
UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Pedro Mariano Sousa Bezerra

Autoencoder-based Pattern Mining Applied to

Recommender Systems

Autoencoders para Mineração de Padrões Aplicados
em Sistemas de Recomendação

Campinas

2025

Pedro Mariano Sousa Bezerra

Autoencoder-based Pattern Mining Applied to

Recommender Systems

Autoencoders para Mineração de Padrões Aplicados em Sistemas

de Recomendação

Thesis presented to the School of Electrical and Computer
Engineering of the University of Campinas in partial fulfill-
ment of the requirements for the degree of Doctor in Electrical
Engineering, in the area of Computer Engineering.

Tese apresentada à Faculdade de Engenharia Elétrica e
de Computação da Universidade Estadual de Campinas como
parte dos requisitos exigidos para a obtenção do título de
Doutor em Engenharia Elétrica, na Área de Engenharia de
Computação.

Supervisor/Orientador: Prof. Dr. Fernando José Von Zuben

Este exemplar corresponde à versão final da
tese defendida pelo aluno Pedro Mariano
Sousa Bezerra, e orientada pelo Prof. Dr.
Fernando José Von Zuben .

Campinas

2025

Ficha catalográfica
Universidade Estadual de Campinas (UNICAMP)
Biblioteca da Área de Engenharia e Arquitetura

Vanessa Evelyn Costa - CRB 8/8295

 Bezerra, Pedro Mariano Sousa, 1990-
 B469a Autoencoder-based pattern mining applied to recommender systems /

Pedro Mariano Sousa Bezerra. – Campinas, SP : [s.n.], 2025.

 Orientador: Fernando José Von Zuben.
 Tese (doutorado) – Universidade Estadual de Campinas (UNICAMP),

Faculdade de Engenharia Elétrica e de Computação.

1. Sistemas de recomendação (Filtragem da informação). 2. Filtragem
colaborativa. 3. Autoencoders. 4. Redes neurais (Computação). 5. Mineração
de dados (Computação). I. Von Zuben, Fernando José, 1968-. II.
Universidade Estadual de Campinas (UNICAMP). Faculdade de Engenharia
Elétrica e de Computação. III. Título.

Informações complementares

Título em outro idioma: Autoencoders para mineração de padrões aplicados em
sistemas de recomendação
Palavras-chave em inglês:
Recommender systems
Collaborative filtering
Autoencoders
Neural networks
Data mining
Área de concentração: Engenharia de Computação
Titulação: Doutor em Engenharia Elétrica
Banca examinadora:
Fernando José Von Zuben [Orientador]
Denis Gustavo Fantinato
Emely Pujólli da Silva
Marcelo Garcia Manzato
Leonardo Chaves Dutra da Rocha
Data de defesa: 23-05-2025
Programa de Pós-Graduação: Engenharia Elétrica

Objetivos de Desenvolvimento Sustentável (ODS)
ODS: 3. Saúde e bem-estar

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-1491-145X
- Currículo Lattes do autor: http://lattes.cnpq.br/6733367490243236

Prof. Dr. Fernando José Von Zuben (Presidente)

Prof. Dr. Denis Gustavo Fantinato

Dra. Emely Pujólli da Silva

Prof. Dr. Marcelo Garcia Manzato

Prof. Dr. Leonardo Chaves Dutra da Rocha

A ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora,

encontra-se no SIGA (Sistema de Fluxo de Dissertação/Tese) e na Secretaria de Pós-

Graduação da Faculdade de Engenharia Elétrica e de Computação.

To my dearest father, who will be watching from the heavens.

Acknowledgements

I would like to express my sincere gratitude to my advisor, Prof. Fernando

José Von Zuben, for the guidance, the patience, and the valuable contributions during

the process of becoming a doctor.

I would like to thank as well my mother for the continuous and unconditional

support, and my colleagues of the Laboratory of Bioinformatics and Bioinspired Comput-

ing (LBiC) and the Viva Bem group for the academic and non-academic discussions.

Finally, I would like to acknowledge the organizations that funded this research.

Part of the results presented in this thesis were carried out as part of the project “Hub

de Inteligência Artificial em Saúde e Bem-Estar – VIVA BEM”, funded by Samsung

Eletrônica da Amazônia Ltda, under the terms of IT Law (Federal Law 8.248/91). This

work was also partially supported by the Conselho Nacional de Desenvolvimento Científico

e Tecnológico (grant 157999/2019-0).

“The greatest challenge to any thinker is stating the problem in a way that will allow a

solution.”

(Bertrand Russell)

Resumo

Filtragem Colaborativa é uma das técnicas mais utilizadas em Sistemas de Recomenda-

ção (RS - Recommender Systems) e pode ser considerada uma estratégia competitiva na

geração de recomendações para usuários. Entretanto, alguns desafios limitam a eficiência

de técnicas baseadas em Filtragem Colaborativa na medida em que o conjunto de dados

aumenta, como a esparsidade dos dados e um aumento significativo na demanda por re-

cursos computacionais. Para tratar estas questões, técnicas de mineração de dados têm

sido aplicadas para encontrar partições mais informativas do conjunto de dados, capazes

de reduzir efetivamente o custo computacional. Nesta tese, nós propomos um método de

filtragem colaborativa baseado em autoencoders, denominado APCF, do inglês Autoenco-

der Pattern-based Collaborative Filtering, um novo tipo de aplicação de autoencoder (AE)

em RS. Diferentemente dos paradigmas tradicionais que usam autoencoders para extrair

representações latentes ou diretamente reconstruir avaliações, o APCF utiliza um auto-

encoder como técnica de mineração de dados. Com a ajuda do método BinaPs, um AE

eficiente para mineração de padrões, obtém-se uma partição informativa do conjunto de

dados. Então, por meio de uma abordagem de K-vizinhos mais próximos baseada em itens

(IBKNN - Item-Based K-Nearest Neighbors), chega-se à predição das notas baseada na

similaridade entre itens pertencentes a uma mesma partição dos dados. Foram conduzidos

experimentos comparativos entre o método proposto e outros sistemas de recomendação

em diferentes conjuntos de dados. De modo geral, o APCF apresentou resultados compa-

ráveis aos dos métodos SVD++ e NMF e superiores aos do método de referência IBKNN.

Em um conjunto grande de dados sintéticos projetado para exibir alguns comportamentos

regulares, o APCF apresentou uma grande vantagem em escalabilidade, obtendo os me-

lhores resultados entre os métodos que foram capazes de executar a tarefa. O potencial do

método APCF foi também avaliado ao ser aplicado em recomendações na área da saúde

em dois contextos diferentes: atividade física e diagnóstico de sarcopenia. Apesar de ter

sido concebido para uso em grandes conjuntos de dados, o APCF apresentou resultados

semelhantes aos dos concorrentes em um problema do mundo real com poucos dados. Os

resultados corroboram a consistência, escalabilidade e robustez do método APCF em for-

necer recomendações de alta qualidade em diferentes cenários, e demonstram a eficiência

de uma nova abordagem para aproveitar a capacidade de autoencoders para solucionar

problemas recorrentes no desenvolvimento de sistemas de recomendação.

Palavras-chaves: sistemas de recomendação, filtragem colaborativa, autoencoders para

mineração de padrões.

Abstract

Collaborative Filtering (CF) is the most common approach for Recommender Systems

(RS) and can be considered a competitive strategy to provide personalized recommenda-

tions to users. However, some challenges limit the effectiveness of Collaborative Filtering

techniques as data volume escalates, such as data sparsity and a significant increase in de-

mand for computational resources. To help alleviate these issues, data mining techniques

have been applied to properly find more informative dataset partitions, which are capa-

ble of effectively reducing the computational burden. Here, we propose an Autoencoder

Pattern-based Collaborative Filtering (APCF) method, a novel kind of autoencoder (AE)

application in RS. Unlike traditional paradigms that use autoencoders to extract latent

factors or to directly reconstruct ratings, APCF employs an autoencoder as a data mining

technique. With the help of the BinaPs algorithm, an efficient AE technique for pattern

set mining, we find an informative dataset partition. Then, we adopt an Item-Based

K-Nearest Neighbors (IBKNN) approach to predict ratings based on the similarity be-

tween items within each partition. We carried out comparative experiments involving our

method and other recommender systems on benchmark and synthetic datasets. Overall,

our method performed similarly to the SVD++ and NMF methods and outperformed the

baseline IBKNN. On a large synthetic dataset designed to exhibit some regular behaviors,

APCF demonstrated a significant advantage in scalability, outperforming all competitors

that could run the task. We also evaluated APCF’s applicability for health recommenda-

tions in two different contexts: physical activity and sarcopenia diagnosis. Despite being

intended for use on large datasets, APCF performed similarly to the contender methods in

real-world problems with reduced-size data. The results corroborate our method’s consis-

tency, scalability, and robustness in providing high-quality recommendations in different

scenarios, and demonstrate the effectiveness of a novel approach to leveraging the power

of autoencoders in addressing persistent challenges in recommender systems.

Keywords: recommender systems, collaborative filtering, autoencoder-based pattern min-

ing.

List of Figures

Figure 1 – Example of a feed-forward neural network structure 20

Figure 2 – Illustrative example of an autoencoder structure for two-dimensional

data. 24

Figure 3 – Examples of contiguous biclusters in a binary matrix 43

Figure 4 – Outline of the APCF rating prediction approach. 47

Figure 5 – Example of the ratings matrix in a synthetic pattern-based dataset with

12 users (u1 to u12), 9 items (i1 to i9), ratings in the scale [0, 5] and

trat = 2.5. Entries associated with a pattern have the same color. On

the left, we see the matrix as created. On the right, the same matrix is

displayed after rearranging rows and columns and removing empty rows. 53

Figure 6 – Evolution of training loss over the epochs for different BinaPs param-

eters on the ml-100k dataset . 55

Figure 7 – Average pattern set size on the ml-100k dataset for different values of tbin 56

List of Tables

Table 1 – Parameter values for the generation of the synthetic datasets 53

Table 2 – Pattern set size for different BinaPs parameters on the ml-100k dataset 54

Table 3 – Average number of patterns on the ml-100k dataset for different values

of tbin and the corresponding average of item/pattern and number of

training samples . 55

Table 4 – Results of the experiments with APCF on the ml-latest-small dataset for

MAE, Precision@25, Recall@25, NDCG@25, and Coverage using trat = 2.5 57

Table 5 – Results of the experiments with APCF on the ml-latest-small dataset for

MAE, Precision@25, Recall@25, NDCG@25, and Coverage using trat = 3.5 58

Table 6 – Results of the experiments with APCF on the PatRec dataset for MAE,

Precision@25, Recall@25, NDCG@25, and Coverage for trat = 2.5 59

Table 7 – APCF’s performance comparison on the ml-100k dataset for trat =

2.5, N = 25, npat = 20, k = 400 and different values of tbin 59

Table 8 – Performance comparison of recommender systems on multiple datasets . 60

Table 9 – Runtime comparison of recommender systems on multiple datasets . . . 60

Table 10 – Sample entries of the SPE dataset . 62

Table 11 – Performance comparison of recommender systems on the SPE dataset

for high effort activities (trat = 3.0) . 63

Table 12 – European sarcopenia cut-off points . 64

Table 13 – Prevalence of features in patterns for the Sarcop-D dataset 64

Table 14 – Performance comparison of recommender systems on the Sarcop-D dataset 65

List of Nomenclature

ACF Autoencoder-based Collaborative Filtering

AE Autoencoder

APCF Autoencoder Pattern-based Collaborative Filtering

ASM Appendicular Skeletal Muscle Mass

BBCF Bicluster-Based Collaborative Filtering

BinaPs Binary Pattern Networks

CAE Contractive Autoencoder

CBF Content-Based Filtering

CDAE Collaborative Denoising Auto-Encoder

CF Collaborative Filtering

CFN Collaborative Filtering Neural Network

CKE Collaborative Knowledge Base Embedding

CNN Convolutional Neural Networks

CVAE Collaborative Variational Autoencoder

DAE Denoising Autoencoder

DCF Deep Collaborative Filtering

DCG Discounted Cumulative Gain

IBKNN Item-Based K-Nearest Neighbors

KB Knowledge Base

MAE Mean Absolute Error

MDAE Marginalized Denoising Autoencoder

MF Matrix Factorization

MSDAE Marginalized Stacked Denoised Autoencoder

NDCG Normalized Discounted Cumulative Gain

NMF Non-negative Matrix Factorization

NSS Nearest Neighbor Setup

PB Preprocessing Bias

PMF Probabilistic Matrix Factorization

QUBIC QUalitative BIClustering algorithm

RMSE Root Mean Squared Error

RS Recommender System

RSRDL Recommendation with Social Relationships via Deep Learning

SDAE Stacked Denoising Autoencoder

SMM Skeletal Muscle Mass

SPE Subjective Perception of Effort

SVD Singular Value Decomposition

TB Training Bias

TUG Timed-Up and Go

UBKNN User-based K-Nearest Neighbors

USBCF User-Specific Bicluster-based Collaborative Filtering

VAE Variational Autoencoder

Contents

1 Introduction . 16

2 Autoencoders . 19

2.1 Neural Networks . 19

2.2 Training neural networks . 21

2.2.1 Backpropagation algorithm . 22

2.3 Autoencoders: definition and applications 24

2.4 BinaPs: Differentiable Pattern Set Mining 25

2.5 Summary . 27

3 Recommender systems . 28

3.1 Definition and applications . 28

3.2 Collaborative Filtering . 29

3.2.1 Latent Factor Models for Collaborative Filtering 30

3.2.2 User-based Collaborative Filtering 32

3.2.3 Item-based Collaborative Filtering 33

3.2.4 User-based VS Item-based Recommendation 35

3.3 Common Issues in Recommender Systems 35

3.4 Summary . 36

4 Autoencoder-based Recommender Systems 38

4.1 Autoencoders in Recommender Systems 38

4.1.1 Autoencoders in latent factor-based models 39

4.1.2 Autoencoders in reconstruction-based models 40

4.2 Alternative Subspace Approaches: Biclustering 42

4.3 Overview of Related Work . 44

4.4 APCF: Autoencoder Pattern-based Collaborative Filtering 45

4.5 Summary . 47

5 Computational experiments . 49

5.1 Performance evaluation of Recommender Systems 49

5.2 Experimental Setting . 50

5.3 Experiments: Part 1 . 51

5.3.1 BinaPs training . 54

5.3.2 Recommendation results . 56

5.4 Experiments: Part 2 . 61

5.4.1 Physical activity recommendations 61

5.4.2 Sarcopenia Diagnosis . 63

5.5 Summary . 65

6 Conclusion . 67

Bibliography . 70

16

1 Introduction

The amount of available information is rapidly increasing with the develop-

ment of the web and the continued increase in the storage capacity of devices. Every-

where, people are compelled to decide among abundant options for products, services,

activities, textual content, etc., and finding the most promising choice can be challenging

and time-consuming. Many companies are committed to developing solutions to help their

customers find items of interest (ILIC; KABILJO, 2015).

Recommender systems (RS) are tools devised to produce personalized recom-

mendations to users, aiming to draw their attention to items of interest. These algorithms

usually predict how a user would rate a given item. The top-rated predictions are used to

generate personalized recommendations. Among several attempts in the literature, there

are two main approaches to building such a method: Content-Based Filtering (CBF) and

Collaborative Filtering (CF). CBF approaches explore item features to generate item rec-

ommendations based on the user’s previous actions or explicit feedback (Google Machine

Learning Education, 2022). CF approaches use all available ratings to make predictions

based on the user-item interactions. CF methods often outperform CBF approaches, re-

quire much less detailed information from users and items, and are the preferred choice

(STRUB et al., 2016).

Furthermore, RS can be classified into model-based and memory-based ap-

proaches (BEHERA; NAIN, 2022). The former employs a model learned from the dataset

using tools from different domains, such as graph theory, statistics, matrix factorization,

and machine learning. On the other hand, memory-based approaches use the entire user’s

rating history to find similarities between users and/or items and generate recommenda-

tions. Neighborhood-based models are common in memory-based CF approaches (SAR-

WAR et al., 2001). These methods employ a metric to evaluate the similarity between

all users or items, and build user/item neighborhoods formed by similar users/items. The

predicted rating is calculated as a weighted average of the neighbors’ ratings, with the

weights given by the similarities.

Many companies from different business sectors are adopting recommender

systems because good recommendations help improve user satisfaction, retain customers,

and increase sales (ILIC; KABILJO, 2015; HARDESTY, 2019). However, RS applica-

tions are not limited to these cases. In recent years, these methods have been applied in

health informatics and medicine, targeting health professionals and patients as end-users

(VALDEZ et al., 2016). Health Recommender Systems can help in the decision-making

process in health care services, and potentially improve the usability of health care devices.

Chapter 1. Introduction 17

Since RS reduces the amount of information generated by these devices, their acceptance

is continually increasing.

Among the issues commonly found in the development of recommender sys-

tems, we can mention sparsity and scalability (KUMAR; SHARMA, 2013). Usually, RS

datasets are sparse, meaning they have a small portion of rated items per user compared to

the total number of available entries. This creates a challenge for the prediction task and

degrades the method’s accuracy. The scalability problem refers to the fact that RSs tend to

perform worse as the dataset’s size increases. In neighborhood-based methods, computing

similarities among every pair of users/items becomes increasingly time-consuming.

To alleviate these issues, data processing is an important step in: (1) prop-

erly partitioning the whole dataset; (2) extracting useful implicit information; and (3)

mining local patterns to support recommendations. Mining techniques, such as biclus-

tering (SINGH; MEHROTRA, 2018), have been applied in collaborative filtering to find

dataset partitions containing groups of similar users and items. This way, computational

resources are spared since calculations can be more efficiently performed within a reduced

and highly informative subset of the whole dataset.

Other promising approaches for finding useful data representation are founded

on Autoencoders (AE) (KRAMER, 1991). These neural network models are formed by

concatenating an encoder, which is responsible for producing an informative encoding of

the input data, and a decoder, which aims to retrieve the original data from the encoding.

