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Abstract

Populations can show emergent behaviors under specific conditions. From short to long
scales, in space or time, patterns emerge as individuals’ states evolve following simple
rules. In this work, we explore two of these behaviors: speciation and self-organization. For
the former, we consider the evolution of neutral populations in sympatric scenarios under
a mating condition imposed by assortativity. In our model, individuals are represented by
three chromosomes: one responsible for reproductive compatibility, one for coding the trait
on which assortativity will operate, and a neutral chromosome. Reproduction is possible
if individuals are genetically similar concerning the first chromosome, but among these
compatible mating partners, the one with the most similar trait coded by the second
chromosome is selected. We show that speciation with small genome sizes can occur if
assortative mating is introduced. Moreover, this type of assortativity facilitates speciation,
which can happen with a small number of genes in the first chromosome. For the latter,
we study populations of hypothetical individuals where swarming and synchronization can
arise and where these phenomena can also interplay. We present two analytically tractable
models and explore the static and active states that emerge from these. All the regions
where these states emerge are uncovered and classified. Additionally, uncommon features

such as multistability and chaos, found in these models, are also studied.



Resumo

Populagoes podem apresentar comportamentos emergentes sob condigoes especificas. Em
escalas curtas ou longas, no espago ou no tempo, padroes emergem a medida que os
estados dos individuos evoluem seguindo regras simples. Neste trabalho, exploramos dois
desses comportamentos: especiagao e auto-organizagao. Para o primeiro, consideramos a
evolucao de populagoes neutras em cenarios simpatricos sob uma condigao de acasalamento
imposta pela assortatividade. Em nosso modelo, os individuos sao representados por trés
cromossomos: um responsavel pela compatibilidade reprodutiva, outro para codificar o trago
sobre o qual a assortatividade atuara, e um cromossomo neutro. A reprodugao é possivel
se os individuos forem geneticamente semelhantes em relacdo ao primeiro cromossomo,
mas, entre esses parceiros compativeis para acasalamento, é selecionado aquele com o trago
mais semelhante codificado pelo segundo cromossomo. Mostramos que a especiagao com
pequenos tamanhos de genoma pode ocorrer se o acasalamento assortativo for introduzido.
Além disso, esse tipo de assortatividade facilita a especiagao, que pode ocorrer com um
pequeno numero de genes no primeiro cromossomo. Para o segundo comportamento,
estudamos populagoes de individuos hipotéticos onde o agrupamento e a sincronizagao
podem surgir e onde esses fendmenos também podem interagir. Apresentamos dois modelos
analiticamente trataveis e exploramos os estados estaticos e ativos que emergem desses
modelos. Todas as regides onde esses estados emergem sao descobertas e classificadas.
Além disso, caracteristicas incomuns, como multiestabilidade e caos, encontradas nesses

modelos, também sao estudadas.
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Introduction

Individuals, whether natural or artificial, can exhibit the emergence of several
behaviors after engaging in specific processes. These manifestations, observed in time and
space, can be found at different scales, ranging from populations splitting into species
after thousands of generations, through murmurations of starlings forming in minutes
while confined to localized regions, to the self-organization of sperm occurring at a
micrometric scale. Despite the notable differences between these systems, some of the
emergent phenomena undergone by their populations are qualitatively well understood.

Yet, an explanation of the mechanisms behind these still lacks quantitative approaches.

Speciation, firstly, describes how a group of sexually compatible individuals
splits into multiple sexually isolated ones. The process itself has been questioned and
documented since the works by Charles Darwin, including his masterpiece On the Origin
of Species by Means of Natural Selection [1,2]. However, understanding the detailed
mechanisms that lead to reproductive isolation, and therefore to speciation, is still an
open problem in evolutionary biology [3]. One of the difficulties in promoting speciation in
sexually reproducing populations is the constant gene flow between individuals, promoted
by recombination [4]. This tends to homogenize the genetic information among all members
of the population, hindering the appearance of genetically distinct groups. Gene flow can
be interrupted if the population is split into two or more groups by geographical barriers.
If the groups are kept isolated long enough, genetic differences will appear because of
mutations, leading eventually to reproductive isolation. This is called allopatric speciation
and is one of the most accepted mechanisms for the origin of new species. At the other
extreme from geographic isolation, there is the possibility of speciation with random
mating, where species emerge from a population while coexisting in the same geographic

area [2], called sympatric speciation.

Self-organization, on the other hand, is an emergent phenomenon where ordered
patterns manifest as a result of the interaction between individuals [5,6]. Within this
framework, the most evident formations happen in space. However, individuals can also
self-organize in time. The spatial self-organization is called swarming and has been spotted
in natural systems such as birds [7], fishes [8], and ants [9]. Studies on swarming started
with computational models based on simple rules such as maintaining closeness between
individuals and avoiding collisions [10]. However, the first theoretically meaningful model
was introduced by Vicsek [11], which, despite its limitations, became a landmark in
studying behaviors of this nature. Subsequent works, as celebrated as the Vicsek model,
are those proposed by Cucker and Smale [12,13], and Toner and Tu [14]. Another type

of self-organization is that of synchronization, which occurs among individuals’ internal
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periodic degrees of freedom. Some examples include the flashing of fireflies [15], the clapping
of a crowd [16], and the bursting of neurons [17]. Conversely to swarming, synchronization
has been studied long before. One of the first models was presented by Winfree in his
effort to study biological rhythms [18]. Then, Kuramoto introduced a simpler and solvable
alternative to Winfree’s model, which became the most famous in the field [19-21]. Given its
manageability, Kuramoto’s has been widely used to study synchronization in several natural
systems [22]. Both self-organization categories have been widely studied independently or

associated in some ways.

Here, we tackle both problems described above: speciation and self-organization.
Specifically, we focus on the emergence of species in a sympatric setup and the role of
assortativity in it. Likewise, we examine the emergence of self-organization in space and
time of phase oscillators. We use numerical and analytical tools to understand mechanisms
that drive the emergence of each phenomenon as well as their equilibrium states and

associated effects.
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1 Sympatric speciation and assortativity

Speciation results from the interplay of different isolating mechanisms [3,23],
such as geographic isolation [24-27], genetic incompatibilities [28], competition for resources
[29-31], and temporal separation [32,33]. Ultimately, speciation is the result of significant
decrease in gene flow between groups of individuals, allowing adaptations and random
changes occurring in each group to be restricted to that group. When this happens,
genetic and phenotypic differences can accumulate over time, leading to reproductive
isolation and possibly to hybrid incompatibility. Assortative mating has been conjectured
to reinforce the speciation process by preventing individuals with different phenotypes
to mate when they come into contact. Assortative mating occurs when individuals with
similar phenotypes mate more often than would be expected at random. Frequent mating
of dissimilar individuals would mix their genomes, eventually leading to the reversion of
speciation. Evidence demonstrating the role of assortative mating in different cases has

accumulated [34-36], although it might be inneffective in hybrid zones [37].

In this work we investigate the role of assortativity in a simple model of
speciation. For that, we focus on sympatric speciation, i.e., the development of reproductive
isolation without geographic barriers. In this case, mating is not restricted by the presence
of physical barriers or by spatial proximity of individuals, but it cannot be completely
random either, otherwise no reduction in gene flow can occur. Sympatric speciation,
therefore, requires some form mating selection [23], such as that promoted by temporal
isolation [38], genetic incompatibilities [39] or assortative mating based on phenotypic
characters [36,40-42]. Empirical evidence for sympatric speciation is reviewed in [43].
Here we explore a model of sympatric speciation driven be genetic incompatibilities and

assortative mating.

From a theoretical point of view two models of sympatric speciation have stood
out. The first, proposed by Dieckmann & Doebeli [29] argues that strong competition for
resources could drive speciation even without any form of geographic isolation. If resources
are characterized by a continuous parameter, such as seed size, the theory suggests that it
might be more advantageous for individuals who have phenotypes adapted to consume
extreme resources (such as very small or very large seeds, of which there are fewer) than it
is for those with a more common phenotype — for which there are abundant resources but
also strong competition — resulting in a disruptive selection. In this case two stable groups
would emerge, adapted to the extremes of the resource distribution, whereas intermediate
phenotypes would have lower fitness. The model has been criticized for requiring unrealistic

high mutation rates [31].
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The second theoretical model, proposed by Higgs & Derrida [44-47] (DH
model), demonstrated that, even without competition, sympatric speciation may still
occur if mating is restricted by genetic similarity. The model is based on the idea that
genetic differences create incompatibilities between individuals and, if the number of such
differences is too large, mating would not happen. The model considers hermaphrodite
individuals whose genomes are described by binary chains of biallelic genes. Mating occurs
only between individuals whose genetic similarity is large enough — i.e. based on prezygotic
barriers. Speciation, however, only happens if the number of genes responsible for creating
these incompatibilities is sufficiently large, of the order of thousands of genes, depending
on the model parameters [48]. The original model considered only infinitely large genomes

to avoid this limitation.

The need for very large genomes in the DH model can be circumvented by
adding auxiliary mechanisms that contribute to further reduce gene flow among the
individuals. One possibility is to introduce space and restrict mating not only by genetic
similarity but also by spatial proximity [47,48]. This facilitates speciation and drastically
reduces the number of genes required for the formation of reproductively isolated groups.
Speciation, however, is now parapatric, as there is isolation by distance, a weak form of

geographic isolation.

Here we reexamine the DH model with finite genomes and consider the effects
of assortative mating in facilitating speciation. Assortative mating has been observed in
many species,especially with respect to body size, pheromones and coloration [49], and
it can be a powerful driver of speciation. For instance, Puebla et al 2012 [50] found that
the pairing dynamics of hermaphrodite fish of the genus Hypoplectrus is related to color
patterns that is used as an indicator to release sperm and eggs into the water. In order to
introduce assortative mating in the DH model, we split the genomes into three independent
chromosomes. This division in chromosomes serves solely to identify genes that have similar
roles. They differ from real chromosomes in the sense they are not physically linked during
reproduction. We then have, one responsible for creating reproductive incompatibilities as
in the original model, one for coding the trait on which assortativity will operate, and one
neutral chromosome coding for a second trait which is not under selection by assortativity
and is not responsible for reproductive incompatibilities. In this way, reproduction is
possible only if individuals are genetically similar with respect to the first chromosome,
but among these compatible mating partners, the one with the most similar assortativity
chromosome will be chosen. We show that: (i) assortativity has a dramatic effect on
speciation, greatly facilitating the process; (ii) species, classified according to reproductive
isolation dictated by the first chromosome, can display different traits values, as measured
by the second and the third chromosomes; (iii) this implies that species identification
based on similarity of the assortativity trait or the neutral trait generally coincides with

that based on reproductive isolation.



14

2 The Derrida-Higgs models

Derrida and Higgs proposed three models to describe the evolution of finite
populations with different forms of reproduction: (i) asexual; (ii) sexual with random
mating; (iii) sexual with mating constrained by genetic similarity [44,45]. In all cases the
individuals were considered hermaphrodite and haploid, with genomes represented by a

single chromosome S:

b SE, 85,85, S3). 2.1)
Here o labels the individual, F' is the number of loci and S;" represents a biallelic gene at
locus i, which can take the values +£1. Gene and allele are interchangeable nomenclatures
here because we are considering each locus as a gene and because individuals are haploid,
the allele of a given gene is representing the gene itself. In the DH models the authors
consider the limit F' — oo, as this simplifies the simulations and the dynamics, allowing

the derivation of several analytical results.

The population is characterized by a matrix d%ﬁ containing the normalized

genetic distance between all pairs of individuals o and S:

w5 L ga
di = = 2157 = 8. (22)
=1

The population can also be characterized by the genetic similarity [45]

1 £
o= N 5esy 2.3
QF F ; 1~ ( )

which is related to the genetic distance by
¢ =1—d3’ (2.4)

with 0 < d%’ <2 and —1 < ¢%7 < 1.

Initially, all individuals have identical genomes, with S;* = 1. The evolution of

a population with M individuals is performed as follows:

(i) asexual model: an individual is randomly chosen from the population to

reproduce; an offspring is created, receiving an exact copy of its parent’s genome;
) b )

(ii) sexual model with random mating: two individuals are randomly
chosen from the population to reproduce; an offspring is created by recombining the
genomes of the parents, such that the allele for each gene is received from either parent

with equal probability;
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(iii) sexual model with mating restriction: a first parent « is randomly
chosen from the population; a second parent [ is then randomly selected; if d?fﬁ < g, an
offspring is created by recombining the genomes of the parents as in (ii). If d%ﬁ > g another
second parent is selected from the population. If after M trials no compatible parents
can be found, the first parent is discarded and a new one is chosen, repeating the search
for a compatible mate until an offspring is produced. The parameter 0 < g < F' sets the

maximum genetic distance for reproductive compatibility.

In all cases the individuals are selected with replacement, so that the same
individual can be selected more than once. Also, after the offspring has been created, each
of its genes is allowed to mutate with rate p and the whole process is repeated until M

offspring are created, forming the next generation.

The evolution of genetic distances between individuals can be computed con-
sidering the relationship between parents and their offspring. Consider the case of sexual
reproduction: suppose Pj(a) and Py(«) are the parents of individual o and P;(f) and
P,(3) are the parents of . If 1 is the mutation rate, the probability of mutation in a unit
time step (one generation) is (1 — e~%*)/2 and the probability that a mutation does not
happen is (1 4+ e~ )/2. If gene S? is inherited from P;(a), then:

1
B(S7 = 57) = S+ e7),
1
P(S; = —51) = S(1—e),

are the probabilities of keeping the allele of P;(a) or mutating, respectively. The
expected value is E(S®) = e 257 ") Since the gene is inherited from either parent with
equal probability, E(S%) = e (5 4+ 5} /2 From Eq. (2.3) we find, for independent

)

genes,
e~ r

E(q*P) = —

(@*) = —;

In the limit F' — oo the expected similarity value coincides with the realized one. For finite

(qP1(04)P1(/3) + qu(Oé)Pﬁ(ﬁ) + qP2(06)P1(/3) + qu(a)P2(5)). (25)

genomes this is only an approximation. In terms of genetic distances, using Eq. (2.4), we
find

4
AP = 1 — o4 + ﬂ(dPl(a)Pl(ﬁ) + dP2(@)P1(B) + dP2(@)Pi(B) + dpz(a)P2(3)) (2.6)
4

where we have dropped the expectation symbol. In the asexual case, since the offspring

comes from a single parent, we obtain F(¢*?) = e~ # ¢l (@F®),

In [44] it is shown that the average genetic distance converges to the asymptotic

value

&
2

T 14 (AMp)Y
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where the approximation holds for large M and small p. Although this result works both
for the asexual and sexual cases, the distribution of genetic distances is very different in
each case, as illustrated in Fig. 1 for M = 500 individuals, F' = 10,000 loci and mutation
rate u = 1072, In all cases the distribution starts as a single peak at d = 0 in ¢ = 0. For
t > 0 the peak broadens and moves towards d = 1 as genomes accumulate mutations. For
asexual reproduction, Fig. 1(a), the distribution breaks into several peaks representing
pairs of similar genomes, or strains (peaks close to d = 0), pairs of genomes that are very
different from each other (peaks close to d = 1). For the random mating sexual model,
on the other hand, the distribution converges to a single peak around dy, showing that
the population does not break into clusters of similar genomes and peaks of very different
genomes, suggesting the existence of a single species. Fig. 1(c) shows the distribution of
genetic distances for the sexual model with mating restriction for g = 0.05. In this case the
distribution does break into peaks, similar to the asexual model. In order to understand
the population structure, it is important to introduce an appropriate concept of species

for these models.

