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RESUMO

O principal objetivo desta tese é estudar sistemas acoplados de equações de

Schrödinger não linear no caso em que o espaço de energia 9H1pRdq é crítico em relação

ao scaling. O estudo é dividido em duas partes. Na primeira estudamos um sistema com

não linearidades cúbicas, onde o espaço de energia crítica é o 9H1pR4q. Nosso principal

objetivo é mostrar blow-up em tempo finito para soluções cujo o dado inicial é radialmente

simétrico. Começamos aplicando o método do ponto fixo para mostrar boa colocação local

do problema de Cauchy associado. Em seguida, provamos existência de soluções ground

state. Para tal, utilizamos o método de concentração e compacidade para encontrar uma

solução para um problema de minimização restrito deduzido a partir de uma desigualdade

crítica do tipo Sobolev. Por fim, para obter o resultado de blow-up em tempo finito,

utilizamos uma versão modificada do método de convexidade.

A segunda parte trata de um sistema com não linearidades gerais com cresci-

mento do tipo quadrático, onde o espaço de energia é 9H1pR6q. Aqui o principal objetivo é

provar um resultado de scattering e boa colocação global. Iniciamos provando boa colocação

local, onde também utilizamos o método do ponto fixo, entretanto, provamos o resultado

com o dado inicial no espaço de Sobolev não homogêneo H1pR6q e, em seguida, mostramos

um resultado de estabilidade que nos permite trabalhar com o dado inicial no espaço

de Sobolev homogêneo 9H1pR6q. Para provar a existência global, utilizamos o método de

concentração-compacidade e rigidez, que consiste em admitir que o resultado é falso e

provar a existência de uma solução particular, chamada de solução crítica. Em seguida,

provamos que tal solução não pode existir, chegando em uma contradição.

Palavras-chave: Sistema de equações de Schrödinger; Energia crítica; Soluções

ground state; Blow-up; Boa colocação; Scattering;



ABSTRACT

The main goal of this thesis is to study coupled systems of nonlinear Schrödinger

equations in the case where the energy space 9H1pRdq is critical with respect to scaling.

The study is divided into two parts. In the first one, we study a system with cubic

nonlinearities, where the critical energy space is 9H1pR4q. Our main objective is to show

blow-up in finite time for solutions whose initial data is radially symmetric. We start by

applying the fixed point method to show the local well-posedness of the associated Cauchy

problem. Next, we prove the existence of ground state solutions. To this end, we use the

concentration-compactness method to find a solution of a restricted minimization problem

deduced from a critical Sobolev-type inequality. Finally, to obtain the blow-up in finite

time result, we use a modified version of the convexity method.

The second part of the work deals with a system with general nonlinearities

with quadratic growth. In contrast, the critical energy space is 9H1pR6q. Our main goal

is to prove a scattering result and global well-posedness. We start by proving local well-

posedness, where we use the fixed point method. However, we prove the result with the

initial data in the inhomogeneous Sobolev space H1pR6q and then we show a stability result

that allows us to work with the initial data in the homogeneous Sobolev space 9H1pR6q. To

show the global existence, we use the method that consists of admitting that the result is

false and proving the existence of a particular solution, called the critical solution. Then,

we prove that such type of solutions cannot exist, arriving at a contradiction.

Keywords: Schrödinger systems; Energy critical; Well-posedness; Ground

state solution; Blow-up; Scattering.



LIST OF SYMBOLS

N the set of natural number.

R the set of real numbers.

R� the set of nonnegative real numbers.

C the set of complex numbers.

R
d the d-dimensional Euclidean space.

C
d the d-dimensional complex space.

Repzq the real part of the complex number z.

Impzq the imaginary part of the complex number z.
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| � | the euclidean norm
b
x2

1 � ...� x2
d, where x P R

d.

} � }X norm in the space X.

Bxi
� Bi the partial derivative,

B
Bxi

, with respect to the xi variable.

uxi
� Bu
Bxi

� Biu.

ut � Bu
Bt � Btu.

∇u the gradient vector pux1
, ..., uxd

q.

∆u the Laplacian operator
ḑ

i�1

uxixi
.



Br � tx P R
n; |x|   ru.»

f �
»
Rd

fpxqdx.

CpXq the set of continuous functions in X.

CkpXq the set of functions with continuous derivatives of order k ¥ 0 in X.

C80 pXq the set of all functions in the class C8 with compact support in X.

LppXq the Lebesgue space of all p-integrable functions.

Hs,ppXq ps P R, 1 ¤ p ¤ 8q Sobolev spaces.

HspXq � Hs,2pXq.
9Hs,p the homogeneous (generalized) Sobolev space.

9HspXq � 9Hs,2pXq.

S 1pXq the space of Schwatrz functions in X.

Fpfq � f̂ the Fourier transform.

F�1pfq � f̌ the inverse Fourier transform.

eitpa∆�bqu0 �
�
e�itpa|À|2�bqû0

	_
with a and b constants.

X ãÑ Y continuous inclusion of space X into space Y .

A � Al the product A� ...� A (l times).

v the vector pv1, ..., vlq.










u










the vector p|u1|, ..., |ul|q.

p¶¼fqpxq the dilation by 1{¼, that is, p¶¼fqpxq � fpx{¼q.

C a constant that may change from one line to the next.
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CHAPTER 1

INTRODUCTION

In this work we will study to distinct nonlinear systems of Schrödinger equations.

The first one is the following cubic-type system,$'&'%
iut �∆u� u�

�
1

9
|u|2 � 2|w|2



u� 1

3
ū2w � 0,

iÃwt �∆w � µw � p9|w|2 � 2|u|2qw � 1

9
u3 � 0,

(1.1)

where u � upt, xq and w � wpt, xq are complex valued functions with pt, xq P R � R
4,

∆ represents the standard Laplacian operator and Ã, µ ¡ 0. This model describes the

interaction between an optical beam and its third harmonic in a material with Kerr-type

nonlinear response. For a more detailed explanation of the model, the reader can check

(SAMMUT; BURYAK; KIVSHAR, 1998).

The second one is a l-component nonlinear Schrödinger system with quadratic-

growth nonlinearities. Precisely, we will show a scattering result and global well-posedness

to the following Cauchy problem#
i³kBtuk � µk∆uk � �fkpu1, ..., ulq,
pu1p0, xq, ..., ulp0, xqq � pu10, ..., ul0q, k � 1, ..., l,

(1.2)

where u1, ..., ul are complex-valued functions on the variables pt, xq P R� R
6, ³k, µk ¡ 0,

are real constants and the nonlinearities fk : Cl ÝÑ C satisfy a quadratic-type growth.

The main goal of this work is to study nonlinear systems of Schrödinger

equations in the energy-critical case. This term comes from the fact that not only the

class of solutions, but also the energy, are left invariant under the transformation

fpt, xq ÞÑ f¼pt, xq :� ¼
d�2

2 fp¼2t, ¼xq, pt, xq P R� R
d, (1.3)
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called scaling symmetry. This defines a notion of criticality. Precisely, a quick computation

shows that 9H1pRdq is the critical (scaling invariant) Sobolev space if p :� pd� 2q{pd� 2q,
where p denotes the power of the nonlinearities. Therefore, the critical dimensions for

systems (1.1) and (1.2) are, respectively, d � 4 and d � 6.

The first one is devoted to study system (1.1). From a mathematical point

of view, system (1.1) has been studied in several cases. In (PAVA; PASTOR, 2009), the

authors established local and global well-posedness for the associated Cauchy problem

with periodic initial data in dimension one. Also in one space dimension, (PASTOR, 2010)

is concerned with nonlinear and spectral stability of periodic traveling wave solutions. The

author proved the existence of two smooth curves of periodic solutions depending on the

cnoidal type functions and a stability result under perturbations having the same minimal

wavelength and zero mean over their fundamental period. For the multidimensional case,

(OLIVEIRA; PASTOR, 2021) proved the existence and stability of ground state solutions,

the local and global well-posedness and established several criteria for blow-up in finite

time in the energy space H1pRdq. In (RAMADAN; STEFANOV, 2024), the authors studied

solitary waves for (1.1). They constructed the waves in largest possible parameter space and

provided a complete classification of their stability. In (COLIN; WATANABE, 2023), it was

proved the existence of stable standing wave solutions as well as the correspondence between

minimizers and ground state solutions. In the three dimensional case, (ARDILA; DINH;

FORCELLA, 2021) studied the asymptotic dynamics for solutions to (1.1). They provided

sharp threshold criteria leading to global well-posedness and scattering of solutions, as well

as formation of singularities in finite time for symmetric initial data. Also, in (ZHANG;

DUAN, 2023), it was proved existence results for normalized ground state solutions in

the L2-subcritical case and L2-supercritical cases and established the nonexistence of

normalized ground state solutions in the L2-critical case and a new blow-up criterion which

is related to normalized solutions.

