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Resumo

Neste trabalho estudamos os conceitos de entropia topológica e entropia de medida
e os aplicamos à teoria de sistemas dinâmicos oriundos de campos vetoriais suaves
por partes e de deslocamentos bissimbólicos.

Os deslocamentos bissimbólicos, também chamados deslocamentos zip, são
uma variação dos deslocamentos de Bernoulli bilaterais que possibilitam codificar
dinâmicas não invertíveis, como a transformação do padeiro 2 para 1. Neste trabalho,
exibimos uma desintegração da medida no espaço do deslocamento bissimbólico e a
usamos para calcular a entropia de dobra do deslocamento. Além disso, calculamos
a entropia de medida do deslocamento e a relacionamos com a entropia de dobra.

No contexto de campos vetoriais suaves por partes em variedades Riemannianas,
consideramos o conjunto de todas as órbitas possíveis do sistema, estabelecidas
pela convenção de Filippov. Nesse espaço de órbitas definimos um fluxo contínuo
induzido pela dinâmica original no espaço base dos campos vetoriais suaves por
partes. Definimos também uma distância no espaço de órbitas a partir da distância
Riemanniana da variedade base e mostramos que o espaço métrico resultante,
sob algumas hipóteses, herda propriedades topológicas da variedade base: ele é
separável, completo e não tem pontos isolados. Mostramos então que, se a dinâmica
no espaço de órbitas é transitiva, então a dinâmica no espaço base também é, e
a recíproca vale para uma classe específica de campos vetoriais suaves por partes
cujos pontos de tangência são suficientemente conectados entre si.

Nos restringimos então ao contexto de variedades 2-dimensionais e estudamos
algumas propriedades clássicas de caoticidade adaptadas ao caso de campos vetoriais
suaves por partes. Sob certas hipóteses, mostramos que sistemas transitivos
são caóticos no sentido de existir um conjunto denso de órbitas periódicas e ter
dependência sensível a condições iniciais. Finalmente, comentamos sobre como
definir entropia topológica para campos vetoriais suaves por partes usando o espaço
de órbitas, e obtemos que a entropia topológica desses sistemas 2-dimensionais
transitivos é estritamente positiva. Isso reforça o caráter caótico dessas dinâmicas.

Palavras-chave Sistemas dinâmicos • Teoria ergódica • Entropia • Dinâmica
simbólica • Campos vetoriais suaves por partes.



Abstract

In this work we study the concepts of topological entropy and measure entropy and
apply them to the theory of dynamical systems originated by piecewise smooth
vector fields and by bisymbolic dynamics.

Bisymbolic shifts, also called zip shifts, are a variation of bilateral Bernoulli
shifts that make it possible to encode non-invertible dynamics, like the 2-to-1
baker’s transformation. In this work, we exibit a disintegration of the measure on
the bisymbolic shift space and use it to calculate the folding entropy of the shift.
Besides that, we calculate the measure entropy of the shift and relate it to the
folding entropy.

In the context of piecewise smooth vector fields on Riemannian manifolds,
we consider the set of all possible orbits of the system, established by Filippov’s
convention. On this orbit space we define a continuous flow induced by the original
dynamics on the base space of the piecewise smooth vector field. We also define a
distance on the orbit space from the Riemannian distance on the base manifold
and show that the resulting metric space, under certain hypotheses, inherits the
topological properties of the base manifold: it is separable, complete and has no
isolated points. We then show that, if the dynamics on the orbit space is transitive,
then the dynamics on the base space is also transitive, and the converse is valid
for a specific class of piecewise smooth vector fields whose tangency points are
sufficiently connected among them.

We then restrict ourselves to the context of 2-dimensional manifolds and study
some classic properties of chaoticity adapted to the case of piecewise smooth vector
fields. Under certain hypotheses, we show that transitive systems are chaotic in
the sense that there exists a dense set of periodic orbits and they have sentive
dependence on initial conditions. Finally, we comment on how to define topological
entropy for piecewise smooth vector fields using the orbit space, and obtain that
the topological entropy of these transitive 2-dimensional systems is strictly positive.
This reinforces the chaotic character of these dynamics.

Keywords Dynamical systems • Ergodic theory • Entropy • Symbolic dynamics
• Piecewise smooth vector fields.
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Chapter 1

Introduction

In this chapter, we introduce the structure of this thesis and basic preliminary
definitions and propositions, as well as fix notation, that will be used throughout
this work. The style is intentionally terse, as this is intended as more of a reference
to definitions rather than a detailed exposition. Set theory can be found in
section 1.2, topology in section 1.3, measure theory in section 1.4 and
dynamics in section 1.5.

1.1 Structure of the thesis

This thesis in divided into 4 chapters. Chapter 1 is this introductory chapter,
listing basic preliminary notions relevant for the following chapters.

Chapter 2 presents a brief history of entropy in physics and mathematics,
and some basic definitions and propositions related to the measure-theoretic and
topological entropies.

In chapter 3, we present basic notation on symbolic dynamics, define the
extended symbolic shift dynamics and compute the folding and measure entropies
of this extended shift.

In chapter 4, we present basic definitions of piecewise smooth dynamics,
develop the orbit spaces theory of this dynamics, and later use it to define and
compute the topological entropy of a class of piecewise smooth systems.

Comment on typography Internal references to sections, pages and notes,
definitions and propositions, and any variant of these (but not bibliographical
references), as well as external references, are typeset using small capitals and
text figures (0123456789) to create emphasis. On the digital version of this
document, these references are links.
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1.2 Sets

We will use ' for logical conjunction and ( for logical disjunction,
∧

for the
universal quantifier and

∨

for the existential quantifier. We shall avoid these as
much as possible, using normal English language words on text (e.g. ‘and’, ‘or’,
‘for all’, ‘for some’), and the logic symbols only for set-builder notation. We state
definitions by equality in formulas with the symbol := to indicate that the left side
of the expression (relative to the symbol) is to be defined by the right side of the
expression.

We denote the subset partial order by ¦, so that X ¦ X ′ means that every
element of X is an element of X ′, and ¢ is the strict subset relation.

Let X be a set. We denote its cardinality by #X and its power set (the set of
all its subsets) by ℘(X). Let S and S ′ be subsets of X. We denote their union
by S ∪ S ′, their intersection by S ∩ S ′, and their relative complement by S ∖ S ′.
The complement of S is S := X ∖ S, the symmetric difference of sets S, S ′ by
S △ S ′ := (S ∖ S ′) ∪ (S ′

∖ S). We denote the identity function on X by IX (or I,
when there is no ambiguity).

We will denote the empty set by , the set of natural numbers by =
{0, 1, 2, . . . , }, the set of integers by , the set of positive integers less than n ∈ by
[n] = {0, . . . , n−1}, the set of rational numbers by and the set of real numbers by

. The sets of positive, negative, strictly positive and strictly negative real numbers
are denoted by g0, f0, >0 and <0, respectively (and analogous notation is
used for the other number sets). The d-dimensional sphere is denoted d.

We denote the absolute value on by | · |, the standard order on by f, the
supremum and infimum relative to it by sup and inf, respectively. The limit of a
sequence (xn)n∈ is denoted by limn→∞ xn, its limit superior by limn→∞ xn and its
limit inferior by limn→∞ xn. We denote the exponential function by e(·) and the
logarithm function by log.

1.3 Topological spaces and metric spaces

1.3.1 Basic definitions for topological spaces

Definition 1.1. Let X be a set. A topology on X is a set T ¦ ℘(X) of subsets of
X that satisfies

1. ∈ T and X ∈ T;
2. For every family (Ai)i∈I of sets Ai ∈ T,

⋃

i∈I Ai ∈ T;
3. For every finite sequence (Ai)i∈[n] of sets Ai ∈ T,

⋂

i∈I Ai ∈ T.

The sets A ∈ T are the open sets of T. A pair (X,T) is a topological space. A closed
set is a set S ¦ X whose complement C is open.
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Example 1.1. Let X be a set.

1. The set { , X} is the trivial topology on X;
2. The set ℘(X) is the discrete topology on X.

Definition 1.2. Let X = (X,T) and X
′ = (X ′,T′) be topological spaces. A

continuous function from X to X
′ is a function f : X −→ X ′ such that, for every

open set A′ ∈ T′, its inverse image by f is open: f−1(A′) ∈ T.
A homeomorphism from X to X

′ is a continuous function from X to X
′ whose

inverse is continuous.

Special subsets of topological spaces

Definition 1.3. Let X = (X,T) be a topological space and S ¦ X. The interior
of S is the set

S◦ :=
⋃

{A ¦ S | A ∈ T}.

The closure of S is the set

S• :=
⋂

{C ¦ S | C ∈ T}.

Definition 1.4. Let X = (X,T) be a topological space. A dense set is a set
D ¦ X whose closure is the whole space: D• = X. A residual set is a set that is a
countable intersection of sets whose interior is dense. A meager set is a set that is
a countable union of sets whose closure has empty interior.

A residual set is the complement of a meager set. Residual sets represent a way
to express the idea of “almost all” using only topology, since meager sets form a
class of negligible sets in a topological space.

Definition 1.5. Let X = (X,T) be a topological space. An isolated point is a
point x ∈ X such that {x} is open. A perfect set is a set S ¦ X that has no
isolated points.

1.3.2 Basic definitions for metric spaces

Distance, diameter and balls

Definition 1.6. Let M be a set. A distance function (or metric) on M is a function
d : M ×M −→ g0 such that

1. For every p, p′ ∈M , d(p, p′) = 0 if, and only if, p = p′;
2. For every p, p′ ∈M , d(p, p′) = d(p′, p);
3. For every p, p′, p′′ ∈M , d(p, p′′) f d(p, p′) + d(p′, p′′).
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A pair (M, d) is a metric space.

Definition 1.7. Let M = (M, d) a metric space and S ¦ M a subset. The
diameter of S is

Θ(S) := sup{d(p, p′) | p, p′ ∈ S}.

Topology, continuity and uniform continuity

Definition 1.8. Let M = (M, d) a metric space, c ∈ M a point and r ∈ >0 a
strictly positive real number. The open ball of center c and radius r of M is the set

Bd(c; r) := {p ∈M | d(c, p) < r}.

The closed ball of center c and radius r of M is the set

B•
d (c; r) := {p ∈M | d(c, p) f r}.

A metric space has a natural topological space structure induced by its distance
function.

Definition 1.9. Let M = (M, d) a metric space. An open set of M is a set
A ¦M such that, for every p ∈ A there is a r ∈ >0 such that B(p; r) ¦ A. The
topology of M is the set of all its open sets.

It can be shown that a function between metric spaces is continuous with respect
to this topological structure if, and only if, it is continuous in the standard ε–¶

formulation of real analysis.

Proposition 1.1. Let M = (M, d) and M
′ = (M ′, d′) be metric spaces and f :

M −→M ′ a function. Then f is continuous if, and only if, for every p ∈M and
every error ε ∈ >0, there exists a difference ¶ ∈ >0 such that, for every q ∈M ,
the condition d(p, q) < ¶ implies the condition d′(f(p), f(q)) < ε.

In proposition 1.1, the values of the errors ε and differences ¶ depend on
each point p ∈M . If we can find these values independently of the point, we have
a stronger notion of continuity.

Definition 1.10. Let M = (M, d) and M
′ = (M ′, d′) be metric spaces. A

uniformly continuous function from M to M
′ is a function f : M −→ M ′ that

satisfies: for every error ε ∈ >0, there exists a difference ¶ ∈ >0 such that, for
every p, q ∈M , the condition d(p, q) < ¶ implies the condition d′(f(p), f(q)) < ε.

A uniform homeomorphism from M to M
′ is a uniformly continuous function

from M to M
′ whose inverse is uniformly continuous.
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Every uniformly continuous function is continuous. Another important type of
continuity in metric spaces is when the variation of the function is bounded by a
number in the following sense.

Definition 1.11. Let M = (M, d) and M
′ = (M ′, d′) be metric spaces. A

Lipschitz continuous function from M to M
′ is a function f : M −→M ′ for which

there exists a number c ∈ g0 such that, for every p, q ∈M ,

d′(f(p), f(q)) f c d(p, q).

The infimum of all such c is the Lipschitz distortion of f , denoted ïïfðð.
A Lipschitz homeomorphism from M to M

′ is a Lipschitz continuous function
from M to M

′ whose inverse is Lipschitz continuous.

Equivalence of distance functions

Definition 1.12. Let M be a set and d and d′ distance functions on M .

1. The distance functions d and d′ are topologically equivalent when the identity
I : (M, d) −→ (M, d′) is a homeomorphism.

2. The distance functions d and d′ are uniformly equivalent when the identity
I : (M, d) −→ (M, d′) is a uniform homeomorphism.

3. The distance functions d and d′ are Lipschitz equivalent when the identity
I : (M, d) −→ (M, d′) is a Lipschitz homeomorphism.

It can be shown that all these are equivalence relations. Lipschitz equiva-
lence implies uniform equivalence, and uniform equivalence implies topological
equivalence, but neither of the reverse implications hold.

1.3.3 Norms, inner products, metrics, and distances on
manifolds

We shall generally denote norms by ∥ · ∥ and inner products by ï · , · ð. The class of
r-differentiable functions (for r g 0) between normed vector spaces or manifolds
will be denoted by C r. We denote the tangent space of a manifold M by TM and
the derivative of a trajectory µ on a manifold by µ̇. Given a Riemannian manifold
M , we denote its metric at a point p ∈M by ï · , · ðp and its norm at p by ∥ · ∥p.
With the metric we can define the length of a piecewise continuously differentiable
trajectory µ : [a, b] −→M by

ℓ(µ) :=
∫ b

a
∥µ̇(t)∥µ(t) dt
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and hence the metric induces a distance function on M by considering, for every
pair of points p, p′ ∈ M , the set Dp,p′ of all piecewise continuously differentiable
trajectories from p to p′, and then setting

d(p, p′) := inf
µ∈Dp,p′

ℓ(µ).

1.3.4 Covers

Cover and subcovers

Definition 1.13 (Cover and subcover). Let X be a set. A cover of X is a set
C ¦ ℘(X) such that X =

⋃

C∈C C. A subcover of a cover C is a cover C′ of X such
that C′ ¦ C. A cover of a subset S ¦ X is a set C ¦ ℘(X) such that S ¦

⋃

C∈C C.

Example 1.2. Let X be a set.

1. The set {X} is the trivial cover of X;
2. The set ℘(X) is the total cover of X;
3. The set

℘
1(X) = {C ∈ ℘(X) | #C = 1} = {{x} | x ∈ X}

is the atomic cover of X.

Definition 1.14 (Open cover). Let X = (X,T) be a topological space. An open
cover of X is a cover C of X such that every C ∈ C is open (C ∈ T).

The subcovers of an open cover are always open.

Example 1.3. Let X = (X,T) be a topological space. The sets {X} and T are
open covers of X.

Definition 1.15. Let X = (X,T) be a topological space. A compact set of X is a
set K ¦M such that, for every open cover C of K, there exists a finite subcover
C′ ¦ C of K.

1.4 Measure spaces

1.4.1 Basic notation and definitions

Measurable spaces and measure spaces

Definition 1.16. Let X be a set. A Ã-algebra on X is a set M ¦ ℘(X) of subsets
of X that satisfies

1. ∈M;
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2. For every M ∈M, M ∈M;
3. For every sequence (Mi)i∈ of sets in M,

⋃

i∈ Mi ∈M.

The elements of M are measurable sets. A pair (X,M) is a measurable space.

Definition 1.17. Let X = (X,M) and X
′ = (X ′,M′) be measurable spaces. A

measurable function from X to X
′ is a function f : X −→ X ′ such that, for every

measurable set M ′ ∈M′, its inverse by f is measurable: f−1(M ′) ∈M.

Definition 1.18. Let X = (X,M) be a measurable space. A measure on X is a
function m : M −→ g0 such that

1. m( ) = 0;
2. For every pairwise disjoint sequence (Mi)i∈ of measurable sets, m(

⋃

i∈ Mi) =
∑

i∈ m(Mi).

The triple (X,M, m) is a measure space.
A probability measure is a measure m on X such that m(X) = 1 and a probability

space is a measure space whose measure is a probability measure.

Definition 1.19. Let X = (X,M, m) and X
′ = (X ′,M, m) be measure spaces. A

measure-preserving function from X to X
′ is a measurable function f : X −→ X ′

such that, for every measurable set M ′ ∈M′, m(f−1(M ′)) = m′(M ′).

Induced Ã-algebras and measures

Definition 1.20. Let X = (X,M) be a measurable space, X ′ a set and f :
X −→ X ′ a function. The Ã-algebra pushed-forward by f on X ′ is

f¢(M) := {M ′ ¦ X ′ | f−1(M ′) ∈M}.

It is easy to show that f¢(M) is in fact a Ã-algebra and that f : X −→ X ′ is
measurable with respect to it.

Definition 1.21. Let X = (X,M, m) be a measure space, (X ′,M′) a measurable
space and f : X −→ X ′ a measurable function. The measure pushed-forward by f

on (X ′,M′) is the function

f¢m : M′ −→

M ′ 7−→ f¢m(M ′) := m(f−1(M ′)).

It is also easy to show that f¢m is a measure on (X ′,M′) and that f : X −→ X ′

is measure-preserving with respect to it.
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Almost equality of sets

When we have a measure space X = (X,M, m) we can define what it means for
two measurable sets M, M ′ ∈M to be almost equal: the elements they do not have
in common have measure zero. The elements they do not have in common are
expressed mathematically as the symmetric difference of the two sets, given by

M △M ′ = (M ∖ M ′) ∪ (M ′
∖ M).

In the same vein, we can say a set is almost contained in another, and use this to
define almost equality.

Definition 1.22. Let X = (X,M, m) be a measure space and M ∈M a measurable
set. An almost subset of M is a measurable set M ′ ∈M such that m(M ∖M ′) = 0.
This is denoted by M ′ ¦̊M , and M is an almost superset of M ′. Two almost equal
sets are two measurable sets M, M ′ ∈M that satisfy M ′ ¦̊M and M ¦̊M ′ (that
is, m(M △M ′) = 0). This is denoted by M =̊ M ′.

The almost equality relation =̊ is an equivalence relation on M, and the almost
subset relation ¦̊ becomes a partial order when we take the quotient of M under
this equivalence relation.

Integration

Let (X,M, m) be a measure space. We will denote the integral of an integrable
function f : X −→ over a measurable set M ∈M with respect to m by

∫

M
fm,

or, if we must make the variable x of f explicit,
∫

x∈M
f(x)m(dx).

This notation makes it more natural to transition between integration and
summation.

1.4.2 Partitions

Partitions and the natural projection

A partition is a cover of X by disjoint sets that does not contain the empty set.

Definition 1.23. Let X be a set. A partition of X is a set P ¦ ℘(X) such that
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1. (Cover) X =
⋃

P ∈P P ;
2. (Non-emptiness) |∈ P;
3. (Non-coincidence) For every P, P ′ ∈ P, if P |= P ′, then P ∩ P ′ = .

The sets P ∈ P are the parts of the partition P. The set of the partitions of X is
denoted P(X).

Example 1.4. Let X be a set.

1. The set {X} is the trivial partition of X.
2. The set

℘
1(X) = {C ∈ ℘(X) | #C = 1} = {{x} | x ∈ X}

is the atomic partition of X.

As a consequence of the definition of partitions, every point of the partitioned
set belongs to a unique part of the partition. This defines a unique surjective
function onto the partition.

Definition 1.24 (Natural projection of a partition). Let X be a set and P a
partition. The natural projection of P is the unique function

ÃP : X −→ P

such that, for every x ∈ X, x ∈ ÃP(x).

Induced and pulled-back partitions

We define here some partitions that are formed from partitions we already have.

Definition 1.25 (Partition induced on a subset). Let X be a set, P a partition of
X and S ¦ X a subset. The partition of S induced by P is

P|S := {P ∩ S | P ∈ P}.

Definition 1.26. Let X and X ′ be sets, f : X −→ X ′ a function and P′ a partition
of X ′. The partition of X pulled-back by f is

f£(P′) := {f−1(P ′) | P ′ ∈ P
′}.

Is is easy to show these are in fact partitions.

Proposition 1.2. Let X, X ′ and X ′′ be sets, f : X −→ X ′ and f ′ : X ′ −→ X ′′

functions and P′′ a partition of X ′′. Then

(f ′ ◦ f)£(P′′) = f£(f ′£(P′′)).
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Refinements and correfinements

We define a partial order on the set of all partitions of a set X.

Definition 1.27 (Refinement of partition). Let X be a set and P a partition of X.
A refinement of P is a partition P′ of X that satisfies: for every part P ′ ∈ P′, there
is a part P ∈ P such that P ′ ¦ P . The partition P′ is said to be finer than P, and
P is said to be coarser than P′. We denote P ¯ P′.

Proposition 1.3. Let X be a set. The refinement relation is a partial order relation
on the set of partitions P(X).

Proof. Reflexivity and transitivity are immediate. We will show antisymmetry.
Let P,P′ ∈ P(X) be partitions such that P ¯ P′ and P′ ¯ P. Take P ∈ P. Since
P ¯ P′, there is a P ′ ∈ P′ such that P ′ ¦ P , and, since P′ ¯ P, there is Q ∈ P

such that Q ¦ P ′. This implies that Q ¦ P ; since P is a partition, then Q |= ,
hence Q = P . Thus P = P ′ ∈ P′, so P ¦ P′. By changing P and P′ the opposite
containment follows, so P = P′. ■

Using this order, we can define joins and meets. We are only interested on joins,
which we define as follows.

Definition 1.28. Let X be a set and (Pi)i∈I a family of partitions of X. The
correfinement of (P)i∈I is the smallest partition (relative to the refinement order
¯) that is a finer than every partition Pi. We denote it by

b
i∈I Pi. For a finite

family of partitions P0, . . . ,Pn−1, we denote

P0 ⋎ · · ·⋎ Pn−1.

The correfinement can be shown to satisfy the following proposition.

Proposition 1.4. Let X be a set and (Pi)i∈I a family of partitions of X. The
correfinement of (P)i∈I is the set

j

i∈I

Pi := {
⋂

i∈I

Pi |
∧

i∈I
Pi ∈ Pi}∖ { }.

Measurable partitions

In this section we define measurable partitions and countably generated measurable
partitions. The first are used to define entropy, while the second are needed for
some results related to disintegration of measures and thus to the folding entropy.

We start by defining a partition of a measure space. We call these partitions
measurable partitions because they are simply a partition of the space in measur-
able sets, but in the literature they are generally called just partitions (see, for



29

instance, [Rok67, Section 1.3, p. 3; Wal00, Section 4.1, Definition 4.1, p. 75; VO16,
Section 5.1.1, p. 143] for the definitions, with slight variations). We require that
the sets, besides being measurable, satisfy the properties of a generic partition of
sets: cover the space, be non-empty and have empty intersection.

Definition 1.29. Let X = (X,M) be a measurable space. A measurable partition
of X is a partition P of X such that every part P ∈ P is a measurable set.

Notice that the expression measurable partitions is usually used for what we
will call countably generated measure partitions (definition 1.31): a measurable
partition that is, in a technical sense, generated by a sequence of the partitions of
definition 1.29 (see [VO16, Section 9.1.2, p. 245; Rok67, Section 1.3, p. 4] for
precise definitions). These concepts are related, as we shall see ahead, but are not
the same.

A classification of correfinements of measurable partitions, analogous to propo-
sition 1.4, only works for countable families of partitions, since the Ã-algebras are
only closed under countable intersections. Because of this, we generally restrict our-
selves to countable (of even finite) measurable partitions. The countably generated
measurable partitions of definition 1.31 give a way to work with uncountable
measurable partitions using countable ones.

When we have a measure space, we can identify different measurable partitions
if their parts differ only on measure zero sets. The following definition formalizes
this.

Definition 1.30. Let X be a measure space and P a measurable partition of X.
An almost-refinement of P is an measurable partition P′ of X that satisfies: for
every part P ′ ∈ P′ there exists a part P ∈ P such that P ′ ¦̊ P . The partition P′

is said to be almost-finer than P, and P is said to be almost-coarser than P′. We
denote P ˚̄ P′. The measurable partitions P and P′ are almost equal when P ˚̄ P′

and P′ ˚̄ P. We denote P =̊ P′.

In the following definition, an increasing sequence of measurable partitions
(Pn)n∈ is increasing with respect to the partition refinement order: P0

˚̄ P1
˚̄ · · · .

Definition 1.31. Let X = (X,M, m) be a measure space. A countably generated
measurable partition of X is a measurable partition P of (X,M) for which there
exists an increasing sequence (Pn)n∈ of countable measurable partitions of (X,M)
such that

P =̊
j

n∈

Pn.

These partitions are called measurable partitions in the literature [VO16, Sec-
tion 9.1.2, p. 245; Rok67, Section 1.3, p. 4]. In [Rok67], they are defined using a
basis, and the following proposition shows that our definition is equivalent to that
in terms of a basis. The sets (Mn)n∈ in proposition 1.5 are such a basis.



30

Proposition 1.5. Let X = (M,M, m) be a measure space. A m-measure partition
P (of X) is countably generated if, and only if, there is a sequence of measurable
sets (Mn)n∈ such that

P =̊
j

n∈

{Mn, Mn}.

1.4.3 Disintegration of measure

We begin by defining a measure space structure on a partition of a measure space.
In this section we will only consider probability spaces.

Definition 1.32. Let X = (X,M, m) be a probability space and P a measurable
partition. The quotient Ã-algebra of P is the Ã-algebra MP := ÃP¢M pushed-forward
by the natural projection ÃP : X −→ P. The quotient measure on (P,MP) is the
measure mP := (ÃP)¢m pushed-forward by the natural projection.

By this definition, the measurable sets Q ∈ MP are those Q ¦ P such that
Ã−1
P

(Q) ∈M, and its quotient measure is

mP(Q) = m(Ã−1
P

(Q)).

Definition 1.33 (Disintegration of measure). Let X = (X,M, m) be a probability
space and P a countably generated measure partition of X. A disintegration of m

with respect to P is a family of probability measures (mP )P ∈P such that

1. For almost every P ∈ P, mP (P ) = 1;
2. For every measurable set M ∈M, the function

m(·)(M) : P −→

P 7−→ mP (M)

is measurable;
3. For every measurable set M ∈M,

(1.1) m(M) =
∫

P ∈P

mP (M)mP(dP ).

The measure mP is the conditional probability of m in P relative to P.

If f : X −→ is an integrable function, then formula 1.1 implies that

(1.2)
∫

x∈X
f(x)m(dx) =

∫

P ∈P

∫

x∈P
f(x)mP (dx)mP(dP ).

