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Resumo

Sejam G um grupo de Lie e H um subgrupo fechado de G. Nesta dissertação, associaremos

ao espaço homogêneo compacto G/H um complexo simplicial abstrato ∆T
G/H . Foi provado

que a não-contrabilidade de ∆T
G/H implica a existência de uma métrica EinsteinG-invariante

em G/H. Será mostrada uma maneira de calcular uma classe de homologia reduzida não-

nula de ∆T
G/H para subgrupos intermediários H < K < G sobre algumas hipóteses, o que

implica a não-contrabilidade de ∆T
G/H . Esse método será aplicado ao caso em que G é

simples clássico e H tem posto maximal.

Palavras-Chave: Espaços homogêneos, Teoria de Lie, Geometria Riemanniana, Métricas

de Einstein



Abstract

Let G be a compact Lie group and H be closed subgroup of G. In this dissertation, we will

associate to the compact homogeneous space G/H a abstract simplicial complex ∆T
G/H . It

was proved that the non-contractility of ∆T
G/H implies that the existence of a G-invariant

Einstein metric in G/H. It will be shown a way to compute a non-zero reduced homology

class of ∆T
G/H for intermediate subgroups H < K < G under some hypothesis, which

implies the non-contractility of ∆T
G/H . This method will be applied to case where G is

classical simple and H has maximal rank.

Keywords: Homogeneous spaces, Lie theory, Riemannian geometry, Einstein metrics
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Introduction

In the studies of Riemannian metrics, we are faced with the concept of Einstein

metrics, a type of Riemannian metrics well studied and of great importance to Geometry

and applications to Physics. Its definition is

Definition 0.0.1. [Lee19, p. 210] Given a differentiable manifold M , a Riemannian

metric g on M is said to be an Einstein metric if there exists ¼ ∈ R such that

Ric(g) = ¼ · g

where Ric(g) is the Ricci tensor of the metric g.

When the manifold is a homogeneous space of a Lie group G, i.e., a manifold

with a transitive action of G, many studies restrict themselves to G-homogeneous Einstein

metrics, i.e., Einstein metrics preserved by the action of G.

It is well known that if H is a closed subgroup of G, then G/H, the set of left

cosets of H in G, has a unique differentiable structure such that the natural projection is

a submersion [War83, p. 120]. If H is a isotropy group for the action at a point of M , then

M is diffeomorphic to G/H [War83, p. 123]. Since G acts in G/H, by (g1, g2H) 7→ g1g2H

for all g1, g2 ∈ G with isotropy group equal to H at o := eH and the above diffeomorphism

between M and G/H is equivariant between the two actions, then we can always understand

a homogeneous space as a coset space G/H for a Lie group G and a closed Lie group G/H.

We also fix g := Lie(G) and h := Lie(H).

Many studies have already been done about homogeneous Einstein metrics, but

we do not have a general result about the existence/non-existence of these type of metrics.

The beginning of the methods described in this work about existence/non-

existence of homogeneous space is this variational characterisation:

Theorem 0.0.2. [Bes87, p. 121] Let MG
1 be the space of G-homogeneous metrics of

volume 1 in G/H. Then, MG
1 is a finite dimensional manifold and a metric g ∈ MG

1 is

an Einstein metric if, and only if, it is a critical point of the scalar curvature functional

sc : MG
1 → R, g 7→ sc(g).

In this work, sc always means scalar curvature and the scalar curvature

functional above is well define, since scalar curvature is preserved by isometries and

G ¦ Isom(G/H, g) acts transitively.

Using this characterisation, in [WZ86], W. Ziller and M. Wang proved the

following theorem
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Theorem 0.0.3. [WZ86, p. 183] The scalar curvature functional sc is bounded from above

and proper if, and only if, H is a maximal connected subgroups of G, or, equivalently, h

is a maximal subalgebra of g. In this case, sc has a global maximum, which must be a

G-invariant Einstein metric on G/H.

(Here, proper means a continuous map such its inverse images of compacts are

compacts.)

The studies of existence or non-existence of homogeneous Einstein metrics in

G/H follows the idea of trying to find the hypothesis for the existence/non-existence in

terms of the algebraic structure of g and h, used in the theorem above.

In this dissertation, we study the following method:

In [Bö04], Böhm introduced for a compact homogeneous space a abstract

simplicial complex ∆T
G/H , which can be thought as polyhedron in a Euclidean space, and

proved that if ∆T
G/H is a not contractible topological space, then G/H admits a G-invariant

Einstein metric.

The concept of contractible space is given by

Definition 0.0.4. [Mau96, p. 27, 30] Let X, Y be two topological spaces. Then, a con-

tinuous map f : X → Y is called a homotopy equivalence if there exist a continuous

map g : Y → X, called homotopy inverse of f , such that f ◦ g is homotopic to IdY

and g ◦ f is homotopic to IdX . In this case, X and Y are called homotopy equivalent. A

homeomorphism is clearly a homotopy equivalence.

A topological space X is called contractible if it is homotopic equivalent to a

point. The empty set ∅ is non-contractible by vacuous truth.

A topological space X is contractible if, and only if, the identity IdX : X → X

is homotopic to a constant map: Let p ∈ X, f : X → {p} and g : {p} → X be any

continuous functions, then f ◦ g is a constant function and any constant function can be

described this way. So f is a homotopy equivalence if, and only if, the constant function

f ◦ g is homotopic to IdX .

In this work, we write, for groups, H < G if H is a subgroup of G different of

G and, for Lie algebras, h < g if h is a Lie subalgebra of g different of g. Whenever G is a

Lie group, G0 denotes the connected component of the neutral element of G.

Now, to construct ∆T
G/H , let H < G be compact Lie groups and g :=

Lie(G), h := Lie(H). An intermediate subalgebra h < k < g is called an H-subalgebra if it

is Ad(H)-invariant. Let m be a complement Ad(H)-invariant to h in g and m0 := {X ∈

m | [X, h] = 0}. In [Bö04, p. 109], it was proved that m0 is a compact Lie subalgebra

of g. So, let T be a torus of the compact Lie subgroup of G associated with m0. By



Introduction 11

[Bö04, p.154], there exists only finitely many H-subalgebras k which are minimal among

all H-subalgebras that are non-toral, i.e., for mk := m ∩ k, we have that [mk,mk] ̸= {0},

and k is T -adapted, i.e., k is Ad(T )-invariant.

∆T
G/H is defined as the abstract simplicial complex with vertices being H-

subalgebras which are generated by minimal non-toral T -adapted H-subalgebras and the

n-simplices of ∆T
G/H are given by all chains, i.e., totally ordered sets, (k0 < . . . < kn) with

ki a vertex of ∆T
G/H .

For the case that m0 = {0}, we have T = {e}, the condition of T -adapted is

always satisfied and we define ∆min
G/H := ∆

{e}
G/H . In addition, if, in this case, there exists only

finitely many H-subalgebras, if we consider the simplicial complex ∆G/H defined the same

way as before, but with vertices being all H-subalgebras. It was proved in [Bö04, p. 153],

that ∆G/H and ∆min
G/H are homotopy equivalent. So, ∆G/H is not contractible if, and only

if, ∆min
G/H is not contractible and, in this case, G/H admits a G-invariant Einstein metric.

In chapter 1, we define what are simplicial complexes and introduce the concept

of homology, a classical method to show that some simplicial complexes are not contractible.

Let g be a simple classical real Lie algebra with rank n. Up to covering G is

one of SU(n + 1), SO(2n), SO(2n + 1), Sp(n). Let T < G be a fixed maximal torus of

G, we will prove that the T -subalgebras are finite for G simple classical and if ∆G/H is

contractible or not, where H is connected of maximal rank, i.e., contains a torus of G.

In chapter 4, we prove that ∆G/H is not-contractible if G and H of maximal

rank are given by

G = SU(n), H ∼= S(U(n1) × . . .× U(nk))

G = SO(2n), H ∼= U(n1) × . . .× U(nk) or

H ∼= SO(2n1) × . . .× SO(2nk)

G = SO(2n+ 1), H ∼= SO(2n1) × . . .× SO(2nk) or

H ∼= SO(2n1) × . . .× SO(2nk−1) × SO(2nk + 1)

G = Sp(n) H ∼= U(n1) × . . .× U(nk) or

H ∼= Sp(n1) × . . .× Sp(nk)

and ∆G/H is contractible if H is of "mixed type", example G = Sp(8) and H = U(5)×Sp(3).

In chapter 5, we describe the simplicial complex ∆T
G/H of the real flag manifold

G/H = SO(4)/S(O(1) ×O(1) ×O(1) ×O(1)). It is a space with just two points, hence

not-contractible.

The notation of this introduction will be used in the rest of this work.
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1 Simplicial Complexes and Homology

We begin with basic notions of simplicial complex and homology based on

[Arm13], [Mau96] and [Hat02].

Simplicials complexes are the main tools of this work and homology is a possible

way to discover if a simplicial complex is not contractible.

1.1 Simplicial Complexes

Definition 1.1.1. Points {v0, ..., vk} ¢ Rn are said affinely independent if they span an

affine n-plane, i.e., if

k∑

i=0

¼ivi = 0 and
k∑

i=0

¼i = 0 =⇒ ¼i = 0 ∀i ∈ {0, ..., k}

Observe that, from definition, any {vi0
, . . . , vip

} with {i0, . . . , ip} ¢ {0, ..., k}

subset of ¦ {v0, ..., vk} ¢ Rn affinely independent is also affinely independent if and only

if its points are all different, since the sums in the definition applied to {vi0
, . . . , vip

} can

be extended to {v0, ..., vk} with 0’s in the missing constants.

Proposition 1.1.2. Let {v0, ..., vk} ¢ Rn, then the following statements are equivalent:

1. {v0, ..., vk} is affinely independent;

2. {v1 − v0, ..., vk − v0} is linearly independent;

3. For every {¼0, ..., ¼k, µ0, ..., µk} ¢ R such that
k∑

i=0

¼i =
k∑

i=0

µi = 1 and
k∑

i=0

¼ivi =

k∑

i=0

µivi, we have ¼0 = µ0, ..., ¼n = µk.

Proof. (1) =⇒ (2): Let {¼1, ..., ¼k} ¢ R be such that
k∑

i=1

¼i(vi − v0) = 0. Define

¼0 := −
k∑

i=1

¼i. Then
k∑

i=0

¼ivi = 0 and

k∑

i=1

¼i(vi − v0) = 0 =⇒
k∑

i=1

¼ivi = ¼0v0 =⇒
k∑

i=0

¼ivi = 0.

Since {v0, ..., vk} is affinely independent, we have ¼0 = ... = ¼k = 0. So {v1 −v0, ...., vk −v0}

is linearly independent.
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(2) =⇒ (1): Let {¼0, ..., ¼k} ¢ R be such that
k∑

i=0

¼ivi = 0 and ¼0 +
k∑

i=1

¼i = 0.

So (

−
k∑

i=1

¼i

)

v0 +
k∑

i=1

¼ivi = 0 =⇒
k∑

i=1

¼i(vi − v0) = 0

Since {v1 − v0, . . . , vn − v0} is linearly independent, we have that ¼1 = . . . = ¼k = 0. And

¼0 = −
k∑

i=1

¼i = 0. So {v0, ..., vk} is affinely independent.

(1) =⇒ (3): Since
k∑

i=0

(¼i −µi)vi = 0,
k∑

i=0

(¼i −µi) = 0 and {v0, ..., vk} is affinely

independent, then ¼0 = µ0, ..., ¼k = µk.

(3) =⇒ (1): Suppose that {v0, ..., vk} is not affinely independent, so we can

suppose, without loss of generality, that there exists {¼0, ..., ¼k} ¢ R such that
k∑

i=0

¼ivi = 0

and ¼0 = −
k∑

i=1

¼i ̸= 0. Then

v0 =
k∑

i=1

(

−
¼i

¼0

)

vi and
k∑

i=1

(

−
¼i

¼0

)

= 1

So, 1v0 + 0v1 + .... + 0vn = 0v0 +

(

−¼1

¼0

)

v1 + ... +

(

−¼k

¼0

)

vk and 1 + 0 + ... + 0 =

0 +
−¼1

¼0

+ ...+
−¼k

¼0

= 1, which contradicts the hypothesis, since 1 ̸= 0 in R. We conclude

that {v0, ..., vk} is affinely independent.

The last proposition, in particular, says that the maximum cardinality of an

affinely independent set in Rn is n+ 1.

Remark 1.1.3. In this work, we use N := {0, 1, 2, 3, . . .} for the definition of the naturals

numbers. Given X ¦ Rn, its convex hull will be denoted by conv(X).

Definition 1.1.4. If v0, ..., vk are affinely independent in Rn, then

conv(v0, . . . , vk) =

{
k∑

i=0

¼ivi

∣
∣
∣
∣
∣

k∑

i=0

¼i = 1, 0 f ¼i f 1

}

is said to be a geometric simplex of dimension k with vertices {v0, . . . , vk}. If Ã is a

geometric simplex, its dimension is denoted by dim Ã. A geometric simplex of dimension

k can be denoted as a k-simplex.

Given Ã := conv(v0, . . . , vk) a geometric simplex and w ∈ Ã, the real numbers

¼0 g 0, . . . , ¼k g 0 such that w =
n∑

i=0

¼ivi are called the barycentric coordinates of w, which

are well defined by the last proposition.
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For p f k, a k-face of the simplex conv(v0, ..., vk) is a set conv(vi0
, ..., vip

) with

{i0, ..., ip} ¦ {0, ..., k} and the elements of {vi0
, . . . , vip

} are all distinct, then affinely

independent.

Figure 1 – From left to right: a 0-simplex, a 1-simplex, a 2-simplex and a 3-simplex

Definition 1.1.5. A geometric simplicial complex K of Rn is a finite set of geometric

simplices of Rn such that:

(a) If Ã ∈ K and if Ä is a face of Ã, then Ä ∈ K.

(b) If Ã, Ä ∈ K, then Ã ∩ Ä is either empty or a commom face of Ã and Ä .

The dimension of K is dim K := max{dim Ã | Ã ∈ K} for K ̸= ∅ and dim K = −1 for

K = ∅. A subcomplex L of K is a subset of K which satisfies (a) and (b).

Figure 2 – A geometric simplicial complex
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The polyhedron of K is defined as

||K|| :=
⋃

Ã∈K

Ã ¦ Rn

given the subspace topology of Rn. If L ¦ K is a subcomplex, then ||L|| is called a

subpolyhedron of ||K||.

For m ∈ N, the m-skeleton of K is defined as Km := {Ã ∈ K | dim Ã f m},

the subcomplex consisting of of simplices of dimension less or equal m. The 0-skeleton K0

is also called the vertex set of K. If {v} ∈ K0, then v is called a vertex of K and we write

v ∈ K instead of {v} ∈ K.

Given a geometric simplicial complex K, we have the following basic results

that can be found in [Mau96]:

• If L1 and L2 are subcomplexes of K, then L1 ∩ L2 and L1 ∪ L2 also are.

• For any subset S ¦ K, there is a minimal subcomplex ïSð of K containing S. ïSð

is called the subcomplex of K generated by S. For any Ã ∈ K, the subcomplex

ïÃð = {Ä ∈ K | ∅ ª Ä ¦ Ã} is also denoted by Ã.

• ||K|| is compact.

• A ¦ ||K|| is closed in ||K|| if and only if A ∩ ||Ã|| is closed in ||Ã|| for all Ã ∈ K.

• If X is any topological space, then a map f : ||K|| → X is continuous if and only if

f |||Ã|| : ||Ã|| → X is continuous for every Ã ∈ K.

Definition 1.1.6. Let K1 be a geometric simplicial complex of Rn1 and K2 be a geometric

simplicial complex of Rn2 for some n1, n2 ∈ N. For any Ã = conv(v0, . . . , vk1
) ∈ K1 and

Ä = conv(w0, . . . , wk2
) ∈ K2, the set

{(v0, 0, 0), . . . , (vk1
, 0, 0), (0, w0, 1), . . . , (0, wk2

, 1)}

is an independent subset of Rn1+n2+1. So, we can define the joins

Ã ∗ Ä := conv((v0, 0, 0), . . . , (vk1
, 0, 0), (0, w0, 1), . . . , (0, wk2

, 1))

Ã ∗ ∅ := conv((v0, 0, 0), . . . , (vk1
, 0, 0))

∅ ∗ Ä := conv((0, w0, 1), . . . , (0, wk2
, 1))

Then,

K1 ∗K2 := {Ã ∗ Ä | Ã ∈ K1, Ä ∈ K2} ∪ {Ã ∗ ∅ | Ã ∈ K1} ∪ {∅ ∗ Ä | Ä ∈ K2}

is a geometric simplicial complex of Rm1+m2+1 with dimension dim K1 +dim K2 +1, called

the join of K1 and K2. Its polyhedron is

||K1 ∗K2|| = {(tp, (1 − t)q, t) | p ∈ ||K1||, q ∈ ||K2||, t ∈ [0, 1]}
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Remark 1.1.7. Let v ∈ Rn and K a geometric simplicial complex of Rn, then ||v ∗K|| is

homeomorphic to conv(v, ||K||) = {tv + (1 − t)p | t ∈ [0, 1] , p ∈ ||K||} in Rn.

Definition 1.1.8. Let K,L be geometric simplicial complexes and let f 0 : K0 → L0 be a

map such that whenever v0, . . . , vk are vertices of a simplex of K, then f 0(v0) . . . , f
0(vk)

are vertices of a simplex of L. The induced map

f : K → L; conv(v0, . . . , vk) 7→ conv(f 0(v0), . . . , f
0(vk))

is called a simplicial map. Additionally, if f 0 : K0 → L0 is a bijection whose inverse also

induces a simplicial map, then f : K → L is called a simplicial isomorphism and the

complexes K and L are called isomorphic, written as K ∼= L.

A simplicial map f also induces a map of polyhedrons ||f || : ||K|| → ||L||,

which is also called a simplicial map [Mun18, p. 12], by:

||f || : ||K|| → ||L||;
n∑

i=0

¼ivi 7→
n∑

i=0

¼if(vi)

||f || is well defined and continuous. Furthermore, ||f || is a homeomorphism if and only if

f is a simplicial isomorphism [Mun18, p. 12,13].

For this work, we need a generalisation of the concept of geometric simplicial

complex that allows every type of object to be vertices of simplices.

Remark 1.1.9. In this work, # denotes the cardinality of a set.

Definition 1.1.10. An abstract simplicial complex ∆ is a finite set of non-empty finite

sets, which are called abstract simplices, such that if Ã ∈ ∆ and ∅ ≠ Ä ¦ Ã, then Ä ∈ ∆. A

subset Γ ¦ ∆ is called a subcomplex of ∆ if Γ is an abstract simplicial complex.

If Ã ∈ ∆ and n := #Ã − 1, then Ã is called an n-simplex and dim Ã := n is

the dimension of Ã. The elements of Ã are called the vertices of Ã. As in the geometric

case, the dimension of ∆ is dim ∆ := max{dim Ã | Ã ∈ ∆} for ∆ ̸= ∅ and dim ∆ := −1

for ∆ = ∅.

A simplex Ä ¦ Ã is called a face of Ã. Moreover, if Ã is not a face of any other

simplex, then it is called a maximal simplex or a facet.

The subcomplex ∆m := {Ã ∈ ∆ | dim Ã f m}, m ∈ N, is called the m-skeleton

of ∆ and ∆0 is called the vertex set of ∆. If {v} ∈ ∆0, then v is called a vertex of ∆ and

one writes v ∈ ∆ instead of {v} ∈ ∆.

Given an abstract simplicial complex ∆, we have the following basic results

that can be found in [Mau96]:

• If Γ1,Γ2 are subcomplexes of ∆, then so are Γ1 ∩ Γ2 and Γ1 ∪ Γ2.
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• As in the geometric case, for any subset S ¦ ∆, there is a minimal subcomplex

ïSð of ∆ containing S. For Ã ∈ ∆, the subcomplex ïÃð = {Ä ∈ ∆ | ∅ ª Ä ¦ Ã} is

denoted by Ã.

Definition 1.1.11. Let ∆1,∆2 be any two simplicial complexes. Then we can define

∆1 ∗ ∆2 := {Ã ⊔ Ä | Ã ∈ ∆1 ∪ {∅}, Ä ∈ ∆2 ∪ {∅}, Ã ⊔ Ä ̸= ∅}

is an abstract simplicial complex of dimension dim ∆1 + dim ∆2 + 1, called the join of ∆1

and ∆2. In particular, ∆ ∗ ∅ = ∆ = ∅ ∗ ∆. The join ∆ ∗S0 is called the suspension over ∆,

in which S0 := {−1, 1}. Moreover, ∗ is commutative and associative, i.e., ∆1 ∗∆2 = ∆2 ∗∆1

and (∆1 ∗ ∆2) ∗ ∆3 = ∆1 ∗ (∆2 ∗ ∆3).