Our goal is to study the system in the energy space H1pRdq. This terminology

comes from the fact that, at least in a formal level, the system conserves energy and mass,

respectively given by,

Epu,wq :� 1

2

»
p|∇u|2�|∇w|2�|u|2�µ|w|2q�

» �
1

36
|u|4 � 9

4
|w|4 � |u|2|w|2 � 1

9
Repū3wq



(1.4)

and

Mpu,wq :�
»
p|u|2 � 3Ã|w|2q. (1.5)

Our main goal is to prove existence of blow-up solutions for system (1.1). To do this, we

will use the ideas presented in (NOGUERA; PASTOR, 2022).

First, we establish the local well-posedness for the Cauchy problem associated
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to (1.1). We set the space

Y pIq :� pC X L8t H
1
xq X L4

tH
1,8{3
x , (1.6)

for a time interval I � r�T, T s with T ¡ 0. The result is the following.

Theorem 1.1. For any u0, w0 P H1pR4q, there exists T pu0, w0q ¡ 0, such that the system

(1.1) admits a unique solution pu,wq P Y pIq � Y pIq, with I � r�T pu0, w0q, T pu0, w0qs. In

addition, the following blow-up alternative holds: There exist times T�, T � P p0,8qsuch

that the solution can be extended to p�T�, T �q and if T �   8, then

lim
tÑT�

p}∇uptq}L
q
t Lr

x
� }∇wptq}L

q
t Lr

x
q � 8,

for any pair pq, rq satisfying 2 ¤ q, r ¤ 8,
2

q
� 2� 4

r
. A similar result holds if T�   8.

We establish the local well-posedness using the fixed point method to find

solutions of the equivalent integral equations$''&''%
uptq � Uptqu0 � i

» t

0

Upt� sqF pupsq, wpsqqds,

wptq � W ptqw0 � i

» t

0

W pt� sqGpupsq, wpsqqds,
(1.7)

where Uptq � eitp∆�1q, W ptq � eitpa∆�bq, are the corresponding unitary groups associated

to the linear part of (1.1), with a � 1{Ã, b � µ{Ã, and

F pu,wq �
�

1

9
|u|2 � 2|w|2



u� 1

3
ū2w and Gpu,wq � ap9|u|2 � 2|w|2qw � 1

9
au3, (1.8)

are the nonlinearities. This will be addressed in Section 3.1

Next, in Section 3.2, we study a special class of solutions called ground states

which are defined as follows. Recall that standing waves are solutions of (1.1) of the form

upt, xq � eiÉtP pxq, wpt, xq � e3iÉtQpxq, (1.9)

where P and Q are real functions with fast decay at infinity. Using (1.9) in (1.1), one can

see that pP,Qq must satisfy$'&'%
∆P � pÉ � 1qP �

�
1

9
P 2 � 2Q2



P � 1

3
P 2Q � 0,

∆Q� pµ� 3ÃÉqQ� p9Q2 � 2P 2qQ� 1

9
P 3 � 0.

(1.10)

It is known from (OLIVEIRA; PASTOR, 2021), Lemma 2.2, that if pP,Qq P H1pRdq �
H1pRdq is a solution to (1.10) then the identity

pd� 4q
»
p|∇P |2 � |∇Q|2qdx� dpÉ � 1q

»
P 2dx� dpµ� 3ÃÉq

»
Q2dx � 0. (1.11)
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is satisfied for all t. Thus, if d � 4 then

pÉ � 1q
»
P 2dx� pµ� 3ÃÉq

»
Q2dx � 0,

which implies that the system has non-trivial solution only if É � �1 and µ � 3Ã. In these

conditions, the system (1.10) reduces to$'&'%
∆P �

�
1

9
P 2 � 2Q2



P � 1

3
P 2Q � 0,

∆Q� p9Q2 � 2P 2qQ� 1

9
P 3 � 0,

(1.12)

and the corresponding action functional can be written as

SpP,Qq � 1

2
KpP,Qq �NpP,Qq, (1.13)

where

KpP,Qq �
» �|∇P |2 � |∇Q|2� dx, NpP,Qq �

» �
1

36
P 4 � 9

4
Q4 � P 2Q2 � 1

9
P 3Q



dx.

(1.14)

Precisely, we have the definition

Definition 1.2. We say that

(i) A pair of functions pP,Qq P 9H1pR4q � 9H1pR4q is a weak solution to (1.12), if for all

pf, gq P 9H1pR4q � 9H1pR4q,»
∇P �∇fdx �

» �
1

9
P 3 � 2Q2P � 1

3
P 2Q



fdx,»

∇Q �∇gdx �
» �

9Q3 � 2P 2Q� 1

9
P 3



gdx.

(1.15)

(ii) A solution pP0, Q0q P 9H1pR4q � 9H1pR4q is a ground state of (1.12) if

SpP0, Q0q � inftSpP,Qq; pP,Qq P Cu

where C denotes the set of all non-trivial solutions of (1.12). The set of all ground

states of (1.12) will be denote by G.

The main result of Section 3.2 is the following.

Theorem 1.3. There exists a ground state solution pP0, Q0q for system (1.12), i.e., G is

non-empty.

For this purpose, we shall use the concentration-compactness method, intro-

duced in (LIONS, 1985). We proceed in three steps. First, we deduce a critical Sobolev-type
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inequality corresponding to our system and derive a minimization problem. Additionally,

we establish a localized version of the Sobolev inequality, which will be useful to our

purpose. Later, we prove a result inspired in the limit case lemma presented in (LIONS,

1985), which is called concentration-compactness lemma II. Finally, the third step is to

prove that the minimization problem has a minimizer, implying the existence of a ground

state solution. Finally, we establish an optimal constant for the minimization problem.

Finally, in Section 3.3, we prove the main result of this part,

Theorem 1.4. Suppose pu0, w0q P H1pR4q �H1pR4q and let pu,wq be the corresponding

solution of (1.1) defined in the maximal time interval of existence I. If pu0, w0q is a pair

of radially symmetric functions satisfying

Epu0, w0q   EpP,Qq (1.16)

Kpu0, w0q ¡ KpP,Qq, (1.17)

where pP,Qq is any ground state solution, and E is the energy defined in (3.25), then the

time interval I is finite.

As usual we use the convexity method to obtain this kind of result, which

consist in deriving a contradiction by working with the virial identity

Vptq �
»
ϕpxq|upt, xq|2dx�

»
ϕpxqÃ2|wpt, xq|2dx,

where ϕ P C8
0 pR4q, and its derivative

V 1ptq � 2Im
»

∇ϕp∇uū� Ã∇ww̄qdx� 4

»
ϕIm

�
1

2
ūfpu,wq � Ã

2
w̄fpu,wq



dx, (1.18)

with fpu,wq �
�

1

9
|u|2 � 2|w|2



u� 1

3
ū2w and gpu,wq � p9|w|2 � 2|u|2qw � 1

9
u3.

Notice that the second term in (1.18) does not vanishes necessarily , which

brings some difficulties in order to apply the method. To avoid this problem, we used a

modification of the method presented in (INUI; KISHIMOTO; NISHIMURA, 2020), which

consists in working with radially symmetric solutions and the function

Rptq � 2Im
»
R4

∇ϕp∇uū� Ã∇ww̄qdx (1.19)

instead of the usual V .

In the second part of this work, we will be focused on system (1.2). In this case

we will assume that the nonlinearities fk, k � 1, ..., l satisfies the following hypothesis

pH1q
fkp0q � 0, k � 1, ..., l.
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pH2q For all z, z1 P C
l

���� BBzm

rfkpzq � fkpz1qs
����� ���� BBz̄m

rfkpzq � fkpz1qs
���� À ļ

j�1

|zj � z1j|, k,m � 1, ..., l.

pH3q There exists a function F : Cl ÝÑ C, such that

fkpzq � BF
Bz̄k

pzq � BF
Bzk

pzq, k � 1, ..., l.

pH4q For all ¹ P R and z P C
l,

ReF
�
e

i
³1

µ1
¹
z1, ..., e

i
³l
µl

¹
zl

	
� ReF pzq.

pH5q The function F is homogeneous of degree 3, that is, for all z P C
l and ¼ ¡ 0, it holds

F p¼zq � ¼3F pzq.

pH6q It holds ����Re
»
Rd

F puqdx
���� ¤ »

Rd

F p










u










qdx.

pH7q The function F is real-valued in R
l, that is, if py1, ..., ylq P R

l then

F py1, ..., ylq P R.