Conversely, formula 1.1 can be reobtained from formula 1.2 by integrating
the indicator function of M . The next proposition states that this disintegration is
mP-essentially unique. We omit the proof.
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Proposition 1.6 ([VO16, Proposition 5.1.7, p. 145]). Let X = (X,M, m) be
a probability space, M countably generated, and P a measurable partition of X.
If (mP )P ∈P and (m′

P )P ∈P are disintegrations of m with respect to P, then, for
mP-almost every P ∈ P,

mP = m′
P .

The disintegration of a probability measure with respect to a countable measur-
able partition P has a particularly simple form.

Proposition 1.7. Let X = (X,M, m) be a probability space and P is a countable
measurable partition. The family of conditional measures (mP )P ∈P defined, for each
measurable set M ∈M, by

mP :=











m(M ∩ P )

m(P )
m(P ) > 0

0 m(P ) = 0

is the disintegration of m with respect to P.

Proof. By definition of the induced Ã-algebra MP, for each P ∈ P the atomic set
{P} ¦ P is measurable, since Ã−1

P
({P}) = P and P is measurable. Since P is

countable, MP is the discrete Ã-algebra. The quotient measure is then given for
each Q ¦ P by

(1.3) mP(Q) =
∑

P ∈Q

m(P ).

In particular, mP({P}) = m(P ).
Let N ¦ P be the set of parts of P that have m-measure 0. Then it follows

from formula 1.3 that

(1.4) mP(N) =
∑

N∈N

m(N) = 0.

Besides that, for every N ∈ N and every M ∈M, m(M ∩N) = 0, so

(1.5) mP(N) =
∑

N∈N

m(N) = 0.
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Then it follows that, for every M ∈M,

m(M) =
∑

P ∈P

m(M ∩ P )

=
∑

P ∈P∖N

m(M ∩ P )

=
∑

P ∈P∖N

m(M ∩ P )

m(P )
m(P )

=
∑

P ∈P∖N

mP (M)m(P )

=
∫

P ∈P∖N

mP (M)mP(dP )

=
∫

P ∈P

mP (M)mP(dP ). ■

The second inequality follows from formula 1.5, and the last one follows from
formula 1.4.

1.5 Dynamics

1.5.1 Discrete dynamics and flows

Definition 1.34. A discrete-time dynamical system is a pair X = (X, f) such that
X is a set, the phase space of X, and f : X −→ X is a function, the dynamics of
X. The system X is invertible when f is invertible.

On a discrete-time dynamical system, we can iterate the dynamics: we consider
f 0 := I, the identity in X, and, for each n ∈ >0, the composition fn := f ◦ fn−1.
This gives a transformation (which we also denote by f)

f : g0 ×X −→ X

(n, x) 7−→ fn(x)

that satisfies 1. f 0 = I; 2. For every n, n′ ∈ g0, fn′

◦ fn = fn+n′

. This can be
shortly stated as saying that f induces a monoid action of g0 on the space X.
When the dynamics f is invertible, this action can be extended to a group action
of by defining, for every n ∈ >0, f−n := (f−1)n.

Besides defining discrete-time dynamics, we can also consider flows. These are
obtained by substituting for on the discrete case just mentioned.

Definition 1.35. Let X be a set. A flow on X is a function

f : ×X −→ X

(t, x) 7−→ f t(x)
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that satisfies

1. f 0 = I;
2. For every t, t′ ∈ , f t′

◦ f t = f t+t′

.

We can also analogously define semi-flows on X, whose domain is restricted to
g0 ×X.

Definition 1.36. A continuous-time dynamical system is a pair X = (X, f) such
that X is a set, the phase space of X, and f : ×X −→ X is a flow, the dynamics
of X.

Both discrete-time and continuous-time dynamical systems can be defined on
other categories of spaces besides sets, such as measure spaces, topological spaces,
metric spaces, normed spaces and manifolds. In these cases the dynamics must pre-
serve the relevant structure, being measure-preserving, continuous, differentiable etc.
On metric spaces, we highlight the following definition, based on definition 1.10.

Definition 1.37. Let M = (M, d) be a metric space. A uniformly continuous flow
on M is a flow f : ×M −→M that satisfies: for every t ∈ >0 and every error
ε ∈ >0, there exists difference ¶ ∈ >0 such that, for every s ∈ [−t, t] and every
p, q ∈M , the condition d(p, q) < ¶ implies the condition d(f s(p), f s(q)) < ε.

More generally, continuous-time dynamical systems can arise from smooth
vector fields on manifolds, whose partial flow defines the dynamics on the space.
(In chapter 4, we will consider flows induced by vector field that are not smooth.)

Let us consider a manifold M modeled on d. Given an open set A ¦M and
a smooth vector field V : A −→ TM , there exists a set dom(ΦV ) ¦ × A, called
the maximal flow domain, and a unique maximal flow

ΦV : dom(ΦV ) −→ A

(t, p) 7−→ ΦtV (p).

We adopt this notation because the flow ΦV satisfies the derivation formula

Φ̇tV (p) =
d

dt
ΦtV (p)|t=0 = V ◦ ΦtV (p),

which is analogous to the derivation formula for the exponential function (the latter
is in fact a consequence of the former).

When the vector field V : M −→ TM is Lipschitz, controlled by a constant
ïïV ðð, that is, for every pair of points p, q ∈M ,

d(V (p), V (q)) f ïïV ðð d(p, q),
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then the flow ΦV of V is controlled above by eïïV ðð [Col12, Section 9.2] and below
by e−ïïV ðð, in the sense that, for every pair of points p, q ∈ M and every t0, t ∈
that is in the interval of definition of the flow for these points,

(1.6) e−|t−t0|ïïV ðð d(p, q) f d(Φ(t−t0)V (p), Φ(t−t0)V (q)) f e|t−t0|ïïV ðð d(p, q).

1.5.2 Topological transitivity

The action of a group on a set is called transitive when there is a unique orbit, that
is, every point can be taken to any other point by the action of the group. This is
equivalent to saying that the set does not contain a proper invariant subset.

When we consider a topological dynamical system, topological notions of transi-
tivity can be considered by using the topological structure of the space to approxi-
mate points (see [AC12] for a thorough discussion of many notions of topological
transitivity). The concept of topological transitivity goes back to Birkhoff1 [GH55].

We consider the following concepts of topological transitivity. We define them
on discrete-time dynamical systems, but analogous definitions can be stated for
flows.

Definition 1.38. Let X be a topological space and f : X −→ X a continuous
transformation.

• the dynamics f is topologically transitive when, for every pair of non-empty
open sets U and V in X, there is a time t such that f t(U) ∩ V |= .

• the dynamics f is topologically point-transitive when there exists a point
x ∈ X whose orbit is dense in X.

Note that topological transitivity is equivalent to: for every non-empty open
set U ¦ X, the set

⋃

t f t(U) is dense in X.
Such different concepts of transitivity are related in the following result (see

[AC12; GH55]).

Theorem 1.8 (Birkhoff transitivity theorem). Let M be a separable, complete
and perfect metric space and f a continuous transformation on it. Then f is
topologically transitive if, and only if it is topologically point-transitive.

In chapter 4 we will discuss the concept of topological transitivity for piecewise
smooth dynamical systems.

1. George David Birkhoff (1884–1944), American mathematician.
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Chapter 2

Entropy

In this chapter we present the concept of entropy in dynamical systems. We
will state the definitions and propositions (and some of the proofs) relevant to
understanding the results of entropy related to symbolic dynamics in chapter 3

and piecewise smooth systems in chapter 4. In section 2.1 we present a brief
history of the concept in the natural sciences and Mathematics; in section 2.2, we
discuss the concept of information and entropy for finite probability distributions;
in section 2.3, we define the concept of entropy of dynamics on measure spaces
and state some basic results that will be used later; in section 2.4 we do the
same for dynamics on topological and metric spaces.

2.1 History of entropy

The word entropy was coined by Rudolf Clausius1 in 1865 [Cla65], in German, from
Ancient Greek ἐ¾ (en, ‘in’) and Äρ¿Àή (tropé, ‘transformation’), with the meaning of
content of transformation or internal transformation of a system [Bai92]. Clausius
created it in analogy with the word energy, from Ancient Greek ἐ¾έργ¸ι³ (enérgeia,
‘activity, vigor’), from the roots ἐ¾ (en, ‘in’) and ἔργ¿¾ (érgon, ‘work’), adopted by
Thomas Young2 in 1802 [Smi98].

But more important than the etymology of the word, to understand the concept
we must understand how it has been used in the technical literature. Initially,
the concept of entropy was used in physics, specifically in thermodynamics, to
refer to the ratio between an infinitesimal quantity of heat and the instantaneous
temperature of a system. In 1872, still in the context of physics, but now in

1. Rudolf Julius Emanuel Clausius (1822 – 1888), German physicist and mathematician.
2. Thomas Young (1773 – 1829), English polymath.
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statistical mechanics, Boltzmann3 introduced his ‘Η-Theorem’4, which related the
concept of entropy with the macroscopic and microscopic states of a system; he
explained entropy as the measure of the number of microstates of a system [Bol72].

A change of focus occurred in 1948, with the article “A Mathematical Theory
of Communication” by Shannon5, in which the author introduced the concept of
information entropy [Sha48]. This concept of entropy was not strictly related to
physics anymore6 and had a fuzzy relationship with the concept of entropy in
statistical mechanics, but the same word was used by a suggestion of von Neumann7.
Shannon reports:

My greatest concern was what to call it. I thought of calling it ‘informa-
tion’, but the word was overly used, so I decided to call it ‘uncertainty’.
When I discussed it with John von Neumann, he had a better idea.
Von Neumann told me, “You should call it entropy, for two reasons. In
the first place your uncertainty function has been used in statistical
mechanics under that name, so it already has a name. In the second
place, and more important, no one knows what entropy really is, so in
a debate you will always have the advantage”. [TM71, p. 180]

A decade later, Kolmogorov8 brought the concept of entropy to mathematics,
introducing the metric entropy for dynamical systems [Kol58] in a similar formu-
lation to the information entropy of Shannon and, in the following year, Sinai9

perfected the definition to basically what is currently used [Sin59].
Some years later, in analogy to the definition of metric entropy, topological

entropy was introduced by Adler, Konheim, and McAndrew for topological spaces
[AKM65], and formulated for metric spaces by Dinaburg [Din70] and Bowen10

[Bow71]. For more detailed history and further developments, check [Kat07].

3. Ludwig Eduard Boltzmann (1844–1906), Austrian physicist.
4. Boltzmann first used the letter ‘E’ for entropy, probably because it is the first letter of the

word, but later adopted ‘H’ [Cha37]. The uppercase Latin letter ‘H’ (aitch) may have initially
been an uppercase Greek letter ‘Η’ (eta), as was used by Gibbs [Gib02] and Zermelo in the first
decade of the 20th century [Hja77].
5. Claude Elwood Shannon (1916–2001), American mathematician and computer scientist.
6. This assertion may be contested by physicists because of discussions about how “information

is physical” (see, for instance, the homonymous article [Lan91]), but what is meant here is that
the concept gained an abstract formulation that did not depend anymore on thermodynamics
and statistical mechanics.
7. John von Neumann (Hungarian: Neumann János Lajos) (1903–1957), Hungarian mathe-

matician and physicist.)
8. Andrei Nikolaevich Kolmogorov (Russian: �A8D9́= !<>B?4́96<K �B?@B7B́DB6) (1903–

1987), Russian mathematician.

9. Iakov Grigorevitch Sinai (Russian: 3́>B6 �D<7B́DP96<K %<A4́=) (1935–), Russian mathe-
matician.
10. Robert Edward “Rufus” Bowen (1947–1978), American mathematician.
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2.2 Entropy of finite probability distributions

The definition of entropy in information theory depends on finite probability distri-
butions, that is, an n-uple p = (p0, . . . , pn−1) ∈

n
g0 such that

n−1
∑

k=0

pk = 1.

This can be identified with a probability measure Ä on [n] with the discrete Ã-algebra
℘([n]) by setting, for every i ∈ [n],

(2.1) Ä({i}) = pi.

Every probability distribution is an element of some n, and the set of all
of them, for a fixed dimension, is a geometric object known as a simplex (plural
simplexes or simplices) and is also relevant in some others areas of Mathematics,
e.g. for triangulation of topological spaces in Algebraic Topology [Hat01] and as a
parameter set in Convex Analysis [BV04; Roc15]. The dimension of the simplex is
always one less than the dimension of the space it is embedded in (see figure 2.1
for some examples). Therefore, in order to have a d-dimensional simplex, in the
next definition we consider probability distributions with d + 1 entries.

Definition 2.1 (Simplex). Let d ∈ . The d-dimensional unit simplex11 (or
d-simplex) is the set

d :=
{

p ∈ d+1
g0 |

d
∑

k=0

pk = 1
}

.

A vertex of d is a point p ∈ d such that, for some i ∈ [d + 1], pi = 1. A boundary
point of d is a point b ∈ d such that, for some i ∈ [d + 1], bi = 0. The uniform
distribution (or center point) of d is the point

ud :=
(

1

d + 1
, · · · ,

1

d + 1

)

.

Before defining the entropy of a distribution in d, we will briefly talk about
the information function. We wish to have a function In : ]0, 1] −→ that satisfies
the following property: for every p, p′ ∈ ]0, 1],

In(pp′) = In(p) + In(p′).

(Notice that p is now a real number, not a distribution.) This is because, if
In(p) represents the amount of information of performing an experiment that has

11. Also called probability simplex or standard simplex.
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0 1
0

(1) The 0-simplex is a point.

0
(1, 0)

(0, 1)

1

(2) The 1-simplex is a line segment.

0

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

2

(3) The 2-simplex is a triangle.

0

(1, 0, 0, 0)

(0, 1, 0, 0)

(0, 0, 1, 0)

(0, 0, 0, 1)

3

(4) The 3-simplex is a tetrahedron.

Figure 2.1. Unit simplexes 0, 1, 2 and 3. The axes are
represented in gray as a referential frame. The simplexes are
represented in black and, in the cases of dimension 2 and 3, their
faces are have opacity in order to make the axis visible.

probability p, then the information we gain by performing an experiment with
probability p followed by an (independent) experiment with probability p′ is the
sum of the information of each experiment. Besides that, we also suppose that In
is continuous and positive. Then we have the following result.

Proposition 2.1. Let In : ]0, 1] −→ g0 be a continuous function that satisfies:

1. For every p, p′ ∈ ]0, 1],

In(pp′) = In(p) + In(p′).

Then there is c ∈ g0 such that

In(p) = −c log(p).

Proof. Define the function

f : [0,∞[ −→

p 7−→ In(e−p).
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Then, for every x, x′ ∈ [0,∞[, it follows from property 1 that

f(x + x′) = In(e−(x+x′)) = In(e−xe−x′

) = In(e−x) + In(e−x′

) = f(x) + f(x′),

so f is additive. It is a standard fact from analysis that any continuous additive
function on is linear, so there is a c ∈ such that f(p) = cp. This implies that
In(p) = f(− log(p)) = −c log(p). Since In is positive, it follows that c ∈ g0. ■

This shows that the negative of the logarithm is the only function that satisfies
the properties we would want for an information function, up to a constant multiple
c which amounts to a choice of unit information, or equivalently a change of basis for
the logarithm. In what follows, we will also classify the entropy function according
to some properties, and this will imply that it is the mean of the information of
each entry of a distribution. This will be used to define the entropy of a partition
in section 2.3.1.

In proposition 2.2 we will consider the following function, whose graph for
c = 1 is depicted in figure 2.2.

f : [0, 1] −→

p 7−→







−cp log(p) x > 0

0 x = 0.

The logarithm is not defined at 0, but since limp¸0 p log p = 0, this function is
continuous on [0, 1]. Because of this, from now on, we will always consider that
0 log 0 = 0.

e−1

0 e−1 1

−p log(p)

Figure 2.2. Graph of the function −p log p on the interval [0, 1].

The entropy of a probability distribution p ∈ d is a positive real number that
measures, in a sense, the amount this distribution deviates from the center of the
simplex d, given by the uniform distribution ud.

We will not present here a detailed explanation of this function, only a proposi-
tion that classifies it completely according to some properties. In order to state
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the main property of entropy and to simplify calculation, we will define a ‘sum’
between discrete probability distributions. Given n ∈ probability distributions
qi = (qi

0, . . . , qi
ki−1) ∈

ki−1 and a probability distribution p ∈ n−1, we can con-
sider a new distribution defined as the concatenation of the distributions qi, but
weighted by p so that the sum of its entries equals 1. This distribution is denoted

(piq
i
j)i,j = (p0q

0
0, . . . , p0q

0
k0−1, p1q

1
0, . . . , pn−1q

n−1
kn−1−1)

and we can easily check that (piq
i
j)i,j ∈

k0+···+kn−1−1, since

n−1
∑

i=0

ki−1
∑

j=0

piq
i
j =

n−1
∑

i=0

pi

ki−1
∑

j=0

qi
j =

n−1
∑

i=0

pi = 1.

This distribution can also be interpreted as each qi giving weights according to
which we divide the entry pi of p.

Definition 2.2. Let p ∈ n−1 and, for each i ∈ [n], qi ∈ ki−1. The p-weighted
sum of q0, . . . , qn−1 is

⊕

i∈[n]

piq
i := p0q

0 · · · · · pn−1q
n−1 := (piq

i
j)i,j ∈

k0+···+kn−1−1.

Proposition 2.2. Let {H n : n −→ g0}n∈ be a family of continuous functions
that satisfy

1. (Boundary restriction) For every p ∈ n, H n(p) = H n+1(p0, . . . , pn, 0);
2. (Center maximality) For every n ∈ , H n(un) = max (H n).
3. (Additivity) For every p ∈ n−1 and, for each i ∈ [n], qi ∈ ki−1,

H k0+···+kn−1−1

(

⊕

i∈[n]

piq
i
)

= H n−1(p) +
n−1
∑

i=0

piH ki−1(qi).

Then there is a positive real number c ∈ g0 such that, for every p ∈ n,

H n(p) = −c
n
∑

i=0

pi log(pi).

Proof. Let us define, for each n ∈ ∖ {0} and un−1 = ( 1
n
, . . . , 1

n
) ∈ n−1, the

number
L(n) := H n−1(un−1).

We will first show that, for some real number c ∈ g0

(2.2) L(n) = c log(n).
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By properties 1 and 2,

(2.3) L(n) = H n−1(un−1) = H n

(

1

n
, . . . ,

1

n
, 0
)

f H n(un) = L(n + 1),

which shows that L is a monotone increasing function.
Let n ∈ and k ∈ ∖ {0} and consider the uniform distributions unk−1−1 =

( 1
nk−1 )i∈[nk−1] and un−1 = ( 1

n
)j∈[n]. Since

⊕

i∈[nk−1]

1

nk−1
un−1 =

(

1

nk−1

1

n
, . . . ,

1

nk−1

1

n

)

=
(

1

nk
, . . . ,

1

nk

)

= unk−1,

it follows from property 3 that

H nk−1(unk−1) = H nk−1

(

⊕

i∈[nk−1]

1

nk−1
un−1

)

= H nk−1−1(unk−1−1) +
nk−1−1
∑

i=0

1

nk−1
H n−1(un−1)

= H nk−1−1(unk−1−1) + H n−1(un−1).

This shows that

(2.4) L(nk) = L(nk−1) + L(n).

We will show, by induction on k, that L(nk) = kL(n): the relation holds for
the base case k = 1, since L(n1) = 1L(n), and, assuming the induction hypothesis
L(nk−1) = (k − 1)L(n) is valid, it follows from formula 2.4 that

(2.5) L(nk) = L(nk−1) + L(n) = (k − 1)L(n) + L(n) = kL(n).

Now take n0, n1, k0 ∈ ∖ {0}, and choose k1 ∈ ∖ {0} such that

n1
k1 f n0

k0 < n1
k1+1.

Then it follows that k1 log(n1) f k0 log(n0) < (k1 + 1) log(n1), therefore

(2.6)
k1

k0

f
log(n0)

log(n1)
<

k1

k0

+
1

k0

.

Since L is increasing (formula 2.3), it also follows that

L(n1
k1) f L(n0

k0) f L(n1
k1+1),
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so from this and formula 2.5, it follows that k1L(n1) f k0L(n0) f (k1 + 1)L(n1),
therefore

(2.7)
k1

k0

f
L(n0)

L(n1)
<

k1

k0

+
1

k0

.

From these inequalities between fractions (formulas 2.6 and 2.7), we obtain
∣

∣

∣

∣

∣

L(n0)

L(n1)
−

log(n0)

log(n1)

∣

∣

∣

∣

∣

f
1

k0

and, taking the limit as k0 →∞,

L(n0)

L(n1)
=

log(n0)

log(n1)
.

Because n0 e n1 are arbitrary, we conclude that formula 2.2 is valid for some
constant c ∈ . Since L is increasing (formula 2.3), we must have c g 0.

Consider now a probability distribution p ∈ n−1 with only rational entries: for
each i ∈ [n], pi ∈ . Let gi ∈ and k ∈ ∖ {0} be such that pi = gi

k
and define

qi := ugi−1 =

(

1

gi

, . . . ,
1

gi

)

.

Observe that, since pi
1
gi

= 1
k
,

⊕

i∈[n]

piq
i = (piq

i
j)i,j =

(

1

k
, . . . ,

1

k
, . . . ,

1

k
, . . . ,

1

k

)

= uk−1.

So by using property 3, it follows that

H k−1(uk−1) = H
(

⊕

i∈[n]

piq
i
)

= H n−1(p) +
n−1
∑

i=0

piH gi−1(ugi−1).

It then follows from gi = pik and formula 2.2 that

c log(k) = H k−1(uk−1)

= H n−1(p) +
n−1
∑

i=0

pic log(gi)

= H n−1(p) + c
n−1
∑

i=0

pi log(pi) + c log(k),
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so we obtain, for every p with rational entries, that

H n−1(p) = −c
n−1
∑

i=0

pi log(pi).

From the continuity of H k−1 , it finally follows that this formula is valid for every
p ∈ n−1. ■

This is basically the demonstration presented by Khinchin12 [Khi57, p. 9,
Theorem 1], with some modifications such that property 3 does not depend upon
defining schemes or partitions, and some adaptation of the statement and notation
used by Peter Walters [Wal00, p. 77, Theorem 4.1].

Some other interesting properties of H n that follow from proposition 2.2
are

• (Symmetry) For every n ∈ , H n is symmetric;
• (Vertex minimality) H n(p) = 0 if, and only if, p is a vertex of n.

Faddeev showed [Fad56] that it is sufficient to assume symmetry, continuity
and the following simplified additivity:

• (Faddeev additivity) For every p ∈ n−1 and t ∈ [0, 1]

H n(p0, . . . , pn−2, (1− t)pn−1, tpn−1) = H n−1(p) + pn−1H 1((1− t), t).

A categorical approach can be found in [BFL11].
A point of 1 has the form (x, 1 − x), with x ∈ [0, 1]. If we take c = 1, the

entropy H 1 has the form

H 1(x, 1− x) = −x log(x)− (1− x) log(1− x).

The graph of this function is represented in figure 2.3. Notice that the function
is symmetric, is 0 at the vertices, and attains its maximum at the center 1

2
. The

graph of H 2 has this form on the boundaries of 2 .

2.3 Measure entropy

2.3.1 Entropy of a partition

When we have a probability space X = (X,M, m) and a finite measure partition
P = (Pk)n−1

k=0 of this space, we can consider the probability distribution whose
entries are the measures of the parts of the partition P:

(m(P0), . . . , m(Pn−1)) ∈
n−1.

12. Aleksandr Yakovlevich Khinchin (Russian: �?9>E4́A8D 3́>B6?96<K )<́AK<A) (1894–
1959), Russian mathematician.
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log
(

1
2

)

0 1
2

1

1

Figure 2.3. Graph of the function H 1 .

The entropy of this distribution is given by

(2.8) H (m(P0), . . . , m(Pn−1)) = −
n−1
∑

k=0

m(Pk) log(m(Pk)).

Thus we define the entropy of the partition P. Nevertheless, in the case the partition
is not finite, but countable, we can still define its entropy, but using a more general
definition in terms of the information function. In the following definition, we
denote by ÃP(x) the part of P the point x ∈ X belongs to. By the definition of P,
this is not always a function properly defined on the whole X, but it is defined on
a set with full measure, which is sufficient.

Definition 2.3 (Information function of a partition). Let X be a probability space
and P a measure partition of X. The information of P is the function

InP : X −→

x 7−→ − log(m ◦ ÃP(x)).

From this definition of information, we can define the entropy as the integral
of the information (considering always that 0 log 0 = 0). Since the measure of the
space is 1, because we are considering probability measures, the entropy is the
mean information of a partition [Rok67, Section 4.1, p. 13].

Definition 2.4 (Entropy of a partition). Let X = (X,M, m) be a probability
space and P a measure partition of X. The entropy of P is

Hm(P) :=
∫

X
InP m =

∫

X
− log(m ◦ ÃP)m.
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Making the variable x explicit, we have

Hm(P) :=
∫

x∈X
− log(m(ÃP(x)))m(dx).

In the case P is finite or countable, this definition implies that

Hm(P) =
∑

P ∈P

∫

x∈P
− log(m(ÃP(x)))m(dx)

=
∑

P ∈P

∫

x∈P
− log(m(P ))m(dx)

=
∑

P ∈P

−m(P ) log m(P ),

(2.9)

which coincides with formula 2.8 in the beginning of this section.
This definition via integral of the information function does not exclude the

possibility that the value of the entropy of some partition be infinite. In fact, there
are examples of this [VO16, p. 246, Example 9.1.4]. From this point forward, we
shall only consider partitions that have finite entropy and, occasionally, we might
restrict ourselves further to the case of finite partitions.

Besides the entropy of a partition, we will also define the conditional entropy of
a partition with respect to another partition. Definition 2.6 is based on [Rok67,
Section 5.1], but we present here the concept of conditional information in order
to motivate it, and to draw a parallel between the expositions of entropy and
conditional entropy via the integral of the respective information functions.

Consider two measure partitions P and P′, and a disintegration (mP ′)P ′∈P′ of
m with respect to P′. For each P ′ ∈ P′, we can consider the induced partition P|P ′

on P ′, given by the sets P ∩P ′ with P ∈ P. The conditional information of P with
respect to P′ is the information obtained from conducting an experiment to test if
a point belongs to a part of P after having already conduced the experiment for
P′. In more concrete terms, if we already know that a point x ∈ X belongs to P ′,
and we learn that it also belongs to P , we want this extra information to have the
value of the information of x ∈ P ∩ P ′ in the induced partition P|P ′ , which is

InP|P ′ (x) = − log mP ′(P ∩ P ′) = − log mP ′(P ).

Since P = ÃP(x) and P ′ = ÃP′(x), we define the conditional information as follows.