The models are trained to reconstruct the input data and implicitly learn a compact

encoding representation. The representations obtained by autoencoders can be interpreted

as nonlinear principal components, thus effectively capturing the input dataset’s manifold

(space of low dimension containing the essence of all variability) (GLOROT; BENGIO,

2010).

The application of autoencoders within RS is not new (ZHANG et al., 2020).

Many works in the literature have explored the use of autoencoders, typically following

two main paradigms to calculate rating predictions: either directly using the reconstructed

output as the predicted ratings or using the representations obtained by the autoencoder

in latent factor-based models.

This research focuses on analyzing a novel application of autoencoders in the

development of recommender systems. Instead of using traditional dimensionality reduc-

tion strategies, we propose here the use of AEs as mining techniques to identify highly in-

formative data partitions that enhance the characterization of user-item relations, thereby

improving the recommender system’s performance and scalability. With this in mind, we

propose a new method called Autoencoder Pattern-based Collaborative Filtering (APCF).

With the help of the BinaPs algorithm (FISCHER; VREEKEN, 2021), an efficient au-

toencoder technique for pattern set mining, we can obtain a highly informative dataset

Chapter 1. Introduction 18

partition. Then, we adopt an Item-Based K-Nearest Neighbors (IBKNN) (SARWAR et

al., 2001) approach to predict ratings based on the similarity between items within each

partition. We further compare the performance of our method with that of other RS

approaches in the literature across various recommendation scenarios.

The four questions guiding the research are:

• RQ1. Can autoencoders be successfully applied as mining techniques to support

and potentially enhance the performance of recommender systems?

• RQ2. How do the hyperparameters affect APCF’s performance?

• RQ3. How well does APCF perform compared to other recommender systems?

• RQ4. Which application scenarios are most suited for APCF?

The first chapters of this thesis are dedicated to discussing the background con-

cepts for our work: autoencoders and recommender systems. Chapter 2 introduces neural

networks, autoencoders, and the BinaPs method. In Chapter 3, we discuss recommender

systems, their common approaches, and some of the issues encountered in their develop-

ment. Chapter 4 presents related work and describes our proposed technique. Chapter 5

summarizes the computational experiments performed to investigate the research ques-

tions. The final chapter draws a conclusion and some ideas for future work.

19

2 Autoencoders

This chapter introduces autoencoders, a particular kind of neural network.

We start with a brief introduction to neural networks, and then we present the BinaPs

algorithm, an autoencoder-based pattern set mining technique that will be used in our

proposed method.

2.1 Neural Networks

Neural networks are mathematical models consisting of a combination of mul-

tiple basic units called neurons. A neuron, in turn, is a function given by:

y = f(wT · x + b), (2.1)

where x ∈ R
m is the array of input data, y ∈ R is the output, w ∈ R

m is the array of

weights, b ∈ R is the bias value and f : R→ R is an activation function. A neuron can be

seen as the evaluation of the activation function at the result of the inner product between

the weights and the input, added to the bias. The bias value is often not mentioned

explicitly and is considered an extra weight.

A neural network is formed by cascading layers of nodes. A layer is a group of

nodes connected to the same input. Each node represents a neuron with different weights,

thus producing different output values. Typically, the same activation function is used for

all neurons from a given layer, but different activation functions may be adopted. The

input layer is formed by sensor neurons responsible for distributing all the input signals

to all the neurons in the first inner layer. In a feed-forward network, the outputs of the

neurons from a given layer are treated as inputs for the neurons of the following layer.

On the other hand, recurrent networks are characterized by the existence of connections

between the output of neurons from a given layer and the input of neurons from previous

layers, creating feedback loops inside the structure. The final layer is called the output

layer; the previous layers are the inner layers. Fig. 1 shows an example of a feed-forward

neural network structure with a 3-dimensional input layer, an inner layer with five neurons,

and a 2-dimensional output layer.

The universal approximation theorem establishes that feed-forward neural net-

works are universal function approximators, which implies that, given a sufficient number

of neurons, the network can approximate any continuous function over compact subsets of

R
n with an approximation error as small as desired (HORNIK et al., 1989). This property

Chapter 2. Autoencoders 20

Figure 1 – Example of a feed-forward neural network structure

makes neural networks very useful when a mathematical model for an unknown mapping

is needed, and we have only the input data and the expected values for the outputs.

Convolutional Neural Networks (CNNs) represent a specialized class of deep

neural networks that have become the standard for tasks involving grid-like data, most

notably image analysis and computer vision (LECUN et al., 1998). CNNs employ a unique

architecture designed to automatically and adaptively learn spatial hierarchies of features

from input data. The core building blocks of a CNN are its convolutional layers, which ap-

ply a set of learnable filters (or kernels) to the input. Each filter slides, or convolves, across

the input’s width and height, computing the dot product between the filter’s entries and

the input at any position to produce a feature map. This operation allows the network

to detect specific features such as edges, corners, and textures. Following the convolu-

tional layers, pooling (or subsampling) layers are typically used to progressively reduce

the spatial dimensionality of the representation, which helps to decrease the number of

parameters and computational complexity in the network, while also providing a degree of

translational invariance. Finally, after several convolutional and pooling layers, the high-

level features are fed into one or more fully-connected layers to perform classification or

regression, mapping the learned features to the final output.

The first point to be approached during the conception of a neural network

is to decide its structure. We need to define the number of inner layers, the number of

neurons, and the type of activation function for each layer. Those decisions are often

non-trivial and require previous knowledge about the problem to build an efficient neural

network. We can find in the literature proposals of techniques to find and optimize models

for various applications (CAI et al., 2019).

Chapter 2. Autoencoders 21

2.2 Training neural networks

Model training is the process of finding the best model configuration for a

desired task given a dataset. In supervised learning, the expected output values (also

called labels, when they are discrete values) for the data samples are available and used

to train the model. On the other hand, unsupervised learning is a type of algorithm that

learns patterns from unlabeled data.

Training a neural network consists of determining the values of the weights for

each neuron. Ideally, we aim to find the values that maximize the model’s performance.

This corresponds to the configuration minimizing the model’s approximation error for

supervised networks. However, in most cases, this problem does not have a solution in a

closed form, given the high complexity and non-convexity of the neural network structure.

Thus, we resort to iterative optimization algorithms, which update the values at each

step, aiming to minimize a loss function L(x). The loss function L is chosen such that its

minimization reduces the neural network approximation error for the desired task.

Traditionally, neural networks are trained using gradient descent optimization

algorithms. At each iteration, the algorithm evaluates the gradient of the loss function

L (also known as the prediction error gradient) with respect to each weight for a batch

of training data. Then, the values are updated by adding a value proportional to the

gradient’s opposite direction. This way, the model takes a step in the direction that

currently decreases the error the most. Since it is a greedy approach, it does not guarantee

finding the optimal solution, i.e., the neural network configuration that minimizes the

approximation error. Furthermore, depending on the initial weight values and the training

batch size, the algorithm may get stuck in local minima. However, once the algorithm’s

convergence is assured, it is possible to train the model, or even retrain from a distinct

initial condition for the weights, until it reaches a sufficiently small error for the desired

application.

Feed-forward networks are trained with gradient descent optimization, using

the backpropagation algorithm to obtain the gradient vector. The procedure begins by

updating the weights of the output layer neurons, as it is straightforward to calculate

the gradient of the loss function L with respect to these quantities. Then, the gradient is

propagated to the previous layer and used to calculate the gradient of L with respect to

the weights of the previous layer’s neurons, which are then updated. The process repeats

for the whole network, from the output layer to the first inner layer.

The bias-variance dilemma is a key concept in model training that describes

the relationship between the accuracy of predictions and the generalization capability

of the learning model (GEMAN et al., 1992). As model complexity increases, it becomes

more flexible and can better fit the training data, thereby reducing bias. At the same time,

Chapter 2. Autoencoders 22

the model’s variance tends to increase, meaning that small fluctuations in the training

set result in high variability in the model’s predictions. This is called overfitting, and

the consequence is that the model generalizes poorly to data that were not used in the

training. The bias-variance trade-off is observed when we seek to improve the model’s

generalization. As we reduce the variance, the bias tends to increase, which may lead

to the opposite situation: underfitting. To reduce the generalization error, we look for a

balance between bias and variance. Standard practices include splitting the dataset into

training and validation sets and interrupting the training when the prediction error for

the validation set is achieved.

2.2.1 Backpropagation algorithm

Let wl ∈ R
nl×nl−1

be the weight matrix for the neurons in the lth layer, where

nl is the layer’s dimension, and wl
jk is the weight for the connection from the kth neuron

in the (l − 1)th layer to the jth neuron in the lth layer. We define bl ∈ R
nl

as the array of

bias, and al ∈ R
nl

as the array of neuron activations, given by:

al = f(zl) = f
(

wlal−1 + bl
)

, (2.2)

where zl is the weighted input to the neurons in layer l (NIELSEN, 2015).

We want to compute the partial derivatives of the loss function δL
δwl and δL

δbl .

We define the error δl
j of neuron j in layer l by:

δl
j =

δL

δzl
j

, (2.3)

and we denote δl the array of errors associated with layer l.

First, we compute the error δL in the output layer L, given by:

δL = ∇aL � f ′(zL), (2.4)

where ∇aL is the array whose components are the partial derivatives δL
δaL

j

, and � is the

element-wise multiplication operator. Then, we propagate the error backwards computing

δl in terms of the errors in the next layer δl+1:

δl =
(

(wl+1)T δl+1
)

� f ′(zl), (2.5)

Now, we can finally calculate the partial derivatives with respect to the weights

and biases for all layers:

Chapter 2. Autoencoders 23

δL

δbl
= δl, (2.6)

δL

δwl
= δl(al−1)T . (2.7)

Gradient descent optimization is performed in batches of n training samples.

We calculate the gradient for each training sample xi in a batch, and then we update the

weights for each layer by moving them in the opposite direction of the gradient’s average:

bl ← bl −
γ

n

n
∑

i=1

δL(xi)

δbl
,

wl ← wl −
γ

n

n
∑

i=1

δL(xi)

δwl
,

where γ is the learning rate. In stochastic gradient descent, the batches are formed by

a randomly selected subset of the data. A complete pass of all samples in the training

data defines an epoch. The process repeats for a given number of epochs nep. Algorithm

1 summarizes the main steps of the backpropagation algorithm.

Algorithm 1: Backpropagation
Input: training batch B, weight w, bias b, learning rate γ
gw, gb ← (0, 0) ; // Initialize gradient

for x in B do // For each sample

a0 ← x;
for l← 1 to L do // Forward pass

zl ← wlal−1 + bl ; // Compute weighted input

al ← f(zl) ; // Compute neuron activation

end

L ← L(x, w, b) ; // Compute loss

δL = ∇aL � f ′(zL) ; // Compute output error

gL
w ← gL

w + δL(aL−1)T ; // Output gradient

gL
b ← gL

b + δL;
for l← L− 1 to 1 do // Backward pass

δl =
(

(wl+1)T δl+1
)

� f ′(zl) ; // Compute error

gl
w ← gl

w + δl(al−1)T ; // Weight gradient

gl
b ← gl

b + δl ; // Bias gradient

end

end

for l← 1 to L do // Gradient descent

wl ← wl − γ

|B|
gl

w ; // Update weight

bl ← bl − γ

|B|
gl

b ; // Update bias

end

Chapter 2. Autoencoders 24

2.3 Autoencoders: definition and applications

Autoencoders (AE) are feed-forward neural networks made popular by Kramer,

whose structure has two parts: an encoder and a decoder (KRAMER, 1991). The first inner

layers make the encoder, which is responsible for producing an encoding or representation

of the input data. The final layers belong to the decoder, which aims to retrieve the original

data from the encoding. The general purpose of an autoencoder is then to reconstruct the

input information at the output. A proper reconstruction requires a highly informative

code generation at the output of the encoder.

Typically, the encoding produced by autoencoders has the property of dimen-

sionality reduction, i.e., the representation has a dimension smaller than the dimension

of the input data. To achieve this behavior, the encoder layers are built with a decreasing

number of units, while the opposite holds for the decoder layers. This creates a bottleneck

in the neural network situated at the connection between the encoder and the decoder.

Given that the encoder and decoder are trained simultaneously, a high-quality

reconstruction at the decoder should be associated with a high-quality coding step at

the output of the encoder. That is why the autoencoder structure requires a coding step

followed by a reconstruction step, which maps the code at the bottleneck to a version as

close as possible to the input content. The model implicitly learns a compact representa-

tion, carrying enough information to retrieve the original data. Fig. 2 shows an example

of an autoencoder structure that may include convolutional and fully connected layers to

obtain low-dimensional matrix representations.

Figure 2 – Illustrative example of an autoencoder structure for two-dimensional data.

The dimensionality reduction introduced by autoencoders makes them good

candidates to implement a cascade of knowledge representation filters in deep neural

Chapter 2. Autoencoders 25

networks (GLOROT; BENGIO, 2010; TONG et al., 2021).

Another interesting application for autoencoders can be found in recommender

systems (ZHANG et al., 2020), a class of methods that will be introduced in the next

chapter. The highly informative and compact representations obtained at the bottleneck

of autoencoders often lead to competitive recommender systems, both in terms of per-

formance and scalability, especially in large datasets, where traditional methods scale

poorly.

2.4 BinaPs: Differentiable Pattern Set Mining

The pattern set mining techniques succeed in finding small sets of valuable

and informative data patterns. However, this task is costly as the pattern set search

space grows with double exponential complexity. Hence, the most employed techniques are

heuristics, which have limitations on the number of features and no guarantee of finding

optimal solutions. In (FISCHER; VREEKEN, 2021), the authors proposed the Binary

Pattern Networks (BinaPs) method, an interpretable neural autoencoder for binary data.

By resorting to a gradient-based approach instead of a combinatorial one, this technique

stands out for its scalability and ability to handle noise and deal with sparsity.

BinaPs’ network structure consists of two linear layers, one for the encoder

and another for the decoder, sharing the same continuous weights and a novel binary

activation function. In each forward pass, weights are binarized, and the neurons in the

hidden layer are interpreted as conjunctive patterns. The training adopts a reconstruction

loss that takes into account both dense and sparse data, which allows the network to be

applied to many types of datasets.

Let R ∈ {0, 1}n×m be a binary matrix of n samples and m features, R[i] the

i-th row in the data matrix, R[i, j] the value of feature j ∈ [1, m] for the i-th sample, k

the hidden layer’s size, W ∈ R
k×m the weight matrix, Wb ∈ {0, 1}k×m the corresponding

binarized weights, b ∈ R
k the bias and bd ∈ Z

k its discretization. BinaPs aims to find the

pattern set P , where each pattern p ∈ P, p ⊂ {1, 2, ..., m} is a set of correlated features.

Each neuron in the hidden layer represents an encoded pattern interpreted from Wb, with

Wb[i, j] indicating whether feature j is part of pattern i. The pattern set P corresponds

to the aggregated patterns from all neurons.

The encoding and decoding layers activation functions fE, fD : R −→ {0, 1},

respectively, are given by:

fE(x) = round(clamp(x + bd, 0, 1)), (2.8)

Chapter 2. Autoencoders 26

fD(x) = round(clamp(x, 0, 1)), (2.9)

where clamp is the clamping function defined by:

clamp(x, lb, ub) =























lb if x < lb;

x if lb ≤ x ≤ ub;

ub if x > ub.

(2.10)

For sample r ∈ R in the forward pass, y = fE(rW T
b) is the result of the

encoding layer, and the network output is computed by zr = fD(yWb). The autoencoder

is trained using the traditional gradient descent approach with the continuous parameters

W and b and minimizing the loss function L given by:

L(R, W, b) =
∑

r∈R

‖zr − r‖. (2.11)

For sparse data, a sparsity-dependent reconstruction loss Lβ is adopted:

Lβ(r, W, b) =
m

∑

j=1

[(1− rj)β + rj(1− β)] · |zr,j − rj|, (2.12)

where rj is the j-th feature of sample r, zr,j is its corresponding network output, and β

is the data sparsity given by:

β =

n
∑

i=1

m
∑

j=1
R[i, j]

n ·m
. (2.13)

An approximation is used for the derivative of the activation functions since

there is no analytical solution. For the decoder activation fD(x) with incoming gradient

flow g0, the derivative is given by the straight-through-estimator:

dfD

dx
= 1g0. (2.14)

For the encoder, a gated straight-through estimator is adopted:

dfE

db
=







g0 if fE(x) = 1;

0 if fE(x) = 0;
(2.15)

dfE

dx
=







g0 if fE(x) = 1;

max(0, g0) if fE(x) = 0.
(2.16)

After updating the weights, the bias is discretized according to Eq. (2.17):

Chapter 2. Autoencoders 27

bd[i] = min(db[i]e,−1). (2.17)

The weights are clamped to be in the range [1
m

, 1], and the binarized weights

are drawn from a Bernoulli distribution as in Eq. (2.18). Hence, for each neuron, we expect

at least 1 of the m items to be assigned to its pattern, no matter the data dimension:

Wb[i, j] = B(W [i, j]). (2.18)

To train BinaPs on a dataset R, we need to define the maximum number of

epochs nep. We choose the number of neurons in the hidden layer k, equal to the number

of features m by default. The optimizer also requires defining the following parameters:

batch size lb, initial learning rate γ, and learning rate step η. The learning rate decays

by η once the number of epochs reaches one of the milestones, which are set by default

to 50% and 70% of nep. For more details on the algorithm, see (FISCHER; VREEKEN,

2021).

2.5 Summary

We start this chapter with a brief introduction to neural networks, where we

talk about model formulation, structure, and training. Then, we discuss Autoencoders, a

particular kind of neural network model formed by the concatenation of an encoder and

a decoder. Autoencoders are trained to generate an effective encoding of the input data

while reconstructing its content at the output. The dimensionality reduction allows these

models to be applied in many domains, such as deep learning and recommender systems.