Species definition: in the context of the models discussed in this work, species
are defined by reproductive mating affinity and are best visualized in terms of the compat-
1bility network, which can be understood as the possible genetic flow network, as shown
in Fig. 1(d). In the network, nodes represent individuals and links are drawn between
sexually compatible individuals, satisfying d < g. Species are then the components of the
resulting network. Notice that components are not necessarily fully connected, implying
that within species there might be sexually incompatible individuals that are indirectly

connected by other members of the species via gene flow.

The peaks in the distribution of genetic distances in Fig. 1(c) are, therefore,
the result of speciation. The species at time T=1,000 are shown in Fig.1(d) for the sexual
model. In this case, as time passes, the distribution moves to the right and reaches d = g,
meaning that the population breaks into species because individuals with d > ¢g cannot
mate. Peaks in the region d < g represent clusters of compatible individuals, therefore
belonging to the same species. Peaks with d > ¢ represent genetic distances between

individuals in different species.

Two important features of the sexual model with mating restriction are: (i)
in the limit F© — oo the condition g < dy is necessary and sufficient for speciation; (ii)
for finite F' there is a threshold F,. below which speciation does not occur even if g < dj.
For F' < F, the distribution of genetic distances behaves similarly to the random mating
model, but it equilibrates at d = g instead of d = dy [48]. For the parameters of Fig. 1 we
find F,. ~ 4,000 loci.
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Figure 1 — Genetic distance distributions in the (a) asexual, (b) sexual with random mat-
ing, and (c) sexual with mating restriction cases of the DH models at 7" = 1000.
Simulations were performed for A = 500, F = 10,000, and p = 1073, In
(a), arrows represent drifting of the distribution towards 1. Dotted lines are
positioned at the expected mean distance dy. The distance threshold in the
species-formation model was set at g = 0.05. Panel (d) show species represen-
tation in terms of components of the compatibility network, corresponding to
the distribution shown in (c).
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3 The three-chromosome assortativity model

To generalize the genetic structure of the individuals and include assortative
mating, we extend the genetic model from one to three chromosomes. Each chromosome
plays a different role which we named compatibility, assortativity, and neutral, composed
by C, A, and, N loci, respectively. We call them chromosomes because of their role, but
they could be represented in as a single set of genes since all of them are independently
passed to the offsprings. Each of these chromosomes can be defined as in (2.1), changing
the length F' to the respective length C, A, or N. Then, we can define the full genome of

an individual o, composed by F' = C'+ A + N loci, as the concatenation
SF@ . {SA,a’ SN’a, SC,a}. (31)

We name the model as “three chromosome assortativity Derrida-Higgs” model, or 3CADH
for short. The DH models are recovered from the 3CADH by making A = N = 0. The
genetic distance between two individuals can also be calculated with respect to each

chromosome separately, adapting Eq. (2.2) to the respective chromosome length.

Evolution with assortativity is implemented in the sexual version of the model

as follows:

1. a first parent « is drawn at random for reproduction;

2. the subset of individuals C compatible with « is selected, considering only the
genetic distance between the compatibility chromosomes, i.e., satisfying the condition

d%ﬁ < 9gc;

3. from the set C, potential mating partners are selected by genetic similarity in the
assortative chromosome. They must satisfy the condition d%’ < §% + r where 0% is
the minimum distance d%’ between « and all individuals v € C and r is the choosiness
parameter, measured as a fraction of the A. Among these individuals one is randomly
selected for mating. Strict assortativity corresponds to r = 0 (mating with the most

similar) whereas less stringent assortativity is obtained with r > 0.

A schematic summary of the SCADH model is shown in Figure 2. Since mating
compatibility between individuals in the 3CADH model concerns only the compatibility
chromosome, we use such a condition to define reproductively isolated species. Genetic
distance thresholds for the neutral (gy), assortative (g4) and full genome (gr) can also be
defined, although they have no effect in the mating dynamics and, therefore, on evolution.

These thresholds can be used to group individuals according to the assortative, neutral
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«: at random

N I — [ -
+_1 . +_1 +_1 i 7Y: such that d” — 0
M — ] -~
5 - [ 1 -
= Ga=dytr
Subset of C-compatible individuals de < G¢
[3: at random
\
f
New genome Subset of A-compatible individuals dy < G4

Figure 2 — Population evolution in the 3CADH model. From the population at generation
t (top-left), an individual « is chosen at random for reproduction. Individuals
sexually compatible with « are then arranged in a subset C (top-middle). We
compute 04 as the minimum distance d%’, with respect to the assortativity
chromosome, between « and all individuals v € C. The potential mates of o are
contained in another subset M such that d’ < 69 +r where r is the choosiness
parameter. Strict assortativity corresponds to r = 0. A mating partner [ is
chosen from M at random (bottom-left). An offspring is created for generation
t + 1 by recombining all chromosomes of o and /5 and allowing their genes to
mutate. The process is repeated until M offspring are created.

and full set of traits and to describe correlations between the three chromosomes and their
evolution through generations. A key feature of the 3CADH model is that the minimum
number of loci in the C' chromosome necessary to induce speciation drops drastically when
assortativity is taken into account. A summary of the parameters used in the 3CADH

model is shown in Table 1.

3.1 The power of assortativity and the hitchhiking effect

In this section we show numerical simulations of the 3CADH model for different
chromosome sizes, focusing on how strict assortativity (r = 0) facilitates speciation in a
sympatric scenario. In all cases we keep the total number of genes F' = C' + A + N fixed
and change only the proportion of genes in each chromosome in the genetic architecture of

the individuals.

As the population evolves, mutations are accumulated and transmitted to

offspring via reproduction. Depending on the model parameters, the population may split



Chapter 3. The three-chromosome assortativity model 20

Description Color
M Number of individuals
1 Mutation rate
F Full genome Green
C Number of genes Compatibility chromosome Crimson
A Assortative chromosome Azure
N Neutral chromosome

Full genome dp

d, Genetic distance (2.2) Compatibility chromosome d¢

Assortative chromosome d 4
Neutral chromosome dy

Full genome gp

Compatibility chromosome g¢
Assortative chromosome g4
Neutral chromosome gy

gy  Clustering threshold

Table 1 — Summary and description of parameters used in the models. Colors are used to
differentiate between chromosomes along the simulations.

into species. For the original DH model with sexual reproduction and mating restriction
(A =N =0), species appear only if F' > 4,000 (for a population size of M = 500 and a
mutation rate of 1 = 107%). In our simulations we fixed F = 2,500 to prevent speciation
in the original DH models and force the process to be fully dependent on assortativity.
We also fixed the population size to M = 500, mutation rate ;1 = 10~ and evolved the
population for T = 500 generations, which is enough to observe equilibrium in species
richness in all cases studied. The initial population is homogeneous, consisting of M
identical individuals, with all genes set to +1. A common criticism to sympatric speciation
modeling is the abnormal high mutation rate required for species to form. In the presented
model, a lower mutation rate could still split the population into clusters (here called

species), however the simulation cost would be very large [51].

The classification of individuals into clusters of similar traits can be performed
for each chromosome separately and for the full genome. Classification with respect
to the compatibility chromosome results in species; clusters classified according to the
assortativity and neutral chromosome will be termed A-clusters and N-clusters respectively.
As the population evolves, the number of clusters formed by similar individuals changes
and allows us to see transitions associated to each chromosome type. Starting from a
single cluster formed by the M, in this case 500, initially identical individuals, the average
number of clusters evolves and reaches a plateau. In a single simulation, oscillations with
considerable amplitude are observed, but the average over many simulations shows a
smooth behavior. In Fig. 4, we show how the number of clusters evolve for an extreme case
where assortativity and compatibility chromosome sizes are A = C' = 100, i.e., only 4%

of the full genome as in Fig. 3(b). Notice that the size of the compatibility chromosome
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a)

N

Figure 3 — Clustering from two populations evolved using the 3CADH model. Nodes
represent individuals while links between them represent the fulfillment of
dr < G (left), or do < G¢ (right). The two panels show networks at 7' = 500
for M = 500, F = 2500, and p = 1072, In a), species emerge using C' = 1500
and A = 1000; and in b), C' = 100, and A = 100. In both cases, the compatibility
threshold is set at G = 0.05C.

is very small compared with the minimum size 4,000 needed for speciation to occur in
the original DH model, showing the power of assortativity in promoting speciation in a

sympatric scenario.

We used the same proportion of chromosome size to set the thresholds: gy =
go = gr = 0.05. For assortativity, however, we set the threshold g4 = 0.01 so as to have

the same behavior and similar scale of A-clusters as obtained by C-clusters (real species).
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Figure 4 — Evolution of the number of clusters emerged using the 3CADH model. Sim-
ulations were performed along T' = 500 generations for F' = 2500, A = 100,
C =100, and = 1072, In a), b), ¢), and d), bold lines represent the aver-
age of 100 executions of the model while shadows around them represent the
dispersions. In e) all the average curves are put together.

As shown in Figs. 4a, 4b, 4c, and 4d, the average number of clusters segregated according
to each chromosome converges towards a fixed number, and as a byproduct, that of the full
genome also does. Note that, from Fig. 4e, the behavior of the number of species works as
a predictor for the behavior of the full genome, even for small compatibility chromosome
sizes. Therefore, the neutral genes, which make up most of the genome in these simulations,
follow the behavior of the parts under selection, in a sort of hitchhiking effect. Classifying
species by the neutral trait would provide results very similar to the ‘true’ classification by
reproductive isolation. Thus, neutral traits can work as proxies for reproductive isolation
and, therefore, for species identification. The assortativity chromosome can also be used
for species identification, although with less accuracy, as the predicted number of species

depends more critically on g4.

3.2 Species identification

Figure 4 suggests that genetic distances associated to all chromosomes are
correlated. Indeed, once species form, reproduction is restricted to occur among members of
each species, interrupting gene flow between species. As genomes of individuals belonging
to different species become independent, they drift away from each other, whereas those
of the same species keep mixing by reproduction, retaining some similarity. Since this

argument holds for the entire genome, the similarity imposed by the mating restriction
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Figure 5 — Genetic distance correlation between chromosomes of each individual at 7" = 500.

Simulations of the 3CADH model were performed for F' = 2500, A = 100,
C =100, and p = 1073, Circles are positioned at the genetic distance between
respective chromosomes of each pair of individuals in a) a three-dimensional
box and in b), ¢), and d) projections in two-dimensions.

on the compatibility chromosome spreads to the assortativity and neutral chromosomes.

Fig. 5 shows that genetic distances between pairs of individuals for each chromosome

are actually linearly correlated. The clusters observed in this figure, that look like steam

coming out of a kettle, are similar to the peaks in the histograms shown in Fig. 1. Points

close to the origin represent pairs of similar individuals, that belong to the same species.

As shown previously, the use of the 3CADH model allows the emergence of

species even when genome sizes are much below the threshold for speciation required by the

DH model. The question arises on how large the assortativity chromosome should be for

the model to preserve the speciation feature. To address this question, we show in Figure 6
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the number of species according to the SCADH model for different sizes of the assortativity
chromosome and fixed size of the compatibility for mating chromosome C' = 100. It shows
that speciation occurs when the assortativity chromosome size is in a range from long
enough to complement the genome without a neutral chromosome, to as small as 0.4%
of the genome. Moreover, we note a few variations in the evolution of the species as the
assortativity chromosome size changes. We start by pointing at the similarities in the
structure of genetic distance distributions. Similar to the single-chromosome model, there
is a single peak close to 1, which arises due to the differences between species clusters, and
small peaks drifting from 0 to 1, evidencing the similarities between individuals within the
species. In these cases, however, the drifting of the distribution, which leads to the formation
of the single peak on the right, is faster when the assortativity chromosome is longer. This
response highlights the ease of forming species when mating choosiness guarantees that
sexual partners will be most similar to focal individuals. From the cluster transitions, we
also notice a variation in the number of species dependent on the assortativity chromosome
size. When the assortativity chromosome size surpasses this threshold, the number of
species converges to a fixed number, as opposed to when the chromosome size is below,

where the number of species is dependent on it.

All the effects previously described can be addressed by understanding the
linkage between chromosomes in the 3CADH process. If the assortativity chromosome were
much larger than the others, the process would be almost identical to asexual reproduction.
Despite finding a first compatibility subset, the second step of finding the most similar
partner with the assortativity chromosome would imply a high level of genetic similarity
between the mating pair. The effect of the assortativity chromosome driving speciation is
shown in Figure 7, where the system exhibits a stable behavior even in the case where
only one gene determines assortativity. The averaged genetic distance of the DH model
converges to the threshold value d,,,, due that the genome size is not long enough to
generate species. The asexual and homogeneous models show the convergence of the
averaged genetic distance to the mean value dy. Whereas, for different sizes of assortativity

chromosome, the convergence of the averaged genetic distance ranges from d,,q, to dp.

3.3 The trouble with assortativity

In the previous sections we have shown results for strict assortativity only:
among all compatible individuals (as dictated by the compatibility chromosome C) only
the most similar to the mating individual (with respect to A) have a chance of reproducing
with it. Those differing by a single extra allele would never be chosen. Here we relax this

condition letting the choosiness parameter r be positive.

To have an idea of the effects of » we note that for A = 100 and r = 0.02A4, we
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Figure 6 — Genetic distance distributions in the 3CADH model at 7" = 1000 for a) A = 10,
b) A=20,c) A=50,d) A=100,e) A=1000, and f) A = 2400. Simulations
were performed for M = 500, F = 2500, u = 1072, and C' = 100. In each
case, embedded figures show the average number of species as a function of
the time, with the bold line representing the curve for the corresponding set of
parameters. The light curves show the evolution for parameters in the other
panels, for comparison. Bolder arrows indicate that the distribution drifting is
faster.

include as potential mating partners individuals differing by 1 or 2 extra alleles beyond the
maximum similarity at that moment. Note that the number of extra individuals included in
the set increases rapidly as r increases. Therefore, we expect assortativity to stop working

as a powerful selection mechanism quite soon.

Figure 8 shows the effect of » on the number of species for different sizes of
the assortativity chromosome. We observe that indeed r leads to a rapid decrease of the
number of species, especially for small values of A. Besides, it also delays speciation and

slows down equilibration.

3.4 Discussion

We have studied the effects of assortativity in the emergence of species in a

sympatric population of hermaphrodites individuals that reproduce sexually. Our work
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Figure 7 — Average genetic distance for the asexual, sexual with random mating, sexual
with mating restriction, and 3CADH cases. Each case shows an average of 50
executions along T' = 1500 generations for M = 500 and F' = 2500.
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Figure 8 — Effects of choosiness on the emergence of species. Simulations were performed
for M = 500, F = 2500, u = 1073, and C = 100. Both figures picture results
from averaging 25 executions for the respective parameters. In a), each dot
represents the number of species after 750 generations for different values of A
and r. In b), each line describes the generational evolution of the number of
species for different values of A and fixed r = 0.01A.
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is based on the model proposed by Higgs and Derrida (DH) [44], where individuals are
represented by biallelic genomes and reproduction requires the genomes of the mating pair
to be sufficiently similar (genetic compatibility). Speciation in this scenario only happens
if the genome size is sufficiently large (of the order of 4000 genes for the parameters used
in our work). Here, we generalize the representation of the individuals and the way mating
partners are selected. Individuals are represented by three chromosomes: a compatibility
C, an assortativity A, and a neutral N chromosome. As in the DH model, mating is
allowed only between compatible individuals, with Hamming distance between their C
chromosomes smaller than a threshold value GG. However, among the compatibles, the one

with maximum genetic similarity with respect to the A chromosome is chosen.

We have shown that, in our model, speciation occurs even when genome size is
small, much below the threshold required for the original DH model [48]. This drastic
change in genome size requirement for speciation is a consequence of assortativity and
the corresponding decrease in the gene flow it promotes. We have also shown that species,
which are classified according to reproductive isolation imposed by the compatibility
chromosome, can also be identified by comparing the N chromosome, which works as a

proxy for reproductive isolation.