Definition 2.5 (Conditional information). Let X = (X,M, m) be a probability
space and P,P′ measurable partitions, and let (mP ′)P ′∈P be a disintegration of
m with respect to P′. The conditional information of P with respect to P′ is the
function

InP|P′ : X −→

x 7−→ − log(mÃ
P′ (x) ◦ ÃP(x)).
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Notice that, because of the remarks before the definition, for every x ∈ P ′

we have InP|P′(x) = InP|P ′ (x). Analogously to definition 2.4, we define the
conditional entropy as the mean of the conditional information.

Definition 2.6 (Conditional entropy). Let X = (X,M, m) be a probability space
and P,P′ measurable partitions, and let (mP ′)P ′∈P be a disintegration of m with
respect to P′. The conditional entropy of P with respect to P′ is

Hm(P | P′) :=
∫

X
InP|P′ m =

∫

x∈X
− log(mÃ

P′ (x) ◦ ÃP(x))m(dx).

From this definition, it is not at all clear how to compute this value, but from
formula 1.2 we obtain that

Hm(P | P′) =
∫

x∈X
InP|P′(x)m(dx)

=
∫

P ′∈P′

∫

x∈P ′
InP|P′(x)mP ′(dx)mP′(dP )

=
∫

P ′∈P′
HmP ′ (P|P ′)mP′(dP ′),

(2.10)

which is formula 12 presented in [Rok67, Section 5.1, p. 15]. If P and P′ are
countable, the conditional measures mP ′ are given by mP ′(M) = m(M∩P ′)

m(P ′)
(propo-

sition 1.7) and the quotient measure mP′ is given by mP′({P ′}) = m(P ′), so

HmP ′ (P|P ′) =
∑

P ∈P

−mP ′(P ∩ P ′) log mP ′(P ∩ P ′)

=
∑

P ∈P

−
m(P ∩ P ′)

m(P ′)
log

(

m(P ∩ P ′)

m(P ′)

)

,

which implies that

Hm(P | P′) =
∑

P ′∈P′

HmP ′ (P|P ′)mP′(P ′)

=
∑

P ∈P

−
m(P ∩ P ′)

m(P ′)
log

(

m(P ∩ P ′)

m(P ′)

)

m(P ′)

=
∑

P ∈P

∑

P ′∈P′

−m(P ∩ P ′) log

(

m(P ∩ P ′)

m(P ′)

)

.

This is the simplified formula presented in [VO16, Section 9.1.2, p. 247].

2.3.2 Measure entropy of a system

In this section, we will only consider countable measurable partitions with finite
entropy.
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Dynamical correfinement

Definition 2.7. Let X be a probability space, f : X −→ X a measure-preserving
transformation, P a measurable partition and n ∈ ∖ {0}. The n-th dynamical
correfinement of P by f is the partition

P
n
f :=

n−1j

i=0

(f i)£(P)

The n-th bilateral dynamical correfinement of P by f is the partition

P
±n
f :=

n−1j

i=−n

(f i)£(P)

An element of P ∈ P
[n]
f is of the form

P =
n−1
⋂

i=0

f−i(Pi),

in which Pi ∈ P for every i ∈ [n]. This means that, if x ∈ P , then, for every i ∈ [n],
f i(x) ∈ Pi. This gives the P-itinerary of the point x up to n iterates.

Entropy of the system

It is possible to show that the sequence of entropies (Hm(Pn
f ))n∈ is increasing and

subadditive [VO16, Section 9.1.3, p. 250]. This implies that the limit

lim
n→∞

1

n
Hm(Pn

f )

exists and is equal to the infimum of the sequence. This leads to the following
definition.

Definition 2.8 (Measure entropy of a system). Let X be a probability space, f :
X −→ X a measure-preserving transformation and P a measurable partition of X
with finite entropy. The measure entropy of f with respect to P is

hm(f,P) := lim
n→∞

1

n
Hm

(

P
n
f

)

.

Notice that the bilateral dynamical correfinement P
±n
f is not used in the defini-

tion of the measure entropy of the system relative to the partition P. It is used in
proposition 2.6 to simplify the calculation of the entropy of an invertible system.

The entropy hm(f,P) is an increasing function of the partition P (with respect
to the almost-refinement order ˚̄) [VO16, Section 9.1.3, p. 250].
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Definition 2.9. Let X be a probability space and f : X −→ X a measure-
preserving transformation. The measure entropy13 of f is

hm(f) := sup
P, Hm(P)<∞

hm(f,P).

It is possible to show that taking the supremum over all finite measurable
partitions P of X gives the same value of hm(f).

Proposition 2.3. Let X be a probability space and f : X −→ X a measure-
preserving transformation.

1. For every k ∈ , hm(fk) = khm(f);
2. If f is invertible, then, for every k ∈ , hm(fk) = |k|hm(f).

The calculation of the measure entropy of a system involves taking the supremum
over all measurable partitions with finite entropy. This is not feasible in practice for
most cases. Calculating the entropy with respect to a partition is generally much
easier. The following theorem allows us to calculate the entropy of the system if
we can find an increasing sequence of partitions (with respect to ˚̄) that generate
the σ-algebra (up to measure zero). The proof can be found in [VO16, Section 9.2,
p. 254].

Theorem 2.4 (Kolmogorov–Sinai [VO16, Theorem 9.2.1]). Let X = (X,M, m) be
a probability space, f : X −→ X a measure-preserving transformation and (Pk)k∈

an increasing sequence of measurable partitions with finite entropy such that
⋃

k∈ Pk

generates the σ-algebra M (up to measure zero). Then

hm(f) = lim
k∈

hm(f,Pk).

This is a general version of the Kolmogorov–Sinai theorem, which has some
corollaries that are sometimes also called by the same name. We state the corollaries
here to avoid any confusion. The proofs can be found in [VO16, Section 9.2.1,
p. 256]

Proposition 2.5. Let X = (X,M, m) be a probability space, f : X −→ X a
measure-preserving transformation and P a measurable partition with finite entropy
such that

⋃

k∈ ∖{0} P
k
f generates the σ-algebra M (up to measure zero). Then

hm(f) = hm(f,P).

If f is invertible, there is also another version of the corollary.

13. This is usually called metric entropy in the literature. We avoid the term metric because it
may lead to confusion with the topological entropy defined on a metric space.
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Proposition 2.6. Let X = (X,M, m) be a probability space, f : X −→ X an
invertible measure-preserving transformation and P a measurable partition with
finite entropy such that

⋃

k∈ ∖{0} P
±k
f generates the σ-algebra M (up to measure

zero). Then
hm(f) = hm(f,P).

2.3.3 Folding entropy

Definition 2.10. Let X be a probability space and f : X −→ X a measure-
preserving transformation. The atomic partition of X is

ϵ := ℘
1(X) = {{x} | x ∈ X}

and the dynamical pullback of ϵ is

f£(ϵ) = {f−1(x) | x ∈ }.

In [Rue96] the author introduces the folding entropy for C 1 transformations. It
can be defined [Liu03; WZ21] as the conditional entropy of the atomic partition ϵ

with respect to its dynamical pullback.

Definition 2.11. Let X be a probability space and f : X −→ X a measure-
presering transformation. The folding entropy of f with respect to m is

F(f) := Hm(ϵ | f£(ϵ)).

2.4 Topological entropy

The topological entropy of a compact topological space was first defined by Adler,
Konheim, and McAndrew in [AKM65], motivated by the measure entropy for
measure spaces, but substituting open covers for measurable partitions. We will
not present this construction here, only a later development for metric spaces that
is equivalent to the general definition for compact topological spaces.

2.4.1 Topological entropy for metric spaces

In this section we study the topological entropy of a metric space that was first
defined by Bowen and Dinaburg [Bow71; Din70]. It is defined in any metric space
with a uniformly continuous transformation and coincides with the topological
entropy of [AKM65] in the adequate context. For that reason, this entropy is also
called topological entropy, but it is possible to generalize the definition in metric
spaces to uniform spaces (as done by Hood in [Hoo74]) and show that they coincide
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when one considers the uniform structure on the metric space that is generated by
the distance function. This suggests the topological entropy of Bowen–Dinaburg
is a kind of uniform entropy, a notion that is reinforced by the fact that they are
invariant by uniformly continuous conjugation and coincident for two distance
functions of a metric that are uniformly equivalent (proposition 2.8).

The definition by dynamical balls presented here makes it clear that the topo-
logical entropy can be interpreted as the rate of exponential growth of the number
of essentially different orbit of the dynamics. It is also more general in the sense
that it is defined for non-compact spaces.

Dynamical balls

Definition 2.12. Let M = (M, d) be a metric space, f : M −→M a continuous
transformation and n ∈ >0. The dynamical distance of order n relative to f and d

in M is

dn
f : M ×M −→

(p, p′) 7−→ dn
f (p, p′) := max

i∈[n]
d(f i(p), f i(p′)).

It is a straightforward exercise to show that dn
f : M ×M −→ is a distance

function on M and that, for every p, p′ ∈ M , the sequence (dn
f (p, p′))n∈ >0 is

increasing.

Definition 2.13. Let M = (M, d) be a metric space, f : M −→M a continuous
transformation, n ∈ >0, c ∈ M and r ∈ >0. The dynamical ball of order n,
center c and radius r relative to f and d is the ball of center c and radius r of
(M, dn

f ), denoted
Bn

f (c; r) := {p ∈M | dn
f (c, p) < r}.

When there is no ambiguity, we shall suppress the subindex f to simplify
notation, resulting in dn(c, p) and Bn(c; r). It is also a straightforward exercise to
show that

Bn(c; r) =
⋂

i∈[n]

f−i(B(f i(c); r)),

which implies that Bn(c; r) is open in M and that the sequence of sets (Bn(c; r))n∈ >0

is decreasing.

Generating sets

Definition 2.14. Let M = (M, d) be a metric space, f : M −→M a continuous
transformation, K ¦M a compact set, n ∈ >0 and ε ∈ >0. A (n, ε)-generator
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of K is a set G ¦M such that

K ¦
⋃

p∈G

Bn(p; ε).

In this case, G (n, ε)-generates K. The minimal cardinality of an (n, ε)-generator
of K is denoted

H̄n
d(f, K, ε) := min{#G | G ¦M (n, ε)-generates K}.

Since {Bn(p; ε) | p ∈ K} is an open cover of K, it follows by compacity that
there exists a finite (n, ε)-generator of K, so H̄n

d(f, ε, K) is always finite.
There is a dual notion of a generator set, called a separated set. This is used to

ease calculations and proofs related to the topological entropy of a metric space.
We will not define this dual notion here, but the details can be found in [VO16,
Section 10.1.2, p. 305].

Entropy of the system

Definition 2.15. Let M = (M, d) be a metric space, f : M −→M a continuous
transformation, K ¦M a compact set and ε ∈ >0. The ε-imprecise topological
entropy of f with respect to K is

hd(f, K, ε) := lim
n→∞

1

n
log H̄n

d(f, K, ε).

It is possible to show that hd(f, K, ε) is a decreasing function of ε. As a
consequence, the limit for ε→ 0 exists.

Definition 2.16. Let M = (M, d) be a metric space, f : M −→M a continuous
transformation and K ¦ M a compact set. The topological entropy of f with
respect to K is

hd(f, K) := lim
ε→0

hd(f, K, ε).

The topological entropy of f is

hd(f) := sup
compact K¦M

hd(f, K).

The topological entropy satisfies an exponent law analogous to that for measure
entropy of proposition 2.3.

Proposition 2.7. Let M = (M, d) be a metric space and f : M −→M a uniformly
continuous transformation.

1. For every k ∈ , hd(fk) = khd(f);
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2. If f is a homeomorphism and M is compact, then, for every k ∈ , hd(fk) =
|k|hd(f).

Proposition 2.7 is not true in general for non-compact metric spaces, as
can be easily be checked by showing that f(x) = 2x in (with the standard
distance function) has topological entropy greater than or equal to log 2, but f−1

has topological entropy equal to 0.
To finish this section, we present a proof that two distance functions that are

uniformly equivalent give the same topological entropy.

Proposition 2.8. Let M be a set, d and d′ uniformly equivalent distance functions
on M , and f : M −→M a continuous transformation on (M, d). Then

hd(f) = hd′(f).

Proof. We first show that, for every n ∈ >0, the dynamical distances dn and
d′n are uniformly equivalent. Since d and d′ are uniformly equivalent, for every
ε ∈ >0, there exists ¶ ∈ >0 such that, for every p, q ∈ M , d(p, q) < ¶ implies
d′(p, q) < ε. If dn(p, q) < ¶ then, for every i ∈ [n], d(f i(p), f i(q)) < ¶, so it follows
from the uniform equivalence of the distance functions that d′(f i(p), f i(q)) < ε,
which implies that d′n(p, q) < ε. The opposite implication follows from exchanging
d and d′, and we conclude that dn and d′n are uniformly equivalent.

Now let K ¦ M be a compact set, ε′ ∈ >0 and n ∈ >0. By the uniform
equivalence of the dynamical distance functions, there exists ε ∈ >0 such that
ε f ε′, for every p, q ∈M , dn(p, q) < ε implies d′n(p, q) < ε′, which is equivalent to
having Bn(p; ε) ¦ B′n(p; ε′).

Let GK,ε,n ¦M be a set such that H̄n
d(f, K, ε) = #GK,ε,n. Then it follows that

K ¦
⋃

p∈GK,ε,n

Bn(p; ε) ¦
⋃

p∈GK,ε,n

B′n(p; ε′),

which shows that
H̄n

d′(f, K, ε′) f #GK,ε,n = H̄n
d(f, K, ε).

By taking a sequence (ε′
m)m∈ in >0 such that limm→∞ ε′

m = 0, there exists a
sequence (εm)m∈ in >0 such that limm→∞ εm = 0 and

H̄n
d′(f, K, ε′

m) f H̄n
d(f, K, εm),

so it follows that

hd′(f) = sup
K

lim
m→∞

lim
n→∞

1

n
H̄n

d′(f, K, ε′
m)

f sup
K

lim
m→∞

lim
n→∞

1

n
H̄n

d(f, K, εm)

= hd(f).
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The opposite inequality follows from exchanging d and d′, and we conclude that
hd(f) = hd′(f). ■

2.4.2 Topological entropy of flows

Topological entropy can be easily defined for a continuous flow ϕ : ×M −→M

in a metric space M , based on the same approach for continuous transformations
on M [VO16, Section 10.2.3, p. 318]. The dynamical distance of order t ∈ >0 is
defined for p, p′ ∈M as

dt
ϕ(p, p′) := sup

s∈[0,t[

d(ϕs(p), ϕs(p′)),

the dynamical ball of order t ∈ >0, center c ∈M and radius r ∈ >0 is defined as

Bt
ϕ(p; r) := {p ∈M | dt

ϕ(c, p) < r}

and, for each compact set K ¦M , a set G ¦M (t, ε)-generates K when

K ¦
⋃

p∈G

Bt(p; ε).

Then the topological entropy of ϕ can be defined as

hd(ϕ) := sup
compact K¦M

lim
ε→0

lim
t→∞

1

t
log #(G

(t)
ϕ,K,ε),

in which G
(t)
ϕ,K,ε ¦ K is a set whose cardinality is minimal among those that

(t, ε)-generates K.
The topological entropy of a flow can be shown to be equivalent to the topological

entropy of the time-1 map ϕ1 : M −→ M when the flow is uniformly continuous
[VO16, Proposition 10.2.7, p. 319]. The exponent law of entropy is also valid for
flows.

Proposition 2.9. Let M = (M, d) be a compact metric space and ϕ : ×M −→M

a uniformly continuous flow. Then, for every k ∈ ,

hd(ϕk) = |k|hd(ϕ).
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Chapter 3

Symbolic dynamics

In this chapter we present results for bisymbolic shift spaces, a theory of extended
symbolic shift spaces called zip shifts in the literature. In section 3.1 we present
an introduction to unilateral shift, as well as a result in disintegration of measures
on these spaces, to motivate the work on bisymbolic shifts, which is exposed in
section 3.2. In this section we defined the bisymbolic shift and compute its
measure entropy and its folding entropy. The work of this section was developed in
[MMV24].

3.1 Unilateral shift

3.1.1 Space and dynamics

The shift dynamical system is a model used to study the dynamical behavior of
different systems by considering the itinerary of points relative to a finite number
of parts the original system is divided in. When we have a finite partition P of a
system f : X −→ X, we can determine, for each point p of the system, the part
that p belongs to in P, say P0, then the part f(p) belongs to, say P1, and so on.
Since P is a partition, each point of the system belong to exactly one part of P.
This results in a sequence

(3.1) (P0, P1, . . .)

on the set P which is indexed by g0.
To consider another perspective, every point of P ∈ P is going to have an

encoding sequence that has 0-th entry P . Moreover, the points of the set f−1(P )
are the points p whose image by the dynamics is in P , that is, f(p) ∈ P . This means
that their encoding sequence must have their 1-st entry P . These facts combined
are equivalent to this: for every P0, P1 ∈ P, the elements of P0 ∩ f−1(P1) must have
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the beginning of their encoding sequence be (P0, P1); generalizing for n ∈ ∖ {0},
we obtain that, for every P0, . . . , Pn−1 ∈ P, the elements of

⋂n−1
i=0 f−i(Pi) must have

the beginning of their encoding sequence be

(P0, P1, . . . , Pn−1).

If we proceed in this for larger values of n, we obtain the limiting case of the set

(3.2)
∞
⋂

i=0

f−i(Pi)

whose points must be associated to the (infinite) sequence in formula 3.1. To
obtain a full equivalence of points of the space and sequences on P, every point of
the space must belong to the set in formula 3.2, and every such set must consist
of a single point. This is not always the case for the systems we encode using a
partition but, for those that this does happen, we can understand their dynamics
simply by understanding the dynamics of the space of sequences, which is much
easier to work with in general.

Nevertheless, to encode the original dynamics f on X with a new dynamics on
the abstract space of all sequences on a partition, we must also determine what
the dynamics on the space of sequences is. For that, notice the itinerary sequence
of f(p) is

(P1, P2, . . .);

that is, the itinerary sequence of f(p) is the same as the itinerary sequence of p

in formula 3.1, except for its first entry, for the orbit of f(p) is the same as
that of p, except for the first point. These objects are formalized in the following
definitions. Remember that we denote [n] := {0, . . . , n− 1}.

Definition 3.1. Let n ∈ ∖{0}. The unilateral n-symbolic shift dynamical system
is the pair ( +

n , Ã) in which

1. the unilateral n-symbolic space is the set +
n := [n] g0 of all unilateral n-

symbolic sequences; that is, g0-sequences

x : g0 −→ [n]

i 7−→ xi,

which are also denoted x = (x0, x1, . . .).
2. the unilateral shift on +

n is the function

Ã : +
n −→

+
n

x 7−→ Ã(x) : g0 −→ [n]

i 7−→ xi+1.
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That is, the function Ã shifts each entry of the sequence (x0, x1, . . .) to the left,
deleting the first symbol x0 in the process, resulting in the sequence (x1, x2, . . .).
This implies that each sequence x has n preimages, which (in the common case
n > 1) implies that Ã is not invertible. The dynamical system ( +

n , Ã) is known as
the unilateral Bernoulli 1 shift.

3.1.2 Measure structure of unilateral shifts

To define the measure structure of +
n , we will first define basic sets that generate

this structure.

Definition 3.2. Let n ∈ ∖ {0}, i ∈ g0 and s ∈ S. The basic cylinder of index
i and symbol s in +

n is the set

Cs
i := {x ∈ +

n | xi = s}.

Let i0, . . . , ik−1 ∈ g0 and s0, . . . , sk−1 ∈ [n]. The cylinder of indices i0, . . . , ik−1

and symbols s0, . . . , sk−1 in +
n is the set

C
s0,...,sk−1

i0,...,ik−1
:=

k−1
⋂

j=0

C
sj

ij
= {x ∈ +

n |
∧k−1

j=0
xij

= sj}.

The σ-algebra of +
n , denoted M +

n
, is the measurable (Borel) σ-algebra gener-

ated by the the cylinder sets.
Considering the discrete σ-algebra on [n] = {0, . . . , n− 1}, any probability mea-

sure Ä on [n] can be identified with a probability distribution p = (p0, . . . , pn−1) ∈
n−1 by denoting pi := Ä({i}). We define the probability measure m+

p on ( +
n ,M +

n
)

as the product measure of p on +
n = [n] g0 , which is given by its values on the

cylinders as follows:
m+

p (Cs
i ) := ps.

Thus ( +
S ,M +

n
, m+

p ) is a probability space.

3.1.3 Disintegration of measure for unilateral shifts

We will present the disintegration (see definition 1.33) of the measure m+
p of

unilateral shifts in order to ease the understanding of the case of bisymbolic shifts
(proposition 3.13) we will present ahead in section 3.2.

The atomic partition of +
n is ϵ := {{x} | x ∈ +

n }, the partition into points. We
will disintegrate the measure m+

p with respect to the dynamical pullback partition

1. Jacob Bernoulli (1655–1705), Swiss mathematician.
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Ã−1(ϵ) = {Ã−1({x}) | x ∈ +
n }. Also, for each symbol s ∈ [n] and sequence x ∈ +

n ,
we denote the sequence formed by their juxtaposition by

sx := (s, x0, x1, . . .).

In this way, we have x̂ := Ã−1({x}) = {sx | s ∈ [n]}. We will denote the measure
m+

p by m for simplicity.

Proposition 3.1. Let n ∈ ∖ {0}S, ( +
n , Ã) be the unilateral n-symbolic shift

space, p ∈ n−1 a probability distribution and, for each x̂ ∈ Ã−1(ϵ), mx̂ be the
probability measure on x̂ given on each sx ∈ x̂ by mx̂({sx}) = ps.

The family {mx̂} is the disintegration of m relative to Ã−1(ϵ).

Proof. It suffices to prove that, for each basic cylinder Cs
i , it holds that

m(Cs
i ) =

∫

x̂∈Ã−1(ϵ)
mx̂(Cs

i )m̂(dx̂).

First, we describe a base for the σ-algebra of Ã−1(ϵ), that is the pushforward
algebra by the projection Ã : +

n −→ Ã−1(ϵ). For each basic cylinder C, we define
the set

Ĉ := {x̂ | x ∈ C},

and notice that its inverse image by Ã is the union of the sets sC := {sx | x ∈ C};
that is

Ã−1(C) =
⋃

s∈S

sC.

The sets Ĉ are measurable because their inverse image is a union of cylinders,
hence measurable. Also, every subset must be of the form Ĉ for some set C, since
the elements of Ã−1(ϵ) are of the form {sx | s ∈ [n]} for some x. It can be checked
that they are indeed a base for the σ-algebra.

The projected measure of Ĉ in Ã−1(ϵ) is

m̂(Ĉ) = m(Ã−1(C)) = m(
⋃

s∈[n]

sC) =
∑

s∈[n]

psm(C) = m(C).

Now we consider 2 cases:

• (i = 0) We have the cylinder Cs
0 . Calculating mx̂(Cs

0) is the same calculating
mx̂(Cs

0 ∩ x̂). But Cs
0 ∩ x̂ = {sx}, since sx is the only element of x̂ that is an

element of Cs
0 . Hence

mx̂(Cs
0) = mx̂(Cs

0 ∩ x̂) = mx̂({sx}) = ps.

Since mx̂(Cs
0) has the same value for every x̂, it follows that

∫

x̂∈Ã−1(ϵ)
mx̂(Cs

0) dm̂(x̂) =
∫

x̂∈Ã−1(ϵ)
ps dm̂(x̂) = ps = m(Cs

0).
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• (i > 0) Notice that
⋃

s∈S sCs
i−1 = Cs

i . We want to calculate mx̂(Cs
i ), or

mx̂(Cs
i ∩x̂). Consider 2 cases: 1. in the first case, x̂ ∈ Ĉs

i−1, which is equivalent
to x ∈ Cs

i−1, hence it holds that Cs
i ∩ x̂ = x̂ and mx̂(Cs

i ) = mx̂(x̂) = 1; 2. in
the second case, x̂ |∈ Ĉs

i−1, which is equivalent to x |∈ Cs
i−1, hence it holds

that Cs
i ∩ x̂ = and mx̂(Cs

i ) = mx̂( ) = 0. Since m̂(Ĉs
i−1) = m(Cs

i−1) = ps,
this implies that
∫

x̂∈Ã−1(ϵ)
mx̂(Cs

i )m̂(dx̂) =
∫

x̂∈Ĉs
i−1

mx̂(Cs
i )m̂(dx̂) +

∫

x̂ |∈Ĉs
i−1

mx̂(Cs
i )m̂(dx̂)

=
∫

x̂∈Ĉs
i−1

1m̂(dx̂) +
∫

x̂ |∈Ĉs
i−1

0m̂(dx̂)

= ps + 0

= m(Cs
i ). ■

3.2 Bisymbolic shift

3.2.1 Space and dynamics

Analogously to the way we defined the unilateral shift in section 3.1, we can
define a bilateral shift in a space X with invertible dynamics f : X −→ X and finite
partition P. For each point p ∈ X, the ‘forward’ sequence (P0, P1, . . .) represents
the same as in the unilateral shift case — each part Pi is the one the point f i(p)
belongs to — but now the point f−1(p) exists, so we can also determine the part
of P the point f−1(p) belongs to, say P−1, and likewise for f−2(p) a part P−2, and
so on and so forth, establishing in this manner a ‘backwards’ sequence

(. . . , P−2, P−1).

Concatenating both ‘forward’ and ‘backward’ sequences, we obtain a ‘bilateral’
sequence2

(. . . , P−2, P−1; P0, P1, . . .).

This leads to the construction of the bilateral n-symbolic shift dynamical system
( n, Ã) by defining n := [n] and the shift Ã is defined as

Ã : n −→ n

x 7−→ Ã(x) : −→ [n]

i 7−→ xi+1,

2. The semicolon (;) is used to indicate the separation of the ‘forward’ and ‘backward’ sequences.
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that is, Ã shifts the sequence (. . . , x−2, x−1; x0, x1, . . .) to the sequence

(. . . , x−1, x0; x1, x2, . . .)

(notice the semicolon). In contrast to the unilateral case, the symbol x0 is not lost
in the process, and the function Ã is invertible.

There is a well-developed theory of symbolic dynamics for these spaces, but
here we intend to present a different construction based on these standard shift
spaces. Instead of considering only one finite partition P, we may consider two
partitions P+ and P−, and use the former to encode the orbit of the point p going
forward, and the latter to encode its backwards orbit. In this way, we obtain for
each point p ∈ X a sequence

(3.3) (. . . , P −
−2, P −

−1; P +
0 , P +

1 , . . .)

in which the entries P −
i (for i ∈ <0) are parts of P− and the entries P +

i (for
i ∈ g0) are parts of P+. The shift function may be defined for every entry as
usual by shifting it to the left, except for the 0-th entry. If the usual procedure
were to be followed, the resulting shifted sequence would have an element of the
partition P+ in its (−1)-st position, and hence this sequence would not be of the
same type as the one in formula 3.3. To decide how to solve this problem (or
even to better argue why these different types of sequences must not be allowed),
we must understand the dynamical reason the bisymbolic shift spaces are relevant.

