoy, BioBERT, BART and all-
mpnet-base-v2. For simplification, the picture shows only the new topics produced in
each aggregation step (i.e., one level on the hierarchy), omitting the remaining topics so
as not to clutter the picture.

In these trees (Figures 4.6 and 4.7), it is possible to visualize some evident patterns,
such as recurring concepts in certain tree branches – e.g., metastases in BioBERT, Envoy
and all-mpnet-base-v2 models. In addition, good coherence assessments obtained in each
model seem to correlate with a good number of clusters to separate the space of sentences;
for example, in the BERT model, a separation of the space in 2 or 3 topics results in good
coherence scores (c = 0.81); whereas in BART the coherence is lowered by going from 2
to 3 topics.

Moreover, topics containing numbers (e.g., t5,5, t6,6 and t6,6) are recurring across the
trees inferred by the following models, respectively: BERT, BioBERT and BART (Fig-
ures 4.6 and 4.7). This suggests these networks represent languages less domain-specific
than the models (Envoy and all-mpnet-base-v2) that do not exhibit such generic topics.
Besides, it can indicate outliers in the input data.

It is worth commenting on the topics produced by the Envoy model (Figure 4.7.a).
For instance, almost all the topics in leaves (highlighted by borders, totaling 7 topics)
seem to allude to anatomies, chemicals or diseases, except for topic t4,4, ={foreign, tech-
nique, approach, stent, endocarditis, hip, life, fixation, care, balloon} which stands for
more generic terms than the other 6 leave topics (although also related to the biomedical
context). We suppose that such topics arise as a natural reflection of the pre-training
objective of the Envoy model, which consists in recognizing 4 different types of named en-
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Figure 4.7: A range of hierarchical structures drawn from the CliCR corpus encoded by
four different language models. It is possible to observe that some trees exhibit a greater
specialization in the language used in the training, such as Envoy and all-mpnet-base-v2.

tities: Chemical, Anatomy, Disease and Other. In this sense, the topic t4,4 could be raised
from a region in the vector space crowded with sentences containing generic terms classi-
fied as Other. Conversely, all the other topics are mixed by terms alluding to anatomies,
chemicals or diseases. Therefore, the Envoy model deems the presence of terms alluding
to such entities as discriminant features to infer the space vector R

768 to represent the
CliCR corpus.

In the Envoy model, we can observe that the root topic t1,1 ={patient, syndrome, to,
rare, case, as, unusual, acute, cause, disease} is more generic than the descent topics.

Furthermore, the ABT topic trees also exhibit the Hierarchical Affinity character-
istic [78]: topics that descend from a topic t must be more similar to t than topics
descendaing from other topics. For example, in all-mpnet-base-v2 (Figure 4.7.d), topic
t5,1 ={fracture, dislocation, foreign, hepatitis, poisoning, splenic, pancreatic, ...} is more
similar to its children topics t6,2 ={foreign, poisoning, hepatitis, splenic, pancreatitis,
intravitreal, retinal, ...} and t6,6 ={fracture, dislocation, tendon, fractures, knee, joint,
fixation, ...} than to its non-children topic t7,7 ={coronary, aortic, anomalous, infarction,
myocardial, embolism, ...}.

Prior research has analyzed similar Hierarchical Structures [78, 71] to organize topics.
Our analysis stems from [78], who proposed the Recursive Chinese Restaurant Process
(rCRP), an algorithm for discovering hierarchical topic structures. Instead, our work
produces a hierarchy by modeling the topic structure evidenced in the vector space R

768,
which is inferred by a Transformer-based neural language model. This approach enables
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one to design further analyses over the recognized patterns.

We argue that our approach can indicate the balance of a topic when it is split into
subtopics. Let us consider two terms of similar prevalence in topic t5,1 of Envoy: “lipoma”
and “malformation”. The term “lipoma” seems to have a more balanced distribution
between topics t6,6 and t6,4, dividing the force of its prevalence. The term “malformation”
is unbalanced towards topic t6,4 since it maintains a high prevalent in topic t6,4 and does
not appear as prevalent in topic t6,6.