The dynamics of species formation in our model can be understood as follows: in
the beginning of the simulation all chromosomes are identical and, therefore, all individuals
are compatible. Mutations introduce small differences that, although are not enough to
create incompatibilities during the first generations, produce different versions of the
assortativiy chromosome. Individuals with a unique A chromosome never get selected for
reproduction, and although these individuals have the chance of mating at least once, the
rarity of their A chromosome will culminate with its disappearance. Groups of individuals
with identical A’s, on the other hand, will only mate among themselves, as they select
the most similar possible partner. This creates clusters of individuals with very similar A
chromosome. The key effect of this process is to create small isolated groups that, although
not reproductively isolated from rest of the population, will only mate with others from
the same group, purging new mutations in chromosome A. After the formation of such
isolated groups, further mutations and drift lead the C' chromosome to differentiate among
groups, leading eventually to the formation of species. As shown in Figure 7, one single
locus in the A chromosome guarantees the emergence of genetic variation necessary for

diversification — at least in the case of strong assortativity, as imposed by the model.

Our results also reveal that, despite each chromosome and each locus being
independent, there is genetic linkage disequilibrium (LD) in all the different chromosomes.
The mechanism of assortativity leads indirectly to such correlations via species formation.
As a consequence both the compatibility and the neutral chromosomes can identify almost

exactly the same species. Therefore, although the neutral chromosome does not participate
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in the dynamics of reproduction, it suffers the dynamic consequences that occur in the
other chromosomes and mirrors the arrangement they went through. Assortative mating
has been proposed as a mechanism that can lead to speciation, particularly in sympatric
scenarios [29,52-55]. For assortative mating to drive speciation, theoretical models often
require disruptive selection, such as those proposed by Dieckmann and Doebeli [29] or
scenarios where different fixed alleles exist in each subpopulation [53,56]. One of the most
influential works in this area is Felsenstein’s 1981 paper, where he proposed genetic forces
involved in speciation that incorporated assortative mating. He developed two different
models using three gene loci, where the biallelic loci B and C' were under selection in two
different subpopulations connected by migration. The BC' haplotype was favored in one

subpopulation, while the bc was favored in the other.

In the one-allele model, Felsenstein predicted that the expression of a third
gene locus (A) coding for strong assortativity in both subpopulations would reduce gene
flow and induce speciation. In the framework of our model, this would be similar to impose
a spatial mating neighborhood, where individuals can find their mates. In that case gene
flow is reduced by this spatial mating restriction, without the need for an assortativity
chromosome, as explored in [47,48,57-59]. In the other Felsenstein’s model, the two-allele
model, two (or more) alleles in the third locus define the mating preference of individuals.
Carriers of the allele A (a) prefer to mate with those also carrying A (a). If A is preferred
in the habitat where the BC' haplotype is being favored, and a is preferred in the habitat
with bc haplotypes, then a linkage disequilibrium (LD) emerges. However, due to genetic
recombination dissolving the LD, Felsenstein predicted that this model was unlikely to
lead to speciation [36,53,56].

The model explored in this work resembles the two-allele model, but with
more alleles. We show, in contrast to Felsenstein’s predictions, that assortative mating
induces speciation in this sympatric scenario. Additionally, we do not require disruptive
selection or differential selection by habitat for species to form. However, we do impose a
genetic threshold in the compatibility chromosome, which defines the pool of compatible
individuals and is also used for species definition. Assortative mating acts as the initial
spark for species formation, reducing gene flow between dissimilar individuals and allowing
speciation to occur. We observed LD among different chromosomes identifying almost the
same species. Since during sexual mating offspring inherit each locus independently from
their parents, we see that sexual reproduction is not breaking genetic associations that lead
to speciation. We are aware of the lack of evidence for the two-allele model. However, as
Servedio and Noor (2003) have pointed out [60], it is very difficult to distinguish whether

the process by which a group of species evolved was a one-allele or two-allele scenario.

We expect that the gene flow interruption induced by assortativity may persist

to some degree if this mating mechanism disappears due to biological cost or selection.
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To further investigate the effects of choosiness in reducing gene flow and creating initial
clusters of individuals, future studies could relax the strong assortativity we imposed by
using a probability distribution or by creating pools of possible partners [42]. Additionally,
decreasing assortativity after species have formed could help shed light on the significance

of choosiness for species maintenance.

Sympatric speciation is a controversial topic [61-63] due to the difficulty in
gathering information and fossilized evidence, as well as the challenges of manipulating
complex life forms in laboratory settings. However, as science advances, it also creates
the necessary tools for solving old problems and analysing classic questions with less
limitations and genomics is an allied for this open problem in the coming years [64,65].
Despite these limitations, we recognize the importance of theoretical approaches in helping

to understand and potentially recognize this process in nature.
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4 Frustration and chaos in systems of swar-

malators

Swarming and synchronization are emergent phenomena observed in various
natural systems. Swarming, more noticeable due to its occurrence in physical space,
is evidenced in groups of fishes, birds, insects, and bacteria, among others [8, 66-73].
Synchronization, sometimes less apparent due to its nature, is observed in both living and
non-living systems, including groups of humans, frogs, heart cells, and neurons, among
others [16,74-79]. From a theoretical standpoint, both phenomena have been extensively
studied using distinct frameworks based on well-known models named after Kuramoto [21],
Stuart-Landau [80], Couzin [81], and Vicsek [11]. In these models, single particles are
represented by their positions or by periodic internal degrees of freedom dubbed phases.
Then, individuals’ spatial self-organization gives rise to swarming and, in the case of phase

coherence, synchronization.

A model that merges swarming and synchronization into one was introduced
by O’Keeffe and Strogatz [82]. In this, hypothetical individuals can move in space while
possessing internal phases, which can synchronize. Moreover, spatial positioning affects
the phase states and vice versa. This model, however, presents several drawbacks proper
of its complexity. Similarly to previous swarming models, particles are not constrained
to intrinsic behaviors. Also, the interactions between individuals drive the system to
unrealistic radial distributions in space. And most importantly, the system is intractable
analytically. Here, we study systems of swarmalators modeled using periodic boundary
conditions. This consideration allows for the analytical treatment of these systems. We
present individuals with their spatial motion constrained to a ring as well as a torus.
In the former case, individuals’ degrees of freedom are affected by frustration, similar
to the Sakaguchi variation of the Kuramoto model [83]. In the latter case, individuals’

interactions generate the emergence of static, active, and chaotic states.

The work corresponding to this section is composed of two papers published in
Physical Review E [84,85], both authored by the master’s student and the advisor.
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Conclusions

In this work, we have presented the study of two different phenomena: specia-
tion and self-organization. Firstly, we showed the effects of considering assortativity in the
mating process of a neutral population. Our findings reveal that speciation is promoted
under strict assortativity conditions. In this setup, species arise even with finite-sized
genomes, contrary to previous studies where genome sizes had to be large. Additionally,
clusters formed by considering the compatibility of neutral chromosomes correlate with
those representing species. This feature enables species identification using any of the chro-
mosomes, rather than solely relying on the one associated with reproductive compatibility.
Finally, we found that relaxing the assortativity conditions undermines their effectiveness,

leading to the emergence of fewer species or even none at all.

Secondly, we explored self-organization in terms of swarming and synchroniza-
tion and their interaction. For this, we presented two models of swarmalators: one where
individuals are confined to a spatial ring, and a second where they can move on a torus.
In the former, we considered frustration parameters affecting phase and spatial dynamics,
which led to the emergence of several static and active collective states. These states
were analyzed numerically and analytically. They were localized in the parameter space,
identifying regions of multistability and areas where disordered states emerge. In the
latter model, individuals can move in two dimensions. As well as in the one-dimensional
model, we evaluated all the ordered static and active states numerically and analytically.
Interestingly, in the active regime, populations of swarmalators can exhibit chaotic behav-
ior. Furthermore, this chaotic state can be observed globally, while the spatial degrees of
freedom remain correlated. The breaking of this correlation, which occurs when coupling

parameters are strong, is interpreted as a dimensional transition.
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APPENDIX A - Synchronization of

Sakaguchi swarmalators

A.1 Abstract

Swarmalators are phase oscillators that cluster in space, like fireflies flashing on
a swarm to attract mates. Interactions between particles, which tend to synchronize their
phases and align their motion, decrease with the distance and phase difference between
them, coupling the spatial and phase dynamics. In this work, we explore the effects of
inducing phase frustration on a system of Swarmalators that move on a one-dimensional
ring. Our model is inspired by the well-known Kuramoto-Sakaguchi equations. We find,
numerically and analytically, the ordered and disordered states that emerge in the system.
The active states, not present in the model without frustration, resemble states found
previously in numerical studies for the 2D Swarmalators system. One of these states, in
particular, shows similarities to turbulence generated in a flattened media. We show that
all ordered states can be generated for any values of the coupling constants by tuning
the phase frustration parameters only. Moreover, many of these combinations display

multi-stability.

A.2 Introduction

Synchronization and swarming are emergent phenomena observed in various
living systems. The former refers to the tendency of individuals’ states to converge towards
specific periodic behaviors and has been widely investigated using the Kuramoto [86,87] or
the Stuart-Landau [80,88] models. The latter describes systems in which individuals tend
to aggregate and align in space, as often observed in animals such as birds and fish [89,90].
Although the two behaviors have been spotted independently in nature, systems including
the Japanese tree frogs [91] and the Quincke rollers [92], among others [93-95], suggest that
synchronization and swarming also occur together. A model that couples both behaviors

was recently proposed in [82] and the corresponding particles termed swarmalators.

The Swarmalators model [82] describes a system of particles characterized by
internal phases 6; and spatial positions Z;. Phase and position dynamics coupled in such a
way that phases tend to synchronize among nearby particles and velocities tend to align

more easily among particles with synchronized phases. An instance of the model, for N
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particles moving in a two-dimensional space, is described by

L o1& F-7 i

- @

J#Fi
(A1)
0'- . Ki sen(Gj — 91)
' G#i ’fj - fl| '

It has been shown that different collective states may emerge for specific sets of
parameters K and J [82]. Previous work have also explored the system’s behavior under
external stimulus [96], variations on the nature of individual’s interactions [97-101] and
effects of thermal noise [102]. However, from an analytical perspective almost no progress
has been made. Under this premise, O’Keeffe et. al [103] proposed a one-dimensional

analogue of the model whose dynamics are governed by

) J

Ty = NZsen(xj — ;) cos(6; — 0;),
o j (A.2)
0, = ~ ;sen(% — 0;) cos(z; — x;),

and capture several features of Eqs. (A.1). This simpler model displays the emergence of
several static collective states observed in the 2D system and, most importantly, can be
treated analytically. Further work have also considered noisy interactions [102], distributed

couplings [104], random pinning [105], and intrinsic oscillating frequencies [106].

The 1D Swarmalators model, however, cannot describe some of the active states
displayed by the full 2D system. Even if some states of the 2D model are arranged in the
form of an annulus, projecting it onto a 1D ring leaves out part of the dynamics that could
be essential for the formation of the structure. On the other hand, the similarity of the 1D
model with a pair of coupled Kuramoto equations, suggests that the expertise acquired
from studying this famous synchronization model can be leveraged to analyze Swarmalators
systems of this type. Here we propose a model of frustrated 1D swarmalators, based on the
Sakaguchi-Kuramoto model [83], as a source of frustration that could compensate for the
loss of freedom of the 1D system and potentially restore the active states observed in the
2D model. We call the corresponding particles Sakaguchi Swarmalators. We explore the
effects of additional phase parameters to both the spatial and phase dynamics in Egs. (A.2).
This frustration differs from (and complements) the disorder produced by distributed
couplings, studied by several authors for the Kuramoto model [86], and by O’Keeffe and
Hong for the 1D Swarmalators model [104]. We will show that, indeed, frustration leads
to coherent active states in 1D, similar to the ones found in the 2D setup. Additionally,
it is worth mentioning that the new parameters of the Sakaguchi Swarmalators model
have similarity with “offset terms” used in a recent numerical study of a modified 2D

Swarmalators system [107].
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We describe the modifications to the original 1D model in (Sec. A.3), introducing
frustration as in the Kuramoto-Sakaguchi model. Then, in the same section, we present the
different collective states obtained from numerical computations. In Sec. A.5, we present
the stability analyses of states that show ordered configurations. The conditions obtained
from the analytical computations allow us to picture the stability regions in the space of

frustration parameters (Sec. A.6). Finally, in Sec. A.7 we sum up some concluding remarks.

A.3 The Sakaguchi Swarmalators model

Our modifications to the 1D Swarmalators model bring back the essential
feature of the Kuramoto-Sakaguchi model: the introduction of disorder on a system
intended to exhibit a coherent behavior [83]. The same idea was applied before to describe
chimera states in self-propelled 2D particles [108]. In our model, however, the disorder
affects both the spatial and phase components of each particle’s dynamics. As described
by the expressions

T; = N;sen(xj —x; +a)cos(0; — 0; + ),
K (A.3)
0; = N;sen(ﬁj —0; + B)cos(z; — x; + )

so that the disorder parameters o and [ are incorporated to the system dynamics. Hence,
if the system reaches coherence in phase (6; ~ 6;) or space (z; ~ z;), the effects induced

by a and 8 would lead to its disruption.

A.4 Equilibrium states

Numerical computation of Eqs. (A.3) allows us to get insights on its long term
behavior. Snapshots of the system’s collective behavior, after 10* time steps, are shown in
Figures 9, 10, and 11. In all cases, the number of particles is N = 500 and the parameter J
is set to 1. Thus, the control parameters are K, o, and (3. In the figures we use the auxiliary
parameters 7= = a + 3, instead, since v* will be relevant for the stability analyses in the
next sections. Particles’ positions and phases are initially distributed uniformly in ranges
—7 to . In the spatial pictures, shown in the top rows of Figures 9, 10, and 11, particles
are positioned along the ring and colored according to their phases. The scatter plots,
in the bottom row of Figures 9, 10, and 11, correspond to the spatial picture above and
show the position-phase correlation for each particle. The states presented in Figure 9
demonstrate the convergence of particles to fixed values in phase and space. Once the
particles reach these states, after a transient period, they remain there statically. Despite

this feature, however, we observe clear differences in the position-phase coherence of each
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Figure 9 — Spatial behavior (top row) and position-phase correlations (bottom row) for the
static states of the Sakaguchi Swarmalators model. (K = 1) is set for all the
simulations, and (", v7) are set as a,d) (0, 0) for the Static Synchronous, b,e)
(1.67, 0) for the Static Phase Wave, and c,f) (1.8, 2) for the Static Asynchronous
states.

case. The Static Synchronous state (Figures 9a and 9d) shows the formation of two clusters
spaced, in phase and space, by a factor of 7. Particles move to each cluster depending on
their initial condition and synchronize with its cluster neighbors. In the Static Phase Wave
state, (Figures 9b and 9e), particles are uniformly distributed along the ring. Moreover,
each particle’s phase is correlated with its position, implying that these are also distributed
uniformly. The correlation shown in the figure is positive, however, variations in the initial
conditions can change the behavior of the system so that the steady behavior leads to
a negative correlation. The Static Asynchronous state (Figures 9¢c and 9d) shows that
particles are distributed uniformly in phase and space. However, unlike the Static Phase

Wave state, particles’ positions and phases are uncorrelated.