In order to do that, let us consider a motivating example (check [MM22]).
Consider the unit square Q := [0, 1] × [0, 1]. The 2-to-1 baker’s transformation3

on Q is the transformation

f(x, y) =



























(4x, 1
2
y), (x, y) ∈ [0, 1

4
[× [0, 1]

(4x− 1, 1
2
y + 1

2
), (x, y) ∈ [1

4
, 1

2
[× [0, 1]

(4x− 2, 1
2
y), (x, y) ∈ [1

2
, 3

4
[× [0, 1]

(4x− 3, 1
2
y + 1

2
), (x, y) ∈ [3

4
, 1]× [0, 1].

f(x, y) =



























(4x, 1
2
y), (x, y) ∈ V0

(4x− 1, 1
2
y + 1

2
), (x, y) ∈ V1

(4x− 2, 1
2
y), (x, y) ∈ V2

(4x− 3, 1
2
y + 1

2
), (x, y) ∈ V3.

The transformation f dilates the square Q, cuts the dilated bands and then glues
them on top or above the others (check figure 3.1 for detailed visual explanation
of the action of the transformation). An analogous transformation can be defined
for the n-to-1 baker’s transformation.

3. The name comes from the classic baker’s transformation that is encoded by the bilateral shift,
which comes from an analogy with the action of a baker kneading bread dough: stretching it,
cutting the dough in parts and placing some parts over the others, then repeating the process.
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R1

R2

Q Q

(3)
←−

(1)

−
→ (2)

−
→

−→
f

Figure 3.1. The 2-to-1 baker’s transformation. On step 1, the
square Q is dilated by 4 in the horizontal direction and by 1

2 in
the vertical direction, resulting in a rectangle R1. On step 2, the
right-most bands of the rectangle R1 are glued over the left-most
ones, resulting in a smaller rectangle R2. On step 3, the left right
band of the rectangle R2 is glued above the left band, resulting
again in the square Q.

The square Q has 2 natural partitions (check figure 3.2) which come from the
definition of the baker’s transformation itself: the vertical partition V is composed
of the the vertical bands

V0 :=
[

0,
1

4

[

× [0, 1]

V1 :=
[

1

4
,
1

2

[

× [0, 1]

V2 :=
[

1

2
,
3

4

[

× [0, 1]

V3 :=
[

3

4
, 1
]

× [0, 1]

and the horizontal partition H is composed of the horizontal bands

Ha := [0, 1]× [0,
1

2
[

Hb := [0, 1]× [
1

2
, 1[.

These sets are subjected to the important relations

(3.4) f(V0) = f(V2) = Ha and f(V1) = f(V3) = Hb.
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Hb

Ha

HV

V0 V1 V2 V3

Figure 3.2. The vertical partition V and horizontal partition H

of the 2-to-1 baker’s transformation.

Using these partitions, we can encode the forward and backward orbits of a
point p in the square Q under the transformation f . For the entries of the encoding
sequences, we will use the symbol sets S+ := {0, 1, 2, 3} and S− := {a, b} instead
of the horizontal and vertical bands themselves. This will simplify notation.

Take a point p ∈ Q and let us describe its encoding sequence x. For each
i ∈ g0, the entry xi of the sequence is defined to be the unique symbol s ∈ S+

such that f i(p) ∈ Vs; for each i ∈ <0, the entry xi is defined to be the unique
symbol s ∈ S− such that f i+1(p) ∈ Hs. As an example, suppose such a sequence is
given by

(3.5) x = (. . . , b, b, a, b; 0, 3, 2, 4, . . .).

Notice that the forward iterations of the horizontal bands are thinner horizontal
bands (check figure 3.3), so in the limit the backwards sequence determines the
horizontal position of the point p, while the backward iterations of the vertical
bands are thinner vertical bands (check figure 3.3), so in the limit the forwards
sequence determines the vertical position of the point p. In this way, the sequence
determines (almost every) point.

Let us understand what the dynamical behavior of a point encoded by such
a sequence is. Consider a point p with encoding sequence x as in formula 3.5.
The backwards part of the sequence encodes that

p ∈ Hb ∩ f(Ha) ∩ f 2(Hb) ∩ f 3(Hb) ∩ · · · ,

so then f(p) ∈ f(Hb) ∩ f 2(Ha) ∩ f 3(Hb) ∩ f 4(Hb) ∩ · · · , which means that the
backwards part of the encoding sequence y of f(p) is (. . . , b, b, a, b, y−1). The (−1)-st
entry y−1 is not determined by this sequence.

Likewise, the forwards part of the sequence x in formula 3.5 encodes that

p ∈ V0 ∩ f−1(V3) ∩ f−2(V2) ∩ f−3(V4) ∩ · · · ,

so then f(p) ∈ f(V0) ∩ V3 ∩ f−1(V2) ∩ f−2(V4) ∩ · · · . Let us separate this in the
formulas f(p) ∈ f(V0) and f(p) ∈ V3∩f−1(V2)∩f−2(V4)∩· · · . The second formula
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Hb

Ha

V0 V1 V2 V3

−→
f

−→
f

←−
f−1

←−
f−1

Figure 3.3. The first 2 iterations of the horizontal partition H

and the vertical partition V of the 2-to-1 baker’s transformation. In
the limit, the iterations of the horizontal partition is the partition
of the square by horizontal line, and the iteration of the vertical
partition is the partition by vertical lines.

means that the forwards part of the encoding sequence y of f(p) is (3, 2, 4, . . .).
Since f(V0) = Ha (check formula 3.4), the first formula means that the entry
y−1 of the backwards sequence of f(p) is a, which was the only entry yet to be
determined, so the encoding sequence of f(p) is

y = (. . . , b, a, b, a; 3, 2, 4, . . .).

In general, whatever the encoding sequence of p is, we can shift it to the left to
obtain the backwards part of the encoding sequence of f(p), except for the (−1)-st
entry, and the forwards part, while the (−1)-st entry is determined by the relations
in formula 3.4. Based on these relations, we can define a function ϕ : S+ −→ S−

by
ϕ(0) = ϕ(2) = a and ϕ(1) = ϕ(3) = b.

This function ϕ is surjective.
This construction can be formalized in the following definition. In the previous

discussion, we used numbers and letters to emphasize the distinction between
‘forward’ and ‘backward’ symbols, but in the definition we used two sets of numbers.

Definition 3.3. Let n−, n+ ∈ ∖ {0} and ϕ : [n+] −→ [n−] a surjective function.
The (n−, n+)-bisymbolic ϕ-shift dynamical system is the pair ( n−,n+ , Ãϕ) in which
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1. the (n−, n+)-bisymbolic space is the set

n−,n+
:= {x = (. . . , x−1; x0, x1, . . .) |

∧

i<0
xi ∈ [n−],

∧

ig0
xi ∈ [n+]}.

2. the bisymbolic shift with transition function ϕ is the function

Ãϕ : n−,n+ −→ n−,n+

x 7−→ Ãϕ(x) : −→ [n−] ∪ [n+]

i 7−→







xi+1 i |= −1

ϕ(x0) i = −1.

To simplify notation, we may denote Ã := Ãϕ. Definition 3.3 determines the
shift Ã to take a sequence (. . . , x−1; x0, x1, . . .) ∈ n−,n+ to the sequence

(. . . , x−1, ϕ(x0); x1, . . .) ∈ n−,n+ ,

as we found analyzing the example of the 2-to-1 baker’s transformation. As a
consequence of ϕ being surjective, we have that n+ g n−.

3.2.2 Measurable structure

The σ-algebra B of the space n−,n+ is the one generated by cylinder sets: for each
(s, i) ∈ [n−] × <0 or (s, i) ∈ [n+] × g0, we define the cylinder

Cs
i := {x ∈ n−,n+ | xi = s}.

We also define the extended cylinder

C
ϕ−1(s)
i :=

⋃

s′∈ϕ−1(s)

Cs′

i .

The next proposition shows how the dynamics acts backwards and forwards on
cylinders.

Proposition 3.2 ([MMV24]). Let k ∈ and s ∈ [n−] ∪ [n+]. Then

Ã−k(Cs
i ) =







Cs
i+k i |∈ [−k, −1] ∩

C
ϕ−1(s)
i+k i ∈ [−k, −1] ∩ .

and

Ãk(Cs
i ) =







Cs
i−k i |∈ [0, k − 1] ∩

C
ϕ(s)
i−k i ∈ [0, k − 1] ∩ .
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Proof. For the inverse image, it holds that

Ã−1(Cs
i ) =







Cs
i+1 i |= −1

C
ϕ−1(s)
0 i = −1.

hence it holds that x ∈ Cs
i if, and only if, Ã−1(x)s′ ∈ Cs

i+1 (such that s′ = s if
i = −1). Then, by induction, we obtain that, for every k ∈ ,

Ã−k(Cs
i ) =







Cs
i+k i |∈ [−k, −1] ∩

C
ϕ−1(s)
i+k i ∈ [−k, −1] ∩ .

For the direct image, it holds that

Ã(Cs
i ) =







Cs
i−1 i |= 0

C
ϕ(s)
−1 i = 0.

Then, by induction, we obtain that, for every k ∈ ,

Ãk(Cs
i ) =







Cs
i−k i |∈ [0, k − 1] ∩

C
ϕ(s)
i−k i ∈ [0, k − 1] ∩ .

■

3.2.3 Measure structure

In order to define a measure on ( n−,n+ ,B), it is sufficient to define it on the basic
cylinders Cs

i . We start with a probability distribution p+ ∈ n+−1, which can be
identified with a probability measure Ä+ on [n+] (with the discrete σ-algebra) by
setting (as in formula 2.1), for each s+ ∈ [n+], Ä+({s+}) := p+

s+ .
Using the surjective transition function ϕ : [n+] −→ [n−], we can define a

probability distribution p− ∈ n−−1 by setting, for each s− ∈ [n−],

p−
s− :=

∑

s+∈ϕ−1(s−)

p+
s+ .

This is the probability distribution associated to the pushforward measure ϕ¢p+,
which can be calculated by considering the partition {ϕ−1(s−)}s−∈[n−] of [n+] by
the inverse images of elements of [n−] (this is a partition because ϕ is a surjective
function). The pushforward measure of {s−} ¦ [n−] is then the sum of the measure
of all the elements of ϕ−1(s−) on [n+], given for each s− ∈ [n−] by

p−({s−}) = ϕ¢p+({s−}) = p+(ϕ−1({s−})) =
∑

s+∈ϕ−1(s−)

p+({s+}).

Then, for a basic cylinder Cs
i , we can define its measure as p+

s if i g 0 and p−
s

if i < 0.
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Definition 3.4. Let ( n−,n+ , Ãϕ) be a bisymbolic shift dynamical system, and p+ ∈
n+−1 a discrete probability distribution. The probability measure on ( n−,n+ , Ãϕ)

induced by p+ is the probability measure mp+ : B −→ [0, 1] defined on basic
cylinders by

mp+(Cs
i ) :=







p−
s , i < 0

p+
s , i g 0

=











∑

s′∈ϕ−1(s)

p+
s′ , i < 0

p+
s , i g 0.

For simplicity, we denote m := mp+ . From the way we defined the distribution
p− ∈ n−−1 by the pushforward, it is easy to show that the shift dynamics is
measure-preserving. We just need to be careful considering the different cases.

Proposition 3.3 ([MMV24]). Let ( n−,n+ , Ãϕ) be a bisymbolic shift dynamical
system and p+ ∈ n+−1. The dynamics Ãϕ preserves the measure mp+.

Proof. It suffices to show that, for every basic cylinder Cs
i ,

m(Ã−1(Cs
i )) = m(Cs

i ).

We consider 3 cases:

1. (i g 0) In this case, Ã−1(Cs
i ) = Cs

i+1 (proposition 3.2). Since i + 1 g 1, if
follows from definition 3.4 that

m(Ã−1(Cs
i )) = m(Cs

i+1) = p+
s = m(Cs

i ).

2. (i < −1) In this case, it also holds that Ã−1(Cs
i ) = Cs

i+1 (proposition 3.2).
Since i + 1 < 0, i follows from definition 3.4 that

m(Ã−1(Cs
i )) = m(Cs

i+1) = p−
s = m(Cs

i ).

3. (i = −1) In this case, Ã−1(Cs
i ) = C

ϕ−1(s)
0 =

⋃

s′∈ϕ−1(s) Cs′

0 (proposition 3.2).
Since i + 1 = 0, it follows from definition 3.4 that

m(Ã−1(Cs
i )) = m(

⋃

s′∈ϕ−1(s)

Cs′

0 ) =
∑

s′∈ϕ−1(s)

m(Cs′

0 ) =
∑

s′∈ϕ−1(s)

p+
s′ = m(Cs

i ). ■

3.2.4 Measure entropy

In this section we calculate the metric entropy of ( n−,n+ , Ãϕ) and relate it to the
entropy of the probability distributions p+ and p−.
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Partitions by cylinders

We start by defining partitions by cylinders, since all our calculations depend on
them.

Definition 3.5. Let i ∈ . The partition by cylinders of index i is the partition

Ci :=







{Cs
i | s ∈ [n+]} i g 0

{Cs
i | s ∈ [n−]} i < 0.

Let n, n′ ∈ . The partition by cylinders of indices from n to n′ is the partition

Cn,...,n′ :=
n′j

i=n

Ci.

The following simple lemma sums up how the dynamics of the Ã acts on these
partitions.

Lemma 3.4 ([MMV24]). For every i g 0,

1. Ãi(C0) = C−i;
2. Ã−i(C0) = Ci;
3. Ã−i(C−(i+1)) = C−1;
4. Cn

0 = C0,...,n−1;
5. C

±n
0 = C−n,...,n−1.

Proof. This is a consequence of proposition 3.2.

1. Since Ã(Cs
0) = C

ϕ(s)
−1 and ϕ is surjective, it follows that Ã(C0) = C−1. By

induction, Ãi(C0) = C−i.
2. Since Ã−1(Cs

0) = Cs
1 , it follows that Ã−1(C0) = C1. By induction, Ã−i(C0) =

Ci.
3. Since Ã−1(Cs

−s) = Cs
−1, it follows that Ã−1(C−2) = C−1. By induction,

Ã−i(C−(i+1)) = C−1.
4. It follows that

C
n
0 =

n−1j

i=0

Ã−i(C0) =
n−1j

i=0

Ci.

5. It follows that

C
±n
0 =

n−1j

i=−n

Ã−i(C0) =
n−1j

i=−n

Ci. ■
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Entropy of partitions by cylinders

Let us calculate the metric entropy of the partitions C0 and C−1.

Lemma 3.5 ([MMV24]). Let ( n−,n+ , Ãϕ) be an extended shift system with measure
m defined by a probability distribution p+ ∈ n+−1. Then

1. Hm(C0) = H n+−1(p+);
2. Hm(C−1) = H n−−1(p−);

Proof. The measure entropy of C0 follows from the simple calculation

Hm(C0) = −
∑

0fs<n+

m(Cs
0) log(m(Cs

0)) = −
∑

0fs<n+

p+
s log(p+

s ) = H n+−1(p+).

and, likewise, the measure of C−1 follows from

Hm(C−1) = −
∑

0fs<n−

m(Cs
−1) log(m(Cs

−1)) = −
∑

0fs<n−

p−
s log(p−

s ) = H n−−1(p−).

■

This shows, as could be expected, that the entropy of the partition C0 is the
entropy of p+, the measure of the positive part of the extended shift n−,n+ , while
the entropy of the partition C−1 is the entropy of p−, the measure of the negative
part of n−,n+ . We can now calculate the measure entropy of a partition by
cylinders other than the basic C0 and C−1.

Lemma 3.6 ([MMV24]). Hm(C−n,...,0,...,n′−1) = nHm(C−1) + n′Hm(C0).

Proof. For every i g 1, it holds that Ci = Ã−i(C0) and Ã−i(C−(i+1)) = C−1

(lemma 3.4). Since Ã preserves the measure m (proposition 3.3), it follows that
Hm(Ci) = Hm(C0) and Hm(C−(i+1)) = Hm(C−1).

Besides that, for any integers i < i′, the partitions Ci and Ci′ are independent,
because Cs

i ∩ Cs′

i′ = C
s,s′

i,i′ and m(Cs,s′

i,i′ ) = m(Cs
i )m(Cs′

i′ ). Thus it follows that

Hm(C−n,...,0,...,n′−1) = Hm





n′−1j

i=−n

Ci



 =
n′−1
∑

i=−n

Hm(Ci) = nHm(C−1) + n′Hm(C0). ■

In particular, since Cn
0 = C0,...,n−1 (lemma 3.4), this implies that

hm(Ã,C0) = lim
n→

1

n
Hm(Cn

0 ) = lim
n→

1

n
nHm(C0) = Hm(C0).
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Entropy of the system

To calculate the measure entropy of the system, we will use the Kolmogorov–Sinai
theorem (theorem 2.4). To that end we define a sequence of partitions.

Definition 3.6. Pn := C
±n
0 = C−n,...,n−1.

We will eventually need to use the measure entropy of Pk
n, the kth dynamical

correfinement of the partition Pn, so the following lemma shows that it is just a
partition by cylinders. The proof is trickier than would be expected.

Lemma 3.7 ([MMV24]). Let n g 1 and k g 2n. Then Pk
n = C−n,...,n+k−2.

Proof. The dynamical correfinement of Pn is defined by Pk
n =

bk−1
j=0 Ã−j(Pn), so let

us first calculate a generic element of the pulled-back partition

Ã−j(Pn) = {Ã−j(C) | C ∈ Pn}.

Each cylinder of Pn = C−n,...,n−1 has the form

C
s−n,...,sn−1

−n,...,n−1 =
n−1
⋂

i=−n

Csi
i ,

with si ∈ [n−] if i < 0 and si ∈ [n+] if i g 0. Then

Ã−j(C
s−n,...,sn−1

−n,...,n−1 ) = Ã−j(
n−1
⋂

i=−n

Csi
i ) =

n−1
⋂

i=−n

Ã−j(Csi
i ).

Based on proposition 3.2, we can separate this in 3 intersections4 as follows:

Ã−j(C
s−n,...,sn−1

−n,...,n−1 ) =
−(j+1)

⋂

i=−n

Ã−j(Csi
i ) ∩

−1
⋂

i=−j

Ã−j(C
s−1

−1 ) ∩
n−1
⋂

i=0

Ã−j(Csi
i )

=
−(j+1)

⋂

i=−n

Csi
i+j ∩

−1
⋂

i=−j

C
ϕ−1(si)
i+j ∩

n−1
⋂

i=0

Csi
i+j.

(3.6)

Notice that in formula 3.6, for −n f i f −(j + 1) and 0 f i f n − 1 we have
basic cylinders of the form Csi

i+j and, for −j f i f −1, we have extended cylinders
(unions of cylinders) of the form

C
ϕ−1(si)
i+j =

⋃

s∈ϕ−1(si)

Cs
i+j.

4. In order to simplify notation, we define that intersections that have the top index strictly
smaller than the bottom index should be considered to be the whole space , so that they can
be ignored. In formula 3.6, this happens for the first intersection in the case j > n − 1 (or
equivalently −(j + 1) < −n) and for the second intersection in the case j = 0 (or equivalently
−1 < −j).
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This shows that Ã−j(Pn) is not a partition by cylinders (unless ϕ is bijective and
hence the sets ϕ−1(sj

i ) are singletons, but this is just a regular shift, not the usual
case for extended shifts).

We must now calculate a generic element of Pk
n =

bk−1
j=0 Ã−j(Pn). To that end,

for each 0 f j f k − 1 we take cylinders Cj ∈ Pn, defined by

Cj := C
s

j
−n,...,s

j
n−1

−n,...,n−1 =
n−1
⋂

i=−n

C
s

j
i

i

with s
j
i ∈ [n−] if i < 0 and s

j
i ∈ [n+] if i g 0. An element of Pk

n is a non-empty set
of the form

⋂k−1
j=0 Ã−j(Cj). From formula 3.6, it follows that this set is given by

(3.7)
k−1
⋂

j=0

Ã−j(C
s

j
−n,...,s

j
n−1

−n,...,n−1 ) =
k−1
⋂

j=0

−(j+1)
⋂

i=−n

C
s

j
i

i+j ∩
k−1
⋂

j=0

−1
⋂

i=−j

C
ϕ−1(sj

i
)

i+j ∩
k−1
⋂

j=0

n−1
⋂

i=0

C
s

j
i

i+j.

This shows that a generic element of Pk
n (as in formula 3.7) is an intersection

of basic cylinders and extended cylinders (which are unions of basic cylinders).
These cylinders on the right-hand side of formula 3.7 are indexed by l := i + j,
which varies between −n and n − k − 2 since j varies between 0 and k − 1, and i

varies between −n and n − 1.
We wish to find conditions on the symbols s

j
i that guarantee the intersections in

formula 3.7 is non-empty. For that, we will reorganize the intersections based on
the indices l and j. Define Bl to be the intersection of every cylinder and extended
cylinder in formula 3.7 that has index l. Thus

(3.8)
k−1
⋂

j=0

Ã−j(C
s

j
−n,...,s

j
n−1

−n,...,n−1 ) =
n+k−2

⋂

l=−n

Bl,

and each set Bl is an intersection that depends on a range of values of j.
Since the intersection of a cylinder or extended cylinder with another cylinder

or extended cylinder is non-empty if they have different indices, the intersection on
the right-hand side of formula 3.8 is non-empty if, and only if, each Bl |= . In
what follows we shall determine the range of j for each l and find conditions on
the symbols s

j
i . We separate our analysis in many cases.

1. (−n f l f −1) In this case 0 f j f l + n and no extended cylinder occurs.
In order to have Bl |= , all the relations in table 3.1 must be satisfied,
and hence

(3.9) Bl =
l+n
⋂

j=0

C
s

j

l−j

l = C
s0

l

l .
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2. (0 f l f n − 1) In this case, when 0 f j f l we have basic cylinders and
when l + 1 f j f l + n we have extended cylinders. In order to have Bl |= ,
all the relations in table 3.1 must be satisfied, and hence

(3.10) Bl =
l

⋂

j=0

C
s

j

l−j

l ∩
l+n
⋂

j=l+1

C
ϕ−1(sj

l−j
)

l = C
sl

0
l .

3. (n f l f k − n − 1) In this case, when l − n + 1 f j f l we have basic
cylinders and when l + 1 f j f l + n we have extended cylinders. In order
to have Bl |= , all the relations in table 3.1 must be satisfied, and hence

(3.11) Bl =
l

⋂

j=l−n+1

C
s

j

l−j

l ∩
l+n
⋂

j=l+1

C
ϕ−1(sj

l−j
)

l = C
sl

0
l .

4. (k − n f l f k − 2) In this case, when l − n + 1 f j f l we have basic
cylinders and when l + 1 f j f k − 1 we have extended cylinders. In order
to have Bl |= , all the relations in table 3.1 must be satisfied, and hence

(3.12) Bl =
l

⋂

j=l−n+1

C
s

j

l−j

l ∩
k−1
⋂

j=l+1

C
ϕ−1(sj

l−j
)

l = C
sl

0
l .

5. (k − 1 f l f k + n − 2) In this case l − n + 1 f j f k − 1 and no extended
cylinder occurs. In order to have Bl |= , all the relations in table 3.1 must
be satisfied, and hence

(3.13) Bl =
k−1
⋂

j=l−n+1

C
s

j

l−j

l = C
sk−1

l−k+1

l .

Thus using formulas 3.9 to 3.13 on formula 3.8, if follows that

k−1
⋂

j=0

Ã−j(C
s

j
−n,...,s

j
n−1

−n,...,n−1 ) =
−1
⋂

l=−n

C
s0

l

l ∩
k−2
⋂

l=0

C
sl

0
l ∩

n−1+k−1
⋂

l=k−1

C
sk−1

l

l ,

that is, a generic element of Pk
n is a cylinder of C−n,...,n+k−2, and every such cylinder

can be formed in this way because the symbols s0
−n, . . . , s0

0, . . . , sk−1
0 , . . . , sk−1

n−1 can
be chosen arbitrarily, so we conclude that Pk

n = C−n,...,n+k−2. ■

It is now trivial to conclude the following last results.

Lemma 3.8 ([MMV24]). hm(Ã,Pn) = Hm(C0).
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l Relations

−n s0
−n

−n + 1 s0
−n+1 = s1

−n
...

...
−1 s0

−n = · · · = sn−1
−n

0 s0
0 ∈ ϕ−1(s1

−1) = · · · = ϕ−1(sn
−n)

1 s0
1 = s1

0 ∈ ϕ−1(s2
−1) = · · · = ϕ−1(sn+1

−n )
...

...
n − 1 s0

n−1 = · · · = sn−1
0 ∈ ϕ−1(sn

−1) = · · · = ϕ−1(s2n−1
−n )

n s1
n−1 = · · · = sn

0 ∈ ϕ−1(sn+1
−1 ) = · · · = ϕ−1(s2n

−n)
...

...
k − 1 − n sk−2n

n−1 = · · · = sk−1−n
0 ∈ ϕ−1(sk−n

−1 ) = · · · = ϕ−1(sk−1
−n )

k − n sk−2n+1
n−1 = · · · = sk−n

0 ∈ ϕ−1(sk−n+1
−1 ) = · · · = ϕ−1(sk−1

−(n−1))
...

...
k − 2 sk−1−n

n−1 = · · · = sk−2
0 ∈ ϕ−1(sk−1

−1 )

k − 1 sk−n
n−1 = · · · = sk−1

0

k sk−n+1
n−1 = · · · = sk−1

1
...

...
n + k − 2 sk−1

n−1

Table 3.1. Relations between the symbols s
j
i = s

j
l−j from for-

mula 3.7 for −n f l f n + k − 2. For each l, the symbol in red
determines every other symbol in that line.

Proof. From lemmas 3.6 and 3.7 it follows that

Hm(Pk
n) = Hm(C−n,...,n−1+k−1) = nHm(C−1) + (n + k − 1)Hm(C0),

therefore

hm(Ã,Pn) = lim
k→∞

1

k
Hm(Pk

n)

= lim
k→∞

1

k
(nHm(C−1) + (n + k − 1)Hm(C0))

= Hm(C0). ■

Theorem 3.9 ([MMV24]). hm(Ã) = Hm(C0).

Proof. The sequence of partitions Pn = C−n,...,n−1 (n ∈ ) is increasing relative to
the refinement order:

P0 ¯ P1 ¯ · · · ¯ Pn ¯ · · · .
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Besides that, the union of Pn generates the σ-algebra of the space n−,n+ . Finally,
the entropy of Pn is finite, because the entropy of C−1 and C0 are finite. Therefore,
by the Kolmogorov–Sinai theorem (theorem 2.4), the measure entropy of the
system is

hm(Ã) = lim
n→∞

hm(Ã,Pn).