Despite the satisfactory performance achieved on coherence scores, we observed that
the hierarchies structures produced did not hold the generic-to-specific property (i.e.,
Topic specialization) elicited by [78, 71]. We suppose that to generate hierarchical struc-
tures, our method would demand a sentence model (in Step 2) that discriminates sentences
according to their generality and specificity. For example, one could experience with a
hypernym-hyponym detection task to better separate the sentences in the vector space
according to its generality degree. Such a task could be used to infer general-to-specific
topic hierarchies. However, we suspect that a perfect separation would not be possible
since generality and specificity are subjective matters, which would imply it is not held
by the input text collection, in other words, generality hierarchy depends on semantics
outside the text collection.

Besides, the topic coherence measured did not correlate with the evaluation performed
by human evaluators about the quality of the topics. This instigates us to explore the
following: Whether neural topic models demand metrics distinct from those used for as-
sessing traditional topic models. According to our investigation studies, this misalignment
could be associated with an issue already observed and addressed by [68]. This will be
examined next.

4.4.5 Ablation Study

We argue that the non-conformity between topics coherence metrics and human evalua-
tion – as originally claimed by [68] and reinforced by our results – is a reflection of the
impossibility for a language model to learn semantic meaning by training it just on lin-
guistic form. Such impossibility is grounded on the concept of meaning as the relationship
between a linguistic form and something external to language [16] (i.e., not present within
the training dataset).

Departing from this concept of meaning assumed by Linguistics, [16] proposed the
Octopus Test to illustrate the challenges of learning meaning from form alone. According
to their conceptual experiment, a language model trained purely in written texts cannot
pass the Octopus Test because it is not capable, a priori, of capturing all the relevant fea-
tures needed to produce utterances aligned with the evaluations full of semantic meaning
of human judgments. Hence, neural language models inevitably fail the Octopus Test,
and consequently in the Turing Test, since the Octopus Test is a weak form of the Turing
Test.

Therefore, a topic model based on neural language models does not capture fundamen-
tal features to infer semantics because it is exposed only to linguistic form inside training.
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Following these premises, we assume that the coherence measures of topics may not fully
correlate with the generic-to-specific properties, because generality and specificity are sub-
jective matters which demand human assumptions constructed from our cognitive mental
“database”, infinitely more complex than the binary database available to the text-based
coherence evaluator. The mental database of the human evaluator has access to informa-
tion (such as factual knowledge, intention, memories of smell, touch, social interactions,
etc) beyond that contained in the data set used to train the language model.

Scholarly work on language acquisition suggests that human children do not learn
meaning from form alone. Hence we should not expect machines to do so either [16]. As a
consequence, a neural topic model trained just on textual form will not learn meaningful
topics perfectly aligned with human evaluations that also embed semantics.

This limit imposed on machine learning methods to produce semantic topics does
not negate the utility of topic models. Indeed, topic modeling may improve many other
important NLP tasks. A particular case is the use of topic modeling as a dimensionality
reduction technique. ABT can be seen as a summarization framework that reduces the
asymptotic complexity of a collection to k dimensions – i.e., topics – coherent with the
successive partitions performed throughout the clustering process. Future analyses can
investigate how much discriminatory information it loses by reducing the collection to
these dimensions.

We believe that future explorations, with more grouping levels, may elicit more topics
that can be intuitively associated with themes and possibly choose those levels that group
topics in the desired way. In addition, the semantic representations incorporated into
attention-based topics can leverage information search systems. In future work, we intend
to transform the hierarchical visual rendering presented in Figures 4.6 and 4.7 into
an interactive sentence exploration system based on different levels of the hierarchical
grouping of topics. This will enable an information search specialist to navigate at different
topic levels.

4.5 Conclusions and Future Work

The topic modeling task aims to identify predominant themes in extensive textual collec-
tions. It has the potential to improve services and systems that work with textual data.
This paper presents our approach to this problem. The ABT (Attention-Based Topics)
model consists of a composition of modules that can be freely parametrized and tuned
to automatically extract statistical semantics in corpora. The pipeline’s modules work
in tandem, expanding the possibilities of the LDA’s latent topic generator probabilistic
process.