Active analogues of the Static Synchronous and Static Phase Wave states are
shown in Figure 10. In the Active Synchronous state (Figures 10a and 10d) the two clusters
of particles, as described before for the Static Synchronous case, are rotating along the
ring. Despite the rotation, the clusters preserve the spacing of 7 in position and phase. A
similar effect is seen in the Active Phase Wave state (Figures 10b and 10e), where the
uniformily distributed particles rotate while keeping the position-phase correlation. In
Figures 10c and 10f, we introduce a new state where particles rotate around the ring

while keeping a fixed pattern. In this state, particles cluster on a position-phase region,
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Figure 10 — Spatial behavior (top row) and position-phase correlations (bottom row) for
the ordered active states of the Sakaguchi Swarmalators model. (K, v*, 77)
are set as a,d) (1, 1.3, 1.5) for the Active Synchronous, b,e) (1, 2.5, 1.1) for
the Active Phase Wave, and ¢,f) (=5, 0.3, —3.1) for the Ring states. Arrows
represent the translation direction of the particles.

in contrast to the Active Synchronous state, where particles cluster on two w-distanced

points.

In Figure 11, we show three additional active states. Despite not being com-
pletely ordered these states still show the emergence of intriguing patterns. In the Noisy
Active Phase Wave state (Figures 11a and 11d), particles move and initially form a corre-
lated position-phase pattern. After some time, however, this coherence is destroyed and a
dynamic behavior starts where distorted correlation appears and disappears continuously.
The Active Asynchronous state (Figures 11b and 1le) is the active analogous to the
Static Asynchronous state, shown in Figures 10c and 10e. In this state, however, particles
jiggle and move randomly. The effects of this dynamic behavior, as better shown in the
state’s scatter plot, generate position-phase correlation in a non-uniformly distributed
configuration. The last disordered state (Figures 11c and 11f) is named Turbulent and is
unrelated to the previous ones. In this state, the particles move randomly along the ring
without a specific position-phase coherence. However, as presented on its scatter plot, a
recurrent pattern emerges where the particles” position-phase correlations generate vortices

that rotate and move around while exchanging individuals.

The figures described in this section, obtained numerically, allow us to under-

stand the coherent and incoherent behaviors of the Sakaguchi Swarmalators system. In
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Figure 11 — Spatial behavior (top row) and position-phase correlations (bottom row) for
the disordered active states of the Sakaguchi Swarmalators model. (K, y*,
~7) are set as a,d) (—0.2, 1.9, —1.4) for the Noisy Active Phase Wave, be)
(—1, 1.25, —0.25) for the Active Asynchronous, and c,f) (—0.2, 3, —0.5) for
the Turbulent states. In all cases, particles are in continuous motion.

the next section we explore the analytical features of the model, describing some of these

states and their stability conditions.

A.5 Stability analyses

Following [103] we define &; = x; + 0;, ; = x; — 0; and rewrite Eqs. (A.3) as

. J J_ _
& = ﬁZsen(@ —&+)+ WZSGH(W =0 +77),
J J

J 7 (A.4)
- d + + _
i = N;SGH(Q —&G+7)+ N;SGH(UJ' = +77),
where J4 = (J £ K)/2 and 4= = a + 8. We also define the order parameters
. 1 .
ig+ _ i§;
S+€ T = N Z e,
(A.5)

J
. 1 .
S el = —Ze”“,
N J

where the real values Sy (ranging from 0 to 1) are coherence metrics associated with

positive or negative correlations between particles’ positions and phases. For instance, the
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coherence of the Static Phase Wave state, shown in Figure 9b, is (S,,5_) ~ (0,1) due
to the position-phase positive correlation of the particles. For the Static Asynchronous
state, shown in Figure 9c, on the other hand, S4 & 0, since there is no correlation between

particles’ positions and phases.

A.5.1 Synchronous states

These states involve clustering and synchronization of the particles, that con-
verge simultaneously to specific values in phase and space that can be static or dynamic.

Setting &; = & = & and n; = 1; = 1 in Egs. (A.4) we obtain the equilibrium trajectories
€ = Jysen(y ")t + J_sen(y7)t + &,
n = J_sen(y")t + Jysen(y)t + no.

To analyze the stability of this solution, we add small perturbations 6&; and dn; to each

particle around the equilibrium trajectory and compute their dynamic behavior. The

temporal evolution of the perturbations is described by

6& = J* cos(y™) Z(éfj —0&) +J” cos(w’)Z(dnj — o)

J ! A6
oni = J~ COS(W)Z(&} —0&) +J" COS(T)Z(M — 0m;), -

where J* = J./N. These equations form a 2N x 2N linear system which is
evaluated in detail in Appendix A.8.1. The eigenvalues, that determine the stability of the

equilibrium trajectory, are

(J+2 (cos(yT) — cos(v_))2 +4J 2 cos(y") cos(y‘))l/2 :

| =

J
AS = —7+ (cos(yT) + cos(y7)) +

A% =0,

(A7)

where )\is have multiplicity (N — 1) each, and A\§® has multiplicity 2. The superscript
SS stands for Synchronous States.

For the particular case where J = K, and therefore J_ = 0, the non-zero

eigenvalues are

)\iS(JZK) = —J, cos(y7),
SS(J=K) -
APVUER)Y — L cos(yY),

and will be negative for J, > 0 when 4= € [-7/2,7/2], and for J, < 0 when * €
[7/2,37/2]. The stability regions for J # K are more complicated due to the shape of
the non-zero eigenvalues surfaces. We shown the stability regions in this case in the next

section.
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Before we close this subsection we note an interesting symmetry that appears
for J = 1. In this specific case, Jy = (K 4 1)/2, and considering K* = 1/K, we get
T = +J./K. Then, if we find Jf an plug it into Eqs. (A.7), we see that the non-zero

eigenvalues will just be scaled as
1
*
)\is = E)\:q_rs, (A.9)

so the stability regions for K and 1/K are exactly the same.

A.5.2 Phase Wave states

Here the particles are distributed uniformly in space and phase but these
variables are correlated. Also, they can move rigidly, keeping their relative positions
and phases constant. These states are represented by x; = 2inr/N + zg + v,t and 6; =
+2im/N + 6y + vgt, where v, and vy can be determined from Eqs. (A.4). The =+ sign in 6;
depends on the type of position-phase correlation. We consider a negative correlation, so

that the equilibrium trajectories must satisfy

& = Jysen(y M)t + &,
i

;= J_ Nt
n sen(’y)+N

+770.

Substituting in Egs. (A.4) we find v, + vy = Jyseny™ and v, — vy = J_seny*. To study
the stability of this solution, we again add perturbations d§; and dn; to the equilibrium
and find their dynamics. We obtain

8¢ = J+ cos@ﬂZ(éfj —0&) + J_Zénj cos (ZX;(] —1) + 7_) ,

J

(A.10)

J

on; = J- cos(*f’)Z(é@ —0&) + J+Zc517j coS (iz;(j —i)+ ’y_) .
J

The dynamics of the perturbations can again be arranged using a 2N x 2N block matrix,
and the stability of the system analyzed by its eigenvalues. A detailed derivation of the

eigenvalues is shown in Appendix A.8.1. We obtain

)\TOIPW _ 07

AW = =Ty cos(vh),

1/2
J 1 .- 1 1 . - 2 iy~
APV 7* (2617 —COS(”Y+)) + 3 [Jﬁ (26” +cos(’y*)) —2J %" COSW)] )

1/2
Ji (1 - 1 1. 2 N
A?ﬁz)i - % (2617 - COS(’Y+)) * 5 [J+2 (2617 + cos(7+)) —2J %N cos(*y*)] ,

(A.11)
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where AJ¥" and A?PW have multiplicities of 2 and (N — 6), respectively. The superscript
PW stands for Phase Wave. Considering a positive position-phase correlation leads to
slightly different eigenvalues. These differences, however, generate just a 7/2 rotation of the
stability regions (as will be shown in the next section). In Appendix A.8.1, we summarize

the derivation of the eigenvalues for the positively correlated Phase Wave states.

For J = K the non-zero eigenvalues are

NEPWU=E) _ 7 cos(v),
ALPWUI=K) _ T+ i
SO (A.12)
)\gszv_(;):j() = —Jy cos(y"),
nPW(I=K) _ J+ iy
An-2)+ = 767 ’

and the regions where Re{\""" /=51 are negative, for J, > 0 are 4" € [~7/2, 7/2] and
v~ €|n/2,3m/2], and for J, < 0 are v € [7/2,37/2] and v~ € [—7/2,7/2]. The regions
for J # K, and for the positively correlated Phase Wave states are shown in the next
section. Moreover, the symmetry 1/K — K still applies for J = 1, and so does the scaling
in Eq. (A.9). The stability regions for K" and 1/K are, therefore, also the same for the
Phase Wave states.

A.5.3 Asynchronous states

These states, such as the one shown in Figure 9c, are characterized by a uniform
and uncorrelated distribution of particles in position and phase. To study their stability we
take the limit of infinitely many oscillators and assume a continuum of particles described
by the density function p(z,0,t)dxdd, which gives the fraction of particles lying between
x +dz and 6 + df at time ¢ [109]. The normalization condition for the density is

f f (z,0,t)dzdd = 1, (A.13)

which allows us to rewrite the order parameters, introduced in Egs. (A.5), as
) 2r 27 )
Syeft = f f @9 p(z, 0, t)dxdd. (A.14)
o Jo

Given that the description of this state is more intuitive in terms of x and 6, we use
Eqgs. (A.3) for its analysis. To reduce the size of the equations, however, we keep using
the parameters £ and n as defined before. Then, the equations of motion give the velocity

vector field governing the behavior of the system:

i = LS sen(g, — €+ %) + LS sen(g- — 5 +7°)
2 2 (A.15)

0= 5 Sesen(dr — &+ ") - 5 S-sen(¢- —n+17).
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The temporal evolution of the density p(x,0,t) is described by the continuity

equation

gi + V(pt) = 0, (A.16)

where @ = (i,0) as in Egs. (A.15). The uniform density py = 7~ 2/4 with S, = S_ = 0
is an equilibrium incoherent state and its stability can be studied by perturbing it as
p = po+0p and analyzing the perturbation dynamics. The perturbation analysis is detailed
in Appendix A.8.3, and it leads to the derivation of the eigenvalues

)\fffs — £6i1v+
iy 2 )
SJW (A.17)
/\OAS _ ieii'y_'
The Static Asynchronous state will be stable when the real part of these eigenvalues are
negative, that is, for J, > 0 when y* € [7/2,37/2], and for J, < 0 when 7= € [~7/2, 7/2].

A.6 Stability diagrams

The analytical results obtained in the previous section can be summarized
with graphic representations of the Sakaguchi Swarmalators’ stability regions spanned for
7vF e [~m, 7). We fix J = 1 in all diagrams, as this specific setup allows us to observe the

stability symmetry expected when using K and 1/K (Figures 12b, 12¢, 12e, and 12f).

The simplest case, where J = K, is shown in Figure 12a. As calculated in
Egs. (A.8), (A.12), and (A.17), the regions where each state emerges are just complement-
ing squares. However, for K > 0 and different from J (Figures 12b and 12c), the Phase
Wave squared regions deform giving rise to the formation of stability regions that intersect.
These are regions of multi-stability, where the system converges to either the Synchronous
or Phase Wave states, depending on the initial conditions. Once K becomes negative,
the Synchronous square regions, depicted for J > K, split into four triangles, Figs. 12e
and 12f, that split again for K < —J, Figs. 12g, and 12h. Even more interesting is the
behavior of the Phase Wave regions, which for K approaching —J from the right form
intersecting 7/2-rotated stripes (Figure 12e) that, when K increases towards 0, become
fully intersected circles (Figure 12f). Similarly, the split of the Synchronous square and the
Phase Wave stripes, which become circles, are found when K is set below —J (Figures 12g
and 12h). Despite the similarities, however, these stability regions are w-translated from
the —J < K < 0 regions described before, in both the v~ and y* axes. We note that no
such multi-stable regions exist in the Kuramoto-Sakaguchi model, suggesting that they

depend on the interplay between the two degrees of freedom 6 and .

A special case takes place when K = —.J, which corresponds to J, = 0, and

leads to the vanishing of negative eigenvalues in all states. Under these circumstances,
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the system exhibits the Active Asynchronous state, shown in Figure 11b. It is worth
noting that, for these parameters, Eqs. (A.2) reduce to a Hamiltonian system with
H = (J/2N) Zsen(xj — x;)sen(; — 0;). However, for frustration parameters (o, 5) # 0,

i,
the system loses the Hamiltonian structure and, therefore, a constant of motion. The

stability regions when K = 0 are shown in Figure 12d, and, despite these appearing to
be well-defined, their nature is very susceptible to small numerical changes. The Noisy
Phase Wave and Turbulent states (introduced in Figures 11a and 11c¢) are also found in
the stability diagrams, as pointed by red markers in Figures 12e, 12f, 12g, and 12h. These,
given their disordered nature, do not belong to any of the stable state’s regions but are
positioned in the blank spaces. Finally, the intriguing ring state, introduced in Figure 10c,
turns out to be an intermediate state when entering the Synchronous states’ stable regions
(as depicted by the blue star in Figure 12g), which gives meaning to its clustered behavior.
This state allows us to remark that, at the boundaries, linear stability analysis is not

enough to decide the nature of the equilibrium.

In Figure 13, we show heatmaps that complement the stability diagrams,
presented in Figure 12, for the case where J = K. Fach diagram is obtained for a system of
N = 500 particles at its state after 10* time steps. Intensities are positioned according to
specific values of 4 used for the computation. In Figures 13a and 13b, these correspond to

Sy and S_, respectively, calculated using Eqgs. (A.5). For Figure 13c, we use the additional

parameter S, = 1/N Z x|, which is an indicator of the average velocity in the system.
J

Two main observations can be made by contrasting Figures 12a and 13. Firstly,
as shown in the respective S+ heatmaps, we can identify regions where the system converges
to positively or negatively correlated states, which may represent either the Synchronous
or Phase Wave states. Secondly, although convergence to any stable state can be proven by
the eigenvalues, the definitions of & and n used for the stability analyses do not guarantee
whether the system is static or active, even when analyzing S.. However, the use of S,
provides additional information that allows us to overcome these limitations. As shown in
Figure 13c, clear partitions consistent with the regions in Figure 12a are displayed, and
intensities reveal the velocity dependence on v*, which is coherent with the equilibrium

trajectories defined in Section A.5 for the Synchronous and Phase Wave states.

A.7 Discussion

We studied the effects of introducing frustration on a 1D Swarmalators system.
Motivated by the work of Sakaguchi [83], we modified the original system introduced
in [103], by including frustration parameters intended to break the coherence of the system

in both position and phase spaces.
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Figure 12 — Stability regions computed using the eigenvalues obtained from the pertur-
bation analyses. All figures were obtained for J = 1 and N = 500. In b), the
diagram shows the regions for both K = 1/5 and K = 5. Similarly, in c), the
diagram corresponds to both K = 1/500 and K = 500. In e) and f), K = —1/5
and K = —1/500, respectively. And, in g) and h), K = —5 and K = —500,
respectively. Red circles, stars and squares are positioned in regions where
states Turbulent, Noisy Active Phase Wave, and a combination of these two
emerge, respectively. The blue star in g) corresponds to one instance of Ring

state.
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0.5

Figure 13 — Order parameter heatmaps for J = K = 1 and N = 500, after 10* time steps.
Each intensity corresponds to the value of the respective order parameter
for specific (y",~v7) values. The diagrams show a) positive and b) negative
position-phase correlation regions, and c¢) the average velocities.

The most striking feature of the model is the emergence of active states for
non-zero frustration parameters. These states remind us of the ones found in the 2D
Swarmalators model [82], that still lack a complete analytical explanation. In our model,
however, we were able to find analytical solutions for the stability regions of each ordered
state, independent of its static or active nature. Additionally, numerical computations
allowed us to find regions where disordered active states emerge. In these states, despite
the incoherent behavior exhibited by the particles, clear position-phase patterns can still
be observed, which suggests that their analytical study could also be performed using

different tools.