We thus have to calculate hm(Ã,Pn), which is, by definition,

hm(Ã,Pn) := lim
k→∞

1

k
Hm(Pk

n),

which shows we have to calculate Hm(Pk
n).

This finally implies that

hm(Ã) = lim
n→∞

hm(Ã,Pn) = Hm(C0). ■

3.2.5 Folding entropy

In this section we calculate the folding entropy of the extended shift (see sec-
tion 2.3.3 for the definition of the folding entropy).

As a consequence of ϕ being surjective, we have that n+ g n−. When n+ > n−,
the shift Ã is not invertible and, for any given x ∈ n−,n+ , the set Ã−1(x) has more
than one element. In the following discussion, we shall need a way the refer to each
element of Ã−1(x), so, for each s ∈ ϕ−1(x−1), we define5

(3.14) x̂(s) := (. . . , x−2; s, x0, . . .).

and

(3.15) x̂ := Ã−1(x) = {x̂(s) | s ∈ ϕ−1(x−1)}.

From definition 2.11, the folding entropy of Ã is given by

F(Ã) = Hm(ϵ | Ã−1(ϵ))

and, from formula 2.10, the conditional entropy of the atomic partition ϵ with
respect to the dynamical pullback Ã−1(ϵ) = {x̂ | x ∈ n−,n+} can be calculated by

Hm(ϵ | Ã−1(ϵ)) =
∫

x̂∈Ã−1(ϵ)
Hmx̂

(ϵ|x̂)m̂(dx̂),

in which (mx̂)x̂∈Ã−1(ϵ) is the disintegration of m with respect to Ã−1(ϵ) and m̂ :=
mÃ−1(ϵ) is the quotient measure of Ã−1(ϵ).

So in order to calculate the folding entropy of Ã, we need to find the quotient
measure m̂ and to disintegrate the measure m with respect to the dynamical
pullback Ã−1(ϵ) of the atomic partition ϵ of n−,n+ .

5. A possibly more descriptive, but longer, alternative notation is σ−1(x−); sx+.
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The quotient measure of the dynamical pullback of the atomic partition

Let us first determine the quotient Ã-algebra B̂, which is the pushforward of the
cylinders Ã-algebra of n−,n+ by the natural projection Ã.

Definition 3.7. Let ( n−,n+ , Ã) be a bisymbolic shift dynamical system. For each
X ¦ , the quotient projection of X onto Ã−1(ϵ) is the set

X̂ := {x̂ | x ∈ X} = {Ã−1(x) | x ∈ X} ¦ Ã−1(ϵ).

Since x̂ = Ã−1(x), it may be confusing to understand the difference between
the sets X̂ and Ã−1(X). To better understand the notation, it is worth noticing
that, if x ∈ X, then x̂ = Ã−1(x) ¦ Ã−1(X); that is, for each s ∈ ϕ ∈ (x−1), we
have x̂(s) ∈ Ã−1(X). This shows that the elements of the set x̂ (which is an
element of X̂) do not belong to the set X̂, but instead to Ã−1(X). To further avoid
confusion, consider this example. Suppose x, y ∈ n−,n+ , x̂ = {x̂(0), x̂(1)} and
ŷ = {ŷ(0), ŷ(1)}. If X = {x, y}, then

X̂ = {x̂, ŷ} = {{x̂(0), x̂(1)}, {ŷ(0), ŷ(1)}},

while Ã−1(X) = {x̂(0), x̂(1), ŷ(0), ŷ(1)}. The next proposition shows explicitly how
the two sets are related. Let us denote the natural projection with respect to the
partition Ã−1(ϵ) by Ã : n−,n+ −→ Ã−1(ϵ).

Proposition 3.10 ([MMV24]). Let ( n−,n+ , Ã) be a bisymbolic shift dynamical
system and Ã : n−,n+ −→ Ã−1(ϵ) the natural projection induced by the dynamical
pullback of the atomic partition. For every set X ¦ n−,n+,

Ã−1(X̂) = Ã−1(X).

Proof. This follows directly from

Ã−1(X̂) =
⋃

X̂ =
⋃

{Ã−1(x) | x ∈ X} = Ã−1(X). ■

In particular, it is worth noting that, for a cylinder Cs
i ,

Ã−1(Ĉs
i ) = Ã−1(Cs

i ) =







Cs
i+1 i |= −1

⋃

s′∈ϕ−1(s) Cs′

0 i = −1.

Proposition 3.11 ([MMV24]). Let ( n−,n+ , Ã) be a bisymbolic shift dynamical

system. The quotient Ã-algebra B̂ is generated by the projected cylinder sets Ĉ

(C ∈ B is a cylinder).
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Proof. Now that Q ¦ Ã−1(ϵ). Since each element of Ã−1(ϵ) is of the form x̂ for some
x ∈ , there exists a set X ¦ n−,n+ such that Q = {x̂ | x ∈ X} = X̂. This implies
that its inverse image by the projection is of the form Ã−1(Q) = Ã−1(X̂) = Ã−1(X).
This shows that B̂ is generated by sets Ĉ such that Ã−1(C) ∈ B is a cylinder, which
means that C is also a cylinder. ■

The quotient measure m̂ := Ã¢m on Ã−1(ϵ) is the pushforward of m by the
natural projection Ã : n−,n+ −→ Ã−1(ϵ) of the dynamical pullback of the atomic
partition. The next proposition shows how we can easily calculate it using the
original measure m.

Proposition 3.12 ([MMV24]). Let ( , Ã) be a bisymbolic shift dynamical system.
For every measurable set M ¦ n−,n+,

m̂(M̂) = m(M).

Proof. Since Ã−1(M̂) = Ã−1(M) (proposition 3.10) and Ã is measure-preserving
(proposition 3.3), it follows that

m̂(M̂) = m(Ã−1(M̂)) = m(Ã−1(M)) = m(M). ■

Disintegration of the measure with respect to the dynamical pullback of
the atomic partition

We wish to disintegrate the measure m = mp+ with respect to the pullback partition
Ã−1(ϵ). In order to do that, we must find the quotient measure m̂ on Ã−1(ϵ) and,
for each x̂ ∈ Ã−1(ϵ), the conditional measures mx̂ on n−,n+ , in such a way that,
for every measurable set M ∈ B, it holds that

m(M) =
∫

x̂∈Ã−1(ϵ)
mx̂(M)m̂(dx̂).

To define the conditional measures on x̂, remember that x̂ = {x̂(s) | s ∈
ϕ−1(x−1)} and that the conditional measure is supported on x̂, so, for each mea-
surable set M ∈ B, it is given by mx̂(M) = mx̂(M ∩ x̂). Thus, since x̂ is finite, we
can define it on each atom {x̂(s)}.

Based on the probability distribution p+ ∈ n+−1 we have described how to
induce a probability distribution p− ∈ n−−1 by taking the pushforward of p+ by
the transition function ϕ (section 3.2.3). Using the two distributions p+ and
p−, we can define, for each s− ∈ S−, a new probability measure qs−

on ϕ−1(s−) by
setting, for each s+ ∈ ϕ−1(s−)

qs−

s+ :=
p+

s+

p−
s−

.



75

This is a probability measure because, for each s− ∈ [n−]

∑

s+∈ϕ−1(s−)

qs−

s+ =
∑

s+∈ϕ−1(s−)

p+
s+

p−
s−

=

∑

s+∈ϕ−1(s−)

p+
s+

p−
s−

= 1.

It is important to notice that, as a direct consequence of this definition,

(3.16) p+ = (p+
s+)s+∈[n+] = ((p−

s−qs−

s+ )s+∈ϕ−1(s−))s−∈[n−] =
⊕

0fs−<n−

p−
s−qs−

.

We use these measures qs−
to define the conditional measures as follows, by

identifying the set x̂ with the preimage ϕ−1(x−1).

Definition 3.8. Let ( n−,n+ , Ã) be a bisymbolic shift dynamical system, p+ ∈
n+−1 a probability distribution and x̂ ∈ Ã−1(ϵ). The conditional measure mx̂ on

x̂ is the probability measure defined, for each s ∈ ϕ−1(x−1), by

mx̂({x̂(s)}) := qx−1
s =

p+
s

p−
x−1

.

Now we show this is the disintegration of m.

Proposition 3.13 ([MMV24]). Let ( n−,n+ , Ã) be a bisymbolic shift dynamical
system. The family {mx̂}x̂∈Ã−1(ϵ) is the disintegration of m with respect to Ã−1(ϵ).

Proof. It suffices to show that, for each basic cylinder Cs
i , it holds that

m(Cs
i ) =

∫

x̂∈Ã−1(ϵ)
mx̂(Cs

i ∩ x̂)m̂(dx̂).

First let us calculate the sets Cs
i ∩ x̂. For any set C ¦ n−,n+ , it holds that

x ∈ C if, and only if, x̂ ¦ Ã−1(C). Because of this, we must consider the cases

x̂ ∈ Ã̂(Cs
i ) and x̂ |∈ Ã̂(Cs

i ); or equivalently, x ∈ Ã(Cs
i ) and x |∈ Ã(Cs

i ). According
to proposition 3.2, the expression for Ã(Cs

i ) depends on the value for i, so we
consider 2 cases:

• (i |= 0) In this case, we have Ã(Cs
i ) = Cs

i−1, hence

Cs
i ∩ x̂ =







x̂ x̂ ∈ Ĉs
i−1

x̂ |∈ Ĉs
i−1.
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Since mx̂(x̂) = 1 e mx̂( ) = 0, it follows that

m(Cs
i ) = m(Cs

i−1)

= m̂(Ĉs
i−1)

=
∫

x̂∈Ĉs
i−1

1m̂(dx̂) +
∫

x̂∈Ã−1(ϵ)∖Ĉs
i−1

0m̂(dx̂)

=
∫

x̂∈Ĉs
i−1

mx̂(x̂)m̂(dx̂) +
∫

x̂∈Ã−1(ϵ)∖Ĉs
i−1

mx̂( )m̂(dx̂)

=
∫

x̂∈Ã−1(ϵ)
mx̂(Cs

i ∩ x̂)m̂(dx̂).

• (i = 0) In this case, we have that

Cs
0 ∩ x̂ =







{x̂(s)} x̂ ∈ Ĉ
ϕ(s)
−1

x̂ |∈ Ĉ
ϕ(s)
−1 .

Since mx̂({x̂(s)}) = qx−1
s and mx̂( ) = 0 (and, for each x ∈ C

ϕ(s)
−1 , it holds

that x−1 = ϕ(s)), it follows that

m(Cs
0) = qϕ(s)

s m(C
ϕ(s)
−1 )

= qϕ(s)
s m̂(Ĉ

ϕ(s)
−1 )

=
∫

x̂∈Ĉ
φ(s)
−1

qx−1
s m̂(dx̂) +

∫

x̂∈Ã−1(ϵ)∖Ĉ
φ(s)
−1

0m̂(dx̂)

=
∫

x̂∈Ĉ
φ(s)
−1

mx̂(Cs
0 ∩ x̂)m̂(dx̂) +

∫

x̂∈Ã−1(ϵ)∖Ĉ
φ(s)
−1

mx̂(Cs
0 ∩ x̂)m̂(dx̂)

=
∫

x̂∈Ã−1(ϵ)
mx̂(Cs

0 ∩ x̂)m̂(dx̂). ■

Calculation of the folding entropy

We are finally ready to prove our main result on the folding entropy.

Theorem 3.14 ([MMV24]). Let (Σn−,n+ , Ãϕ) be a bisymbolic shift dynamical system
with measure m induced by the probability distribution p+. Then

F(Ãϕ) =
∑

0fs<n−

H (qs)p−
s = Hm(C0) − Hm(C−1).

Proof. As discussed in the beginning of this section (section 3.2.5), it follows
from definition 2.11 and formula 2.10 that the folding entropy of Ã is given
by

F(Ã) = Hm(ϵ | Ã−1(ϵ)) =
∫

x̂∈Ã−1(ϵ)
Hmx̂

(ϵ|x̂)m̂(dx̂).
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Now notice that

ϵ|x̂ = {{y} ∩ x̂ | {y} ∈ ϵ} = {{x̂(s+)} | s+ ∈ ϕ−1(x−1)},

hence, from formula 2.9 and definition 3.8, it follows that

Hmx̂
(ϵ|x̂) =

∑

s+∈ϕ−1(x−1)

−mx̂({x̂(s+)}) log mx̂({x̂(s+)}) =
∑

s+∈ϕ−1(x−1)

−q
x−1

s+ log q
x−1

s+ = H (qx−1).

This shows that this value depends only on x−1, so it is constant on each set Ĉs−

−1.
The set

Ĉ−1 := {Ĉs+

−1 | s ∈ S−}

is a partition of Ã−1(ϵ), since (1) Ĉs−

−1 |= , (2) Ĉs−

−1 ∩ Ĉr−

−1 = when s− |= r−, and
(3) Ã−1(ϵ) =

⋃

s−∈S− Ĉs−

−1.
Besides that, it follows from proposition 3.12 and definition 3.4 that

m̂(Ĉs−

−1) = m(Cs−

−1) = p−
s− . Thus the folding entropy of Ã is

F(Ã) = Hm(ϵ | Ã−1(ϵ))

=
∫

x̂∈Ã−1(ϵ)
Hmx̂

(ϵ|x̂)m̂(dx̂)

=
∑

0fs−<n−

∫

x̂∈Ĉs−
−1

Hmx̂
(ϵ|x̂)m̂(dx̂)

=
∑

0fs−<n−

H (qs−

)p−
s− .

(3.17)

This proves the first equality of theorem 3.14.
Since p+ =

⊕

s−∈[n−] p−
s−qs−

(formula 3.16), it follows from the additivity of
H (proposition 2.2, property 3) and from formula 3.17 that

H (p+) = H (
⊕

0fs−<n−

p−
s−qs−

) = H (p−) +
∑

0fs−<n−

p−
s−H (qs−

).

Finally, since Hm(C0) = H (p+) and Hm(C−1) = H (p−) (lemma 3.5), we conclude
that

F(Ã) = Hm(C0) − Hm(C−1). ■

In particular, since the measure entropy is given by hm(Ã) = Hm(C0) (theo-
rem 3.9), then

hm(Ã) = F(Ã) + Hm(C−1).
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Chapter 4

Piecewise smooth dynamics

In this chapter we present some preliminary definitions about piecewise smooth
vector fields and later the main results. We first introduce, in section 4.1, the
problems approached in this chapter. In section 4.2 we define piecewise smooth
vector fields, the sliding, escaping and tangent regions, the sliding vector field and
what are the orbits of the system. Then, in section 4.3 we present the concept
of the orbit space, which we use to introduce new notions on piecewise smooth
dynamics, by relating the orbit space to the base space. We define a metric space
structure on the orbit and its dynamics, and prove some topological properties of
these spaces before investigating some conditions under which topological transitiv-
ity of the dynamics of the base and of the orbit space dynamics are related. The
work of this section was developed in [GMV23]. Finally, in section 4.4 we restrict
ourselves to the 2-dimensional case and study how classical properties of chaotic
dynamics are related in the piecewise smooth case. We show topological transitivity
implies the other properties of Devaney chaos and also that these systems must
have strictly positive topological entropy. The work of this section was developed
in [EMV24].

4.1 Introduction

It is widely known that ordinary differential equations (ODEs) are one of the
most relevant tools for modeling problems emerging from real-world applications.
Nevertheless, in the last decades, the assumption that solutions of ODEs may
experience a discontinuity has gained traction within the theory of dynamical
systems. Some examples of discontinuous ODEs includes control theory, the
dynamics of a bouncing ball, foraging predators, the anti-lock braking system
(ABS), mechanical devices in which components collide with each other, problems
with friction, sliding or squealing, etc. See the referred applications and others in
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[BJV01; Bro99; RD12; Dix95; GPK07; JT12; KKU+00; LN04; BCB+08], as well as
references therein. In light of this, there is a natural interest in understanding the
dynamics associated with them, which is very complicated and presents fascinating
behaviors. These systems are called non-smooth systems or piecewise smooth
systems.

The novelties coming from piecewise smooth vector fields compared to the
continuous or smooth case resides on a proper or convenient way to define a
solution and its behavior when two distinct vector fields meet (namely at the
switching manifold or discontinuity manifold). There are several ways to define the
solutions of a piecewise smooth vector field, and each of them gives rise to a new
dynamics [Utk77; Utk92]; nevertheless, there is a special interest in the dynamics
given by Filippov’s convention [Fil88], since it provides very accurate models for
different kinds of problems.

Filippov’s solutions may experience non-uniqueness so non-typical behavior
eventually emerges in relatively familiar scenarios such as planar phase portraits.
Other approaches for dealing with discontinuous ODEs are nicely described in
[Cor08]. The non-uniqueness of solutions is an important feature of piecewise
smooth systems, and is related to the existence of some regions of the switching
manifold known as stable and unstable sliding regions. Many orbits of a piecewise
smooth system can visit the same point, which is a behavior that does not occur
for continuous vector fields.

In this chapter we consider two main problems in piecewise smooth dynamics:
(1) defining topological transitivity in a novel way which takes into account the
non-uniqueness of solutions resulting from Filippov’s convention; and (2) defining
non-deterministic chaos for these systems and studying how topological transitivity
implies chaos in the 2-dimensional case.

The first problem is dealt with in section 4.3. Many works have studied the
dynamics of piecewise smooth vector fields, but one of the goals of this work is to
propose a new way to understand these systems. Due to the nature of piecewise
smooth vector fields having different orbits going through the same points, it
may cause a lack of understanding of the true meaning of the system as a whole.
Therefore in this work we provide a way to understand how the non-uniqueness of
solutions impacts the dynamics of a piecewise smooth vector field, and we do it so
by introducing an associated dynamical system, the orbit space, in which we are
able to restore the uniqueness property. This approach is motivated by the study
of inverse limits of endomorphisms [CV23; Prz76; QXZ09].

The second problem is analyzed in section 4.4. There we address the problem
of determining the chaotic behavior of piecewise smooth systems defined on 2-
dimensional manifolds. A well-accepted definition of chaos in the context of smooth
deterministic dynamical systems is due to Devaney [Dev89]. A system which is
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topologically transitive, sensitive with respect to initial conditions and has density
of periodic orbits is, in the classical dynamical system scenario, called chaotic or
Devaney chaotic. A refinement of those conditions can be found in [BBC+92],
where it is shown that topological transitivity and density of periodic solutions are
sufficient for a system to be chaotic. We define an analogue of this definition for
piecewise smooth systems. Since piecewise smooth system are non-deterministic in
the sense that there may exist more than one distinct forward orbit starting at the
same point, in this paper we are in fact considering non-deterministic chaos. The
reader may see more results on that in [BCE18; CJ11; EJ20; NPV17], for instance.

4.2 Piecewise smooth vector fields

4.2.1 Switching manifold

We will consider a d-dimensional Riemannian C r-manifold (r > 1) M (possibly with
boundary) with metric ï·, ·ð. For each m ∈ , we denote [m] := {0, . . . , m − 1}
to simplify notation. The following definitions are based on [BCB+08, p. 71,
Definition 2.18].

Definition 4.1. Let M be a d-dimensional C r-manifold (r > 1) and l ∈ . A
switching m-partition of M is a partition {M0, . . . , Mm−1, Σ} of M in which

1. For each i ∈ [m], the regular region Mi is an open d-dimensional submanifold
of M ;

2. The switching region Σ is a union Σ =:
⋃

i,i′∈[m] Σi,i′ , such that, for each i, i′ ∈
[m], Σi,i′ := Mi

• ∩ Mi′
• is either empty or is an embedded 1-codimensional

connected submanifold of M that is included in the boundaries ∂Mi and
∂Mi′ ;

3. For each i, i′ ∈ [m], there is a C r-differentiable function hi,i′ : Mi
• ∪ Mi′

• −→
that has 0 as a regular value, and Σi,i′ = h−1

i,i′(0), h−1
i,i′( >0) = Mi and

h−1
i,i′( <0) = Mi′ .

We refer to the pair (M, Σ) as a switch-partitioned manifold 1.

Definition 4.2. Let (M, Σ) be a switch-partitioned manifold. A piecewise smooth
vector field (PSVF) on M is a vector field F : M −→ TM such that, for each
i ∈ [m], the restriction F |Mi

: Mi −→ TMi can be extended to a smooth2 vector
field Fi : Mi

• −→ TMi
•.

1. This is not a standard name. We use it here in order to easily reference it in the definitions.
2. Here we follow the standard definition that a vector field defined on a closed set is smooth

when it can be extended to a smooth vector field on a open neighborhood of the closed set.
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Notice that the definition of F on the switching manifold Σ is irrelevant; only
its definition on the Mi matters. To study the behavior of the dynamics on the
switching manifold, we will have to define another vector field on it. This will be
done by a criterion called Filippov’s convention [Fil88], which we shall define ahead.

4.2.2 Regions of the switching manifold

To start, we define different parts of the switching manifold with respect to the
vector field F . We seek to partition each Σi,i′ according to how the smooth vector
fields Fi and Fi′ meet there. For this we will consider the Lie derivative of hi,i′ with
respect to each smooth field.

Remember that the Lie derivative of a function h with respect to a vector field is
the measure of how h varies in relation to the flow of F , and that, on a Riemannian
manifold, its value at a point p is given by

Fh(p) = ï∇ h(p), F (p)ðp.

Successive applications of the Lie derivative result in high-order Lie derivatives,
defined recursively for vector fields F0, . . . , Fn−1 by

Fn−1 · · · F0h(p) := ïFn−1(p), ∇Fn−2 · · · F0h(p)ðp .

and denoted F nh(p) when F0 = · · · = Fn−1 = F .

Definition 4.3. Let (M, Σ) be a switch-partitioned manifold and F a piecewise
smooth vector field on M .

1. The crossing region of Σi,i′ is the set

Σ
c
i,i′ := {p ∈ Σi,i′ | Fihi,i′(p)Fi′hi,i′(p) > 0}.

The crossing region of Σ is Σ
c :=

⋃

i,i′∈[m] Σ
c
i,i′ . The crossing region Σ

c
i,i′ can

be further divided:

1.1. The i-ward crossing region (or crossing region towards Mi) of Σi,i′ is the
set

Σ
ic
i,i′ := {p ∈ Σ

c | Fihi,i′(p) > 0}.

The crossing region towards Mi of Σ is Σ
ic :=

⋃

i′∈[m] Σ
ic
i,i′ .

1.2. The i′-ward crossing region (or crossing region towards Mi′) of Σi,i′ is
the set

Σ
i′c
i,i′ := {p ∈ Σ

c | Fihi,i′(p) < 0}.

The crossing region towards Mi′ of Σ is Σ
i′c :=

⋃

i∈[m] Σ
i′c
i,i′ .
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2. The tangent region of Σi,i′ is the set

Σ
t
i,i′ := {p ∈ Σi,i′ | Fihi,i′(p)Fi′hi,i′(p) = 0}.

The tangent region of Σ is Σ
t :=

⋃

i,i′∈[m] Σ
t
i,i′ .

3. The sliding region of Σi,i′ is the set

Σ
s
i,i′ := {p ∈ Σi,i′ | Fihi,i′(p)Fi′hi,i′(p) < 0}.

The sliding region of Σ is Σ
s :=

⋃

i,i′∈[m] Σ
s
i,i′ . The sliding region Σ

s
i,i′ can be

further divided:

3.1. The unstable3 sliding region (or escaping region) of Σi,i′ is the set

Σ
us
i,i′ := {p ∈ Σ

s | Fihi,i′(p) > 0}.

The unstable sliding region (or escaping region) of Σ is Σ
us :=

⋃

i,i′∈[m] Σ
us
i,i′ .

3.2. The stable sliding region (or accessing region4) of Σi,i′ is the set

Σ
ss
i,i′ := {p ∈ Σ

s | Fihi,i′(p) < 0}.

The stable sliding region (or accessing region) of Σ is Σ
us :=

⋃

i,i′∈[m] Σ
us
i,i′ .

The points that belong to these regions are called crossing, tangent, and sliding
points, respectively.

Notice that the sets Σ
c, Σ

us and Σ
ss are relative open in Σ , and that Σ

t consists
of the boundary point of these sets.

3. Here we follow [KRG03, Section 2.1, p. 6] in adopting the nomenclature unstable and stable

for the regions of Σ
s.

4. This is not a standard name for this set. It is usually also called the sliding region, but this is
ambiguous with the naming of Σ

s. The name accessing has been chosen in analogy to escaping,
as these sets have dual roles in the theory. As we shall see in section 4.2.4, Σ

us admits orbits
leaving or escaping it at any point, while, dually, Σ

ss admits orbits entering or, one could say,
accessing it. We adopt the name sliding for the whole set Σ

s = Σ
ss ∪ Σ

us in accordance with the
standard naming of the field induced on Σ

s by Filippov’s convention as the sliding vector field
(section 4.2.3).
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p

∇ hi,i′(p)

Mi

Σ
ic
i,i′

Mi′

Fi(p) Fi′(p)

(1) Crossing region towards Mi.

p

∇ hi,i′(p)

Mi

Σ
i′c
i,i′

Mi′

Fi′(p)
Fi(p)

(2) Crossing region towards Mi′ .

p

∇ hi,i′(p)

Mi

Σ
ss
i,i′

Mi′Fi(p)

Fi′(p)

(3) Stable sliding region.

p

∇ hi,i′(p)

Mi

Σ
us
i,i′

Fi(p)

Fi′(p)

Mi′

(4) Unstable sliding region.

Figure 4.1. Regions of the switching manifold Σ .

In order to classify tangency points we use higher order Lie derivatives of hi,i′ .
We say that a tangency point p ∈ Σi,i′ has finite multiplicity if there exist natural
numbers n, n′ g 2 such that F n

i hi,i′(p) |= 0 and F n′

i′ hi,i′(p) |= 0. In this case, there
is only a finite number of regular trajectories of Fi and Fi′ that arrive at such
tangency point or depart from it.

We will from now on assume that the tangency set Σ
t is a finite set and every

tangency point has finite multiplicity.

4.2.3 The sliding vector field

We are now going to define a vector field on the sliding region Σ
s
i,i′ by following

Filippov’s convention [Fil88]. The motivation for this definition is that, at a point p

on the sliding region, the smooth vector fields Fi and Fi′ point to opposite directions
of Σ , so we may consider, among all possible values of convex combinations of the
vectors Fi(p) and Fi′(p), the only one that is tangent to the manifold Σi,i′ .