In our approach, a topic is a dense region of sentences coupled with semantics, char-
acterized by its most discriminant terms, benefiting from the statistical context emerging
from the structure (the vector space) inferred by the neural network. The vector space
represents semantics associated with the gist [62] of the sentence collection, extracted
through a statistical inference performed by a neural language model. Grounded on this
concept of semantics, ABT organizes topics in a hierarchical tree, which alludes to the
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semantics of a massive collection of sentences; such semantics are shared by the collective
consciousness of co-authors of these texts.

We report on experiments using a range of neural language models, run on the CliCR
corpus. Our study shows that the proposed approach adequately fits the problem and
produces results comparable to the state-of-the-art concerning topics coherence metrics.
Our discussion of results analyzes claims that neural language models cannot, in princi-
ple, learn the linguistic meaning, a vital component to complete the topic modeling task
successfully and also to produce generic-to-specific hierarchies. Topics coherence metrics,
consequently, do not align with the topics produced and/or evaluated by humans. Addi-
tionally, we analyzed the hierarchical topic structure built as a by-product of the inferring
topics process. The coherence achieved at each level of such a hierarchy structure may
indicate the most appropriate levels of the hierarchy to be chosen to summarize a textual
collection.

In future work, we intend to formalize ABT and analyze its complexity. Moreover, we
intend to extend our tests to conduct analyses of the method’s behavior when working
with the full content of clinical cases and with textual collections from other domains.
This, however, would require additional computing resources and adjusting Sentence-
BERT to handle sequences longer than the default 512-token limit. We also plan to
integrate our method into pipelines of other more complex tasks. Yet another potential
extension involves filtering non-relevant terms (e.g., stopwords) by defining a list of such
terms tailored to each specific domain. Furthermore, validation can use other metrics –
such as Perplexity. Another extension would be to experiment with datasets containing
human-annotated rationales to enhance the quality of topics.
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Chapter 5

Discussion

The recent advances in Computer Science provided the means to efficiently solve some his-
torical problems in Natural Language Processing (NLP). Such improvements suggest that
a new level of language understanding can be achieved by using attention-based models to
capture the patterns that structure textual sentences. The appearance of attention-based
language models can be stated as a revolution in NLP research, symbolizing a significant
technological leap forward in this field.

As detailed in the literature review of chapter 2, the core of the NLP revolution is the
realization of a common and unified computational representation to accomplish different
language tasks. Such a unified representation is obtained as a by-product of the training
of the network underlying the Neural Language Model.

The other two chapters approached Neural Language Models as NLP tools to produce
new information from the statistical patterns observed in an input textual source, i.e., the
topics which allude to themes addressed in a massive collection of texts (chapter 4) and
the named entities which refer to semantic concepts (chapter 3).

Our analyses focused on the medical domain, although they can be modified to cover
other domains. The analysis results reinforce the so called NLP revolution achieving F1
(at evaluating the named entities) and coherence (at evaluating the topics) measures on
par with the state-of-the-art. Nevertheless, the resulting topics are not fully aligned with
human evaluations regarding semantic meaning and generic-to-specific properties. We
suppose this limit is a consequence of the impossibility [16] of language models to learn
the complete semantics of the processed text. It demands different methods to better
evaluate the results of the methods based on language models.

In the academic literature there is neither consensus about which type of analysis
should be employed to evaluate language models. In fact, there are different perspectives
regarding the actual advances achieved in a scientific context beyond computer science.

In the linguistic realm, there are researches arguing that language models are not, a
priori, capable of understanding the real meaning (in a linguistic sense) [16] of processed
texts, as they are trained only on textual forms (i.e., the linguistic signal), and therefore,
the current language models cannot pass in the Turing test. According to this, there is
a portion of meaning attributed to extra-textual information not present in the training
set.
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On the other hand, Sahlgren and Carlsson [124] argue that if meaning produces ef-
fects on form, then a language model should at least be able to observe and learn these
effects. The paper of [49] claims that, although GPT models lack mechanisms of con-
sciousness from a cognitive science perspective, they have already passed the Turing test
and therefore can successfully imitate human language capabilities.

