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Resumo

A Análise de Componentes Principais (PCA) e sua extensão probabilística (PPCA) são
amplamente utilizadas para redução de dimensionalidade, mas não possuem garantias
de fairness, o que pode levar a representações enviesadas. Este trabalho propõe um fra-
mework de Mistura de PPCA (MPPCA) fair, utilizando otimização minimax para garantir
uma codificação de dados justa entre grupos sensíveis. Diferentemente de abordagens ba-
seadas em Modelos de Mistura Gaussianos, nosso método incorpora restrições de fairness
diretamente no processo de redução de dimensionalidade. Para isso, definimos uma função
de perda que equilibra o desempenho entre os grupos sensíveis por meio de uma estratégia
de otimização minimax. Fornecemos análises teóricas e validação empírica, demonstrando
um melhor equilíbrio no aprendizado de representações sem comprometer as informações
dos dados.



Abstract

Principal Component Analysis (PCA) and its probabilistic extension (PPCA) are widely
used for dimensionality reduction but lack fairness guarantees, potentially leading to bi-
ased representations. This work introduces a fairness-aware Mixture of Probabilistic PCA
(MPPCA) framework, leveraging minimax optimization to ensure equitable data encoding
across sensitive groups. Unlike existing Gaussian Mixture Model-based approaches, our
method integrates fairness constraints directly into the dimensionality reduction process.
We achieve this by defining a log-likelihood function that balances the performance across
sensitive groups using a minimax optimization stategy. We provide theoretical insights
and empirical validation, demonstrating improved fairness in representation learning while
preserving data information.
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Chapter 1

Introduction

As machine learning systems become increasingly integrated into high-stakes decision-

making processes—ranging from hiring and lending to healthcare and law enforcement—the

issue of fairness has emerged as a critical area of concern [1]. These algorithms, while

often perceived as objective, are in fact shaped by the data they are trained on and the

design choices behind their implementation. This means they can perpetuate or even

amplify existing societal biases, including those related to race, gender, and socioeco-

nomic status [17]. To address these risks, the field of algorithmic fairness has focused

on identifying, quantifying, and mitigating such biases throughout the machine learning

pipeline [37]. One particularly important and often overlooked stage is data represen-

tation, where bias can be embedded during dimensionality reduction techniques such as

Principal Component Analysis (PCA) and its probabilistic variants. This dissertation ex-

plores fairness specifically in the context of probabilistic PCA mixtures, aiming to develop

representations that preserve essential information while promoting equitable treatment

across different social groups.

1.1 Basics of Fair Machine Learning

Machine learning is a subfield of artificial intelligence that focuses on designing algorithms

capable of learning patterns from data to make predictions or decisions. In the supervised

learning setting, we are given a dataset of n training examples, each consisting of an input

xi ∈ R
d and a corresponding output label yi. These pairs are assumed to be drawn from

an unknown joint probability distribution pX,Y (x, y) [37]. In supervised learning, the goal

is to learn a function ŷ = f(x) that predicts the correct label y for a new, unseen input x.

This function, referred to as a model, is learned during the training phase by minimizing

some measure of prediction error on the training set. A key challenge in machine learning

is generalization, or the model’s ability to perform well on inputs that differ from the

training samples. To aid in learning, input data are often preprocessed and transformed

into a feature space in which the predictive patterns are more easily identifiable [2].

A common technique for such transformation is Principal Component Analysis (PCA),

which reduces the dimensionality of the data by projecting it onto a lower-dimensional

subspace that captures the most variance, thereby highlighting the structure most relevant
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for pattern recognition [16].

As machine learning systems increasingly influence decisions with real-world conse-

quences, it becomes essential to evaluate not only their predictive performance but also

their societal impacts, particularly with respect to fairness. Fairness, often used inter-

changeably with justice, is a complex and inherently political concept that has long been

studied across philosophy, law, and the social sciences. In the context of algorithmic sys-

tems, fairness connects to multiple dimensions of justice, including: distributive justice,

which concerns the fairness of outcomes received by individuals or groups; procedural jus-

tice, which focuses on the fairness of the processes that lead to those outcomes; restorative

justice, which aims to repair harms done; and retributive justice, which seeks to punish

wrongdoing [37]. The primary goal of this work aligns with distributive justice: ensuring

that algorithmic outcomes are fairly distributed across social groups. In machine learn-

ing systems, this concern is typically addressed through the lens of algorithmic fairness,

particularly by measuring and correcting disparities between privileged and unprivileged

groups—often defined along protected attributes such as race, gender, age, religion, or

ethnicity. These attributes are not universally fixed but are identified based on legal,

cultural, or ethical considerations specific to a given domain or jurisdiction [21].

Algorithmic fairness is generally discussed through two main paradigms: individual

fairness and group fairness. Individual fairness asserts that individuals who are similar in

relevant aspects should be treated similarly by the model. Group fairness, the primary

operational lens of this work, emphasizes that groups defined by protected attributes

should receive comparable average treatment or outcomes from a model [37]. There are

many metrics for group fairness. One of the most classical metrics is Statistical Parity

Difference, which directly quantifies disparate impact. Disparate impact occurs when a

seemingly neutral policy or algorithm, though not overtly discriminatory, disproportion-

ately disadvantages a protected group compared to a more privileged group. Statistical

Parity Difference measures this by computing the difference in selection rates for the fa-

vorable outcome (e.g., loan approval, job offer) between the privileged and unprivileged

groups. Specifically, it’s calculated as the difference between the probability of a favor-

able prediction for the privileged group, P (ŷ(X) = fav|Z = priv), and the probability of a

favorable prediction for the unprivileged group, P (ŷ(X) = fav|Z = unpr). A value closer

to zero indicates less disparate impact and a higher degree of statistical parity [37].

statistical parity difference = P (ŷ(X) = fav|Z = unpr)−P (ŷ(X) = fav|Z = priv). (1.1)

Another common fairness metric is the Average Odds Difference, which is based on

model performance metrics. It involves two metrics in the ROC: the favorable label rate

(true positive rate) and the false favorable label rate (false positive rate). This metric is

computed by taking the difference between the true favorable rates of the unprivileged

and privileged groups, then taking the difference of the false favorable rates between the

unprivileged and privileged groups, and averaging them:
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average odds difference =
1

2
(P (ŷ(X) = fav|Y = fav, Z = unpr)

− P (ŷ(X) = fav|Y = fav, Z = priv))

+
1

2
(P (ŷ(X) = fav|Y = unf, Z = unpr)

− P (ŷ(X) = fav|Y = unf, Z = priv)).

In this metric, the true favorable rate difference and the false favorable rate difference

can cancel out and hide unfairness. A way to mitigate this is to take the absolute value of

these differences before averaging. A value of 0 average absolute odds difference indicates

independence of ŷ(X) and Z conditioned on Y , and this is considered a fair scenario and

termed equality of odds [37].

Another relevant fairness metric is Overall Accuracy Equality. It requires similar pre-

diction accuracy across different groups. In this case, we assume that obtaining a true

negative is as desirable as obtaining a true positive [5].

While fairness is often considered at the level of predictions or decisions, it can be com-

promised much earlier in the machine learning pipeline—particularly during stages like

data preprocessing, dimensionality reduction and representation learning. Dimensionality

reduction techniques consists of finding a model g(x) such that the information embed-

ded in y = g(x) is similar to the original space x. However, methods, such as PCA and

its probabilistic variants, can unintentionally encode biases present in the data, leading

to unfair representations that affect downstream outcomes. In dimensionality reduction,

there are many ways of evaluating fairness: evaluating the fairness of the downstream

classification task [15], evaluating quantity of mutual information of the latent space and

the protected attributes [20], and evaluating the equality of the preserved information in

the latent space [41]. Therefore, promoting group fairness in representation, guided by

the principle of distributive justice, is a crucial step toward building more equitable and

socially responsible machine learning systems.

1.2 Basics of PCA

Principal Component Analysis (PCA) is a widely used technique in statistical analysis

and machine learning, enabling effective dimensionality reduction in domains such as data

compression [27], pattern recognition [10], and image processing [23]. The goal is to find

a projection matrix U that projects x ∈ R
d into latent vector t = U(x − µ) ∈ R

d (d < d

and µ is the mean of x) but still preserves the information belonging to x. By projecting

high-dimensional data onto a lower-dimensional subspace defined by the directions of

maximum variance, PCA allows for more efficient storage, processing, and visualization

of data. A key metric for evaluating the performance of PCA is the reconstruction error,

which measures the loss of information when the original data is projected into a lower-

dimensional space and then reconstructed back. Formally, it quantifies the difference,

often via mean squared error, between the original data and its low-rank approximation.
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Minimizing this error ensures that the reduced representation retains as much of the data’s

structure as possible, and is often the primary optimization objective in PCA.