From the stability analyses we see that, in contrast to the original 1D Swar-
malators model, the frustration parameters provide us flexibility to find ordered states
for any fixed (J, K) values. That is, for a specific (J, K) setup, we can find Synchronous,
positively or negatively correlated Phase Wave, or Asynchronous states just by tuning the
values of 4. The disordered states, however, have been spotted only for K < 0. Even
more exotic is the emergence of the Active Asynchronous case, which shows up only when

J=—-K.

Although Egs. (A.3) have been defined in terms of an internal phase 6 and
a spatial coordinate x, we can think of the phase variable as another periodic spatial
coordinate y, so that the scatter plots in Figures 9, 10, and 11 could represent particles’
positions in the periodic Cartesian plane (a torus). The Active Asynchronous and Turbulent
states are then similar to the patterns displayed by chiral rollers in [92] or ram semen
in [110]. The turbulent state, in particular, is of specific interest for future studies, as
it shows the emergence of vortices and eddy-like structures even for finite number of
particles. We can point out, in this state, that the emergence of coherently behaved

clusters, moving on a sea of incoherently behaved particles, portray a signature of chimeric
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behavior. That relates our work with the emergence of chimeras, depicted in [108], for
populations of self-propelled Kuramoto-like particles, also triggered by the addition of a
phase lag parameter. Moreover, under a Cartesian setup, our results can also be extended

to swarming-only systems whose position degrees of freedom interact.

An interesting take on the Sakaguchi Swarmalators model would be to consider
asymmetrical frustrations (i.e. parameters affecting only the sines or cosines), or even
considering distributed couplings and frustrations, as done in [111] for the Kuramoto
model. In general, since the Kuramoto-Sakaguchi model and the concept of frustration
have been widely studied [112-115], the study of Sakaguchi Swarmalators can be expanded

following these ideas.

A.8 Appendix Al

A.8.1 Eigenvalues for coherent states

The stability calculations, described in subsections A.5.1 and A.5.2, show that
perturbation dynamics can be arranged as

— —

5. = R4, (A.18)

where, for each system’s state, the vector 0y is composed of the individual perturbations
0&; and 0m;, and
Ry R
R — 11 12 ’
R21 Rao

is a matrix of circulant blocks. The structure of R allows us to find its eigenvalues A for

all states, following the general procedure described below.

The eigenvalues are solutions of the equation
det(R — Man) = 0,

where Ign is the identity matrix of dimension 2/N. However, since [Ry1, R21] = 0 holds for
both the Synchronous and Phase Wave cases, we rewrite the equation for the determinant

as
det(R — Man) = det(M),

where M = (R1; — MIn)(Ra2 — AIn) — Ra1Ry2 is also circulant. Then, the determinant

of M can be computed using the general solution for circulant matrices

N-1
det(M) = H (Mn + MpplF 4+ + M1NC(N71)k) ; (A.19)

k=0
where ( is a primitive N-th root of unity, and the eigenvalues A are found by equating the

resulting equations inside the parenthesis to zero.
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In the next subsections, we describe the solution to the eigenvalue problems
for the Synchronous and Phase Wave states using the procedure described above. In each
of these states, the blocks composing R have different structures that, however, can be

considered special instances of circulant matrices. To differentiate between Synchronous

SS and PW

and Phase Wave states, we use respectively the superscripts on matrices and

their elements. Since the Phase Wave state has two instances, we add the letters n and p
in front of the superscripts to differentiate according to the negative or positive nature of
the position-phase correlation. Additionally, to reduce the size of some expressions, we use

ss and ¢, to represent sen(x) and cos(x) functions, respectively.

A.8.1.1 Synchronous states

Arranging Eqs. (A.6) as Eq. (A.18) leads to a matrix R composed by blocks

Ry = J* cos(v)Ry,
Ry = J cos(y7)Ry,
Ry = J ™ cos(v")Ry,
RSS — J* cos(r )Ry,

where

The composition of the block matrix R allows us to infer that the off-diagonal
terms of M* will all be the same. Thus, the only relevant elements to calculate det(M)

are

MPP =N = AJT (1= N)(cy- +cye) +
N(1- N)chﬁcv—(J*2 —J,
M1525 = _>\J+(C'Y_ + C»7+) + NC,Y+C,Y—((]_2 - J+2)7

and Eq. (A.19) can be rewritten as

N—-1 N—-1
det(M*%) = (Mﬁs + MY g”f) : (A.20)

r=1

where

for k # 0.
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Solving Eq. (A.20) leads to the product of N quadratic equations, where N — 1
of them are replicas. Equating this product to zero allows us to get the eigenvalue expres-

sions shown in Egs. (A.7).

A.8.1.2 Negatively correlated Phase Wave states

For these states, obtain the blocks

Ry = J* cos(y)Ry,
Rz = IR,
Ry " = J” cos(v")Ry,
Ry = J'R;,

where
cos(y%) cos (47?%7 + 7i> <o+ COoS 47TN]\_[ ! + 4F
RE= [ <47TNJ\; : +7+> cos(7) ocos 47TN]\; 2yt
0s (47r‘1 + 7+) cos (471'.2 + 7+> i cos('fr)
N N

Although we use only R to describe the R™" blocks, the matrix R, will
be used in the next subsection when describing the RP"" blocks corresponding to the

positive correlated Phase Wave states.

The blocks in R™" have different off-diagonal elements, which make the struc-
ture of M™™W less intuitive. In this case the elementz needed to compute the determinant

are

MY =32 = AT* [ey + (1= N)ey | + N (J72 =T epiey

4 4
My = =AJ* [cos <]\7[T7’ + ’y‘) + CW] +N (J—2 _ J+2> Cy+ COS (]z;r + ’y‘) :

and Eq. (A.19) can be rewritten as

N—
det(M"FWS) — H (MﬁPW + Z MY ’f) : (A.21)

r=1

Setting Eq. (A.21) to zero should return the eigenvalues shown in Eqs.(A.11).
However, since elements MI"(I:K) are all different, this solution is a bit more intricate. In
Appendix A.8.2, we show the simplification of Eq. (A.21) that allows us to get analytical

solutions for the eigenvalues.
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A.8.1.3 Positively correlated Phase Wave states

We start by summarizing the perturbation analysis since this was removed from
the main text for the sake of clarity. For the Phase Wave states that exhibit a positive

position-phase correlation, the equilibrium trajectories are

i
& = J_sen(y )t + % + &,

n; = Jysen(y7)t + no.
Adding perturbations to the equilibrium solutions we obtain

08 = J ey Y (0m — ) + T Y 06Cy,
j

J

J

5771 = J+wa Z(énj — (57’/1) + J- Z(S@Ciﬁ,
J

4
where Cjj; = cos (]\7;(] —1i) + 7+>. This can be arranged in blocks

RY," = J'R],
RI;" = J” cos(y)Ry,
Ry = J R},
R5," = J* cos(y7)Ry.

Despite the differences between R™" and RP'W | elements of M""" and

MPPW differ only by a swap of v and v~. Thus, we find

MEPY = X2 = AT [(1 = N)ey- +cp ] + N (J’2 — J+2> Copt Cy
pPW + 47T + _92 +2 47T i
Miiny = —AJ" [ ¢y + cos N T + N (J —J ) cos | +7" ) o

Then, det(MP"™) has the same form of Eq. (A.21) and it can be solved using the

simplification shown in Appendix A.8.2. The solution leads to the eigenvalues

X =0,
NP = —J, cos(y7),
1/2

I 1 I ? .
APV — J; (26_”+ — cos(’y_)) + 3 [J+2 (26_”+ + cos('y_)) —2J 21" cos(’y_)] ,

1/2

J . 1 1. 2 :
M = 7 (e oot £ [Jﬁ (5o +costr)) a2 cosw->]

(A.22)
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A.8.2 Simplification

We are interested in finding the solutions of a quadratic equation of the form
M+ Ap+w=0,

where, from Eq. (A.21),

+ ANl rk = rk 4 _
¢o=—J" [y~ +eyr 1—N+2( + (" cos ﬁr+7 ,

r=1

N-1
_2 2 , 4m _
= N(J "= J e+ [cv——i—ggkcos(]vr—i—v >]

We expand the sum in the right hand side of these equations as

N-—1 A
Z ('r’k COS (NT + fy—) _ Z r(4m+27k)/
r=1

N-1
+ *6 iy~ 6—17" (4m—27k)/
2 r=1
Then, for k # 2,
0, ifk=0
¢ = )
Jycy+, otherwise
w =0,

which lead to pairs of eigenvalues where one of them is real and the other one is zero, or
both are zero (k = 0). For k = 2,

1 -
o =—J; <2e 7 —C,Y+>,

w = 56’” (J,2 Ji )Cv+>
and k = (N — 2),

o=—J; (;e” — Cv+> ,

W= ;e” (J-2 = J.%) ey,

which lead to pairs of complex conjugate eigenvalues.



APPENDIX A. Synchronization of Sakaguchi swarmalators 61

A.8.3 Perturbation analysis of incoherent states

Incoherent states are characterized by Sy = 0 and, therefore, v = (:U,Q) =
0. Thus, the homogeneous density p, = 72/4 is a static solution of the continuity
equation (A.14).

Adding a small perturbation to the equilibrium state, p = py + dp, and using
Eq. (A.16), we find that the temporal evolution of the perturbed state is governed by

0
—dp =—-V (0p) U, (A.23)
ot
where, from Eq. (A.13)
27 p2m
f f dp(z,0,t)dzdd = 0. (A.24)
o Jo
To first order in dp(z, 0,t), we find that
) 2,27 )
Siel%: = J J T 0 5p(x, 0, t)dads, (A.25)
o Jo
which leads to
0 J
= — (9] cos +47"
2100 = gz (Sheos(02 =4 97) (A.26)
+ S cos(¢p- —n+77)).
Expanding dp in Fourier series
5p _ Z fmn 1 (mx+n0) ’ (AQ?)

and comparing with Eq. (A.26) we see that the only relevant terms are fi;1;. We obtain

: J+ ~
fialt) = 3.2¢ 7 fa(t),
. J+ g
foia(t) = T foa(t),
‘ J (A.28)
fi(t) = 8+2 e (),

. J+ g
faa(t) = ().

Finally, writting f(t) = fe, we can solve Eqgs. (A.28) to get the eigenvalues shown in
Egs. (A.17).
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APPENDIX B - Order, chaos, and

dimensionality transition in a system of

swarmalators

B.1 Abstract

Similar to sperm, where individuals self-organize in space while also striving
for coherence in their tail swinging, several natural and engineered systems exhibit the
emergence of swarming and synchronization. The arising and interplay of these phenomena
have been captured by collectives of hypothetical particles named swarmalators, each
possessing a position and a phase whose dynamics are affected reciprocally and also by
the space-phase states of their neighbors. In this work, we introduce a solvable model
of swarmalators able to move in two-dimensional spaces. We show that several static
and active collective states can emerge and derive necessary conditions for each to show
up as the model parameters are varied. These conditions elucidate, in some cases, the
displaying of multistability among states. Notably, in the active regime, the system exhibits
hyperchaos, maintaining spatial correlation under certain conditions and breaking it under

others on what we interpret as a dimensionality transition.

B.2 Introduction

Swarming and synchronization are emergent phenomena observed in various
natural systems. Swarming, more noticeable due to its occurrence in physical space, is evi-
denced in groups of fishes, birds, insects, bacteria, among others [8,66-73]. Synchronization,
sometimes less apparent due to its nature, is observed in both living and non-living systems,
including groups of humans, frogs, heart cells, neurons, among others [16,74-79,116]. From
a theoretical standpoint, both phenomena have been extensively studied using distinct
frameworks based on well-known models named after Kuramoto [21], Stuart-Landau [80],
Couzin [81], and Vicsek [11]. In these models, single particles are represented by their posi-
tions or by periodic internal degrees of freedom dubbed phases. Then, individuals’ spatial

self-organization gives rise to swarming and, in case of phase coherence, to synchronization.

Despite the success in studying swarming and synchronization independently,
a significant step up has taken place recently, influencing both fields. A singular type
of particles, named swarmalators, have been introduced in [82] such that, collectively,

these can synchronize and swarm as their spatial and phase dynamics interplay. Several
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systems where individuals’ phases influence their positions and vice versa have been
spotted in nature. These include magnetic quincke rollers [92], sperm [95,117,118], starfish
embryos [94], tree frogs [91], nematodes [119,120], and more [121-126].

The swarmalators model, introduced in [82], is defined by the equations

o(Pji) F(05:) — Ip(ﬁji)] )

||
“’1

(B.1)

G(Pji),

i
O

Z\H

where p; and 6; represent the position and the phase of the i-th swarmalator, respectively.
Each individual is affected by intrinsic spatial and angular velocities (£;,w;), and by the
coupling with other individuals, determined by attraction (I,, H,), repulsion (I,), and
influence (F,G) functions. We use p;; and 0;; as compact representations of (p; — p;) and
(5J — 51), respectively. It was shown, in the same work, that computing a two-dimensional
(2D) instance of the model would lead to the emergence of several static and active
states, each with unique features. Afterwards, various modifications of this 2D model
were introduced, analyzing effects produced by an external stimulus [96], chirality of
the particles [107], different interactions [97,98,127], among others [101,128-132]. One
drawback shared by most of these studies, however, is that despite their numeric findings,

analytic results are very limited given the complexity of the model.

The starting point of the work we present here is the one-dimensional (1D)
swarmalators model, also denominated “ring model”, introduced in [103]. Following the

same terminology as in Egs. (B.1), the 1D model is defined by

N
T = N Z Ia(x]l)F(eﬂ)

j=1
‘ N (B.2)
b= D HL(0,)0 ),

j=1

where attraction and influence functions are chosen to be sines and cosines, respectively,
weighted by scalar coupling constants, and (z;,6;) € (S',S'). Individuals are assumed
to be identical, so intrinsic velocities are not considered. Thus, the dynamics of the
system are defined by a couple of Kuramoto-like equations. In these, the independent
synchronization of positions and phases, promoted by the sines, is strengthened by the
interplay induced by the cosines. Given the simplicity in handling periodic functions, this
version of the 1D swarmalators model is analytically tractable. Taking advantage of this,
several solvable variations have been presented afterwards, with a focus on analyzing
the effects generated by nonidentical swarmalators [106], distributed couplings [104], and
other factors [84,105,133]. One drawback of the 1D swarmalators model in its ‘bare’ form

[Eq. (B.2)] is that its structure prevents the emergence of active states, where (i;,0; # 0),
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in contrast with the 2D instance of Eq. (B.1), where active states emerge even for identical
particles. To observe such states in the 1D framework, the solutions found so far involved
adding frustration [84], external stimuli [105], considering nonidentical individuals [106],

or by splitting the population and mixing coupling signs [133].

Here, we introduce a 2D swarmalators model that shares features with the
ones described in Egs. (B.1) and (B.2), leveraging their advantages and overcoming their
drawbacks: the particles are able to move in a 27-periodic 2D space, and the model is
tractable analytically. We show that the model presents several static and active states,
some of them similar to ones found in previous studies and some of them new. The active
states, moreover, are part of a chaotic regime which, under certain conditions, generates a

dimensionality transition.

We outline the general form of our model in Sec. B.3, along with the specific
equations used in this work. Next, in Sec. B.4, we present the static and active states that
emerge through numerical computations of the model. Upon the intuition gained from
the numerical results, in Sec. B.5, we show the main results concerning the stability of
the static states. In Sec. B.6, we present the conditions where the system shows chaotic
behaviors and the dimensionality transition. In Sec. B.7, we summarize static and active
states constructing diagrams showing their stable regions. We conclude this work by

discussing our findings and future research suggestions in Sec. B.8.