Definition 1.1.12. Let ∆,Γ be abstracts simplicial complexes. Let f 0 : ∆0 → Γ0 be a map

such that, if {v0, ..., vk} ∈ ∆, then {f 0(v0), . . . , f
0(vk)} ∈ Γ. The induced map

f : ∆ → Γ; {v0, . . . , vk} 7→ {f 0(v0), . . . , f
0(vk)}

is called a simplicial map. Furthermore, if f 0 : ∆0 → Γ0 is a bijection whose inverse

induces a simplicial map, them f : ∆ → Γ is called a simplicial isomorphism and ∆ and Γ

are called isomorphic, written as ∆ ∼= Γ.

The correspondence between geometric and abstract simplicial complexes is

given as follows:

Let K be a geometric simplicial complex of Rn and Ã = conv(v0, ..., vk) ∈ K.

Since all subsets conv(vi0
, ..., vim

), ∅ ̸= {i0, . . . , ik} ¦ {0, . . . , n}, are elements of K, we

can define an abstract simplex

K := {{v0, ..., vn} ¦ Rn| conv(v0, ..., vn) ∈ K}

called the abstraction of K.

Now let ∆ be an abstract simplicial complex. A geometric simplicial complex

K(∆) is called a realisation of ∆ if its abstraction is isomorphic to ∆. For the existence

and uniqueness of a realisation we have the following Lemma:

Lemma 1.1.13 ([Mau96],p. 37-40). Let ∆ be an abstract simplicial complex of dimension

m. Then, ∆ has a realisation K(∆) in R2m+1. Furthermore, if K1(∆) in Rn1 and K2(∆)

in Rn2 are two realisations of ∆, then K1(∆) is isomorphic to K2(∆). In particular, their

polyhedrons ||K1(∆)|| and ||K2(∆)|| are homeomorphic. Moreover, for abstract simplicial

complexes ∆1,∆2, K(∆1) ∗K(∆2) is a realisation of ∆1 ∗ ∆2.

A realisation K(∆) of ∆ can be constructed as a geometric simplicial complex

with vertices in bijection with the vertices of ∆ and vertices of a simplex in K(∆) correspond

to vertices of a simplex in ∆.
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The above lemma guarantees that, given ∆ an abstract simplicial complex,

we gain a topological space ||∆|| := ||K(∆)|| which is unique up to homeomorphism.

This way we can assign to ∆ topological and homotopical properties and topological and

homotopical invariants from ||∆|| without ambiguity.

So, ∆ is called connected or compact, if and only if, ||∆|| is contractible or

connected or compact, respectively. Furthermore, if v ∈ ∆ is a vertex and k ∈ N, we define

the k-th homotopy group of ∆ as Ãk(∆, v) := Ãk(||∆||, ||v||).

Definition 1.1.14. An abstract simplicial complex ∆ is said to be contractible if ||∆|| is

contractible.

One of the simple contractible simplicial complexes are the cones.

Definition 1.1.15. A geometric simplicial complex K is said to be a cone if there are a

vertex v ∈ K0 and a subsimplex K
′

such that K = v ∗K
′

. We also say that K is a cone

over v. An abstract simplicial complex ∆ is called a cone if there is a vertex v ∈ ∆0 such

that, given Ã ∈ ∆, then Ã ∪ {v} ∈ ∆. As before, ∆ is also called a cone over v.

Figure 3 – A cone over v

Remark 1.1.16. An abstract simplicial complex ∆ is a cone if and only if a realisation K(∆)

is a cone by Remark 1.1.7 and the construction of a realisation of an abstract simplicial

complex.

Proposition 1.1.17. Cones are contractible.

Proof. We just need to prove for a geometric simplicial complex K that is a cone by the

remark above. Let v like in the definition 1.1.17, we define the homotopy H : ||K||×[0, 1] →

||K|| given by H(p, t) := tv + (1 − t)p, which is a homotopy between the identity of ||K||

and a constant map.
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1.2 Simplicial Homology

Definition 1.2.1. Let K a non-empty geometric simplicial complex. For n ∈ N, define

Cn(K) := Fn(K)/Rn(K) where Fn is the free abelian group generated by all n-tuples

{(v0, . . . , vn) | conv(v0, . . . , vn) is n-simplex of K}

and Rn(K) is the free abelian subgroup of Fn(K) generated by

{(vÄ(0), . . . , vÄ(n)) − sgn(Ä) · (v0, . . . , vn) | Ä ∈ Sym(n+ 1)}

where Sym(n + 1) is (n + 1)-th symmetric group of permutations and sgn is the sign

function of Sym(n+ 1).

For n ∈ Z, n < 0, define Cn(K) := {0} and let

C∗(K) :=
⊕

n∈Z

Cn(K)

The coset of (v0, . . . , vn) in Cn(K) is denoted by [v0, . . . , vn].

The boundary operator ∂n : Cn(K) → Cn−1(K) is the group homomorphism

defined by

∂n([v0, . . . , vn]) :=
n∑

i=0

(−1)i[v0, . . . , v̂i, . . . , vn]

if n > 0 and the zero map for n f 0. The boundary operator is a well-defined group

homomorphism since ∂n([vÄ(0), . . . , vÄ(n)]) = sgn(Ä) · ∂([v0, . . . , vn]) for every Ä ∈ Sn.

Lemma 1.2.2. [Hat02, p. 105] For every n ∈ Z, we have that ∂n−1 ◦ ∂n = 0.

Proof. For n > 2, we have that

∂n−1(∂n([v0, . . . , vn])) =
∑

j<i

(−1)i(−1)j[v0, . . . , v̂j, . . . , v̂i, . . . , vn]+

∑

j>i

(−1)i(−1)j−1[v0, . . . , v̂i, . . . , v̂j, . . . , vn]

for every [v0, . . . , vn] ∈ Cn(K). The latter two summations cancel, since after switching i

and j in the second sum, it becomes the negative of the first.

For n f 1, ∂n−1 = 0, so we have the wanted result.

So, define

Zn(K) := Ker ∂n the group of n-cycles of K

Bn(K) := Im ∂n+1 the group of n-boundaries of K



Chapter 1. Simplicial Complexes and Homology 20

The Lemma above guarantees that Bn(K) ¦ Zn(K) ∀n ∈ Z, so we can define

Hn(K) := Zn(K)/Bn(K) the n-th homology group of K

We observe that if dim K = n, then Hm(K) = 0 if m > n. The simplicial homology group

of K is

H∗(K) :=
⊕

n∈Z

Hn(K) (1.2.1)

The zero-th group of homology H0(K) is given by

Proposition 1.2.3. [Hat02, p. 109] Let K be a non-empty geometric simplicial complex.

Then H0(K) = Z · . . . · Z, m times, such that m is the quantity of path connected

components of ||K||. So ||K|| is path connected if, and only if, H0(K) = Z.

Remark 1.2.4. If ||K|| is not connected, then let p, q ∈ K0 in two different connected

components in ||K||, then [p− q] is a non-zero homology class in H0(K).

Example 1.2.5. Let K be a a simplicial complex of dimension 2 of a full triangle, i.e.,

let a, b, c ∈ R2 affinely independent, then K := {{a}, {b}, {c}, conv(a, b), conv(b, c),

conv(a, c), conv(a, b, c)}. Observe that an abstraction ofK is given by K := {{a}, {b}, {c},

{a, b}, {b, c}, {a, c}, {a, b, c}}.

We have that Hn(K) = 0 if n > 2 and n < 0.

C0(K) = Za+Zb+Zc is the free abelian group generated by a, b, c, the vertices

of the triangle, C1(K) = Z[a, b] + Z[b, c] + Z[c, a] is the free abelian group generated by

[a, b], [b, c], [a, c], the sides of the triangle, and C2(K) = Z[a, b, c] the free group generated

by [a, b, c], the triangle itself. Cn(K) = 0 if n < 0 or n > 2.

The boundary operators ∂2 : C2(K) → C1(K), ∂1 : C1(K) → C0(K) are the

only ones that are not the zero operator and they are given by

∂2[a, b, c] = [b, c] − [a, c] + [a, b] = [a, b] + [b, c] + [c, a]

∂1[a, b] = b− a, ∂1[b, c] = c− b, ∂1[c, a] = a− c

Observe that ∂1(∂2[a, b, c]) = 0.

We have that B2(K) = Im ∂3 = 0 and Z2(K) = Ker ∂2 = 0, so the second

homology group of K is given by H2(K) = 0.

Let x ∈ C1(K) and p, q, r ∈ Z such that x = p · [a, b] + q · [b, c] + r · [c, a], so

∂1x = p · b− p · a+ q · c− q · b+ r · a− r · c = (r − p) · a+ (p− q) · b+ (q − r) · c

So ∂1x = 0 ⇐⇒ p = q = r ⇐⇒ x = p([a, b] + [b, c] + [c, a]). Then

[a, b] + [b, c] + [c, a] is the generator of Z1(K). As ∂2[a, b, c] = [a, b] + [b, c] + [c, a], we have

that B1(K) = Im ∂2 = Z1(K). So we conclude that H1(K) = 0.
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By the proposition 1.2.3, H0(K) ∼= Z, since |K| is connected, in fact, a full

triangle in R2.

1.3 Singular homology

We defined homology groups for simplicial complexes. Now we will generalise

it for topological spaces.

Definition 1.3.1. For n ∈ N, let

∆n
std := {(t0, . . . , tn) ∈ Rn+1 |

∑

ti = 0, ti g 0 ∀i ∈ {0, . . . , n}}

be the standard n-simplex of Rn+1, the convex hull of the standard basis of Rn+1.

Let X be a non-empty topological space. For n ∈ N, a singular n-simplex Ãn in

X is a continuous map

Ãn : ∆n
std → X

and the points in X given by {Ãn(e1), . . . , Ãn(en+1)} are called the vertices of Ãn.

The free abelian group generated by all singular n-simplices is denoted by Sn(X)

and its elements are called singular n-chains of X. For n ∈ Z, n < 0, we define Sn(X) := 0

and

S∗(X) :=
⊕

n∈Z

Sn(X)

Observe that, for n g 0, Sn(X) may not be finitely generated as the case for simplicial

homology.

For the standard n-simplex, given i ∈ {0, . . . , n}, we define the i-th face map

by

¶n
i : ∆n−1

std → ∆n
std

(x0, . . . , xn) 7→ (x0, . . . , xi−1, 0, xi, . . . , xn)

This map can be seen as the embedding of ∆n−1
std in ∆n

std as the (n− 1)-subsimplex of ∆n
std

opposing the vertex ei. Observe that if Ãn is a singular n-simplex, then Ãn ◦ ¶n
i is a singular

(n− 1)-simplex for every i ∈ {1, . . . , n}.

The boundary operator ∂n : Sn(X) → Sn−1(X) is the group homomorphism

defined by

∂n(Ãn) :=
n∑

i=1

(−1)i−1Ãn ◦ ¶n
i ∈ Sn−1(X) for all singular n-simplices Ãn

for n g 0 and the zero map for n < 0.
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As in the case in simplicial homology, for n ∈ Z we have that ∂n−1 ◦ ∂n = 0

[Hat02, p. 108]. And, for n ∈ Z, we define

Zn(X) := Ker ∂n, the group of singular n-cycles of X,

Bn(X) := Im ∂n+1, the group of singular n-boundaries of X,

and

Hn(X) := Zn(X)/Bn(X), the n-th singular homology group of X

The singular homology group of X is

H∗(X) :=
⊕

n∈Z

Hn(X)

From now on we write ∂ instead of ∂n for the boundary maps for both simplicial

and singular homology. In this notation, ∂n−1 ◦ ∂n = 0 is written as ∂2 = 0 which is more

concisely.

Proposition 1.3.2. [Mun18, p. 164] Let X be a non-empty topological space. Then, H0(X)

is free abelian. If {C³}³∈Λ is the family of path components of X and if {p³}³∈Λ ¦ X is a

family of points in X such that p³ ∈ C³ for all ³ ∈ Λ, then the homology classes of all p³

form a basis for H0(X). In particular, X is path connected if, and only if, H0(X) ∼= Z.

The fundamental property of the singular homology group of X is that it is a

homotopy invariant, so it becomes a strong tool for any problem that deals with homotopy

type of topological spaces. This property is given by:

Theorem 1.3.3. [Hat02, p. 111] Let X, Y be non-empty topological spaces and let f :

X → Y be a continuous map. the group homomorphism f∗ : S∗(X) → S∗(Y ) defined

f∗(Ãn) := f ◦ Ãn for all Ãn ∈ Sn(X) satisfies ∂ ◦ f∗ = f∗ ◦ ∂. Hence, it induces a

homomorphism

f∗ : Hn(X) → Hn(Y )

for every n ∈ Z. The assignment f 7→ f∗ is functorial, i.e., (g ◦ f)∗ = g∗ ◦ f∗ and id∗ = id.

Moreover, if f, g : X → Y are homotopic maps, then f∗ = g∗. In particular, if f is a

homotopy equivalence, then f∗ is a group isomorphism.

Example 1.3.4. [Hat02, p. 110](Homology of a point)

Let X = {p} be a unitary set with trivial topology, for every n ∈ Z, there

is a unique Ãn ∈ Sn(X) the constant map Ãn(x) = p ∀x ∈ ∆n
std. So ∂(Ãn)(x) =

n∑

i=0

(−1)iÃn(¶n
i (x)) =

n∑

i=0

(−1)i p. If n is odd, we have that ∂(Ãn) = 0. If n is even and n ̸= 0,
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we have that ∂(Ãn) is the unique element of Sn−1, so we have the singular homology chain

complex for n g 0:

· · · −→ Z ≈
−→ Z 0

−→ Z ≈
−→ Z 0

−→ Z 0
−→ 0

0
−→ 0 −→ · · ·

with the boundary maps alternately being isomorphisms and zero maps, except at the last

Z. So, the singular homology groups are given by Hn(X) = 0 for n ̸= 0 and H0(X) = Z.

Corollary 1.3.5. Let X be a non-empty contractible topological space, its singular homology

groups are given by:

Hn(X) :=







Z, n = 0

0, n ̸= 0
(1.3.1)

The following result shows the relation between the simplicial homology of a

simplicial complex and the singular homology of its polyhedron

Theorem 1.3.6. [Mau96, p. 117,119] Let K be a non-empty geometric simplicial complex.

Then Hn(K) and Hn(||K||) are isomorphic groups for all n ∈ Z. More precisely, the ho-

momorphism ³ : C∗(K) → S∗(||K||) which maps the coset [v0, . . . , vn] to the corresponding

simplicial map, i.e., ³([v0, . . . , vn]) is the singular n-simplex in ||∆|| given by

³([v0, . . . , vn]) : ∆n
std → ||K||

(¼0, . . . , ¼n) 7→
n∑

i=0

¼ivi

is a chain homotopy equivalence. Hence, ³ induces group isomorphisms

³K : Hn(K) → Hn(||K||) (1.3.2)

for each n ∈ Z.

Corollary 1.3.7. Let K and L be geometric simplicial simplexes and let f : ||K|| → ||L||

be continuous.

• f induces a group homomorphism f∗ : Hn(K) → Hn(L) for each n ∈ Z;

• The correspondence f 7→ f∗ is functorial;

• If f, g : ||K|| → ||L|| are homotopic maps, then f∗ = g∗;

• If f is a homotopy equivalence, then f∗ is an isomorphism.

In particular, since a simplicial isomorphism h : K → L induces a homeomor-

phism ||h|| : ||K|| → ||L||, we have that ||h||∗ : Hn(K) → Hn(L) is a isomorphism for

every n ∈ Z. So, with this topology invariance, we can define the homology groups of

abstract simplicial complexes:
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Definition 1.3.8. If ∆ is an abstract simplicial complex and n ∈ Z, the n-homology group

of ∆ is given by

Hn(∆) := Hn(K(∆)) (1.3.3)

and the homology group is given by

H∗(∆) := H∗(K(∆)) (1.3.4)

for a realisation K(∆) of ∆.

These are well-defined, since the polyhedrons of two realisations of ∆ are

homeomorphic.

In sight of the last results and definition, we write just simplicial complex for

an abstract simplicial complex and the result is valid for a geometric simplicial complex

too.

1.3.1 Reduced homology

Definition 1.3.9. Let X be a non-empty topological space. We define S̃−1(X) := Z,

S̃n(X) := Sn(X) for n ̸= −1 and the homomorphisms of groups ∂̃−1 := 0, ∂̃n := ∂n for

n /∈ {0, 1} and ∂̃0 : S̃0(X) → S̃−1(X) = Z, given by ∂̃0(
∑

niÃi) :=
∑

ni for all ni ∈ Z

and Ãi ∈ S0(X).

As before, we have that ∂̃n−1 ◦ ∂̃n = 0. Hence, we define the n-th reduced singular

homology group of X as

H̃n(X) :=
Ker ∂̃n

Im ∂̃n+1

The reduced singular homology group of X is defined as

H̃∗(X) :=
⊕

n∈Z

H̃n(X)

From now on, we write ∂̃ instead of ∂̃n like before.

Of course, the reduced singular homology group is closely related to the singular

homology group.

Lemma 1.3.10. Given X and Y non-empty topological spaces and n ∈ Z, we have the

following properties

1. H0(X) ∼= H̃0(X) · Z;

2. For n ̸= 0, Hn(X) = H̃n(X);

3. X is path connected if, and only if, H̃0(X) = 0;



Chapter 1. Simplicial Complexes and Homology 25

4. Given a continuous map f : X → Y , we have the induced homomorphism f̃∗ :

H̃n(X) → H̃n(Y ) like 1.3.3 and the association f 7→ f̃∗ is functorial.

5. If the map f above is a homotopy equivalence, then f̃∗ : H̃n(X) → H̃n(Y ) is an

isomorphism of groups for every n ∈ Z.

Now, let ∆ be a simplicial complex. We define the n-th reduced homology

group of ∆ as

H̃n(∆) = H̃n(||∆||)

and the reduced homology group as

H̃∗(∆) = H̃∗(||∆||)

which are well-defined by the Lemma above.

We define H̃n(∅) := {0} if n ̸= −1 and H̃−1(∅) = Z. So, H̃−1(∆) = 0 if and

only if ∆ ̸= ∅.

Corollary 1.3.11. Let X be a contractible topological space. Then, H̃∗(X) = 0.

Proof. This is direct consequence of corollary 1.3.5 and parts 1 and 2 of 1.3.10 and the

definition of reduced homology of the empty space.

1.3.2 Homology with coefficients

This subsection is based on section 50 of [Mun18] and section 4.5 of [Mau96].

In these sections, we can found the notion of tensor products of abelian groups that will

be used in the subsection. The notion of rank of a finitely generated abelian group will

also be used and can be found in section 4 of [Mun18].

Definition 1.3.12. Let X be a non-empty topological space. Given G abelian group, so

also a Z-module, for any n ∈ Z, we have that ∂n ¹ idG : Sn(X) ¹ G → Sn−1(X) ¹ G

and ∂̃n ¹ idG : S̃n(X) ¹ G → S̃n−1(X) ¹ G satisfy (∂n−1 ¹ idg) ◦ (∂n ¹ idG) = 0 and

(∂̃n−1 ¹ idG) ◦ (∂̃n ¹ idG) = 0.

Then, we define the n-th singular homology group with coefficients in G and

reduced n-th singular homology group with coefficients in G as

Hn(X,G) :=
Ker (∂n ¹ idG)

Im (∂n+1 ¹ idG)

H̃n(X,G) :=
Ker (∂̃n ¹ idG)

Im (∂̃n+1 ¹ idG)
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and the correspondent homology groups

H∗(X,G) :=
⊕

n∈Z

Hn(X,G) H̃∗(X,G) :=
⊕

n∈Z

H̃n(X,G)

Let ∆ be a simplicial complex and let G be any abelian group. Given n ∈ Z, we

define Hn(∆, G), H̃n(∆, G), H∗(∆, G), H̃(∆, G) as above by replacing Sn(X) with Cn(∆).

Given Ã ∈ Cn(∆) and g ∈ G, we will write Ã ¹ g as g · Ã.

Observe that Hn(∆,Z) = Hn(X), H̃n(X,Z) = H̃n(X) for every n ∈ Z. Like

before, we have the correspondence Hn(||∆||, G) ∼= Hn(∆, G), H̃n(||∆||, G) ∼= H̃n(∆, G) for

every n ∈ Z.