However, this optimization is typically performed without regard to the performance

of reconstruction error across different demographic groups. As a result, traditional PCA

may perform well in aggregate, while disproportionately distorting the reconstructed data

of certain groups: particularly those underrepresented in the training set. This becomes

especially concerning in socially sensitive applications, where unequal representation fi-

delity can translate into downstream disparities in tasks such as classification and clus-

tering.

Therefore, despite its effectiveness in reducing dimensionality, traditional PCA lacks

mechanisms for explicitly controlling fairness across different demographic groups [28].

This limitation is especially critical in the current landscape, where biases in machine

learning models can reinforce or even exacerbate social inequalities, particularly in high-

impact applications [1,29,41]. Moreover, the linear nature of PCA [31] can, in some cases,

contribute to disparities when the underlying data distributions differ significantly across

groups.

1.3 Basics of PPCA

Probabilistic Principal Component Analysis (PPCA) extends classical PCA by framing

dimensionality reduction as a density estimation problem within a generative probabilistic

model [36]. Rather than solely projecting data onto a linear subspace, PPCA assumes

that each observed data point is generated by first sampling a latent variable from a

low-dimensional Gaussian distribution, then linearly transforming it and adding Gaus-

sian noise. This formulation introduces a principled way to model uncertainty in both the

data and its low-dimensional representation, enabling more expressive and robust statis-

tical inferences. Understanding PPCA requires a basic notion of probabilistic modeling,

particularly the idea of estimating a probability distribution from observed data. Once

the distribution parameters are learned, the model can generate new data points by sam-

pling from the latent space and projecting back into the original space. This generative

perspective provides flexibility and robustness that classical PCA lacks, especially when

dealing with missing data, noise, or uncertainty.

However, similar to standard PCA, PPCA does not include any mechanisms for ensur-

ing fairness. The model’s global parameter estimation can absorb and reproduce existing

biases in the data, potentially leading to latent representations that reflect or amplify dis-

parities across demographic groups. Since these representations are used in downstream

tasks such as classification or clustering, any group-dependent distortions introduced by

PPCA can propagate throughout the entire machine learning pipeline.

The Mixture of Probabilistic PCA (MPPCA) generalizes PPCA by allowing the data

to be modeled as arising from a combination of several PPCA components. This makes

MPPCA particularly effective for capturing complex, multimodal data structures that

may reflect distinct subpopulations. While this expressiveness enhances modeling power,

it also introduces new fairness concerns. If the mixture components align too closely with
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sensitive attributes, such as gender, race, or age, they can effectively encode demographic

separation within the latent space. As a result, MPPCA may unintentionally reinforce

group-level disparities.

1.4 A min-max approach of fair MPPCA

This dissertation proposes a novel approach, Fair Robust MPPCA (FR-MPPCA), which

integrates group fairness constraints directly into the Mixture of Probabilistic PCA (MP-

PCA) framework. We employ a minimax optimization strategy to optimize the reconstruc-

tion error and minimize disparity across sensitive groups. The minimax formulation suits

this setting well, where conflicting goals must be addressed simultaneously. In contrast to

prior work that targets fairness in Gaussian Mixture Models (GMMs) for generative tasks

or clustering [26], or focuses on deterministic variants of Fair PCA [14, 19], our method

directly embeds fairness into the dimensionality reduction process within a mixture-based

model, an essential feature for effective representation learning in many machine learning

systems.

We investigate theoretical guarantees and empirical performance to validate the effec-

tiveness of our proposed method. The main contributions of this work are as follows:

1. A novel formulation for fair dimensionality reduction within the MPPCA framework;

2. An optimization strategy based on a minimax formulation tailored to fairness con-

straints;

3. A theoretical analysis providing convergence guarantees;

4. An empirical evaluation on synthetic and real world datasets, analyzing the trade-

offs between fairness metrics and representation utility.

With this research, we aim to advance the intersection of fairness and representation

learning, offering practical tools for mitigating bias and promoting better equity in data-

driven systems.
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Chapter 2

Bibliographic Review

The pursuit of fairness in machine learning models has been an active area of research,

with various approaches leveraging probabilistic models, dimensionality reduction tech-

niques, and clustering frameworks. While fairness-aware Principal Component Analysis

(PCA) and Gaussian Mixture Models (GMMs) have been explored separately in multiple

contexts, combining these ideas within a minimax optimization framework remains unex-

plored. This review highlights key contributions in the literature and their relation to our

approach, which aims to incorporate fairness constraints into a mixture of probabilistic

PCA (MPPCA) for dimensionality reduction. The pursuit of fairness in this work focuses

primarily on notions of group fairness [38], aiming to ensure that dimensionality reduction

does not introduce or amplify disparities between protected groups defined by sensitive

attributes (such as gender or race).

2.1 Fairness in Gaussian Mixture Models and Density

Estimation

Several works utilize Gaussian Mixture Models (GMMs) for fairness-aware data process-

ing. For instance, [32] proposes using GMMs to estimate conditional densities for eval-

uating regression model bias directly at the density level, rather than transforming the

problem into probability estimations. This approach provides a way to approximate fair-

ness measures, such as Independence, Separation, and Sufficiency, by estimating relevant

conditional distributions. Similarly, [26] applies GMMs to the latent space of generative

diffusion models to balance facial attributes, mitigating bias without requiring retrain-

ing. This highlights the effectiveness of GMMs in capturing structural information about

fairness-related subspaces. While Gaussian Mixtures (GMs) focus on modeling cluster

densities and structure, dimensionality reduction techniques—such as PCA—are equally

essential for preprocessing and representation learning. Like clustering, these methods

also raise concerns around fairness, and will be discussed in the next section.
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2.2 Fair PCA and Fair Dimensionality Reduction

Fairness-aware PCA has been studied in different settings. Some researchers propose

fair PCA as an optimization problem that minimizes reconstruction error while penal-

izing disparities in reconstruction quality across protected groups [14]. Others define

fair PCA through maximum mean discrepancy (MMD) constraints [19], ensuring that

dimensionality-reduced conditional distributions remain similar across protected groups.

These works demonstrate the potential of dimensionality reduction methods to encode

fairness constraints while preserving helpful information in the data. However, existing

fair PCA formulations do not incorporate probabilistic models or explore minimax opti-

mization as a fairness mechanism. This serves as a motivation for adopting a minimax

approach to MPPCA.

2.3 Fair Clustering and Probabilistic Methods

Clustering approaches have also been adapted to fairness constraints. Some methods pro-

pose fair soft clustering with deterministic group membership and probabilistic cluster

assignments, ensuring balanced clustering solutions across groups [18]. Others introduce

pairwise and community-preserving fairness notions in k-center clustering [4]. Probabilis-

tic fair clustering techniques generalize fairness constraints by introducing uncertainty

in group membership assignments [9]. These approaches indicate the relevance of prob-

abilistic models in fairness-aware learning, though they have not been combined with

probabilistic PCA for dimensionality reduction. The Mixture of Probabilistic PCA (MP-

PCA) [35] performs soft clustering by assigning data points probabilistically to mixture

components. As such, concepts from fair clustering are directly relevant to our case study.

2.4 Minimax Optimization for Fairness

Minimax optimization has been applied in various fairness-aware learning tasks, but its

use in fairness-aware dimensionality reduction is still underexplored. The theoretical

advancements in related areas, such as minimax clustering and mixture models, provide

a foundation that suggests our approach is feasible.

For example, [39] introduces a sparse PCA algorithm that achieves minimax-optimal

convergence rates, offering a theoretical framework that could be adapted for fair dimen-

sionality reduction. Similarly, [8] establishes fundamental limits on misclustering error,

laying the groundwork for fairness in clustering, which could extend to our fairness con-

cerns. Recent advances in dimensionality reduction extend PCA to multi-criteria opti-

mization, addressing fairness concerns by balancing reconstruction error across groups, as

seen in [33]. Minimax lower bounds are also explored in [6] for clustering in anisotropic

GMMs, showing that fairness in such models is theoretically viable. Lastly, [34] demon-

strates minimax optimal rates in multi-task learning, reinforcing the potential for fairness-

aware models in multi-dimensional data. The minimax approach is particularly well-suited

for enforcing fairness in MPPCA. Its structure aligns naturally with the trade-off between
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minimizing reconstruction error and reducing disparities, effectively framing fairness as a

game between accuracy and equity.