Moreover, the functions fk are nonnegative on the positive cone on R
l, that is, for

yi ¥ 0, i � 1, ..., l

fkpy1, ..., ylq ¥ 0.

pH8q The function F may be written as a sum F1 � ... � Fm, where Fs, s � 1, ...,m, is

super-modular on R
d
�, 1 ¤ d ¤ l, and vanishes on hyperplanes, that is, for any

i, j P t1, ..., du, i � j and k, h ¡ 0, we have

Fspy � hei � kejq � Fspyq ¥ Fspy � heiq � Fspy � kejq, y P R
d
�,

and Fspy1, ..., ydq � 0 if yj � 0 for some j P t1, ..., du.

Remark 1.5. The following system is an example satisfying the conditions (H1)-(H8)#
iBtu1 �∆u1 � �2ū1u2,

iBtu2 � »∆u2 � �u2
1,

(1.20)

where F pz1, z2q � z̄2
1z2. Other models with quadratic-type growth nonlinearities satisfying

(H1)-(H8) can be found in (KIVSHAR et al., 2000), (NOGUERA; PASTOR, 2022) and

(PASTOR, 2019)
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Hypothesis pH3q � pH5q guarantee that the system (1.2) conserves both mass

and energy given, respectively, by

Qpuptqq :�
ļ

k�1

³2
k

µk

}ukptq}2
L2 , (1.21)

and

Epuptqq :�
ļ

k�1

µk}∇uk}2
L2 � 2Re

»
Rd

F puptqqdx, (1.22)

that is, provided there exists a solution to the system, then

Qpuptqq � Qpu0q and Epuptqq � Epu0q.

We also denote the kinetic energy and potential energy, respectively, by

Kpuq �
ļ

k�1

µk}∇uk}2
L2 and P puq � Re

»
Rd

F puptqqdx.

Thus, with this notation, the energy becomes Epuq � Kpuq � 2P puq.
This kind of system has been studied in (NOGUERA; PASTOR, 2021), where

the local and global well-posedness was proved on L2pRdq and H1pRdq, 1 ¤ d ¤ 6, existence

and stability/instability of ground state solutions, and the dichotomy global existence

versus blow-up in finite time, in the cases 1 ¤ d ¤ 5. In (NOGUERA; PASTOR, 2022)

was treated the H1 critical, that is, when d � 6. The authors proved existence of ground

state solutions and conditions to a radial solution blow-up in finite time. On both works,

the hypothesis (H4) was replaced by

pH4�q There are positive constants Ã1, ..., Ãl such that for any z P C
l

Im
ļ

k�1

Ãkfkpzqz̄k � 0.

Recall that, a ground state solution in R
6 is a solution to the elliptic system

�µk∆Èk � fkpψq, k � 1, .., l, (1.23)

where Èk are real-valued functions with decay to zero at infinity. Under our hypothesis

(see (NOGUERA; PASTOR, 2022), Theorem 3.3), the set of ground state solutions of

(1.23), denoted by G6 is nonempty if d � 6. Besides that, we have the following Gagliardo-

Nirenberg inequality (see (NOGUERA; PASTOR, 2022), Corollary 4.12),

P puq ¤ C6Kpuq3{2, (1.24)

for all functions u P D :� tψ P 9H1pR6q;P pψq ¡ 0u, with optimal constant C6 given by

C6 :� 1

33{2

1

Epψq1{2 �
1

3

1

Kpψq1{2 . (1.25)
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where ψ is a ground state solution to (1.23) (see (NOGUERA; PASTOR, 2022), Corollary

3.14).

Turning back to our problem, we start with the following definitions.

Definition 1.6. (Solution) By a solution to the system (1.2) we will understand a function

u : I � R
6, defined on a non-empty time interval I � R, with 0 P I, if it lies in the class

C0
t

9H1
xpK � R

6q X L4
t,xpK � R

6q for all compact interval K � I, and satisfy the Duhamel

formula $&% ukptq � Ukptquk0 � i

» t

0

Ukpt� sq 1

³k

fkpuqds,
pu1p0, xq, ..., ulp0, xqq � pu10, ..., ul0q :� u0,

(1.26)

where Ukptq denotes the corresponding unitary group defined by Ukptq � e
it

µk
³k

∆, k � 1, ..., l,

and t P I. The interval I is said to be the lifespan of u. We say that u is a maximal

solution if the solution cannot be extended to an interval J � I strictly larger then I. We

say that the solution is global if I � R.

Definition 1.7. (Scattering size). Let u be a solution of (1.2). The scattering size of u

on a time interval I is defined as

SIpuq :�
ļ

k�1

»
I

»
R6

|ukpt, xq|4dxdt.

Definition 1.8. (Blow-up) We say that a solution u of (1.2) blows-up forward in time if

there exists t1 P I such that

Srt1,sup Iqpuq � 8,
and u blows-up backward in time, if there exists t2 P I such that

Spinf I,t2spuq � 8.

We say that u blows-up in finite time, if it blows-up both forward and backward in time.

The local theory for (1.2) will be treated in Chapter 4, Section 4.1. We sum-

marize the results in the following theorem.

Theorem 1.9. Given u0 P 9H1
xpR6q, there exists a unique maximal-lifespan solution

u : I � R
6 Ñ C to (1.2) with initial data up0q � u0. This solution has the following

properties:

• (Local existence) I is an open neighborhood of 0.

• (Blow-up criterion) If suppIq is finite, then u blows-up forward in time; if infpIq is

finite, then u blows-up backward in time.
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• (Small data global existenece) If }∇u0}L2 is sufficiently small, then u is a global

solution which does not blow-up either forward or backward in time. Indeed, in this

case, SRpuq À }∇u0}4
L2.

The main result of this part of the work is the following.

Theorem 1.10. (Spacetime bounds). Let d � 6 and assume (H1)-(H8). Consider u0 P 9H1
x

and u : I �R
6 ÝÑ C

l the corresponding solution to (1.2). Let ψ P G6 be a ground state. If

Epu0q   Epψq, (1.27)

and

Kpu0q   Kpψq, (1.28)

then

SIpuq   8.

Corollary 1.11. (Global well-posedness and Scattering). Let u be a maximal solution to

(1.2) on the time interval I. Assume also (1.27) and (1.28). Then I � R and

SRpuq   8. (1.29)

In particular, the solution scatters, that is, there exist asymptotic states u� P 9H1
x such that

}uptq �Uptqu�}
9H1

x
Ñ 0 as tÑ �8,

where Uptq � pU1ptq, ..., Ulptqq.

As we will see, the result in Theorem 1.10 is sharp, in the sense that if we

reverse inequality (1.28) then the corresponding solution blows-up in finite time. Precisely,

we have the following result.

Theorem 1.12. Let u0 P 9H1 and let u be the corresponding solution of (1.2) defined in

the maximal time interval of existence I. Assume that

Epu0q   Epψq, (1.30)

and

Kpu0q ¡ Kpψq. (1.31)

Then, if xu0 P L2pR6q or u0 P 9H1 is radially symmetric we have that I is finite.

Remark 1.13. In the radial case, Theorem 1.12 was proved in Theorem 4.1 (ii) of

(NOGUERA; PASTOR, 2022).
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To prove Theorem 1.10, we follow the ideas presented in (KILLIP; VISAN,

2010), which basically consists in assuming that the conclusion of Theorem 1.10 is false

and construct a special type of solution, called critical solution, which we will prove that

cannot exist. This method is called concentration/compactness and rigidity argument and

was first introduced by (KENIG; MERLE, 2006). This will be organized as follows.

In Section 4.1 we will prove the local well-posedness in 9H1
x by using the approach

presented in (KILLIP; VISAN, 2013).We start proving local well-posedness assuming that

the initial data belongs to the inhomogeneous Sobolev space H1
xpR6q, using the usual

method of contraction presented in (CAZENAVE, 2003). The next step is to present some

stability results which allows us to prove continuous dependence of the solution u upon

the initial data u0 in the critical space 9H1
x. This allows us to treat the initial data in the

homogeneous Sobolev space 9H1
x, since every function in 9H1

x can be well approximated by

H1
x functions. At the end of the section, we will prove a standard blow-up result.

In Section 4.2, we will prove the existence of critical solutions. We will see that

such solutions have many properties, one of then is almost periodicity modulo symmetries,

which we define as follows.