Lemma 1.3.13. Given X and Y non-empty topological spaces, G abelian group and n ∈ Z,

we have the following properties

• H0(X,G) ∼= H̃0(X,G) ·G;

• For n ̸= 0, Hn(X,G) = H̃n(X,G);

• X is path connected if, and only if, H̃0(X,G) = 0;

• Given a continuous map f : X → Y , we have the induced homomorphisms f∗ :

Hn(X,G) → Hn(X,G) and f̃∗ : H̃n(X,G) → H̃n(X,G) like 1.3.3 and the associa-

tions f 7→ f∗, f 7→ f̃∗ are functorial;

• If the map f above is a homotopy equivalence, then f∗ and f̃∗ are isomorphism of

groups;

• Hn(X,G) ∼= (Hn(X) ¹ G) · Tor(Hn−1(X), G) and H̃n(X,G) ∼= (H̃n(X) ¹ G) ·

Tor(H̃n−1(X), G) where Tor is the Tor-functor defined in [Mun18, p. 317] and this

result can be found in [Mun18, p. 332]

If G = F is a field, then Hn(∆,F) and H̃n(∆,F) also have the structure of F-

vectors spaces such that f∗, f̃∗ are F-linear. From 1.3.13, we have that Hn(X,Q) = Hn(X)¹

Q, since Q is torsion free [Hat02, p. 265]. Since Zp¹Q = Q [Mun18, p. 305] for p ∈ N\{0, 1},

if Hn(X) is finitely generated, we have that the dimension of Hn(X,Q) = Hn(X) ¹ Q as

a Q-vector space is the rank of Hn(X), also known as the n-th Betti number of X.

The result Hn(X,Q) = Hn(X) ¹Q implies that, if Hn(X,Q) ̸= 0, we have that

Hn(X) has non-zero rank (possibly infinite), then Hn(X,F) ̸= 0 for every field F. This

fact and the non-existence of a torsion part in Hn(X,Q) are the reason we use homology

over the rationals in chapter 4.
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Corollary 1.3.14. Let X be a contractible topological space and G any abelian group,

then H̃∗(X,G) = 0.

Proof. Follows from Lemma 1.3.10 and 1.3.13.

The corollary above is extremely important for this work, since it says that

if, for a G abelian group, a ∆ simplicial complex and n ∈ Z , H̃n(∆, G) ̸= 0, then we

have that ∆ is not contractible, which are the hypothesis in 2.3.2 and 2.3.1 theorems, the

motivations of this work.

1.3.3 The Mayers-Vietoris sequence

In this subsection, we will present the Mayers-Vietoris sequence for reduced

simplicial homology. We just have to remember that any notion of homology have a

equivalent Mayers-Vietoris sequence, so the next result can be much more general.

Theorem 1.3.15. [Mau96, p. 128] Let ∆ be a simplicial complex and let ∆1,∆2 be

subcomplexes such that ∆1 ∪ ∆2 = ∆ and ∆1 ∩ ∆2 ̸= ∅. We have the inclusions

i1 : ∆1 ∩ ∆2 ↪→ ∆1, i2 : ∆1 ∩ ∆2 ↪→ ∆2, i3 : ∆1 ↪→ ∆, i4 : ∆2 ↪→ ∆

Let R be a commutative unitary ring and n ∈ Z Then, there exists an R-linear homomor-

phism ∂∗ : H̃n(∆, R) → H̃n−1(∆1 ∩ ∆2, R) such that

. . . −→ H̃n(∆1 ∩ ∆2, R)
(̃i1∗,−ĩ2∗)

−→ H̃n(∆1, R) · H̃n(∆2, R)
ĩ3∗+ĩ4∗−→ . . .

. . . −→ H̃n(∆, R)
∂∗−→ H̃n−1(∆1 ∩ ∆2, R) −→ . . .

is a long exact sequence. This sequence is called the Mayer-Vietoris sequence for reduced

homology of the triple (∆,∆1,∆2).

Observe that, if ∆1 and ∆2 are contractible, their reduced homology groups are

trivial, so the exactness of the Mayer-Vietoris sequence gives that ∂∗ is an isomorphism

between the homology of ∆ and the homology of ∆1 ∩ ∆2.
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2 The Simplicial Complex of a Homogeneous

Space

2.1 Order complexes

The simplicial complexes associated to a homogeneous space are order complexes.

In this section, we will introduce the concept of order complexes.

Definition 2.1.1. [Bjö96, p. 1843],[BW96, p. 1312] Let P = (P,f) be a poset, i.e., a

partially ordered set. A finite totally ordered subset C := {p0 < . . . < pk} is called a chain

of P . The number k is called the length of C and is denoted by l(C).

A maximal chain is a chain C = {p0 < . . . < pk} such that there exists no

p ∈ P\C such that C ∪ {p} is a chain.

For a given poset P , let 0̂ and 1̂ be two distinct elements not contained in P .

Then P̂ := P ∪̇{0̂, 1̂} becomes a poset by 0̂ < x < 1̂ for all x ∈ P . 0̂ and 1̂ are called the

bottom element and the top element of P̂ , respectively. Moreover, P̂ is called a lattice,

if for all x, y ∈ P there exists a least upper bound (join) in P̂ , denoted by x ( y, and a

greatest lower bound (meet) in P̂ , denoted by x ' y. Furthermore, for all x ∈ P let

Pfx := {z ∈ P | z f x}

and similarly P<x, Pgx and P>x.

Definition 2.1.2 ([Bjö96], p.1844). Let (P,f) be a finite poset. We define the order

complex ∆(P,f) =: ∆(P ) of P as the abstract simplicial complex whose k-simplices are

the chains of length k of P for k g 0. A polyhedron of ∆(P ) will be denoted by ∥P∥ instead

of ∥∆(P )∥.

To understand the topology of order complexes, we first need to understand

when a map between posets can induce a map in the associated order complexes.

Let P,Q be finite posets and let f : P → Q be a monotonic map, i.e., f

preserves order or reverses order. Then, for any chain C of P, f(C) is a chain of Q.

Thus, it induces a simplicial map from ∆(P ) to ∆(Q), which is again denoted by f . Two

monotonic maps f, g : P → Q are called homotopic, denoted by f ∼ g, if the induced

maps ∥f∥, ∥g∥ : ∥P∥ → ∥Q∥ are homotopic.

Proposition 2.1.3. Let (P,f) be a finite poset and p ∈ P , then the subset

C = {Ã ∈ ∆(P ) | min Ã g p} of ∆(P ) is a cone over p. Hence, it is contractible by 1.1.17.
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Proof. C is a subcomplex of ∆(P ): if C1 ∈ C and C2 ¦ C1, we have that min Ã g p for all

Ã ∈ C2, then C2 ∈ C.

If C = {p0 < . . . < pk} ∈ C, then C ∪ {p} = {p f p0 < . . . < pk} ∈ C, since

p f p.

2.2 The Simplicial Complexes ∆G/H , ∆
min
G/H and ∆

T
G/H

In this section, the simplicial complexes ∆G/H , ∆min
G/H , ∆T

G/H associated to

homogeneous spaces will be introduced. Let H < G be compact Lie groups such that G/H

is connected with finite fundamental group and G acts almost effectively, i.e., h does not

contain an ideal of g. Moreover, let Q be a fixed Ad(G)-invariant inner product on g which

exists by [BD13, p. 68]. The orthogonal complement of h in g will be denoted by m, which

is Ad(H)-invariant so it can be identified with To(G/H) where o := eH: If X ∈ m, h ∈ H

and Y ∈ h, then

Q(Ad(h)X, Y ) = Q(X,Ad(h−1)Y ) = 0

since Ad(h−1)Y ∈ h = m§Q and Q is Ad(G)-invariant. So, Ad(h)X ∈ m.

Furthermore, let

m0 := {X ∈ m | [X, h] = 0}

The Lie algebra of NG0
(H0) is ng(h) that can be described by:

Lemma 2.2.1. [BK23, p. 102] Let G/H be a compact homogeneous space. Then

ng(h) = h · m0 and this decomposition is Q-orthogonal. Moreover, m0 is a compact subal-

gebra of g.

Definition 2.2.2. A Lie subalgebra k of g is called an H-subalgebra, if the following hold:

1. h < k < g,

2. k is Ad(H)-invariant.

Furthermore, let mk := m ∩ k, then k is called toral if [mk,mk] = 0, otherwise k is called

non-toral.

Observe that k = h · mk and it is a Q-orthogonal decomposition, since mk is

the Q-orthogonal complement of h in k, and mk is Ad(H)-invariant.

Every intermediary Lie subalgebra h < k < g is ad(h)-invariant, so, for H

connected, every intermediary Lie subalgebra is Ad(H)-invariant, thus an H-subalgebra.

Hence, in the case of H connected, H-subalgebras are in one-to-one correspondence with
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connected Lie subgroups K of G with H < K < G and we also use the term intermediary

subalgebra for an H-subalgebra.

Remark 2.2.3. In this work, if V is a vector space over a field F and A1, . . . , Ak ¦ V ,

then spanF{A1, . . . , Ak} means the subspace of V generated by A1 ∪ . . . ∪ Ak. If g is a

Lie algebra over a field F and a1, . . . , ak ¦ g, then ïa1, . . . , akð means the Lie subalgebra

generated by a1 ∪ . . . ∪ ak. Also, if h < g, ng(h) := {X ∈ g | [X, h] ¦ h} is the normalizer

of h.

2.2.1 ng(h) = h

Let H < G be compact Lie groups as above such that ng(h) = h. In particular,

m0 = {0} and every H-subalgebra is non-toral: if k = h · mk is a H-subalgebra, then

[mk,mk] = 0 =⇒ Q([h,mk],mk) = Q(h, [mk,mk]) = {0} =⇒ [h,mk] ¦ h ∩ mk = {0} =⇒

mk ¦ m0 = {0} which contradicts mk ̸= 0.

Let PG/H be the set of all H-subalgebras of g, which might be infinite. However,

by [Bö04, p. 144], there exists at most finitely many minimal, by inclusion, H-subalgebras.

Hence, let {k1, . . . , kn} be the set of all minimal H-subalgebras and let Pmin
G/H be the set of

all H-subalgebras generated by minimal ones, i.e.

Pmin
G/H = {ïki1

, . . . , kil
ð | 1 f l f n, 1 f i1 < . . . < il f n}

PG/H and Pmin
G/H are partially ordered by inclusion ¦.

Definition 2.2.4. With the notation as above, the order complex of Pmin
G/H is called the

simplicial complex of G/H and is denoted by ∆min
G/H . If PG/H is finite, the order complex

of PG/H is called the extended simplicial complex G/H and is denoted by ∆G/H .

The following properties of ∆min
G/H and ∆G/H are very important for this work.

1. If H is connected, then ∆min
G/H and ∆G/H only depend on the Lie algebras h and g

instead of the Lie groups H and G. In particular, if Ã : G̃ → G is a covering map

and H̃ := Ã−1(H)0, it follows that ∆min
G/H = ∆min

G̃/H̃ (∆G/H = ∆G̃/H̃).

2. If rank H = rank G, it folows that m0 = {0}, i.e., ng(h) = h: Suppose that exists

X ∈ m0\{0} and let t be a maximal abelian Lie subalgebra (a Cartan subalgebra) of

h. Then t · ïXð is also an abelian Lie subalgebra of g, since [t, X] = 0. It follows

that rank G > rank H, which contradicts the hypothesis.

3. If ng(h) = h and h < k, then ng(k) = k: Suppose that ng(k) ̸= k. By 2.2.1, there exists

X /∈ k such that [X, k] = 0. In particular, [X, h] = 0 which implies X ∈ n(h) = h < k,

a contradiction with the hypothesis.
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If, in addition, H is connected and PG/H is finite, then PG/K is finite and ∆G/K

is well-defined for every compact Lie subgroup H < K < G. Moreover, every

K-subalgebra is also an H-subalgebra. Hence, PG/K can be identified as a subposet

of PG/H and ∆G/K can be identified as a subcomplex of ∆G/H

2.2.2 ng(h) ̸= h

Let H < G be compact Lie groups as above such that ng(h) ̸= h,i.e., m0 ̸= 0.

By 2.2.1, m0
∼= n(h)/h is a compact Lie subalgebra of g. So, fix a maximal torus T of the

compact connected Lie subgroup of G with Lie algebra m0 and let t := Lie(T ).

Definition 2.2.5. An H-subalgebra k is called T -adapted if it is invariant under the adjoint

action of T , i.e., Ad(T )k ¦ k. A non-toral T -adapted H-subalgebra is called T -minimal

non-toral if it is minimal by inclusion in the set of all non-toral T -adapted H-subalgebras.

Remark 2.2.6. Since T is connected, if t := Lie(T ), the above condition of Ad(T )-invariance

is equivalent to ad(t)-invariance.

By [Bö04, p. 154] there exists at most finitely many T -minimal non-toral H-

subalgebras. As above, let P T
G/H be the set of all non-toral T -adapted H-subalgebras which

are generated by minimal ones. Again, P T
G/H is a finite, partially ordered set by inclusion

¦.

Definition 2.2.7. The order complex of the chains of P T
G/H is called the simplicial complex

of G/H and is denoted by ∆T
G/H .

The following properties of ∆T
G/H are of interest, see [Bö04, p. 154].

1. ∆T
G/H is a generalisation of ∆min

G/H , since both definitions coincide for m0 = {0}

defining T := {e}.

2. If H is connected, then ∆T
G/H only depends on g and h and not on the choice of T up

to isomorphism. In particular, again, ∆T
G/H = ∆T

G̃/H̃ for a covering map Ã : G̃ → G

and H̃ := Ã−1(H)0.

3. If both G and H are connected and #Ã1(G/H, eH) < ∞, then there is a bijection

between the minimal non-toral TH-subalgebras and the T -minimal non-toral H-

subalgebras. Furthermore, ng(t · h) = t · h. By [Bö04, p. 154], it follows ∆T
G/H

∼=

∆min
G/T H .

We can always may assume the following conditions

1. G/H is connected (but G and H might be disconnected).
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2. The group action of G on G/H is almost effective, i.e., any normal subgroups of G

which is contained in H is discrete or h does not contain ideals of g,

3. Ã1(G/H, eH) is finite.

For the first condition, if Ĝ is the union of all connected components of G

which intersects H, then Ĝ is a compact subgroup of G such that Ĝ/H is the connected

component of G/H which contains o. Moreover, ∆T
Ĝ/H

= ∆T
G/H , since the complex depends

only on h, g, H and T .

For the second condition, if N ⊴G,N f H, one may consider the homogeneous

space M := (G/N)/(H/N) ∼= G/H. Then ∆T
G/H

∼= ∆T
M , since k is Ad(H)-invariant if and

only if k/n is Ad(H/N)-invariant.

For the third condition, #Ã(G/H, eH) = ∞ implies that ∆T
G/H is contractible

or ∆T
G/H = ∅ and G/H is a torus, see [Bö04, p. 155].

When dealing with product spaces G1 ×G2/H1 ×H2, ∆T1×T2

G1×G2/H1×H2
is obtained

from ∆T1

G1/H1
and ∆T2

G2/H2
in the following manner:

Lemma 2.2.8. For i ∈ {1, 2} let Hi < Gi be compact Lie groups as above and let Ti be a

maximal torus as above. Then:

∆T1×T2

G1×G2/H1×H2
≃ ∆T1

G1/H1
∗ ∆T2

G2/H2
∗ S0

where ∗ is the join defined in 1.1.11.

where ≃ means homotopy equivalence. A proof is given by [Bö04, p. 95].

Since S0 ∗ . . . ∗ S0
︸ ︷︷ ︸

n times

= Sn−1, it follows

Lemma 2.2.9. For i ∈ {0, . . . , n}, let Hi < Gi be compact Lie groups as above and Ti be

a maximal torus as above. Then:

∆
∏n

i=1
Ti

∏n

i=1
Gi/
∏n

i=1
Hi

≃ ∆T1

G1/H1
∗ . . . ∗ ∆Tn

Gn/Hn
∗ Sn−2

by induction for compact Lie groups Hi < Gi and maximal tori Ti as above.

Lemma 2.2.10. Let G/H be a compact homogeneous space, P a generic notation for

PG/H , PG/H or P T
G/H . Then, P̂ := P ∪̇{g, h} is a lattice.

Proof. h is the bottom element of P̂ and g is the top element pf P̂ . For k1, k2 ∈ P , there

exists a least upper bound ïk1, k2ð in P̂ and a greatest lower bound k1 ∩ k2 in P̂ .
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2.3 The simplicial complex theorems for invariant Einstein metrics

In [Bö04], studying the problem of existence or non-existence of Einstein

invariant metrics on compact homogeneous spaces, it was proved the following theorem,

that is the central result of this work:

Theorem 2.3.1. [Bö04, p. 156] Let G/H be a compact homogeneous space. If a simplicial

complex ∆T
G/H is not contractible, then G/H admits a G-invariant Eintein metric.

And

Theorem 2.3.2. [Bö04, p. 87] Let G/H be a compact homogeneous space, such that

n(h) = h. If the simplicial complex ∆min
G/H is not contractible, then G/H admits a G-

invariant Einstein metric. And, if ∆G/H is well-defined, then ∆G/H being not contractible

also implies that G/H admits a G-invariant Einstein metric.

The second part of the corollary above comes from the fact that, if ∆G/H is

well-defined, then ∆min
G/H and ∆G/H are homotopic equivalent, which will be proved in the

section [2.4.6].

We will give a brief outline of the mains steps for the proof of both theorems

above in this section based on [Bö04] and [BK23].

Let MG
1 be the space of G-invariant, unit volume metrics on G/H. Fix Q a

Ad(G)-invariant inner product in g with volume 1 after rescaling. Let g = h · m be the

Ad(H)-invariant decomposition of g with Q(h,m) = 0. The set of G-invariant metric on

G/H, denoted by MG, can be identified with the set of Ad(H)-invariant inner products

on m. Furthermore, for every g ∈ MG, there exists ³g an Ad(H)-equivariant, Q-self-

adjoint and positive definite endomorphism of m. Then, we identify g with ³g and MG

will be thought as the space of Ad(H)-equivariant, Q-self-adjoint and positive definite

endomorphism of m and it is a finite dimensional manifold.

In MG, we can define L2-metric, denoted by ï·, ·ð, given by

ïφ, Èð³g
= tr(³−1

g φ³−1
g È)

for ³g ∈ MG and φ, È ∈ T³g
MG which is the space of Ad(H)-equivariant,

Q-self-adjoint endomorphism of m.

Lemma 2.3.3. Let G/H be a compact homogeneous space. Then, (MG, L2) is a non-

compact symmetric space.

Corollary 2.3.4. Let G/H be a compact homogeneous space with dim MG g 2. Then, MG
1

is the subspace of Ad(H)-equivariant, Q-self-adjoint endomorphism of m with determinant

1 and (MG, L2) is a non-compact symmetric space.
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Corollary 2.3.5. Let G/H be a compact homogeneous space with dim MG g 2. Then,

for any v ∈ S := {v ∈ TQMG
1 | ||v|| = 1}, the curve

µv(t) = exp(t · v), t ∈ R (2.3.1)

is a unit speed geodesic in (MG
1 , L

2), where denotes exp the exponential of linear operators.

Proof. See [Hel78, p. 226].

Lemma 2.3.6. For any v ∈ TQMG, there exists a Q-orthogonal decomposition m = ·l
i=1mi

of into irreducible, Ad(H)-invariant summands mi and vi ∈ R for i = 1, · · · , l, such that

v = v1 · Idm1
+ · · · + vl · Idml

(2.3.2)

Any such decomposition will be called a good decomposition with respect to v.

Proof. The eigenspace of v are Ad(H)-invariant and pairwise Q-orthogonal. Decomposing

an eigenspace further into Q-orthogonal Ad(H)-irreducible summands shows the claim.

By last Lemma, for each ³g ∈ MG
1 , there exists v ∈ S unity sphere in TQMG

1

and t0 g 0 such that ³g = µv(t0). By above lemma,

µv(t) = etv1 · Idm1
+ . . .+ etvl · Idml

(2.3.3)

for the good decomposition m = ·l
i=1mi.

Let v ∈ TQMG and the good decomposition for v from above. We denote by

v̂1 < . . . < v̂lv (2.3.4)

the distinct eigenvalues of v ordered by size, 1 f lv f l. For each eigenvalue,

1 f m f lv, we define the index set (which depends on our choice of good decomposition)

Iv
m := {i ∈ {1, . . . , l} | vi = v̂m} (2.3.5)

Let

¼(v) = v̂1 and Λ(v) = v̂lv (2.3.6)

denote the smallest and the largest eigenvalues of v, respectively.

So we have

Lemma 2.3.7. Let G/H be a compact homogeneous space. Any v ∈ S must have at least

2 distinct eingenvalues and there exists a constant cG/H < 0 such that the following holds:

¼(v) f cG/H and − cG/H f Λ(v) (2.3.7)
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Let m = ·l
i=1mi be a decomposition of m into Q-orthogornal, Ad(H)-irreducible

summands, that will be called a decomposition of m, for any non-empty subset I of

{1, . . . , l}, we define

mI := ·i∈Imi and dI := dim mI (2.3.8)

For v ∈ TQMG
1 and a good decompostion for v, the spaces mIv

m
are the

eigenspaces of v, thus we have

µv(t) = etv̂1 · IdmIv
1

+ . . .t ˆvlv
e · IdmIv

lv

(2.3.9)

Let m = ·l
i=1mi be a fixed decomposition of m, let {e1, . . . , en} be a Q-

orthonormal basis of m adapted to the decomposition and I, J,K be non-empty subsets of

{1, . . . , l}. We define, following [WZ86],

[IJK] :=
∑

³,´,µ

Q([e³, e´], eµ)2

where we sum over all indices ³, ´, µ ∈ {1, . . . , n} with e³ ∈ mI , e´ ∈ mJ and

eµ ∈ mK .