2.5 Contribution of This Work

While the existing literature has explored fairness-aware PCA, GMM-based fairness, and

fair clustering separately, our approach aims to aggregate these ideas by introducing a

mixture of probabilistic PCA with fairness constraints enforced via minimax optimization.

By leveraging the representational power of PPCA and incorporating fairness objectives

in an adversarial optimization framework, we seek to develop a principled approach that

ensures fair dimensionality reduction while maintaining data fidelity.

This work stands at the intersection of multiple research directions, filling a gap in

fairness-aware dimensionality reduction by integrating probabilistic models and minimax

optimization techniques. Our approach builds upon existing methodologies while intro-

ducing a novel formulation that balances statistical fairness with efficient representation

learning.
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Chapter 3

Probabilistic Principal Component

Analyzers

3.1 Principal Component Analysis

The main idea of Principal Component Analysis (PCA) is to reduce the dimensionality

of a dataset consisting of a large number of correlated variables, while retaining as much

as possible of the information present in the dataset. This is achieved by transforming

the dataset to a new set of variables, called principal components, which are uncorrelated

– i.e. orthogonal – and are ordered so that the first few retain the most variance present

in all of the original variables. In this section, we are going to define and explore the

properties of traditional PCA, using [16] as the main reference.

Suppose that x is a vector of d random variables, and that we are interested in the

variances of the d random variables and the structure of the covariances or correlations

between the d variables. It is possible to look for a small number (j d) of derived vari-

ables that condense most of the information given by these variances and correlations or

covariances. The principal component (PC) is a linear functional of the form ³T

1
x (where

³1 ∈ R
d is a vector of coefficients, also known as loading coefficients) that maximizes the

variance by optimizing ³1. Expanding this expression, we have

³T

1
x = ³11x1 + ³12x2 + · · ·+ ³1dxd =

d∑

j=1

³1jxj. (3.1)

After identifying the first principal component, we seek a second linear functional ³T

2
x

that is uncorrelated with the first principal component ³T

1
x and has the maximum possible

variance. This ensures that the second principal component captures new, independent

information from the data. This process continues iteratively: at the k−th stage we

determine a linear function ³T

k
x that maximizes variance while being uncorrelated with

all previously computed principal components, ³T

1
x, ³T

2
x, . . . , ³T

k−1
x. In total, up to d

PCs can be found. However, in practice, most of the variability in x is captured by a

much smaller number of components, say mj d.

To determine the principal components, we consider the case where the vector of

random variables x has a known covariance matrix Σ, whose (i, j)-th entry represents
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the covariance between the i-th and j-th elements of x. In practical scenarios where Σ is

unknown, we estimate it using the sample covariance matrix S. The k-th PC is given by

tk = ³T

k
x, where ³k is an eigenvector of Σ, associated with its k-th largest eigenvalue ¼k.

If we enforce the normalization constraint ³T

k
³k = 1 then the variance of tk is precisely

¼k.

3.1.1 Geometric Intuition

Consider that D = {x1, . . . , xN} ¢ R
d is a dataset measuring d features of N distinct

individuals. The mean can be subtracted from all the points, so we can always assume

that D has zero mean. With some reasonable assumptions, one can imagine that this

cloud of points is somewhat distributed in a shape that resembles a (d − 1)-dimensional

ellipsoid E ¢ R
n, and that it contains the vast majority of points of D. The very axes

we choose to collect the features’ measurements can be the axis of E, but of course in

general that’s not the case. The statistical meaning of the orthogonal principal axes of E

is: if we were to chose the axes of E as features to begin with, these variables would be

independent of each other, that is, variations of just one of them don’t affect the values

of the others. So we have found d new uncorrelated features that describe the dataset D

measuring the “actual” features of the experiment. In particular, we can think the sizes

of this principal axis of E as the relevance of the features. The directions that stretch E

more are the principal components of D. We describe these ideas more precisely below.

Figure 3.1: Geometric intuition of PCA — ε is the canonical basis, µ the orthonormal
eigenbasis, and x the original datapoint x represented in µ.

We want to understand the “shape” of this data cloud: is it more stretched in some

directions than others? How are the features related? The covariance matrix Σ of the

centered data captures precisely this information about dispersion and correlation. We

remember that Σ is define by

Σ = XTX

where X is the matrix whose columns are the N data-vectors xi ∈ D ¢ R
d. A crucial
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point from linear algebra is that, since the covariance matrix is symmetric, the Spectral

Theorem [12] guarantees two important facts:

• It has only real (and in this case, positive) eigenvalues.

• It has a set of eigenvectors that form an orthonormal basis for R
d (i.e., mutually

perpendicular axes spanned by unitary vectors).

Geometrically, the covariance matrix defines the shape of the data dispersion (which is

the shape of E). The link between ellipsoids and symmetric matrices is given by the

quadratic forms p : Rn −→ R suitably expressed by p(v) = vTAv, where A is symmetric.

If A only has positive eigenvalues, than the positive levels p−1({t}) of p are concentrical

ellipsoids, and p−1({1}) has axis-sizes given precisely by the eigenvalues of A. If the data

followed a multivariate Gaussian distribution, these ellipsoids would represent contours

of constant probability density. More generally, they represent regions where the data

has similar “statistical distance” from the center, defined by the quadratic form p(x) =

xTΣ−1x = constant, known as the Mahalanobis distance.

We conclude that a large eigenvalue (¼k large) means the data cloud is highly “stretched”

(high variance) in the direction of the corresponding eigenvector uk (a long ellipsoid axis).

A small eigenvalue means the cloud is “flattened” (low variance) in that direction (a short

axis of the ellipsoid).

So, what does PCA do?

1. Finds the Axes: It computes the eigenvectors and eigenvalues of the covariance

matrix, thus identifying the principal axes of the data cloud (which are orthogonal,

by the Spectral Theorem) and the variance along each axis.

2. Ranks by Importance: It sorts these axes (eigenvectors) according to the magni-

tude of their corresponding eigenvalues, from largest to smallest. The first axes in

the list are called principal components. They represent the directions of greatest

variance in the data—the directions in which the ellipsoid is most “stretched”.

3. Projects the data: To reduce the dimensionality of a data x from d to q (where

q < d), PCA selects the first q principal components (the eigenvectors with the

largest eigenvalues). It then discards the remaining d − q axes (those with lower

variance, where the data cloud is flatter). Finally, it orthogonally projects each

original data point on the q− dimensional subspace spanned by the selected principal

components, and gives the coordinates of this projection (relative to the previously

mentioned basis of this subspace) as the uncorrelated feature-values of x relative to

the principal components.

The result is a lower-dimensional q representation of your data that preserves as much

of the original variance as possible. Geometrically, you have found the q-dimensional

“view” of your data cloud that best captures its “stretching” and underlying statistical

structure. Specifically, the q first coordinates of a data xi ∈ D relative to the basis of

axis of E (ordered by decreasing magnitude of their respective eigenvalues) are the values

of these q fresh discovered and “more relevant” features (Figure 3.1.) This is why the
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eigenvectors of the covariance matrix are called the principal components of the dataset

D.

3.2 Probabilistic Principal Component Analysis

In this section, we extend the discussion from standard Principal Component Analysis

to its probabilistic counterpart, Probabilistic Principal Component Analysis (PPCA). We

will follow the formulation proposed by [36]. This approach expands standard PCA by

incorporating a probabilistic framework, modeling the data as a latent variable model

with Gaussian noise.

A latent variable model seeks to relate an observed data vector x ∈ R
d to a corre-

sponding vector of latent variables t ∈ R
q, q < d:

x = y(t;w) + ϵ, (3.2)

where y(·, ·) is a function of the latent variables t with parameters w, and ϵ is an x-

independent noise process.

The most common example of a latent variable model is that of statistical factor

analysis in which the mapping y(t;w) is a linear function of t:

x = Wt+ µ+ ϵ. (3.3)

with t ∼ N (0, I), ϵ ∼ N (0,Ψ), with Ψ diagonal, and the d × q parameter matrix

W contains the factor loadings. The observation vectors are also normally distributed

x ∼ N (µ,C), where the model covariance is C = Ψ+WWT .

More precisely, for each linear transformation W : R
q −→ R

d is associated to a

probability distribution over Rd, given by the conditional form:

p(x|t) = (2ÃÃ2)−d/2 exp

{

−
1

2Ã2
∥x−Wt− µ∥2

}

.

Our goal is to find parameters W and µ that maximize the overall likelihood of the

observed data. That is, we seek to maximize the log-likelihood function

L(W,µ) =
N∑

n=1

log p(xn),

where L : Md×q × R
d → R is the log-likelihood.