Next, we present the BinaPs algorithm, a robust and efficient autoencoder for pattern

set mining on binary data, which will be a key element of the method we will propose

later. BinaPs adopts a binarized version of the model weights in its forward pass and

adopts a loss function suited for sparse datasets. The binary weights can be interpreted

as conjunctive patterns, indicating sets of correlated features. We finish this chapter by

detailing the Binaps training procedure, a gradient descent-based approach, which makes

the technique stand out compared to traditional combinatorial approaches for pattern set

mining.

28

3 Recommender systems

This chapter discusses Recommender Systems, a class of algorithms devoted

to personalized recommendations. We present the main concepts, some variations, and

the main challenges encountered in their development.

3.1 Definition and applications

Web development and technology evolution have increased the amount of avail-

able information, leading to a wide range of products and services. Recommender Systems

(RS) are tools devised to produce personalized recommendations to users, aiming to draw

their attention to items of interest, e.g., music tracks, movies, books, etc. Many companies

from different business sectors are adopting recommender systems because good recom-

mendations help improve user satisfaction, retain customers, and increase sales. Examples

of big companies making extensive use of recommender systems are Netflix (BENNETT;

LANNING, 2007), Facebook (ILIC; KABILJO, 2015), and Amazon (HARDESTY, 2019).

Algorithms for recommender systems usually predict how a user would rate

an unseen item based on the ratings he and other users provided, and on user/item

information, such as user demographics, item characteristics, etc. (LAMPROPOULOS;

TSIHRINTZIS, 2013) To formulate the recommendation problem, we must define U =

{u1, u2, ..., un} as the set of n users and I = {i1, i2, ..., im} as the set of m items that can

be recommended. Let f be a utility function establishing how useful item i is to user u:

f : U × I → V, (3.1)

where V is a totally ordered set, e.g., the real numbers in the interval [0, 5], representing

the ratings, usually stored in a matrix R, called the ratings matrix. Each row of R contains

the ratings a user gives for each item, and each column represents the rating users give for

a specific item. The matrix R is usually sparse, as users only provide ratings for a small

portion of the available items.

In a recommendation problem, our goal is to find the item ju ∈ I that maxi-

mizes the utility function for each user u ∈ U :

∀u ∈ U, ju = arg max
i∈I

f(u, i), (3.2)

Two approaches are usually adopted to generate predictions: model-based and

memory-based (BEHERA; NAIN, 2022). The former employs a model learned from the

Chapter 3. Recommender systems 29

dataset using tools from different domains, such as graph theory, statistics, matrix factor-

ization, and machine learning. In contrast, the latter uses the entire user’s rating history

to find similarities between users or items and recommend unseen items. Hybrid methods

combine memory-based and model-based approaches, allowing us to leverage both histor-

ical user rating data and user/item attributes. The enriched available information may

improve performance but restrict applicability solely to more informative datasets.

In general, there are two main categories of recommender systems: Content-

Based Filtering (CBF) and Collaborative Filtering (CF). Content-based filtering methods

generate recommendations based on information extracted from item features, the user’s

historical records, or explicit feedback (BURKE, 2002). The model should infer user prefer-

ences without relying on information about other users. On the other hand, Collaborative

Filtering approaches use available ratings for all users and items to predict ratings based

on user and/or item similarities. These systems can recommend an item to user A based

on two aspects: the similarity of interests when comparing the behavior of users A and B,

and a high rate assigned to that specific item by user B. CF methods are often preferred

over CBF methods because the former only relies on the users’ ratings, while the latter

requires advanced engineering on items to perform well (STRUB et al., 2016).

3.2 Collaborative Filtering

CF methods assume that similar users share preferences for similar items and

rely solely on the ratings provided by the users without performing content analysis.

Model-based CF approaches build a probabilistic model using the underlying data, apply-

ing techniques from statistics and machine learning, for instance. The model is then used

to predict ratings for unseen items and needs to be updated regularly. These techniques

often focus on retrieving potential latent factors from the rating matrix (ALSHBANAT et

al., 2025). A well-established example is the Singular Value Decomposition (SVD) method,

which uses matrix factorization to reduce the dimensionality of the ratings matrix. It be-

came popular when Simon Funk introduced it during the Netflix Prize contest (FUNK,

2006). Another notable representative is the SVD++ method, which extends the classic

SVD latent-factor model by incorporating implicit feedback. The SVD++ is considered

a reference method in CF (KOREN, 2008).

Memory-based methods use the entire ratings matrix to find similarities be-

tween users and/or items and calculate predictions. They are usually based on the Near-

est Neighbors approach and can be classified as User-based or Item-based methods. In

neighborhood-based methods, a proximity metric is used to calculate the similarity be-

tween users or items and find the similar neighbors that will be used to calculate the

predictions.

Chapter 3. Recommender systems 30

3.2.1 Latent Factor Models for Collaborative Filtering

Latent factor models transform both users and items into a common latent

factor space of dimensionality f , making them directly comparable. Each user u is asso-

ciated with a user-factors vector pu ∈ R
f , and each item i with an item-factors vector

qi ∈ R
f . These factors may represent abstract dimensions, such as genre, character depth,

or other uninterpretable characteristics that are automatically inferred from the data.

The prediction for a rating rui is then computed as the inner product of these vectors:

r̂ui = pT
u qi.

One of the most popular realizations of latent factor models is based on matrix

factorization, famously popularized by techniques used in the Netflix Prize competition

(FUNK, 2006). While applying traditional Singular Value Decomposition (SVD) is diffi-

cult due to the high number of missing ratings in the user-item matrix, modern approaches

overcome this by modeling only the observed ratings and using regularization to prevent

overfitting (KOREN, 2008). The predicted rating Pu,i is calculated by taking an inner

product:

Pu,i = bui + pT
u qi, (3.3)

where bui is a bias term that accounts for user and item effects, given by:

bui = µ + bu + bi, (3.4)

where µ is the overall average rating, and bu and bi are the observed deviations from the

average of user u and item i, respectively. The corresponding prediction error eu,i is given

by:

eu,i = R[u, i]− Pu,i. (3.5)

The model is obtained by finding the parameters p∗, q∗ and b∗ minimizing the

Root Mean Squared Error (RMSE) of the prediction given by:

RMSE =

√

√

√

√

√

∑

(u,i)∈K
e2

u,i

|K|
, (3.6)

where K = {(u, i)|∃R[u, i]} is the training set formed by users and items for which a

rating is known. To avoid overfitting, a regularization parameter λ1 is introduced, guiding

to the following regularized least squares problem:

Chapter 3. Recommender systems 31

min
p∗,q∗,b∗

∑

(u,i)∈K

(R[u, i]− µ− bu − bi − pT
u qi)

2 + λ1(‖pu‖
2 + ‖qi‖

2 + b2
u + b2

i). (3.7)

This formulation is often solved using techniques such as stochastic gradient

descent to estimate the model parameters. We loop over the training set K, and for each

sample (u, i), we evaluate the predicted rating Pu,i, the corresponding prediction error eu,i

and update the parameters by moving them in the opposite direction of the gradient with

learning rate γ, yielding:

• bu ← bu + γ(eu,i − λ1bu);

• bi ← bi + γ(eu,i − λ1bi);

• qi ← qi + γ(eu,ipu − λ1qi);

• pu ← pu + γ(eu,iqi − λ1pu).

The SVD++ enriches the basic SVD approach by incorporating implicit user

feedback into the latent factor model. Natural implicit feedback can be easily obtained

by binarizing the ratings matrix, setting 1 to entries with known ratings and 0 otherwise.

In other words, the ratings matrix implicitly tells us all the items a user has interacted

with, regardless of their ratings. Incorporating this and other implicit data significantly

improves the model’s prediction accuracy (KOREN, 2008).

The prediction rule for the SVD++, given by Eq. (3.8), is modified to accom-

modate the implicit data N [u] for user u:

Pu,i = bui + qT
i



pu + |N [u]|−
1

2

∑

j∈N [u]

yj



 , (3.8)

where yj ∈ R
f is a factor-array associated with item j. The user factor pu from the basic

model given by Eq. (3.3) is now added to the term |N [u]|−
1

2

∑

j∈N [u] yj that accounts for

implicit feedback. The model is obtained by solving the following least squares problem:

min
p∗,q∗,y∗,b∗

∑

(u,i)∈K



R[u, i]− µ− bu − bi − qT
i



pu + |N [u]|−
1

2

∑

j∈N [u]

yj









2

+ λ2(b
2
u + b2

i) + λ3



‖pu‖
2 + ‖qi‖

2 +
∑

j∈N [u]

‖yj‖
2)



 . (3.9)

We obtain the parameters with gradient-descent optimization by computing:

Chapter 3. Recommender systems 32

• bu ← bu + γ(eu,i − λ2bu);

• bi ← bi + γ(eu,i − λ2bi);

• qi ← qi + γ(eu,i(pu + |N [u]|−
1

2

∑

j∈N [u] yj)− λ3qi);

• pu ← pu + γ(eu,iqi − λ3pu);

• ∀j ∈ N [u] : yj ← yj + γ(eu,i|N [u]|−
1

2 qi − λ3yj).

3.2.2 User-based Collaborative Filtering

User-based Collaborative Filtering systems are memory-based methods that

make predictions based on user similarities, i.e., they deal with the rows of the rating

matrix R. In this approach, to generate recommendations for a target user, we build

a user neighborhood formed by customers who have shown similar preferences to the

target user. Then, the items the neighbors like and that are unknown to this user are

recommended.

In order to build the neighborhood, we calculate the similarity between each

pair of users in the ratings matrix using a proximity metric. The Pearson correlation coef-

ficient (RESNICK et al., 1994) evaluates the similarity between users u1 and u2 according

to the following equation:

sim(u1, u2) =

∑

i∈T
(R[u1, i]−R[u1])(R[u2, i]−R[u2])

√

∑

i∈T
(R[u1, i]−R[u1])2

∑

i∈T
(R[u2, i]−R[u2])2

, T = Iu1
∩ Iu2

, (3.10)

where R[u, i] is the rating given by user u to item i, Iu is the set of items rated by user

u, and R[u] is the user’s average rating for a collection of items T , calculated as:

R[u] =

∑

i∈T
R[u, i]

|T |
. (3.11)

The cosine-based similarity (BREESE et al., 1998) is another similarity metric

that computes the cosine angle between two vectors:

sim(u1, u2) =

∑

i∈T
R[u1, i]R[u2, i]

√

∑

i∈T
R[u1, i]2

∑

i∈T
R[u2, i]2

, T = Iu1
∩ Iu2

. (3.12)

The Pearson correlation coefficient tends to perform better than the cosine

similarity for User-based CF methods (BREESE et al., 1998).

Chapter 3. Recommender systems 33

As we evaluate the similarity between each pair of users, we build a user

similarity matrix Su, where each matrix’s entry Su[i, j] stores the similarity between users

ui and uj, i.e., Su[i, j] = sim(ui, uj). Then, we can build the neighborhood for a target

user ut adopting a center-based scheme, in which the neighbors are the most similar users

to ut. An alternative is to use an aggregate formation scheme, in which the neighborhoods

are defined by centroids, and are gradually built by adding each user to the neighborhood

with the closest centroid (LAMPROPOULOS; TSIHRINTZIS, 2013).

In order to generate recommendations for the target user ut, we need to predict

the ratings for items not rated by ut. The predicted values must be in the same range as

those observed in the ratings matrix R. Let it be an item for which we want to predict

the unknown rating Put,it
. The prediction only considers the subset of users M , selected

from those who have rated the item it and are in the target user’s neighborhood ut. The

predicted value is calculated as a weighted sum of the ratings of it given by the selected

users, as shown in Eq. (3.13):

Put,it
= R[ut] +

∑

u∈M
(R[u, it]−R[u]) · sim(ut, u)

∑

u∈M
|sim(ut, u)|

. (3.13)

In User-based K-Nearest Neighbors (UBKNN) approaches (HERLOCKER et

al., 2004), the subset M contains the k most similar users to the target user who have

rated the item it, where k is a parameter to be defined.

The RS will recommend the items with the best-predicted ratings. For in-

stance, a value tr may be defined as a relevance threshold, and the output will include

all items whose predicted ratings are above tr. Alternatively, the output can be a top-N

recommendation list, obtained by sorting the predicted ratings in descending order and

selecting the first N items.

3.2.3 Item-based Collaborative Filtering

Item-based CF approaches work with the relationship between the ratings

matrix’s columns instead of rows, i.e., items instead of users. User relations are much more

subject to changes, as users are constantly interacting with new items. This increases the

computational cost of user-based CF approaches, as keeping the user similarity matrix

updated is computationally expensive (LAMPROPOULOS; TSIHRINTZIS, 2013).

The item-based approach is similar to the user-based approach, except that we

use the similarities between items rather than users. To evaluate the similarity between a

pair of items i1 and i2, we can use the Pearson correlation coefficient, given by Eq. (3.14),

and the cosine similarity, given by Eq. (3.15).

Chapter 3. Recommender systems 34

sim(i1, i2) =

∑

u∈V
(R[u, i1]−R[i1])(R[u, i2]−R[i2])

√

∑

u∈V
(R[u, i1]−R[i1])2

∑

u∈V
(R[u, i2]−R[i2])2

, V = Ui1
∩ Ui2

; (3.14)

sim(i1, i2) =

∑

u∈V
R[u, i1]R[u, i2]

√

∑

u∈V
R[u, i1]2

∑

u∈V
R[u, i2]2

, V = Ui1
∩ Ui2

; (3.15)

where Ui is the set of users who rated item i, and R[i] is the item’s average rating for a

collection of users V , calculated as:

R[i] =

∑

u∈V
R[u, i]

|V |
. (3.16)

These metrics do not consider the variation in rating scales among different

users. The Adjusted Cosine Similarity (SARWAR et al., 2001), given by Eq. (3.17), ad-

dresses this issue by subtracting the user’s average from each co-rated pair of ratings:

sim(i1, i2) =

∑

u∈V
(R[u, i1]−R[u])(R[u, i2]−R[u])

√

∑

u∈V
(R[u, i1]−R[u])2

∑

u∈V
(R[u, i2]−R[u])2

, V = Ui1
∩ Ui2

, (3.17)

where R[u] is the average rating of all the items rated by user u, calculated using T =

{i : ∃R[u, i]} in Eq. (3.11).

Once the item similarity matrix Si is obtained, for which Si[j, k] = sim(ij, ik),

we find the item neighborhoods using the same schemes adopted in user-based approaches.

To predict the rating Put,it
for the target user ut on item it, we consider a subset of items

L, selected from the items rated by the target user ut in the neighborhood of the item it.

The predicted value is calculated as a weighted sum of the ratings of the items in L given

by the target user, as shown in Eq. (3.18):

Put,it
=

∑

j∈L
R[ut, j] · sim(it, j)

∑

j∈L
|sim(it, j)|

. (3.18)

In Item-based K-Nearest Neighbors (IBKNN) approaches (SARWAR et al.,

2001), the subset L contains the k most similar items to the item it rated by the target

user ut. Eq. (3.19) shows an alternative version for calculating the predictions, using the

centered ratings:

Chapter 3. Recommender systems 35

Put,it
= R[it] +

∑

j∈L
(R[ut, j]−R[j]) · sim(it, j)

∑

j∈L
|sim(it, j)|

. (3.19)

3.2.4 User-based VS Item-based Recommendation

Five criteria must be considered when choosing between a user-based or an

item-based collaborative filtering approach. First, the recommendation Accuracy depends

on the ratio between the number of users and items in the dataset. Usually, we prefer a

small number of high-confidence neighbors over many neighbors with non-reliable simi-

larity values. Therefore, if the number of users is much greater than the number of items,

an item-based approach is preferable, while a user-based approach is more adequate for

systems with fewer users than items (DESROSIERS; KARYPIS, 2011).

Second, we consider the recommender system’s Efficiency, which also depends

on the previously mentioned user/item ratio. Similarly, item-based approaches outperform

user-based approaches when the number of users is significantly higher than the number

of items, which is typically the case, as they have smaller space and time complexities,

making them more scalable.

Another criterion to be considered is the dataset Stability. We prefer an item-

based approach when the list of available items is less subject to change than the users

in the dataset. If the opposite is true, a user-based approach is more suitable.

The recommender system’s Explicability is also a factor. Item-based approaches

are more explicable, as it is easier for the target user to understand the recommendations

when they are justified by presenting the similar items used to calculate the prediction.

This allows the user to participate in the recommendation process, which is less likely in

user-based approaches, as the target user does not know the other users employed in the

process.

Finally, we consider the recommendations Serendipity or novelty. Item-based

approaches usually recommend items similar or related to those the target user appreci-

ates, resulting in safe recommendations. User-based approaches, on the other hand, are

more likely to provide serendipitous recommendations, as similar users may have inter-

acted with items from different categories, which allows the target user to discover new

preferences.

3.3 Common Issues in Recommender Systems

The Cold-Start Problem (SCHEIN et al., 2002) is a common issue in Collab-

orative Filtering approaches, and occurs when making recommendations for a new user

Chapter 3. Recommender systems 36

or a new item. The RS struggles to predict ratings for users with unknown preferences

and items that have not been rated by any user. This problem is related to the system’s

coverage, a metric evaluating the domain of items for which the RS can provide a recom-

mendation. Solutions for this problem include using content-based or hybrid approaches

to infer item similarities from content information and introducing randomness in the

system to avoid recommending items similar to those already rated (LAMPROPOULOS;

TSIHRINTZIS, 2013).

In RS, we simultaneously seek Serendipity and Quality in recommendations.

However, there is a trade-off between these goals. The quality of the recommendations is

associated with how much the user trusts them (SARWAR et al., 2000), and the RS should

avoid recommending non-desirable items when seeking high-quality recommendations.

However, the novelty rate is increased by prioritizing fresh items over old-fashioned ones,

possibly leading to poor-quality recommendations since users won’t be familiar with them.