Since the adjoint maps ad(X) are Q-skew-adjoint ∀ X ∈ g, it follows that

[IJK] is symmetric in all three entries and is independent of the Q-orthonormal bases

chosen for mI ,mJ and mK . In case, I = {i}, J = {j} and K = {k}, we write [ijk] instead

of [IJK].

We have that [ijk] g 0, with [ijk] = 0 if, and only if, Q([mi,mj],mk) = 0.

Definition 2.3.8. [Hel78, p. 131] The Ad(G)-invariant symmetric bilinear form B :

g × g → R given by B(X, Y ) = tr(ad(X) ◦ ad(Y )) for all X, Y ∈ g is called the Cartan-

Killing form of g. Observe that this definition generalises to Lie algebras over any field.

Since both Q and the −B are Ad(G)-invariant non-negative forms on g, there

exists bi g 0 for 1 f i f l such that

B|mi
= −bi ·Q|mi

(2.3.10)

Lemma 2.3.9. Let v ∈ TQMG and let m = ·l
i=1mi be a good decomposition with respect

to v. Then, the scalar curvature of µv(t) is given by

sc(µv(t)) =
1

2

l∑

i=1

dibi · et(−vi) −
1

4

l∑

i,j,k=1

[ijk] · et(vi−vj−vk) (2.3.11)

=
1

2

lv∑

i=1




∑

j∈Iv
i

djbj



 · et(−v̂i) −
1

4

lv∑

i,j,k=1

[Iv
i I

v
j I

v
k ] · et(vi−vj−vk) (2.3.12)
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Definition 2.3.10. For each H-subalgebra k, the canonical direction vk ∈ S associated to

k is defined by

vk := vk1 · Idmk
+ vk2 · Idm§

k

(2.3.13)

where § means orthogonal complement with respect to Q, (dim mk) ·vk1 + (dim m§
k ) ·vk2 = 0,

||vk|| = 1 and vk1 < vk2.

With Lemma 2.3.9 we can have information on the asymptotic behaviour of

the scalar curvature functional:

Lemma 2.3.11. For any H-subalgebra k,

lim
t→+∞

sc(µvk(t)) =







+∞

0
⇐⇒







k non-toral

k toral
(2.3.14)

If in addition G/H is not a torus, then sc(µvk(t)) > 0 for all t g 0.

Now, the results about the boundness of the curvature scalar curvature.

Lemma 2.3.12. If the scalar curvature functional is bounded from below along a geodesic

µv for v ∈ S, that is, sc(µv(t)) g C for all t g 0, then h · mIv
1

is an H-subalgebra.

Theorem 2.3.13. Let G/H be a compact homogeneous space. Then, the scalar curvature

functional sc : MG
1 → R is bounded from above if, and only if, there exist no non-toral

H-subalgebras.

Using theorems like the above one and variational methods, if m0 = {0}, the

non-contrability of ∆min
G/H implies the existence of a Palais-Smale sequence of G-invariant

metrics of volume one with scalar curvature bounded from below by a positive constant,

see [Bö04, p. 156]. A sequence (gi) in MG
1 is called a Palais-Smale sequence if sc(gi) is

bounded and ||(grad sc)gi
|| converges to 0 in the norm induced by the L2-metric.

Using this Palais-Smale sequence and the fact that a metric in MG
1 are Einstein

if, and only if, it is a critical point of sc : MG
1 → R [0.0.2], we obtain theorem 2.3.2.

In the case m0 ≠ {0}, like before, T is the maximal torus of the compact

Lie subgroup associated with m0 and we define (MG
1 )T := MG

1 ∩ {g ∈ MG0

1 | g =

(Rt)∗g for all t ∈ T} where Rg is the right translation by g ∈ G and G0 is the connected

component of G.

Lemma 2.3.14. Let G/H be a compact homogeneous space. Then, (MG
1 )T is a totally

geodesic subspace of (MG
1 , L

2) invariant under the Ricci flow.

As a consequences we can also apply the variational methods described above

to sc : (MG
1 )T → R and obtain Theorem 2.3.1.
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2.4 Algebraic topology of order complexes

In order to apply the Theorem 2.3.2 and 2.3.1, several tools will be introduced

to determine whether the complex ∆G/H is contractible or not. Of course, these tools will

be used in examples of chapter 4.

By [Mau96, p. 274], the polyhedron of a simplicial complex is a CW-complex(for

a definition see [Hat02, p. 6]). Thus, we can apply the theorem of Whitehead for homotopy

groups to simplicial complexes.

We use that a CW -complex is connected if, and only if, is path connected. If

X is path connected and x0 ∈ X, then the k-homotopy group Ãk(X, x0) does not depend

on the basepoint x0 up to isomorphism, so we write just Ãk(X).

Theorem 2.4.1. (Theorem of Whitehead)[Hat02, p. 346] Let X, Y be non-empty connected

CW -complexes and let f : X → Y be a weak homotopy equivalence, i.e. f is continuous and

f∗ : Ãn(X) → Ãn(Y ) is an isomorphism for all n ∈ N. Then f is a homotopy equivalence.

If, in addition, X is a subcomplex of Y and f : X ↪→ Y is the inclusion map, then X is a

strong deformation retract of Y .

Corollary 2.4.2. Let X be a CW -complex. If X is simply connected and H̃∗(X) = 0,

then X is contractible.

Proof. X is a non-empty connected CW-complex by assumption. By Theorem 2.4.1, it

is enough to prove that for any vertex x0 of X the inclusion º : {x0} → X is a weak

homotopy equivalence, which is equivalent to prove that Ãn(X) = 0 for all n g 1.

We prove this by induction. For n = 1, we have by hypothesis that Ã1(X) = 0.

Now, suppose n g 2 and Ãk(X) = 0 for all 1 f k f n− 1, which are the hypothesis to the

theorem of Hurewicz, see [Hat02, p. 369], that implies that Ãn(X) ∼= H̃n(X) = 0.

Now, using the corollary above and the Mayer-Vietoris, we prove that the union

of contractible complexes is contractible, if the intersection of the complexes is contractible.

Lemma 2.4.3. [Rau16, p. 16] Let ∆1,∆2 be contractible subcomplexes of a simplicial

complex ∆ such that ∆1 ∩ ∆2 is contractible. Then ∆1 ∪ ∆2 is also contractible.

Proof. ∆1 ∩ ∆2 is non-empty by assumption. So, let v ∈ ∆1 ∩ ∆2 be any vertex. Since

∆1,∆2 and ∆1 ∩ ∆2 are path-connected and since Ã1 (∆1, v) = Ã1 (∆2, v) = 0, it follows

Ã1 (∆1 ∪ ∆2, v) = 0 by van Kampen’s theorem, see [Hat02, Theo. 1.20]. By Corollary

2.4 , it remains to prove that H̃∗ (∆1 ∪ ∆2,Z) = 0. This follows from the Mayer-Vietoris

sequence for reduced homology, see 1.3.15. More precisely, for all n ∈ Z there is an exact

sequence:

H̃n (∆1,Z) · H̃n (∆2,Z)
j∗−→ H̃n (∆1 ∪ ∆2,Z)

∂∗−→ H̃n−1 (∆1 ∩ ∆2,Z)
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But H̃n (∆1,Z) · H̃n (∆2,Z) = 0 and H̃n−1 (∆1 ∩ ∆2,Z) = 0. It follows

H̃n (∆1 ∪ ∆2,Z) = 0 for all n ∈ Z and ∆1 ∪ ∆2 is contractible.

Corollary 2.4.4. [Rau16, p. 16] Let n ∈ N, n g 2 and let ∆ be a simplicial complex with

subcomplexes ∆1, . . . ,∆n such that

∆ =
n⋃

i=1

∆i

If ∆i1
∩. . .∩∆il

is contractible for all non-empty subsets {i1, . . . , il} ¦ {1, . . . , n},

then ∆ is contractible.

Proof. If n = 2, then ∆1,∆2 and ∆1 ∩ ∆2 are contractible by assumption. Hence, ∆1 ∪ ∆2

is contractible by Lemma 2.4.3. Now, let n g 3 and let the claim be true for all n′ ∈

{2, . . . , n− 1}. In particular,
n−1⋃

i=1

∆i is contractible. By Lemma 2.4.3, it remains to prove

that

Γ :=

(
n−1⋃

i=1

∆i

)

∩ ∆n =
n−1⋃

i=1

∆i ∩ ∆n

is contractible. For i ∈ {1, . . . , n−1} let Γi := ∆i ∩∆n. Then Γ =
n−1⋃

i=1

Γi and by

assumption Γi1
∩ . . . ∩ Γil

= ∆i1
∩ . . . ∩ ∆il

∩ ∆n is contractible for all non-empty subsets

{i1, . . . , il} ¦ {1, . . . , n− 1}. Hence, by the induction hypothesis, Γ is contractible. This

proves the claim.

Our first result about the homology type of simplicial complexes associated to

homogeneous spaces is that, whenever PG/H is finite, then ∆min
G/H is homotopic equivalent

to ∆G/H . Moreover, ∆G/H is a strong deformation retract of ∆G/H . To prove this we need

the following techinical lemma:

Lemma 2.4.5. [Wal81, p. 375] Let P,Q be finite posets and let f : P → Q be a monotonic

map. Suppose that either ∆(f−1(Qfq) ) is a contractible subcomplex of ∆(P ) for all q ∈ Q

or ∆
(

f−1 (Qgq)
)

is a contractible subcomplex for all q ∈ Q. Then

∥f∥ : ∥P∥ −→ ∥Q∥

is a homotopy equivalence.

Theorem 2.4.6. [Bö04, p. 153] Let G/H be a compact homogeneous space such that

n(h) = h and PG/H is finite. Then ∆min
G/H is a strong deformation retract of ∆G/H .
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Proof. Let Pmin := Pmin
G/H and P := PG/H . Consider the inclusion map

º : Pmin ↪→ P

º is monotonic by defintion. We have that for each k ∈ P , the set ||º−1 (Pfk) || is contractible:

if l ∈ Pmin , then l f k if and only if l is generated by minimal H-subalgebras which are all

contained in k. Then, for any k ∈ P , define a := ïl1, . . . , lsð, where l1, . . . , ls are all minimal

H-subalgebras contained in k, and we have that

º−1 (Pfk) = Pfa.

Hence, ∆
(

º−1 (Pfk)
)

= ∆
(

Pmin
fmin(k)

)

is a cone over a by 2.1.3. Thus, by Lemma 2.4.5,

∥º∥ : ||∆min
G/H || → ||∆G/H || is a homotopy equivalence. The theorem of Whitehead 2.4.1

implies that ∆min
G/H is a strong deformation retract of ∆G/H .

Now, we need a result about a method to obtain that certain order complexes

are contractible.

Definition 2.4.7. Let P be a finite poset such that P̂ := P ∪̇{0̂, 1̂} is a lattice. For p ∈ P ,

the complement of p is defined as

c(p) := {x ∈ P | x ' p = 0̂ and x ( p = 1̂}

Theorem 2.4.8. [Bjö96, p. 1852] Let P be a finite poset such that P̂ = P ∪̇{0̂, 1̂} is a

lattice. For a fixed p ∈ P let Q := P\c(p). Then ∆(Q) is contractible.

When we apply this theorem to the simplicial complexes associated to a

homogeneous space, we obtain the result used in this work to prove the some simplicial

complexes are contractible.

Corollary 2.4.9. Let P be a generic notation for Pmin
G/H , PG/H or P T

G/H and ∆ for the

correspondents order complexes. Given k ∈ P , if there is no l ∈ P such that ïk, lð = g or

k ∩ l = h, then ∆ is contractible.

Proof. The hypothesis is equivalent to c(k) = ∅ for P̂ = P ∪̇ {h, g}, then apply the last

theorem.

2.4.1 Rauße’s theorem

In this subsection, we prove the main theorem used in this work to show

that some simplicial complexes associated to homogeneous spaces are non-contractible.

In the case of H < G compact connected Lie groups with ng(h) = h and PG/H finite,

item 3 implies that for every K compact connected intermediary Lie group H < K < G
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with k := Lie(K) we have ng(k) = k and ∆G/K is a subcomplex of ∆G/H . In this case,

the theorem describes how a non-zero homology class [¹new ] ∈ H̃m

(

∆G/H , R
)

\{0} can

be constructed if a non-zero homology class [¹] ∈ H̃m−1

(

∆G/K , R
)

\{0} is given, where

m ∈ N, H < K < G, with H maximal in K and R is a commutative unitary ring.

Since this theorem is proved using induction, we need to describe when H̃0

(

∆G/H , R
)

is

non-zero:

Lemma 2.4.10. Let H < G and R as above. Assume that there exists a maximal H-

subalgebra k0 of g such that h is maximal in k0. Then H̃0

(

∆G/H , R
)

̸= 0 if and only if

there exists another H-subalgebra k1 ̸= k0.

Proof. The conditions of h being maximal in k0 and k0 being maximal in g imply that k0 is a

maximal simplex, i.e. a facet, of ∆G/H . Hence, the existence of another vertex k1 is equivalent

to ∆G/H being disconnected, since k0 −k1 is a 0-cycle with [k0 −k1] ∈ H̃0(∆G/H , R)\{0}.

The following definitions are required for the theorems of this subsection:

Definition 2.4.11. [Kah09, p. 12] Let ∆ be a simplicial complex, R a commutative

unitary ring and ¹ =
N∑

i=1

ri · [vi
0, . . . , v

i
n] ∈ Cn(∆) ¹ R an n-chain with coefficients in R

with ri ∈ R\{0} for 1 f i f N . We define the support of ¹ by

supp(¹) := {{v1
0, . . . , v

1
n}, . . . , {vN

0 , . . . , v
N
n }}

i.e. the set of all n-simplices whose coset is a non-zero summand of ¹. If one of the elements

of supp(¹) is a facet of ∆, then we say that ¹ is supported by a facet.

The vertex set of ¹, or 0-skeleton of ¹,

vsupp(¹) :=
N⋃

i=1

{

vi
0, . . . , v

i
n

}

is also called the vertex support of ¹.

Let P be a finite poset and ∆ := ∆(P ) be its order complex. A subset L ¦ P

is called a lower bound set of ¹, if there exists an l ∈ L such that l f v for all vertices

v ∈ vsupp(¹).

Theorem 2.4.12. [Rau16, p. 26] Let H < G be compact connected Lie groups such that

ng(h) = h and PG/H is finite and let R be a commutative unitary ring. Furthermore, let

m ∈ N, k0 a minimal H-subalgebra with K0 as the corresponding connected Lie subgroup

of G and [¹] ∈ H̃m−1

(

∆G/K0
, R
)

\{0} a non-zero homology class with a representative ¹

such that the following holds:
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Given a lower bound set {l1, . . . , lN} of ¹ in PG/K0
, there exist H-subalgebras

k1, . . . , kN , not necessarily distinct, with the following properties:

k0 ̸= ki ∀i ∈ {1, . . . , N}; (2.4.1)

li g ki ∀i ∈ {1, . . . , N}; (2.4.2)

ïk1, . . . , kNð < g (2.4.3)

and ¹ is supported by a facet of ∆G/K0
. Then

H̃m(∆G/H , R) ̸= 0

More precisely, there exists an m-cycle ¹new with [¹new ] ∈ H̃m(∆G/H , R)\{0},

in which ¹new is supported by a facet of ∆G/H and a lower bound set of ¹new is given by

{k0, . . . , kN}.

Proof. Let k1, . . . , kN be H-subalgebras satisfying properties 2.4.2, 2.4.3 and 2.4.4. For any

simplex Ã = (kÃ
0 < . . . < kÃ

dim Ã) ∈ ∆G/H , we denote its minimal element by kÃmin
:= kÃ

0 . For

l ∈ {0, . . . , N}, define
Cl :=

{

Ã ∈ ∆G/H | kÃmin
g kl

}

and

D :=
N⋃

l=1

Cl

The Cl’s are contractible since they are cones over the kl’s by 2.1.3.

Since ïk1, . . . , kNð < g by 2.4.4, we have that ïki1
, . . . , kis

ð is an H-subalgebra

for every non-empty subset {i1, . . . , is} ¦ {1, . . . , N}. Thus,

Ci1
∩ . . . ∩ Cis

=
{

Ã ∈ ∆G/H | kÃmin
g ïki1

, . . . , kis
ð
}

is also a cone, hence contractible.

By Corollary 2.4.4, we have thatD is contractible. Thus, H̃k (C0, R)·H̃k(D,R) =

0 for all k ∈ Z. Moreover, C0 ∩ D ≠ ∅: li > k0, then li ∈ C0 ∩ D for all i ∈ {1, . . . , N}.

Therefore, the Mayer-Vietoris sequence for reduced homology of the triple (C0 ∪D;C0, D),

1.3.15, yields the following exact sequence for k ∈ Z :

0 −→ H̃k (C0 ∪D,R)
∂∗−→ H̃k−1 (C0 ∩D,R) −→ 0

Hence, the exactness of the sequence gives that the homomorphism ∂∗ :

H̃m (C0 ∪D,R) → H̃m−1 (C0 ∩D,R), whose existence is given by 1.3.15, is an isomor-

phism.

The central idea of this proof is to use the isomorphism ∂∗ to lift the homology

class [¹] using ∂∗. To do this, we first need to show that [¹] ∈ H̃m−1(C0 ∩D,R)\{0}.
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Let Ã ∈ supp(¹), so kÃmin
∈ vsupp(¹). By 2.4.3, kÃmin

g li g ki for some i ∈

{1, . . . , N}, it follows Ã ∈ Ci ¦ D. Furthermore, Ã ∈ ∆G/K0
¦ C0. Thus, supp(¹) ¦ C0 ∩D

and ¹ represents an element [¹] ∈ H̃m−1 (C0 ∩D,R). It remains to show that [¹] ̸= 0.

Every vertex l ∈ C0 ∩D satisfies l g ïk0, kið for some i ∈ {1, . . . , N}. By 2.4.2,

k0 ≠ ki ∀i ∈ {1, . . . , N}, so l > k0. Hence, C0 ∩D ¦ ∆G/K0
. Now, ¹ is a facet of ∆G/H which

implies it is not a boundary of ∆G/H , so it is also not a boundary of C0 ∩D. Therefore,

[¹] ∈ H̃m−1 (C0 ∩D,R) \{0}.

With this information, we can lift the homology class. Let

[¹′] := ∂−1
∗ ([¹]) ∈ H̃m (C0 ∪D,R) \{0}

where ¹′ is a fixed representative. By the definition of ∂∗, see [Mun18, p. 137], ¹′ can be

constructed the following way:

¹ is a boundary of C0 and D, since H̃m−1(C0, R) = 0 and H̃m−1(D,R) = 0. So,

there are m-chains Ä1 of C0 and Ä2 of D, such that ∂(Ä1) = ¹, ∂(Ä2) = −¹. Then

¹′ := Ä1 + Ä2

is an m-cycle of C0 ∪D such ∂∗([¹
′]) = [¹].

We have that ¹ is supported by a facet, so let s ∈ supp(¹) be a facet of ∆G/K0
,

i.e. s = {̃l0 < . . . < l̃m−1} is a maximal chain of K0-subalgebras. Since k0 is a minimal

subalgebra over h, t :=
{

k0 < l̃0 < . . . < l̃m−1

}

is a simplex of C0 and facet of ∆G/H , i.e. a

maximal chain of H-subalgebras. t is the only simplex of C0 such that s is a proper face.

Since s ∈ supp(¹) = supp(∂(Ä1)), we have that t ∈ supp(Ä1). On the other hand, k0 ̸= ki

given in 2.4.2 and the minimality of k0 imply k0 o ki for i ∈ {1, . . . , N}. Hence, t is not

a simplex of D, which guarantees that t /∈ supp(Ä2) and therefore, t ∈ supp(¹′) since it

cannot be cancelled out by the sum ¹′ := Ä1 + Ä2.

Now, the inclusion map º : C0 ∪D ↪→ ∆G/H induces a homomorphism in the

homology groups i∗ : H̃m(C0 ∪D,R) → H̃m(∆G/H , R) and we can define

[¹new] := i∗([¹
′])

with ¹new being an m-cycle of ∆G/H such that supp(¹new ) = supp(¹′), so supp(¹new )

contains the facet t. This implies ¹new cannot be a boundary of ∆G/H , so [¹new ] ∈

H̃m(∆G/H , R)\{0}.