Definition 1.14. (Almost periodicity modulo symmetries). A solution u to (1.2) on a

time interval I is said to be almost periodic modulo symmetries if there exist functions

N : I ÝÑ R
�, x : I ÝÑ R

6 and C : R� ÝÑ R
�, such that for all t P I and ¸ ¡ 0:

ļ

k�1

»
|x�xptq|¥Cp¸q{Nptq

µk|∇ukpt, xq|2dx ¤ ¸

and
ļ

k�1

»
|À|¥Cp¸qNptq

µk|À|2|ûkpt, Àq|2dÀ ¤ ¸.

N is called scale frequency function of the solution u, x is the spacial center function and

C is the compactness modulus function.

Remark 1.15. We know that a family of functions F � 9H1pR6q, is compact if, and only

if, F is bounded in 9H1pR6q and, for all ¸ ¡ 0, there exists a compactness modulus function

Cp¸q ¡ 0, such that»
|x|¥Cp¸q{Nptq

|∇fpxq|2dx�
»
|À|¥Cp¸qNptq

|À|2|f̂pÀq|2dÀ ¤ ¸

for all functions f P F . See Appendix A for more details. In particular, by Sobolev

embedding, every compact set in 9H1
xpR6q is compact in L3

xpR6q. Therefore, any solution

u : I � R
6 Ñ C to (1.2) that is almost periodic modulo symmetries must also satisfy

ļ

k�1

»
|x�xptq|¥Cp¸q{Nptq

|ukpt, xq|3 À ¸,

for all t P I and ¸ ¡ 0.
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Remark 1.16. Another consequence of compactness modulo symmetries is the existence

of a function c : R� Ñ R
� such that»

|x�xptq|¤cp¸q{Nptq

|∇upt, xq|2dx�
»
|À|¤cp¸qNptq

|À|2|pu|2dÀ ¤ ¸,

for all t P I and ¸ ¡ 0. See the Appendix A for more details.

The main result of the section is.

Theorem 1.17. (Reduction to almost periodic solutions). Suppose that Theorem 1.10

fails. Then there exists a maximal solution uc : Ic � R
6 ÝÑ C

l to (1.2) such that

sup
tPIc

Kpucq   Kpψq,

uc is almost periodic modulo symmetries and uc blows-up in time. Moreover, uc has

minimum kinetic energy among all solutions that blows-up in time, that is,

sup
tPI

Kpuptqq ¥ sup
tPIc

Kpucq,

for all maximal solutions u that blows-up at least in one direction.

To guarantee the existence of such kind of solution, we will need an auxiliary

result, called Palais-Smale property. In order to show that our system satisfies such

property, we will use the nonlinear profile decomposition and stability theory. All these

tools will be discussed in Chapter 2.

From this, in Section 4.3, we will see that it is possible to classify the solutions

uc to (1.2), founded in Theorem 1.17, with more refined properties, according to different

kinds of scale functions Nptq. Such type of classification was studied in (KILLIP; TAO;

VISAN, 2009) and (KILLIP; VISAN, 2010). The result states the following.

Proposition 1.18. (The enemies). Suppose that Theorem 1.10 fails. Then there exists a

maximal solution uc : Ic � R
6 ÝÑ C

l, which is almost periodic modulo symmetries and

satisfy

SIc
pucq � 8 and sup

tPIc

Kpucptqq   Kpψq. (1.32)

Moreover, the time interval Ic and the scale function Nptq satisfy one of the three following

scenarios:

(i) We have | inf Ic|   8 or | sup Ic|   8;

(ii) We have Ic � R and

Nptq � 1, @t P R;
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(iii) We have Ic � R and

inf
tPR

Nptq ¥ 1, and lim sup
tÑ8

Nptq � 8.

Remark 1.19. From the literature (see (KILLIP; VISAN, 2010)) the three scenarios are

known, respectively, as Finite-time blow-up, Soliton-like solution and Low-to-high frequency

cascade.

Finally, to conclude the proof of Theorem 1.10, we will show that the critical

solution uc cannot satisfy any one of these conditions, that is, we will exclude case by

case the possibilities, arriving to a contradiction. This is the motivation to call the three

scenarios “the enemies”.

In Section 4.4, we will exclude the first case, showing that the L2-norm of ucptq
converges to zero when t goes to infinty. Since the mass of the system is conserved, this

implies that uc is identically zero.

For the remaining cases, we will need to show that the solution uc has some

negative regularity that is, the solution is in a Sobolev space of negative index, and this is

done in two steps. First, we show that the solution belongs to L8
t pLp

xq, this guarantee that

the function decays at infinity faster than a function in u P L8
t p 9H1

xq. The second step is to

improve the decay previously established to L2 spaces. This will be done in Section 4.5.

Finally, in Section 4.6, we will use the negative regularity to deduce some

compactness properties of uc in L2, then, we show that uc has zero momentum, and finally,

use a virial identity to exclude the Soliton case. Next, in Section 4.7, we use the negative

regularity joint with the conservation of mass to exclude the low-to-high cascade frequency.

Last but not least, in Section 4.8, we show the scattering result of Corollary 1.11 and the

blow-up result of Theorem 1.12.
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CHAPTER 2

NOTATION AND PRELIMINARY RESULTS

Throughout the work we will use the standard notation in PDEs. Indeed, C

will represent a generic constant which may vary from inequality to inequality. If a and b

are positive constants, we denote a À b whenever a ¤ Cb for some constant C ¡ 0, similar

for the case a Á b. We write X� for any quantity of the form X � ϵ for any small ϵ ¡ 0.

Given a subset A, we denote by A the product A� ...� A (l-times). In particular, if A

is a Banach space, then A also is with the usual norm given by the sum. For a complex

number z P C, Re z and Im z represents its real and imaginary parts. Also, z̄ denotes the

complex conjugate of z. We set










z










for the vector p|z1|, ..., |zl|q. This is not to be confused

with |z| �
a
|z1|2 � ...� |zl|2 which denotes the usual norm of the vector z P C

l.

We denote the stantard Sobolev, the homogeneous Sobolev and the Lebesgue

spaces by Hs,p � Hs,ppRdq, 9Hs,p � 9Hs,ppRdq and Lp � LppRdq, respectively, with its usual

norms. We denote Hs � Hs,2 and 9Hs � 9Hs,2. Given a time interval I, the mixed Lebesgue

space Lp
tL

q
xpI � R

dq is denoted by Lp
tL

q
x and will be endowed with the norm

}f}L
p
t L

q
x
�
�»

I

�»
Rd

|fpt, xq|qdx

p{q

dt

�1{p

,

with the obvious modification if either p � 8 or q � 8.

A pair pq, rq is called admissible with 2 ¤ q, r ¤ 8 if
2

q
� d

2
� d

r
. For a fixed

space time slab I � R
d, we set the Strichartz norm by

}u}S0pIq :� sup
pq,rq admissible

}u}L
q
t Lr

xpI�Rdq and }u}S1pIq :� }∇u}S0pIq. (2.1)
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We define the Fourier transform on R
d by

f̂pÀq :� p2Ãq�d{2

»
Rd

e�ix�Àfpxqdx.

For s P R, we define the fractional differentiation/integral operator

{|∇|sfpÀq :� |À|sf̂pÀq,

which defines the homogeneous Sobolev norm

}f}
9Hs

xpR
dq :� }|∇|sf}L2

xpR
dq.

If no confusion is caused, we denote
»
Rd

fpxqdx simply by
»
f . We start with

the results that will be used throughout the work.

Theorem 2.1. (Strichartz estimates, (CAZENAVE, 2003) Theorem 2.3.3) The following

inequalities hold.

(i) If pq, rq is an admissible pair. Then, for all f P L2pRdq.

}eit∆f}L
q
t Lr

xpR�Rdq À }f}L2
xpR

dq.

(ii) Let I be a time interval and t0 P Ī. If pq1, r1q and pq2, r2q are two admissible pairs,

then ����» t

t0

eipt�sq∆fp�, sqds
����

L
q1

t L
r1
x pI�Rdq

À }f}
L

q1
2

t L
r1

2
x pI�Rdq

and ����» b

a

eipt�sq∆fp�, sqds
����

L
q1

t L
r1
x pR�Rdq

À }f}
L

q1
2

t L
r1

2
x pra,bs�Rdq

.

Proposition 2.2. Let pq, rq be an admissible pair. Given u0 P L2
xpRdq and ϵ ¡ 0 then

there exist T ¡ 0 such that �» T

0

}eit∆u0}r
L

q
x
dt


1{r

  ϵ. (2.2)

In addition, there exist ¶ ¡ 0 such that if }v0 � u0}L2
x
  ¶, then�» T

0

}eit∆v0}r
L

q
x
dt


1{r

  ϵ,

where eit∆ is the unitary group associated to the linear part of the Schrödinger equation.

Proof. See (LINARES; PONCE, 2015), page 100.