This debate addresses issues that have historically been studied in various research
areas. Therefore, it is need to analyze the results obtained by this so-called NLP revo-
lution with caution, as it raises expectations and interests from different actors in soci-
ety—companies, states, political groups, and even the public at large.

The difficult to analyze the language models demands more research to investigate the
extension to which they can imitate the human language capabilities. The lack of consen-
sus about evaluation of language models is perhaps not surprising, since neural networks
are examples of Complex Systems [128] and therefore, are essentially holistic and inter-
disciplinary. Thus, neural networks for language models would be machines “as complex
as the systems they model and therefore they will be equally difficult to analyse” [128].
This situation resembles the difficulty of validating models based on a relativist, holistic
philosophy of science [12]. By such approach the “The criterion of practical use has taken
the place of formal rigor [...] validation becomes a semiformal, conversational process”
than “a matter of formal accuracy”. Therefore, the emergence of neural language models
demands research and development of new validation methods to assess their capacities,
considering their holistic and interdisciplinary nature.

In our work, we evaluated the language models at producing sets of topics to summarize
the themes covered in a text collection. We observed the language models lack important
information to perfectly infer the semantics from textual collections. We assume that the
topics coherence measured may not fully correlate with the human evaluations because
topic quality is a subjective matter which demands human assumptions constructed from
the human cognitive mental “database”, infinitely more complex than the binary database
available to the text-based coherence evaluator. The mental database of the human
evaluator has access to information (such as factual knowledge, intention, memories of
smell, touch, social interactions, etc) beyond that contained in the data set used to train
and evaluate the language model.

This limit imposed on machine learning methods does not deny the utility of neu-
ral language models. The Language models open up vast possibilities to unprecedented
applications. Indeed, language models may improve many important human tasks.

Accordingly it is crucial to implementing best practices for developing open-source
Neural Language Models. It helps prevent the complexity [9] of this new technology from
being used to mask biases and interests. For example, the financial market speculation
(which has led to higher stock prices for AI technologies) which was exposed with the
release of Deepseek [21], a cheaper, smaller (i.e., fewer parameters), and open-source
model. The arrival of such a Chinese model with fewer parameters call into question
the term used to label this research field — Large Language Models — since it was not
the model size that revolutionized this branch of research, but the dense and distributed
aspect of Transformer models. This is why we refer to it as Neural Language Models
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instead of Large Language Models, this label wrongly directs the focus to a matter of
size.
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Chapter 6

Conclusions and Future Perspectives

This thesis concentrated on analysis of Neural Language Models applied to problems of
linguistic nature, applied to a set of case studies involving clinical data. It was organized
based on a set of publications, as defined by the Institute of Computing of Universidade
Estadual de Campinas. This research covers intersections among many research areas,
in particular involving some of the topics covered by machine learning and generative AI
- and thus computational linguistics and statistics. Moreover, given the nature of the
case studies, there was the need to work with domain experts in the field of clinical data
analysis.

Clinical texts contain sensitive, private data, which would imply additional pre-processing
for ethical reasons. In our research, this does not apply. First, we used only fictitious
cases from the Harena repository. In ABT tests, we point out that CliCR is an open
anonymized data set and hence the problem does not apply either.

Our work tackled some problems related to the processing of textual big data, involving
the extraction of the embodied semantics and its incorporation in machine-interpretable
data formats. The thesis was concerned with two research questions:

(RQ1): How to encode structured semantics directly into textual constructions?

(RQ2): How to reveal and extract the latent semantics which is kept hidden underlying
the statistical patterns occurring in textual constructions?

To deal with these research questions we leveraged Semantic Representations to pro-
vide computers with means to handle semantic meaning. Research Question 1 (RQ1)
is addressed through ontologies, as it concerns so-called external semantics. Conversely,
the second Research Question (RQ2) is tackled using statistical semantics to uncover the
latent, or inner, semantics within texts.

We point out that the introduction of artificial intelligence everywhere can impact the
way we work, relate, learn, and develop. Therefore, there is a need for education at all
levels aimed at teaching people how to use, understand, develop, and consume these tools
in a healthy manner. Considering the breadth of the impacts that neural language models
can have on human life, a pedagogical project is needed to guide towards a sustainable and
ethical use of neural language models that also serve to address real and widely discussed
societal problems, rather than solely serving the economic interests of the few who hold
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and dominate this technology and perform financial speculation over their closed-source
products.