Moreover, since for k ∈ vsupp(¹new) ¦ C0 ∩D there exists i ∈ {0, . . . , N} with

k g ki, we have that a lower bound set of ¹new is given by {k0, . . . , kN}.

Last theorem 2.4.12 yields a method to be applied iteratively along maximal

chains of H-subalgebras, which is given by the next theorem.
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Theorem 2.4.13. [Rau16, p. 28] Let H < G be compact connected Lie groups such that

ng(h) = h, PG/H is finite and let
(

k0
0 > . . . > k0

N

)

be a maximal chain of H-subalgebras for

some N ∈ N with associated maximal chain of connected Lie subgroup (K0
0 > . . . > K0

N)

of G. Furthermore, let k0
N+1 := h and assume that for each m ∈ {1, . . . , N + 1} there exist

K0
m-subalgebras k1

m−1, . . . , k
m
m−1, not necessarily distinct, with the following properties:

1. k1
0 ̸= k0

0

2. If N g 1, then for each m ∈ {1, . . . , N} the K0
m+1-subalgebras k1

m, . . . , k
m+1
m satisfy

the following properties:

• k0
m ̸= ki

m ∀i ∈ {1, . . . ,m+ 1}

• ki−1
m−1 ̸= ki

m ∀i ∈ {1, . . . ,m+ 1}

• ïk1
m, . . . , k

m+1
m ð < g

Then H̃N(∆G/H , R) ̸= 0 for any commutative unitary ring R.

Proof. Property 1 implies ¹0 := k0
0 − k1

0 ̸= 0 and [¹0] ∈ H̃0∆G/K0
1
, R)\{0} as in the proof of

Lemma 2.4.10. It follows that ¹0 is supported by the facet k0
0 of ∆G/K0

1
and {k0

0, k
1
0} is a

lower bound set for ¹0.

Now suppose that for m ∈ {1, . . . , N} there exists an (m − 1)-cycle ¹m−1

of ∆G/K0
m

with [¹m−1] ∈ H̃m−1(∆G/K0
m
, R)\{0}, that ¹m−1 is supported by a facet of

∆G/K0
m

and a lower bound set of ¹m−1 is given by {k0
m−1, . . . , k

m
m−1}. By assumption, the

K0
m+1-subalgebras k1

m, . . . , k
m+1
m satisfy the properties hypotheses of Theorem 2.4.12 with

respect to ¹m−1. Hence, Theorem 2.4.12 yields an m-cycle ¹m of ∆G/K0
m+1

such that [¹m] ∈

H̃m(∆G/K0
m+1

, R)\{0}, ¹m is supported by a facet of ∆G/K0
m+1

and a lower bound set of

¹m+1
m is given by {k0

m, . . . , k
m+1
m }. By iteration, the case m = N gives a non-trivial homology

class of H̃N(∆G/H , R).
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3 Lie Theory

3.1 Root Systems and Subalgebras of Maximal Rank

When we have H < G compact connected, ∆T
G/H only depends on the corre-

sponding Lie algebras by Remark 2.2.2. So, if we want to understand the contractibility or

not-contractibility of ∆T
G/H for G real compact semisimple and H connected of maximal

rank, all possibilities of real compact semisimple Lie algebras g will be classified and we

will show how to obtain all Lie subalgebras h of maximal rank.

3.1.1 Abstract Root Systems

Definition 3.1.1. A finite subset R ¦ V \{0} of a finite-dimensional Euclidean vector

space (V, ï·, ·ð) is called a root system if the following conditions hold:

1. R spans V .

2. If ³, ´ ∈ R and s³ : V → V is the orthogonal reflection at ³ with respect to ï·, ·ð,

then s³(´) = ´ − 2
ï³, ´ð

ï´, ´ð
³ ∈ R, i.e., R is invariant by the orthogonal reflections at

the roots.

3. n³´ := 2
ï³, ´ð

ï´, ´ð
∈ Z for all ³, ´ ∈ R.

4. For ³ ∈ R, the only multiples of ³ in R are −³, ³.

The elements of R are called roots.

Two root systems R ¦ V and R′ ¦ V ′ are called isomorphic, denoted by

R ∼= R′, if there exists a isomorphism of vector spaces ϕ : V → V ′ such that ϕ(R) = R′

and nϕ(³)ϕ(´) = n³´ for all ³, ´ ∈ R.

Definition 3.1.2. Let R ¦ V be a root system. A subset Λ = {³1, . . . , ³n} ¦ R is called

a set of simple roots, if the following two conditions hold:

1. Λ is a basis of V .

2. For each ³ ∈ R, the unique {k1, . . . , kn} ¦ R such that

³ =
n∑

i=1

ki · ³i

are either all non-negative integers or all non-positive integers.
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A root ³ is called a positive root (negative root), with respect to Λ, if the

coefficients in 2 satisfy ki g 0 (ki f 0).

Each root system contains a set of simple roots and the simple roots determine

the root system up to isomorphism as the following lemma shows.

Lemma 3.1.3. [Hum94, p. 55] Let R ¦ V and R′ ¦ V ′ be root systems with simple

roots F = {³1, . . . , ³n} and F ′ = {³′
1, . . . , ³

′
n}. If n³i³j

= n³′

i
³′

j
for all 1 f i, j f n, then

R ∼= R′.

We want to classify all root systems. For this purpose, let R be a root system

and Λ = {³1, . . . , ³n} be a set of simple roots. Then n³i³j
· n³j³i

∈ {0, 1, 2, 3} for all

1 f i < j f n, see [Hum94, p. 44, 45]. The Dynkin diagram of R, denoted by D(R), is the

graph with n vertices such that for i ≠ j the i-th and the j-th vertex are connected by

n³i³j
· n³j³i

edges, if there are more than two edges, we use an arrow that points to the

short root. We observe that D(R) is independent of the choice of Λ.

Two isomorphic root systems have the same Dynkin diagram. Hence, root

systems are classified by their Dynkin diagrams. By [Hel78, p. 470], the connected Dynkin

diagrams are given by four infinite series An(n g 1), Bn(n g 2), Cn(n g 3), Dn(n g 4), the

classical Dynkin diagrams, and five exceptional Dynkin diagrams E6, E7, E8, F4, G2.

Figure 4 – Dynkin diagrams
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3.1.2 Root Systems of Semisimple Lie Algebras

Let g be a Lie algebra over R or C with Cartan-Killing form B(X, Y ) =

tr(adX ◦ adY ), X, Y ∈ g as defined in 2.3.8. g is called semisimple, if its Killing form B

is nondegenerate, that is, its ideal rad B = {X ∈ g | B(X, Y ) = 0 ∀Y ∈ g} is equal to

zero. Moreover, g is called simple, if g is non-abelian and if it has no non-trivial ideals.

Since rad B is an ideal of g, simple Lie algebras are semisimple. A Lie group G is called

semisimple (simple), if its Lie algebra is semisimple (simple).

If g is a semisimple Lie algebra, there exists a unique decomposition g =

g1 · . . .· gs where each gi is an simple ideal of g and these are the only ideals of g, see

[Hum94, p. 23].

Let g be a complex semisimple Lie algebra and let h be a Cartan subalgebra of g,

i.e. h is a maximal abelian subalgebra of g and adX : g → g is a semisimple endomorphism

for all X ∈ h. Let ³ ∈ h∗ and define

g³ := {X ∈ g | [h,X] = ³(h) ·X for all h ∈ h}

³ is called a root of g with respect to h, if ³ ̸= 0 and g³ ̸= {0}. The set of all roots with

respect to h is denoted by R(g, h). Since h is maximal abelian subalgebra of g, we have

h = g0 = {X ∈ g | [h,X] = 0 ∀h ∈ h}. Furthermore, the endomorphisms adX , X ∈ h, are

simultaneously diagonalizable, since [adX , adY ] = ad[X,Y ] = 0 for X, Y ∈ h. Then, we have

the called decomposition of roots spaces of g

g = h ·
⊕

³∈R(g,h)

g³ (3.1.1)

Lemma 3.1.4. [Hel78, p. 166, 170] The restriction of the Killing form to h, Bh×h, is

non-degenerate. Hence, given ³ ∈ h∗ there exists a unique h³ ∈ h such that

B(h³, h) = ³(h) for all h ∈ h

Using this lemma, we define a non-degenerate bilinear form ï·, ·ð on h∗ by

ï³, ´ð := B(h³, h´) for all ³, ´ ∈ h∗

Since B is real valued and positive definite in hR := spanR{h³ | ³ ∈ R(g, h)},

we have that ï·, ·ð is real valued and positive definite in h∗
R = spanR{³ | ³ ∈ R(g, h)}.

As expected, R(g, h) is a root system as defined in the last subsection:

Theorem 3.1.5. [Hum94, p. 73] Let ï·, ·ð be the inner product on h∗
R as above. Then,

R(g, h) is a root system of h∗
R as in Definition 3.1.1.
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Given two Cartan subalgebras h, h̃ of g, then R(g, h) and R(g, h̃) are isomorphic

[Hum94, p. 75], then we can write just R(g) for a root system of g since it is unique up to

isomorphism.

The Dynkin diagram D(g) determines g up to isomorphism:

Theorem 3.1.6. [Hum94, p. 173][Hel78, p. 490] The assignment g 7→ D(g) yields a

one-to-one correspondence between the isomorphism classes of complex semisimple (simple)

Lie algebras and (connected) Dynkin diagrams.

3.1.3 Compact Real Forms

Let g be a real compact semisimple Lie algebra, i.e. g = Lie G for a compact

semisimple Lie group G. The complexification of g is gC := g ¹ C that becomes a complex

semisimple Lie algebra by defining a Lie bracket in the pure tensors by

[X1 ¹ z1, X2 ¹ z2] := [X1, X2] ¹ z1z2 for all X1, X2 ∈ g, z1, z2 ∈ C

and extended by bilinearity. Observe that gC is simple if and only if g is simple, since

complexification and realification take ideals to ideals. g is called a compact real form of

gC which is unique up to isomorphism, see [Hel78, p. 184].

Given t a Cartan subalgebra of g, then h := t ¹ C is a Cartan subalgebra of gC
and we define the root system of g with respect to t as

R(g) := R(g, t) := R(gC, h) = R(gC)

Since the root system R(gC) does not depend on the choice of the Cartan

subalgebra up to isomorphism, the root system R(g) does not depend on the choice of t

up to isomorphism. Moreover,

rank g := dimR t = dimR h
∗
R

We define the Dynkin diagram of R(g) or g by D(g) := D(gC). The Dynkin

diagram D(g) defines g up to isomorphism: If g and g̃ are compact semisimple Lie algebras

such that D(gC) = D(g̃C), Theorem 3.1.6 implies gC ∼= g̃C. The uniqueness of a compact

form implies k ∼= k̃. Furthermore, by [Hel78, p. 81], every complex semisimple Lie algebra

has a compact real form. It follows from Theorem 3.1.6:

Theorem 3.1.7. The assignment g 7→ D(g) yields a one-to-one correspondence between

the isomorphism classes of real compact semisimple (simple) Lie algebras and (connected)

Dynkin diagrams.
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By the Theorem above, a compact real Lie algebra is said to classical if it is

associated to the classical Dynkin diagrams. The ones with rank n are su(n+ 1), n g 1 for

An, so(2n+ 1), n g 2 for Bn, sp(n), n g 3 for Cn and so(2n), n g 4.

A compact real Lie algebra is said to be exceptional if it is associated to the

exceptional Dynkin diagrams. They are denoted by e6, e7, e8, f4, g2, see [Hel78, p. 516].

3.1.4 Subalgebras of Maximal Rank

Now, let G be any semisimple compact Lie group with real compact semisimple

Lie algebra g and let T be a maximal torus of G with Lie algebra t = Lie(T ) that is a

Cartan subalgebra of g.

To determine the simplicial complex of G/H for all connected compact Lie

subgroups T f H < G, first we have to determine all the possibilities of H. By [Djo81,

p. 2], every subgroup T f H < G is closed in G, hence a compact Lie subgroup. Thus,

there is a bijection between all connected compact Lie subgroups T f H < G and all Lie

subalgebras t f h < g. These Lie subalgebras are given by the following lemma.

Lemma 3.1.8. Let g and t be as above. Let a set of simple roots of R(g) be given and

R(g)+ be the associated subset of positive roots. For ³ ∈ R(gC) and g³ the associated root

space as in 3.1.1, define m³ := g ∩ (g³ · g−³). Observe that m−³ = m³. Then

g = t ·
⊕

³∈R(g)+

m³ (3.1.2)

We will call 3.1.2 the decomposition of roots spaces of g.

All intermediary subalgebras t < h < g are given by

h = t ·
⊕

³∈I

m³ (3.1.3)

where I ¦ R(g)+is any non-empty subset with the following property:

³, ´ ∈ I, ³± ´ ∈ R(g) =⇒ ³± ´ ∈ I ∪̇ − I (3.1.4)

Proof. Let ³ ≠ ´ ∈ R(g)+. From [Bö04, p. 89], we have the brackets between the root

spaces m³ and m´:

[m³,m´] =







m³+´ · m³−´, if ³+ ´ ∈ R(g) and ³− ´ ∈ R(g)

m³+´, if ³+ ´ ∈ R(g) and ³− ´ /∈ R(g)

m³−´, if ³− ´ ∈ R(g) and ³+ ´ /∈ R(g)

{0}, if ³+ ´ /∈ R(g) and ³− ´ /∈ R(g)

(3.1.5)

Since [g³, g−³] ¦ h = t · C, we have that [m³,m³] ¦ t.
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A vector space h as in 3.1.3 is closed under Lie brackets, hence a Lie subalgebra

of g: if ³, ´ ∈ I, then ³ ± ´ ∈ I ∪̇ − I ¦ R(g) implies m±³±´ ∈ h and [m³,m´] ∈ h by

3.1.5.

On the other hand, any subalgebra t < h < g is also an Ad(T )-module, so

h is the sum of t and root spaces m³, ³ ∈ I, for some I ¦ R(g)+, see [Bö04, p. 89].

Now, 3.1.5 implies that I has to satisfy property 3.1.4: if ³, ´ ∈ I and ³ + ´ ∈ R(g),

then m³+´ = m−(³+´) ¦ [m³,m´] ¦ h which implies ³ + ´ ∈ I∪̇ − I and equivalently to

³− ´ ∈ R(g).

The last Lemma 3.1.8 implies that T -subalgebras of g are indexed by subsets of

R(g)+ that satisfy the condition 3.1.4. Hence, g contains only finitely many T -subalgebras.

Moreover, n(h) = h for every t f h < g by 2 and 3, see also [Djo81, p. 1]. Hence, PG/H is

finite and the extended simplicial complex ∆G/H is well-defined for all T f H < G.

Our purpose is to determine the contractility or non-contractility of ∆G/H for G

semisimple classical and H a subgroup that has maximal rank, i.e., H contains a maximal

torus of G. However, it is just necessary to determine it to G simple as we will see next.

By Remark 2.2.2, we may also assume that G is simply-connected, so G = G1 × . . .×Gk

with Gi simply connected and simple for all 1 f i f k. Let Ti be a maximal torus of Gi

for 1 f i f k. Then T := T1 × . . . × Tk is a maximal torus of G and T f H < G is a

subgroup of maximal rank if and only if H = H1 × . . .×Hk with Ti f Hi f Gi.

We assumed that the canonical action of G in G/H is almost effectively, which

implies Hi ̸= Gi for all 1 f i f k. By 2.2.8, it follows

∆G/H
∼= ∆G1/H1

∗ . . . ∗ ∆Gk/Hk
∗ Sk−2

Thus, ∆G/H is contractible, if ∆Gi/Hi
is contractible for at least one 1 f i f k, see [Bö04,

p. 96].

Moreover, it was proved in [Mil56, p. 431] that H̃∗(X∗Y,F) ̸= 0, if H̃∗(X,F) ̸= 0

and H̃∗(Y,F) ̸= 0 for any spaces X, Y and any field F. In particular, H̃∗(∆G/H ,Q) ̸= 0, if

H̃∗(∆Gi/Hi
,Q) ̸= 0 for all 1 f i f k.

From the discussion above follows that:

∆G/H non-contractible ⇐⇒ ∆Gi/Hi
non-contractible for all i ∈ {1, . . . , k}



50

4 The Simplicial Complex for G simple classic

and H connected of maximal rank

From the last chapter, we obtained that, if G is a compact semisimple Lie

group and H is a connected Lie subgroup of maximal rank, then ∆G/H is well-defined and

to determine the contractility of ∆G/H it is just necessary to to do it for G simple.

Since ng(h) = h, we are in the hypothesis of 2.4.13, which will be the main

theorem to prove that some ∆G/H are non-contractible. Theorem 2.4.9 will be the main

tool to prove that some ∆G/H are contractible.

This chapter follows [Rau16].

Remark 4.0.1. Here gl(k,F) denotes the Lie algebra of k × k matrices with coefficients in

F = R,C, with Lie bracket being the canonical commutator of matrices, and GL(n,F) the

group of invertible k × k matrices with coefficients in F = R,C.

4.1 SU(n + 1), n g 1

Let G = SU(n+ 1) = {A ∈ GL(n+ 1,C) | A−1 = AT and det(A) = 1}, where

AT is conjugate transpose of A. Its Lie algebra is given by

su(n+ 1) = {A ∈ gl(n+ 1,C) | A = −AT and tr(A) = 0}

and its complexification is given by

su(n+ 1)C = {A ∈ gl(n+ 1,C) | tr(A) = 0} = sl(n+ 1,C)

A Cartan subalgebra of su(n+ 1) is given by

t :=

{

diag(i³1, . . . , i³n+1) | ³k ∈ R, 1 f k f n+ 1,
n+1∑

k=1

³k = 0

}

and the corresponding Cartan subalgebra of su(n+ 1)C = sl(n+ 1,C) is

h := t ¹ C =

{

diag (z1, . . . , zn+1) | zk ∈ C, 1 f k f n+ 1,
n+1∑

k=1

zk = 0

}

For 1 f k f n+1 consider ¿k ∈ h∗ defined by ¿k (diag (z1, . . . , zn)) := zk. Let {Ekl}1fk,lfn+1

be the canonical basis of gl(n+ 1,C). If k ≠ l, Ekl ∈ sl(n+ 1,C) = su(n+ 1)C. We have

that

[diag(z1, . . . , zn), Ekl] = (zk − zl) · Ekl
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Thus, ¿k − ¿l is a root for h with root space ïEklðC and the fact su(n+ 1)C =

h ·
⊕

k ̸=l

spanC{Ekl} implies that all roots are given this way. Furthermore, for indices

i, j, k, l ∈ {1, . . . , n + 1} such that i > j, k > l, {i, j} ̸= {k, l}, by 3.1.5 the following

equivalence holds:

(¿i − ¿j) + (¿k − ¿l) is a root ô i = l or j = k ô #({i, j}△{k, l}) = 2 (4.1.1)

where △ denotes the symmetric difference. From 4.1.1, it follows that a set of simple roots

is given by

{¿i − ¿i+1 | 1 f i f n}

with Dynkin diagram An and a set of positive roots is given by

{¿k − ¿l | 1 f k < l f n+ 1}

see [Hel78, p. 462].

We described the root space decomposition for su(n+ 1)C = sl(n+ 1,C). Now,

we will describe the root decomposition for su(n+ 1) using 3.1.8. For k < l, let

mkl := mlk := m{k,l} := m¿k−¿l
= ïEkl, ElkðC ∩ su(n+ 1)

This subspace consists of all matrices of su(n+ 1) whose entries are all zero

except the (kl)−th and the (lk)−th one, then

mkl
∼=










0 z

−z̄ 0





∣
∣
∣
∣
∣
∣

z ∈ C







and su(n+ 1) = t ·
⊕

k<l

mkl. It follows:

Proposition 4.1.1. [Rau16, p. 38] Let t be as in as above. Moreover, let r ∈ {2, . . . , n}

and I1∪̇ . . . ∪̇Ir = {1, . . . , n+ 1} be a partition of the index set {1, . . . , n+ 1}. Let ni :=

|Ii| , 1 f i f r. Then

s
(

·r
i=1u (ni)Ii

)

:= t ·
⊕

i,j∈I1,i<j

mij · . . .·
⊕

i,j∈Ir,i<j

mij (4.1.2)

is a T -subalgebra of su(n+ 1). Moreover, every T -subalgebra is of this type.

Proof. For i < j, k < l, (i, j) ̸= (k, l) it follows from 4.1.1 and 3.1.8 that

[mij,mkl] =







m{i,j}△{k,l}, {i, j} ∩ {k, l} ≠ ∅,

{0} {i, j} ∩ {k, l} = ∅
(4.1.3)
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So, if mIs
:=

⊕

i,j∈Is,i<j

mij for 1 f s f r, then [mIs
,mIs

] ¦ t · mIs
and [mIs

,mIs′
] = 0 for

s′ ̸= s. It follows that s(·r
i=1u(ni)Ii

) is a T -subalgebra of su(n+ 1).