If the noise covariance is Ψ = Ã2I, an isotropic noise model is assumed, and the d− q

smallest eigenvalues of the sample covariance matrix S are exactly equal, then standard

PCA emerges [35].

In the general Factor Analysis model, the noise term ϵ is assumed to follow a Gaussian

distribution with covariance matrix Ψ, which is typically diagonal. A particular case of

this model is obtained when the noise is isotropic, i.e., Ψ = Ã2I. This leads to the

Probabilistic PCA (PPCA) model [35], where the latent variable formulation remains the

same, but the assumption of isotropic noise simplifies the marginal distribution of the
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observed data.

For the case of isotropic noise ϵ ∼ N (0, Ã2I), equation 3.3 implies a probability distri-

bution over x-space for a given t of the form:

p(x|t) = (2ÃÃ2)−d/2 exp

{

−
1

2Ã2
∥x−Wt− µ∥2

}

. (3.4)

With a Gaussian prior over the latent variables defined by

p(t) = (2Ã)−q/2 exp

{

−
1

2
tT t

}

, (3.5)

we obtain the marginal distribution of x in the form

p(x) =

∫

p(x|t)p(t)dt, (3.6)

= (2Ã)−d/2|C|−1/2 exp

{

−
1

2
(x− µ)TC−1(x− µ)

}

, (3.7)

where the model covariance is

C = Ã2I+WWT . (3.8)

Having defined the marginal distribution of x and the covariance of the model, we can

now observe that the probabilistic structure of PPCA naturally leads to a generative data

model [25]. In this model, the observed data x are generated by a linear transformation

of the latent variables t, plus gaussian noise ϵ, i.e., x = Wt + ϵ. This generative model

is crucial for understanding the model’s behaviour, particularly considering the marginal-

ization over the latent variables, through the transformation matrix W, which enables

PPCA to effectively capture the structure of the data while introducing a probabilistic

framework that can be used for dimensionality reduction and data generation.

Using Bayes’ rule, the posterior distribution of the latent variables t given the observed

x may be calculated:

p(t|x) = (2Ã)−q/2|Ã−2M|1/2× (3.9)

exp

[

−
1

2
{t−M−1WT (x− µ)}T (Ã−2M){t−M−1WT (x− µ)}

]

, (3.10)

where the posterior covariance matrix is given by

Ã2M−1 = Ã2(Ã2I+WTW)−1. (3.11)

Note that M is q× q while C is d× d. The log-likehood of observing the data under this
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model is

L =
N∑

n=1

ln{p(xn)} (3.12)

= −
N

2
{d ln(2Ã) + ln |C|+ tr(C−1S)}, (3.13)

where

S =
1

N

N∑

n=1

(xn − µ)(xn − µ)T , (3.14)

is the sample covariance matrix of the observed {xn}. The log-likelihood is maximized

when the columns of W span the principal subspace of the data.

We can now connect PPCA with PCA. Although both methods aim to reduce the

dimensionality of the data, they do so based on different frameworks. PCA is a deter-

ministic technique that seeks to find the subspace of lower dimension that explains the

maximum variance in the data. The projection of the data is done along the principal

components, which are the directions of largest variance. In contrast, PPCA introduces

a probabilistic model to explain the data generation process, treating the dimensionality

reduction in a stochastic manner by assuming the original data is generated by a linear

transformation of latent variables with added gaussian noise. When we compute the max-

imum likelihood estimate (MLE) for PPCA parameters, the model converges to classical

PCA as the variance of the noise tends to zero [11].

When it comes to projections, in conventional Principal Component Analysis (PCA),

a data point xn is mapped to its reduced-dimensionality representation tn ∈ R
q via the

transformation tn = UT
q (xn − µ), and subsequently reconstructed as x̂n = Uqtn + µ.

Here, µ is the data mean, and Uq is the d× q matrix whose columns are the q principal

eigenvectors (corresponding to the largest eigenvalues) of the sample covariance matrix

S.

Probabilistic PCA (PPCA) offers a related perspective but operates within a proba-

bilistic framework. As defined earlier (Eq. 3.2), the PPCA model specifies a generative

mapping from a lower-dimensional latent space (variable tn ∈ R
q) to the observed data

space (xn ∈ R
d). To find the latent representation corresponding to an observed point xn

in PPCA—the conceptual analogue to PCA’s projection—we invert the generative map-

ping p(xn|tn) using Bayes’ theorem. This yields the posterior distribution p(zn|xn), which

specifies the probability distribution over possible latent representations for xn (given by

Eq. 3.10).

Crucially, unlike conventional PCA which yields a single point projection tn, PPCA

represents each data point xn in the latent space via this full Gaussian posterior distri-

bution p(tn|xn). While this distribution provides a richer, probabilistic representation, a

convenient point-estimate summary, analogous to the PCA projection tn, is given by the

mean of this posterior distribution:

ïtnð = M−1WT
ML

(xn − µ). (3.15)
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This posterior mean ïtnð represents the most likely point in the latent space corresponding

to xn under the PPCA model and is naturally computed during the Expectation step of

the EM algorithm used to fit PPCA parameters.

3.3 Gaussian Mixture Models

To capture more information from the data and handle non-linearity more effectively, we

would like to extend the concept of PPCA to a Mixture of PPCA. To achieve this, it is

helpful to introduce a more general framework, Gaussian Mixture Models (GMMs).

A Gaussian Mixture Model (GMM) is a parametric probability density function rep-

resented as a weighted sum of Gaussian component densities, and its parameters are

estimated from training data using the iterative Expectation-Maximization (EM) algo-

rithm or Maximum A Posteriori (MAP) estimation from a well-trained prior model. This

chapter is based on [30].

3.3.1 Model definition

A GMM is a weighted sum of M component Gaussian densities given by the equation

L(x, ¹) =
M∑

i=1

³ip(x|µi,Ci) (3.16)

where x ∈ R
d is the observed data, ³i, i = 1, . . . ,M are the mixture weights (or respon-

sibilities), and p(x|µi,Ci), i = 1, . . . ,M are the component Gaussian densities. Each

component density is a d-variate Gaussian function of the form,

p(x|µi,Ci) = (2Ã)−d/2|Ci|
−1/2 exp

{

−
1

2
(x− µi)

TC−1
i (x− µi)

}

(3.17)

with mean vector µi, and covariance matrix Ci. The mixture weights satisfy the constraint

that
∑M

i=1 ³1 = 1. A GMM is fully characterized by the parameters of its component dis-

tributions: the mean vectors, covariance matrices, and mixture weights. There parameters

are denoted as ¹ = {³i,µi,Ci}, i = 1, . . . ,M , where ³i represents the mixture weight, µi

is the mean vector, and Ci is the covariance matrix of the i-th Gaussian component.

3.3.2 Maximum Likelihood Parameter Estimation

Given the observed data X = {x1, . . . ,xN} where xn ∈ R
d, and a GMM model param-

eterized by ¹ = {³i,µi,Ci}
M
i=1, we want to estimate the parameters ¹ that best match

the distribution of the observed data. For this, we typically use maximum likelihood

(ML) estimation. ML estimation aims to find the model parameters ¹ that maximize the

log-likelihood of the GMM given the training data. Assuming independence between the

data vectors, the log-likelihood is given by:

L(¹|X) = logL(X|¹) =
N∑

n=1

log

(
M∑

i=1

³ip(xn|µi,Ci)

)

. (3.18)
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Direct maximization of this expression concerning ¹ is analytically intractable due

to the sum inside the logarithm. However, ML parameter estimates can be obtained

iteratively using the powerful Expectation-Maximization (EM) algorithm [7].

The EM algorithm is an iterative procedure that starts with an initial guess for the

parameters ¹(0) and alternates between two steps: the Expectation step (E-step) and the

Maximization step (M-step). Each iteration t is guaranteed to yield parameters ¹(t+1)

such that the log-likelihood does not decrease, i.e., L(¹(t+1)|X) g L(¹(t)|X). The process

is repeated until convergence (e.g., when the change in log-likelihood or parameters falls

below a threshold).

The two steps are as follows:

1. E-Step (Expectation): In this step, we use the current parameter estimates ¹(t) =

{³(t)
i ,µ

(t)
i ,C

(t)
i } to calculate the posterior probability, or responsibility, É

(t)
ni that compo-

nent i was responsible for generating data point xn. This is computed for each data point

n and each component i:

É
(t)
ni = p(zni = 1|xn, ¹

(t)) =
³
(t)
i p(xn|µ

(t)
i ,C

(t)
i )

∑M
k=1 ³

(t)
k p(xn|µ

(t)
k ,C

(t)
k )

. (3.19)

Where zni is a variable that indicates if the component i was responsible for generating

point xn. These responsibilities can be viewed as soft assignments of data points to

components.