6.1 Main contributions

Chapter 2 presented a summary of the various associated concepts needed to design and
implement our algorithms and develop our research. Departing from this conceptual basis,
we analyzed language models applied to two research problems: Semantic Annotations
and Topic Modeling, which are related to the main contributions of this thesis.

Chapter 3 presents our first three contributions (Envoy, Harena Semantics and the
Semantic Virtual Patient), being related to RQ1, and Chapter 4 concerns the fourth
contribution (Attention-based Topics), being focused on the answer RQ2.

Contributions to Semantic Annotations Our first contribution is a Named Entity
Recognition (NER) method – which we call Envoy – to recognize and classify biomedical
concepts inside the input texts. In the best setting, Envoy achieved results comparable
to the state-of-the-art NER models at the time (2020).

The Envoy model is invoked by the second contribution – the Harena Semantics –
in order to annotate the clinical cases drawn from the Harena data repository, described
in the Introduction to this thesis. Harena Semantics combines the biomedical entities
(recognized by Envoy) with ontology concepts to produce the third contribution: the Se-

mantic Virtual Patient, a semantic representation that models clinical cases as a network
of concepts linked to the Semantic Web.

Results of a pilot evaluation suggest the framework’s potential to engage users in the
collaborative creation of semantic resources. A differential of our approach is the superim-
position of human-made annotations with the machine-inferred annotations automatically
suggested by the framework.

Contributions to Topic Modeling Our fourth contribution is an approach to the
topic modeling problem, called ABT. It is a method that infers a set of topics from
an input textual collection, according to three successive steps that perform a series of
transformations over the input collection. The implementation of the ABT model consists
of a composition of modules that can be freely parameterized and tuned.

In our approach, a topic is a dense region of sentences coupled with a statistical
semantic, represented by its most discriminant terms, benefiting from statistical context
emerging from the structure (the vector space) inferred by the language model. Grounded
on this concept of semantics, ABT organizes topics in a hierarchical tree, which alludes
to the semantics of a massive collection of sentences; such semantics are supposed to be
shared by the collective consciousness of co-authors of the input texts.

The inferred output topics are organized in a hierarchical structure. We have evaluated
our approach over the CliCR dataset containing clinical case reports using the Topics
Coherence metric to measure the quality of the inferred topics. Our experiments used
a range of neural language models, including our Envoy model (see above contribution)
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showing that the proposed approach adequately fits the problem and produces results
comparable to the state-of-the-art concerning topics coherence measure. The coherence
achieved at each level of such a hierarchy structure may indicate which levels of the
hierarchy should be chosen to better summarize the input textual collection.

Additionally, we proposed a theoretical discussion on the issue of non-conformity be-
tween topics coherence and human evaluations. Our hypothesis is that language models
cannot, in principle, learn the linguistic meaning, which is a vital component to success-
fully complete the topic modeling task – as discussed, among others, by Bender et al.,
[15]. This might be the reason why the extracted measure of topics coherence does not
align with the topics produced and/or evaluated by human agents.

6.2 Extensions

Our work has both theoretical and practical extensions.
Our case study is centered on the health domain and clinical case studies. However,

our methods are generic enough to deal with data from other domains; hence, our work
can be extended to other datasets and branches of research such as Chemistry, Physics,
Education, Social Sciences, and others. Indeed, there are a vast amount of processes that
can be modeled as a language, and therefore, amenable to use within the Transformer
architecture.

ABT, Harena Semantics and Envoy showcase how neural language models can be
used to compound diverse complex tasks. Such methods have the potential to optimize
a variety of services and systems that work with domain textual data. For instance, in
a collaborative filtering problem to recommend movies, a user and the movies would be
analogous to a document and the words in the document, respectively [22].

In yet another extension, the topics produced by ABT can be leveraged as features
in other downstream tasks, such as Discourse Analysis, Content Recommendation, Sum-
marization and Search Engines. ABT can thus be leveraged into pipelines of other more
complex tasks.