Now, let k = t ·
⊕

k<l

mkl be any T -subalgebra of su(n+ 1). Consider a graph Γ

with vertex set {1, . . . , n+ 1} where two vertices i and j are connected by an edge if and

only if mij ¦ k. By 4.1.3, if i and j are connected, mij ¦ k, and if j and k are connected,

mjk ¦ k, then i and k are also connected, since mik = [mij,mjk] ¦ k. By induction, this

implies that mij ¦ k for every vertices i and j in the same connected component of Γ.

If I1, . . . , Ir are the vertices sets of the connected components of Γ, then mij ¦ k for

i < j ∈ Im, 1 f m f r. This implies that k is of type 4.1.2. We have that r g 2, since r = 1

implies that Γ is connected, all root spaces are contained in k and k = su(n + 1) which

contradicts k ̸= su(n+1). Also, r f n: if r = n+1, we have that the connected components

are just all the vertices, none of them are connected and k = t which contradicts k ̸= t.

Observe in the last Proposition that, given a partition with more amount of

subsets from {1, . . . , n+ 1}, we produce a T -subalgebra with less dimension. So, to obtain

a T -subalgebra with more dimension, we need a partition with less amount subsets.

The subalgebras from last Proposition can be understand as diagonals block

matrices. After conjugation the subalgebra k = s
(

·r
i=1u (ni)Ii

)

just consists of all block

matrices 






A1 0
. . .

0 Ar







, Ai ∈ u (ni) ,

r∑

i=1

trace (Ai) = 0 (4.1.4)

In fact, if n0 := 0 and Ã ∈ Sn with Ii = Ã











i−1∑

j=0

nj + 1, . . . ,
i∑

j=0

nj









 for

1 f i f r, then AdP (k) is of type 4.1.4, where P =




sgn(Ã) 0

0 In



PÃ ∈ SU(n+ 1) and

PÃ is the permutation matrix.

Using the notation t := s
(

·n+1
i=1 u(1){i}

)

, the non-contractibility of ∆G/H for

G = SU(n + 1) and H < G connected and of maximal rank is given by the following

theorem.

Theorem 4.1.2. [Rau16, p. 39] Let h = s(·r
i=1u(ni)Ii

) as in Proposition 4.1.1 or as above

if r = n+ 1. Then

H̃r−3(∆G/H ,Q) ̸= 0

Proof. If r = 2, then h = s(u(n1)I1
· u(n2)I2

) is a maximal subalgebra of su(n + 1)

by Proposition 4.1.1, since partitioning I with in other two subsets just produce other
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subalgebras that are not contained in h and the only way to partition I with less subsets

is just I itself. Hence, ∆G/H = ∅ which implies H̃−1

(

∆G/H ,Q
)

̸= 0.

So assume r g 3. To simplify notation, for s ∈ {1, . . . , r} and 1 f i1 <

. . . < is f r let Ii1,...,is
:= ∪s

j=1Iij
and ni1,...,is

:=
s∑

j=1

nij
. Now, for p ∈ {0, . . . , r − 3} and

q ∈ {0, . . . , p+ 1} let

kq
p := s




u (n1,...,r−2−p,r−1−p+q)I1,...,r−2−p,r−1−p+q · r

l=r−1−p
l ̸=r−1−p+q

u (nl)Il






It follows that
(

k0
0 > . . . > k0

r−3

)

is a maximal chain of H-subalgebras. Further-

more, for q ̸= 0 it holds

kq
p ̸= k0

p and

k
q−1
p−1 > kq

p > k0
p+1 with k0

−1 := g, k0
r−2 := h

Moreover, for all p g 1 it holds:

ïk1
p, . . . , k

p+1
p ð = s(u(n1,...,r−2−p,r−p,...,r)I1,...,r−2−p,r−p,...,r

· u (nr−1−p)Ir−1−p
) < g

Hence, H̃r−3(∆G/H ,Q) ̸= 0 by Theorem 2.4.13.

Corollary 4.1.3. If H is a connected Lie subgroup of maximal rank of SU(n+ 1), then

SU(n+ 1)/H admits a SU(n+ 1)-invariant Einstein metric.

Proof. It follows from 4.1.2, 2.3.2 and 1.3.14.

Example 4.1.4. We will illustrate the subalgebras and their relations in the proof of

theorem 4.1.2 for the case g = su(5) with r = 4 and I1 = {1, 3}, I2 = {2}, I3 = {4}, I4 =

{5}, then

h = t · m13 =




















i³1 z1

i³2

−z̄1 i³3

i³4

i³5














∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

z1 ∈ C, ³i ∈ R







k0
0 = s(u(4)I1,2,3

· u(1)I4
) =




















i³1 z1 z2 z4

−z̄1 i³2 z3 z5

−z̄2 −z̄3 i³3 z6

−z̄4 −z̄5 −z̄6 i³4

i³5














∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

zi ∈ C, ³i ∈ R






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k1
0 = s(u(4)I1,2,4

· u(1)I3
) =




















i³1 z1 z2 z4

−z̄1 i³2 z3 z5

−z̄2 −z̄3 i³3 z6

i³4

−z̄4 −z̄5 −z̄6 i³5














∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

zi ∈ C, ³i ∈ R







k0
1 = s(u(3)I1,2

· u(1)I3
· u(1)I4

) =




















i³1 z1 z2

−z̄1 i³2 z3

−z̄2 −z̄3 i³3

i³4

i³5














∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

zi ∈ C, ³i ∈ R







k1
1 = s(u(3)I1,3

· u(1)I2
· u(1)I4

) =




















i³1 z1 z2

i³2

−z̄1 i³3 z3

−z̄2 −z̄3 i³4

i³5














∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

zi ∈ C, ³i ∈ R







k2
1 = s(u(3)I1,4

· u(1)I2
· u(1)I3

) =




















i³1 z1 z2

i³2

−z̄1 i³3 z3

i³4

−z̄2 −z̄3 i³5














∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

zi ∈ C, ³i ∈ R







Then, (k0
0 > k0

1) is a maximal chain of H-subalgebras, k1
0 ̸= k0

0, k
0
1 ̸= k2

1, k
0
0 >

k1
1, k

1
0 > k1

2 and, since k1
1 = t · m13 · m14 · m34 and k2

1 = t · m13 · m15 · m35,

ïk1
1, k

2
1ð = t · m13 · m14 · m34 · m15 · m35 · m45 < so(5)

and, for H the connected Lie subgroup of SU(5) with Lie algebra h,

H̃1(∆SU(5)/H , q) ̸= 0

4.2 SO(n), n g 3

Let G = SO(n) = {A ∈ GL(n,R) | A−1 = AT and det A = 1}. Its Lie algebra

is given by

so(n) = {A ∈ gl(n,R) | AT = −A}
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and its complexification is given by

so(n)C = {A ∈ gl(n,C) | −AT = A}

The cases n even and n odd have to be considered separately. Moreover, for n

even one may assume n g 8, since so(4) ∼= so(3) · so(3) is not simple and so(6) ∼= su(4)

is covered by the the last case.

4.2.1 n even, n g 8

For any z ∈ C let I(z) := ( 0 z
−z 0 ) ∈ so(2)C. A Cartan subalgebra of so(2n) is

given by

t := {diag(I(³1), . . . , I(³n)) | ³k ∈ R, 1 f k f n}

and its complexification is given by

h := t ¹ C = {diag(I(z1), . . . , I(zn)) | zk ∈ C, 1 f k f n}

By [Hel78, p. 186], the root system is given as follows: For 1 f k f n let ¿k ∈ h∗

defined by ¿k (diag (I (z1) , . . . , I (zn))) := i · zk. Now, consider the following matrices:

M++ :=




1 i

i −1



 ,M−− :=




1 −i

−i −1



 ,M+− =




1 −i

i 1



 ,M−+ =




1 i

−i 1



 (4.2.1)

For 1 f k < l f n let E++
kl ∈ so(2n)C be defined as the matrix with all entries

are zero except its submatrix induced by the indices 2k − 1, 2k, 2l − 1 and 2l is of type



0 M++

−MT
++ 0





Let E−−
kl , E

+−
kl , E

−+
kl ∈ so(2n)C be defined similarly. For z1 . . . , zn ∈ C and H :=

diag (I(z1), . . . , I (zn)), we have that:

[H,E++
kl ] = i(zk + zl) · E++

kl = (¿k + ¿l)(E
++
kl )

[H,E−−
kl ] = −i(zk + zl) · E−

kl = −(¿k + ¿l)(E
−−
kl )

[H,E+−
kl ] = i(zk − zl) · E+−

kl = (¿k − ¿l)(E
+−
kl )

H,E−+
kl ] = −i(zk − zl) · E−+

kl = −(¿k − ¿l)(E
−+
kl )

Hence, for 1 f k < l f n, ±¿k ± ¿l, are roots and since so(2n)C = h ·
⊕

k<l

spanC{E++
kl , E

−−
kl , E

+−
kl , E

−+
kl }, all roots are given this way and this is the root space

decomposition for so(2n)C. Again, for indices i, j, k, l ∈ {1, . . . , n} with i ≠ j, k ̸= l,

{i, j} ≠ {k, l}, the following equivalences hold:
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³ := (¿i − ¿j) + (¿k − ¿l) is a root ô i = l or j = k

´ := (¿i + ¿j) − (¿k + ¿l) is a root ô {i, j} ∩ {k, l} ≠ ∅

µ := (¿i − ¿j) + (¿k + ¿l) is a root ô j ∈ {k, l}

¶ := (¿i − ¿j) − (¿k + ¿l) is a root ô i ∈ {k, l}

(4.2.2)

which can be written as: if the left-hand side of 4.2.2 is a root, then ³, ´ ∈ {± (¿p − ¿q)}

and µ, ¶ ∈ {± (¿p + ¿q)}, where p < q, {p, q} = {i, j}△{k, l}. Neither (¿i + ¿j) + (¿k + ¿l)

nor (¿i + ¿j) ± (¿i + ¿j) is a root. It follows from [Hel78, p. 464] that a set of simple roots

is given by

{¿i − ¿i+1 | 1 f i f n− 1} ∪ {¿n−1 + ¿n}

with Dynkin diagram Dn and a set of positive roots is given by

{¿k ± ¿l | 1 f k < l f n}

Then, for k < l, the root spaces for so(2n) are given by

m+
kl := m+

lk := m+
{k,l} := m¿k+¿l

:= spanC{E++
kl , E

−−
kl } ∩ so(2n)

and

m−
kl := m−

lk := m−
{k,l} := m¿k−¿l

:= spanC{E+−
kl , E

−+
kl } ∩ so(2n)

So

m+
kl

∼=











³ ´
´ −³

−³ −´
−´ ³





∣
∣
∣
∣
∣
∣

³, ´ ∈ R






and m−

kl
∼=











³ −´
´ ³

−³ −´
´ −³





∣
∣
∣
∣
∣
∣

³, ´ ∈ R







and the root space decomposition of so(2n) is given by

so(2n) = t ·
⊕

k<l

(

m+
kl · m−

kl

)

Remark 4.2.1. The results above are also true for SO(4) and SO(6) too.

To determine the T -subalgebras of so(2n), the following lemmas are needed.

Lemma 4.2.2. [Rau16, p. 41] Let i, j, k, l ∈ {1, . . . , n}, i < j, k < l, (i, j) ̸= (k, l). Then,

for any signs ϵij, ϵkl ∈ {−,+}, it follows

[m
ϵij

ij ,m
ϵkl

kl ] =







m−
pq, ϵij = ϵkl, {i, j}△{k, l} = {p, q}

m+
pq, ϵij ̸= ϵkl, {i, j}△{k, l} = {p, q}

{0}, {i, j} ∩ {k, l} = ∅

(4.2.3)
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Proof. From 4.2.2 and 3.1.8, if {i, j}△{k, l} = ∅, then [m
ϵij

ij ,m
ϵkl

kl ] = {0} and, if

{i, j}△{k, l} = {p, q}, then [m+
ij,m

+
kl] = m−

pq, [m−
ij,m

−
kl] = m−

pq and [m+
ij,m

−
kl] = m+

pq.

Definition 4.2.3. Observing in the last Lemma that the bracket of roots spaces with the

same signal results in 0 or a root space with signal − and if the signals are different

the bracket results in 0 or a root space with signal +, we can simplify 4.2.3 defining a

multiplication on {−,+} by − ◦ − := + ◦ + := − and − ◦ + := + ◦ − := +, then

({−,+}, ◦) ∼= Z2. Now 4.2.3 can be rewritten as

[m
ϵij

ij ,m
ϵkl

kl ] =







mϵij◦ϵkl
pq , {i, j}△{k, l} = {p, q}

{0}, {i, j} ∩ {k, l} = ∅
(4.2.4)

Lemma 4.2.4. [Rau16, p. 42] Let r ∈ {2, . . . , n} and I = {i1 < . . . < ir} ¦ {1, . . . , n}.

For any (r − 1)-tuple (ϵ1, . . . , ϵr−1) ∈ {−,+}r−1 of signs, there exist unique signs ϵpq ∈

{−,+} for 1 f p < q f r, satisfying:

1. ϵp,p+1 = ϵp for all 1 f p f r − 1.

2. The subspace

u(r)
ϵ1,...,ϵr−1

I := t ·
⊕

1fp<qfr

m
ϵpq

ipiq
(4.2.5)

is a T -subalgebra.

Proof. If r = 2, we just have one sign to define, so let ϵ1,2 := ϵ1, then t · mϵ1

i1i2

∼=

u(2) · so(2)n−1 is a subalgebra.

First, we will prove that the signs ϵp1 Let r g 3 and let 1 f k < l f r such that

l g l+ 2. Suppose that we are given signs ϵpq for 1 f p < q f n that satisfy the conditions

1 and 2, then 4.2.4 yields

mϵkl

ik,il
= [m

ϵk,k+1

ik,ik+1
,m

ϵk+1

ik+1,il
] = m

ϵk,k+1◦ϵk+1,l

ik,il

which implies

ϵkl = ϵk,k+1 ◦ ϵk+1,l = ϵk ◦ ϵk+1,l.

Iterating the result above l − k times, we obtain

ϵkl = ϵk ◦ . . . ◦ ϵl−1 (4.2.6)

Hence, the sign ϵkl is unique.

Now, we will prove the existence satisfying the conditions 1 and 2. For 1 f p <

q f n, define ϵkl as above, then ϵk,k+1 = ϵk. The only thing we still need to prove is that

u(r)
ϵ1,...,ϵr−1

I is a Lie subalgebra of so(2n). For this purpose, let i, j, k, l ∈ I, i < j, k < l,

(i, j) ̸= (k, l). By 4.2.4, it just remains to prove ϵij ◦ ϵkl = ϵpq, if {i, j}△{k, l} = {p < q}.
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Since ϵij ◦ ϵkl = ϵkl ◦ ϵij, we assume i < k or i = k and j < l. We have to verify in three

situations:

j = k : p = i, q = l ⇒ ϵij ◦ ϵkl = (ϵp ◦ . . . ◦ ϵj−1) ◦ (ϵj ◦ . . . ◦ ϵq−1) = ϵpq.

j = l : p = i, q = k ⇒ ϵij ◦ ϵkl = (ϵp ◦ . . . ◦ ϵq−1 ◦ ϵq ◦ . . . ◦ ϵj−1) ◦ (ϵq ◦ . . . ◦ ϵj−1) = ϵpq

since ϵ−1
s = ϵs for 1 f s f n, so the factors ϵq, . . . , ϵj−1 cancel out. Similarly,

i = k : p = j, q = l ⇒ ϵij ◦ ϵkl = ϵi ◦ . . . ◦ ϵp−1 ◦ ϵi ◦ . . . ◦ ϵq−1 = ϵpq

since the factors ϵi, . . . , ϵp−1 cancel out. Hence, u(r)
ϵ1,...,ϵr−1

I is a subalgebra.

The T -subalgebras of so(2n) are now given by the following proposition.

Proposition 4.2.5. [Rau16, p. 43] Let t as before. Moreover, let r ∈ {1, . . . , n −

1}, I1∪̇ . . . ∪̇Ir = {1, . . . , n} be a partition of the index set {1, . . . , n} and ni := |Ii| , 1 f

i f r. Then the T -subalgebras of so(2n) are precisely given by

u (n1)
ϵ1

1
...ϵ1

n1−1

I1
· . . .· u (nl)

ϵl
1
...ϵl

nl−1

Il
· so (2nl+1)Il+1

· . . .· so (2nr)Ir

:= t ·
⊕

i,j∈I1

i<j

m
ϵ1

ij

ij · . . .·
⊕

i,j∈Il
i<j

m
ϵl

ij

ij ·
⊕

i,j∈Il+1

i<j

(

m+
ij · m−

ij

)

· . . .·
⊕

i,j∈Ir

i<j

(

m+
ij · m−

ij

) (4.2.7)

for some given l ∈ {0, . . . , r} and ϵk
1, . . . , ϵ

k
nk−1 ∈ {−,+} for 1 f k f l. The signs

ϵk
ij ∈ {−,+}, i < j, i, j ∈ Ik are given as in 4.2.6. For ns = 1, this notation means that

u(1)Is
= so(2)Is

= R is contained in t. Moreover, ns g 2 for at least one 1 f s f r and if

l = 0, then r g 2.

Proof. For s ∈ {1, . . . , r}, let

mIs
:=

⊕

i,j∈Is,i<j

m
ϵs

ij

ij for s f l and mIs
:=

⊕

i,j∈Is,i<j

(

m+
ij · m−

ij

)

for s > l

By Lemma 4.2.4, [mIs
,mIs

] ¦ t · mIs
for s f l. Furthermore, from 4.2.3, it follows

[mIs
,mIs

] ¦ t · mIs
for s > l and [mIs

,mIs′
] = 0 for s ≠ s′. Hence, 4.2.7 defines a

T -subalgebra.

Now, let k be any T -subalgebra of so(2n). As in the proof of Proposition 4.1.1,

let Γ be a graph with vertex set {1, . . . , n} where i and j are connected by an edge if and

only m+
ij ¦ k or m−

ij ¦ k. By 4.2.3, if i and j are connected and if j and k are connected,

then so are i and k. Thus, if I1, . . . , Ir denote the connected components of Γ, then

k = t ·
r⊕

s=1
nsg2

(
⊕

i,j∈Is

i<j

kij)

where kij ∈
{

m+
ij,m

−
ij,m

+
ij · m−

ij

}

. Now, fix some s ∈ {1, . . . , r} such that ns g 2. If

kij ∈
{

m+
ij,m

−
ij

}

for all i < j, i, j ∈ Is, then by the uniqueness statement of Lemma 4.2.4,
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t·
⊕

i,j∈Is,i<j

kij must be of type u(ns)
ϵ1

1
,...,ϵs

ns−1

Is
. If kij = m+

ij ·m−
ij for any i < j, i, j ∈ Is, then

kpq = m+
pq · m−

pqfor all p < q, p, q ∈ Is. In fact, if i ̸= p, then by 4.2.3,

m+
ip · m−

ip = [m+
ij · m−

ij, kjp] ¦ k

and

m+
pq · m−

pq = [m+
ip · m−

ip, kiq] ¦ k

and similarly m+
pq ·m−

pq ¦ k for the case j ̸= p. This proves that k is of type 4.2.7. Moreover,

ns g 2 for at least one s, since k ̸= t and if l = 0, then r g 2 since k ̸= so(2n).

Using the embedding

gl(m,C) ↪→ gl(2m,R);








x1,1 + i · y1,1 · · · x1,m + i · y1,m

...
...

xm,1 + i · ym,1 · · · xm,m + i · ym,m








7→














x1,1 −y1,1 · · · x1,m −y1,m

y1,1 x1,1 · · · y1,m x1,m

...
...

xm,1 −ym,1 . . . xm,m −ym,m

ym,1 xm,1 · · · ym,m xm,m














for m ∈ N∗ with xk,l, yk,l ∈ R, 1 f k, l f m, u(m) can be considered as a subalgebra of

so(2m). Moreover, k = u (n1)
ϵ1

1
...ϵ1

n1−1

I1
· . . .· u (nl)

ϵl
1
...ϵl

nl−1

Il
· so (2nl+1)Il+1

· . . .· so (2nr)Ir

is isomorphic to the subalgebra of block matrices of type








A1 0
. . .

0 Ar







, Ai ∈ u (ni) , i f l, Ai ∈ so (2ni) , i > l (4.2.8)

More precisely, for Ã ∈ Sn let PÃ ∈ SO(2n) be the permutation matrix

acting on the 2 × 2-blocks in a canonical way. After conjugation with some PÃ, one

may assume Ii =







i−1∑

j=0

nj + 1, . . . ,
i∑

j=0

nj






for n0 := 0, 1 f i f r. Moreover, if A :=

diag








−1 0

0 1



 , I2, . . . , I2



 ∈ O(2n), then the automorphism Ad(A) maps m±
1,2to m∓

1,2

and leaves m±
p,p+1invariant for all p g 2. Combining A with appropriate cyclic permutations,

it follows that u (ni)
ϵi

1
...ϵi

ni−1 is Aut(SO (2ni))-conjugate to u (ni)
−...−. Hence, k is of type

4.2.8 up to automorphism.