Remark 2.3. The above results still holds if we replace eit∆ with Uptq, W ptq and Ukptq,
k � 1, ..., l. defined, respectively, on the pages 12 and 17.
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2.1 Preliminaries: First part

2.1.1 Measures

We denote the set of all continuous bounded functions and all continuous

function with compact support on X, respectively, by CbpXq and CcpXq. When it comes

to Radon measures, if X is a locally compact Hausdorff space, we shall denote by M�pXq
the Banach space of all non-negative measures, by Mb

�pXq the space of all bound (or

finite) measures and M1
� the space of all probability measures. Given two measures ¿ and

µ, we write ¿ ! µ if the measure ¿ is absolutely continuous with respect to the measure µ.

For all µ P Mb
�pXq, }µ} :� µpXq is called the mass of µ.

Let us introduce some convergence notions of measures.

Definition 2.4. (i) A sequence pµmq � M� is said to converge vaguely to µ in M�pXq,
and denoted by µm

�á µ, if
»

X

fdµm Ñ
»

X

fdµ for all f P CcpXq.

(ii) A sequence pµmq � Mb
�pXq is said to converge weakly to µ, in Mb

�pXq, and denoted

by µm á µ, if
»

X

fdµm Ñ
»

X

fdµ, for all f P CbpXq.

(iii) A sequence pµmq � Mb
� is said to be uniformly tight if, for every ϵ ¡ 0, there exists

a compact subset Kϵ � X such that µmpXzKϵq ¤ ϵ for all m. We also say that a set

H � M�pXq is vaguely bounded if sup
µPH

����»
X

fdµ

����   8 for all f P CcpXq.

To finish this section, we state a result that guarantees the existence of vaguely

convergent sequences. The proof can be found in Theorems 30.6 and 31.2 in (BAUER,

2001).

Lemma 2.5. Let X be a locally compact Hausdorff space. Then

(i) Every vaguely bounded sequence in M�pXq contains a vaguely convergent subse-

quence;

(ii) If µm
�á µ in M�pXq and p}µm}q is bounded, then µ is finite.

2.1.2 Some estimates

Now, we presents an adapted version of the generalized Brezis-Lieb Lemma (see

(BRÉZIS; LIEB, 1983), Theorem 2). Let f : Rl Ñ R be a continuous function satisfying

fp0, ..., 0q � 0, for all, a, b P R
l, and ϵ ¡ 0

|fpa� bq � fpbq| ¤ ϵ·paq � Èϵpbq, (2.3)

where · and Èϵ are non-negative functions.
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Lemma 2.6. Let vm � um � u be a sequence of measurable functions from R
d Ñ R

l such

that

(i) vm Ñ 0 a. e.;

(ii) fpuq P L1pRdq;

(iii)
»
·pvmqpxqdx ¤M   8, for some constant M , independent of m;

(iv)
»
Èϵpuqpxqdx   8, for any ϵ ¡ 0.

Then, as mÑ 8, »
|fpumq � fpvmq � fpuq|dxÑ 0.

Lemma 2.7. Let I � R be an open interval with 0 P I, a P R, b ¡ 0 and q ¡ 1. Define

µ � pbqq�1{pq�1q and fprq � a� r � brq, for r ¡ 0. Let Gptq be a nonnegative continuous

function such that f �G ¥ 0 in I. Assume that a  
�

1� 1

q



µ, we have

(i) If Gp0q   µ then Gptq   µ, for all t P I;

(ii) If Gp0q ¡ µ then Gptq ¡ µ, for all t P I.

Proof. See Lemma 3.1 in (PASTOR, 2015).

2.2 Preliminaries: Second part

2.2.1 Some estimates

Lemma 2.8. (Acausal Gronwall’s inequality). Given ¸, C, µ, µ1 ¡ 0, let txkuk¥0 be a

bounded nonnegative sequence obeying

xk ¤ C2�µk � ¸
¸
l k

2�µ|k�l|xl � ¸
¸
l¥k

2�µ1|k�l|xl,

for all k ¥ 0. If, ¸ ¤ 1

4
mint1� 2�µ, 1� 2�µ1 , 1� 2Ä�µu for some 0   Ä   µ, then

xk ¤ p4C � }x}ℓ8q2�Äµ.

Proof. See (KILLIP; VISAN, 2011, Lemma 5.3).

From now on we will assume that the hypothesis (H1)-(H8) hold. Furthermore,

for 1 ¤ p ¤ 8 we denote by p1 its Hölder’s conjugate, that is, 1{p � 1{p1 � 1. We start

with the following dispersive estimate.
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Lemma 2.9. If 2 ¤ p ¤ 8 and t � 0, then, for k � 1, ..., l,

}Ukptqf}L
p
xpRdq À |t|�dp 1

2
� 1

pq}f}
L

p1
x pRdq

, @f P Lp1

x pRdq.

Proof. See Proposition 2.2.3 in (CAZENAVE, 2003).

Next lemma has an important role in the proof of Palais-Smale condition.

Lemma 2.10. Given ϕ P 9H1
xpRdq, R ¡ 0 and T ¡ 0

}∇eit∆ϕ}3
L2

t,xpr�T,T s�t|x|¤Ruq À T
2

d�2R
3d�2

2pd�2q }eit∆ϕ}
L

2pd�2q{pd�2q
t,x

}∇ϕ}2
L2

x
.

Proof. See (KILLIP; VISAN, 2010), Lemma 2.5.

Next results are some consequences of our assumptions on the nonlinearities

fk, k � 1, ..., l.

Lemma 2.11. Suppose that the nonlinearities fk obey (H1) and (H2). Then

(i) For all z, z1 P C
l, we have

|fkpzq � fkpz1q| À
ļ

m�1

ļ

j�1

p|zj| � |z1j|q|zm � z1m|, k � 1, ..., l.

In particular,

|fkpzq| À
ļ

j�1

|zj|2, k � 1, ..., l.

(ii) Let u and u1 be complex-valued functions defined on R
d. Then

|∇rfkpuq � fkpu1qs| À
ļ

m�1

ļ

j�1

|uj||∇pum � u1mq| �
ļ

m�1

ļ

j�1

|uj � u1j||∇u1m|.

(iii) Let 1   p, q, r   8 be such that
1

r
� 1

p
� 1

q
and s P p0, 1q. Then, for k � 1, ..., l,

}∇fkpuq}Lr À }u}L
p
x
}∇u}L

q
x

and

}fkpuq}Hs,r À }u}L
p
x
}u}Hs,q . (2.4)

Proof. For (i) and (ii) see Lemma 2.2, Corolário 2.3 and Lemma 2.4 in (NOGUERA;

PASTOR, 2021). Part (iii) is a consequence of (H2) and Leibniz’s rule (see Proposition 5.1

in (TAYLOR, 2000) and Corollary 2.5 in (NOGUERA; PASTOR, 2021)).
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Lemma 2.12. Assume that fk satisfy (H2) for all k � 1, ..., l. For all J P N we have�����∇
�

J̧

j�1

fkpujq � fk

�
J̧

j�1

uj

������� À¸
j�i

|∇uj||ui|, k � 1, ..., l.

Proof. Let uj � puj1, ..., ujlq and fkpzq � fkpz1, ..., zlq. By the chain rule

Bfk

Bxj

puq �
ļ

m�1

� Bfk

Bzm

puqBum

Bxj

� Bfk

Bz̄m

puqBūm

Bxj



,

and we get the following

Bfk

Bxi

�
J̧

j�1

uj

�
�

ļ

m�1

�
Bfk

Bzm

�
J̧

j�1

uj

�
B
Bxi

�
J̧

n�1

unm

�
� Bfk

Bz̄m

�
J̧

j�1

uj

�
B
Bxi

�
J̧

n�1

ūnm

��

Therefore, by the triangle inequality,����� J̧

j�1

Bfk

Bxi

pujq � Bfk

Bxi

�
J̧

j�1

uj

������ ¤
����� ļ

m�1

�
J̧

n�1

Bfk

Bzm

punqBunm

Bxi

� Bfk

Bzm

�
J̧

j�1

uj

��
J̧

n�1

Bunm

Bxi

�������
�
����� ļ

m�1

�
J̧

n�1

Bfk

Bz̄m

punqBūnm

Bxi

� Bfk

Bz̄m

�
J̧

j�1

uj

��
J̧

n�1

Būnm

Bxi

������� .
(2.5)

Now, notice that for each m, we get����� J̧

n�1

Bfk

Bzm

punqBunm

Bxi

� Bfk

Bzm

�
J̧

j�1

uj

� �
J̧

n�1

Bunm

Bxi

������
�
����� J̧

n�1

��
Bfk

Bzm

punq � Bfk

Bzm

�
J̧

j�1

uj

��
Bunm

Bxi

������
¤

ļ

n�1

����� Bfk

Bzm

punq � Bfk

Bzm

�
J̧

j�1

uj

������
����Bunm

Bxi

����
À

J̧

n�1

�����un �
j̧

j�1

uj

�����
����Bunm

Bxi

����
À

¸
n�j

|uj|
����Bun

Bxi

���� ,
where we used (H2) in the second last inequality. In the same way,����� J̧

n�1

Bfk

Bz̄m

punqBūnm

Bxi

� Bfk

Bz̄m

�
J̧

j�1

uj

��
J̧

n�1

Būnm

Bxi

������ À ¸
n�j

|uj|
����Būn

Bxi

���� .
Then, for each i � 1, .., l,����� J̧

j�1

Bfk

Bxi

pujq � Bfk

Bxi

�
J̧

j�1

uj

������ À ¸
n�j

|uj|
���� Bu

Bxi

���� ,
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which implies �����∇
�

J̧

j�1

fkpujq � fk

�
J̧

j�1

uj

������� À ¸
n�j

|uj||∇un|.