B.3 The model

We aim to exploit the solvability of the 1D model introduced in [103], in a
2D setup. However, before we describe our generalization, we find it useful to comment
on the limitations that arise when trying to recover the dynamics in Egs. (B.1) from
Egs. (B.2). First, and most evident, the 1D model lacks an explicit repulsive component.
This drawback hinders the emergence of states that rely on the different scales of attraction
and repulsion forces. For instance, the 1D model cannot generate active states, where the
particles keep moving after a transient. Even if an additional position coordinate y; is
considered, defined to be symmetric with z;, the Kuramoto-like feature, as defined in [103],
would lead to the synchronization in each axis, collapsing the system to static analogs of
the 1D states. Moreover, the attraction and repulsion functions in Egs. (B.1) depend on
the spatial distances between the particles pj;. For example, the 2D instance presented
in [82] use a power law in pj; as repulsion function, generating collective states where
particles distribute radially. Extensions of the ring model to 2D must, therefore, include

explicit dependence of repulsive interactions on particle’s positions.

For our 2D setup, we define the position of the i-th swarmalator as p; = (z;, ;)

but use the distances in each axis, z;; and y;;, independently in the dynamical equations,
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as using the modulus p;; would undermine the reduction of complexity that we are looking
for. The coupling between x and y is done through the phases 6;, included in the functions
F, and F, that affect attraction I, and repulsion I,, respectively. The phase dynamics, on
the other hand, are defined by their mutual interaction H and by the interplay of both

spatial coordinates GG. In its general form the model is described by
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For the specific model we study here, we consider that (z;,;,6;) € (S',S',S"), and
individuals are assumed to be identical, so (u;,v;,w;) = 0. Following [103], we choose
combinations of sines and cosines for all functions, weighted by coupling constants J= and
K'. This makes the problem amenable to analytical treatment, but introduces repulsion in

a weak sense:

T; = ]1[2 {J‘sen(xﬁ) cos(6;;) — J* [1 — COS(iji)] sen(Qj’)} )
A S
Y=y 2. {J sen(y;:) cos(0;:) — J* [1 — cos(y;)] Sen(eﬂ')} ’ (B3)

. KX
0; = ~ Z sen(6;;) [2 + cos(2x;) + cos(2y;4)] -

In this form, J~ is the weight of the Kurmamoto-like attractive interaction,
that is enhanced by phase synchronization. J*, on the other hand, is the weight of the
weak repulsion term, whose sign depends on the difference of phases. It is weak because it
disappears when particles are on top of each other, allowing for full synchronization in
x, y and 6. When phases are synchronized, 0;; = 0, the equations for z; and y; reduce to
independent Kuramoto dynamics. Similarly, when x;; = v;; = 0, the equation for 6; follows
the Kuramoto model. Repulsion and attraction terms in each direction depend only on
the distances in that direction. This is the key feature that allows for simplifications in

the analytical treatment while still supporting active states.

As a final step, for an easier understanding of the system, we rewrite J= = (Ja=+
Jr)/2 and K" = K /2. These new parameters do not alter the structure shown in Egs. (B.3),

but facilitate manipulating attraction and repulsion scales, affected respectively by J4 and
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Jr. Thus, the expanded model is given by

T; = ]1[ ‘ J2A {sen(xﬂ) cos(0j;) — [1 — cos(z;;)] sen(Gji)}
- JQR {sen(xji) cos(0j;) + [1 — cos(zj;)] Sen<9ji)} )
U = ]1[ Z JQA {sen(yji) cos(6j;) — [1 — COS(yjz‘)] Sen(eji)} (B.4)

_ JQR {sen(yjz‘) cos(0;;) + [1 — cos(y;q)] sen(eﬁ)} ’

Z sen(6;) {1 + ; [cos(?:cﬂ) + cos(2yji)]} )

6 =

2l=

Notice that, in this form, the terms proportional to Jg in the equation for z;
include a truly repulsive interaction, —sen(z;;), and half of the weakly repulsive term,
—[1 —cos(xj;)] (and similarly for y;). The terms in J4, however, include the attractive part
sen(xj;) but also the other half of the weakly repulsive term. By considering this expanded
2D model, we can derive the original ring model under intuitive convenient conditions (see
Appendix B.9.1).

B.4 Numerical results

Simulations performed for the model described in Egs. (B.4) show the emergence
of states that gather features of several states observed in instances of Egs. (B.1) and (B.2).
Additionally, we observe active states that, despite the similarity with states presented in
previous works, show interesting properties. All these states are presented in Figs. 14, 15,
and 16, where the computations were performed for a population of N = 500 swarmalators
and different values of Jy, Jr, and K. The particles start positioned uniformly in a
27-length cube in the (x,y, #) space, and their states evolve along 10° time-steps. From
Fig. 14 to Fig. 16, each shows the particles distributed in the (x,y) space colored according
to their phases (top rows), and their respective distributions in the (z,y, 8) space (bottom

rows).

In Figs. 14(a) and 14(d), we present the point synchronous state, which shows
the phase synchronization of particles and their convergence to a fixed point in the (z,y)
space. Once these reach a (xg, 1o, 0y) state, they remain steady. A similar state emerges on
the 1D model [103], where particles converge to a fixed position on the ring. In our model,
the emergence of this state requires phase synchronization (K > 0), and also (Ja, Jg > 0).
Moreover, attraction must be stronger than repulsion, J4 > Jg, so that particles, which
start distributed across the (z,y) space, can collapse to a fixed position. For Jr > J4 the

particles converge to the distributed synchronous state shown in Figs. 14(b) and 14(e). In
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Figure 14 — Snapshots of the [(a),(d)] point synchronous, [(b),(e)] distributed synchronous,
and [(c),(f)] distributed asynchronous states after a transient. The panels
show the spatial distribution of the particles (top row) and the respective
correlation scatter plots (bottom row). The parameters (K, Ja, Jr) are set as
(1,1,0.5) for the state in [(a), (d)], (1,0.5,1) for the state in [(b), (e)], and
(0,—-0.5,0.5) for the state in [(c),(f)].

this state, particles synchronize (as K > 0) but they remain distributed in the (x,y) space
given that now repulsion is stronger than attraction. This state shows a first approach
to spatial states generated by instances of Eqs. (B.1), where particles tend to distribute
radially [82,96,97]. Finally, in Figs. 14(c) and 14(f), we show the distributed asynchronous
state. In this, the individuals keep their initial phases frozen (K = 0), and the repulsion
between them is strong enough to keep the particles distributed uniformly in the (z,y)
space. Similar states can also be observed emerging in the 1D model [103,104], where
particles remain asynchronized while distributed along the ring, and in 2D and 3D instances
of Egs. (B.1), where the spatial distribution is radial [82,97].

Panels in Fig. 15 show three types of static phase wave state. First, Figs. 15(a)
and 15(d) show that individuals’ positions (z;,y;) are positively correlated and that phases
g; are also positively correlated to these positions. Second, Figs. 15(b) and 15(e) show that
individuals’ positions (x;,y;) are positively correlated but that phases 6; are negatively
correlated to z; and therefore y;. Third, Figs. 15(c) and 15(f) show that individuals’
positions (x;, y;) are negatively correlated and that phases 6; are positively correlated to x;
only. Fach of these states shows similarities with states found in previous work. The static

phase wave state in 1D shows the emergence of correlations between particles’ positions
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Type of correlation

State Positive Negative
Static phase wave I x;,y;, 6;
Static phase wave II iy Ui x;, 0;
Static phase wave III  x;,6; iy Yi

Table 2 — Classification of the static phase wave states according to the type of correlation
between individuals’ positions and phases.
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Figure 15 — Snapshots of the static phase wave states after a transient. The panels show
the spatial distribution of the particles (top row) and the respective correlation
scatter plots (bottom row).[(a), (d)], [(b), (e)], and [(e), (f)] pairs correspond
to different types of correlation between x;,y;, and 6; states. The parameters
(K, Ja, Jr) are set as (0,0, —0.8) for the state in [(a), (d)], (0,0.8,0) for the
state in [(b), (e)], and (0,1, —1) for the state in [(c),(f)].

and phases [103], and in 2D, the correlation emerges between the polar angle that describes
the radial position of each particle and its respective phase [82]. A remarkable feature
in our model, furthermore, is that independent of the type of correlation, it features the
concept of ‘like attracts like” introduced in [82]: despite individuals’ phases being frozen
(K = 0), they end up grouping in space with similar phases individuals. For simplicity, in
the following sections, we will refer to each type of static phase wave state as summarized
in Table 2. An additional observation is that, Figs. 15(c) and 15(f) show a small curvature

in the correlation, that reminds us of the buckled phase wave state introduced in [103].

In Fig. 16, we show instances of the most noteworthy states of this work: the

active ones. We call these ‘instances’, since all of them are part of a chaotic regime that
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Figure 16 — Snapshots of the [(a),(d)] swirling, [(b),(e)] butterfly, and [(c),(f)] bouncing
states after 10° time-steps. The panels show the spatial distribution of the
particles (top row) and the respective correlation scatter plots (bottom row).
The arrows represent the motion of the particles. The parameters (K, Ja, Jg)
are set as (—1,0, —0.5) for the state in [(a), (d)], (—1,—0.5, —0.5) for the state
in [(b), (e)], and (—1,—1,—0.5) for the state in [(c),(f)].

we explore in more detail in the following sections. The first one, presented in Figs. 16(a)
and 16(d), shows that after a transient, there is an apparent correlation between x;,
yi, and 6;, similar to the ones presented for the static phase wave states in Fig. 15.
However, individuals move, and despite the positive correlation between x; and y;, shown
in Fig. 16(a), individuals’ positions and phases generate unsteady irregular annular shapes,
as noted in Fig. 16(d). These swirls remind us of the ones formed by non-conformist
individuals in [133], so we name our state after it. We refer to the second instance of active
state, shown in Figs. 16(b) and 16(e), as butterfly state. In this state, particles move
while positions x; and y; keep linearly correlated. Furthermore, the population of particles
continuously alternates between splitting into two clusters and merging back to a single
one. Similar to the swirling state, individuals’ positions and phases are not correlated.
Furthermore, the shape generated by these, as shown in Fig. 16(e), reminds us of the
well-known Lorenz attractor projected in 2D. Finally, the bouncing state, depicted in
Figs. 16(c) and 16(f), shows similarities with the butterfly state in terms of the correlation
between individuals’ positions [Fig. 16(c)] and the shapes generated between their positions
and phases [Fig. 16(f)]. However, the population of particles goes back and forth, from a
single cluster to several ones, in an erratic way. Despite this behavior, the linear correlation

between x; and y; is preserved.
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B.5 Static states

We perform perturbation analyses to study the stability of the static equilibrium
states reached by our system. The computations we carry out are based on the analyses
presented in [84] for an instance of the 1D model. Then, since the procedures are known, only
major considerations and results are presented in the main text and complex calculations

are left for the Appendix.

B.5.1 Point synchronous (PS) state

This state is characterized by the convergence of the particles to a point
state x; = z, y; = y, and ; = 0, which proves to be a solution of Egs. (B.3). We add
small perturbations dx;, dy;, and d6; to each particle in their equilibrium state, and find
expressions for their time evolution. The perturbation dynamics and their analysis as a

linear system are shown in detail in Appendix B.9.2.

The eigenvalues that determine the stability of this state are

NS =0,
AP = 2K, (B.5)
Jr— Ja
)\PS _
2 2 3

revealing that the PS state emerges only when K > 0 and J4 > Jg, as expected from the
remarks in the previous section: phase synchronization is driven by K > 0 and particles’
clustering result from J4 > Jg. Moreover, from Eqs. (B.3), we can see that phase synchrony
strengthen the attractive effects in spatial dynamics, reason why particles converge to a

single point in space instead of cluttering while keeping distance from each other.

B.5.2 Static phase wave (SPW) states

The main feature shared by these states is the linear correlation among z;, v;,
and 6;, as classified in Tab. 2. It is easy to check that equilibrium states based on these

correlations satisfy the dynamical equations.

In the static phase wave I, the equilibrium state is defined by x; = 27i/N + z,
y; = 2mi/N + yo, and 0; = 2wi/N + 6y. The perturbation analysis performed for this
equilibrium is described in Appendix B.9.2.2. The eigenvalues that determine the stability

of this state are
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Ay =0,
D = 0.5.7,

A = 0.5J5 +0.25.,4,
AP = 0.2505 + 0.125K
+0.5(0.25.J% 4+ 0.0625K2 — 1.25J5 K )™,
AP = 0.25J5 + 0.375K
+0.5(0.25J3 + 0.562K? + 0.75Jr K
+0.5J4K).

(B.6)

The simplest case to frame, using these eigenvalues, is when (K = 0), which
implies that individual phases will remain distributed randomly as in their initial state.
Then, the conditions for stability are Jg < 0 and Jg < —0.5J4. The negative repulsion
and the positive attraction terms indicate a primarily attractive nature of the particles.
However, because phases are different, particles cluster with others of similar phases.
Additionally, considering (K > 0) would lead to phase synchronization and, consequently,
disrupt the clustering behavior among different phases. This behavior is also aligned with
our expectation for this state based on the nature of our model. The case where (K < 0)
is more complex given that the phase asynchrony is now weighted, incorporating an active

ingredient to the system. We explore this active state in the following section.

The static phase wave II is given by z; = 27i/N + x, y; = 27i/N + 1o, and
0; = —2mi/N + 6. The details of the perturbation analysis for this equilibrium state are
shown in Appendix B.9.2.3. The eigenvalues that determine its stability are

N =0,
A = 0.5y,
A = 0,57, — 0.257p,
A = —0.2574 + 0.125K

+0.5(0.25J% + 0.0625K% + 1.25J 4K )",
A = —0.257,4 + 0.375K

+0.5(0.25J3 + 0.562K* — 0.75J4 K

— 0.5J5K)".

The conditions for stability are similar to those found in the previous case
(static phase wave I): for K = 0, we need J4 > 0 and —J4 > 0.5J. Both conditions

suggest the attractive nature of the particles, which will lead to the clustering of particles



APPENDIX B. Order, chaos, and dimensionality transition in a system of swarmalators 72

with similar phases. When K > 0, diversity among phases is disrupted, whereas K < 0
drives the emergence of active states. The main difference between this state and the
previous one lies in the regions of the (J4 — Jg) plane where each state appears, as we

will demonstrate in a following section.

Finally, the equilibrium states in the static phase wave III is defined as z; =
21i/N + o, y; = —2mi/N + yo, and 0; = 2wi/N + 60y. Despite the similarity of these
expressions to the equilibria in the two previous cases, the analysis is more complex. The
negative correlation between x; and y; prevent simplifications in the perturbation analysis.
Consequently, finding the eigenvalues that characterize the state’s stability becomes more
intricate. For details of this analysis, we refer the reader to the Appendix B.9.2.4. Although
we do not present the corresponding eigenvalues in the main text, in a following section

we will show the stability regions of this state in the (J4 — Jg) plane.

B.5.3 Distributed states

To study the stability of these states we assume a continuum of particles,
instead of a discrete set like in the previous cases. We define the fraction of particles lying
between z, y, 0 and x + dz, y + dy, 0 + df at time ¢, by the density p(x,y,0,t)dxdydo.

Moreover, p will satisfy the normalization condition

fp(a:,y,@)dxdyd@ =1 (B.8)

where all integrals run from 0 to 2.

To perform the stability analysis we introduce order parameters of the form
1 X
S el = — Y el B.9
9 (B)

In this expression, o can represent any individual variable x, y, 8, or a linear combination
of these. So, for instance, if we consider o : 6, the order parameter will measure phase
coherence, giving Sy = 1 for a fully synchronized state. Another instance, a bit more
interesting is the consideration of o : (# + z), which measures the correlation between
individuals’ positions x; and phases ;. In this case, getting S(y;,) = 1 is an indicator of a

negative correlation between z; and 6; as in the static phase wave state II.