2. M-Step (Maximization): In this step, we use the responsibilities É
(t)
ni computed

in the E-step to update the parameters to ¹(t+1) = {³(t+1)
i ,µ

(t+1)
i ,C

(t+1)
i }. These up-

dates maximize the expected complete-data log-likelihood (Q-function) [7], effectively

re-estimating the parameters based on the soft assignments. The update equations are:

Mixture Weights: The new mixture weight for component i is the average responsibility

it takes for the data points:

³
(t+1)
i =

1

N

N∑

n=1

É
(t)
ni . (3.20)

Means: The new mean for component i is a weighted average of the data points, with

weights given by the responsibilities:

µ
(t+1)
i =

∑N
n=1 É

(t)
ni xn

∑N
n=1 É

(t)
ni

. (3.21)

Covariances: The update for the covariance matrix depends on the assumed structure.

For a full covariance matrix Ci, the update is:

C
(t+1)
i =

∑N
n=1 É

(t)
ni (xn − µ

(t+1)
i )(xn − µ

(t+1)
i )T

∑N
n=1 É

(t)
ni

. (3.22)

Alternatively, if diagonal covariance matrices are assumed, Ci = diag(Ã2
i1, . . . , Ã

2
id), the
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update for each diagonal element j is:

(Ã2
ij)

(t+1) =

∑N
n=1 É

(t)
ni (xnj − µ

(t+1)
ij )2

∑N
n=1 É

(t)
ni

, (3.23)

where xnj and µ
(t+1)
ij are the j-th elements of xn and µ

(t+1)
i , respectively.



29

Chapter 4

Multi Group MPPCA

Inference methods based on GMMs do not inherently differentiate what we refer to as

sensitive groups—subsets of the sample space that may be subject to bias during the data

collection process. These groups often include social minorities, marginalized communi-

ties, and underrepresented demographics (e.g., ethnic minorities, women, and certain age

groups). Traditional GMM-based modeling treats all points in the sample space with

equal weight, overlooking potential disparities.

Our approach seeks to bridge this gap by allowing the statistical relevance of predefined

sensitive groups to be explicitly adjusted through group-specific weights. These weights

are optimized using APStar [22], a minimax-based method that we will explore in depth

in later chapters.

We, first, are going to define a group-weighted loss. To do that, let E ¢ R
n a collection

of p samples with n features each. We will partition E in G subsets (sensitive groups) of

the form

E = ·∪Gg=1Eg,

so that Eg = {x
g
1, . . . , x

g
|Eg |
} and therefore |E1|+ · · ·+ |EG| = p. Let ¼T = (¼1, . . . , ¼G) ∈

(RG)+.

In each sensitive group, the likelihood is given by Lg. We define the vector of group-

wise likelihoods as LT = (L1, . . . ,LG). Consequently, the overall likelihood function of

our model is expressed as a linear combination of these group likelihoods, as follows:

¼TL =
∑

k

∑

g

∑

i

¼giÉik

(

ln³k − lnÉik −
d

2
ln |Ck| −

1

2
(xi − µk)

TC−1
k (xi − µk)

)

(4.1)

=
∑

k

[ln³k

∑

g

∑

i

¼giÉik −
∑

g

∑

i

¼giÉik lnÉik (4.2)

−
d

2
ln |Ck|

∑

i

∑

g

Éik¼gi −
1

2

∑

g

∑

i

¼giÉik(xi − µk)
TC−1

k (xi − µk)

︸ ︷︷ ︸

⋆

] (4.3)

where µk represents the mean of each cluster, Éik denotes the responsibility of each cluster,

Ck = WkW
T
k +Ã2

kI is the model covariance, ¼gi = I[i = g]¼g is the weight of each sensitive

group per gaussian, ³k is the prior probability of gaussian k.
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We also introduce Sk to be the sample covariance, and φk is introduced to simplify

the notation

Sk =
∑

i

∑

g

¼giÉik(xi − µk)(xi − µk)
T

φk =
∑

i

∑

g

¼giÉik

Note that we can decompose ¼TL into losses Lk for each sample group g ∈ {1, . . . , G}.

Lk =



φk ln³k −
∑

i

Éik

∑

g

¼gi lnÉik −
−dφk

2
ln |Ck| −

1

2
tr(C−1

k Sk)
︸ ︷︷ ︸

⋆



 (4.4)

Worth noticing that using the fact that tr(AB) =
∑

i

∑

j(Aij)(Bij) = tr(BA), we can

show that

tr(C−1
k (xi − µk) (xi − µk)

T

︸ ︷︷ ︸
) = tr((xi − µk)

T

︸ ︷︷ ︸
C−1

k (xi − µk))

µk, xi ∈Md×1 ⇒ (xi − µk)
T ∈M1×d, C

−1
k , Ck ∈Md×d

tr(C−1
k (xi − µk)
︸ ︷︷ ︸

A

(xi − µk)
T

︸ ︷︷ ︸

B

) = tr((xi − µk)
T

︸ ︷︷ ︸

B

C−1
k (xi − µk)
︸ ︷︷ ︸

A

)

thus, the terms marked with ⋆ in 4.3 and 4.4 are equivalent.

Now we can define the group-based max-min formulation

max
g

min
¹∈Θ
Lg (4.5)

The APStar [22] algorithm ensures that the weight allocation ¼ : ||¼|| = 1 maximizes

the log-likelihood of the most underrepresented or statistically disadvantaged group—specifically,

the group with the lowest log-likelihood. Since we can solve the weight allocation with

such an algorithm, we need to calculate the partial derivatives of ¼TL, which we now

proceed to compute.

4.1 EM for Weighted Mixtures of Probabilistic PCA

In order to fit the proposed weighted mixture of PPCA models, we adapt the Expectation-

Maximization (EM) algorithm, drawing from the formulation for standard MPPCA pre-

sented in [35, 36]. The EM algorithm iteratively refines the model parameters ¹ =

{³k,µk,Wk, Ã
2}Mk=1 by alternating between an Expectation (E) step and a Maximization

(M) step, maximizing a weighted version of the expected complete-data log-likelihood

(Q-function).

Let the dataset be X = {x1, . . . ,xN}, partitioned into G sensitive groups Eg such that

g(n) denotes the group index for data point xn. Let ¼ = (¼1, . . . , ¼G) be the vector of
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fairness weights for these groups.

The objective maximized in the M-step is the weighted Q-function:

LCg
=

N∑

n=1

M∑

i=1

zin ln{³ip(xn, tni)}. (4.6)

where zni is the latent indicator variable (1 if point n belongs to component m, 0

otherwise), tni is the corresponding continuous latent variable in the q-dimensional space

for component i, and É
(t)
ni are the responsibilities calculated in the previous E-step using

parameters ¹(t).

Starting with last iteration values for the parameters ³i, µi,Wi and Ã2 we first evaluate

the posterior probabilities Éni using 3.19 and similarly evaluate the expectations ïtnið and

ïtnit
T
nið:

ïtnið = M−1
i WT

i (xn − µi), (4.7)

ïtnix
T
nið = Ã2M−1

i + ïtniðïtnið
T , (4.8)

with Mi = Ã2
i I+WT

i Wi.

Then we take the expectation of LG with respect to these posterior distributions to

obtain

ïLð =
G∑

g=1

N∑

n=1

K∑

i=1

Éni¼ng{ln Ãi −
d

2
ln Ã2 −

1

2
tr(ïxnix

T
nið) (4.9)

1

2Ã2
i

∥xni − µi∥
2 +

1

Ã2
i

ïxniðW
T
i (xn − µi) (4.10)

−
1

2Ã2
i

tr(WT
i Wiïtnit

T
nið)}, (4.11)

where ï·ð denotes the expectation with respect to the posterior distributions of both

tni and zni 3.19 and terms independent of the model parameters. The maximization of

4.11 with respect to ³i must take account of the constraint that
∑

i ³i = 1. This can be

achieved with the use of a Lagrange multiplier ¸ and maximizing

ïLGð+ ¸

(
K∑

i=1

³i − 1

)

. (4.12)

Together with the results of maximizing 4.11 with respect to the remaining parameters,

this gives the following M-step equations
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³̃i =
1

N

∑

n

Égn¼ni (4.13)

µ̃i =

∑

n Éni¼gn(xni − W̃iïtnið
∑

n Rni¼gn

(4.14)

W̃i =

[
∑

n

Éni¼gn(xni − µ̃i)ïtð
T

][
∑

n

Éni¼gnïtnit
T
nið

]−1

(4.15)

Ã̃2
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1

d
∑

n Éni¼gn

∑

n

Éni¼gn∥xn − µ̃i∥
2 (4.16)

= −2
∑

n

Éni¼gnïtnið
TW̃T

i (xn − µ̃i) +
∑

n

Rni¼gntr
(

ïtnit
T
niðW̃

T
i W̃i

)

(4.17)

where the symbol˜denotes new quantities that may be adjusted in the M-step.