Lemma 2.13. Supose that (H3) and (H4) hold, then fk satisfies the Gauge condition,

that is, for all ¹ P R,

fk

�
e

i
³1

µ1
¹
u1, ..., e

i
³l
µl

¹
ul

	
� e

i
³k
µk

¹
fkpuq, k � 1, ..., l.

Proof. See Lema 2.8 in (NOGUERA; PASTOR, 2021).

Next, we show some properties of the potential function F .

Lemma 2.14. Assume that (H1)-(H5) hold.

(i) For all z P C
l,

|ReF pzq| À
ļ

j�1

|zj|3.

(ii) We have

Re

ļ

k�1

fkpuq∇ūk � Rer∇F puqs

and

Re

ļ

k�1

fkpuqūk � Rer3F puqs.

(iii) The potential function vanishes at zero, that is, F p0q � 0.

Proof. For (i) and (ii) see Lemmas 2.10 and 2.11, respectively, in (NOGUERA; PASTOR,

2021). Finally, (iii) is consequence of (H5).

Lemma 2.15. (Refined Fatou’s Lemma) Supose that tfnu � Lp
xpR6q is such that

lim sup }fn}Lp   8. If fn Ñ f almost everywhere, then»
R6

||fn|p � |fn � f |p � |f |p| dxÑ 0.

In particular, }fn}p
Lp � }fn � f}p

Lp Ñ }f}p
Lp.

Proof. The proof can be found in (BRÉZIS; LIEB, 1983).

Lemma 2.16. (Gagliardo-Nirenberg’s Inequality) Let 1   q   p ¤ 8 and s ¡ 0 be such

that
1

p
� 1

q
� ¹s

d
,

for some 0   ¹   1. Then for all f P 9Hs,q
x pRdq we have

}f}L
p
xpRdq Àd,p,q,s }f}1�¹

L
q
xpRdq}f}¹

9H
s,q
x pRdq

.
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Proof. See (TAO, 2006), Apendix A.

Lemma 2.17. (Young’s inequality) Let f P LppRdq and g P LqpRdq, 1 ¤ p, q ¤ 8 with
1

p
� 1

q
¥ 1. Then, f � g P LrpRdq, where

1

r
� 1

p
� 1

q
� 1. Morover

}f � g}Lr ¤ }f}Lp}g}Lq .

Proof. See (LINARES; PONCE, 2015), Section 2.1.1.

2.2.2 Littlewood-Paley theory

Let φpÀq be a radial bump function with support on the ball

tÀ P R
6 : |À| ¤ 11{10u and equal to 1 on the ball tÀ P R

6 : |À| ¤ 1u. For each dyadic number

N ¡ 0, that is, N � 2j for j P Z, we set the Fourier multipliers

{P¤NfpÀq :� φpÀ{Nqf̂pÀq,{P¡NfpÀq :� p1� φpÀ{Nqqf̂pÀq,zPNfpÀq :� pφpÀ{Nq � φp2À{Nqqf̂pÀq,

and in a similar way, P N and P¥N . Note, in particular, the telescoping identities

P¤Nf �
¸

M¤N

PMf ; P¡Nf �
¸

M¡N

PMf ; f �
¸
M

PMf.

Moreover, for M   N , we set

PM �¤N :� P¤N � P¤M �
¸

M N 1¤N

PN 1 ,

Since Littlewood-Paley operators are Fourier multipliers, they comute with the propagator

Ukptq and the operator i³kBt � µk∆. Besides that, using Fourier trasnform properties, up

to a constant, P¤N is a convolution operator, as the following

P¤Nfpxq � 1

p2Ãqd
»
φ

�
À

N



eix�À pfpÀqdÀ

� 1

p2Ãqd
»
Ndφ̌pNyqfpx� yqdy

� 1

p2Ãqd rN
dφ̌pN �qs � f.

Using Lemma 2.17 with r � p and q � 1, we obtain

}P¤Nf}Lp � C}rNdφ̌pN �qs � f}Lp À }φ̌}L1}f}Lp À }f}Lp , (2.6)

where C ¡ 0 does not depend on N . Next, we enunciate some estimates that will be useful

in our analysis.
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Remark 2.18. Let f and g be functions and N be a dyadic number. Then

PNpg¤N
10

fq � PNpg¤N
10

f¡N
10

q. (2.7)

Indeed, note that by definition of Littlewood-Paley projections we have

{PNfpÀq � ÈNpÀq pfpÀq,
where ÈNpÀq :� È1

�
À

N



� φ

�
À

N



�φ

�
2À

N



and È1

�
À

N



� 0 if

11

10
N ¤ |À| ¤ N

2
. Now,

observe that

PNpg¤N
10

fq � PNpg¤N
10

f¡N
10

q � PNpg¤N
10

f¤N
10

q :� PNpg¤N
10

f¡N
10

q � I.

Then, we get (2.7)if we show that I vanishes. More precisely,

pIpÀq � ÈNpÀq{P¤N
10

g � zPN
10

fpÀq

� ÈNpÀq
» {P¤N

10

gpÀ � À1qzPN
10

fpÀ1qdÀ1

� ÈNpÀq
»
φ

�
10
pÀ � À1q
N



φ

�
10
À1

N


pgpÀ � À1q pfpÀ1qdÀ1

� 0,

since

����10
pÀ � À1q
N

���� ¥ 10

N
p|À| � |À1|q ¥ 10

N

�
11

10
N � 11

100
N



¥ 11

10
.

Lemma 2.19. (Bernstein’s estimates). For s ¥ 0 and 1 ¤ p ¤ q ¤ 8:

}P¥Nf}L
p
x
À N�s}|∇|sP¥Nf}L

p
x
,

}P¤Nf}L
p
x
À N�s}|∇|sP¤Nf}L

p
x
,

}|∇|�sPNf}L
p
x
� N�s}PNf}L

p
x
,

}P¤Nf}L
q
x
À N

6

p
� 6

q }P¤Nf}L
p
x
,

}PNf}L
q
x
À N

6

p
� 6

q }PNf}L
p
x
,

Proof. See (TAO, 2006), page 333.

We also need the following vector version of the nonlinear Bernstein’s estimate.

Lemma 2.20. Let g : Cl ÝÑ C be a Hölder continuous function of order 1, then

}PNgpuq}L
p
x
À N�1}∇u}L

p
x
,

for any 1 ¤ p   8 and u P 9H1,p.

Proof. See (KILLIP; VISAN, 2013), Lemma A.13.
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2.2.3 Linear profile decomposition

In this section we follow the ideas presented in (KOCH; TATARU; VISAN,

2014), with suitable adaptations to our case, in order to establish the linear profile

decomposition corresponding to the Schrödinger propagator Ukptq, k � 1, ..., l, for bounded

sequences in 9H1. Such type of decomposition was first obtained by (KERAANI, 2001),

relying on an improved Sobolev inequality proved by (GERARD Y. MEYER, 1997). We

start with the following estimate that is a refinement of the Strichartz estimates which

shows that linear solutions with non-trivial spacetime norm must concentrate on at least

one frequency annulus.

Lemma 2.21. (Refined Strichartz estimate). For all h P 9H1pR6q we have

}Ukptqh}L4

t,x
À }h}1{2

9H1pR6q
sup
NP2Z

}UkptqPNh}1{2

L4

t,x
, k � 1, ..., l.

Proof. See (KOCH; TATARU; VISAN, 2014), Lemma 3.1, page 239.