In the continuum limit, considering Eq. (B.8), we can rewrite the order param-

eters as

27
Syelte = J e p(x,y,0)drdyds, (B.10)
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so that Eq. (B.3) turns into the mean-field equations

J J Ja+J

Uy = ?AS(Q_;'_:E)SQH (q§(9+x) — 60— a:) + ERS(Q_x)SGH ((b(g_z) — 0+ a:) — uSgs.en (g — 0),
J J Ja+J

vy = ?AS(gw)sen (Gory) — 0 —y) + 721% Sto—ysen (¢o—y) — 0 +y) — AR 5 " Sysen (g —0),

K
vg = K Spsen (¢g — 0) + T [S(9+gz)sen (¢(9+21) — 0 — 2:1:') + S(g—2s)5€0 (¢(9_2m) — 0+ 2:5)
+ S(g+2y)5€n (¢(g+2y) —0— 2y) + S(g—2y)sen ((b(g_gy) — 0+ Zy) ]

(B.11)

A fully incoherent state, as depicted in the distributed asynchronous case,
would be portrayed by the convergence of all the order parameters, in Eqgs. (B.11), to
zero. However, we can also describe the distributed synchronous state by considering
that incoherence happens in space only, letting the system reach phase synchronization

(Sp = 1). For both cases, we define the respective incoherent densities

1
A
pO = 5 _ 39
o (B.12)
Py = —5
0 4g2’

which under conditions of the order parameters described above, prove to be equilibrium

states of the continuity equation

op -

— = —-V(pv B.13

L (o0, (B.13)
where 0 = (v,, vy, vg) is the velocity field defined in Eq. (B.11). We perform perturbation
analyses for both incoherent states (see Appendix B.9.3). The eigenvalues that determine

the stability of the distributed asynchronous state are

J
A A
AL = 1672’
JU—
;67?2 (B.14)
A= —
3 82’
K
AN =
1 322
and, for the distributed synchronous state,
Ja— Jr
A= B.15
— (B.15)

which additionally requires (K > 0) to reach phase coherence.
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B.6 Active states

In the previous section, we discussed all the conditions that allow the emergence
of the static states. Despite these analytical results, we found only very few hints on the
conditions driving the emergence of active states. In order to get more clues on their
behavior, we start our analysis by considering distributed states with finite number of
particles. Then, we will demonstrate that all the active states shown in Sec. B.4 are

actually part of the same chaotic regime.

B.6.1 Active asynchronous state

The analysis of distributed states performed in Sec. B.5.3 relied on the as-
sumption that the number of particles is infinite, so that we could take the continuum
limit. This allowed us to consider that all order parameters in Eq. (B.11) would converge
asymptotically to zero. However, when dealing with a finite number of particles, this last
assumption is not quite true. For K = 0, in particular (frozen phases), phase incoherence
is not perfect and Sy > 0. This drawback promotes the appearance of small velocities in
#; and ¢;, proportional to (Ja + Jg)/2, which ultimately will drive the emergence of an
active state. If J4 = —Jp, i.e., attraction and repulsion have the same intensity, the state

still converges to a static configuration.

B.6.2 Hyperchaos in 3N dimensions

In Sec. B.5 we studied the stability of static states by computing the eigenvalues
of the linearized dynamics in scenarios where phases were frozen, K = 0, or driven towards
synchronization by K > 0. Negative phase couplings (K < 0), however, not only make
computation more complex but also drive the emergence of active states (as shown in
Figs. 16).

An interesting feature of these states is that particles are sensitive to small
changes in their initial conditions. We highlight this property in Figs. 17(a), 17(b),
and 17(c), where trajectories in the z-axis are shown for the same particle in scenarios where
K = —1. In each of these, we compare the trajectories followed by a single particle when
the system starts on the N-dimensional initial states (Zy, %o, 50) and (Zy —1—(53(61), Yo, 6}), where
5;1) — 107 represents that only the particle of interest’s state is perturbed (for instance
210y + 0V). Tt is clear then that, when considering (J4, Jz) = (0.5,—0.5) [Fig. 17(a)],
the perturbation does not affect the trajectory of the particle considerably. In fact, from
Egs. (B.6), we can infer that these parameters drive the emergence of the static phase
wave [. However, once J4 becomes negative [(Ja, Jr) = (—0.5,—0.5) for Fig. 17(b) and
(Ja, Jr) = (—0.5,—3) for Fig. 17(c)], the perturbed trajectories suggest the existence of

chaos.
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In order to explore the presence of chaotic states we compute the maximum
Lyapunov exponent as a function of J4, for K = —1 and Jr = —0.5. We consider a system
of N =500 individuals and take two 3/N-dimensional state trajectories, one with initial
conditions (%, Jo, 50), and the other one with (Z, + 6V, 7, %) We remark that, although
53(51) affects the initial condition of a single particle in the x direction, it perturbs the
entire 3/V-dimensional state through the couplings. We then calculate the evolution of the
distances d(;) = doe™ between the 3N-dimensional trajectories and infer the Lyapunov
exponents A from the transitioning slope of log[d/do]|. These are shown in Fig. 17(d)
and, as expected, there is a threshold, at about J4 = 0.2, where the system jumps from
regular to chaotic (positive Lyapunov exponent). Additionally, from Egs. (B.6), we can see
that J4 € [0,0.2], is a region where the static phase wave I state is also stable, meaning

that it is a region of bistability between the static phase wave I and the chaotic regime.

State trajectories in the chaotic regime form strange attractors whose structures
differ according to the parameters (K, Ja, Jg). Fig. 18 shows a bidimensional projection
of the chaotic trajectory followed by a single particle, in the x — # torus, in four scenarios.
We can see that, depending on the scale difference between attracting (J4) and repulsing
(Jr) terms, the trajectories patterns grow from a small disc [Fig. 18(a)], to butterfly-
like [Fig. 18(b)], to a disordered single-loop [Fig. 18(c)], and end-up with a scribble-like
structure that covers the whole torus [Fig. 18(d)].

Another interesting phenomenon happens when the scale difference between
J4 and Jg surpasses a threshold: the system undergoes a transition of dimensionality. We
can see in the insets of Fig. 17(d) that, despite being inside the chaotic regime, when
J4 > —2, the linear correlation between z; and y; is held. However, once J4 gets below this
threshold, this correlation breaks. This behavior is strikingly unexpected for our system,
given that expressions for z; and y; are symmetric, and even the variations in (J4, Jg) are

the same.

In principle, we might infer that the dimensionality jump is associated with the
formation of the scribble-like structure in Fig. 18(d), considering that more dimensions
could be required to show a clearer attractor structure. However, this raises an additional
question on what is the behavior in the remaining dimensions. A more appropriate analysis
to handle this inquiry consists on evaluating more Lyapunov exponents, as we show in
Figs. 19 and 20. To compute these, we followed the procedure described in [134], and
due to computational limitations, the evaluated system’s population was reduced to only
N = 30 swarmalators. In Fig. 19, we present the behavior of fifteen Lyapunov exponents,
out of the ninety that conform the Lyapunov spectrum, when changing J, for fixed
(K, Jg) = (—1,—0.5). As shown, the evolution of the largest Lapunov exponent \; in
Fig. 19(a) is consistent with Fig. 17(d), and the points where exponents become positive

(pointed out by the respective dashed lines), are positioned around the same place. We
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Figure 17 — Temporal behavior of single particle trajectories along the z-axis with non-

perturbed (lavender) and perturbed (red) initial conditions (top row), and
maximum Lyapunov exponents for different values of J4 (bottom row). Pa-
rameters (K, Jg) are set as (—1,—0.5) for all the figures. Trajectories are
generated for (a) J4 = 0.5, (b) J4 = —0.5, and (c) J4 = —3. The square in
the top corner of (a) shows a magnification of the circled trajectories, and the
ones in (d) show correlations in z — y coordinates depending on the values of
J4. The green dashed lines represent the change from static phase wave to
chaotic states (left) and the breaking of x — y coordinates correlation (right).
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Figure 18 — Top row: trajectories (blue) followed by single particles in the x — 6 torus.

The red circles are positioned at the start of each trajectory. Bottom row:

evolution of Sty and ST, for the original initial conditions (purple and

gold, respectively) and the perturbed initial conditions (orange and green,
respectively). Parameters (K, .Ja, Jg) are set as [(a), (e)] (—1,0,—0.5), [(b),
(f)] (_17_0‘57_0‘5)7 [(C)a (g)] (_17_]-7_0'5>7 and [(d)a (h)] (_]-7 _37_05)
The small rectangle in (a) shows a magnification of the circled lines.

attribute the amplitude differences of these paths to the fact that exponents in the latter
figure were calculated by hand after plotting log[d()/do]. As well, another source of error
lies in the nature of the algorithm used to calculate the spectrum, where the precision
depends on the computation time. Setting these drawbacks aside, we can see that, in
Figs. 19(a), (b), and (c), more than one Lyapunov exponent becomes positive once Jy4
surpasses the threshold, revealing the hyperchaotic behavior of the system. In addition,
in Fig. 20, we present the five largest Lyapunov exponents obtained considering only the
spatial dynamics. As expected, exponents are negative while spatial correlation exists,
and become positive when correlation is broken. The dashed lines in Figs. 20 and 17(d),
pointing out the approximate value of J4 where correlation breaks, are positioned in the

same place.

B.6.3 Low-dimensional chaos

The chaotic behavior of the system can also be identified through the correlation

functions defined in Sec B.5.3. Specifically, we use the metrics

(647 = max [S(o1a), So-a)] »

S(T;L(f;) = Imax [S(ac+y)7 S(w—y)] ’

so we can get a measure of the linear correlation between the respective variables, at any
specific time-step, independent on their sign. As shown in the bottom row of Fig. 18,
perturbing the initial conditions, generates order parameters that evolve differently. Some

of these [Figs. 18(e), (f), (g)] fluctuate around a fixed value, which indicates that we
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Figure 19 — Evolution of several Lyapunov exponents of the system in function of J4. The
largest exponent is given by A\; and the subsequent ones, in terms of amplitude,
follow the respective numeration. The panels (a), (b), and (c) display sets
of five consecutive exponents within each panel but non-consecutive across
panels. The dashed line is positioned close to where at least one exponent
becomes significantly positive.
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Figure 20 — Evolution of the five largest Lyapunov exponents, estimated considering only

position degrees of freedom, in function of J4. The dashed line is positioned
close to where at least one exponent becomes significantly positive.

can use them to discern between states. In Fig. 18(h), however, the fluctuations have a
much larger amplitude, hindering any attempt to classify the state based on its value.
Additionally, the dimensionality jump is also spotted by S;f, given that it converges to 1

when J, is over the threshold [Figs. 18(e),(f), and (g)|, indicating that z; and y; are fully
correlated, but it fluctuates once J4 falls below it [Fig. 18(h)].

B.7 Attraction-Repulsion phase diagram

In Fig. 21, we present a summary of the regions where each state emerges in the
Ja — Jg plane. These are based on the eigenvalues obtained in Sec. B.5 and the Lyapunov

exponents calculated in Sec. B.6.

Note that the active states analyzed in previous sections assumed a positive
correlation between x;, y;, and 6;, corresponding to an extension of static phase wave I
for (K < 0). We refer to this chaotic regime as Chaos I. Similarly, active effects remain
consistent when considering the correlation of static phase wave II, leading us to name
that region Chaos II. We can also spot several regions of bistability and multistability.
Not only between static states, but also between static and active ones. Remarkably, the
regions shown in Fig. 21, consider that initial conditions are distributed randomly in x, y,
and 6. Starting in full synchronization (6; = ¢) and considering frozen phases (K = 0),

would lead to the emergence of a synchronous state depending on (J4, Jg). More exotic
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Figure 21 — Regions where states emerge on the J4 — Jg plane for (a) K <0, (b) K =0,
and (c¢) K > 0. Arrows and gradients in (a) represent state variations in the
chaotic regime, transitioning from swirling to bouncing states. Colors labeling
different states are an indicator of multistability.

behaviors, that we do not study here, can be obtained when considering non-random initial

conditions.

B.8 Discussion

We have studied a swarmalators system where particles move in the 2D plane
with periodic boundary conditions. The model, that generalizes the 1D instance introduced
in [103], considers attraction and repulsion terms, which ultimately lead the emergence of
distributed and active states, some of them similar to the ones introduced in [82] and [103].
All interaction functions involve only sines and cosines, making stability analysis relatively
simple, but leading to a weak form of repulsion. In contrast with previous 2D models, the

strength of interactions depends on spatial distances in each direction separately, z; — ;

and y; — y;, instead of \/ (z; —xj)® + (y; — y;)%. That allowed us to obtain analytical
conditions for the emergence of all the static states we presented and also analyzed the

nature of the active ones.

Two states presented in this work, the distributed synchronous and asynchronous
states, closely resemble their counterparts described in [82], the only difference being that,
in our findings, particles are not radially distributed. For these, we determined analytically
the conditions that drive their emergence considering only control parameters (K, Ja, Jg).
Along this line, we have also introduced an active asynchronous state, that emerges under
specific conditions for a finite number of particles. Furthermore, we derived the conditions
that guarantee the emergence of a point synchronous state, similar to the one introduced
in [103] for the 1D model.

We also described static phase wave states that share features with their
1D [103,104] and 2D counterparts [82]. The main difference with the former is that, in our

model, linear correlations show up in three different ways, as classified in Tab. 2. Moreover,
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as pointed before for the distributed synchronous and asynchronous states, our model leads
to square, instead of radial, symmetry in particle distribution. Despite these differences,
the phase wave states share the ‘like attracts like’ feature, characteristic of their definition.
Our analytical findings allowed us to state all the conditions in (K, .Ja, Jg) that drive the
emergence of each type of correlation. Strikingly, we found that for (K < 0) there is a
region of multistability in the J4 — Jgr plane, where the three types of phase wave state

could emerge.

Despite the static states and their counterparts found in previous works, the
primary distinction between our model and these lies in the active states, which have
remained elusive in 1D simplifications of the original swarmalators model. Previous
studies where active states emerged in 1D were based on the inclusion of additional
parameters, such as frustration [96], external forcing and pinning [105], or mixed coupling
signs [133]. Here we demonstrated that active states can emerge solely by adjusting the
model parameters (K, J4, Jr) when repulsion is included. This is coherent with the original
idea of swarmalator systems where unsteady states emerge as a result of scale differences
between attractive and repulsive effects. Except for the radial symmetry, the active states
we found are similar to the splintered and active phase wave states from [82]. However, after
estimating the Lyapunov spectrum, we demonstrated that the active states in our system
respond to the emergence of hyperchaos. Just as interestingly, under certain conditions in
this regime, the system undergoes a dimensionality transition, where the spatial correlation

breaks and particles behave chaotically in z, y, and 6 axes.

From a theoretical perspective, our model incorporates intriguing characteristics
that may pique curiosity as a dynamical system in its own right. Given the system’s
dimensionality and its hyperchaotic behavior, we believe it would be worthwhile to delve
more deeply into its features. We showed, for example, that the spatial symmetry breaking,
responsible for the dimensionality transition, is associated with the appearance of positive
Lyapunov exponents when analyzing the spatial dynamics only. However, we have not
intensively explored the relation of this phenomena with that of the synchronization of
chaos. Another intriguing peculiarity to explore can be observed in Fig. 19(a), where it
appears that more than one exponent becomes positive at the same time. It may be also of
interest understanding the bifurcations triggered by varying K. In Fig. 21, we have shown
three specific cases that allowed us to discern between the states when (K < 0), (K = 0),
and (K > 0). However, it may be worthwhile to study in detail the intermediate states
of the system as K transitions from being positive-valued to negative-valued and vice
versa. This investigation should provide valuable insights into two open questions: why
certain states, like the swirling one, have a very long transient before exhibiting their active
characteristics, and what mechanisms underlie the emergence of chaos. Regarding the latter
question, we also recommend a rigorous study of the routes to chaos and dimensionality

breaking when (K < 0). Preliminary numerical studies on this subject have given us
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hints of emergent intermittency and crises when examining the evolution of the order
parameters for different (J4, Jr). Finally, it would also be worthwhile to explore whether
a threshold on the number of particles N exists, and if so, at what point chaotic behaviors

are triggered.