The convex combinations of Fi(p) and Fi′(p) are given by

f(p, ¼) :=
1 + ¼

2
Fi(p) +

1 − ¼

2
Fi′(p),

for ¼ ∈ [−1, 1]. Such a vector that is tangent to Σi,i′ must satisfy

ï∇ hi,i′(p), f(p, ¼)ðp = 0.
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This implies that

0 = ï∇ hi,i′(p), f(p, ¼)ðp

= ï∇ hi,i′(p),
1 + ¼

2
Fi(p) +

1 − ¼

2
Fi′(p)ðp

=
1 + ¼

2
ï∇ hi,i′(p), Fi(p)ðp +

1 − ¼

2
ï∇ hi,i′(p), Fi′(p)ðp

=
1 + ¼

2
Fihi,i′(p) +

1 − ¼

2
Fi′hi,i′(p).

Solving for ¼, we obtain

¼(p) =
Fi′hi,i′(p) + Fihi,i′(p)

Fi′hi,i′(p) − Fihi,i′(p)
.

Defining ³ := −
Fihi,i′ (p)

Fi′ hi,i′ (p)
, we have ³ > 0 and −1 < ¼ = 1−³

1+³
< 1.

Substituting this value for ¼ in the convex combination results in the vector

f(p, ¼(p)) =
1 +

Fi′ hi,i′ (p)+Fihi,i′ (p)

Fi′ hi,i′ (p)−Fihi,i′ (p)

2
Fi(p) +

1 −
Fi′ hi,i′ (p)+Fihi,i′ (p)

Fi′ hi,i′ (p)−Fihi,i′ (p)

2
Fi′(p)

=
Fi′hi,i′(p)

Fi′hi,i′(p) − Fihi,i′(p)
Fi(p) −

Fihi,i′(p)

Fi′hi,i′(p) − Fihi,i′(p)
Fi′(p).

This justifies the next definition.

Definition 4.4. Let (M, Σ) be a switch-partitioned manifold and F a piecewise
smooth vector field on M . The sliding vector field on Σ

s is the vector field F s :
Σ

s −→ TΣ
s defined on each Σ

s
i,i′ and p ∈ Σ

s
i,i′ by

F s
i,i′(p) :=

Fi′hi,i′(p)

Fi′hi,i′(p) − Fihi,i′(p)
Fi(p) −

Fihi,i′(p)

Fi′hi,i′(p) − Fihi,i′(p)
Fi′(p).

Since the components Σi,i′ do not intersect, we can define F s separately on each
component. Notice that F s

i,i′ is always well-defined since its denominator is always
non-zero in Σ

s. In some cases F s
i,i′ can be extended to Σ

s•, but its value on Σ
t (or

Σ
c) is not of matter.

p
Mi

Σ
ss
i,i′

TΣ
ss
i,i′

Mi′Fi(p)

Fi′(p)

F s
i,i′(p)

(1) F s

i,i′ on the stable sliding region.

p
Mi

Σ
us
i,i′

TΣ
us
i,i′

Fi(p)

F s
i,i′(p)

Fi′(p)

Mi′

(2) F s

i,i′ on the unstable sliding region.

Figure 4.2. The sliding vector field F s
i,i′ on the sliding region Σ

s
i,i′

of the switching manifold Σ .
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4.2.4 Orbits of a piecewise smooth vector field

In order to define what are the solutions of the piecewise smooth vector field F ,
we will first define its regular and sliding solutions. Each smooth vector field Fi :
Mi −→ TMi has a smooth flow ΦtFi which we will denote simply by Φt

i. The sliding
vector field F s also has a smooth flow ΦtF s

on Σ
s• which we will denote by Φt

s

Our approach here is to define a solution to be a concatenation of regular and
sliding solutions, as has been done in [KRG03]. This is different from the definitions
adopted in [GST11], in which the authors consider only the regular and slding
solutions and do not allow for loss of uniqueness.

This approach may give rise to a lack of uniqueness of solutions because different
trajectories on Mi, Σ

s
i,i′ and Mi′ may pass through the same point, hence a flow Φ

cannot be defined for the whole piecewise smooth vector field F . In light of this,
we introduce in section 4.3 a new flow Φ̃ defined on a larger space related to the
piecewise smooth vector field which will be able to restore the idea of uniqueness
lost in this scenario.

Definition 4.5. Let (M, Σ) be a switch-partitioned manifold and F a piecewise
smooth vector field on M . A regular orbit (or regular solution) of F is a trajectory
that is an integral solution of some Fi. A sliding orbit (or sliding solution) of F is
a trajectory that is an integral solution of F s.

Definition 4.6. Let M be a manifold. The concatenation of two trajectories
µ : ]a, b[ −→ M and µ′ : ]a′, b′[ −→ M such that limt→b µ(t) = limt→a′ µ′(t) is the
trajectory

µµ′ : ]a, b + b′ − a′[ −→ X

t 7−→















µ(t) a < t < b,

limt→b µ(t) = limt→a′ µ′(t) t = b

µ′(t − b + a′) b < t < b + b′ − a′.

The limiting point limt→ba µ(t) = limt→a′ µ′(t) is the concatenation point of µ and
µ′.

The concatenation of a maximal regular orbit with either another maximal
regular orbit or with a sliding orbit must always have a concatenation point in Σ ,
since otherwise the regular orbit could be extended in the regular region and would
not be maximal. They can be of the following types:

1. If the concatenation point is in a crossing region Σ
c
i,i′ , the concatenation is

between regular orbits of Fi and Fi′ ;
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2. If the concatenation point is in an unstable sliding region Σ
us
i,i′ , the concate-

nation is between a sliding orbit of F s
i,i′ , and a regular orbit of either Fi or

Fi′ . The first case is called a trajectory escaping to Mi, and in the second,
escaping to Mi′ ;

3. If the concatenation point is in a stable sliding region Σ
ss
i,i′ , the concatenation

is between a regular orbit of either Fi or Fi′ , and a sliding orbit of F s
i,i′.

The first case is called a trajectory accessing from Mi, and in the second,
accessing from Mi′ ;

4. If the concatenation point is in a tangent region Σ
t
i,i′ , they are in the closure

of a crossing or sliding region, and the concatenations follow the previous
cases accordingly.

With these definitions, we can define what an orbit of the piecewise smooth
vector field is.

Definition 4.7 (Orbit of a PSVF). Let (M, Σ) be a switch-partitioned manifold
and F a piecewise smooth vector field on M . An orbit of F is a (finite or infinite)
concatenation of regular and sliding orbits of F .

A maximal orbit is an orbit that cannot be extended. A periodic orbit of F

with period s ∈ is an orbit µ such that, for every t ∈ , µ(t) = µ(s + t).

At a tangent point p ∈ Σ
t to which regular or sliding orbits can be extended, an

orbit through p is a concatenation of such orbits; otherwise, the orbit is stationary
at p.

Let µ : I −→ M be an orbit of F and take any t0 ∈ I. The definition of µ as a
concatenation of regular and sliding orbits implies that there are k−, k+ ∈ ∪ {∞}
and, for each −k− f j f k+, a (concatenation of) regular orbit µj : [t−

j , t+
j ] −→ Mij

•

(possibly passing through crossing regions) and a sliding orbit µs
i : [t+

j , t−
j+1] −→ Σ

s•

such that5 t−
−1 f t0 f t+

0 , µj(t
+
j ) = µs

j(t
+
j ), µs

j(t
−
j+1) = µj(t

+
j ) and

µ = µk−µs
k− · · · µs

−1µ0µ
s
0 · · · µk+µs

k+ .

With this notation in mind, we define the nomenclature of accessing and escaping
points (see figure 4.3) that will be essential in the proof of proposition 4.9.

Definition 4.8 (Σ-sequence of an orbit). Let (M, Σ) be a switch-partitioned
manifold, F a piecewise smooth vector field on M and µ : I −→ M an orbit of F

such that 0 ∈ I and

µ = µk−µs
k− · · · µs

−1µ0µ
s
0 · · · µk+µs

k+ .

5. The orbits γs

k+ and γk− may not exist, in the case γ is a regular orbit in the forward extreme
and a sliding orbit in the backward extreme, respectively.
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1. The j-th escaping point of µ is

ej := µi(t
−
j ) ∈ Σ

us•

and the jth escaping region of µ is ij. The Σ-escaping sequence of µ is the
sequence of pairs (ej, ij).

2. The j-th accessing point of µ is

aj := µi(t
+
j ) ∈ Σ

ss•

and the jth accessing region of µ is ij. The Σ-accessing sequence of µ is the
sequence of pairs (aj, ij).

In proposition 4.9, we will use to positive part of the Σ-escaping sequence
and the negative part of the Σ-accessing sequence of an orbit µ to approximate
with one of a countable number of orbits of the system.

Σ
usΣ

ss
Σ

us Σ
ss

γ0

γ−1

γ1

γ0(t0)

Σ
ss

Σ
us

Mi0

Mi1

e0 e1 ak+−1a0

ek+

a−1

γs
−1 γs

−1

Mi−1
Mi

k+−1

Mi
k+

Figure 4.3. The Σ-escaping sequence of an orbit γ is defined by
taking the points ej where the component orbit γj escapes Σ

us•.
The values ij indicate the regular region Mij

to which it escaped
Σ

us•. The Σ-accessing sequence of an orbit γ is defined by taking
the points aj where the component orbit γj accesses Σ

ss•. The
values ij indicate the regular region Mij

from which they accessed
Σ

ss•.

Singularities

A special attention must be paid to the singularities of a piecewise smooth vector
field F . Since we consider a new way to define solutions, we must distinguish some
points of Σ which will also behave as singularities in a certain way. A point p ∈ Σ

is said to be a Σ-singularity of F provided that p is either a point of Σ
t
i,i′ such that

Fi(p), Fi′(p) |= 0, an equilibrium of Fi or Fi′ , or an equilibrium of F s
i,i′ (known as

pseudo-equilibrium of F ). A point p ∈ Σ which is not a Σ-singularity of F is also
referred to as a regular-regular point of F . We say that an orbit µ is a regular orbit
of F if it is a piecewise smooth trajectory such that µ ∩ Mi and µ ∩ Mi′ are unions
of regular orbits of Fi and Fi′ , respectively, and µ ∩ Σ ¦ Σ

c. More details on the
classification of Σ-singularities can be found in [GST11; KRG03]
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4.3 Orbit spaces

Among all properties of smooth dynamical systems, topological transitivity has
always been one of the most fundamental ones. In the literature, this term has
been used for different properties of the dynamics, mainly the existence of a dense
orbit or the density of the orbit of any non-empty open set (see section 1.5.2
for definitions and references). In our context, these definitions are equivalent.
This is an interesting concept by itself but it is worth mentioning that topological
transitivity is also one of the ingredients of chaos. Despite the importance of
piecewise smooth vector fields, there is still a lack of results about its global
dynamics. We may claim that this is due to the scenario of non-uniqueness of
solutions, which we propose to properly overcome in the present work.

In [BCE16; EJV22], the authors provided some chaotic examples of 2-dimensional
piecewise smooth vector fields displaying a dense orbit in the phase space. These
two articles explore intensively the non-uniqueness of solution, in particular the
escaping regions. Escaping regions produce so many different orbits that one may
have a feeling that topological transitivity is forcibly more common in the PSVF
scenario. This is in some sense true, but one should see it as due to the richness
of the dynamics. For instance, in [EJV22] the authors provide a first example of
topological transitivity of a piecewise smooth vector field on a 2-sphere 2, which
is interesting and shows the richness of PSVFs, since a continuous topologically
transitive flow on 2 is long known not to exist.

In this work we propose to understand the topological transitivity of a PSVF in
a more appropriate space. This space will be called the orbit space, which is in fact
the space of all orbits. This is inspired by the technique known as inverse limit
widely studied by those which deal with endomorphisms[CV23; Prz76; QXZ09].
An endomorphism is a non-invertible transformation and the inverse limit is simply
the space of all possible orbits. There is a very natural dynamics in this space
which is just the translation of the original dynamics to this space. We apply this
idea to the PSVF (see definition 4.10) since it is a non-invertible system. The
orbit space then carries all the complexity of the system, but without the issues of
having multiple orbits going through the same place.

Our goal is to propose the use of the orbit space in piecewise smooth systems.
So our first main result is in fact a series of results with the purpose of establishing a
well-defined theory of “orbit spaces” for PSVFs. In this section, we define the orbit
space and its dynamics, provide two topologically equivalent distance functions for
this space, and provide some results that help the use of such space for piecewise
smooth analysis.

Following this, we prove a result that establishes when a PSVF is topologically
transitive in the orbit space, the space where we understand it to be natural to
consider transitivity, and we show that the examples presented in [BCE16; EJV22]
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are also topologically transitive in our new context. The content of this section
was developed in [GMV23].

4.3.1 Definition of the orbit space

In this section we still consider a d-dimensional Riemannian C r-manifold (r > 1)
M (possibly with boundary), a switching submanifold Σ and a piecewise smooth
vector field F on M . But now we assume M is complete and all Fi are bounded,
that is, its supremum norm

∥F∥ := sup
p∈M

∥F (p)∥

is finite. We also assume ∥F∥ > 0. Notice that this implies all Fi are bounded and,
as a consequence of definition 4.4, that all F s

i,i′ are bounded as well.

Definition 4.9. Let (M, Σ) be a switch-partitioned manifold and F a piecewise
smooth vector field on M . The orbit space of the system is the set M̃ of all maximal
orbits of F on M . In this context, we call M the phase space or base space of the
system.

Notice that M̃ does not depend only on the manifold M , but mainly on the
vector field F , but the notation M̃ is simpler, express a better analogy with M and
also is not ambiguous since we will not consider more than one piecewise smooth
vector field on the same manifold M .

Using the piecewise smooth vector field F we can induce a flow on M̃ . For the
next definition, for each µ ∈ M̃ we denote the maximal interval it is defined on by
Iµ, and the backwards translation of this interval by t ∈ as

(4.1) Iµ − t = {s − t | s ∈ Iµ}.

Definition 4.10. Let (M, Σ) be a switch-partitioned manifold, F a piecewise
smooth vector field on M and M̃ the orbit space of the system. The flow domain
on M̃ is the set

DΦ̃ :=
⋃

µ∈M̃

Iµ × {µ} ¦ × M̃.

The flow on M̃ induced by F is the transformation

Φ̃ : DΦ̃ −→ M̃

(t, µ) 7−→ Φ̃t(µ) : Iµ − t −→ M

s 7−→ µ(s + t).
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When we consider spaces whose orbits are defined on the whole , the definition
of the flow simplifies to

Φ̃ : × M̃ −→ M̃

(t, µ) 7−→ Φ̃t(µ) : −→ M

s 7−→ µ(s + t).

We will show that this results in a continuous dynamical system on the orbit
space, but for that we must at first introduce the structure of a metric space on M̃ .

4.3.2 Metric structure of orbit spaces

The orbit distance function

In this section, we assume M is complete. The distance function on M is the distance
induced from the Riemannian metric on M , and is denoted by d : M × M −→ .
Given two orbits µ, µ′ ∈ M̃ , we wish to define the distance between them. We
assume at first that Iµ = Iµ′ = . We could try and compare the distance of points
of these orbits on the base system. A general strategy for defining new distance
functions is to consider a converging weighted sum of previously know distance
functions. In our case, we consider the quantity

∑

i∈

1

2|i|

∫ i+1

i
d(µ0(t), µ1(t)) dt.

This accounts for every point of both orbits, and the weights 1
2|i| guarantee conver-

gence, as we shall see ahead. But this is only defined for orbits that have the whole
as a domain. Sometimes this may not be the case, for instance when an orbit

reaches the boundary of the base space M , or when it reaches a pseudo-equilibrium
point on the switching manifold Σ . Hence let us show how to extend the definition
of the distance in the case the orbits are only defined for finite time.

Let µ ∈ M̃ be some orbit whose maximal domain Iµ is an interval with endpoints
É− < É+. Since we assume M is a complete space, this implies that, if É+ ∈ ,
then there is a point xÉ+

∈ M such that µ(tn) → xÉ+
for any increasing sequence

of times (tn)n∈ such that tn → É+, and also that É+ ∈ Iµ . Analogously, if É− ∈ ,
then there is a point xÉ− ∈ M such that µ(tn) → xÉ− for any decreasing sequence
of times (tn)n∈ such that tn → É−, and also É− ∈ Iµ.

In each of these cases, we can extended µ to a new trajectory with maximal
domain , which we will denote µ : → M , that is identical to µ in the maximal
domain of µ, and is a stationary orbit µ(t) = xÉ− for all t f É− (if É− ∈ ) and
µ(t) = xÉ+

for all t g É+ (if É+ ∈ ). We define the distance between orbits
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µ0, µ1 ∈ M̃ as the distance between their extended counterparts:

d̃(µ0, µ1) := d̃(µ0, µ1) :=
∑

i∈

1

2|i|

∫ i+1

i
d(µ0(t), µ1(t)) dt.

It is important to understand that this is done only for the sake of calculation
of the distance, and the way it is done we still have a clear indication concerning
if one orbit is close or not to another one. The extended trajectories µ are not
elements of M̃ (unless É− = −∞ and É+ = ∞, in which case they coincide with
µ). In order to keep the notation simple, we will not use the extended trajectories
when calculating the summation in the definition of the distance.

Definition 4.11 (Integral distance). Let M be a complete Riemannian manifold
(possibly with boundary) and F a bounded piecewise smooth vector field on M .
The (integral 6) distance on M̃ induced by d is the function

d̃ : M̃ × M̃ −→

(µ0, µ1) 7−→ d̃(µ0, µ1) :=
∑

i∈

1

2|i|

∫ i+1

i
d(µ0(t), µ1(t)) dt.

The orbit space M̃ with this distance function becomes a metric space. This
has already been shown for compact spaces [ACV23], but here we assume only
that F is bounded. We must show that the sum in the definition of the distance is
always finite and that d̃ is in fact a distance. First we prove the following lemma,
which assumes the field F is bounded and shows that specific suprema related to
the distance of trajectory points must be bounded.

Lemma 4.1 ([GMV23]). Let M be a Riemannian manifold and F a bounded
piecewise smooth vector field on M . For every µ0, µ1 ∈ M̃ and n ∈ ,

(4.2) sup
nft<n+1

d(µ0(t), µ1(t)) f d(µ0(0), µ1(0)) + 2∥F∥(1 + |n|).

Proof. We will first prove that, for every i ∈ ,

(4.3) sup
ift<i+1

d(µ0(t), µ1(t)) f sup
i−1ft<i

d(µ0(t), µ1(t)) + 2∥F∥.

For every t ∈ [i, i + 1[ it follows from the triangle inequality that

d(µ0(t), µ1(t)) f d(µ0(t), µ0(i)) + d(µ0(i), µ1(i)) + d(µ1(i), µ1(t)).

6. We use the name integral distance to differentiate it from the supremum distance we will
introduce ahead.
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Since the field is bounded by ∥F∥, it follows from the mean value inequality that
d(µ0(t), µ0(i)) f ∥F∥|t − i| and d(µ1(i), µ1(t)) f ∥F∥|i − t|, hence

sup
ift<i+1

d(µ0(t), µ1(t)) f sup
ift<i+1

d(µ0(t), µ0(i)) + d(µ0(i), µ1(i)) + sup
ift<i+1

d(µ1(i), µ1(t))

f sup
ift<i+1

∥F∥|t − i| + d(µ0(i), µ1(i)) + sup
ift<i+1

∥F∥|i − t|

f sup
i−1ft<i

d(µ0(t), µ1(t)) + 2∥F∥.

Analogously, for every i ∈ we can also obtain that

(4.4) sup
i−1ft<i

d(µ0(t), µ1(t)) f sup
ift<i+1

d(µ0(t), µ1(t)) + 2∥F∥.

By induction on n, using formula 4.3 for positive n and formula 4.4 for
negative n, we conclude that

(4.5) sup
nft<n+1

d(µ0(t), µ1(t)) f sup
0ft<1

d(µ0(t), µ1(t)) + 2∥F∥|n|.

Finally, for every t ∈ [0, 1],

d(µ0(t), µ1(t)) f d(µ0(t), µ0(0)) + d(µ0(0), µ1(0)) + d(µ1(0), µ1(t))

f ∥F∥|−t| + d(µ0(0), µ1(0)) + ∥F∥|t|

= d(µ0(0), µ1(0)) + 2∥F∥|t|,

so sup0ft<1 d(µ0(t), µ1(t)) f d(µ0(0), µ1(0)) + 2∥F∥. From this formula and for-
mula 4.5 we obtain formula 4.2. ■

Proposition 4.2 ([GMV23]). Let M be a Riemannian manifold and F a bounded
piecewise smooth vector field on M . The function d̃ is a distance function on M̃ .

Proof. The most important part is to prove the function is well defined in the sense
that the infinite sum always has a finite value. For this we will use the fact that
the field is bounded. Let µ0, µ1 ∈ M̃ . From the fact that

∑∞
i=n

i
2i = n+1

2n−1 and from
lemma 4.1, it follows that

d̃(µ0, µ1) =
∑

i∈

1

2|i|

∫ i+1

i
d(µ0(t), µ1(t)) dt

f
∑

i∈

1

2|i|
sup

ift<i+1
d(µ0(t), µ1(t))

f
∑

i∈

d(µ0(0), µ1(0)) + 2∥F∥(1 + |i|)

2|i|

= 3 d(µ0(0), µ1(0)) + 14∥F∥ < ∞.
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This shows that d̃ is well-defined.
Now we show the properties of a distance function. If µ0 = µ1, then d̃(µ0, µ1) =

∑

i∈
1

2|i| 0 = 0; if d̃(µ0, µ1) = 0, then
∫ i+1

i d(µ0(t), µ1(t)) dt = 0 for every i ∈ , hence
µ0(t) = µ1(t) for every t ∈ [i, i + 1[, therefore µ0 = µ1. Finally, symmetry and the
triangle inequality of d̃ follow directly from these properties for d. ■

The summation of suprema that appeared in the preceding proposition to prove
that the distance d̃ is finite motivates the definition of another distance function
on M̃ .

Definition 4.12 (Supremum distance). Let M be a complete Riemannian manifold
(possibly with boundary) and F a bounded piecewise smooth vector field on M .
The supremum distance on M̃ induced by d is the function

d̃sup : M̃ × M̃ −→

(µ0, µ1) 7−→ d̃sup(µ0, µ1) :=
∑

i∈

1

2|i|
sup

ift<i+1
d(µ0(t), µ1(t)).

This function can be proven to be a distance function in the same way that was
done for the integral distance function d̃. These distance functions are topologically
equivalent, as the following proposition shows, and thus will be used interchangeably
when analyzing topological properties of the orbit space M̃ .

Proposition 4.3 ([GMV23]). Let M be a complete Riemannian manifold (possibly
with boundary) and F a bounded piecewise smooth vector field on M . The distance
functions d̃ e d̃sup are topologically equivalent.

Proof. Let us denote the d̃ and d̃sup balls respectively as B and Bsup, and their
topologies as T and Tsup. We will prove that each topology is finer than the other.

• (T ¦ Tsup) For every µ0, µ1 ∈ M̃ and every i ∈ ,
∫ i+1

i
d(µ0(t), µ1(t)) dt f

∫ i+1

i
sup

ift<i+1
d(µ0(t), µ1(t)) dt = sup

ift<i+1
d(µ0(t), µ1(t)),

hence it follows that

d̃(µ0, µ1) =
∑

i∈

1

2|i|

∫ i+1

i
d(µ0(t), µ1(t)) dt

f
∑

i∈

1

2|i|
sup

ift<i+1
d(µ0(t), µ1(t))

= d̃sup(µ0, µ1).

This implies that every ball of d̃sup is contained in the ball of d̃ with same
center and radius, hence that the topology generated by d̃sup is finer than the
one generated by d̃.



94

• (Tsup ¦ T) Take µ ∈ M̃ and r′ > 0 and consider the ball Bsup(µ, r′) with center
point µ and radius r′. We must find r > 0 such that B(µ, r) ¦ Bsup(µ, r′).
Suppose, for the sake of contradiction, that such r did not exist. In that
case, there would exist a sequence (rn)n∈ of positive real numbers such that
rn → 0 and, for every n ∈ , an orbit µn ∈ M̃ such that µn ∈ B(µ, rn) and
µn |∈ Bsup(µ, r′), which means that

(4.6) d̃(µ, µn) =
∑

i∈

1

2|i|

∫ i+1

i
d(µ(t), µn(t)) dt < rn,

and

(4.7) d̃sup(µ, µn) =
∑

i∈

1

2|i|
sup

ift<i+1
d(µ(t), µn(t)) g r′.

From this it would follow that, for every i ∈ , each term
∫ i+1

i d(µ(t), µn(t)) dt

of the summation in formula 4.6 would converge to 0 as n → ∞. Therefore,
by continuity of the orbits in M̃ , each term supift<i+1 d(µ(t), µn(t)) of the
summation in formula 4.7 would also converge to 0 as n → ∞, while the
summation in formula 4.7 would be bounded below by r′ > 0. This would
lead to the following contradiction.
Since the field is bounded by ∥F∥, it would follow from lemma 4.1 that, for
every n ∈ and every i0 ∈ large enough,

∑

|i|>i0

1

2|i|
sup

ift<i+1
d(µ(t), µn(t)) f

d(µ(0), µn(0)) + 2∥F∥(i0 + 3)

2i0−1
f

r′

2
,

so that
∑

|i|fi0

1

2|i|
sup

ift<i+1
d(µ(t), µn(t)) g

r′

2
> 0.

But, for every |i| f i0, supift<i+1 d(µ(t), µn(t)) → 0 as n → ∞, so there
would be n0 ∈ large enough such that, for every n g n0 and every |i| f i0,

sup
ift<i+1

d(µ(t), µn(t)) <
r′

2(2i0 + 1)
,

and so

∑

|i|fi0

1

2|i|
sup

ift<i+1
d(µ(t), µn(t)) < (2i0 + 1)

r′

2(2i0 + 1)
=

r′

2
.

This contradiction shows that µ′ ∈ Bsup(µ, r′), hence that the topology
generated by d̃ is finer than the one generated by d̃sup. ■
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Besides topological equivalence, if we assume the piecewise smooth vector field
F is Lipschitz continuous (which is true when M is compact), then we can also
show that d̃ and d̃sup are Lipschitz equivalent, hence uniformly equivalent. This
will be relevant in section 4.4.2 when we calculate the topological entropy of our
system, since then the value of the entropy is the same whether we use d̃ or d̃sup.

Proposition 4.4. Let M be a complete Riemannian manifold (possibly with bound-
ary) and F a Lipschitz continuous and bounded piecewise smooth vector field on
M . The distance functions d̃ e d̃sup are Lipschitz equivalent.

Proof. We already have that d̃ f d̃sup, which implies that I : (M̃, d̃sup) −→ (M̃, d̃)
is Lipschitz continuous.

Let ïïF ðð be the Lipschitz distortion of F . For every µ0, µ1 ∈ M̃ and every i ∈ ,
let ti ∈ [i, i + 1] be such that

si := sup
t∈[i,i+1[

d(µ0(t), µ1(t)) = d(µ0(ti), µ1(ti)).