With this result at hand we may prove the inverse Strichartz’s inequality, which

goes one step further than the last lemma, and shows that linear solutions with non-trivial

spacetime norm contain a bubble of concentration around some point in spacetime. In

this sense, we introduce the notation Uptqu � pU1ptqu1, ..., Ulptqulq.

Lemma 2.22. Let phmq � 9H1pR6q. Suppose that

lim
mÑ8

}hm} 9H1 � A   8 and lim
mÑ8

}Uptqhm}L4

t,x
� ϵ ¡ 0.

Then, there is a subsequence in m, φ P 9H1, p¼mq � p0,8q, and ptm, xmq � R � R
6 such

that

¼2
mrUptqhmsp¼mx� xmq á φpxq, weakly in 9H1, (2.8)

lim inf
mÑ8

 }hm}2
9H1 � }hm � φm}2

9H1

( � }φ}2
9H1 Á ϵ12A�10, (2.9)

lim inf
mÑ8

!
}Uptqhm}4

L4

t,x
� }Uptqphm � φmq}4

L4

t,x

)
Á ϵ24A�20, (2.10)

lim inf
mÑ8

!
}hm}3

L3

t,x
� }hm � φm}3

L3

t,x
� }Up�¼�2

m tmqφ}3
L3

t,x

)
� 0, (2.11)

where,

φm :� ¼�2
m rUp¼�2

m tmqφs
�
x� xm

¼m



. (2.12)

Proof. We start noticing that, up to a subsequence, we may assume

}hm} 9H1
x
¤ 2A and }Uptqhm}L4

t,x
¥ ϵ

2
.

Then, by Lemma 2.21, we see that for each m, there is Nm P 2Z such that

}UptqPNm
hm}L4

t,x
Á ϵ2A�1.
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On the other hand, by Strichartz and nonlinear Bernstein’s inequality, we obtain

}UptqPNm
hm}L4

t,x
À }PNm

hm}L2
x
À N�1

m A.

By interpolation,

ϵ2A�1 À }UptqPNm
hm}L4

t,x

À }UptqPNm
hm}2{3

L
8{3
t,x

}UptqPNm
hm}1{3

L8
t,x

À N�2{3
m A2{3}UptqPNm

hm}1{3
L8

t,x
.

Therefore

N�2
m }UptqPNm

hm}L8
t,x
Á A

� ϵ
A

	6

.

Then, there is a subsequence ptm, xmq P R� R
6 such that

N�2
m |rUptmqPNm

hnspxmq| Á A
� ϵ
A

	6

. (2.13)

We define now the special scale ¼m � N�1
m . It remains to find the profile φ and show that

it satisfies (2.8) trough (2.10). Indeed, setting

gmpxq :� ¼mrUptmqhmsp¼mx� xmq,
a change of variables gives us

}gm} 9H1
x
� }hm} 9H1

x
À A.

Hence, up to a subsequence, we may choose φ such that gm á φ weakly in 9H1
x. This

proves (2.8). Note that the assymptotic decoupling statement in (2.9) follows since 9H1
x

is a Hilbert space. To prove the lower bound in (2.9), we consider È̌ :� P1¶0 to denote

the convolution kernel associated with P1. Observe that, by definition, ÈpÀq � pP1¶0q̂ �
pφpÀq � φp2Àqq ¶̂0 � φpÀq � φp2Àq. Therefore, using Plancherel theorem,A

Ukptmqhkm, ¼
�4
m È̌

�
x� xm

¼m


F
L2

x

�
»
Ukptmqhkmpxq¼�4

m È̌

�
x� xm

¼m



dx

�
»
pUkptmqhkmq̂ pÀq

�
¼�4

m È̌

�
x� xm

¼m


�
p̂ÀqdÀ

�
»
pUkptmqhkmq̂ pÀq¼�4

m ¼6
me

ixmÀÈ p¼mÀqdÀ

� N�2
m

»
pUkptmqhkmq̂ pÀqeixmÀ

�
φ

�
À

Nm



� φ

�
2À

Nm


�
dÀ

� N�2
m rUkptmqPNm

hkmspxmq.
Thus, using change of variables and (2.13),

|xϕk, È̌yL2
x
| � | lim

mÑ8
xgkm, È̌yL2

x
| �

����� lim
mÑ8

B
Ukptmqhkm, ¼

�4
m È̌

�
x� xm

¼m


F
L2

x

�����
� lim

mÑ8
N�2

m |rUkptmqPNm
hkmspxmq|

Á A
� ϵ
A

	6

.

(2.14)
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On the other hand, by Hölder’s inequality and Sobolev’s embedding,

|xϕk, È̌yL2
x
| À }ϕk}L6

x
}È̌}

L
6{5
x
À }ϕk} 9H1

x
.

Putting both inequalities together and summing over k, we arrive at the lower bound of

(2.9).

We now show (2.10). We start with decoupling for the L4
t,x norm. Observe that,

for k � 1, ..., l,

pi³kBtq1{2Ukptq � p�µk∆q1{2Ukptq
as can be checked in (KOCH; TATARU; VISAN, 2014, page 242). Then by Hölder’s

inequality, on any compact set K � R� R
6, we obtain, for k � 1, ..., l,

}Ukptqgkm}H
1{2
t,x pKq

À }x�µk∆y1{2gkm}L2

t,xpKq À A.

Using this together with Rellich-Kondrashov theorem, up to a subsequence, we have

Uptqgm Ñ Uptqφ strongly in L2
t,xpKq,

This is because gm á φ weakly in 9H1
x, implies that Uptqgm converge to Uptqφ in the

distribution sense on R�R
6. Passing to another subsequence, we get that Uptqgm Ñ Uptqφ

almost everywhere on K. Finally, by a diagonal argument and, again, passing to a

subsequence if necessary,

Uptqgm Ñ Uptqφ a.e. in R� R
6.

By Lemma 2.15 and a change of variables

lim
mÑ8

�
}Uptqhm}4

L4

t,x
� }Uptqphm � φmq}4

L4

t,x

�
� }Uptqφ}4

L4

t,x
.

Thus, (2.10) will be proved provided we show that

}Uptqφ}L4

t,x
Á ϵ

� ϵ
A

	5

. (2.15)

To this end, we use (2.14), Mikhlin multiplier Theorem and Bernstein’s estimate to get

A
� ϵ
A

	6

À
���xφ, ψ̌yL2

x

��� � ���xUptqφ,Up�tqψ̌yL2
x

���
À }Uptqφ}L4

x
}Uptqψ̌}

L
4{3
x

À }Uptqφ}L4
x

uniformly on |t| ¤ 1. Then

}Uptqφ}L4

t,x
�
�»

}Uptqφ}4
L4

x
dt

�1{4

Á
�» 1

0

}Uptqφ}4
L4

x
dt

�1{4

Á A
� ϵ
A

	6

� ϵ
� ϵ
A

	5

,



Chapter 2. Notation and Preliminary results 36

showing (2.10). Finally, to show (2.11), we observe that, passing to a subsequence if

necessary, we may assume that ¼�2
m tm Ñ t0 P r�8,8s. If |t0| � 8, we approximate φ on

9H1
x by Schwartz functions and use the fact that by Lemma 2.9

}Ukp�tm¼�2
m qÈk}L3

x
Ñ 0, mÑ 8

for any Èk P SpR6q, k � 1, ..., l. Now, if t0 P p�8,8q, then (2.8) may be taken as

¼2
mhmp¼mx � xmq á Upt0qφpxq weakly in 9H1

x. Using Rellich-Kondrashov Theorem and

Lemma 2.15 as before, we get the desired.

Definition 2.23. (Symmetry group) For any position x0 P R
6 and scale parameter ¼ ¡ 0,

we set the unitary transformation gx0,¼ : 9H1pR6q Ñ 9H1pR6q by

rgx0,¼f spxq :� ¼�2f
�
¼�1px� x0q

�
.

Let G be the collection of such transformations. For a function u : I � R
6 Ñ C, we define

rTgx0,¼
uspt, xq :� ¼�2u

�
¼�2t, ¼�1px� x0q

�
.

Thus, if u is a solution to (1.2), then, for g P G, Tgu is also a solution to (1.2)

with initial data gu0.

Remark 2.24. In order to simplify the formulas along the work, we will use the following

notations for ¼j
n ¡ 0 and xj

n P R
6,

pgj
nuqpxq :� p¼j

nq�2u

�
x� xj

n

¼
j
n



and rpgj

nq�1uspxq :� p¼j
nq2up¼j

nx� xj
nq.