Usually, RS datasets have a Sparsity problem: there is a small portion of rated

items per user compared to the total number of available entries. This creates a challenge

for the prediction task, degrading the method’s accuracy. In user-based approaches, the

similarity is calculated only between users who have rated items in common, which re-

duces the number of neighbors in sparse datasets, compromising the coverage. Among the

alternatives proposed to address this issue are content-based, item-based approaches, and

hybrid approaches (BURKE, 2002).

Scalability is also a common problem in recommender systems. As the size

of the database increases, the method requires more computational resources (KUMAR;

SHARMA, 2013). In neighborhood-based methods, computing similarities between every

pair of users/items becomes increasingly time-consuming. The scalability problem can be

addressed using data mining techniques to partition the entire dataset into subsets of

individuals who share similar interests. For instance, the market segmentation strategy

(KOTLER; ARMSTRONG, 2010) creates small groups of users sharing similar preferences

for specific products, thus allowing the generation of group-specific recommendations

(PARK; NAM, 2019). Since the dimensions of the rating matrix are usually very high, it

makes sense to resort to the similarity between subsets of users based on their preferences

for a subset of items. The similarity of users and items is evaluated within partitions

instead of the entire ratings matrix, thereby reducing the computational burden.

3.4 Summary

In this chapter, we introduced Recommender Systems, a class of methods devel-

oped to generate personalized recommendations for users. They are divided into two main

categories: Content-Based Filtering (CBF) and Collaborative Filtering (CF). The former

Chapter 3. Recommender systems 37

generates recommendations based on users’ historical records or explicit feedback. On the

other hand, the latter explores all the available ratings for all users to make predictions

based on user/item similarities. We discussed some of the most important approaches for

CF, starting with the Singular Value Decomposition (SVD) method and its extension, the

SVD++, two model-based techniques that use matrix factorization and gradient descent

optimization to generate predictions. Then, we discussed neighborhood-based approaches,

which focus on identifying similar users (in User-based CF) or similar items (in Item-based

CF) to build user/item neighborhoods. We presented the most common metrics used to

evaluate the similarity between users and items, as well as the prediction formulation in

each case. We follow this with a discussion of points to consider when choosing between

a User-based approach and an Item-based approach, such as the recommender system’s

accuracy and efficiency, which depend on the dataset’s user-to-item ratio. We conclude the

chapter by pointing out some of the common issues encountered during the development

of recommender systems, including sparsity and scalability.

38

4 Autoencoder-based Recommender Sys-

tems

In this chapter, we present a literature review on autoencoders and alterna-

tive subspace approaches applied in recommender systems. Subsequently, we introduce

our proposed recommender system, properly highlighting the main advantages over the

existing approaches. It consists of a Collaborative Filtering method using the IBKNN

approach, which utilizes data representations obtained with the help of an autoencoder,

specifically the BinaPs algorithm, detailed in Section 2.4. In this case, we find a repre-

sentation of the ratings matrix given by a pattern set. Our intention is to take advantage

of BinaPs’ high scalability and robustness to sparse data. We will refer to the proposed

method as APCF (Autoencoder Pattern-based Collaborative Filtering).

4.1 Autoencoders in Recommender Systems

The adoption of deep learning techniques, most notably autoencoders, has

emerged as an alternative to address the limitations observed in the development of recom-

mender systems. Their architecture’s capability to learn complex, non-linear relationships

within data makes it particularly well-suited for addressing the challenges inherent to RS,

such as dealing with sparse and large-sized user-item interaction matrices and capturing

nuanced user preferences (BANK et al., 2021). By learning a compressed representation of

user-item interactions, autoencoders can effectively reduce the dimensionality of the data,

mitigating the sparsity issue and improving the efficiency of recommendation algorithms

(HUANG et al., 2024). Furthermore, the non-linear nature of autoencoders allows them

to capture complex relationships between users and items that linear methods may fail

to identify.

Various autoencoder architectures have been explored for recommender sys-

tems, including Denoising Autoencoders (DAE) (VINCENT et al., 2008) and Variational

Autoencoders (VAE) (KINGMA; WELLING, 2019). DAE models are trained to recon-

struct the input from a corrupted version, being employed to enhance the robustness of

the learned representations and improve generalization performance. Stacked Denoising

Autoencoders (SDAE) stack various DAEs to achieve higher-level representations. In con-

trast, Marginalized Denoising Autoencoders (MDAE) alleviate their high computational

cost by marginalizing stochastic feature corruption (ZHANG et al., 2020). VAE models

extend the basic autoencoder architecture by introducing probabilistic elements, making

them particularly useful in recommender systems, as these models are robust to data

Chapter 4. Autoencoder-based Recommender Systems 39

sparsity and compatible with other deep learning-based models when dealing with multi-

modal data. In addition, the deep generative structure of VAEs helps to perform Bayesian

inference in an efficient manner (LIANG et al., 2024).

Within recommendation systems, autoencoders are typically employed in one

of two main paradigms. The first approach primarily utilizes the autoencoder for feature

extraction, where the compressed representation from the encoder’s bottleneck layer serves

as a set of rich, nonlinear latent factors for users and items. These factors can then be used

in subsequent prediction models, analogous to how traditional matrix factorization models

operate, such as Singular Value Decomposition (SVD) (KOREN, 2008). The second, more

direct approach, uses the reconstruction capability of the autoencoder for prediction. In

this framework, an incomplete rating vector for a user or item is fed into the network,

and the reconstructed, dense output vector is used to predict the missing ratings directly.

Seminal models such as AutoRec and its extensions (HUANG et al., 2024) are prime

examples of this reconstruction-based methodology.

4.1.1 Autoencoders in latent factor-based models

We present in this section some methods exploring autoencoders for feature

extraction in RS. Latent factor models, in particular, have shown great promise in the

development of recommender systems. They function by transforming high-dimensional

and sparse user-item interaction data into a dense, lower-dimensional latent space where

users and items can be directly compared. Early successes in this area were driven by

Matrix Factorization (MF) techniques, such as SVD, Non-negative Matrix Factorization

(NMF) (LUO et al., 2014), and Probabilistic Matrix Factorization (PMF) (SALAKHUT-

DINOV; MNIH, 2007). However, the inherent linearity of these models can limit their

ability to capture the complex, non-linear relationships present in user preference data.

Autoencoders have been integrated into collaborative filtering frameworks to learn latent

representations of users and items from the observed interaction data. Regularization

techniques play a crucial role in preventing overfitting and ensuring that the learned

compressed representation is meaningful (BANK et al., 2021).

Deep Collaborative Filtering (DCF) (LI et al., 2015) is a method that integrates

PMF and a Marginalized Stacked Denoising Autoencoder (MSDAE) , using both the rating

matrix and side information. User and item latent features are learned through PMF,

and MSDAE is used to extract contextual features, which are then connected with the

latent features in the model. Recommendation with Social Relationships via Deep Learning

(RSRDL) (RAFAILIDIS; CRESTANI, 2017) uses a similar approach, combining MF and

MSDAE, but using implicit feedback for MF and social relationships data for MSDAE. It

employs a joint objective function that enforces the latent user-item features to be as close

as possible to the representations of social relationships obtained by the autoencoder.

Chapter 4. Autoencoder-based Recommender Systems 40

Collaborative variational autoencoder (CVAE) (LI; SHE, 2017) is a Bayesian

generative model designed to integrate item content information (e.g., text from reviews,

movie plots, or other multimedia features) with rating data. The CVAE architecture works

in two main stages. First, it uses a VAE to learn a deep, latent probabilistic representation

of the items’ content data in an unsupervised fashion. In the second stage, these learned

content representations are integrated with user rating information within a unified col-

laborative filtering framework. The model learns implicit relationships between users and

items by considering both the features derived from the content and the explicit signals

from the ratings.

Another powerful approach to enhancing latent factor models involves leverag-

ing external, structured knowledge. The Collaborative Knowledge Base Embedding (CKE)

(ZHANG et al., 2016) exemplifies this by fusing collaborative filtering with information

from a Knowledge Base (KB). KBs contain a wealth of factual information about items,

such as a movie’s genre, director, and actors, structured as a graph of entities and rela-

tions. CKE integrates AE with other embedding methods to obtain semantic representa-

tions from structural, textual, and visual information in the KB. By jointly optimizing

the objectives of both CF and KB embedding, the model learns item latent factors that

are shaped not only by user preferences but also enriched with structured, real-world

attributes, thereby improving the quality of RSs.

The AutoSVD++ model (ZHANG et al., 2017) enhances the robust SVD++

framework by replacing its traditional item correlation component with a more sophisti-

cated model learned by a Contractive Autoencoder (CAE). A contractive autoencoder is

a specialized variant that is explicitly regularized to be robust to small perturbations in

its input data, forcing it to learn more significant and stable features. The SVD++ model

effectively captures user-specific biases and implicit feedback, but its modeling of item-

item relationships is relatively simple. AutoSVD++ addresses this by training a CAE on

the item-rating vectors from the user-item matrix. These learned item representations are

then integrated into the SVD++ prediction formula, replacing the simpler item modeling

component, and thus leading to significant improvements in prediction accuracy.

4.1.2 Autoencoders in reconstruction-based models

In this section, we introduce some examples of AEs used in reconstruction-

based RS. Autoencoder-based Collaborative Filtering (ACF) (OUYANG et al., 2014) is

a user-specific AE-based RS that uses an item-sparse rating vector instead of the origi-

nal integer rating as input data, where each position represents a rating value and only

one position is non-zero. The prediction is computed based on the reconstructed values,

which give the probability of the item being rated at each value represented in the vector.

Stacking several autoencoders leads to better prediction accuracy, but it is computation-

Chapter 4. Autoencoder-based Recommender Systems 41

ally expensive.

The AutoRec (SEDHAIN et al., 2015) model has two variants: user-based and

item-based. It uses an autoencoder to reconstruct the user rating vector and the item

rating vector, respectively, and both approaches use a similar basic AE structure. The

item-based version typically performs better because there are more ratings on average

for each item than for each user, and increasing the number of hidden neurons generally

improves performance.

Collaborative Filtering Neural Network (CFN) (STRUB et al., 2016) incor-

porates user or item side information in an SDAE to enhance recommendations. This

approach aims to address the cold-start problem, where the system has little to no rating

data for a new user. The model architecture takes a corrupted user’s sparse rating vector

as its primary input. The core innovation lies in how side information (e.g., user demo-

graphic features like age and gender, or item attributes) is integrated into the learning

process. The side information vector is injected directly at the model’s bottleneck by con-

catenating it with the latent representation of the user’s ratings learned by the encoder.

This fused vector, which combines collaborative signals from ratings with content-based

signals from user features, is then passed to the decoder to reconstruct the rating vector.

By enriching the latent space with explicit features, the model can learn more robust user

representations and make more reliable predictions for users with sparse histories.

The Collaborative Denoising Auto-Encoder (CDAE) (WU et al., 2016) method

adopts a denoising autoencoder with one hidden layer and is mainly used for ranking

prediction. The model uses partial observed implicit feedback as input, and its corrupted

version is drawn from a conditional Gaussian distribution. CDAE also incorporates a user-

specific latent vector, which is explicitly added as an input node to the model’s hidden

layer. This effectively conditions the entire model on the identity of the user, allowing it

to learn personalized preferences more effectively than a standard denoising autoencoder.

A negative sampling technique is proposed to select items that the user did not interact

with, aiming at reducing time complexity.

While foundational models like AutoRec demonstrated the potential of deep

learning for CF, they often inherited the limitations of their predecessors, particularly a

vulnerability to biases and inherently exhibited by user behavior data. User data is often

skewed by multiple factors:

• User Bias: Users have different rating tendencies; a 4-star rating might be an

ordinary score for one user but the highest possible for another, more critical user.

• Item Bias: Popular items tend to receive more exposure and ratings, leading to

imbalanced data distributions.

Chapter 4. Autoencoder-based Recommender Systems 42

• Selection Bias: Users typically rate items they are interested in or items with

which they had a bad experience, meaning that the absence of a rating is not at

random.

• Outliers: Malicious or unusually strict users can assign extremely high or low rat-

ings that distort the underlying data patterns.

The AutoRec++ model (HUANG et al., 2024) was proposed as a comprehen-

sive solution to these challenges, enhancing the standard AutoRec architecture with two

key innovations: an integrated debiasing framework and a robust loss function.

AutoRec++ introduces the concepts of Preprocessing Bias (PB) and Training

Bias (TB) to comprehensively address user and item biases. The PB components are cal-

culated from the data before training and include the global average rating, item-specific

deviations, and user-specific deviations, which are conceptually similar to the baseline

estimates used in SVD models. These biases are subtracted from the input ratings before

they are fed into the autoencoder. The TB components are parameters learned concur-

rently with the network weights. They are added back to the model’s output before the

final prediction, enabling the model to capture nuanced preferences during the training

process. This joint approach was demonstrated to significantly enhance prediction accu-

racy and accelerate model convergence, without necessitating structural changes to the

underlying autoencoder.

A second limitation of many DNN-based models is their reliance on an L2-

norm loss function (i.e., minimizing squared error), which is highly sensitive to outliers.

While an L1-norm loss is more robust to such outliers, it can suffer from instability during

training. To gain the benefits of both, AutoRec++ employs a self-adaptively weighted loss

function that combines the L1 and L2 norms. The objective function becomes:

L = γ1 · ‖error‖L1
+ γ2 · ‖error‖2

L2
+ regularization. (4.1)

The weights γ1 and γ2 are updated dynamically during training to favor the

norm that is performing better, ensuring that the final model is both stable and robust

to outliers. Empirical results demonstrated that this approach significantly improves the

model’s resilience to noisy data compared to other state-of-the-art methods.

4.2 Alternative Subspace Approaches: Biclustering

While autoencoders learn latent subspaces through neural network optimiza-

tion, an alternative line of research uses biclustering (or co-clustering) to discover these

Chapter 4. Autoencoder-based Recommender Systems 43

subspaces through combinatorial techniques. Biclustering differs from traditional cluster-

ing in that it simultaneously groups users and items, identifying biclusters — submatrices

of the user-item matrix where a specific group of users exhibits coherent preferences across

a specific group of items. This approach is well-suited to CF, as it directly addresses the

problem of preference locality, where user preferences are often correlated only on a subset

of items. Fig. 3 shows examples of contiguous biclusters in a binary matrix, such as the

one outlined in red formed by the user subset {u1, u2} and the item subset {i2, i3, i4}, and

the one outlined in green formed by the user subset {u5, u6} and the item subset {i4, i5}.

Note that biclusters do not need to be contiguous.

Figure 3 – Examples of contiguous biclusters in a binary matrix

The Biclustering-based Collaborative Filtering (BBCF) (BBCF) framework

uses biclustering as a preprocessing step to tackle the scalability and sparsity issues of

memory-based CF (SINGH; MEHROTRA, 2018). The process involves several steps:

• A biclustering algorithm (e.g., QUBIC (QUalitative BIClustering algorithm) (LI et

al., 2009)) is run on the rating matrix to generate a set of biclusters.

• For each active user, the K-nearest biclusters are identified based on a similarity

metric that considers the overlap between the user’s rated items and the items

within each bicluster.

• These K-nearest biclusters are merged to form a new, smaller, and denser user-item

matrix, referred to as the Nearest Neighbor Setup (NSS).

• A traditional CF algorithm, such as item-based KNN, is then applied to this per-

sonalized NSS to generate predictions.

By operating on these smaller, denser subspaces instead of on the entire sparse

matrix, BBCF can improve both scalability and accuracy.

Chapter 4. Autoencoder-based Recommender Systems 44

A significant drawback of biclustering-based approaches, such as BBCF, is

their limited coverage. Because biclusters may not encompass all users or items, the

model may be unable to generate predictions for many user-item pairs. The User-Specific

Bicluster-based Collaborative Filtering (USBCF) approach was designed to overcome this

limitation while improving upon the core methodology (SILVA et al., 2022).

USBCF introduces two key enhancements. First, it employs a more sophis-

ticated user-bicluster similarity metric that considers not only the item overlap (match

score) but also the correlation between the user’s rating pattern and the bicluster’s in-

herent preference pattern (fit score). The final similarity is a product of these two scores,

ensuring that selected biclusters are highly relevant to the active user. Second, to address

the coverage problem, USBCF incorporates a secondary prediction mechanism. For any

user-item pair that falls outside a user’s personalized bicluster-derived subspace, it falls

back to a co-clustering model that provides an exhaustive partitioning of the rating space,

guaranteeing 100% predictive coverage. Experiments showed that USBCF significantly

increased predictive coverage compared to BBCF while achieving competitive accuracy

against state-of-the-art matrix factorization and memory-based models.

4.3 Overview of Related Work

The application of latent factor and subspace models to collaborative filtering

has evolved significantly, moving from linear matrix factorization to more powerful, non-

linear deep learning architectures and combinatorial approaches. Foundational matrix

factorization models, such as SVD, have established the effectiveness of learning low-

dimensional latent representations of users and items. Innovations such as the inclusion

of baseline estimates and implicit feedback in models like SVD++ further refined this

paradigm, leading to significant accuracy gains.

Autoencoders represent a natural extension of this philosophy in deep learning.

This review covered several key architectures, including deterministic models such as

AutoRec, deeper architectures like ACF, and hybrid autoencoders that incorporate side

information. Furthermore, it explored generative models, such as CVAE, for fusing content

information, ranking-focused models, like CDAE, that utilize denoising for robustness,

and Graph Autoencoders that integrate KG topology directly into the learning process.

Hybrid frameworks, such as AutoSVD++, further demonstrate the power of combining the

strengths of matrix factorization with the nonlinear modeling capabilities of autoencoders.

However, the real-world utility of these models hinges on their ability to han-

dle the imperfections of behavioral data. The AutoRec++ model offers a comprehensive

framework for this, integrating debiasing techniques and a robust, hybrid loss function to

systematically tackle data biases and outliers.