4.2 APStar

Our approach iteratively refines the weight distribution ¼ using a minimax optimiza-

tion procedure inspired by APStar [22]. Classical Gaussian Mixture Models (GMMs)

estimate component weights solely based on likelihood maximization, treating all data

points equally. However, this can lead to biased representations when sensitive groups

are present. To address this, we introduce a fairness-aware approach that reweights the

likelihood contributions of different groups using a weighting factor ¼ = (¼1, . . . , ¼G). In

this adaptation of APStar, the algorithm proceeds by first maximizing the log-likelihood
∑

¼iLi (Line 3) and identifying the log likelihood of the worst-performing group (Line 4).

During each iteration, it updates: (1) an indicator variable tracking the worst performing

group’s index, (2) the weighting factor ¼, and (3) the weighted log-likelihood. Line 9

evaluates whether the updated ¼ yields improved performance for the previously worst-

performing group; if satisfied, the algorithm updates L, the optimal parameters (¹∗, ¼∗),

and the best observed log-likelihood L∗, iterating this process until convergence.
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Algorithm 1 Minimax Pareto Fair Optimization

1: Input: parameter space: Θ, initial weights: ¼, risk functions: La(·), optimizer:
argmax¹∈Θ

∑G
i=1 ¼iLi(¹), ³ ∈ (0, 1), Kmin

2: Initialize:
3: ¹,L(¼)← argmax¹∈Θ

∑
¼iLi(¹)

4: L ← min
i=1,...,G

¼iLi(¹), K ← 1

5: repeat
6: 1¼ ← {1(¼iLi(¹) ⩽ L)}

G
i=1

7: ¼←
(

³¼+ 1−³
K∥1λ∥

1

1

1¼

)
K

(K−1)³+1

8: ¹,L(¼)← argmax¹∈Θ
∑

¼iLi(¹), K ← K + 1
9: if min

i=1,...,G
¼iLi(¹) > L then

10: L ← min
i=1,...,G

¼iLi(Θ), K ← min(K,Kmin)

11: ¹∗, ¼∗,L∗ ← ¹, ¼,L(¹)
12: end if
13: until Convergence
14: Return: ¹∗, ¼∗,L∗

4.3 On the convergence of the EM Algorithm

Dempster et al. [7] define a fairly general class of EM-type algorithms and claim to prove

the convergence of the method under certain assumptions. However, these assumptions

were later deemed insufficient by Boyles [3], who showed that Dempster’s proof contained

gaps — as also noted by Wu [40], who identified a specific error between equations 3.13

and 3.14 of Theorem 2 in Dempster’s original paper.

Wu proposes a technical condition on the estimated complete-data log-likelihood Q(φ|φ′)

that ensures |φp+1 − φp| −→ 0, which suggests stabilization of the sequence generated by

the EM algorithm. Although this condition on Q is difficult to verify in practice, Wu

argues that in the context of exponential families with suitable restrictions on model

singularities, this convergence often occurs naturally, provided that the log-likelihood is

upper bounded.

An important condition to guarantee that the log-likelihood is upper bounded — and

consequently to ensure the existence of at least one local maximum — is to control the

term − log |det(WW T + Ã2I)|, which may diverge if the covariance matrix approaches

a singular matrix. In Boyles [3], a sufficient condition to avoid this issue is that the

likelihood level set defined by

{L ⩾ ¼0} = L
−1
(
[¼0,+∞)

)

be a compact set, a property of any continuous and bounded by above function. However,

this condition is not satisfied in the case studied by Tipping [35], whose PPCA model

allows the log-likelihood to be unbounded above. In such cases, the condition |φp+1 −

φp| −→ 0 may also fail. To address this, Tipping directly classifies the critical points

of the log-likelihood and shows that in his PPCA model — as well as in its mixture

extensions — the sequence generated by EM converges to a local maximum.
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In the present work, we consider an extension of this model to mixtures weighted

by non-negative coefficients ¼i, each associated with one of G ∈ N prescribed different

sensitive groups. Our algorithm consists of iteratively applying Tipping’s EM method

to the weighted log-likelihood ¼TL, with G weights ¼i ∈ R constrained by
∑

¼i = 1

and ¼i ⩾ 0. At each iteration, after running EM with fixed ¼, we identify the worst-

performing group (i.e., the one with the lowest weighted log-likelihood) and update its

weight, implementing a form of max-min optimization. Convergence is expected, since

the update of ¼ does not interfere with the optimization structure of the EM algorithm,

which still guarantees non-negative log-likelihood increments at each step. Moreover, the

constraint that ¼ lies in a (G − 1)-dimensional simplex prevents issues related to loss of

compactness in the parameter space [24].

As for the issue of the log-likelihood diverging, this behavior is often caused by the

term − log |C|, where C is the covariance matrix is defined as C = WWT + Ã2I. This

situation typically arises when the variance term Ã2 approaches zero, leading to numerical

instability and an unbounded increase in the likelihood. To mitigate this problem, we

introduce a regularization term by placing an Inverse-Gamma prior on Ã2.
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Chapter 5

Experiments

5.1 Synthetic Data Generation

To first test the convergence of the algorithm, we created a simple dataset by sampling

data from three distinct Gaussians with the following attributes:

• Base distribution: mixture of 3 Gaussians in R
3

– Means: µ1 = (0, 0, 0), µ2 = (3, 3, 3), µ3 = (−3, 3, 3)

– Covariances:

Σ1 =





1 0.1 0.1

0.1 1 0.1

0.1 0.1 0.1



 , Σ2 =





2 −0.3 −0.1

−0.3 1 0.3

−0.1 0.3 3



 , Σ3 =





1 0 0

0 1 0

0 0 1





– Weights: ¼ = (0.3, 0.4, 0.3)

• Sample size: n = 1000

Figure 5.1: Synthetic dataset sampled from a mixture of 3 Gaussians

We evaluate the robustness of FR-MPPCA under different group distributions, partic-

ularly in the presence of class imbalance—a common scenario in real-world applications.
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For the FR-MPPCA algorithm, we set the learning rate to 0.2, the maximum number of

EM iterations to 100, and the maximum number of APStar iterations to 100.

5.2 Convergence experiments with synthetic data

5.2.1 Balanced Data

We first consider the case where both groups are equally represented (50% each). Labels

were randomly assigned to preserve balance between groups.

Figure 5.2: Balanced setting with 4 mixture components

Figure 5.3: Balanced setting with 5 mixture components
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Figure 5.4: Balanced setting with 10 mixture components

5.2.2 Unbalanced Data

We then simulate a scenario where one group represents 70% of the data and the other

only 30%, to assess the impact of imbalance on model performance.

Figure 5.5: Unbalanced setting with 4 mixture components
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Figure 5.6: Unbalanced setting with 5 mixture components

Figure 5.7: Unbalanced setting with 10 mixture components

5.2.3 Convergence analysis under balanced and unbalanced set-

tings

We analyze the convergence behavior of FR-MPPCA in two scenarios: (i) balanced group

proportions (50% for each group), and (ii) unbalanced proportions (70% for one group

and 30% for the other). These experiments aim to assess the robustness of the algorithm

in real-world-like situations, where imbalance is common.

Figures 5.2, 5.3, 5.4 show the log-likelihood evolution during training for different

numbers of mixture components (4, 5, and 10) in the balanced case. Figures 5.5, 5.6, 5.7

present the corresponding results for the unbalanced case.

In all settings, the algorithm converges smoothly and consistently, without instability

or divergence, even in the presence of class imbalance. This behavior highlights the robust-

ness of the FR-MPPCA training procedure concerning variations in group distribution.
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Although convergence speed may vary slightly depending on the degree of imbalance, the

final log-likelihood values and the general convergence patterns remain similar across both

scenarios.

The synthetic experiments provided controlled conditions to evaluate convergence be-

havior under varying group proportions. In the following sections, we move on to real-

world datasets to further assess the effectiveness and fairness performance of FR-MPPCA

in practical scenarios.