Then it follows from formula 1.6 that, for every t ∈ [i, i + 1],

d(µ0(ti), µ1(ti)) f eïïF ðð d(µ0(t), µ1(t)). ■

Properties of the orbit distance function

It is very important to understand the intuitive meaning of the metric d̃ (or d̃sup).
Two orbits being close in the orbit space should be the same as the points of these
orbits being sufficiently close for a sufficient amount of time (see figure 4.4). The
following lemmas provide a precise meaning of these ideas. We first show that if
the points of two orbits are close for enough time in the base space, then the orbits
are close in the orbit space. Lemmas 4.5 and 4.7 provide a precise meaning to
these ideas.

Lemma 4.5 ([GMV23]). Let M be a complete Riemannian manifold (possibly with
boundary) and F a bounded piecewise smooth vector field on M . For every ε > 0,
there exist Ä > 0 and ¶ > 0 such that, for every µ0, µ1 ∈ M̃ , if d(µ0(t), µ1(t)) < ¶

for every t ∈ [−Ä, Ä ], then d̃(µ0, µ1) < ε.

Proof. Let ε > 0, choose an integer7 Ä g 0 such that ∥F ∥(Ä+3)
2τ−1 < ε, and define

¶ := 1
3

(

ε − ∥F ∥(Ä+3)
2τ−1

)

> 0. Using lemma 4.1, it follows that, for every µ0, µ1 ∈ M̃ ,

7. If τ is not an integer, we can substitute +τ, for τ in the following calculations.
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if d(µ0(t), µ1(t)) < ¶ for every t ∈ [−Ä, Ä ], then

d̃(µ0, µ1) f
∑

i∈

1

2|i|
sup

ift<i+1
d(µ0(t), µ1(t))

=
∑

|i|fÄ

1

2|i|
sup

ift<i+1
d(µ0(t), µ1(t)) +

∑

|i|>Ä

1

2|i|
sup

ift<i+1
d(µ0(t), µ1(t))

f
∑

|i|fÄ

1

2|i|
¶ +

∑

|i|>Ä

1

2|i|
∥F∥(1 + 2|i|)

= ¶

(

3 −
1

2Ä−1

)

+ ∥F∥
Ä + 3

2Ä−1

< 3¶ +
∥F∥(Ä + 3)

2Ä−1

= ε. ■

γ0 −τ 0 τ

γ1

M

δ

M̃

γ0

γ1

εô

Figure 4.4. Graphical representation of lemmas 4.5 and 4.7.
Orbits γ0 and γ1 ∈ M̃ are ε close in the orbit space if, and only if,
their image points are δ close in the base space M .

To show that if two orbits are close in the orbit space, then the points of the
orbits are close for enough time in the base space, we must first prove the following
lemma (see figure 4.5).

Lemma 4.6 ([GMV23]). Let M be a complete Riemannian manifold (possibly
with boundary) and F a bounded piecewise smooth vector field on M . Let ¶ > 0,
³ > 0, µ0, µ1 ∈ M̃ and t0 ∈ . If d(µ0(t0), µ1(t0)) g ¶, then, for every t ∈
[

t0 − ³
2∥F ∥

, t0 + ³
2∥F ∥

]

,

d(µ0(t), µ1(t)) g ¶ − ³.

Proof. Since F is bounded by ∥F∥, it follow from the mean value inequality that,
for every µ ∈ M̃ and every t, t′ ∈ ,

d(µ(t), µ(t′)) f ∥F∥|t′ − t|.
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Then, for every µ0, µ1 ∈ M̃ and every t ∈
[

t0 − ³
2∥F ∥

, t0 + ³
2∥F ∥

]

,

¶ f d(µ0(t0), µ1(t0))

f d(µ0(t0), µ0(t)) + d(µ0(t), µ1(t)) + d(µ1(t), µ1(t0))

f ∥F∥|t − t0| + d(µ0(t), µ1(t)) + ∥F∥|t0 − t|

f 2∥F∥
³

2∥F∥
+ d(µ0(t), µ1(t)),

therefore ¶ − ³ f d(µ0(t), µ1(t)). ■

M

γ1

γ0

t0

δ

M

γ1

γ0

t0 − ³
2∥F ∥ t0

t0 + ³
2∥F ∥

δ − α⇒

Figure 4.5. Graphical representation of lemma 4.6. If the orbit
points of 2 orbits γ0 and γ1 ∈ M̃ at a time t0 are at least δ apart,
then their orbit points must be δ − α apart for at least ³

2∥F ∥ units
of time forwards and backwards.

The next result has also appeared in [ACV23, Proposition 4.2]; we state it and
also prove it here since we understand that it is important for the full comprehension
of the ideas we are presenting.

Lemma 4.7 ([GMV23]). Let M be a complete Riemannian manifold (possibly with
boundary) and F be a bounded piecewise smooth vector field on M . For every Ä > 0
and ¶ > 0, there exists ε > 0 such that, for every µ0, µ1 ∈ M̃ , if d̃(µ0, µ1) < ε then
d(µ0(t), µ1(t)) < ¶ for every t ∈ ]−Ä, Ä [.

Proof. We will prove this by contradiction. Suppose some Ä > 0 and some ¶ > 0
satisfy that, for every ε > 0, there are µε

0, µε
1 ∈ M̃ and a time tε ∈ ]−Ä, Ä [ such that

d̃(µε
0, µε

1) < ε and d(µε
0(tε), µε

1(tε)) g ¶. Taking ³ = ¶
2

in lemma 4.6, and defining
Iε :=

[

tε − ¶
4∥F ∥

, tε + ¶
4∥F ∥

]

, it follows that, for every t ∈ Iε,

(4.8) d(µε
0(t), µε

1(t)) g ¶ −
¶

2
=

¶

2
> 0.
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Notice that the size of Iε is independent of ε, since |Iε| = ¶
2∥F ∥

, and that Iε ¦
[

−Ä − ¶
4∥F ∥

, Ä + ¶
4∥F ∥

]

. Therefore it follows that, for every ε > 0,

ε > d̃(µε
0, µε

1) >
1

2+Ä+ δ
4∥F ∥

,

∫

Iε

d(µε
0(t), µε

1(t)) dt g
1

2+Ä+ δ
4∥F ∥

,
¶|Iε| =

¶2

2+Ä+ δ
4∥F ∥

,2∥F∥
,

So choosing ε f ¶2

2
+τ+ δ

4∥F ∥
,
2∥F ∥

leads to a contradiction. ■

Topological properties of the orbit space

The first use we make of lemmas 4.5 and 4.7 is to prove the continuity of Φ̃.

Proposition 4.8 ([GMV23]). Let M be a complete Riemannian manifold (possibly
with boundary) and F a bounded piecewise smooth vector field on M . The flow Φ̃
is continuous.

Proof. We are going to assume the domain of the flow Φ̃ is × M̃ and also assume
that the distance function on the product space × M̃ is given by the maximum
of the distances on and M̃ .

Take (s0, µ0) ∈ × M̃ and ε > 0. We must find ¶ > 0 such that, for every
(s, µ) ∈ × M̃ , if |s − s0| < ¶ and d̃(µ0, µ) < ¶, then d̃(Φ̃s0(µ0), Φ̃s(µ)) < ε.

First notice that, since F is bounded by ∥F∥, it follows from the mean value
inequality that, for every t ∈ ,

d(µ0(t + s0), µ(t + s)) f d(µ0(t + s0), µ(t + s0)) + d(µ(t + s0), µ(t + s))

f d(µ0(t + s0), µ(t + s0)) + ∥F∥|s − s0|.

Then, for every i ∈ ,

sup
ift<i+1

d(µ0(t + s0), µ(t + s)) f sup
ift<i+1

d(µ0(t + s0), µ(t + s0)) + ∥F∥|s − s0|,

so, by summing over all integers i ∈ ,

(4.9) d̃(Φ̃s0(µ0), Φ̃s(µ)) = d̃(Φ̃s0(µ0), Φ̃s0(µ)) + 3∥F∥|s − s0|.

Now notice that, for every ε′ > 0, there is a ¶′ > 0 such that, if d̃(µ0, µ) < ¶′,
then d̃(Φ̃s0(µ0), Φ̃s0(µ)) < ε′. This is the case since, from lemma 4.5, there
are Ä0 > 0 and ¶0 > 0 such that, if d(Φ̃s0(µ0)(t), Φ̃s0(µ)(t)) < ¶0 for every t ∈
[−Ä0, Ä0], then d̃(Φ̃s0(µ0), Φ̃s0(µ)) < ε′. But this hypothesis is equivalent to having
d(µ0(t), µ(t)) < ¶0 for every t ∈ [−Ä0 + s0, Ä0 + s0]. So by choosing some Ä1 > 0
such that [−Ä0 + s0, Ä0 + s0] ¦ [−Ä1, Ä1], it follows from lemma 4.7 that there is a
¶′ > 0 such that, if d̃(µ0, µ) < ¶′, then d(µ0(t), µ(t)) < ¶0 for every t ∈ [−Ä1, Ä1].
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Taking ε′ := ε
2
, using the respective ¶′ of the last paragraph, and defining

¶ := min{¶′, ε
6∥F ∥

}, we conclude from formula 4.9 that, if |s − s0| < ¶ and

d̃(µ0, µ) < ¶, then

d̃(Φ̃s0(µ0), Φ̃s(µ)) <
ε

2
+ 3∥F∥

ε

6∥F∥
= ε. ■

We now study the topological structure of the orbit space. Our manifold is a
separable (has a countable dense subset) and complete metric space. We show that
the orbit space inherits these properties, and also has no isolated points.

Proposition 4.9 ([GMV23]). Let M be a complete Riemannian manifold (possibly
with boundary) and F a bounded piecewise smooth vector field on M . If Σ

t is finite
and each tangency point has finite multiplicity, then the orbit space M̃ is separable.

Proof. The proof is divided in 5 steps.

1. (Augmenting the countable dense subset) The first step of the proof is to
augment a countable dense subset of M to work better with respect to
tangents. For each tangency point p ∈ Σ

t
i,i′ (see figure 4.6), there are (up

to) four8 orbit segments starting at p: (1) orbit segment µu
i : [0, tu

i ] −→ M

goes forwards from p, leaving Σ
us
i,i′ ∪ Σ

t
i,i′ at µi

+(0) = p to the region Mi,
and stops the first time the orbit reaches Σ

ss ∪ Σ
t after that (if it does not,

we take tu
=∞ and consider the interval [0, +∞[ as its domain); (2) orbit

segment µu
i′ : [0, ti′

−] −→ M is defined analogously, but leaves at p to the
region Mi′; (3) orbit segment µs

i : [−ts
i, 0] −→ M goes backwards from p,

leaving Σ
ss
i,i′ ∪ Σ

t
i,i′ at µs

i (0) = p to region Mi, and stops the first time it
reaches Σ

us ∪Σ
t after that; and, finally, (4) orbit segment µs

i′ : [−ts
i′ , 0] −→ M

is defined analogously to µs
i , but leaving p to the region Mi′ .

The image of each of these orbit segments is in a regular region, apart
possibly from their endpoints, so they are homeomorphic to a real interval
and thus we can take a countable dense subset of them. The union of all
these sets is also a countable set, which we denote as Et

p, and finally the set
Et :=

⋃

p∈Σt Et
p is also a countable set, since Σ

t is finite. Finally, let E0 be a
countable dense subset of M and define E1 := E0 ∪ Et.

8. This is a consequence of the finite multiplicity of the tangency points.
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Mi

Mi′

Σi,i′

Σ
ss
i,i′ Σ

t
i,i′ Σ

us
i,i′

Σ
ss ∪ Σ

t

Σ
us ∪ Σ

t

γs
i′ γu

i′

γu
iγs

i
γu

i (tu
i )

p

Et
p

Figure 4.6. A dense set of points Et is taken on the orbit segments
γu

i , γu
i′ , γs

i and γs
i′ arriving and leaving each tangency point p.

2. (Defining a dense subset of Σ
s ∪ Σ

t) For each p ∈ E1, we define points
pss ∈ Σ

ss ∪ Σ
t and pus ∈ Σ

us ∪ Σ
t as follows (see figure 4.7). We consider

an orbit µ of F such that µ(0) = p and take pss := µ(tss), where tss g 0
is the smallest positive time t such that µ(t) ∈ Σ

ss ∪ Σ
t (that is, the first

point in the orbit that reaches Σ
ss ∪ Σ

t going forward); if the orbit never
enters Σ

ss ∪ Σ
t, this point is left undefined. This is not dependent on the

choice of µ since, before entering Σ
ss ∪ Σ

t for the first time, the orbit of p

is unique, hence all such orbits coincide. Likewise, we take pus := µ(−tus),
where tus g 0 is the smallest positive time t such that µ(−t) ∈ Σ

us ∪ Σ
t

(that is, the first point in the orbit that reaches Σ
us ∪ Σ

t going backward);
if the orbit never reaches Σ

us ∪ Σ
t, this point is left undefined. We define

sets Ess := {pss | p ∈ E1} and Eus := {pus | p ∈ E1}. As a consequence of
the definition of Et, all tangency points belong to these sets.
Notice that the set Ess is dense in Σ

ss ∪ Σ
t and the set Eus is dense in

Σ
us ∪ Σ

t. If it were otherwise, there would be a neighborhood of a point
p ∈ Σ

ss (respectively Σ
us) without any points of Ess (respectively Eus), which

could be translated backwards (resp. forwards) along the orbits to create a
tubular neighborhood of a point of M without any point of E1, which would
contradict the fact that E1 is dense in M . Finally, define E := E1 ∪Ess ∪Eus.

E1

Σ
ss

Σ
us

p
pss

Ess

pus

Eus

Figure 4.7. The sets of points Ess and Eus (dense on Σ
ss and

Σ
us, respectively) are taken by flowing the points p ∈ E1 along

their orbits until they reach the sliding region at the points pss and
pus.
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3. (Classifying orbit behavior through Σ
s ∪ Σ

t) For each orbit µ ∈ M̃ and each
Ä g 0, we consider the restriction µ|[−Ä,Ä ]. The orbit µ|[−Ä,Ä ] may enter and
leave Σ only a finite number of times. Let k+ ∈ ∪ {0} be the number
of times it leaves Σ

us ∪ Σ
t going forward and k− ∈ be number of times

µ|[−Ä,Ä ] enters Σ
ss ∪ Σ

t going backwards. We consider (see definition 4.8)
the Σ-escaping sequence of µ|[−Ä,Ä ] going forwards,

(e1, i1), . . . , (ek+ , ik+),

and the Σ-accessing sequence of µ|[−Ä,Ä ] going backwards,

(a−k− , i−k−), . . . , (a−1, i−1).

In the case k+ = 0 or k− = 0, we just take the empty sequence to represent
the orbit’s travel through Σ .
These sequences represent the points µ looses uniqueness going forwards (see
figure 4.8) and backwards (see figure 4.9). For each j ∈ {1, . . . , k+},
ej ∈ Σ

us ∪ Σ
t is the point through which µ|[−Ä,Ä ] escapes Σ

us ∪ Σ
t for the

j-th time, and ij indicates it escapes to the region Mij
. Analogously, for

each j ∈ {−k−, . . . , −1}, aj ∈ Σ
ss ∪ Σ

t is the point through which µ|[−Ä,Ä ]

accesses Σ
ss ∪ Σ

t for the (−j)-th time, and i−j indicates it came from the
region Mi−j

. The whole sequence is going to be called the Σ-sequence of µ

in [−Ä, Ä ].

M+

M−

Σ
ss

Σ
ss

Σ
us

Σ
ss

γ(0)

γ(τ)

e1

i1 = 1

ek+

ik+ = −1

Figure 4.8. The Σ-escaping sequence of γ going forwards gives
the points ej where γ escapes Σ , and the indices ij give the region
Mij

they escaped to.

M+

M−

Σ
ss

Σ
ss

Σ
us

Σ
ss

γ(−τ)

γ(0)

a−k−

i−k− = 1
a−1

i−1 = −1

Figure 4.9. The Σ-accessing sequence of γ going backwards gives
the points aj where γ acesses Σ , and the indices ij give the region
Mij

they accesses from.
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4. (Constructing the countable dense subset of orbits) For each p ∈ E, we will
construct a countable set of orbits in M̃ (see figure 4.10). The union of
theses orbits for all p ∈ E will be our countable set. Let p ∈ E and, for each
n ∈ , define the subset Γn

p ¦ M̃ of all orbits µ such that µ(0) = p and, in
the time interval [−n, n], their Σ-sequence satisfies ak− , . . . , a−1 ∈ Ess and
e1, . . . , ek+ ∈ Eus. We define an equivalence relation in Γn

p by determining
that 2 orbits are equivalent if their Σ-sequence is equal in [−n, n], and take
Ẽn

p ¦ Γn
p to be a set of orbits with 1 representative of each equivalence

class. This set is countable, since in the finite interval [−n, n] there is a
maximum for all possible k+, a minimum for all k−, the points aj and ej

belong to the countable set Ess ∪ Eus, and the indices ij belong to the finite
set [m] = {0, . . . , m − 1}. We define

Ẽ :=
⋃

p∈E

⋃

n∈

Ẽn
p .

This is going to be our countable set dense on M̃ .

Σ
us

Σ
ss Σ

ss
Σ

ss

Σ
us Σ

us

Ess

Eus
Eus

E

p
Ẽn

p

Figure 4.10. A countable set Ẽn
p of orbits is chosen, each orbit

starting at a point p ∈ E and, for a set time interval [−n, n],
entering Σ

ss through points of Ess on negative time and leaving
Σ

us through points of Eus on positive time. The set is chosen such
that all possible sequences of points of Ess and Eus are taken into
account.

5. (Approximating orbits) Let µ ∈ M̃ and ε > 0. We must find an orbit ³ ∈ Ẽ

such that d̃(µ, ³) < ε (see figure 4.11). For this ε, we take ¶ > 0 and
Ä > 0 as in lemma 4.5. Define n := +Ä,. For each j ∈ {−k−, . . . , k+}, we
will choose points pj ∈ M and numbers ¶j > 0 as follows. If µ(0) ∈ Σ

s ∪ Σ
t,

we choose p0 ∈ Ess ∪Eus; if µ(0) ∈ M ∖ (Σ s ∪Σ
t) and the first time forwards

that µ reaches Σ
ss ∪ Σ

t is at a tangency point, or if the first time backwards
that it reaches Σ

us ∪ Σ
t is at a tangency point, we take p0 ∈ Et

p, otherwise
we take p0 ∈ E. In all cases we choose p0 close enough to µ(0), such that
d(µ(0), p0) < ¶0. Now, for each j ∈ {1, . . . , k+}, we choose pj ∈ Eus close
enough to ej, such that d(ej, pj) < ¶j, considering that, if the first time µ

reaches Σ
ss ∪ Σ

t after leaving through ej is at a tangency point, we must
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take pj = ej. The same procedure must be carried on for the negative
part of the orbit, choosing, for each j ∈ {−k−, . . . , −1}, pj ∈ Ess such that
d(aj, pj) < ¶j. Since p0 ∈ E, pj ∈ Eus for positive j and pj ∈ Ess for negative
j, there is a representative ³ ∈ Ẽn

p . Choosing all ¶j small enough, we can
guarantee that, for all t ∈ [−Ä, Ä ], we have d(µ(t), ³(t)) < ¶, so it follows by
lemma 4.5 that d̃(µ, ³) < ε. ■

e1

γ(0)

a−1

γ
e2

α

p−1

p0

p1 p2

δ−1

δ0

δ1 δ2

Σ
ss

Σ
us

Σ
ss

Σ
us Σ

usΣ
ss

Figure 4.11. For a given orbit γ, we chose an orbit α ∈ Ẽ that is
close to it each time it enters Σ

ss on negative time, and leaves Σ
us

on positive time.

Proposition 4.10 ([GMV23]). Let M be a complete Riemannian manifold (possibly
with boundary) and F a bounded piecewise smooth vector field on M . If Σ

t is finite,
then the orbit space M̃ is a complete metric space.

Proof. Let (µn)n∈ be a Cauchy sequence in the orbit space M̃ . For each t ∈ ,
the sequence (µn(t))n∈ is a Cauchy sequence in M by lemma 4.7. Since M is
complete, there is a limit point µ∞(t) ∈ M . We must show the function

µ∞ : −→ M

t 7−→ µ∞(t)

is an orbit of the piecewise smooth vector field system.
Take t0 ∈ . If µ∞(t0) ∈ M ∖ (Σ s ∪ Σ

t), the behavior of µ∞ around µ∞(t0) is
the same as that of points in a regular system, so in this case µ∞ is an orbit of the
system in the neighborhood of t0. We must study the behavior of µ∞ when µ∞(t0)
belongs to Σ

ss, Σ
us or Σ

t.
Let us first consider µ∞(t0) ∈ Σ

ss. Take a tubular neighborhood V ¦ M of
µ∞(t0). Since µn(t0) → µ∞(t0) as n → ∞, there is a natural number n0 ∈ such
that, for all n g n0, µn(t0) ∈ V . For each of these n, take Än to be the smallest
time t g 0 such that µn(t0 + Än) ∈ Σ

ss. Since µn(t0) → µ∞(t0) ∈ Σ
ss, we must have

Än → 0 as n → ∞. Now, since µn(t0 + Än) is on Σ
ss, its flow is given by the slide

flow Φs, so there is a neighborhood I = ]c, d[ of 0 such that, for all t ∈ [0, d[,

µn(t0 + Än + t) = Φt
s(µn(t0 + Än)).
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Taking the limit as n → ∞, we conclude that, for all t ∈ [0, d[,

µ∞(t0 + t) = Φt
s(µ∞(t0)).

For negative t, there are 2 cases. (1) If there is a neighborhood I = ]a′, b[ of 0
such that, for all t ∈ I, µ∞(t0 + t) ∈ Σ

ss; taking some a ∈ ]a′, 0[ and apply the
previous proof for µ∞(t0 + a), which implies that µ∞(t0 + t) = Φt

s(µ∞(t0)) for all
t ∈ [a, 0[. (2) In the other case, there is a neighborhood I = ]a, b[ of 0 such that,
for all t ∈ ]a, 0[, the limit points µ∞(t0 + t) belong to the regular region M ∖ Σ of
the system, hence

µ∞(t0 + t) = Φt
i(µ∞(t0)).

This proves that, in both cases, µ∞ is an orbit around µ∞(t0). The behavior around
µ∞(t0) ∈ Σ

us is the same as the previous case in Σ
ss, just with the direction of the

orbits inverted.
Finally, consider µ∞(t0) ∈ Σ

t. Notice that Σ
t is finite, so the tangency points

are isolated. Since µ∞ is an orbit around all points other than the tangency points,
it follows that in a neighborhood of µ∞(t0) all points of µ∞ are orbit points, so by
continuity µ∞(t0) is also an orbit point. ■

Proposition 4.11 ([GMV23]). Let M be a complete Riemannian manifold (possibly
with boundary) and F a bounded piecewise smooth vector field on M . The orbit
space M̃ is perfect.

Proof. We must prove M̃ has no isolated points. Given any orbit µ ∈ M̃ , we can
apply the flow to it for every t ∈ to obtain a family of orbits {Φ̃t(µ)}t∈ . To
measure the distance between the original orbit and one of its translations, let us
fix Ä ∈ . Since the piecewise smooth vector field is bounded by ∥F∥ and each
orbit is differentiable by parts, then from the mean value inequality it follows that,
for any interval I ¦ and any orbit ³ ∈ M̃ , we have d(³(t), ³(t′)) f ∥F∥|t′ − t|.
Then

d̃sup(µ, Φ̃Ä (µ)) =
∑

i∈

1

2|i|
sup

ift<t+1
d(µ(t), µ(Ä + t)) f 3∥F∥|Ä |.

Therefore we conclude that, as Ä approaches 0, Φ̃Ä (µ) approaches µ, so µ is not an
isolated point of M̃ . ■

4.3.3 Topological transitivity in the orbit space

We now investigate the topological transitivity property. The first proposition is an
immediate consequence of the topological properties proven in the last subsection.

Proposition 4.12 (Topological transitivity equivalence [GMV23]). Let M be a
complete Riemannian manifold (possibly with boundary) and F a bounded piecewise
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smooth vector field on M . For the flow Φ̃ on M̃ , topological transitivity is equivalent
to topological point-transitivity.

Proof. The orbit space M̃ is a separable complete metric space without isolated
points (propositions 4.9 to 4.11), so this follows from Birkhoff’s transitivity
(theorem 1.8). ■

Because of this equivalence, we will refer to either property as ‘topological
transitivity’. It is easy to show that topological transitivity in the orbit space
implies topological transitivity in the base space, as the next proposition shows.

Proposition 4.13 ([GMV23]). Let F be a piecewise smooth vector field on M and
Φ̃ its respective flow over the orbit space system M̃ . If Φ̃ is topologically transitive,
then F is also topologically transitive.

Proof. To show F is topologically transitive, we must find an orbit µ ∈ M̃ that is
dense in M . Let p ∈ M and ¶ > 0, and take ³ ∈ M̃ such that ³(0) = p. Since
the flow Φ̃ is topologically transitive, there is a dense orbit Γ in the orbit space
M̃ . Define µ := Γ(0). For the given ¶ and any Ä > 1, take ε > 0 as in lemma 4.7.
Since Γ is dense in M̃ , there is t³ > 0 such that d̃(³, Φ̃tα(µ)) < ε, which implies by
the choice of ε that d(³(t), Φ̃tα(µ)(t)) < ¶ for every |t| f 1. In particular,

d(p, µ(t³)) = d(³(0), Φ̃tα(µ)(0)) < ¶,

so µ is dense in M . ■

On the other hand, to prove the converse — that topological transitivity in the
base space implies its validity for the orbit space — we restrict our analysis to a
class of systems that have enough connection between tangency points.

Theorem 4.14 ([GMV23]). Let M be a connected Riemannian manifold and F be
a piecewise smooth vector field on M . Suppose the set of tangency points Σ

t of the
system is finite and there is a subset T ¦ Σ

t such that:

1. For every T, T ′ ∈ T, there is a F -orbit segment ¹ : [−s, s] → M connecting
T to T ′. If T = T ′ we can consider s = 0;

2. For every orbit µ, there are a tangency point Tµ ∈ T and time sµ > 0 such
that µ(sµ) = Tµ;

3. For every orbit µ, there are a tangency point Tµ ∈ T and time sµ < 0 such
that µ(sµ) = Tµ;

Then the flow Φ̃ is topologically transitive on the orbit space M̃ .
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Proof. Let ³, ´ ∈ M̃ be two orbits and ε > 0, a real number. To prove the flow
Φ̃ is topologically transitive, we must find an orbit µ ∈ M̃ such that d̃(³, µ) < ε

and, for some Ä > 0, d̃(´, Φ̃Ä (µ)) < ε. Since the flow Φ̃ is invertible, this is the
equivalent to finding Ä³, Ä´ > 0 such that d̃(³, Φ̃−Äα(µ)) < ε and d̃(´, Φ̃Äβ (µ)) < ε.