Chapter 4. Autoencoder-based Recommender Systems 45

Finally, biclustering approaches, such as BBCF and USBCF, provide an alter-

native approach to addressing scalability and data sparsity. By identifying and modeling

dense, coherent subspaces within the user-item matrix, these methods create personalized

data environments that enable traditional CF algorithms to thrive. While they intro-

duce their challenge in the form of predictive coverage, hybrid solutions, such as those in

USBCF, demonstrate a viable path toward mitigating this issue.

However, even though biclustering has the potential to reduce the time com-

plexity for the CF stage of RS, there is still a challenge in finding scalable solutions for

biclustering itself (VERONEZE; VON ZUBEN, 2021). Motivated by this, we propose a

method here that is inspired by the alternative subspace approach, but utilizes a different

mining technique to leverage local information from the data: the BinaPs algorithm, an

autoencoder-based pattern mining method introduced in Section 2.4. We can utilize the

pattern set identified by BinaPs as a data partition and calculate rating predictions based

on user-item similarities within each pattern, which essentially represents a subset of cor-

related features. Moreover, BinaPs’ scalability and ability to cope with sparse datasets

allow it to perform efficiently. This is the basis of the recommender system we propose

here. To the best of our knowledge, this kind of autoencoder application in RS has not

yet been explored in the literature, as we are not interested in using either latent-factor

representations or the reconstructed output to calculate rating predictions.

4.4 APCF: Autoencoder Pattern-based Collaborative Filtering

We present here APCF, an autoencoder-based RS method using the BinaPs

method, introduced in Section 2.4. It consists of a Collaborative Filtering method endowed

with the IBKNN approach, which resorts to a pattern set obtained by the autoencoder

to identify item subspaces. The innovative aspect of our proposal is that the autoencoder

is applied in a distinct and promising paradigm, apart from the ones usually adopted

in autoencoder-based RS, where either the latent representations or the reconstructed

output are used to generate recommendations. Instead, the autoencoder here serves as a

data mining technique, and we utilize the interpretable weight matrices to identify data

partitions. By doing so, we expect APCF to leverage BinaPs’ high scalability and robust-

ness in handling sparse data, thereby achieving competitive performance and promising

scalability properties when applied to recommendation tasks.

Since BinaPs requires binary data, we need to binarize the ratings matrix when

working with non-binary values, which is often the case for recommendation problems.

We define a binarization threshold tbin. The binary matrix is obtained by setting 1 to

entries whose rating is above tbin and 0 elsewhere. Alternatively, we may use the implicit

binary matrix, obtained by setting 1 to all entries whose rating is known, and 0 elsewhere.

Chapter 4. Autoencoder-based Recommender Systems 46

Then, we train the autoencoder with the BinaPs method to obtain the pattern set for the

binary dataset.

Once the patterns are obtained, we calculate the user-pattern similarity be-

tween each user u and each pattern p. This metric is given by dividing the number of

items they have in common by the pattern’s dimension (SYMEONIDIS et al., 2007):

sim(u, p) =
|Iu ∩ p|

|p|
, (4.2)

where Iu is the set of items rated by user u. Depending on the problem, a pattern selection

step may be necessary to filter spurious patterns. Here, we adopt a pattern selection based

on the number of associated users. A user u is associated with a pattern p if sim(u, p) > 0.5.

We select the patterns with at least two associated users.

To generate recommendations for a target user ut, we first sort the selected

patterns by user-pattern similarity and find the npat most similar patterns to ut. Then, we

merge these patterns in a subset of items Mut
and evaluate the item similarity sim(i, j)

between each pair of items i and j in Mut
, using the Adjusted Cosine Similarity given by

Eq. (3.17).

To predict the rating Put,it
of item it given by the target user ut, we find the

neighborhood L of item it, defined by the k most similar items to it in the subset Mut

that were rated by the target user ut. Predictions are calculated as a weighted sum of

ratings of similar items in L, given by Eq. (4.3):

Put,it
= R[ut] +

∑

j∈L
(R[ut, j]−R[ut]) · sim(it, j)

∑

j∈L
|sim(it, j)|

, (4.3)

where R[ut] is the average value for all items rated by target user ut. The ratings are

subtracted by this value as in the adopted similarity metric.

Finally, we define a threshold parameter denoted trat, defining the minimum

rating for an item to be recommended. Items whose rating is strictly above trat are called

relevant for a given user. Recommendations are generated for relevant rating predictions.

Figure 4 shows the outline of the APCF rating prediction approach, and Algorithm 2

summarizes the main steps to calculate Put,it
.

In some cases, depending on the dataset and the pattern selection step, the

neighborhood L may be empty for a given item it, meaning that no similar items can be

found among the retained patterns for the target user ut. If that occurs, an alternative

approach may be adopted to calculate the prediction. Here, we use the average rating

R[ut] as the predicted rating in these cases.

Chapter 4. Autoencoder-based Recommender Systems 47

Figure 4 – Outline of the APCF rating prediction approach.

4.5 Summary

We started this chapter by presenting a literature review on autoencoder-based

RS and related work. We introduced some notable examples of AE-based techniques,

which usually follow two main paradigms for generating recommendations: latent-factor

representations and reconstruction-based predictions. We also discussed biclustering as

an alternative subspace approach for RS and presented the motivation for our proposed

method: APCF (Autoencoder Pattern-based Collaborative Filtering). APCF is outlined

as an alternative to alleviate some of the issues encountered in RS by utilizing the Bi-

naPs algorithm, an efficient autoencoder for pattern set mining, as detailed in Chapter

2. We use the pattern set generated by the autoencoder as a data partition and apply an

Item-Based K-Nearest Neighbors (IBKNN) approach to predict ratings based on item sim-

ilarity within each partition. This way, APCF requires fewer computational resources for

computing similarities than traditional KNN methods, which evaluate the metric for the

whole dataset; furthermore, our method profits from BinaPs’ scalability and robustness

to sparsity.

Chapter 4. Autoencoder-based Recommender Systems 48

Algorithm 2: APCF prediction
Input: dataset R, target (ut, it), pattern set P, k, npat

Result: prediction Put,it

for p in P do // For each pattern

Sut,p ← sim(ut, p) ; // User-pattern similarity

end
sort(P, Sut

) ; // Sort patterns by similarity

P ′ ← select_pattern(P, npat) ; // Select similar patterns

Mut
← merge(P ′) ; // Merge items

for j in Mut
do

Sit,j ← sim(it, j) ; // Item similarity

end
sort(Mut

, Sit
) ; // Sort items by similarity

M ′
ut
← select_rated(R, ut, Mut

) ; // Select items rated by ut

L← select_neighbor(M ′
ut

, k) ; // Select k neighbors

num← 0, den← 0;
for j in L do // Weighted average

num← num + (R[ut, j]−R[ut]) · Sit,j;
den← den + |Sit,j|;

end

pred← R[ut] ;
if L 6= ∅ then

pred← pred + num/den ;
end
Put,it

← pred;

49

5 Computational experiments

This chapter presents the computational experiments conducted using APCF

to evaluate its performance and compare it with that of other relevant recommender

systems. We aim to answer the following research questions:

• RQ1. Can autoencoders be successfully applied as mining techniques to support

and potentially enhance the performance of recommender systems?

• RQ2. How do the hyperparameters affect APCF’s performance?

• RQ3. How well does APCF perform compared to other recommender systems?

• RQ4. Which application scenarios are most suited for APCF?

5.1 Performance evaluation of Recommender Systems

We present here the metrics used to evaluate the performance of Recommender

Systems, which are usually adopted in the literature (SHANI; GUNAWARDANA, 2011).

For measuring the accuracy of predictions, we evaluate the Mean Absolute

Error (MAE), which is the deviation of predictions from the actual ratings given by the

user. MAE is given by Eq. (5.1):

MAE =
1

n

n
∑

i=1

|pi − ri|, (5.1)

where pi is the predicted rating for the i-th sample of the test set of size n and ri is the

actual rating.

Two frequently used metrics to evaluate the quality of recommendations are

Precision@N and Recall@N. For each user u, we define Ru as the set of relevant items and

P N
u as the top N recommended items. Precision@N computes, for all users, the fraction

of relevant recommendations among the top N recommended items. Precision@N is given

by Eq. (5.2):

Precision@N =

∑

u∈U
|P N

u ∩Ru|
∑

u∈U
|P N

u |
, (5.2)

where U is the set of users in the test set. On the other hand, Recall@N measures the

fraction of retrieved recommendations among the relevant items. Recall@N is given by

Eq. (5.3):

Chapter 5. Computational experiments 50

Recall@N =

∑

u∈U
|P N

u ∩Ru|
∑

u∈U
|Ru|

. (5.3)

The Normalized Discounted Cumulative Gain (NDCG) is a measure of ranking

quality used to evaluate the performance of a search engine, recommender system, or other

information retrieval system (WANG et al., 2013). The principle of NDCG is that the more

relevant items must be ranked better than the less relevant items. NDCG is maximized

whenever the relevant items are ranked higher. There are many formulations to calculate

the Discounted Cumulative Gain (DCG) for a list of n items. One of them is given by Eq.

(5.4):

DCG =
n

∑

i=1

gain(i)

log2(i + 1)
, (5.4)

where gain(i) is the graded relevance of the result at position i. The NDCG is calculated

by normalizing the DCG by the ideal value IDCG, which is the best possible DCG value

obtained for a perfect ranking. NDCG is given by Eq. (5.5):

NDCG =
DCG

IDCG
. (5.5)

In the context of recommendations, we evaluate the NDCG@N metric for each

user on the test set in the order induced by the predicted ratings, with the gain for each

of the top N recommended items given by the actual rating. The gain of an index falling

inside a tied group is replaced by the average gain within this group. Then, we take the

average value of all users’ NDCG@N.

Finally, the Coverage is the fraction of items for which the recommender system

is able to calculate a prediction.

5.2 Experimental Setting

The experiments were divided into two parts. In the first part, we carry out

three rounds of experiments on public and synthetic data, each focusing on answering

specific research questions. In the second part, we perform experiments on private datasets

to assess APCF’s applicability in the context of health recommendations 1. In all rounds,

we compare APCF’s performance with six other RS techniques: the baseline IBKNN, SVD,

SVD++, NMF, USBCF, and AutoRec++. The baseline IBKNN method was included,

as APCF’s approach is based on it, allowing for a direct comparison of the improvements
1 Implementation is available at: <https://github.com/pedro-mariano/APCF>. Datasets are available

at <https://doi.org/10.25824/redu/40OKYE>.

Chapter 5. Computational experiments 51

made by our method. SVD, SVD++, and NMF are well-established methods for RS.

USBCF and AutoRec++ stand out among recent RS approaches based on biclustering

and autoencoders, respectively.

If not explicitly mentioned, we use the following parameter values for APCF:

tbin = 0, trat = 2.5, and we train the autoencoder for 50 epochs. We perform a hyper-

parameter search for npat and k, and select the configuration that minimizes the MAE

for APCF. For the BinaPs (FISCHER; VREEKEN, 2021), USBCF (SILVA et al., 2022),

and AutoRec++ (HUANG et al., 2024) methods, we utilized the implementations pro-

vided by the authors. For the IBKNN, SVD, SVD++, and NMF methods, we utilize the

implementations provided by the Surprise library (HUG, 2020). We adopted the same k

parameter for APCF, IBKNN, and USBCF. In all cases, we use the default parameters,

unless otherwise stated. We employ cross-validation in all experiments, using 5 splits, and

report the average results on the test set. The experiments were run on Python 3.8.10 and

carried out on the IARA supercomputer (SIDI, 2024), which is equipped with NVIDIA

DGX A100 systems. We allocated 16 CPUs, 1 GPU, and 128GB of memory for all rounds.

5.3 Experiments: Part 1

We carried out three rounds of experiments for this section. In the first round,

we use the ml-latest-small version of the MovieLens dataset (HARPER; KONSTAN,

2015), aiming to answer RQ1 and RQ2. This dataset describes 5-star ratings and free-text

tagging activity from MovieLens, a movie recommendation service. It contains 100,836

ratings and 3,683 tag applications across 9,724 movies. These data were created by 610

users between March 29, 1996, and September 24, 2018. All selected users had rated at

least 20 movies. This is a highly sparse dataset, with a ratings matrix featuring around

1.7% of non-zero entries. To analyze the algorithm’s behavior in different configurations,

we use two values for the binarization threshold parameter: tbin = {2.5, 3.5}, and train

the autoencoder for 5,000 epochs. The recommendation threshold trat is equal to the

binarization threshold tbin in each case.

In the second round, we address RQ3 by comparing the performance of our

method with that of the six competing methods. We use two datasets in this round.

The first is a stable benchmark version of the MovieLens dataset, ml-100k, similar to

the previously mentioned version. It was released in 1998 and contains 100,000 ratings

from 943 users on 1,682 movies, with 6.3% of non-zero entries in the ratings matrix. The

second one is the Jester 4 dataset (GOLDBERG et al., 2001), which has 106,489 joke

ratings from 7,699 users on 158 jokes, with ratings going from -10.00 to +10.00. This

dataset requires preprocessing, as it features rows with single entries and some ratings

outside the expected range. We removed users with single ratings, clamped the ratings

Chapter 5. Computational experiments 52

to the closest extreme value when necessary, and rescaled the ratings to the interval [0.1,

5.0]. The resulting ratings matrix has 6,475 rows and 105,265 ratings, around 10.3% of

non-zero entries. We use the following parameter values for the autoencoder training on

this dataset: learning rate γ = 0.5 and learning rate step η = 0.5.

In the final round, our goal is to answer RQ4. We design synthetic datasets to

evaluate APCF’s performance in scenarios where most of the relevant items for a given

user are associated with a pattern in the ratings matrix, presenting different challenges.

We create such datasets in two steps. First, we produce a binary matrix with

Np artificial patterns and m rows, where each pattern has a random number of unique

columns between 2 and pc, drawn from a uniform distribution. Then, we select a random

number from a normal distribution N (ρm, ρm/10), where ρ is a density parameter, and

define its closest integer as the pattern’s number of rows. It may be necessary to redraw

this number until it falls in the interval]0, m[. Unlike columns, a row can be associated

with different patterns. After that, we fill all patterns’ entries with ones and apply a noise

function to the whole matrix to switch an entry value with a probability of pn. Finally,

we remove any rows without content.

In the second step, we transform the binary matrix into a ratings matrix with

values in the range [minr, maxr]. We define a set of ratings evenly spaced in this interval,

with a step parameter sr. The positive ratings have values above the recommendation

threshold trat, while the negative ones have values less than or equal to trat. For each

of the matrix’s non-zero entries, which are mostly inside patterns, we replace its value

with a positive rating randomly chosen from the set of ratings. Once finished, we get npos

positive ratings. Then, we select a number from a normal distribution N (npos, npos/10)

and define its closest integer as nneg, the number of negative ratings. Finally, we pick nneg

random zero entries from the matrix and replace each one with a random negative rating

from the set of ratings.

Fig. 5 shows an example of the ratings matrix in a synthetic pattern-based

dataset created using the steps described here. The rearranged version of the matrix

allows us to see more clearly how users and items are correlated inside a pattern.

Table 1 shows the parameters used to generate the synthetic datasets. The first

one, called PatRec, is a small and relatively dense dataset, comprising 300 rows, 1,068

columns, and 83,517 ratings, which represent approximately 26% of the total number of

entries in the rating matrix. Here, we aim to evaluate the performance of RS in pattern-

based data with a comparable size to the ml-100k and Jester 4 datasets, but with less

sparsity. In the second dataset, called PatRec-large, we aim to evaluate RS scalability

by creating a much larger and sparser dataset, comprising 30,000 rows, 11,203 columns,

and 9,254,598 ratings, which represent 2.75% of the total number of entries in the rating

matrix.

Chapter 5. Computational experiments 53

Figure 5 – Example of the ratings matrix in a synthetic pattern-based dataset with 12
users (u1 to u12), 9 items (i1 to i9), ratings in the scale [0, 5] and trat = 2.5.
Entries associated with a pattern have the same color. On the left, we see the
matrix as created. On the right, the same matrix is displayed after rearranging
rows and columns and removing empty rows.

Table 1 – Parameter values for the generation of the synthetic datasets

Dataset
Parameter PatRec PatRec-large

Np 100 1,000
m 300 30,000
ρ 0.1 0.01
pn 0.05 0.004
pc 20

minr 0.0
maxr 5.0

sr 0.5
trat 2.5

Chapter 5. Computational experiments 54

5.3.1 BinaPs training

First, we investigate how the autoencoder training and pattern set mining are

affected by the choice of two BinaPs parameters: the maximum number of epochs, nep,

and the initial learning rate, γ. In all cases, we used the default value of the learning rate

step η = 0.1. We trained the autoencoder on the ml-100k dataset in three configurations

and evaluated the evolution of the training loss over the epochs. Figure 6 shows the curve

comparison, and Table 2 shows the total number of patterns and the number of selected

patterns for each configuration.

Table 2 – Pattern set size for different BinaPs parameters on the ml-100k dataset

nep γ Total Selected
50 1 · 10−2 344 166
500 1 · 10−2 289 144
50 2 · 10−5 0 0

In the first two configurations, represented by Fig. 6a and Fig. 6b, we used the

default value of γ = 1 · 10−2 and different values of nep. We see that using an increased

number of epochs does not lead to a decrease in loss, and Table 2 shows that the pattern

size does not improve either. In the third configuration, we adopted a smaller value for the

learning rate, and Figure 6c shows a smoother loss evolution. However, as shown in Table

2, when γ is too small, all weights tend to zero, and no patterns are found. Therefore,

we select the first configuration for the pattern set mining step of APCF in most of the

experiments.