5.3 Real datasets

5.3.1 German credit dataset

The German Credit dataset [13] comprises 1000 entries with 20 categorical and numerical

attributes. Each entry corresponds to an individual applying for credit from a bank, and

each is labeled as a good or bad credit risk based on their profile. The categorical attributes

include: Status, CreditHistory, Purpose, Savings, EmploymentSince, OtherDebtors, Prop-

erty, OtherInstallmentPlans, Housing, Job, Telephone, and ForeignWorker. The numer-

ical attributes are: Duration, CreditAmount, InstallmentRate, ResidenceSince, Age, Ex-

istingCredits, LiablePeople, and Target.

We evaluate the performance of PCA, PPCA, and FR-MPPCA on this dataset, which

includes sensitive group information and exhibits class imbalance (310 samples for women

and 690 for men). Figure 5.8 illustrates the convergence of the log-likelihood across

groups for FR-MPPCA, highlighting the effect of fairness-aware optimization. We further

compare the methods in terms of log-likelihood convergence (Figure 5.9), reconstruction

error over iterations (Figure 5.10), and ROC-AUC evolution (Figure 5.11).

Model Training

We fit three dimensionality reduction models on the training set (Xtrain) for comparison:

• PPCA: A probabilistic PCA model with 5 components is fit using the PCA class,

serving as a baseline.

• MPPCA: A mixture of probabilistic PCA models is trained using the GaussianMixture

class with 5 components. Each mixture component is modeled by a PCA with 5

latent dimensions.

• FR-MPPCA: Our fairness-aware extension, FR-MPPCA, is trained with 5 com-

ponents and a PCA base model. It uses group labels (Ztrain) to guide a minimax

optimization procedure. We set the learning rate to 0.3, and use a randomly sam-

pled seed for initialization. The maximum number of iterations is set to 100 for

both the EM loop and the APStar outer loop.

These models are used to evaluate performance across fairness-sensitive tasks on the

German Credit dataset.
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Convergence of log likelihood of FR-MPPCA across groups in German Credit

dataset

Figure 5.8: Convergence of log likelihood of FR-MPPCA across groups in German Credit
dataset

In Figure 5.8, we observe that the FR-MPPCA method successfully aligns the log-

likelihoods of Group 0 and Group 1, promoting convergence towards similar values. This

effect becomes particularly evident after the 80th iteration, highlighting the impact of the

fairness-aware optimization in balancing model fit across groups.

Comparison of log likelihood convergence across methods in German Credit

dataset

Figure 5.9: Comparison of log likelihood convergence between PCA, MPPCA and FR-
MPPCA in German Credit dataset
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Figure 5.9 illustrates that the overall log-likelihoods achieved by PCA and MPPCA are

higher than those of FR-MPPCA, which aligns with the expected fairness-accuracy trade-

off. Additionally, we observe a pronounced disparity between the log-likelihoods of Group

0 and Group 1 under PCA and MPPCA. In contrast, FR-MPPCA progressively aligns

the log-likelihoods of both groups over the course of the APStar iterations, demonstrat-

ing the effect of the minimax optimization. After approximately the 76th iteration, the

group-specific log-likelihoods converge toward the overall log-likelihood of FR-MPPCA,

evidencing the method’s ability to balance performance across sensitive groups.

Reconstruction error comparison between PCA, MPPCA and FR-MPPCA in

German Credit dataset

Figure 5.10: Reconstruction error evolution between PCA, MPPCA and FR-MPPCA in
German Credit dataset

Figure 5.10 presents a comparison of the reconstruction error across different methods.

PCA exhibits the highest overall reconstruction error, while MPPCA achieves the lowest,

with FR-MPPCA positioned between the two. However, both PCA and MPPCA show

a noticeable disparity in reconstruction error between groups, which can introduce bias

in the learned latent representations. Despite not achieving the lowest overall error,

FR-MPPCA stands out for significantly reducing this disparity, offering a more balanced

reconstruction performance across groups—an essential aspect in fairness-aware modeling.

AUC Evaluation Across Methods and Groups

To evaluate the quality of the latent representations produced by PCA, MPPCA, and FR-

MPPCA, we trained a logistic regression classifier with 1000 maximum iterations on the

embeddings generated by each method. We used the ROC-AUC as the evaluation metric,

which measures the classifier’s ability to distinguish between the two classes. Importantly,

we computed the AUC separately for each sensitive group defined in the dataset.

As shown in Figure 5.11, the ROC-AUC scores for PCA and MPPCA exhibit a notable

disparity between groups. In contrast, FR-MPPCA shows evolving ROC-AUC values
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Figure 5.11: ROC-AUC evolution for PCA, MPPCA and FR-MPPCA in German Credit
dataset

throughout training, reflecting the influence of the minimax optimization. Notably, after

the 80th iteration, the AUC scores for both groups converge to similar values, indicating

a significant reduction in performance disparity.

5.3.2 COMPAS dataset

The COMPAS (Correctional Offender Management Profiling for Alternative Sanctions)

dataset is one of the most widely used benchmarks in algorithmic fairness research. It

contains information about individuals assessed for their risk of recidivism and has gained

attention due to concerns about racial and gender bias in automated risk assessment tools

used in the U.S. criminal justice system.

For our analysis, we use a filtered version of the dataset containing 6,172 samples and

9 attributes. These attributes include both demographic and criminal history features.

The numerical features are: age, number of juvenile felony charges, number of juvenile

misdemeanors, other juvenile offenses, and total number of prior charges. The categorical

features are: sex, current charge degree, and race. In our experiments, race is used as the

sensitive attribute for fairness evaluation, given the dataset’s imbalance: it contains 3,175

samples of African-American individuals and 2,103 of white individuals.

The COMPAS dataset is particularly relevant for testing fairness-aware dimension-

ality reduction techniques, as it reflects well-documented group disparities. We use this

dataset to compare the performance of PCA, PPCA, and FR-MPPCA in terms of both

reconstruction quality and fairness of representations across racial groups.

Model Training

To evaluate the fairness and predictive performance of each dimensionality reduction

method, we trained three models: PCA, MPPCA, and our proposed FR-MPPCA, each

configured with five latent components.
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After the dimensionality reduction step, we used a logistic regression classifier with a

maximum of 1000 iterations to assess the predictive power of the learned latent represen-

tations. The classifier was trained on the transformed training set and evaluated on the

test set using the ROC-AUC metric.

FR-MPPCA was configured with a maximum of 100 iterations for both the Expectation-

Maximization (EM) algorithm and the outer loop of the APStar procedure. As it fol-

lows a minimax optimization strategy, we monitored the ROC-AUC score at each iter-

ation of the APStar loop. This iterative tracking allowed us to analyze in detail how

fairness—measured in terms of performance parity between groups—evolves throughout

the training process. The ROC-AUC values computed at each step were systematically

recorded and later organized into a structured table to facilitate comparative analysis

among the methods.

Convergence of log likelihood of FR-MPPCA across groups in COMPAS

dataset

Figure 5.12: Convergence of log likelihood of FR-MPPCA across groups in COMPAS
dataset

We observe in Figure 5.12 a convergence of the log-likelihood values for Group 1

(African American individuals) and Group 0 (White individuals) toward a common value.

This behavior reflects the effect of the minimax optimization approach used in FR-

MPPCA, which seeks to maximize the minimum group-level log likelihood. The log-

likelihood exhibits considerable variability across iterations, indicating that this dataset

is more complex than the German Credit dataset. Over time, we observe higher log-

likelihood values for both Group 0 and Group 1 compared to the inital iterations, along

with a reduction in the disparity between the groups compared to the initial iterations. In

Figure 5.13, we observe that FR-MPPCA achieves the second highest overall log-likelihood

among the three methods,with PCA showing the weakest performance both overall and

within each group. Notably, FR-MPPCA also demonstrates the lowest disparity between
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groups, effectively balancing accuracy and fairness. This highlights the strength of the

minimax-based optimization in reducing group-level performance gaps without severely

compromising the overall log-likelihood.

Comparison of log likelihood convergence across methods in COMPAS dataset

Figure 5.13: Comparison of log likelihood convergence between PCA, MPPCA and FR-
MPPCA in COMPAS dataset

Reconstruction error comparison between PCA, MPPCA and FR-MPPCA in

COMPAS dataset

Figure 5.14: Reconstruction error evolution between PCA, MPPCA and FR-MPPCA in
COMPAS dataset

In Figure 5.14, PCA exhibits the highest overall reconstruction error, followed by FR-

MPPCA, while MPPCA achieves the best performance in terms of overall reconstruction
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accuracy, slightly better than the overall performance of FR-MPPCA. However, when

analyzing the group-wise performance under FR-MPPCA, we observe a consistent di-

vergence in the reconstruction errors of Group 0 and Group 1 over the iterations. This

behavior reflects the dynamics of the minimax optimization, which seeks to decrease the

log-likelehood of the worst groups but it is not necessarily related to the minimization

of the group with worst reconstruction error (Group 0). This suggests a greater intrinsic

variance or heterogeneity within this group, which may make it harder to model using

low-dimensional representations. Consequently, the observed divergence in reconstruc-

tion error highlights not only the limitations of existing modeling approaches but also

the complexity of the fairness-accuracy tradeoff in real-world datasets like COMPAS.