From a theoretical point of view, ABT should be formalized and its complexity be an-
alyzed, in particular formally comparing it to LDA. This will require defining similarities
and differences in order to identify strengths and weaknesses of each method. Further-
more, there should be investigation into ways to improve ABT with topics from LDA
and vice-versa – e.g., to analyze whether the LDA method can be used to fine-tune the
pre-trained language models.

Another possible direction is to experiment with other tasks to finetune the sentence
model. For example, one can experience with a hypernym-hyponym detection task to
better discriminate sentences according to their generality and specificity. Such a task
could be used to infer general-to-specific topic hierarchies, extending the experiments of
this thesis.

Another possibility of improving ABT is to involve metadata such as keywords, cat-
egory labels and semantic annotations. Besides, there should be experiments to conduct
analyses of the method’s behavior when working with larger textual fragments, such as
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paragraphs, books and documents in general.
While ABT was conceived to work with textual corpora, it can be adapted to work on

extraction of topics from collections of other kinds of media – such as audio and video to
produce more meaningful topics. This would require initial preprocessing of such media
– e.g., by sound-to-text transformations.

Yet another possible direction would be to experiment with Brazilian Portuguese LLM
implementations, such as Sabiá [117], Tucano [41], Seriema [131], Capivara [51]. A pos-
sible target application might be to analyze texts concerning tropical, regional diseases.
Furthermore, the employment of multimodal data to align images and captions – as in-
vestigated by Santos et al., [51] – could lead to improvements in NER and topic modeling.

Our evaluation of ABT can also be extended by, for instance, adopting other eval-
uation metrics, such as Perplexity, Hierarchical Affinity and Topic Specialization. Also,
further investigation is needed on the incoherence of coherence [68]. Another possibil-
ity is to extrinsically evaluate ABT at performing other tasks, such as Summarization,
Dimensionality Reduction and Content Recommendation.

The topic modeling problem might also be analyzed as an instance of a Complex
System. The related work has already approached the problem as a bipartite network
of words and documents linked by the topics [59]. The ABT topic hierarchy can be
transformed into a network, which can then be analyzed to see whether it is adherent to
the properties of complex systems, such as Zipf’s law [92].

ABT can also be extended to help the user figure out the “best” k number of topics.
Hierarchical clustering produced by ABT can also be combined with ontologies, extending
the topic’s semantic scope.

ABT topics could also be considered as part of the Harena annotation framework.
Conversely, annotations might be used to help topic generation. The annotations of
Virtual Patient are stored with the document. An extension in this sense might be to
create a specific store of annotations, to allow future semantic queries that would take
such annotation store into account.

Harena Semantics can be embedded into a search engine to retrieve clinical case reports
aided both by the semantic annotations and by topic models.

It is also possible to extend our Envoy model of Named Entity Recognition to identify
more types of biomedical entities (beyond those we used, namely Anatomy, Chemical and
Disease), including entities in the Brazilian Portuguese language. Besides, our approach
can be further evaluated using other metrics such as Interpretability.

Results of fine-tuning a model have costs, no matter how light the model. Thus,
another extension would be to check the impact of adding or decreasing layers in model
execution, in particular for Envoy.

Additional future work, in particular for the clinical domain, would be to consider
multimodal data sets (e.g., images).

A possible additional investigation concerns checking evidence of linguistic semantics
within the Vector Space produced by language models. An evidence would be, for instance,
an aspect of the space that clearly reflects the language semantic properties – such as the
proximity of the sentences within the semantic space investigated in this study.

Given the interdisciplinary nature of language models, there is a need for an alignment
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of concepts and technical terms between the NLP research field and other fields, to lever-
age the real scientific potential of language models under an interdisciplinary and complex
perspective of sciences. For example, understanding and comprehension of terms should
be standardized according to the linguistic perspective [16] in academically-oriented pub-
lications.
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Appendix A

Source Code for Chapter 4

This appendix presents the Python codes for the pipeline of ABT (A.1) and for the
validation by topic coherence (A.2).