Next, we investigate how the number of patterns is affected by the binariza-

tion threshold tbin. We run experiments with tbin = {0.0, 1.5, 2.5, 3.5, 4.5} on the ml-100k

dataset. Since the ratings in this dataset are integers in the interval [1, 5], the binarization

parameter values cover all possible subsets of relevant ratings, starting with the full set

and progressively removing ratings from 1 to 5. This means that these tbin values rep-

resent all binarization threshold values in an interval of size 1.0 beginning and ending

at a valid rating, respectively: [0.0, 1.0[, [1.0, 2.0[, [2.0, 3.0[, [3.0, 4.0[and [4.0, 5.0[. Table 3

shows the average pattern set size obtained for each value of tbin before and after pattern

selection, as well as the average number of items per pattern and training samples. We

observe that the number of patterns increases with tbin until it reaches a maximum at 3.5,

illustrated in Fig. 7. As the number of training samples decreases, data becomes more

fragmented, and the autoencoder finds a higher number of patterns with fewer items per

pattern. However, for a very low number of training samples, as is the case for tbin = 4.5,

this behavior changes, and the autoencoder returns to finding fewer patterns with more

items per pattern.

Chapter 5. Computational experiments 55

(a) nep = 50, γ = 1 · 10
−2 (b) nep = 500, γ = 1 · 10

−2

(c) nep = 50, γ = 2 · 10
−5

Figure 6 – Evolution of training loss over the epochs for different BinaPs parameters on
the ml-100k dataset

Table 3 – Average number of patterns on the ml-100k dataset for different values of tbin

and the corresponding average of item/pattern and number of training samples

tbin Total patterns Selected patterns Item/pattern Training samples
0.0 341.2 163.2 13.51 80,000
1.5 396.2 202.4 11.96 75,112
2.5 492.2 266.8 10.62 66,016
3.5 728.0 487.6 9.08 44,300
4.5 439.2 387.0 16.65 17,068.6

In the next section, we also analyze how recommendations are affected by

Chapter 5. Computational experiments 56

Figure 7 – Average pattern set size on the ml-100k dataset for different values of tbin

different values of the binarization threshold.

5.3.2 Recommendation results

Tables 4 and 5 show the results for the experiments with APCF on the ml-

latest-small dataset for trat = {2.5, 3.5} respectively, and different values for npat and

k, with the best results highlighted in bold. The method has better precision for trat =

2.5 than for trat = 3.5, while the values for the other metrics are close for both cases.

Nevertheless, recall is slightly better for trat = 3.5, and a possible reason is that we have

fewer relevant items compared to the other case, making them less likely to be found

outside the top 25 recommendations.

Regarding the npat parameter, we see that performance is optimal for npat = 20

in terms of accuracy (MAE). For precision, recall, NDCG, and coverage, npat = 30 is the

best configuration, except for recall when trat = 3.5, in which case the best setting is

npat = 10.

As for the size of the neighborhood k, we see that the performance is worse

for small values of k. The method performs better when k increases up to a certain value,

after which performance stops improving. This limit value varies according to the case.

For trat = 2.5, the limit is k = 400 for the accuracy and k = 600 for the precision, recall,

and NDCG. For trat = 3.5, the limit is k = 300 for the accuracy and k = 400 for the

precision and NDCG. Again, the recall in this case is the exception since we observe the

best result for the smallest value of k. This parameter doesn’t affect the coverage.

Chapter 5. Computational experiments 57

Table 4 – Results of the experiments with APCF on the ml-latest-small dataset for MAE,
Precision@25, Recall@25, NDCG@25, and Coverage using trat = 2.5

npat k MAE Precision (%) Recall (%) NDCG Coverage (%)

10

100 0.679374 89.153516 50.015450 0.949068 95.774326
200 0.672388 89.352558 50.126746 0.949728 95.774326
300 0.672388 89.352558 50.126746 0.949728 95.774326
400 0.672388 89.352558 50.126746 0.949728 95.774326
500 0.672388 89.352558 50.126746 0.949728 95.774326
600 0.672388 89.352558 50.126746 0.949728 95.774326
700 0.672388 89.352558 50.126746 0.949728 95.774326

20

100 0.684528 89.204965 50.035055 0.950425 95.883414
200 0.672808 89.409474 50.146330 0.951069 95.883414
300 0.669728 89.520796 50.208825 0.951552 95.883414
400 0.669596 89.536096 50.217393 0.951609 95.883414
500 0.669596 89.536096 50.217393 0.951609 95.883414
600 0.669596 89.536096 50.217393 0.951609 95.883414
700 0.669596 89.536096 50.217393 0.951609 95.883414

30

100 0.681693 89.243388 50.070673 0.950510 95.896307
200 0.675910 89.424345 50.163447 0.950908 95.896307
300 0.671478 89.500898 50.206313 0.951371 95.896307
400 0.669996 89.577287 50.249202 0.951583 95.896307
500 0.669833 89.594805 50.259016 0.951618 95.896307
600 0.669793 89.596987 50.260238 0.951630 95.896307
700 0.669793 89.596987 50.260238 0.951630 95.896307

Table 6 shows the results for the experiments with APCF on the PatRec

dataset for trat = 2.5. APCF has full coverage for all parameter configurations on this

dataset. The optimal value of npat is 40 for accuracy, 50 for precision, and 50 for recall.

Once again, performance improves as the k parameter increases up to a limit value of 200

in this case. This dataset is more challenging than MovieLens, as the values for MAE,

precision, and NDCG in this experiment were reduced.

The results presented in Table 7 show how APCF’s performance is affected

by the binarization threshold tbin on the ml-100k dataset, without changing the relevance

threshold trat = 2.5. We conducted a grid search to minimize MAE and selected npat = 20

and k = 400. The best results are highlighted in bold, and we present the p-value from

the t-test comparing the averages of the two best results for each metric. We observe

similar results regardless of the value of tbin for MAE, Precision, Recall, and NDCG; the

Coverage remains unaffected. Furthermore, we don’t have sufficient evidence to reject the

null hypothesis at a significance level of 0.01 in any case, indicating that the differences

in the results are not statistically significant. Therefore, the choice of the binarization

threshold has a minor impact on APCF’s recommendation performance.

In summary, APCF’s performance is consistent, presenting similar results for

different parameter configurations. We achieve better coverage values when the number

Chapter 5. Computational experiments 58

Table 5 – Results of the experiments with APCF on the ml-latest-small dataset for MAE,
Precision@25, Recall@25, NDCG@25, and Coverage using trat = 3.5

npat k MAE Precision (%) Recall (%) NDCG Coverage (%)

10

100 0.676828 68.830354 51.626300 0.953822 95.747550
200 0.672408 69.167548 51.578690 0.954193 95.747550
300 0.672408 69.167548 51.578690 0.954193 95.747550
400 0.672408 69.167548 51.578690 0.954193 95.747550
500 0.672408 69.167548 51.578690 0.954193 95.747550
600 0.672408 69.167548 51.578690 0.954193 95.747550
700 0.672408 69.167548 51.578690 0.954193 95.747550

20

100 0.684091 69.057416 51.564922 0.954124 95.866555
200 0.669766 69.759817 51.407418 0.955154 95.866555
300 0.668931 69.908672 51.429953 0.955229 95.866555
400 0.668931 69.908672 51.429953 0.955229 95.866555
500 0.668931 69.908672 51.429953 0.955229 95.866555
600 0.668931 69.908672 51.429953 0.955229 95.866555
700 0.668931 69.908672 51.429953 0.955229 95.866555

30

100 0.684217 69.293168 51.478813 0.954464 95.876472
200 0.672533 69.743739 51.249008 0.955258 95.876472
300 0.669675 70.132271 51.269842 0.955652 95.876472
400 0.669328 70.191442 51.288258 0.955704 95.876472
500 0.669328 70.191442 51.288258 0.955704 95.876472
600 0.669328 70.191442 51.288258 0.955704 95.876472
700 0.669328 70.191442 51.288258 0.955704 95.876472

of similar patterns npat increases, as more items can be included in the neighborhood.

However, that does not necessarily improve the overall performance, suggesting that not

all patterns are useful.

In Table 8, we can see the performance comparison between APCF and the

other methods on multiple datasets. We use N = 10 to assess performance metrics in the

Jester 4 dataset, and N = 25 in the others. The best results are highlighted in bold, and

we present, for each metric, the p-value from the t-test comparing APCF’s results with the

best contender. On the PatRec-large dataset, USBCF and AutoRec++ weren’t able to run

due to requiring an excessive amount of memory. Our method is usually outperformed by

other autoencoder-based RS, AutoRec++. At a significance level of 0.01, APCF’s Recall

on the ml-100k dataset and NDCG on the Jester 4 dataset have no statistically signifi-

cant difference from the best result. Overall, APCF’s performance is similar to SVD++

and NMF, and better than the baseline IBKNN, except on the ml-100k dataset. On the

PatRec dataset, APCF outperforms all the other methods, except AutoRec++. Finally,

on the PatRec-large dataset, APCF achieves the best performance among the methods

that were able to run on this dataset. In scenarios where users and items exhibit strong

local correlation, such as in the synthetic datasets, APCF can leverage local informa-

tion obtained through the autoencoder-based pattern mining technique, becoming more

Chapter 5. Computational experiments 59

Table 6 – Results of the experiments with APCF on the PatRec dataset for MAE, Preci-
sion@25, Recall@25, NDCG@25, and Coverage for trat = 2.5

npat k MAE Precision (%) Recall (%) NDCG Coverage (%)

30
100 1.178056 64.628625 54.683611 0.901422 100.000000
200 1.178032 64.628588 54.683648 0.901487 100.000000
300 1.178032 64.628588 54.683648 0.901487 100.000000

40
100 1.176440 65.650619 55.535270 0.903092 100.000000
200 1.174722 65.764108 55.631530 0.903917 100.000000
300 1.174722 65.764108 55.631530 0.903917 100.000000

50
100 1.184175 65.687565 55.522913 0.901730 100.000000
200 1.176940 66.001936 55.777814 0.902981 100.000000
300 1.176940 66.001936 55.777814 0.902981 100.000000

60
100 1.192979 65.649446 55.524581 0.901663 100.000000
200 1.180222 65.794859 55.598239 0.902178 100.000000
300 1.180222 65.794859 55.598239 0.902178 100.000000

Table 7 – APCF’s performance comparison on the ml-100k dataset for trat = 2.5, N =
25, npat = 20, k = 400 and different values of tbin

tbin MAE Precision (%) Recall (%) NDCG Coverage
0.000000 0.756004 88.200616 72.532970 0.953449 0.998310
1.500000 0.755503 88.151900 72.485705 0.953773 0.998310
2.500000 0.755382 88.163212 72.518332 0.953286 0.998310
3.500000 0.756686 88.204030 72.566956 0.953250 0.998310
4.500000 0.760370 88.109271 72.555157 0.953402 0.998310
p-value 0.975168 0.991130 0.981878 0.703921 -

competitive compared to other RS.

Table 9 shows the runtime comparison for the contender methods. APCF’s

measures show the total runtime and the time consumed only by the CF step, exclud-

ing the autoencoder training. We observe that APCF typically takes longer to complete

execution than SVD, IBKNN, and NMF, but it is faster than USBCF, SVD++, and Au-

toRec++, except for the Jester 4 dataset, where the last two are faster. In the PatRec-large

dataset, APCF is not only able to run on a very large dataset with more than 9 million

ratings, unlike its biggest competitor, AutoRec++, but also runs faster than SVD++

and achieves the best performance among the contenders. Furthermore, for subsequent

evaluations, APCF becomes a more interesting alternative. With the pattern set already

in place, there is no need to retrain the autoencoder, unless a substantial amount of new

incoming data becomes available. Disregarding BinaPs training step runtime, APCF is

faster than SVD++ and AutoRec++ on all datasets presented here.

Chapter 5. Computational experiments 60

Table 8 – Performance comparison of recommender systems on multiple datasets

Dataset Method MAE Precision (%) Recall (%) NDCG Coverage (%)

MovieLens
ml-100k
npat = 20
k = 400

APCF 0.751227 88.783964 71.807024 0.950558 99.831000
IBKNN 0.735041 88.868556 72.292093 0.957878 99.831000

SVD 0.737384 88.670740 72.512241 0.956233 100.000000
SVD++ 0.721346 89.109474 72.623712 0.958931 100.000000

NMF 0.758896 88.646647 71.730110 0.952294 99.831000
USBCF 0.768217 87.269675 72.201030 0.952475 85.602000

AutoRec++ 0.690581 89.999611 72.804201 0.963240 100.000000
p-value 0.000001 0.003194 0.058144 0.000001 -

Jester 4
npat = 50
k = 100

APCF 0.811684 80.036612 67.341679 0.944229 99.462320
IBKNN 0.827347 79.747807 64.299466 0.941390 99.462309

SVD 0.832967 78.973193 63.832899 0.941194 100.000000
SVD++ 0.811571 80.681903 62.504920 0.947170 100.000000

NMF 0.848747 79.756047 58.869508 0.939698 99.462309
USBCF 0.810116 80.102738 63.602980 0.944912 99.295112

AutoRec++ 0.793760 79.919660 65.871261 0.946969 100.000000
p-value 0.001560 0.000001 0.000001 0.028310 -

PatRec
npat = 40
k = 200

APCF 1.174722 65.764108 55.631530 0.903917 100.000000
IBKNN 1.227991 59.261153 47.908923 0.876576 100.000000

SVD 1.211778 60.197250 50.825969 0.877366 100.000000
SVD++ 1.230535 60.138449 50.668080 0.875551 100.000000

NMF 1.230938 57.754786 48.629049 0.865885 100.000000
USBCF 1.202294 61.142957 52.470978 0.900385 31.532495

AutoRec++ 1.095860 77.425919 59.702281 0.930036 100.000000
p-value 0.000001 0.000001 0.000001 0.000001 -

PatRec-large
npat = 15
k = 12

APCF 1.077296 76.405798 60.412165 0.933895 100.000000
IBKNN 1.289786 48.194400 37.621001 0.832244 100.000000

SVD 1.088219 74.396401 58.603596 0.919069 100.000000
SVD++ 1.128344 68.959483 54.364312 0.896193 100.000000

NMF 1.204516 59.595499 46.504029 0.876132 100.000000
USBCF - - - - -

AutoRec++ - - - - -
p-value 0.000001 0.000001 0.000002 0.000001 -

Table 9 – Runtime comparison of recommender systems on multiple datasets

Dataset

Method
MovieLens

ml-100k
Jester 4 PatRec PatRec-large

APCF (total) 1m36s 1m44s 1m08s 3h46m05s
APCF (CF only) 57s 15s 37s 2h06m59s

IBKNN 15s 7s 20s 33m21s
SVD 5s 7s 3s 6m57s

SVD++ 1m56s 35s 2m12s 4h44m43s
NMF 6s 9s 4s 8m23s

USBCF 28m13s 4h58m25s 39m08s -
AutoRec++ 3m18s 1m43s 1m13s -

Chapter 5. Computational experiments 61

In conclusion, APCF’s main drawback is its inability to generate a predic-

tion or recommendation for some users/items (See the coverage column in Table 8). This

handicap occurs because the subspace induced by the patterns may not fully cover the

original user-item data space. As we have announced, the imputation of those unpre-

dictable entries is filled with the average rating R[ut]. However, in most cases, APCF

leverages BinaPs’ high scalability and robustness to sparsity, enabling our method to pro-

vide effective recommendations and making it a solid option for various recommendation

scenarios.

5.4 Experiments: Part 2

In the second part, we want to assess APCF’s applicability in providing health

recommendations in two contexts: physical activity recommendations and sarcopenia di-

agnosis. For this purpose, we compare APCF’s performance with the contender methods

on two datasets organized by the Viva-Bem group 2, which will be detailed in the following

sections.

5.4.1 Physical activity recommendations

In this experiment, we analyze APCF’s recommendations for physical activity.

The dataset adopted for this experiment consists of data collected from 52 volunteers

performing three physical activities of varying intensity: walking, trotting, and jogging.

The activities were executed in a row in the aforementioned order for 5 minutes each,

totalizing 15 minutes of physical exercise. At the beginning and the end of each of the

three phases, the volunteers were asked to rate the Subjective Perception of Effort (SPE)

when performing the activity on a scale from 1 - low effort to 10 - extreme effort. The

experiment was repeated twice at different moments, totaling up to 12 different ratings

for each volunteer. The data was collected by the Viva-Bem group. We will refer to this

dataset as the SPE dataset.

Table 10 shows some entries of the SPE dataset, each line representing the

ratings given by a different user. We see that data formatting is not uniform. Not all users

rated each activity at its beginning and end, and some of them didn’t show up to repeat

the experiment at a second moment. The first step of the computational experiments

consisted of preprocessing this dataset. We filled the missing entries with zeros and took

the average rating when two ratings were given for the same activity. This resulted in a

ratings matrix of dimension 52× 6 with ratings in the range [0, 8.0], with approximately
2 The protocol for data capture, storage, and use was approved by the Unicamp Research Ethics Com-

mittee (CAAE’s 55532622.0.0000.5404 and 66967022.2.0000.5404). Issues related to Intellectual Prop-
erty, Patents, Registrations, and data co-ownership are handled jointly by the Viva Bem project team
and Samsung.

Chapter 5. Computational experiments 62

50% of the ratings below 3.0. This implies that many volunteers classified the activities

as taking low effort.

Table 10 – Sample entries of the SPE dataset

First moment Second moment
Walking Trotting Jogging Walking Trotting Jogging

2 3 6 1 3 5
2 4 5 1/1 2/2 4/4
3 4 7 3/3 4/4 5/6
1 2 3 - - -

1/2 3/3 6/8 1/2 4/4 7/8

In the next step, we proceeded to the pattern set mining of the SPE dataset

with BinaPs. We set the binarization threshold tbin = 3.0, so we get a binarized dataset

with sparsity around 50% to reflect the original data’s behavior. We found 4 patterns on

average. In some cases, two of them included all or almost all of the 6 columns, most

likely representing the portion of users who classified all activities with similar effort.

The remaining patterns included only the columns corresponding to trotting and jogging,

representing users who rated these activities with high effort.