With t =: ·n
i=1so(2){i} or t =: ·n

i=1u(1){i}, the contractility or not-contractility

of ∆G/H for G = SO(2n) and H < G connected of maximal rank is given by the following

theorem.
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Theorem 4.2.6. [Rau16, p. 44] Let h = u(n1)
ϵ1

1
...ϵ1

n1−1

I1
· . . .·u(nl)

ϵl
1
...ϵl

nl−1

Il
·so(2nl+1)Il+1

·

. . .·so(2nr)Ir
as in Proposition 4.2.5. If ns = 1 for some s ∈ {1, . . . , r}, the corresponding

summand will be written as so(2)Is
, whenever there exists a summand of type so(2ns′)Is′

,

for some ns′ g 2. Otherwise, it will be written as u(1)Is
. Using this notation, the following

statements hold:

1. If l = 0, i.e. h ∼= ·r
i=1so (2ni), then H̃r−3

(

∆G/H ,Q
)

̸= 0.

2. If l = r, i.e. h ∼= ·r
i=1u(ni), then H̃r−2(∆G/H ,Q) ̸= 0.

3. If l /∈ {0, r}, then ∆G/H is contractible.

Proof. Let l = 0. If r = 2, then h is maximal, like in the beginning of the proof of Therema

4.1.2. Hence, ∆G/H = ∅ which implies H̃−1

(

∆G/H ,Q
)

̸= 0.

Let r g 3. Using the notation of the proof of Theorem 4.2.6, let

kq
p := so(2n1,...,r−2−p,r−1−p+q)I1,...,r−2−p,r−1−p+q ·

r⊕

l=r−1−p
l ̸=r−1−p+q

so(2nl)Il

for p ∈ {0, . . . , r − 3}, q ∈ {0, . . . , p+ 1}. Without loss of generality, suppose that n1 g 2,

so
(

k0
0 > . . . > kr−3

)

is again a maximal chain of H-subalgebras and for q ̸= 0, it holds

kq
p ̸= k0

p

k
q−1
p−1 > kq

p > k0
p+1 with k0

−1 := g, k0
r−2 := h and

〈

k1
p, . . . , k

p+1
p

〉

= so (2n1,...,r−2−p,r−p,...,r)I1,...,r−2−p,r−p,...,r
· so (2nr−1−p)Ir−1−p

< g

Hence, H̃r−3

(

∆G/H ,Q
)

̸= 0 by Theorem 2.4.13.

Now, let l = r, i.e. h = u (n1)
ϵ1

1
...ϵ1

n1−1

I1
· . . .·u (nr)

ϵr
1
...nr

nr−1

Ir
. As mentioned above,

we may assume Ii = {
i−1∑

l=1

nl+1, . . . ,
i∑

l=1

nl} with n0 := 0 and ϵi
j = − for all i ∈ {1, . . . , r}, j ∈

{1, . . . , ni − 1}. If r = 1, then h = u(n)−...− is maximal and H̃−1(∆G/H ,Q) ̸= 0. So, let

r g 2. For p ∈ {0, . . . , r − 2} let

kq
p := u(n1,...,r−p−1,r−p+q)

−...−
I1,...,r−p−1,r−p+q ·

r⊕

l=r−p
l ̸=r−p+q

u(nl)
−...−
Il

for q ∈ {0, . . . , p} and

kp+1
p := u(n1,...,r−p−1,r)

−...−+
I1,...,r−p−1,r ·

r−1⊕

l=r−p

u(nl)
−...−
Il

i.e. kp+1
p is generated by u (n1,...,r−p−1)

−...−
I1,...,r−p−1 and u (nr)

−...−
Ir

, adding the root space m+
1,n.

Moreover, k0
p = u (n1,...,r−p)−...

I1,...,r−p, so
(

k0
0 > . . . > k0

r−2

)

is a maximal chain ofH-subalgebras

and with k0
−1 := g and k0

r−1 := h it follows for q ̸= 0 :
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kq
p ̸= k0

p

k
q−1
p−1 > kq

p > k0
p+1

Moreover, for p g 1 it follows

ïk1
p, . . . , k

p+1
p ð = ïu(n1,...,r̂−p,...,r)

−

I−...−p
1,..., ,...,r

· u(nr−p)−...−
Ir−p

, kp+1
p ð

= so
(

2n1,...,r̂−p,...,r

)

I1,...,,r̂−p,...,r
· u (nr−p)−...−

Ir−p
< g

Where a hat denotes the omission of an element.

Thus, H̃r−2(∆G/H ,Q) ̸= 0 by Theorem 2.4.13.

Now, let l /∈ {0, r} and assume h = u(n1)−...−
I1

· . . .·u(nl)
−...−
Il

· so(2nl+1)Il+1
·

. . .· so(2nr)Ir
. Consider the H-subalgebra

k := so (2n1)I1
· . . .· so (2nl)Il

· so (2nl+1)Il+1
· . . .· so (2nr)Ir

In fact, k ̸= h, since ni g 2 for at least one i f l. To show that ∆G/H is

contractible, it suffices to show, by Theorem 2.4.9, that that there exists no H-subalgebra

l with l ∩ k = h and ïl, kð = g. So, let l be any H-subalgebra. Since ni g 2 for at least one

i > l, l ̸= u(n). Hence,

l = u (m1)
ϵ1

1
...ϵ1

m1−1

J1
· . . .· u (ml′)

ϵl
1
...ϵl′

m
l′

−1

Jl′
· so (2ml′+1)Jl′+1

· . . .· so (2mr′)Jr′

for some r′ g 2. Moreover, for all i ∈ {1, . . . , r} there exists some j ∈ {1, . . . , r′} with

Ii ¦ Jj. In particular,

ïk, lð f so (2m1)J1
· . . .· so (2mr′)Jr′

< g

Hence, ∆G/H is contractible by Theorem 2.4.9.

Corollary 4.2.7. If H is a connected Lie subgroup of maximal rank of SO(n), n even,

n g 8. Then, following notation from 4.2.5,

1. If H ∼=
r∏

i=1

SO(2ni), then SO(n)/H admits a SO(n)-invariant Einstein metric

2. If H ∼=
r∏

i=1

U(ni), then SO(n)/H admits a SO(n)-invariant Einstein metric.

Proof. It follows from 4.1.2, 2.3.2 and 1.3.14.

Observe that the case for l /∈ {0, r} is inconclusive by 2.3.2.
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Example 4.2.8. As in the computations of example 4.1.4, we will ilustrate some subalge-

bras used in the proof of Theorem 4.2.6 for the case n = 4, that is, we are in so(8), with

r = 3, I1 = {1, 2}, I2 = {3}, I3 = {4} and

h = u(2)−
I1

· u(1)I2
· u(1)I3

= t · m−
12 =

=















0 ³1 a −b
−³1 0 b a
−a −b 0 ³2

b −a −³ 0
0 ³3

−³3 0
0 ³4

−³4 0









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

³i, a, b ∈ R







k0
1 = u(3)−−−

I1,2
· u(1)I3

= t · m−
12 · m−

13 · m−
23 =

=
















0 ³1 a −b c −d
−³1 0 b a d c
−a −b 0 ³2 e −f
b −a −³ 0 f e

−c −d −e −f 0 ³3

d −c f −e −³3 0
0 ³4

−³4 0










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

³i, a, . . . , f ∈ R







k2
1 = u(3)−+

I1,3
· u(1)I2

= t · m−
12 · m+

14 · m+
24 =

=
















0 ³1 a −b c d
−³1 0 b a d −c
−a −b 0 ³2 e f
b −a −³ 0 f −e

0 ³3

−³3 0
−c −d −e −f 0 ³4

−d c −f e −³4 0










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

³i, a, . . . , f ∈ R







4.2.2 n odd, n g 3

First, consider so(3). A maximal abelian subalgebra is given by

t =














0 ³ 0

−³ 0 0

0 0 0








∣
∣
∣
∣
∣
∣
∣
∣
∣

³ ∈ R







Hence, so(3) has rank 1, i.e., only one simple root, then postive root. It follows

from Lemma 3.1.8, that there exist no T -subalgebras of so(3), since adding the one root

space generates so(3). Follows that ∆SO(3)/T = ∅, so contractible and SO(3)/H admits a

SO(3)-invariant Einstein metric by 2.3.2.

So, assume n g 5, i.e. SO(n) = SO(2m + 1) for some m g 2. Subalgebras

of so(2m), so(2m)C can be considered subalgebras of so(2m + 1), so(2m + 1)C by the

canonical embedding X ∈ so(2m) 7→ ( X
0 ) ∈ so(2m+ 1). Let t be the Cartan subalgebra

of so(2m) as in 4.2.6. By [Hel78, p. 187], t is also a Cartan subalgebra of so(2m+ 1) and

h = t ¹ C is a Cartan subalgebra of so(2m + 1)C. For 1 f k < l f m let ±¿k ± ¿l be

as before. These are roots with root space spanC{E++
kl }, spanC{E−−

kl }, spanC{E+−
kl } and
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spanC{E−+
kl } ¦ so(2m)C ¦ so(2m+1)C. Furthermore, for 1 f k f m, let E+

k ∈ so(2m+1)C

be the matrix whose entries are all zero but its submatrix induced by the indices 2k− 1, 2k

and 2m+ 1 is of type







0 0 1

0 0 i

−1 −i 0








Analogously, let E−
k ∈ so(2n+ 1)C be the matrix whose entries are all zero but

its submatrix induced by the indices 2k − 1, 2k and 2n+ 1 is of type







0 0 1

0 0 −i

−1 i 0








It follows for z1, . . . , zn ∈ C, H = diag (I (z1) , . . . , I (zn) , 0) ∈ h :

[H,E+
k ] = izk · E+

k

[H,E−
k ] = −izk · E−

k

Hence, ¿k and −¿k are roots with root spaces spanC{E+
k }, spanC{E−

k }, respec-

tively.

The root space decomposition is given by

so(2n+ 1)C = h ·
⊕

1fk<lfn

spanC{E++
kl , E

−−
kl , E

+−
kl , E

−+
kl } ·

⊕

1fkfn

spanC{E+
k , E

−
k }

and all roots are given by ±¿k and ±¿k ±¿l, 1 f k < l f n. In addition to 4.2.2, for indices

i, k, l ∈ {1, . . . , n}, k ̸= l, the following equivalences hold:

ϵ := ¿i + (¿k − ¿l) is a root ô i = l

· := −¿i + (¿k − ¿l) is a root ô i = k

¸ := ±¿i ∓ (¿k + ¿l) is a root ô i ∈ {k, l}

(4.2.9)

A set of simple roots is given by

{¿i − ¿i+1 | 1 f i f n− 1} ∪ {¿n}

with Dynkin diagram Bn and the corresponding set of positive roots is given by

{¿k ± ¿l | 1 f k < l f n} ∪ {¿k | 1 f k f n}

see [Hel78, p. 462]. For 1 f k < l f n let m+
kl = m¿k+¿l

,m−
kl = m¿k−¿l

as above and

mk := m¿k
:= spanC{E+

k , E
−
k } ∩ so(2n+ 1) ∼=














0 0 ³

0 0 ´

−³ −´ 0








∣
∣
∣
∣
∣
∣
∣
∣
∣

³, ´ ∈ R






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And the root space decomposition of so(2n+ 1) is given by

so(2n+ 1) = h ·
⊕

1fk<lfn

(m+
kl · m−

kl) ·
⊕

1fkfn

mk

Thus, the T -subalgebras of so(2n+ 1) are given by the following proposition.

Proposition 4.2.9. [Rau16, p. 47] With the notation as above, all T -subalgebras k of

so(2n+ 1) are precisely given by the following three cases:

1. k = so(2n).

2. k < so(2n) and k given as in 4.2.6.

3. k =
l⊕

i=1

u (ni)
ϵi

1
...ϵi

ni−1

Ii
·

r−1⊕

j=l+1

so (2nj)Ij
· so (2nr + 1)Ir

:= k′ ·
⊕

k∈Ir

mk, where k′ =

l⊕

i=1

u (ni)
ϵi

1
...ϵi

ni−1

Ii
·

r⊕

j=l+1

so (2nj)Ij
is equal to t or a T -subalgebra of so(2n) as in 4.2.6

with 0 f l < r f n.

Proof. Every subalgebra of so(2n) is also a subalgebra of so(2n + 1). Hence, k like in 1

and 2 are T -subalgebras in so(2n + 1). Now, let k = k′ ·
⊕

k∈Ir

mk as in 3 . For i, j, k ∈

{1, . . . , n}, i < j, 3.1.8 and 4.2.9 imply

[mk,m
±
ij] =







mi, k = j

mj, k = i

{0}, k /∈ {i, j}

(4.2.10)

and furthermore,

[mi,mj] = m+
ij · m−

ij (4.2.11)

Let mIs
be defined as in the proof of Proposition 4.2.5 for 1 f s f r. For

all k, l ∈ Ir, k < l, it follows [mk,ml] ¦ mIr
, [mk,mk] ¦ t, [mk,mIs

] = 0 for s < r and

[mk,mIr
] ¦

⊕

i∈Ir

mi. Thus, 3 defines a subalgebra of so(2n+ 1).

Now, let k be any T -subalgebra of so(2n + 1). We may assume that mk ¦ k

for at least one k, since otherwise k = so(2n) or k would be a T -subalgebra of so(2n)

and thus, it would be of type 4.2.6. By 4.2.10 and 4.2.11, [mk, so(2n)] = so(2n+ 1) and

[mk, u(n)ϵ1,...,ϵn−1 ] = so(2n + 1) for any 1 f k f n and ϵ1, . . . , ϵn−1 ∈ {−,+}. Thus, for

k′ := k ∩ so(2n), it follows k′ = t or k′ =
l⊕

i=1

u (ni)
ϵi

1
...ϵi

ni−1

Ii
·

r⊕

j=l+1

so (2nj)Ij
as in 4.2.6 for

some 0 f l f r, r g 2. Now, let

I := {k ∈ {1, . . . , n} | mk ¦ k}
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By 4.2.11, m+
ij · m−

ij ¦ k′ for all i, j ∈ I, i < j. Hence, if k′ = t, then I = {k}

for some k ∈ {1, . . . , n} and k = t · mk is of type 3 . Now, assume k′ ̸= t. By 4.2.11, there

is an s > l such that I ¦ Is, so assume I ¦ Ir. But for any i ∈ I, j ∈ Ir, i ≠ j, it follows

from 4.2.10 that k §
[

mi,m
±
ij

]

= mj. Hence, I = Ir and k is of type 3.

Let k =
l⊕

i=1

u (ni)
ϵi

1
...ϵi

ni−1 ·
r−1⊕

j=l+1

·so (2nj)Ij

(

·so (2nr)Ir

)

< so(2n+1) be any T -

subalgebra of so(2n+1). Similarly to the case g = so(2n), after conjugation with appropriate

matrices of type PÃ ¦ SO(2n) ¦ SO(2n + 1), Ã ∈ Sn, and diag (( −1 0
0 1 ), I2, . . . , I2,−1) ∈

SO(2n+ 1), we may assume that k consists of all block matrices of type











A1 0
. . .

Ar−1

0











or











A1 0
. . .

Ar

B











with Ai ∈ u (ni) , i f l, Ai ∈ so (2ni) , i > l and B ∈ so (2nr + 1).

The contractility or not-contractility of ∆G/H for G = SO(2n+ 1) and H < G

connected of maximal rank is now given by the following theorem.

Theorem 4.2.10. [Rau16, p. 49] With the notation as above, let h = so(2n) or h =
l⊕

i=1

u (ni)
εi

1
...ϵi

ni−1

Ii
·

r−1⊕

j=l+1

so (2nj)Ij
· so (2nr + 1)Ir

or h = t. Here, nr = 0, Ir = ∅ means

that h f so(2n).

As above, if ns = 1 for some s ∈ {1, . . . , r}, the corresponding summand will be

written as so(2)Is
, whenever there exists a summand of type so (2ns′)Is′

for some ns′ g 2

or a summand of type so (2nr + 1)Ir
with nr g 1. Otherwise, it will be written as u(1)Is

.

Using this notation, the following statements hold:

1. If h = so(2n), then ∆G/H = ∅.

2. If l = 0, then H̃r−3

(

∆G/H ,Q
)

̸= 0.

3. If h = t, then H̃n−2

(

∆G/H ,Q
)

̸= 0.

4. If l ̸= 0 and h ̸= t, then ∆G/H is contractible.

Proof. h = so(2n) is maximal in so(2n+ 1), hence ∆SO(2n+1)/SO(2n) = ∅ as in the proof of

4.1.2.

Now, assume l = 0. Under this assumption, r = 2 implies that h is of type

so (2n1)I1
·so (2n2 + 1)I2

. Hence, h is maximal, i.e. ∆G/H = ∅ and H̃−1

(

∆G/H ,Q
)

≠ 0. So,
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assume r g 3. With the notation as in Theorem 4.2.5 let p ∈ {0, . . . , r−3}, q ∈ {0, . . . , p+1}

and

kq
p := so (2n1,...,r−3−p,r−2−p+q,r + 1)I1,...,r−3−p,r−2−p+q,r

·
r−1⊕

l=r−2−p
l ̸=r−2−p+q

so (2nl)Il
(4.2.12)

This yields a maximal chain of H-subalgebras (k0
0 > . . . > k0

r−3 ). Furthermore,

for q ̸= 0, k0
−1 := g and k0

r−2 := h it follows

kq
p ̸= k0

p

k
q−1
p−1 > kq

p > k0
p+1

and for p g 1 :

ïk1
p, . . . , k

p+1
p ð = so (2n1,...,r−3−p,r−1−p,...,r + 1)I1,...,r−3−p,r−1−p,...,r · so (2nr−2−p)Ir−2−p

< g

So, H̃r−3(∆G/H ,Q) ̸= 0 by Theorem 2.4.13.

Let h = t. Then h =
r−1⊕

j=1

so (2nj)Ij
· so (2nr + 1)Ir

with r = n + 1, Ii =

{i}, ni = 1 for 1 f i f n and Ir = ∅, nr = 0. As above, 4.2.12 yields H-subalgebras

kq
p

∼= so(2(n− 1 − p) + 1) · so(2)p+1 and H̃n−2

(

∆G/H ,Q
)

̸= 0 by Theorem 2.4.13.

Now, let l ≠ 0. If h ∼= u(n), then ∆G/H = {so(2n)} is just a point. So, let h ª

u(n). After conjugation one may assume h =
l⊕

i=1

u(ni)
−···− ·

r−1⊕

j=1

so (2nj)Ij
· so (2nr + 1)Ir

,

where nr = 0, Ir = ∅ is possible. Since h ≠ t, there exists at least one i f l with ni g 2. So,

k :=
r−1⊕

i=1

so (2ni)Ii
· so (2nr + 1)Ir

is an H-subalgebra. As in the proof of Theorem 4.2.5, any H-subalgebra is of type

l =
l′⊕

i=1

u (mi)
ϵi

1
...ϵi

mi−1

Ji
·

r′−1⊕

i=l′+1

so (2mi)Ji
· so (2mr′)Jr′

for some r′ g 2 and for all i ∈ {1, . . . , r} there is a j ∈ {1, . . . , r′} with Ii ¦ Jj. Hence,

ïk, lð f
r′−1⊕

i=1

so (2mi)Ji
· so (2mr′ + 1)Jr′

< so(2n+ 1)

Thus, there exits no H-subalgebra in PG/H such together with k generate

so(2n+ 1) and ∆G/H is contractible by Theorem 2.4.9.

Corollary 4.2.11. Following the notation from last theorem, if H is a connected Lie

subgroup of maximal rank of SO(n), n odd, n g 3. Then
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1. If H ∼= SO(2n), then SO(n)/H admits a SO(n)-invariant Einstein metric

2. If H ∼=
r−1∏

i=1

SO(2ni)×SO(2nr +1), then SO(n)/H admits a SO(n)-invariant Einstein

metric

3. If H ∼=
r∏

i=1

SO(1), a maximal torus of SO(n), then SO(n)/H admits a SO(n)-

invariant Einstein metric.

Proof. It follows from 4.1.2, 2.3.2 and 1.3.14.

Observe that, for the case l ≠ 0 and h ≠ t, we have that 2.3.2 inconclusive.

The examples from 4.2.8 also apply in this case.

4.3 Sp(n), n g 1

Let G = Sp(n) = {A ∈ GL(2n,C) | ATJnA = Jn and AT = A−1} , with Jn :=
(

0 IdCn

−IdCn 0

)

.