A.1 Pipeline

corpus = [ ]

vocabulary = [ ]

t op i c s = [ ]

top ics_coherence = 0 .0

class Topic :

def __init__( s e l f , index ) :

s e l f . index = index

s e l f . s en t ence s = ""

s e l f . words = [ ]

s e l f . coherence = 0 .0

DATASET_FILE = " c l i c r −cases−t i t l e s . txt "

with open(DATASET_FILE) as f :

corpus = f . r e a d l i n e s ( )

### STEP 1

from sentence_trans formers import SentenceTransformer

BERT_MODEL = "bert−base−cased "

language_model = SentenceTransformer (BERT_MODEL)

vector_space = language_model . encode ( corpus )

### STEP 2

DISTANCE_THRESHOLD =300
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from s k l e a rn . c l u s t e r import Agglomerat iveCluster ing

c luster ing_model = Agg lomerat iveCluste r ing ( d i s tance_thresho ld=

↪→ DISTANCE_THRESHOLD, n_c lus te r s=None , l i nkage="ward" )

c luster ing_model = cluster ing_model . f i t ( vector_space )

k = cluster ing_model . n_clusters_

top i c s = [ Topic ( i ) for i in range ( k ) ]

for i in range ( len ( corpus ) ) :

i n f e r r ed_c lu s t e r_ index = cluster ing_model . l abe l s_ [ i ]

t o p i c s [ i n f e r r ed_c lu s t e r_ index ] . s en t ence s += corpus [ i ] + "␣"

### STEP 3

MAX_DF = 0.1

import numpy as np

from s k l e a rn . f e a tu r e_ext rac t i on . t ex t import Tf i d fVe c t o r i z e r

i f ( k > 1) :

c_MAX_DF = 0.5

c_tfidf_model = T f i d fVe c t o r i z e r (max_df=c_MAX_DF)

c_t f i d f = c_tfidf_model . f i t_trans fo rm ( [ t op i c . s en t ence s for

↪→ t op i c in t op i c s ] )

c_tf idf_matr ix = c_t f i d f . toar ray ( )

words = c_tfidf_model . get_feature_names_out ( )

for i , t op i c in enumerate ( t op i c s ) :

sorted_term_indexes = np . a r g s o r t (−1∗ c_tf idf_matr ix [ t op i c .

↪→ index ] )

t op i c . words = [ words [ j ] for j in sorted_term_indexes ]

else :

c_tfidf_model = T f i d fVe c t o r i z e r (max_df=MAX_DF)

c_t f i d f = c_tfidf_model . f i t_trans fo rm ( corpus )

c_tf idf_matr ix = c_t f i d f . toar ray ( )

words = c_tfidf_model . get_feature_names_out ( )

mean_tfidf = np . array ( c_tf idf_matr ix .mean( ax i s=0) ) . f l a t t e n ( )

sorted_term_indexes = np . a r g s o r t (−1∗mean_tfidf )

t op i c s [ 0 ] . words = [ words [ j ] for j in sorted_term_indexes ]

A.2 Validation

TOP_WORDS = 50
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from gensim . models import CoherenceModel

from gensim . corpora import Dict ionary

t f id f_model = T f i d fVe c t o r i z e r (max_df=MAX_DF)

t f i d f = tf id f_model . f i t_trans fo rm ( corpus )

vocabulary = tf id f_model . get_feature_names_out ( )

terms_by_sentence = tf id f_model . inverse_trans form ( t f i d f )

d i c t i ona ry = Dict ionary ( terms_by_sentence )

cm = CoherenceModel ( t op i c s =[ t op i c . words [ :TOP_WORDS] for t op i c in

↪→ t op i c s ] , t e x t s=terms_by_sentence , d i c t i ona ry=d ic t i ona ry ,

↪→ coherence=’c_v ’ , topn=TOP_WORDS)

top ics_coherence = cm. get_coherence ( )

coherence_per_topic = cm. get_coherence_per_topic ( )

for i , coherence in enumerate ( coherence_per_topic ) :

t o p i c s [ i ] . coherence = coherence

print ( "Topic␣" , str ( i ) )

print ( t op i c s [ i ] . words [ :TOP_WORDS] )

print ( "Total ␣ coherence : ␣" , cm . get_coherence ( ) )

print ( "Coherence␣by␣ top i c : ␣" , cm . get_coherence_per_topic ( ) )
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