Subsequently, we proceeded to the CF step to get recommendations for high-

effort activities, i.e., activities with predicted ratings above trat = 3.0. Since the SPE

dataset is relatively small, we made a few modifications to the original APCF’s prediction

scheme of Put,it
. First, we do not perform pattern selection, and all patterns can be

considered for the user-pattern similarity evaluation. Second, all items are eligible for

inclusion in the neighborhood L of the item it, even if they do not belong to the subset

Mut
of items in the retained patterns. Instead, we use a modified version of Eq. (3.19) to

calculate the predictions, including a parameter αut,j that penalizes the similarity between

the target item it and an item j that does not belong to Mut
:

Put,it
= R[it] +

∑

j∈L
(R[ut, j]−R[j]) · αut,j · sim(it, j)

∑

j∈L
|sim(it, j)|

, (5.6)

where αut,j is given by:

αut,j =







1 if j ∈Mut
;

δ if j /∈Mut
, 0 ≤ δ ≤ 1.

(5.7)

We adopted the cosine similarity given by Eq. (3.15) for evaluating item simi-

larity and used δ = 0.8. After a hyperparameter search, we selected the number of similar

patterns npat = 2 and the size of item neighborhood k = 2. We evaluated the average

values of MAE, Precision @6, Recall @6, NDCG @6, and Coverage for APCF, as well

Chapter 5. Computational experiments 63

as the contender methods. Table 11 presents the results for recommendations of high ef-

fort activities, with the best values highlighted and the reported p-value from the t-test

comparing APCF’s results with the best contender.

Table 11 – Performance comparison of recommender systems on the SPE dataset for high
effort activities (trat = 3.0)

Method MAE Precision (%) Recall (%) NDCG Coverage
APCF 0.611301 72.765517 97.019324 0.987735 100.000000
IBKNN 0.612954 72.248276 97.019324 0.987735 100.000000

SVD 0.730624 78.307692 96.178054 0.984204 100.000000
SVD++ 0.682508 76.905116 95.066943 0.985874 100.000000

NMF 0.587530 79.984615 92.955832 0.992656 100.000000
USBCF 0.568369 72.235140 97.019324 0.990787 100.000000

AutoRec++ 0.633530 70.353950 97.178054 0.989520 100.000000
p-value 0.093364 0.137973 0.927480 0.384490 -

The results in Table 11 show that all methods have similar performance on this

dataset. We don’t have sufficient evidence to reject the null hypothesis at a significance

level of 0.01 in any case, indicating that the differences in the results are not statistically

significant. Although intended for use on large datasets, we find that APCF also performs

well in a real-world problem with reduced-size data, achieving an average precision of

over 72%. This corroborates the applicability of APCF in the context of physical activity

recommendations.

5.4.2 Sarcopenia Diagnosis

Sarcopenia is a muscle disorder characterized by adverse changes in muscle

strength, quantity, and quality that occur throughout a person’s lifetime. It is common in

older adults but can also occur earlier in life. According to the European consensus, the

screening and diagnosis of sarcopenia follow a pathway to find cases, assess, confirm, and

determine the severity (CRUZ-JENTOFT et al., 2018). Typically, the process begins with

the application of the SARC-F questionnaire, which comprises 5 self-reported questions

by patients as a screening tool for sarcopenia risk. Then, muscle strength is evaluated

by measuring grip strength and the time to complete the chair stand test (also called

the sit-to-stand test), in which the patient rises five times from a seated position without

using their arms. At this point, it is possible to identify probable sarcopenia.

To confirm the diagnosis, the muscle quantity is estimated, reported as the

Skeletal Muscle Mass (SMM) or Appendicular Skeletal Muscle Mass (ASM), for instance.

The severity is assessed with the help of physical performance tests, such as measuring

the walking speed and the time to complete the Timed-Up and Go test (TUG), in which

the patients need to rise from a chair, walk a certain distance, come back and sit down

again.

Chapter 5. Computational experiments 64

The Viva-Bem group collected information from 59 individuals to apply the

sarcopenia diagnosis pathway. The dataset contains the answer to the SARC-F question-

naire, the estimated ASM, the walking speed measure, and the result of the grip strength,

sit-to-stand, and TUG tests. There are 14 features in total. The first five are binary and

contain the answers to each one of the SARC-F questions, SARC-F1 to SARC-F5. The

sixth feature is the value of ASM. The remaining 8 features correspond to the grip strength

and the physical performance evaluations, assessed in two distinct moments each: Grip

strengtht, Walking speedt, TUGt, and Sit-to-standt, where t = {1, 2} represents the mo-

ment. The resulting dataset, which we refer to here as Sarcop-D, is sparse and contains

8.8% non-zero entries.

For this application, we aim to evaluate APCF’s capacity to provide recom-

mendations for personalized pathways in sarcopenia diagnosis. In other words, we want to

find which evaluations or tests should be prioritized for each patient based on the Euro-

pean guidelines. First, we binarized the real-valued features of the Sarcop-D dataset using

the sarcopenia cut-off points established in the literature for each test (CRUZ-JENTOFT

et al., 2018), summarized in Table 12.

Table 12 – European sarcopenia cut-off points

Test Sex Cut-off

Grip strength
M < 27 kgf
F < 16 kgf

Sit-to-stand > 15s

ASM
M < 20 kg
F < 15 kg

Walking speed ≤ 0.8 m/s
TUG ≥ 20 s

After preprocessing, we trained the autoencoder on the Sarcop-D dataset and

identified 5 patterns. The prevalence of features in the patterns is shown in Table 13.

We observe that the SARC-F questions and the features related to muscle strength (grip

strength and sit-to-stand) are among the most frequently reported features. This aligns

with the relevance of these features for sarcopenia diagnosis as reported in the literature.

Table 13 – Prevalence of features in patterns for the Sarcop-D dataset

Features Prevalence (%)
SARC-F4 , Grip strength1 100

SARC-F3 80
SARC-F2, SARC-F5 60

SARC-F1, Grip strength2, Sit-to-stand1, Sit-to-stand2 40
ASM, TUG1, TUG2, Walking speed1, Walking speed2 0

For the CF step, we performed a hyperparameter search and selected npat = 3

and k = 10 for APCF. Table 14 shows the performance comparison with the contender

Chapter 5. Computational experiments 65

methods on the Sarcop-D dataset for MAE, Precision @6, Recall @6, and Coverage for

trat = 0.5, and the p-value from the t-test comparing APCF’s results with the best

contender. Since the recommendations are being compared on a binary dataset, we do

not evaluate the NDCG, as all relevant features have the same rating.

This dataset poses a challenging recommendation task, as shown by the low

Precision and Recall values for all methods. USBCF was unable to find any biclusters

in this dataset. At a significance level of 0.01, NMF has the best MAE, but there is no

statistically significant difference in Precision and Recall between APCF and the best

contender. Overall, despite presenting a small MAE, the values of Precision and Recall

reveal that the accuracy of these methods heavily relies on predicting negative ratings,

which are the most frequent. The applicability of recommender systems in this context

needs to be further investigated, for instance, by performing a qualitative analysis of

the recommendations by a specialist. Nevertheless, APCF’s results show a promising

perspective, especially because of the potentially insightful analysis that can be derived

from pattern-set mining results.

Table 14 – Performance comparison of recommender systems on the Sarcop-D dataset

Method MAE Precision (%) Recall (%) Coverage
APCF 0.156786 29.487179 19.310572 100.000000
IBKNN 0.159162 14.318182 10.276704 100.000000

SVD 0.163630 20.000000 1.538462 100.000000
SVD++ 0.158575 0.000000 0.000000 100.000000

NMF 0.110769 20.000000 1.176471 100.000000
USBCF - - - -

AutoRec++ 0.133122 5.000000 1.333333 100.000000
p-value 0.004556 0.665241 0.085154 -

5.5 Summary

In this chapter, we presented the computational experiments performed with

APCF, aiming at validating autoencoder applicability as a pattern mining technique in

recommender systems, assessing the model’s performance in different recommendation

scenarios, and comparing it with other recommender systems in the literature: IBKNN,

SVD, SVD++, NMF, USBCF and AutoRec++. In the first part, we conducted experi-

ments on benchmark datasets for movie and joke recommendations, as well as pattern-

based synthetic datasets. APCF’s performance was consistent, presenting similar results

for different parameter configurations, and was comparable to that of the model-based

methods on benchmarks. APCF’s main drawback was its inability to generate a recom-

mendation for some users/items. On the synthetic datasets, APCF was able to leverage

local information and outperformed the contenders in a large dataset. When compar-

Chapter 5. Computational experiments 66

ing runtime, we demonstrated APCF’s scalability, as it was able to run efficiently on

a large dataset. In the second part, we assessed APCF’s ability to provide health rec-

ommendations for physical activity and sarcopenia diagnosis. Overall, although intended

for use on large datasets, APCF performed similarly to the contender methods in real-

world problems with reduced-size data, reassuring its robustness and efficiency in diverse

recommendation scenarios.

67

6 Conclusion

The ever-increasing amount of information in the digital age has made recom-

mender systems (RS) essential tools for helping users discover items of interest amidst a

multitude of choices. However, the development of these systems faces significant chal-

lenges, notably the sparsity of rating matrices and the scalability to large volumes of data.

This thesis addressed these challenges by proposing a novel collaborative filtering method.

The proposed method, named Autoencoder Pattern-based Collaborative Fil-

tering (APCF), introduces an innovative approach to applying autoencoders (AEs) in

recommender systems. Unlike traditional paradigms that use autoencoders to extract la-

tent factors or to directly reconstruct ratings, APCF employs an autoencoder as a data

mining technique. Specifically, the BinaPs algorithm, a robust autoencoder for pattern set

mining on binary data, is used to identify highly informative data partitions—subspaces

formed by correlated items. Subsequently, a collaborative filtering algorithm based on

items, the Item-Based K-Nearest Neighbors (IBKNN), operates within these subspaces

to generate predictions more efficiently and accurately.

The research was guided by four central questions, which were systematically

investigated through a series of computational experiments, as detailed in Chapter 5. We

now recap and discuss the main conclusions.

• RQ1. Can autoencoders be successfully applied as mining techniques to support

and potentially enhance the performance of recommender systems?

The experimental results confirm that applying autoencoders as a mining tool

is a viable and effective strategy. The proposed method proved to be competitive across a

wide range of recommendation scenarios, involving datasets of different sizes and degrees

of sparsity. Furthermore, by being based on a gradient-descent mining process, APCF

demonstrated a better scalability trade-off than the top competing techniques as the

dataset size increased. The use of the BinaPs algorithm allowed for the identification

of coherent item patterns even in sparse datasets, and the subsequent application of a

collaborative filtering method on these subspaces resulted in competitive performance,

validating the proposed paradigm as a solid alternative to conventional approaches.

• RQ2. How do the hyperparameters affect APCF’s performance?

The analysis revealed that APCF’s performance is notably consistent across

different hyperparameter configurations. The number of neighboring patterns (npat) was

Chapter 6. Conclusion 68

shown to impact coverage, with larger values allowing more items to be considered for

recommendation. The neighborhood size (k) influenced accuracy, with performance im-

proving up to a certain limit. A key finding was that the binarization threshold (tbin),

despite significantly altering the number of mined patterns, had a minimal impact on

the final recommendation quality, indicating the method’s robustness concerning data

preprocessing.

• RQ3. How well does APCF perform compared to other recommender systems?

APCF demonstrated competitive performance in multiple scenarios. In pub-

lic benchmarks like MovieLens and Jester, its performance was comparable to well-

established methods like SVD++ and NMF, and superior to the IBKNN baseline. Al-

though it was generally outperformed by another autoencoder model, AutoRec++, on

these datasets, APCF exhibited a crucial advantage in scalability. On a large-scale syn-

thetic dataset, PatRec-large, APCF not only outperformed all competitors that could run

the task but also did so with a lower execution time than SVD++. At the same time, Au-

toRec++ failed due to requiring an excessive amount of memory. This highlights APCF’s

potential for large-scale applications.

• RQ4. Which application scenarios are most suited for APCF?

The experiments indicate that APCF is particularly well-suited for large,

sparse datasets where strong local correlations (user-item patterns) exist. This was demon-

strated on synthetic datasets designed with this characteristic, where APCF excelled. Fur-

thermore, the method proved to be robust and versatile, achieving performance similar to

that of competitors in real-world problems with reduced-size data, such as in healthcare

applications for physical activity recommendations and aiding sarcopenia diagnosis.

Based on the work developed, the main contributions of this thesis are:

• The proposal of a new paradigm for the use of autoencoders in recommender sys-

tems, focusing on pattern mining for the discovery of data subspaces, rather than

the extraction of latent factors or the reconstruction of ratings;

• The development of the APCF method, which efficiently integrates the BinaPs pat-

tern mining algorithm with a neighborhood-based collaborative filtering approach;

• An extensive comparative evaluation of APCF against classic and recent methods,

which demonstrated its competitiveness and identified an application niche in large-

scale and sparse scenarios;

Chapter 6. Conclusion 69

• The demonstration of the scalability and applicability of APCF in real-world do-

mains, including healthcare, where the interpretability of the mined patterns can

also offer valuable insights.

One potential disadvantage of the APCF method is its limited coverage in

certain cases. Because predictions are generated from subspaces defined by patterns, user-

item pairs that fall outside these subspaces do not receive a calculated recommendation

and must rely on a fallback value, e.g., the user’s average rating.

This limitation opens promising paths for future work. A natural direction

would be the development of a hybrid model, which utilizes APCF to generate recommen-

dations within the pattern subspaces and resorts to an alternative approach for uncovered

cases, such as incorporating available background knowledge associated with users and

items to enrich the APCF’s approach. This strategy could combine the efficiency and local

precision of APCF with the global coverage of other methods.

Other avenues for research include exploring other autoencoder architectures

for pattern mining as new techniques become available, and conducting a deeper qualita-

tive analysis of the recommendations generated for healthcare applications, with valida-

tion from specialists to assess the clinical relevance of the patterns and predictions.

In summary, this thesis has successfully demonstrated a novel and effective

approach to leveraging the power of autoencoders in addressing persistent challenges in

recommender systems. By shifting the focus from latent representation to pattern mining,

the APCF method provides a scalable and robust alternative, with significant potential

for systems handling large volumes of data and localized user interest patterns, thereby

representing a valuable contribution to the field.

70

Bibliography

ALSHBANAT, H. I.; BENHIDOUR, H.; KERRACHE, S. A survey of latent factor models
in recommender systems. Information Fusion, v. 117, p. 102905, 2025. ISSN 1566-2535.
Available at: <https://www.sciencedirect.com/science/article/pii/S1566253524006833>.
Cited on page 29.

BANK, D.; KOENIGSTEIN, N.; GIRYES, R. Autoencoders. 2021. Available at:
<https://arxiv.org/abs/2003.05991>. Cited 2 times on pages 38 and 39.

BEHERA, G.; NAIN, N. Trade-off between memory and model-based collaborative
filtering recommender system. In: DUA, M.; JAIN, A. K.; YADAV, A.; KUMAR,
N.; SIARRY, P. (Ed.). Proceedings of the International Conference on Paradigms of
Communication, Computing and Data Sciences. Springer, 2022. p. 137–146. ISBN
978-981-16-5747-4. Available at: <https://doi.org/10.1007/978-981-16-5747-4_12>.
Cited 2 times on pages 16 and 28.

BENNETT, J.; LANNING, S. The Netflix Prize. 2007. Retrieved from <https:
//api.semanticscholar.org/CorpusID:9528522>. Accessed on November 28, 2024. Cited
on page 28.

BREESE, J. S.; HECKERMAN, D.; KADIE, C. Empirical analysis of predictive
algorithms for collaborative filtering. In: Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1998. (UAI’98), p. 43–52. ISBN 155860555X. Available at:
<https://doi.org/10.48550/arXiv.1301.7363>. Cited on page 32.

BURKE, R. Hybrid recommender systems: Survey and experiments. User Modeling
and User-Adapted Interaction, Springer, v. 12, p. 331–370, 2002. Available at:
<https://doi.org/10.1023/A:1021240730564>. Cited 2 times on pages 29 and 36.

CAI, H.; GAN, C.; WANG, T.; ZHANG, Z.; HAN, S. Once-for-All: Train One
Network and Specialize it for Efficient Deployment. arXiv, 2019. Available at:
<https://arxiv.org/abs/1908.09791>. Cited on page 20.

CRUZ-JENTOFT, A. J.; BAHAT, G.; BAUER, J.; BOIRIE, Y.; BRUYèRE, O.;
CEDERHOLM, T.; COOPER, C.; LANDI, F.; ROLLAND, Y.; SAYER, A. A.;
SCHNEIDER, S. M.; SIEBER, C. C.; TOPINKOVA, E.; VANDEWOUDE, M.; VISSER,
M.; ZAMBONI, M.; Writing Group for the European Working Group on Sarcopenia
in Older People 2 (EWGSOP2); Extended Group for EWGSOP2. Sarcopenia: revised
european consensus on definition and diagnosis. Age and Ageing, v. 48, n. 1, p. 16–31, 09
2018. ISSN 0002-0729. Available at: <https://doi.org/10.1093/ageing/afy169>. Cited 2
times on pages 63 and 64.

DESROSIERS, C.; KARYPIS, G. A comprehensive survey of neighborhood-based
recommendation methods. In: RICCI, F.; ROKACH, L.; SHAPIRA, B.; KANTOR, P. B.
(Ed.). Recommender Systems Handbook. Boston, MA: Springer US, 2011. p. 107–144.
ISBN 978-0-387-85820-3. Available at: <https://doi.org/10.1007/978-0-387-85820-3_4>.
Cited on page 35.

Bibliography 71

FISCHER, J.; VREEKEN, J. Differentiable pattern set mining. In: Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’21).
New York, NY: ACM, 2021. Available at: <https://doi.org/10.1145/3447548.3467348>.
Cited 4 times on pages 17, 25, 27, and 51.