Achieving parity in reconstruction quality, therefore, may demand more expressive mod-

els, additional regularization strategies, or alternative representations that better capture

the nuances within each group.

AUC Evaluation Across Methods and Groups

Figure 5.15: ROC-AUC evolution for PCA, MPPCA and FR-MPPCA in COMPAS
dataset

The ROC AUC for PCA is approximately 0.74 for Group 1 and 0.68 for Group 0,

representing the best overall performance in terms of classification accuracy. Among the

probabilistic models, MPPCA achieves the second-best overall performance, with a more

stable classification accuracy across groups. FR-MPPCA, by contrast, struggles with this

more complex dataset, resulting in a spiky ROC AUC trajectory across iterations. While

FR-MPPCA eventually reaches a relatively high ROC AUC for the underrepresented

group (Group 0), its performance fluctuates more significantly than MPPCA’s, reflecting

the challenge of balancing group-wise fairness and predictive reliability in a complex data

landscape.
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5.3.3 Adult dataset

In this section, we evaluate the models on the Adult Income dataset, a benchmark for

fairness studies. The dataset contains 32561 instances, each with demographic and so-

cioeconomic attributes. We focus on the sensitive attribute sex, encoded as 0 for men and

1 for women. The dataset is imbalanced, with women representing about one-third of the

samples.

The categorical variables are: workclass, education, marital status, occupation, rela-

tionship, race, sex, and native country. The numerical variables are: age, education num,

capital gain, capital loss, and hours per week. We then split the data into training and

test sets and apply PCA, MPPCA, and FR-MPPCA to assess both reconstruction quality

and fairness across groups.

Model training

To evaluate the effect of dimensionality reduction on both fairness and predictive accu-

racy, we apply three methods to the preprocessed training data. First, PCA, a standard

linear reduction technique; second, MPPCA, a mixture of multiple PCA components

modeled via Gaussian mixtures; and third, FR-MPPCA, our fairness-aware extension

that minimizes the worst-case log-likelihood across sensitive groups (sex) during training.

All methods reduce the data to five components. For FR-PPCA, the maximum num-

ber of EM steps was set to 100, and the APStar optimization was also limited to 100

steps. A logistic regression classifier is then trained on the reduced representations, with

1000 maximum iterations, and ROC-AUC is computed on the test set, both overall and

separately for men and women. For FR-MPPCA, we also track AUC across iterations

to observe the fairness–performance trade-off. Final results highlight how each method

balances predictive power and group fairness.

Convergence of log likelihood of FR-MPPCA across groups in Adult dataset

Figure 5.16: Convergence of log likelihood of FR-MPPCA across groups in Adult dataset
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We observe in Figure 5.16 that after approximately the 40th iteration of APStar, the

log-likelihood values for both groups begin to converge, demonstrating that FR-MPPCA

effectively reduces group disparities—a key goal of our fairness-aware approach. Initially,

Group 0 (men) exhibited a higher log-likelihood than Group 1; however, as FR-MPPCA

progresses, the log-likelihood for Group 0 decreases, thereby favoring the performance of

Group 1, which is achieved through the minimax APStar strategy.

Comparison of log likelihood convergence across methods in Adult dataset

Figure 5.17: Comparison of log likelihood convergence between PCA, MPPCA and FR-
MPPCA in Adult dataset

In this experiment, we observe in Figure 5.17 PCA shows the lowest overall log-

likelihood and exhibits a considerable disparity between Group 0 and Group 1. MPPCA

achieves better overall performance but still presents a notable gap between groups, with

Group 0 reaching the highest log-likelihood among all methods. In contrast, our proposed

method, FR-MPPCA, achieves the highest overall log-likelihood while substantially re-

ducing the disparity between groups, effectively balancing fairness and performance.

Reconstruction error comparison between PCA, MPPCA and FR-MPPCA in

Adult dataset

In Figure 5.18 FR-MPPCA delivers the best performance in terms of both overall and

Group 1 reconstruction error. After around the 40th iteration, the reconstruction errors

for both groups converge, highlighting its effectiveness in improving fairness. PCA shows

the worst performance in overall reconstruction error and exhibits significant disparity

between the groups. MPPCA ranks second in performance, though it still displays a high

disparity between groups.
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Figure 5.18: Reconstruction error evolution between PCA, MPPCA and FR-MPPCA in
Adult dataset

Figure 5.19: ROC-AUC evolution for PCA, MPPCA and FR-MPPCA in Adult dataset

AUC Evaluation Across Methods and Groups

We can observe in Figure 5.19 that PCA achieves the best overall ROC AUC performance,

but still exhibits significant group disparity. In the case of MPPCA, the ROC AUC for

group 1 (the underrepresented group) is higher than that of group 0, indicating better

performance for the less represented group. For FR-MPPCA, we observe an initial drop

in performance; however, after approximately the 35th iteration, the ROC AUC for group

0 (the overrepresented group) surpasses that of group 1.

5.4 Discussion

The synthetic and real-world-based experiments demonstrate the algorithm’s ability to

find representations that achieve a log-likelihood comparable to that of all groups. De-
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spite this, real-world experiments showed that reducing the reconstruction error does not

necessarily result in better performance in classification tasks. Our experiments demon-

strated that PPCA is generally superior to mixtures of PPCAs, including the proposed

methodology. Still, FR-MPPCA usually achieves a fairer performance across groups than

MPPCA, in some of its iterations.

We believe that further investigation is needed into the nature of MPPCA’s recon-

struction and data distribution to understand the performance for every case.
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Chapter 6

Conclusion

Dimensionality reduction is a crucial step in many machine learning pipelines, but stan-

dard methods like PCA and PPCA can inadvertently amplify existing biases in data,

resulting in unfair latent representations for different demographic groups. Seeking to

mitigate this issue, this dissertation introduced FR-MPPCA, a novel probabilistic di-

mensionality reduction technique based on Mixtures of Probabilistic PCA (MPPCA).

FR-MPPCA was specifically designed to minimize reconstruction error disparities across

predefined sensitive groups by incorporating group-specific weights ¼g into the learning

objective, optimized via a minimax strategy (APStar). The method’s performance was

empirically evaluated against traditional PCA and MPPCA.

Our empirical results demonstrate the efficacy of FR-MPPCA. The proposed model

significantly reduced reconstruction error disparities compared to baseline methods, while

maintaining competitive overall reconstruction quality. The underlying minimax opti-

mization framework successfully balanced the competing objectives of data fidelity and

inter-group fairness, even in scenarios with class imbalance. This confirms the feasibility

of achieving fairer low-dimensional representations without substantial sacrifices in model

utility.

Despite promising results, this study has limitations. Our current empirical valida-

tion primarily focused on binary sensitive attributes; future research should extend the

evaluation to scenarios involving multiple, potentially intersecting, groups and investigate

performance on more complex, high-dimensional real-world datasets where fairness con-

siderations are often critical. Additionally, a deeper theoretical analysis of the geometric

properties of the fairness-constrained parameter space could reveal insights into the solu-

tion structure and potentially guide the development of more sophisticated optimization

techniques beyond the current EM/APStar approach.

Future work could explore the application of FR-MPPCA in diverse domains facing

fairness challenges, such as processing image, biomedical, or large-scale data. Its potential

as a fairness-aware feature compression technique warrants investigation. Furthermore,

adapting FR-MPPCA or its principles to learn fair latent representations within large

language models (LLMs) or other complex generative architectures presents a promising

avenue for promoting equity in cutting-edge AI systems.

In conclusion, FR-MPPCA offers a principled and effective method for integrating

group fairness directly into probabilistic dimensionality reduction. By uniquely combin-
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ing the representational flexibility of Mixture Models (MPPCA) with a robust minimax

optimization strategy for fairness, this work addresses a critical gap in the development

of equitable machine learning pipelines. It represents a tangible step towards building

data analysis tools that are not only accurate and efficient but also demonstrably fairer

in their treatment of diverse populations, contributing to the broader goal of responsible

and ethical AI.
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