To construct the orbit µ, we first cut orbit ³ at a tangency point T³ ∈ T and
orbit ´ at a tangency point T´ ∈ T, and take an intermediary orbit segment ¹

connecting T³ to T´ (using hypothesis 1). Then, we glue the negative orbit segment
of ³ to the beginning of ¹, and the end of ¹ to the positive orbit segment of ´. The
resulting curve µ is an orbit of the system, since it is made up of orbit segments
connected at tangency points.

Take ¶ > 0 and Ä > 0 with respect to the chosen ε, such as in lemma 4.5.
We can take the smallest time t³ such that t³ g Ä > 0 and ³(t³) = T³, for some
T³ ∈ T (by 2), and the smallest time t´ such that −t´ f −Ä < 0 and ´(−t´) = T´,
for some T´ ∈ T (by 3).

Let ¹ : [−s, s] → M be an orbit segment connecting T³ to T´ (by 1) and define
orbit µ to be

(4.10) µ(t) :=















³(t + s + t³), −∞ < t < −s

¹(t), −s < t < s

´(t − s − t´), s < t < ∞.

Since Ä f t³, this means Φ̃−tα−s(µ) coincides with ³ on the interval ]−∞, Ä ], so

d(³(t), Φ̃−tα−s(µ)(t)) = 0 < ¶

for every |t| f Ä , and likewise

d(³(t), Φ̃tβ+s(µ)(t)) = 0 < ¶

for every |t| f Ä . By the choice of ¶ and Ä from lemma 4.5, this implies that
d̃(³, Φ̃−tα−s(µ)) < ε and d̃(´, Φ̃tβ+s(µ)) < ε. ■

In particular, theorem 4.14 implies that both the bean model of [BCE16]
and the sphere model of [EJV22] have topologically transitive orbit spaces. For
the bean model (see figure 4.12) this is so because the system has 1 central
tangency point p and every orbit passes through it infinite times going forwards
and backwards, so the hypothesis is satisfied.



107

Σ
us

Σ
t

Σ
c Σ

ss

p

Σ
c

Σ
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Σ
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Figure 4.12. The bean model.

The dynamics of the sphere model (see figure 4.13) has 4 tangency points; we
choose 2 of them, say T +

1 and T −
2 , to be set T of theorem 4.14. There is a closed

orbit passing through both of them, which implies there are segments connecting
one of them to the other, so the hypothesis is satisfied.

T +
1

T +
2

T −
1

T −
2

Figure 4.13. The sphere model.

Proposition 4.13 shows that transitivity in the orbit space implies transitivity
in the base space, and theorem 4.14 is a partial converse for a specific class of
systems that have enough connections between tangency points. Therefore, we
pose the following question.

Question 1. Is there an example of a piecewise smooth vector field which is
topologically transitive, but whose orbit space is not topologically transitive?

The above question is an interesting and important one for the theory. It
impacts, in spirit, how we understand PSVFs. If the answer is ‘yes’, then we might
have to use the orbit space to justify a more natural topological transitivity. If the
answer is ‘no’, then both notions of topological transitivity are the same and hence
the effect of escaping regions in creating topological transitivity is not actually an
“artificial” one.
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4.4 Non-deterministic chaos

In this section we address the problem of determining the chaotic behavior of piece-
wise smooth vector fields. We define chaos for these systems in definition 4.13,
based on the well-accepted definition of chaos for smooth systems by Devaney
[Dev89], according to which a chaotic system is one that is topologically transitive,
has sensitive dependence on initial conditions, and has density of periodic orbits.
In fact, topological transitivity and density of periodic solutions are sufficient for a
system to be chaotic [BBC+92]. The term non-deterministic is used because there
is non-uniqueness of solutions on a piecewise smooth system.

We restrict ourselves to 2-dimensional manifolds and piecewise smooth vector
fields with a finite number of tangency points and show in theorem 4.18 that,
in this setting, topological transitivity implies both density of periodic points and
sensitive dependence on initial conditions. After that we make some comments
about finding a residual set of periodic orbits before proceeding to define and
estimate the topological entropy of our system.

In our context, topological transitivity implies positive entropy (theorem 4.22).
Frequently one uses entropy to determine some level of chaoticity of a given
dynamics. That is because entropy is a number which may be understood as
measuring the creation of new orbits — more precisely, the exponential growth
rate of the number of different orbits of the system — hence a system with many
“genuinely” distinct orbits (i.e. with positive entropy) might be a complex or
“chaotic” system. The content of this section was developed in [EMV24].

4.4.1 Topological transitivity implies non-deterministic chaos

We start with a definition of chaoticity for piecewise smooth vector fields. The
definition is based on the classical definition of Devaney for chaos (see [Dev89;
BBC+92]), but adapted to our context.

Definition 4.13. Let M be a Riemannian manifold and F a piecewise smooth
vector field on M .

1. F is topologically transitive if given any two non-empty open sets U and V

of M , there exists an orbit from a point of U to a point of V .
2. F has sensitive dependence on initial conditions if there exists a fixed ¶ > 0

such that, for any non-empty open set U , there exist points x, y ∈ U , orbits
µx and µy which start at x and y, respectively, and some time t such that
d(µx(t), µy(t)) > ¶.

3. F is chaotic if it is topologically transitive, has sensitive dependence on
initial conditions and the union of all periodic orbits is a dense set.
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We also define the following sets.

Definition 4.14. Let M be a Riemannian manifold and F a piecewise smooth
vector field on M .

1. E+ is the set of points p ∈ M that first loose uniqueness going forward in Σ
ss

(that is, there is ts > 0 such that µ(ts) ∩ Σ
ss |= and, for every 0 < t < ts,

µ(t) is in a regular region Ri or crossing region).
2. E− is the set of points of M that first loose uniqueness going backward in

Σ
us.

3. D+ is the set of points p ∈ M for which there is some orbit µ starting at p that
reaches Σ

ss going forward (that is, there is ts > 0 such that µ(ts) ∩ Σ
ss |= ).

4. D− is the set of points p ∈ M for which there is some orbit starting at p

that reaches Σ
us going backward.

We shall prove a number of important lemmas that will be needed for the proof
of our results. First we show how topological transitivity leads to the existence of
a connection of points on the sliding region.

Σ
tΣ

t

Σ
c

Σ
ss

Σ
us

U

V

Figure 4.14. An open set U that reaches Σ
ss flowing forward

and an open set V that reaches Σ
us flowing backwards.

Lemma 4.15 ([EMV24]). Let M be a 2-dimensional Riemannian manifold and
F a topologically transitive piecewise smooth vector field on M . For every pair of
points q0, q1 ∈ Σ

s, there is an orbit segment from q0 to q1.

Proof. The points q0 and q1 can be in either Σ
ss or Σ

us, so there are 4 possibilities
of connections of q0 and q1. We will describe how to connect them in all cases. If
q0 ∈ Σ

ss, since Σ
s is relatively open in Σ we can choose a point q′

0 before q0 (that
is, q′

0 is in the same connected component of Σ
ss as q0 and it reaches q0 through an

orbit segment of the sliding vector field on Σ
ss) and an open set U0 ¢ M around
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q′
0 (that does not contain q0) in such a way that every point of U0 flows to Σ

ss and
reaches q0 (see figures 4.14 and 4.15).

If q0 ∈ Σ
us, we can choose an open set U0 in an analogous way, but now inverting

the direction of the flow of time: we take a point q′
0 after q0 and an open set U0

around it such that every point of U0 must have come from Σ
us and, consequently,

passed through q0 (see figure 4.15). In the same way we choose an open set
U1 ¢ M for q1.

By topological transitivity, there is an orbit segment from a point p0 ∈ U0 to a
point of p1 ∈ U1. In the case that q0 ∈ Σ

ss, by the choice of U0 the orbit segment
must have passed through q0, so it can be restricted to an orbit segment from q0 to
p1; in the case that q0 ∈ Σ

us, by the choice of U0 the point p0 must have flowed
away from q0, so the orbit segment can also be extended to one from q0 to p1.

On the other end, the situation is inverted. If q1 ∈ Σ
ss, the point p1 must flow

into Σ
ss and pass through q1, so the orbit segment may be extended to one from q0

to q1; if q1 ∈ Σ
ss, the point p1 must have passed through q1, so the orbit segment

may also be extended to one from q0 to q1. ■

q0
Σ

ss
q1

Σ
ss

U0 U1

q0
Σ

us

U0
U1

q1
Σ

us

p0

p0

p1

p1

Figure 4.15. All 4 possibilities of connection of 2 points q0 and
q1 on the sliding region Σ

s. The dashed orbit in the center of the
figure represents that each orbit segment on the left can connect
to each one on the right.

The next lemma establishes some properties of the sets described in defini-
tion 4.14.

Lemma 4.16 ([EMV24]). Let M be a 2-dimensional Riemannian manifold and F

a topologically transitive piecewise smooth vector field on M .

1. Suppose Σ
ss |= . Then E+ is open and D+ is dense.

2. Suppose Σ
us |= . Then E− is open and D− is dense.

Proof. We prove the first item, since the second is the same but with the direction
of orbits inverted. Let p ∈ E+ and q ∈ Σ

ss be the point where p first looses
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uniqueness going forward. Since Σ
ss is open in Σ and all points of the orbit from p

to q are regular, we can find an open set around p that first looses uniqueness in
Σ

ss. This shows E+ is open.
Showing D+ is dense is the same as showing D+ has empty interior. For this,

suppose for the sake of contradiction that there is a non-empty open set U ¢ D+.
Since Σ

ss |= , there is an open set V such that all of its points reach Σ
ss (see

figure 4.14). By topological transitivity, there is an orbit from U to V , and so
this orbit can be extended to reach Σ

ss, which contradicts the fact that U is a set
of points that do not reach Σ

ss by any orbit. ■

In some examples of transitive piecewise smooth vector field in the literature
like the bean model and the sphere model [EJV22; BCE16; ACV23], it is easy to
check that the sets E+ and E− are dense, so in the following results (lemma 4.17,
theorem 4.18) we will assume this in order to obtain dense periodic orbits (for
further discussion, check section 4.4.1).

Lemma 4.17 ([EMV24]). Let M be a 2-dimensional Riemannian manifold, F a
topologically transitive piecewise smooth vector field on M , and assume Σ

s |= .
Let q0 ∈ Σ

s and U ¦ M be a non-empty open set. Then there is a periodic orbit
segment through q0 that intersects U .

Proof. We assume that q0 ∈ Σ
ss. The proof for Σ

us |= is the same after inverting
the direction of orbits. Since q0 is in the sliding region, we may choose an open
set U0 ¦ M such that all of its points pass through q0 going forwards, as done in
lemma 4.15 (see figure 4.16). Since the set E+ is open and we assume it is
dense, take p ∈ E+ ∩ U and an open neighborhood V ¦ E+ of p.

By topological transitivity, we choose an orbit segment µ0 from U0 to U ∩ V .
Since all the points of U0 pass through q0, µ0 can be restricted to start at q0, and
since µ0 passes through V ¦ E+, it can be extended to reach a point q1 ∈ Σ

ss. Now
from lemma 4.15, there is an orbit segment µ1 from q1 to q0. Concatenating the
orbit segments µ0 and µ1, we obtain a periodic orbit segment starting at q0 that
intersects U . ■

Finally, we can prove the theorem.

Theorem 4.18 ([EMV24]). Let M be a 2-dimensional Riemannian manifold, F a
topologically transitive piecewise smooth vector field on M , Σ

t is finite and Σ
s |= .

1. There is a dense set ∆ such that, for every x ∈ ∆,

1.1. there is a dense orbit through x;
1.2. the periodic orbits through x form a dense set;

2. The system has sensitive dependence on initial conditions.
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Figure 4.16. Given a point q0 ∈ Σ
s and an open set U , we can

find a periodic orbit segment starting at q0 that intersects U . In
the figure we depict the case in which Σ

ss |= .

Proof. We prove each item separately.

1. Take x ∈ Σ
s.

1.1. Let {Ui}i∈ be a countable base of M . By lemma 4.17, for each Ui

there is a periodic orbit segment µi that starts at x and intersects Ui.
Define µ to be the concatenation of the orbit segments µi in order of
index, backwards and forwards; i.e., define

µ := · · · µ1µ0µ0µ1 · · · .

Now for every non-empty open set U ¦ M , there is an open set Ui

contained in U , so µ intersects U because µi intersects Ui. This shows
µ is dense in M .

1.2. Now let P be the union of (the image of) all the periodic orbits of F

through x. By lemma 4.17 it follows that, for every non-empty open
set U ¦ M , there is a periodic orbit segment µ that passes through x

and intersects U , hence a periodic orbit through x and U which means
that P ∩ U |= , so P is dense in M .

We now take ∆ as the union of all the points on periodic orbits as constructed
in the preceding items.

2. We will assume that Σ
ss |= , but the proof for Σ

us |= is analogous. First,
we take q ∈ Σ

ss and two open sets U0 and U1, each one on each side of
the connected component of Σ

ss on which q is (see figure 4.17), and not
intersecting Σ

ss. Now we choose two different periodic orbits ´0 and ´1

starting at q, similarly to what was done in lemma 4.17), but in this case
we force each orbit to enter Σ

ss on the open sets U0 and U1, respectively,
before they reach q. Denote their periods respectively by b0 and b1. Since
Σ

ss is open, we may disturb these orbits slightly in order to have the ratio of
their periods, b1

b0
, be an irrational number. For each i ∈ {0, 1}, we choose a

point pi ∈ U0 through which orbit ´i passes, and define a restricted orbit ´′
i
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from q to pi, and denote its period b′
i. Denote ¶ := d(U0, U1), the infimum of

the distance between any point of U0 and any point of U1. Since each open
set has been taken on one side of Σ

ss, we have ¶ > 0.
Now let U be any non-empty open set. Since our set ∆ as defined in the
preceding item of this proof is dense, we may take x, y ∈ ∆ ∩ U . Then
there exist orbits ³x : [0, ax] → M and ³y : [0, ay] → M starting at x and y,
respectively, and ending at q. Now we define orbit µx as the concatenation
of ³x and kx ∈ orbits ´0, followed by the restricted orbit ´′

0; that is,
µx := ³x(´0)

kx´′
0. Likewise, define µy := ³y(´1)

ky´′
1, for ky ∈ . We denote

cx := ax + kxb0 + b′
0 and cy := ay + kyb0 + b′

0, which represent the time x (or
y) takes to traverse µx (resp. µy) and reach p0 (resp. p1). Since the ratio
b1

b0
is irrational, the integers kx and ky may be chosen in order that the cx

and cy are as close as needed, such that (supposing cx f cy without loss of
generality) µx(cx) = p0 and µy(cy) ∈ U1, close to p1. Defining t := cx, this
implies that d(µx(t), µx(t)) > ¶. ■

q
Σ

ss

U0

U1

x
y

δ

U

αx

αy

β1

p1

p0

β0

Figure 4.17. For any non-empty open set U , there are points x

and y and orbits γx and γy such that, following these orbits, the
two points eventually become δ apart. The orbits are constructed
by connecting the points to a sliding region and then following
periodic orbits for some time.

Comments about finding a residual set

In the classical case of smooth vector fields, transitivity is equivalent to the existence
of a residual set of points through which there is a dense orbit. One good question
that we are not able to prove so far is the following.

Question 2. Let M be a 2-dimensional manifold and F a piecewise smooth vector
field with Σ

t finite. Does the existence of a dense orbit implies the existence of a
residual set with dense orbit?

In our setting, we have found a dense set ∆ instead. As mentioned after the
proof of lemma 4.16, for the bean model and the sphere model [BCE16; EJV22]



114

both sets E+ and E− are dense, hence open dense sets. So we ask the following
question:

Question 3. Let M be a 2-dimensional manifold and F a piecewise smooth vector
field with Σ

t finite. Are the sets E+ and E− dense?

If both9 E+ and E− were open dense sets, this would imply that their intersection
E := E+ ∩ E− is a residual set (and hence a dense set by Baire category theorem).
The proof of lemma 4.17 can be easily adapted to be valid for points x in this
residual set E (figure 4.18). This can be done by starting with a point x ∈ E

instead of q0 ∈ Σ
s, and then connecting x to Σ

s forward and backwards, which
is possible by definition of E. After that, the final details of the proof would be
almost the same as in lemma 4.17.

q1
Σ

s

q0
Σ

s
q2

Σ
s

x

U0

µ0 µ1

µ2

p

U

V

Figure 4.18. Given a point x ∈ ∆ and an open set U , we could
find a periodic orbit segment starting at x that intersects U .

4.4.2 Entropy of piecewise smooth dynamical systems

Topological entropy for a piecewise smooth vector field was first defined in [ACV23]
by use of orbit spaces. Here we follow this approach and use it to calculate the
topological entropy of topologically transitive piecewise smooth vector fields on
2-dimensional manifolds (theorem 4.22).

Definition of topological entropy

In the classical context, we can define the topological entropy a continuous flow
Φt (t ∈ ) in a compact metric space K using dynamical balls and generating
sets, and its value is the same as the topological entropy of the time 1 map Φ1 :
K −→ K of the flow (section 2.4.2). Because of this, the topological entropy of
Φ1 is sometimes taken as the definition of topological entropy for the flow Φ. This
is the motivation for the definition of topological entropy for piecewise smooth
systems which we will use. We will assume our space M is compact.

9. Notice we are assuming here that both Σ
ss and Σ

us are non-empty.
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Definition 4.15. Let M be a compact Riemannian manifold and F a piecewise
smooth vector field on M . The topological entropy of F is the topological entropy
of the time 1 map Φ̃1 : M̃ −→ M̃ on the orbit space M̃ , denoted

h(F ) := h(Φ̃1).

In what follows, we will estimate the entropy of our topologically transitive
system F to show it is strictly positive. We will use the orbit space M̃ and its
flow Φ̃t, induced by F . By definition 4.15, the entropy of F is the entropy of
the time 1 map Φ̃1 : M̃ −→ M̃ . We will define a subset Γ̃p of M̃ and consider the
induced flow on it to show that its entropy is strictly positive, which implies that
the entropy of M̃ is also positive since the entropy of a subsystem is always smaller
than the entropy of the system [VO16].

To define the subset Γ̃p, we first need to have two different periodic orbits of
the piecewise smooth system F which have the same period and have a point in
common. We start with a simple lemma that proves this is the case for our setting.

Lemma 4.19 ([EMV24]). Let M be a 2-dimensional Riemannian manifold and
F a topologically transitive piecewise smooth vector field on M . If Σ

s |= , then
there exist 2 distinct periodic orbit segments µ0, µ1 : [0, ³] −→ M of F with period
³ ∈ >0 and initial point p = µ0(0) = µ0(³) = µ1(0) = µ1(³) ∈ M .

Proof. We can find two distinct periodic orbit segments ¸0 and ¸1 that have an
initial point p ∈ Σ

ss, in the same way it was done in lemmas 4.15 and 4.17,
and they can be forced to differ by making each one pass through each different
side of the connected component of Σ

s being considered (see figure 4.14). Since
these orbit segments may have different periods, we can concatenate ¸0 and ¸1 in
each possible order to obtain the orbit segments µ0 := ¸0¸1 and µ1 := ¸1¸0 (see
figure 4.19), which have the same period (the sum of the periods of µ0 and
µ1). ■

p

Σ
ss

γ1

γ0

Figure 4.19. Distinct periodic orbits with the same period (Σ ss

case).
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Construction of the subsystem

Now we present the construction of the subsystem Γ̃p of the orbit space M̃ . We
take the periodic orbit segments µ0 and µ1 as in lemma 4.19. Let Γ0 := µ0([0, ³])
and Γ1 := µ1([0, ³]) denote their images, two curves on the base space M that are
distinct and have their initial point p in common10. Denote the union of these
curves as Γ := Γ0 ∪ Γ1. The set Γ̃p is the set of all the possible integral trajectories
of F that start at p and whose image lies on Γ.

All trajectories of Γ̃p must start at p and follow either Γ0 or Γ1, returning to p

after the period ³ has passed. Then, it must again follows either of the two curves
and so on forwards and backwards in time. We can more formally describe this as
follows.

We consider the bilateral shift system in 2 symbols ( 2, Ã), with 2 = {0, 1}
and Ã(x)i = xi+1. For each sequence x ∈ 2, we can define an orbit µx of F (which
starts at p and whose image lies on Γ) as the concatenation of the orbit segments
µ0 and µ1 according to the entries of x: for each i ∈ and each t ∈ [i³, (i + 1)³[,
we have µx(t) = µxi

(t − i³). We will denote this by11

µx(t) =
{

µxi
(t − i³), i³ f t < (i + 1)³.

This gives the characterization Γ̃p = {µx | x ∈ 2}.
To define the dynamics on Γ̃p, we take the map Φ̃³ : Γ̃p −→ Γ̃p given on each µ ∈

Γ̃p by Φ̃³(µ)(t) = µ(³ + t). This is the flow map Φ̃³ : M̃ −→ M̃ (definition 4.10)
restricted to Γ̃p. The restriction is well defined because Φ̃³(µx) = µÃ(x) ∈ Γ̃p for
every x ∈ 2, which follows from the calculation

Φ̃³(µx)(t) = µx(t + ³)

=
{

µxi
(t + ³ − i³), i³ f t + ³ < (i + 1)³

=
{

µxi
(t − (i − 1)³), (i − 1)³ f t < i³

=
{

µxi+1
(t − i³), i³ f t < (i + 1)³

= µÃ(x)(t).

This shows that Φ̃³ : Γ̃p −→ Γ̃p is a subsystem of Φ̃³ : M̃ −→ M̃ .

Entropy calculation

We are ready to calculate the entropy. Let us define the constant

µ := sup
0ft<³

d(µ0(t), µ1(t)),

10. We do not need to assume the only intersection of the curves is p.
11. The use of curly braces is motivated by the similar notation used in the definition of functions
by cases, for instance formula 4.10.
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which is the maximum distance points of µ0 and µ1 may be from each other at the
same time. Since µ0 and µ1 are not equal for all times, µ > 0. This will be used in
the estimates that follow.

Also, we define the quantity

N(µx, µx′) := N(x, x′) := min{|i| | xi |= x′
i}.

between two orbits µx and µx′. The quantity N(x, x′) is related to the distance
function for the symbolic space 2, and N(µx, µx′) serves a similar purpose in
helping to estimate orbital distances, as the next lemma shows.

Lemma 4.20 ([EMV24]). Let m ∈ and x, x′ ∈ 2. If N(µx, µx′) f m, then

d̃sup(µx, µx′) g µ2−(m+1)³.

Proof. Denote N := N(µx, µx′). By definition of N , the orbits µx and µx′ are
different on the interval [N³, (N + 1)³[ or on the interval [−N³, −(N − 1)³[.
Denote ui := supift<i+1 d(µx(t), µx′(t)). Then uj = µ for some j ∈ such that
+N³, f j < +(N + 1)³,, so

d̃sup(µx, µx′) =
∑

i∈

2−|i|ui g
+(N+1)³,

∑

i=+N³,

2−iui g 2−jµ g 2−(m+1)³µ. ■

Finally, we calculate the entropy of the subsystem Φ̃³ : Γ̃p −→ Γ̃p.

Proposition 4.21 ([EMV24]). h(Φ̃³|Γ̃p
) g log(2).

Proof. To simplify notation, we will just write Φ̃³ instead of Φ̃³|Γ̃p
inside this proof.

We will first show that H̄n(Φ̃³, µ2−(m+1)³) g 22m+n. Let E ¦ Γ̃p be a set of orbits
µy such that #E f 22m+n − 1. Consider the set of (2m + n)-tuples

F := {(y−m, . . . , ym+n−1) ∈ {0, 1}2m+n | µy ∈ E}.

Since there are at most 22m+n − 1 elements in E, then #F f 22m+n − 1; and since
#({0, 1}2m+n) = 22m+n, there is at least one (2m + n)-tuple (s−m, . . . , sm+n−1) ∈
{0, 1}2m+n

∖ F . Take a sequence x ∈ 2 such that

(x−m, . . . , xm+n−1) = (s−m, . . . , sm+n−1).

By the choice of the si, it follows that, for every µy ∈ E,

(y−m, . . . , ym+n−1) |= (x−m, . . . , xm+n−1).
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So there exist ly ∈ {−m, . . . , m} and ky ∈ {0, . . . , n − 1} such that yly+ky
|=

xly+ky
, which is the same as Ãky(y)ly |= Ãky(x)ly . Since |ly| f m, this implies that

N(Φ̃³ky(µy), Φ̃³ky(µx)) = N(Ãky(y), Ãky(x)) f m, so it follows from lemma 4.20

that the dynamical distance [d̃sup]n
Φ̃α satisfies

[d̃sup]nΦ̃α(µy, µx) g d̃sup(Φ̃³ky(µy), Φ̃³ky(µx)) g µ2−(m+1)³;

that is, µx |∈ Bn
Φ̃α(µy; µ2−(m+1)³). Since this is valid for every µy ∈ E, we conclude

that µx |∈
⋃

µy∈E Bn
Φ̃α(µy; µ2−(m+1)³) and, because E is an arbitrary set with #E f

22m+n − 1, it follows that H̄n(Φ̃³, µ2−(m+1)³) > 22m+n − 1.
Finally, to estimate the entropy we note that, since µ2−(m+1)³ → 0 as m → ∞,

and
lim

m→∞
lim

n→∞

1

n
log 22m+n = lim

m→∞
lim

n→∞

2m + n

n
log(2) = log(2),

so it follows from H̄n(Φ̃³, µ2−(m+1)³) g 22m+n that h(Φ̃³) g log(2). ■

We can now prove the main entropy theorem.

Theorem 4.22 ([EMV24]). Let M be a 2-dimensional Riemannian manifold, F is
a transitive piecewise smooth vector field on M , and Σ

t is finite. If the sliding or
escaping regions are non-empty, then F has positive topological entropy.

Proof. From lemma 4.19 we know that our system F has two periodic orbit
segments µ0 and µ1, so the construction of the Γ̃p can be done. From propo-
sition 4.21, we have that h(Φ̃³|Γ̃p

) g log(2). Since Φ̃³ : Γ̃p → Γ̃p is a subsys-
tem of Φ̃³ : M̃ → M̃ , this means that h(Φ̃³) g h(Φ̃³|Γ̃p

). From the fact that
h(Φ̃³) = ³h(Φ̃1) (the exponent property of entropy, proposition 2.9), it follows
that

h(F ) = h(Φ̃1) = ³−1h(Φ̃³) g ³−1 log(2) > 0. ■
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