FUNK, S. Netflix Update: Try This at Home. 2006. Retrieved from <https:
//sifter.org/~simon/journal/20061211.html>. Accessed on October 1, 2024. Cited 2
times on pages 29 and 30.

GEMAN, S.; BIENENSTOCK, E.; DOURSAT, R. Neural networks and the
bias/variance dilemma. Neural Computation, v. 4, n. 1, p. 1–58, 1992. Available at:
<https://doi.org/10.1162/neco.1992.4.1.1>. Cited on page 21.

GLOROT, X.; BENGIO, Y. Understanding the difficulty of training deep feedforward
neural networks. PMLR, Chia Laguna Resort, Sardinia, Italy, v. 9, p. 249–256, 13–15
May 2010. Available at: <https://proceedings.mlr.press/v9/glorot10a.html>. Cited 2
times on pages 17 and 25.

GOLDBERG, K.; ROEDER, T.; GUPTA, D.; PERKINS, C. Eigentaste: A constant
time collaborative filtering algorithm. Discover Computing, Springer, v. 4, p. 133–151,
2001. Available at: <https://doi.org/10.1023/A:1011419012209>. Cited on page 51.

Google Machine Learning Education. Content-based Filtering, Machine Learning. 2022.
Retrieved from <https://developers.google.com/machine-learning/recommendation/
content-based/basics>. Accessed on January 16, 2023. Cited on page 16.

HARDESTY, L. The history of Amazon’s recommendation algorithm: Collabora-
tive filtering and beyond. 2019. Retrieved from <https://www.amazon.science/
the-history-of-amazons-recommendation-algorithm>. Accessed on October 2, 2024.
Cited 2 times on pages 16 and 28.

HARPER, F. M.; KONSTAN, J. A. The movielens datasets: History and context.
ACM Transactions on Interactive Intelligent Systems, Association for Computing
Machinery, New York, NY, USA, v. 5, n. 4, dec 2015. ISSN 2160-6455. Available at:
<https://doi.org/10.1145/2827872>. Cited on page 51.

HERLOCKER, J. L.; KONSTAN, J. A.; TERVEEN, L. G.; RIEDL, J. T. Evaluating
collaborative filtering recommender systems. ACM Transactions on Information Systems,
Association for Computing Machinery, New York, NY, USA, v. 22, n. 1, p. 5–53, jan.
2004. ISSN 1046-8188. Available at: <https://doi.org/10.1145/963770.963772>. Cited
on page 33.

HORNIK, K.; STINCHCOMBE, M.; WHITE, H. Multi-layer feedforward networks are
universal approximators. Neural Networks, v. 2, n. 5, p. 359–366, 1989. Available at:
<https://doi.org/10.1016/0893-6080(89)90020-8>. Cited on page 19.

HUANG, T.; LIANG, C.; WU, D.; HE, Y. A debiasing autoencoder for recommender
system. IEEE Transactions on Consumer Electronics, v. 70, n. 1, p. 3603–3613, 2024.
Available at: <https://doi.org/10.1109/TCE.2023.3281521>. Cited 4 times on pages
38, 39, 42, and 51.

Bibliography 72

HUG, N. Surprise: A python library for recommender systems. Journal of Open
Source Software, The Open Journal, v. 5, n. 52, p. 2174, 2020. Available at:
<https://doi.org/10.21105/joss.02174>. Cited on page 51.

ILIC, A.; KABILJO, M. Recommending items to more than a billion peo-
ple. 2015. Retrieved from <https://engineering.fb.com/2015/06/02/core-infra/
recommending-items-to-more-than-a-billion-people>. Accessed on October 1, 2024.
Cited 2 times on pages 16 and 28.

KINGMA, D. P.; WELLING, M. An introduction to variational autoencoders.
Foundations and Trends® in Machine Learning, v. 12, n. 4, p. 307–392, 2019. ISSN
1935-8237. Available at: <http://dx.doi.org/10.1561/2200000056>. Cited on page 38.

KOREN, Y. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York, NY, USA: [s.n.], 2008. (KDD ’08), p. 426–434.
ISBN 9781605581934. Available at: <https://doi.org/10.1145/1401890.1401944>. Cited
4 times on pages 29, 30, 31, and 39.

KOTLER, P.; ARMSTRONG, G. Principles of marketing. [S.l.]: Pearson Edu, 2010.
Cited on page 36.

KRAMER, M. A. Nonlinear principal component analysis using autoassociative
neural networks. AIChE Journal, v. 37, n. 2, p. 233–243, 1991. Available at:
<https://doi.org/10.1002/aic.690370209>. Cited 2 times on pages 17 and 24.

KUMAR, A.; SHARMA, A. Alleviating sparsity and scalability issues in collaborative
filtering based recommender systems. In: SATAPATHY, S. C.; UDGATA, S. K.; BISWAL,
B. N. (Ed.). Proceedings of the International Conference on Frontiers of Intelligent
Computing: Theory and Applications (FICTA). Springer: [s.n.], 2013. p. 103–112. ISBN
978-3-642-35314-7. Available at: <https://doi.org/10.1007/978-3-642-35314-7_13>.
Cited 2 times on pages 17 and 36.

LAMPROPOULOS, A. S.; TSIHRINTZIS, G. A. A survey of approaches to designing
recommender systems. In: TSIHRINTZIS, G. A.; VIRVOU, M.; JAIN, L. C. (Ed.).
Multimedia Services in Intelligent Environments: Advances in Recommender Systems.
Heidelberg: Springer International Publishing, 2013. p. 7–30. ISBN 978-3-319-00372-6.
Available at: <https://doi.org/10.1007/978-3-319-00372-6_2>. Cited 3 times on pages
28, 33, and 36.

LECUN, Y.; BOTTOU, L.; BENGIO, Y.; HAFFNER, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, v. 86, n. 11, p. 2278–2324,
1998. Available at: <https://doi.org/10.1109/5.726791>. Cited on page 20.

LI, G.; MA, Q.; TANG, H.; PATERSON, A. H.; XU, Y. QUBIC: a qualitative
biclustering algorithm for analyses of gene expression data. Nucleic Acids Research,
v. 37, n. 15, p. e101, 2009. Available at: <https://doi.org/10.1093/nar/gkp491>. Cited
on page 43.

LI, S.; KAWALE, J.; FU, Y. Deep collaborative filtering via marginalized denoising
auto-encoder. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management. New York, NY, USA: Association for

Bibliography 73

Computing Machinery, 2015. (CIKM ’15), p. 811–820. ISBN 9781450337946. Available
at: <https://doi.org/10.1145/2806416.2806527>. Cited on page 39.

LI, X.; SHE, J. Collaborative variational autoencoder for recommender systems.
In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York, NY, USA: Association for Computing
Machinery, 2017. (KDD ’17), p. 305–314. ISBN 9781450348874. Available at:
<https://doi.org/10.1145/3097983.3098077>. Cited on page 40.

LIANG, S.; PAN, Z.; LIU, w.; YIN, J.; RIJKE, M. de. A survey on variational
autoencoders in recommender systems. ACM Comput. Surv., Association for Computing
Machinery, New York, NY, USA, v. 56, n. 10, jun. 2024. ISSN 0360-0300. Available at:
<https://doi.org/10.1145/3663364>. Cited on page 39.

LUO, X.; ZHOU, M.; XIA, Y.; ZHU, Q. An efficient non-negative matrix-
factorization-based approach to collaborative filtering for recommender systems. IEEE
Transactions on Industrial Informatics, v. 10, n. 2, p. 1273–1284, 2014. Available at:
<https://doi.org/10.1109/TII.2014.2308433>. Cited on page 39.

NIELSEN, M. A. How the backpropagation algorithm works. In: Neu-
ral Networks and Deep Learning. Determination Press, 2015. Available at:
<http://neuralnetworksanddeeplearning.com/chap2.html>. Cited on page 22.

OUYANG, Y.; LIU, W.; RONG, W.; XIONG, Z. Autoencoder-based collaborative
filtering. In: LOO, C. K.; YAP, K. S.; WONG, K. W.; JIN, A. T. B.; HUANG,
K. (Ed.). Neural Information Processing. Cham: Springer International Publishing,
2014. p. 284–291. ISBN 978-3-319-12643-2. Available at: <https://doi.org/10.1007/
978-3-319-12643-2_35>. Cited on page 40.

PARK, J.; NAM, K. Group recommender system for store product placement. Data
Mining and Knowledge Discovery, Springer, v. 33, p. 204–229, 2019. Available at:
<https://doi.org/10.1007/s10618-018-0600-z>. Cited on page 36.

RAFAILIDIS, D.; CRESTANI, F. Recommendation with social relationships via
deep learning. In: Proceedings of the ACM SIGIR International Conference on
Theory of Information Retrieval. New York, NY, USA: Association for Computing
Machinery, 2017. (ICTIR ’17), p. 151–158. ISBN 9781450344906. Available at:
<https://doi.org/10.1145/3121050.3121057>. Cited on page 39.

RESNICK, P.; IACOVOU, N.; SUCHAK, M.; BERGSTROM, P.; RIEDL, J. Grouplens:
an open architecture for collaborative filtering of netnews. In: Proceedings of the 1994
ACM Conference on Computer Supported Cooperative Work. New York, NY, USA:
Association for Computing Machinery, 1994. (CSCW ’94), p. 175–186. ISBN 0897916891.
Available at: <https://doi.org/10.1145/192844.192905>. Cited on page 32.

SALAKHUTDINOV, R.; MNIH, A. Probabilistic matrix factorization. In: Proceedings of
the 21st International Conference on Neural Information Processing Systems. Red Hook,
NY, USA: Curran Associates Inc., 2007. (NIPS’07), p. 1257–1264. ISBN 9781605603520.
Cited on page 39.

SARWAR, B.; KARYPIS, G.; KONSTAN, J.; RIEDL, J. Analysis of recommendation
algorithms for e-commerce. In: Proceedings of the 2nd ACM Conference on Electronic

Bibliography 74

Commerce. New York, NY, USA: Association for Computing Machinery, 2000. (EC ’00),
p. 158–167. ISBN 1581132727. Available at: <https://doi.org/10.1145/352871.352887>.
Cited on page 36.

SARWAR, B.; KARYPIS, G.; KONSTAN, J.; RIEDL, J. Item-based collaborative
filtering recommendation algorithms. In: Proceedings of the 10th International
Conference on World Wide Web. New York, NY, USA: Association for Computing
Machinery, 2001. (WWW ’01), p. 285–295. ISBN 1581133480. Available at:
<https://doi.org/10.1145/371920.372071>. Cited 3 times on pages 16, 18, and 34.

SCHEIN, A. I.; POPESCUL, A.; UNGAR, L. H.; PENNOCK, D. M. Methods and
metrics for cold-start recommendations. In: Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval. New
York, NY, USA: Association for Computing Machinery, 2002. (SIGIR ’02), p. 253–260.
ISBN 1581135610. Available at: <https://doi.org/10.1145/564376.564421>. Cited on
page 35.

SEDHAIN, S.; MENON, A. K.; SANNER, S.; XIE, L. Autorec: Autoencoders
meet collaborative filtering. In: Proceedings of the 24th International Conference
on World Wide Web. New York, NY, USA: Association for Computing Machinery,
2015. (WWW ’15 Companion), p. 111–112. ISBN 9781450334730. Available at:
<https://doi.org/10.1145/2740908.2742726>. Cited on page 41.

SHANI, G.; GUNAWARDANA, A. Evaluating recommendation systems. In: RICCI, F.;
ROKACH, L.; SHAPIRA, B.; KANTOR, P. B. (Ed.). Recommender Systems Handbook.
Boston, MA: Springer US, 2011. p. 257–297. ISBN 978-0-387-85820-3. Available at:
<https://doi.org/10.1007/978-0-387-85820-3_8>. Cited on page 49.

SIDI. IARA, an AI-focused supercomputer. 2024. Retrieved from <https://www.sidi.org.
br/en/about-us>. Accessed on February 4, 2025. Cited on page 51.

SILVA, M. G.; HENRIQUES, R.; MADEIRA, S. C. User-Specific Bicluster-based
Collaborative Filtering: Handling Preference Locality, Sparsity and Subjectivity. 2022.
Available at: <https://doi.org/10.48550/arXiv.2211.08366>. Cited 2 times on pages 44
and 51.

SINGH, M.; MEHROTRA, M. Impact of biclustering on the performance of biclustering
based collaborative filtering. Expert Systems with Applications, v. 113, p. 443–456, 2018.
ISSN 0957-4174. Available at: <https://doi.org/10.1016/j.eswa.2018.06.001>. Cited 2
times on pages 17 and 43.

STRUB, F.; MARY, J.; GAUDEL, R. Hybrid collaborative filtering with autoencoders.
2016. Available at: <https://doi.org/10.48550/arXiv.1603.00806>. Cited 3 times on
pages 16, 29, and 41.

SYMEONIDIS, P.; NANOPOULOS, A.; PAPADOPOULOS, A.; MANOLOPOULOS,
Y. Nearest-biclusters collaborative filtering with constant values. In: NASRAOUI,
O.; SPILIOPOULOU, M.; SRIVASTAVA, J.; MOBASHER, B.; MASAND, B. (Ed.).
Advances in Web Mining and Web Usage Analysis. Springer: [s.n.], 2007. p. 36–55. ISBN
978-3-540-77485-3. Available at: <https://doi.org/10.1007/978-3-540-77485-3_3>.
Cited on page 46.

Bibliography 75

TONG, H.; YANG, Z.; WANG, S.; HU, Y.; SEMIARI, O.; SAAD, W.; YIN, C. Federated
learning for audio semantic communication. Frontiers in Communications and Networks,
v. 2, 2021. ISSN 2673-530X. Available at: <https://www.frontiersin.org/journals/
communications-and-networks/articles/10.3389/frcmn.2021.734402>. Cited on page 25.

VALDEZ, A. C.; ZIEFLE, M.; VERBERT, K.; FELFERNIG, A.; HOLZINGER, A.
Recommender systems for health informatics: State-of-the-art and future perspectives.
In: HOLZINGER, A. (Ed.). Machine Learning for Health Informatics: State-of-the-Art
and Future Challenges. Cham: Springer International Publishing, 2016. p. 391–414. ISBN
978-3-319-50478-0. Available at: <https://doi.org/10.1007/978-3-319-50478-0_20>.
Cited on page 16.

VERONEZE, R.; VON ZUBEN, F. J. Scalability achievements for enumerative
biclustering with online partitioning: Case studies involving mixed-attribute datasets.
Engineering Applications of Artificial Intelligence, v. 100, p. 104147, 2021. ISSN
0952-1976. Available at: <https://doi.org/10.1016/j.engappai.2020.104147>. Cited on
page 45.

VINCENT, P.; LAROCHELLE, H.; BENGIO, Y.; MANZAGOL, P.-A. Extracting and
composing robust features with denoising autoencoders. In: Proceedings of the 25th
International Conference on Machine Learning. New York, NY, USA: Association for
Computing Machinery, 2008. (ICML ’08), p. 1096–1103. ISBN 9781605582054. Available
at: <https://doi.org/10.1145/1390156.1390294>. Cited on page 38.

WANG, Y.; WANG, L.; LI, Y.; HE, D.; LIU, T.-Y. A theoretical analysis of NDCG
type ranking measures. In: JMLR: Workshop and Conference Proceedings. [s.n.], 2013. p.
1–30. Available at: <https://doi.org/10.48550/arXiv.1304.6480>. Cited on page 50.

WU, Y.; DUBOIS, C.; ZHENG, A. X.; ESTER, M. Collaborative denoising auto-
encoders for top-n recommender systems. In: Proceedings of the Ninth ACM International
Conference on Web Search and Data Mining. New York, NY, USA: Association for
Computing Machinery, 2016. (WSDM ’16), p. 153–162. ISBN 9781450337168. Available
at: <https://doi.org/10.1145/2835776.2835837>. Cited on page 41.

ZHANG, F.; YUAN, N. J.; LIAN, D.; XIE, X.; MA, W.-Y. Collaborative knowledge
base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. New York, NY,
USA: Association for Computing Machinery, 2016. (KDD ’16), p. 353–362. ISBN
9781450342322. Available at: <https://doi.org/10.1145/2939672.2939673>. Cited on
page 40.

ZHANG, G.; LIU, Y.; JIN, X. A survey of autoencoder-based recommender
systems. Frontiers of Computer Science, v. 14, p. 430–450, 2020. Available at:
<https://doi.org/10.1007/s11704-018-8052-6>. Cited 3 times on pages 17, 25, and 38.

ZHANG, S.; YAO, L.; XU, X. AutoSVD++: An efficient hybrid collaborative filtering
model via contractive auto-encoders. In: Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval. New York,
NY, USA: Association for Computing Machinery, 2017. (SIGIR ’17), p. 957–960. ISBN
9781450350228. Available at: <https://doi.org/10.1145/3077136.3080689>. Cited on
page 40.

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	List of Figures
	List of Tables
	List of Nomenclature
	Contents
	Introduction
	Autoencoders
	Neural Networks
	Training neural networks
	Backpropagation algorithm

	Autoencoders: definition and applications
	BinaPs: Differentiable Pattern Set Mining
	Summary

	Recommender systems
	Definition and applications
	Collaborative Filtering
	Latent Factor Models for Collaborative Filtering
	User-based Collaborative Filtering
	Item-based Collaborative Filtering
	User-based VS Item-based Recommendation

	Common Issues in Recommender Systems
	Summary

	Autoencoder-based Recommender Systems
	Autoencoders in Recommender Systems
	Autoencoders in latent factor-based models
	Autoencoders in reconstruction-based models

	Alternative Subspace Approaches: Biclustering
	Overview of Related Work
	APCF: Autoencoder Pattern-based Collaborative Filtering
	Summary

	Computational experiments
	Performance evaluation of Recommender Systems
	Experimental Setting
	Experiments: Part 1
	BinaPs training
	Recommendation results

	Experiments: Part 2
	Physical activity recommendations
	Sarcopenia Diagnosis

	Summary

	Conclusion
	Bibliography