Our model merges two lines of research on the same topic: 1D systems based
on the ring model and 2D modifications of the original model. Therefore, its adaptation to
previous work on these two lines can occur smoothly. For instance, future work could take
our model as a base to consider chirality [107], different phase interactions [97,98,127],
finite cutoff ranges [99], clusters with different attractive and repulsive strengths [132], or
short range repulsive interactions [100]. Then, given the structure of our model, finding
analytical solutions on each of these modifications would be less challenging than doing it

for instances of the 2D model introduced in [82].

Given that the interactions in our model are based on Kuramoto-like terms,
modifications performed in the Kuramoto model could also be adapted to ours [86]. A
particularly interesting take would be to consider frustration, given that the addition
of lag parameters are responsible for the emergence of a turbulent-like state in the ring
model [84], and also drive the formation of interesting spatial patterns in swarming only
systems [108,135]. Furthermore, the inclusion of external stimulus discussed in previous
work, implies affecting the dynamics in a periodic nature [105] and mainly in the phase
dynamics [96,136]. One suggestion would be to consider external stimuli in space, mimicking
a shear, as has been done for bacterial suspensions [137]. It would also be of interest
considering finite cutoff interaction distances between individuals [99] so that different
concentrations of individuals can be managed, emulating the study on vinegar eels in [138].
If a collective of swarmalators works as a medium, it would also be worth studying how it
is affected by external particles and vice versa, similar to the study in [123] for nematodes.
Additionally, we could explore changing the mobility space of the swarmalators, for instance,
by imposing discontinuities in the (x,y) space, or also considering self-propulsion of the

particles in the direction of their phases, as presented in [139].

States emerging in our model could also fit collective swarming-only behaviors
if we consider that their three spatial degrees of freedom interplay. A clear example of
this approach is depicted by the behavior of swarming mosquitoes [140, 141], which shows
similarities with the active asynchronous state in a spherical description. For this setup,
we consider switching the model variables such that 6; determines the radial distances, and
(x;,:), the azimuthal and polar angles, respectively. The resulting state shows clustered
individuals in the middle of a cloud of loosely behaved ones, coherent with a description
given in [140]. We also expect the chaotic states, shown in Fig. 18, to be useful in the study
of populations that exhibit this type of behaviors. Finally, our model could be considered

as a basis for engineered systems, similar to the ones presented in [142-144].
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B.9 Appendix Bl

B.9.1 Derivation of the ring model

We can collapse the 2D system to a single dimension in space by considering
&; = 1;. Hence, we get rid of the second expression in Egs. (B.4). Additionally, if we assume
that there is no scale difference between attraction and repulsion, and that individuals are
purely attracting (i.e. J = J4 = —Jg, for J4 > 0), the equations governing the system’s

dynamics become

J N
€T, = N;SGH(I’TL) COS(QJZ),
. K Y
91’ = N;SGH((QJ‘Z') [COS(.T]Z)]

Notice that, without loss of generality, we have neglected the scaling factor in the phase
dynamics (2K — K). This 1D system fits with the structure described in Egs. (B.2), and,
the only difference with the 1D model introduced in [103] is the squared cosine in the
phase dynamics. This variation ultimately improves the driving towards synchronous or

asynchronous states (depending on the value of K'), as the influence of the individuals

positions will always be null or positive.

B.9.2 Perturbation analysis of coherent states

For each state described below, we will be able to rearrange the respective

perturbation dynamics as

67 = ROT;, (B.16)
where 07; = (0x;, 0y;, 06;) and
R:1 R Rj
R = R4 R5 R6 (Bl?)
Rz Rs Ro

is a 3N x 3N block matrix where each N x N block is circulant. Thus, the stability of
Eq. (B.16) can be analyzed by finding the eigenvalues of R.

We follow the usual procedure to solve an eigenvalue problem, which starts by
defining R, = R — XIg ~x3n and then concludes by finding the eigenvalues X from the
determinant of R,. Thus, considering that R, is also a block matrix, we can rewrite its

determinant as

det (R,) = det (M),
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where

M = Rj(R5Rg — ReRs) — Rz (R4Rg — ReR7)
+ R3 (R4Rs — R:R7),

since blocks commute, and

R} =Ry — Aily,
R} = Rs — A1y,
R} = Ry — Agly.

Given that blocks composing R are circulant, the N x N matrix M will also be circulant.

Then, we can use the general solution to find the determinant of circulant matrices as

1

N—-1N-1
det (M) = [ D MypiP, (B.18)
k=0 r=0

from where we are able to obtain the eigenvalues X. The term ¢ = exp {27ri/N } is a
primitive N-root of unity. Notice that the structure of M follows that of R in Eq. (B.17)
(i.e. elements’ sub-indexes represent the same position in the matrix).
B.9.2.1 Point Synchronous
We add small individual perturbation to the equilibrium states as
T, = + (51’,

Yi = x + 0y;
0; = x + 60;.

By plugging these into Eq. (B.4), we find the perturbation dynamics, governed by

Y iy

5277; = 2]\[;(5%'] — 61’1),
= Jr

0y; = 2]\[;(5% - 592)7
DY

86; = N;@ej — 66,),

which can be arranged as the linear system shown in Eq. (B.16). In this particular case,
we have that {Ra, Rs, R4, Re, R7,Rs} = 0 and R; = Ry, which simplifies the eigenvalue
problem considerably. Finally, using Eq. (B.18), we obtain the eigenvalues shown in
Egs. (B.5).
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B.9.2.2 Static phase wave |

In this case, the perturbed equilibrium states are defined as

2mi
xT; = W—F.To‘i‘(s‘f“

27

i = — + +5Z7
Y N Yo Y

2mi
9i= W+90+59“

and the perturbation dynamics are governed by

1
|02, F1 (i, ) + 30, i, ) |

Sii —
YT oON
J

+ ﬁ(&cl —56,),
b = Z |00 D, 5) + 00,7 G, ) |
y
JR(éyl 505,
fjvz[axj (i.) + 6y, FL (i, j)
;
+30,F{" (0. 5) |,
where

F{D(i, j) = Jacos (Zx(y - z)) — Jr,

FD(i,§) = Jr + Jacos (i\?,r(j - i))
— (Ja + Jr) cos @T(J’ - z‘)) ,
FUD (i, §) = cos (?\7;(] — z)) — cos (%(j - i)) ;

R g) = cos (56 -1)) + 3e0s (- 0).

(B.19)

The positive correlation between x; and y;, in the equilibrium, generates a

clear symmetry in position dynamics. Then, as noticed, the coefficients FP (i, j) and

F b(l) (i,§) repeat in the expressions defining d4; and 6y, and F) (4, j) shows up twice in

the definition of 46;. These features allow for the simplification of the linear system when
structuring it as in Eq. (B.16). Thus, for this case we have that R; = Rs, Rs = R,

R7 = Rg, and {Ra, R4} = 0. These considerations allow us to split the eigenvalue problem

into two problems of lower dimensions such that

M?D = R¥ (RIRE — 2R3R7).
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Then, using Eq. (B.18), we have that
T Te - L ek g
det(R) = [[{ — A+ Dt oo YOO,
6( 1) . + 2 + C a (7]) )

N-1 N
1 .
det (RIR}, — 2R5Ry) = {v Y L s 2, SO FD (L) + KE (1L )]

j=1

>

N
. J Ja+J
Z G—1)k ) . R ~(I) N A R

cos <j—1>)]},

whose solution allows us to find the eigenvalues presented in Eqgs. (B.6).

_l’_

z| ¥

B.9.2.3 Static phase wave Il

The only difference between this state and the previous one, in the equilibrium,
is that the correlation between x; and 6; is now negative. Then, after perturbing the

equilibrium states individually, we have that

2mi +x0+6
;i = —— T i,
N 0
_ 2 +yo+ 06
Y = N Yo Yi,
2mi

0; = ——— + 0y + 006;,
N 0
and the perturbation dynamics are governed by

1
i = 5 2|02, DG ) + 00,5 )|

2N
J
_ Q(&xl + 56,),
0y; = Z [%F(” i, j) + 00,7 (i, J)]
j
Ja
— ?(6% +d6;),
: K
66; = ﬁ [5£lij D, 3) + sy; FID (i, )

+60,F5 i, )],
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where

— (Ja + Jg) cos

2
FUD(4,5) = cos (;(3 - 2)) — Cos

FG00) = seos (3= ) +eos (G -0).

Notice that these equations also show the recurrence of some coefficients in the definition

TN TN
Y
[
|
=
~—

of dz;, dy;, and 66;. This consideration leads to the same simplifications described for the
previous state when structuring the system as in Eqgs. (B.16). So we have that, Ry = R,
R3 = RG, R7 = Rg, and {Rz,R4} = 0.

MU = R} (R¥RE — 2RsR7).

N-1 N
1 .
det (RIRE — 2RsRy) = {v oA b 3 b <KF§”’(LJ) + Fg”)(l,j)>

which lead to the eigenvalues presented in Eqs. (B.7).

B.9.2.4 Static phase wave IlI

For this case, the perturbed equilibrium states are defined as

2m + 20+ 0
;i = —— X i,
N 0
_ 2 +yg+ 06
Y = N Yo Yi,
27

0, =~ + 0y + 06;
i N+0+ 29
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and the perturbation dynamics are governed by

1
Lo (I (I
bis = g 2 s L)+ 0,

+J2R(5 i — 00;),
1
o I (D)
oy 2N - [5y]FC (i,4) + 06 F (%J)]
J

: 1 . .
00; = —Z [595]-176(11[)(2,]) — 5y; EIID (i, 5)
2N r
+ 307" i, 5)|
where
(IID)(; - dr
Fa (27]) = JACOS F(] - Z) - ’]Ra
(I11) dr 2,
F,2"(i,j) = Jr + Jacos W(]_Z) — (Ja + Jg) cos W(]_Z) ,
T
FUD (G 5y = Jy — Jg cos (N(j - z)) ,
(IID),. . . 2T,
F; 7 (i,7) = Ja+ Jgcos ﬁ(‘j_l) — (Ja + Jg) cos ﬁ(‘j_l) ,
(I11) 6w, 2T ..
F,'(i,j) = K cos W(]—z) — K cos ﬁ(]—z) :
(I1T) 2 6mr, . .
Fy(i,j) = 3K cos ﬁ(]—z) + K cos ﬁ(j—z) :

Despite the slight difference in the definition of equilibrium states compared to the previous
cases (types I and II), simplifications are not possible in the perturbation equations of
motion. As noticed, the only repeating coefficient is FD (i, j) in the definition of §6;.
Hence, when structuring the perturbation dynamics as in Egs. (B.16), the only consideration

we can make is that Ry = —Rg. This drawback forces us to write the determinant, using

Eq. (B.18), as

N-1
Ja—Ja 1 Jadn  Jadn,. | Ja.  J
HI) D CIY: R A (S AYR A RT AS RS
det(M k=0{ i l > TN 1 TN PTaN TN

K JaJr
+167N(JA+JR) — SN 54},

where

ZC(] Dk (F(IH )+F(III)(1 ])+KF(II])( j)),
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N

S, = Z U=k (Fé””(l,j) + KEIID (1 4) + KF;III)(L].)>’
j=1

N
S5 = Y UMD, ) + KEMD (1, 5) + KF{D(1,9))),
j=1

[

<
Il
—_

Si= Y, Uk (2RI ) + F{MO (1))

T, =

M=

CU=Dk 40,95 (C(j—l)(k+2) n C(j—l)(k—m) ,

<.
Il
—_

k
Ty = 0.5 Z CUDEFD) 4 G- k=1)

j=1

To find the eigenvalues, we must address N cubic equations of the form —\3 4+ A28 + A& +1.

We solve these using the general formula for

-

0, for k£ = 0;
0.5(Jg — Ja) + 15K, fork=1N—1;
B =130.25(Jp — Ja), for k =2,N —2;
0.5(Jgr — Ja) + 0.25K, for k =3, N —3;
kO.5(JR — Ja), otherwise;
fO, for k =0,

0.25(JaJr + K(Ja — Jg)), fork=1N—1;
§=10.125(J3 + J5 +2.5J4JR), for k=2 N —2;
0.25(JaJg + K(Js — Jg)), for k=3,N —3;

\ 0.25K JyJR, otherwise;
and )
0, for k = 0;
0.125K[0.25(J 4 + Jg)?
—JaJr], for k=1,N—1;
77_<O, for k =2, N — 2;
—0.1875K J 4 Jg, for k =3, N — 3;
0, otherwise.

\

(B.20)

(B.21)
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B.9.3 Perturbation analysis of incoherent states

In general, we perturb the equilibrium state pg by a small quantity dp, such

that p = py + dp. Then, the temporal evolution of the perturbation is governed by

;tép — —V(8p). (B.22)

From Eq. (B.8), we know that

21
J op(x,y,0,t)dzdydd = 0,
0

and to first order in dp(z,0,t), we have that

2m
Sleitr = J e7p(z,y,0,t)drdyds. (B.23)
0

We expand dp in Fourier series as

(50 _ Z fm,n,z(t)ei(mﬁnyﬂa), (B.24)

m,n,l

and we will solve equations of the type f(t) = fe to get the eigenvalues \.

B.9.3.1 Distributed asynchronous

We consider the equilibrium p§ defined in Eqs. (B.12). Using Eqgs. (B.22)
and (B.23), we obtain the perturbation dynamics

d I
Etép " 1673 [S(l9+w) €08 (Pg4a) — 0 — ) + iy, €08 (G(o1y) — 0 — y)]
J
- Fﬁfﬂ [S(le—x) €08 (G(9—z) = 0 + ) + S(y_y) €08 (Go—y) — 0 + Z/)]
K
t 353 l5(19+2x) €08 (Pp+2z) — 0 — 22) + S{y_g,) €08 (G(0—20) — 0 + 21)

+ 5(19+2y) cos (¢(9+2y) — 0 — 2y) + 5(19,2” cos (¢(9_2y) — 0+ 2y)
+ 4S5 cos (g — 0) |.
(B.25)

We expand this equation following the form of Eq. (B.24) and we will see that the only

relevant terms correspond to

{(mv n, l)} = {(_17 07 1)? (Oa _17 _1); (17 07 _1)§
(0,1,-1);(0,0,—1);(2,0,—1); (B.26)
(—2, 0, —1); (0, 2, —1); (0, -2, —1)}.

Then, the solutions give us the eigenvalues shown in Eqs. (B.14).
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B.9.3.2 Distributed synchronous

Given that in this state phases are synchronized and only positions are uniformly
distributed, we uncouple the system’s dynamics. The incoherence between phases and
positions will lead to zeroing order parameters S(yi2,) and Sip1a,). That allows us to
rewrite

vg = K Spsen(py — 0),

which is exactly the mean-field description of the Kuramoto model without considering

natural frequencies [21]. Then, the condition to reach synchronization is given by (K > 0).

In the equilibrium, the synchronization of phases will lead to 6; = 6. This

condition allows for the equivalences

S(eix)ew(m) — Sxeiwi(bz)?

Y

S(9+y)ei¢(9iy) = Syei(9i¢y)

and therefore, the velocity field for this state is defined as

Vy = JA;JRsten (¢ — ),
Ja—J
vy = %Sysen (gby — y) .

(B.27)

In this case we use the equilibrium p3 from Eqs. (B.12), and considering (B.23), the
perturbation dynamics are governed by

d Ja— Jr

il P
p 72

7 [S; cos (¢, — x) + S, cos (¢, — y)] : (B.28)

Then, using Eq. (B.24) for this equation, we find the eigenvalue shown in Eq. (B.15).
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