Its lie algebra is given by

sp(n) =










A −B

B A



 ∈ gl(2n,C)

∣
∣
∣
∣
∣
∣

A,B ∈ gl(n,C), AT = −A and B = BT







and its complexification is

sp(n)C =










U W

V −UT



 ∈ gl(2n,C)

∣
∣
∣
∣
∣
∣

U, V,W ∈ gl(n,C), V = V T and W = W T







A Cartan subalgebra of sp(n) is given by

t :=










A 0

0 −A





∣
∣
∣
∣
∣
∣

A = diag (i³1, . . . , i³n) , ³i ∈ R, 1 f i f n






(4.3.1)

and a Cartan subalgebra of sp(n)C is given by

h := t ¹ C =










A 0

0 −A





∣
∣
∣
∣
∣
∣

A = diag (z1, . . . , zn) , zi ∈ C, 1 f i f n







For k ∈ {1, . . . , n} and H := diag (z1, . . . , zn,−z1, . . . ,−zn)) ∈ h let ¿k ∈ h∗ be

defined by ¿k(H) := zk. Moreover, for 1 f k, l f n, let Ekl the matrices of the canonical

basis of gl(2n,C). It follows:

[H,Ek,n+l + El,n+k] = (zk + zl) · Ek,n+l + El,n+k, k f l

[H,En+k,l + En+l,k] = − (zk + zl) · En+k,l + En+l,k, k f l

[H,Ekl − En+l,n+k] = (zk − zl) · Ekl − En+l,n+k, k ̸= l.
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and

sp(n)C = h ·
⊕

kfl

spanC{Ek,n+l + El,n+k} ·
⊕

kfl

spanC{En+k,l + En+l,k}·

·
⊕

k ̸=l

spanC{Ekl − En+l,n+k}

is the root space decomposition and the roots are given by ±¿k ± ¿l, 1 f k < l f n

and ±2¿k, 1 f k f n. For indices i, j, k, l ∈ {1, . . . , n}, i ̸= j, k ≠ l, {i, j} ̸= {k, l}, the

equivalences in 4.2.2 hold and, in addition, we have:

ϵ := ± ((¿i + ¿j) − 2¿k) is a root ô k ∈ {i, j}

· := (¿i − ¿j) − 2¿k is a root ô k = i

¸ := (¿i − ¿j) + 2¿k is a root ô k = j

(4.3.2)

Moreover, (¿i − ¿j) ± (¿i + ¿j) is always a root. It follows that a set of simple

roots is given by

{¿i − ¿i+1 | 1 f i f n− 1} ∪ {2¿n}

with Dynkin diagram Cn and a set of positive roots is given by

{¿k ± ¿l | 1 f k < l f n} ∪ {2¿k | 1 f k f n}

see [Hel78, p. 463].

Furthermore, for k < l, the root spaces for sp(n) are given by

m+
kl := m+

lk := m+
{k,l} := m¿k+¿l

= spanC{Ek,n+l + El,n+k, En+k,l + En+l,k} ∩ sp(n)

m−
kl := m−

lk := m−
{k,l} := m¿k−¿l

= spanC{Ekl − En+l,n+k, Elk − En+k,n+l} ∩ sp(n)

mk := m2¿k
= spanC{Ek,n+k, En+k,k} ∩ sp(n)

In other words,

m+
kl

∼=
{( −z̄

−z̄
z

z

) ∣
∣
∣
∣ z ∈ C

}

,m−
kl

∼=
{( −z̄

z
−z

z̄

) ∣
∣
∣
∣ z ∈ C

}

and

mk
∼=










0 −z̄

z 0





∣
∣
∣
∣
∣
∣

z ∈ C







And the decomposition of root space for sp(n) is

sp(n) = t ·
⊕

kfl

(m+
kl · m−

kl) ·
⊕

kfl

mk

Since 4.2.2 holds for roots of sp(n), Lemma 4.2.2 and Lemma 4.2.4 also hold

for subalgebras of sp(n), i.e. u(r)
ϵ1,...,ϵr−1

I defined as in 4.2.5 is a T -subalgebra of sp(n). It

then follows:
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Proposition 4.3.1. [Rau16, p. 52] Let t be as in 4.3.1. Furthermore, let r ∈ {1, . . . , n},

I1∪̇ . . . ∪̇Ir = {1, . . . , n} be a partition of the index set {1, . . . , n} and ni := |Ii| , 1 f i f r.

Then the T -subalgebras of sp(n) are precisely given by

u(n1)
ϵ1

1
...ϵ1

n1−1

I1
· . . .· u(nl)

ϵl
1
...ϵl

n1−1

Il
· sp(nl+1)Il+1

· . . .· sp(nr)Ir
:=

:= t ·
⊕

i,j∈I1

i<j

m
ϵ1

ij

ij · . . .·
⊕

i,j∈Il
i<j

m
ϵl

ij

ij ·

·







⊕

i,j∈Il+1

i<j

(m+
ij · m−

ij) ·
⊕

i∈Il+1

mi







· . . .·







⊕

i,j∈Ir

i<j

(m+
ij · m−

ij) ·
⊕

i∈Ir

mi







(4.3.3)

for some given l ∈ {0, . . . , r} and ϵk
1, . . . , ϵ

k
nk−1 ∈ {−,+} for 1 f k f l. The signs

ϵk
ij ∈ {−,+}, i < j, i, j ∈ Ik are given as in (4.10). For s f l and ns = 1, this notation

means that u(1)Is
= R is contained in t. Moreover, if l = 0, then r g 2 and if l = r, then

ns g 2 for at least one s ∈ {1, . . . , r}.

Proof. Fix some s ∈ {1, . . . , r}. If s f l, then let mIs
:=

⊕

i,j∈Is,i<j

m
ϵsj

ij

ij , otherwise let

mIs
:=

⊕

i,j∈Is,i<j

(

m+
ij · m−

ij

)

·
⊕

i∈Is

mi. In particular, [mIs
,mIs

] ¦ t·mIs
for s f l by Lemma

4.2.4. Moreover, 4.3.2 and 3.1.5 imply

[m±
ij,mk] =







m∓
ij, k ∈ {i, j}

{0}, k /∈ {i, j}
(4.3.4)

and

[m−
ij,m

+
ij] = mi · mj (4.3.5)

Now, 4.2.3, 4.3.4, (4.3.5 and [mi,mj] = 0 for i ≠ j yield [mIs
,mIs

] ¦ t · mIs
for

s > l and
[

mIs
,mIss

]

= 0 for s ̸= s′. Thus, 4.3.3 is a T -subalgebra.

On the other hand, let k be any T -subalgebra. As above, let {1, . . . , n} be the

vertex set of a graph Γ where i and j are connected by an edge if and only if m+
ij ¦ k

or m−
ij ¦ k. Let I1, . . . , Ir be the connected components of Γ and let s ∈ {1, . . . , r}. If

ns = 1, Is = {i}, then k contains either sp(1)Is
or u(1)Is

depending on whether k contains

mi or not. So, assume ns g 2. By 4.2.4, if i and j are connected and if j and k are

connected then so are i and k. Thus, for all i, j ∈ Is, i < j, it is kij ¦ k for some

kij ∈
{

m−
ij,m

+
ij,m

−
ij · m+

ij

}

. If for all i, j ∈ Is, i < j, there exists a unique sign ϵij ∈ {−,+}

such that kij = m
ϵij

ij , then mi ª k for i ∈ Is by 4.3.4 and the uniqueness statement of

Lemma 4.2.4 implies that t · mIs
is of type u (ns)

ϵs
0

Is,...,ϵs
ns−1

. If kij = m+
ij · m−

ijfor some

i, j ∈ Is, i < j, then it follows as in the proof of Proposition 4.2.5 that kpq = m+
pq · m−

pqfor

all p, q ∈ Is, p < q. Moreover, by 4.3.5, mi ¦ k for all i ∈ Is.
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Thus, t·mIs
is of type sp (ns)Is

. It follows that k is of type 4.3.3. Furthermore,

if l = 0, then r g 2 since k ̸= sp(n) and if l = r, then ns g 2 for at least one s, since k ̸= t.

Again, for k =
l⊕

i=1

u (ni)
ϵi

1
,...,ϵi

ni−1

Ii
·

r⊕

i=l+1

sp (ni)Ii
one may assume that Ii =







i−1∑

j=0

nj + 1, . . . ,
i∑

j=0

nj






for 1 f i f r, n0 := 0, after conjugation with an appropriate

element of type




PÃ 0

0 PÃ



 ∈ Sp(n) for some Ã ∈ Sn. Moreover, for 1 f l f n let

Pl := En+l,l − El,n+l +
n∑

k=1
k ̸=l

Ekk + En+k,n+k ∈ Sp(n)

Then Ad(Pl)
(

m±
ij

)

= m∓
ij for l ∈ {i, j} and Ad(Pl)

(

m±
ij

)

= m±
ijfor l /∈ {i, j}.

Hence, after conjugation with appropriate elements of type Pl one may assume ϵi
j = − for

all 1 f i f l, 1 f j f ni.

Using the notation t = ·n
i=1u(1){i} again, the contractility or non-contractility

of ∆G/H for G = Sp(n) and H < G connected of maximal rank is now given by the

following theorem.

Theorem 4.3.2. [Rau16, p. 53] Let h =
l⊕

i=1

u (ni)
ϵi

1
,...,ϵi

ni−1

Ii
·

r⊕

i=l+1

sp (ni)Ii
be as in Propo-

sition 4.3.1. Then, the following statement holds:

1. If l = 0, then H̃r−3

(

∆G/H ,Q
)

̸= 0.

2. If l = r, then H̃r−2

(

∆G/H ,Q
)

̸= 0.

3. If l /∈ {0, r}, then ∆G/H is contractible.

Proof. First, let l = 0, i.e. 2 f r f n and h =
r⊕

i=1

sp (ni)Ii
. Then the claim follows as in

Theorem 4.1.2. In fact, every H-subalgebra is of type l = ·r′

j=1sp (mj)Ij
, hence l is already

determined by the partition J1∪̇ . . . ∪̇Jr′ = {1, . . . , n}. Thus, if h′ := s
(

·r
i=1u (ni)Ii

)

, then

PSp(n)/H −→ PSU(n)/H′ : ·r′

j=1sp (mj)Ij
7→ s

(

·r′

j=1u (mj)Ij

)

is an isomorphism of posets, i.e., a bijection between posets that preserves the or-

der. Therefore, ∆Sp(n)/H
∼= ∆SU(n)/H′ . By Theorem 4.1.2, it follows H̃r−3(∆G/H ,Q) ∼=

H̃r−3(∆SU(n)/H′ ,Q) ̸= 0.
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Now, let l = r. If r = 1, i.e. h ∼= u(n), then ∆G/H = ∅ and H̃−1

(

∆G/H ,Q
)

≠ 0.

So, let r g 2 and assume h = ·r
i=1u (ni)

−...−
Ii

. For p ∈ {0, . . . , r − 2} let

kq
p := u (n1,...,r−p−1,r−p+q)

−...−
I1,...,r−p−1,r−p+q ·

r⊕

l=r−p
l ̸=r−p+q

u (nl)
−...−
Il

, 0 f q f p, and

kp+1
p := u (n1,...,r−p−1,r)

−......+
I1,...,r−p−1,r ·

r−1⊕

l=r−p

u (nl)
−...−
Il

as in the proof of Theorem 4.2.6, so Again,
(

k0
0 > . . . > k0

r−2

)

is a maximal chain of

H-subalgebras and with k0
−1 := g and k0

r−1 := h it follows

kq
p ̸= k0

p

k
q−1
p−1 > kq

p > k0
p+1

for q ̸= 0 and

〈

k1
p, . . . , k

p+1
p

〉

= sp
(

2n1,...,r̂−p,...,r

)

I
1,...,r̂−p,...,r

· u (nr−p)−...−
Ir−p

< g

for p g 1. So, H̃r−2

(

∆G/H ,Q
)

̸= 0 by Theorem 2.4.13.

Now, let l /∈ {0, r} and assume h =
l⊕

i=1

u (ni)
−...−
Ii

·
r⊕

i=l+1

sp (ni)Ii
. The con-

tractibility of ∆G/H follows as in the proof of 4.2.6. More precisely,

k :=
r⊕

i=1

sp (ni)Ii

is an H-subalgebra. Note, that, different from the case g = so(2n), no conditions for

the indices ni are needed, since u(1) is a proper subalgebra of sp(1). Now, if l =
l′⊕

j=1

u (mj)
ϵj

1
...ϵj

mj −1

Jj
·

r′

⊕

j=l′+1

sp (mj)Jj
, is any H-subalgebra, then r′ g 2 and

ïk, lð =
r′

⊕

j=1

sp (mj)Ij
< sp(n)

Hence, there exists no subalgebra in PG/H that together wit k generates sp(n),

so ∆G/H is contractible by 2.4.9.
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Corollary 4.3.3. Following the notation from the theorem above, if H is a connected Lie

subgroup of maximal rank of Sp(n), then

1. If H ∼=
r∏

i=1

Sp(ni), then Sp(n)/H admits a Sp(n)-invariant Einstein metric.

2. If H ∼=
r∏

i=1

U(ni), then Sp(n)/H admits a Sp(n)-invariant Einstein metric.

Proof. It follows from 4.1.2, 2.3.2 and 1.3.14.

Observe that, for the case l /∈ {0, r}, 2.3.2 is inconclusive.

Examples from 4.1.4 also apply in this case.



73

5 An application in a real flag manifold

Consider the real flag manifold G/H := SO(4)/S(O(1) ×O(1) ×O(1) ×O(1))

[PS15]. We have that g = so(4) and h = {0}, since S(O(1)4) is a discrete finite Lie subgroup

of SO(4). Observe that H is not connected, then there is possibility to a intermediary

subalgebra {0} < k < g to not be a H-subalgebra.

We have that m = so(4) and m0 = {X ∈ so(4) | [X, h] = 0} = so(4). In

particular, we are in the case of 2.3.1, different from what we considered before in chapter

4.

So we will describe a ∆T
G/H and a P T

G/H (2.2.7) of SO(4)/S(O(1)4) where T is

a maximal torus of the Lie subgroup associated to m0 = so(4).

From 2.2.6, we just need to consider t := Lie(T ) that is a maximal abelian

subalgebra of m0 = so(4) which is given by

t :=

















0 a

−a 0

0 b

−b 0











∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a, b ∈ R







(5.0.1)

as in 4.2.

We need to consider non-trivial subalgebras k that are Ad(H)-invariant, ad(t)-

invariant and minimal non-toral H-subalgebra. In this case, being a non-toral H-subalgebra

is equivalent to be a non-abelian non-trivial subalgebra of so(4) since h = {0}.

First, we consider the condition of ad(t)-invariance.

The subspaces of so(4) invariants by ad(t) are its roots spaces. As we said in

4.2.1, we have the decomposition in root spaces

so(4) = t · m+
12 · m−

12 (5.0.2)

where

m+
12 =

















x y

y −x

−x −y

−y x











∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x, y ∈ R







and m−
12 =

















x y

−y x

−x y

−y −x











∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x, y ∈ R







with t being the trivial ad(t)-module, so every subspace of t is ad(t)-invariant,

and m+
12,m

−
12 irreducible modules of dimension 2:
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If X :=

( x y
y −x

−x −y
−y x

)

∈ m+
12 with x ̸= y and A :=

( 0 0
0 0

0 1
−1 0

)

∈ t, then

[A,X] =











y −x

−x −y

−y x

x y











Then, [A,X] is not a real multiple of X and every not-trivial subspace of m+
12

is not ad(t)-invariant. Hence, m+
12 is an irreducible ad(t)-module. The prove that m−

12 is an

irreducible ad(t)-module is completely analogous.

m+
12 and m−

12 are not equivalent as ad(t)-modules:

Using the notations, definitions and results from 4.2.1, we have that

m+
12 = ((so(4)C)¿1+¿2

· (so(4)C)−¿1−¿2
) ∩ so(4)

and

m−
12 = ((so(4)C)¿1−¿2

· (so(4)C)−¿1+¿2
) ∩ so(4)

Suppose that there exists T : m+
12 → m−

12 isomorphim ad(t)-equivariant. There

exists 0 ̸= X ∈ m+
12 ∩ (so(4)C)¿1+¿2

and for A ∈ t ¦ tC we have

[A, TX] = T [A,X] = T ((¿1 + ¿2)(A)X) = (¿1 + ¿2)(A)TX

Which implies TX ∈ m−
12 ∩ (so(4)C)¿1+¿2

= {0}. This contradicts T being an

isomorphism of vector spaces.

For the purpose of finding Lie subalgebras, we emphasise that

[t,m+
12] ¦ m+

12 and [t,m+
12] ¦ m−

12

If there is k ∈ P T
G/H , the ad(t)-invariant implies that it needs to be a sum of

m+
12,m

−
12 or a subspace of t, since 5.0.2 is a isotypical decomposition, which is unique

([BD13, p. 70]).

Second, we consider the condition of Ad(H)-invariance.

Let h ∈ H and ϵ1, . . . , ϵ4 ∈ O(1) = {−1, 1} ∼= Z2 with ϵ1ϵ2ϵ3ϵ4 = 1 such that

h = diag(ϵ1, ϵ2, ϵ3, ϵ4). For i ̸= j ̸= k ̸= l ∈ {1, . . . , 4}, we have that ϵiϵj = (ϵkϵl)
−1 = ϵkϵl.
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If X :=

(
0 a c d

−a 0 e f
−c −e 0 b
−d −f −b 0

)

∈ so(4), then

Ad(h)X = hXh−1 = hXh =











0 ϵ1ϵ2a ϵ1ϵ3c ϵ1ϵ4d

−ϵ2ϵ1a 0 ϵ2ϵ3e ϵ2ϵ4f

−ϵ3ϵ1c −ϵ3ϵ2e 0 ϵ3ϵ4b

−ϵ4ϵ1d −ϵ4ϵ2f −ϵ4ϵ3b 0











Define ¶1 := ϵ1ϵ2 = ϵ3ϵ4, ¶2 := ϵ1ϵ3 = ϵ2ϵ4, ¶3 := ϵ1ϵ4 = ϵ2ϵ3.

Suppose that X ∈ t, then c = d = e = f = 0 and Ad(h)X = ¶1X. Hence, every

subspace of t is Ad(H)-invariant.

Suppose that X ∈ m+
12, then a = b = 0, f = −c, e = d and

Ad(h)X =











¶2c ¶3d

¶3d −¶2c

−¶2c −¶3d

−¶3d ¶2c











∈ m+
12

Hence, m+
12 is Ad(H)-invariant.

Suppose that X ∈ m−
12, then a = b = 0, f = c, e = −d and

Ad(h)X =











¶2c ¶3d

−¶3d ¶2c

−¶2c −¶3d

¶3d −¶2c











∈ m−
12

Hence, m−
12 is Ad(H)-invariant.

We conclude that all possibilities of subalgebras we have considered before,

sums of m+
12,m

−
12 or a subspace of t, are Ad(H)-invariant.

Now, we will describe all the subalgebras in P T
G/H .

Since (¿1 + ¿2) + (¿1 − ¿2) = 2¿1 and (¿1 + ¿2) − (¿1 − ¿2) = 2¿2 are not roots,

4.2.2 implies that

[m+
12,m

−
12] = 0

For any x, y, z, w ∈ R, we have the following Lie brackets relations:





















x y

y −x

−x −y

−y x











,











z w

w −z

−z −w

−w z





















= (2wx− 2yz)











0 −1

1 0

0 −1

1 0











∈ t
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



















x −y

y x

−x −y

y −x











,











z −w

w z

−z −w

w −z





















= (2wx− 2yz)











0 −1

1 0

0 1

−1 0











∈ t

If A+
12 :=

(
0 −1
1 0

0 −1
1 0

)

and A−
12 :=

(
0 −1
1 0

0 1
−1 0

)

, then

[m+
12,m

+
12] = spanR{A+

12}

and

[m−
12,m

−
12] = spanR{A−

12}

Since {A+
12, A

−
12} is linearly independent, ïm+

12,m
−
12ð = spanR{X+

12, X
−
12}·m+

12 ·

m−
12 = t · m+

12 · m−
12 = so(4). With this information, a Lie subalgebra of the type we are

looking for cannot contain both m+
12 and m−

12.

Hence, the non-abelian non-trivial ad(t)-invariant Lie subalgebras of so(4) are

t · m+
12 t · m−

12

spanR{A+
12} · m+

12 spanR{A−
12} · m−

12

Then P T
G/H = {spanR{A+

12} · m+
12, spanR{A−

12} · m−
12} and ∆T

G/H consists of

a 0-dimensional order complex with just two points as vertices. Hence, ∆T
G/H is not-

contractible.

We conclude by 2.3.1 that

Theorem 5.0.1. The real flag manifold G/H = SO(4)/S(O(1) × O(1) × O(1) × O(1))

admits a SO(4)-invariant Einstein metric.
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