Note that ∇gj
nupxq � p¼j

nq�3∇u

�
x� xj

n

¼
j
n



. Then,

}gj
nu}

9H1
x
�
�»

|∇gj
nupxq|2dx


1{2

�
�» ����p¼j

nq�3∇u

�
x� xj

n

¼


����2 dx
�1{2

�
�»

p¼j
nq�6p¼j

nq6|∇upyq|2dy

1{2

�
�»

|∇upyq|2dy

1{2

� }u}
9H1
x
.

(2.16)

In the same way, it is possible to show that }u}
9H1

x
� }pgj

nq�1u}
9H1

x
and xgj

nu1,u2y 9H1
x
�

xu1, pgj
nq�1u2y 9H1

x
for all u1,u2 P 9H1

x. Besides that, we also use the notation

φj
npxq :� p¼j

nq�2rUptjnqφjs
�
x� xj

n

¼
j
n



� rgj

nUptjnqφjspxq.
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Remark 2.25. Notice that if f P C8
0 pRdq and tptn, xnqu � R� R

d is a sequence. Then,

for k � 1, ..., l, we have Ukptnqfpx� xnq á 0 weakly in 9H1
x as nÑ 8 whenever |tn| Ñ 8

or |xn| Ñ 8. Indeed, we need to show that for all u P p 9H1
xq�»

∇u �∇Ukptnqfpx� xnq Ñ 0.

Since |xn| Ñ 8, there is no loss of generality in assuming that |xn
1 | Ñ 8 as nÑ 8. Using

Fourier transform and the change of variables xn
1À � ¸, we have»

∇u �∇Ukptnqfpx� xnq � �
»
|À|û|À|e�itn|À|2eixn�Àf̂pÀqdÀ

� �
» |¸|2
|xn

1 |2
û

�
¸

xn
1



e
�itn |¸|2

|xn
1
|2 e

ixn� ¸

xn
1 f̂

�
¸

xn
1



d¸

|xn
1 |d

Ñ 0,

as nÑ 8. The case when |tn| Ñ 8 is treated in the same way with a change of variables

¸ � ?
tnÀ.

Theorem 2.26. (Linear profiile decomposition). Let tunu be a sequence of bounded

functions in 9H1pR6q. Passing to be a subsequence if necessary, there is J� P t0, 1, ...uYt8u,
functions tφjuJ�

j�1 � 9H1pR6q, symmetry group elements gj
n P G, and tptjn, xj

nqu � R� R
6

such that for all 0 ¤ J ¤ J� finite, we have the decomposition

un �
J̧

j�1

rgj
nUptjnqφjs �wJ

n (2.17)

with the following properties:

lim
JÑJ�

lim sup
nÑ8

}UptqwJ
n}L4

t,x
� 0, (2.18)

lim
nÑ8

�
}∇un}2

L2
x
�

J̧

j�1

}∇φj}2
L2

x
� }∇wJ

n}2
L2

x

�
� 0, (2.19)

Up�tJnq
�pgJ

nq�1wJ
n

�á 0 in 9H1pR6q. (2.20)

Moreover, if j � k, then

¼j
n

¼k
n

� ¼k
n

¼
j
n

� |xj
n � xk

n|2
¼

j
n¼k

n

� |tjnp¼j
nq2 � tknp¼k

nq2|
¼

j
n¼k

n

Ñ 8 as nÑ 8. (2.21)

Proof. We follow the ideias presented in (KOCH; TATARU; VISAN, 2014, Chapter 4,

page 246). We proceed inductively. To start, we define w0
n :� un. Now, suppose that we

have the decomposition up to level J ¥ 0 obeying the hypothesis (2.19) and (2.20). Then,

up to a subsequence, we define

AJ :� lim
nÑ8

}wJ
n} 9H1

x
and ϵJ :� lim

nÑ8
}UptqwJ

n}L4

t,x
.
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If ϵJ � 0, it is enough to choose J� � J . Otherwise, we apply Proposition 2.22 in wJ
n.

Therefore, passing to a subsequence in n, we find φJ�1 P 9H1
x, t¼J�1

n u � p0,8q, and

tptJ�1
n , xJ�1

n qu � R� R
6, where we denote the time parameters given in Proposition 2.22

as the following: tJ�1
n � �¼�2

n tn.

According to Proposition 2.22, the profile φJ�1 is setting as a weak limit,

namely,

φJ�1 � lim
nÑ8

pgJ�1
n q�1rUptJ�1

n p¼J�1
n q2qwJ

ns � lim
nÑ8

Up�tJ�1
n qrpgJ�1

n q�1wJ
ns.

Define φJ�1
n :� gJ�1

n UptJ�1
n qφJ�1. Now, setting wJ�1

n :� wJ
n �φJ�1

n , by definition of φJ�1,

we obtain

UptJ�1
n qpgJ�1

n q�1wJ�1
n á 0, weakly in 9H1

x.

This proves (2.20) up to level J � 1. Moreover, by Proposition 2.22, we also have

lim
nÑ8

!
}wJ

n}2
9H1

x
� }wJ�1

n }2
9H1

x
� }φJ�1}2

9H1
x

)
� 0.

Combining with the induction hypothesis, we get (2.19) up to level J � 1.

Passing to a new subsequence, and using, again, Proposition 2.22, we get

A2
J�1 � lim

nÑ8
}wJ�1

n }2
9H1

x
¤ A2

J

�
1� C

�
ϵJ

AJ


12
�
¤ A2

J ,

ϵ4
J�1 � lim

nÑ8
}UptqwJ�1

n }4
L4

t,x
¤ ϵ4

J

�
1� C

�
ϵJ

AJ


20
�
.

(2.22)

If ϵJ�1 � 0, we stop and put J� � J � 1. In this case, (2.18) is immediately verified. If

ϵJ�1 ¡ 0, we proceed with the induction process. If the algorithm does not finishes in

finitely many steps, we choose J� � 8. In this case, (2.22) implies that ϵJ Ñ 0 if J Ñ 8
and then, (2.18) hold.

Next, we show the orthogonality condition (2.21). Suppose that such a condition

is false for some pair pj, kq. Without loss of generality, we may assume that j   k and

(2.21) is true to all pairs pj,mq, with j   m   k. Passing to a subsequence, we may assume

that
¼j

n

¼k
n

Ñ ¼0 P p0,8q, xj
n � xk

nb
¼

j
n¼k

n

Ñ x0 and
tjnp¼j

nq2 � tknp¼k
nq2

¼
j
n¼k

n

Ñ t0. (2.23)

From the inductive relation

wk�1
n � wj

n �
k�1̧

m�j�1

φm
n

and from the definition of φk, we get

φk � lim
nÑ8

Up�tknqrpgk
nq�1wk�1

n s

� lim
nÑ8

Up�tknqrpgk
nq�1wj

ns �
k�1̧

m�j�1

lim
nÑ8

Up�tknqrpgk
nq�1φm

n s.
(2.24)
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To reach the contradiction, we prove that these weak limits are all zero, which contradicts

the nontriviality of φk.

We write,

Up�tknqrpgk
nq�1wj

ns � Up�tknqpgk
nq�1gj

nUptjnqrUp�tjnqpgj
nq�1wj

ns

� pgk
nq�1gj

nU

�
tjn � tkn

p¼k
nq2

p¼j
nq2



rUp�tjnqpgj

nq�1wj
ns.

Note that by (2.23)

tjn � tkn
p¼k

nq2
p¼j

nq2 �
tjnp¼j

nq2 � tknp¼k
nq2

¼
j
n¼k

n

� ¼
k
n

¼
j
n

Ñ t0

¼0

. (2.25)

Using (2.25), (2.20), together with the following facts: The adjoints of the unitary operators

pgk
nq�1gj

n converge strongly and, if fn á 0 in 9H1
x, then Uptnqfn á 0 in 9H1

x, we get that

the first term on the right-hand side of (2.24) vanishes.

To complete the proof, it remains to show that the second term on the right-hand

side of (2.24) vanishes. To this end, consider j   m   k and write

Up�tknqpgk
nq�1φm

n � pgk
nq�1gj

nU

�
tjn � tkn

p¼k
nq2

p¼j
nq2



rUp�tjnqpgj

nq�1φm
n s.

Arguing as before, it suffices to show that

Up�tjnqpgj
nq�1φm

n � Up�tjnqpgj
nq�1gm

n Uptmn qφm á 0 in 9H1
x.

By density, this reduces to show that

In :� Up�tjnqpgj
nq�1gm

n Uptmn qφá 0 in 9H1
x, (2.26)

for all φ P C8
c pRdq. We may rewrite In as the following

In �
�
¼j

n

¼m
n


2
�

U

�
tmn � tjn

�
¼j

n

¼m
n


2
�
φ

��
¼j

nx� xj
n � xm

n

¼m
n



.

Recalling that (2.21) holds for the pair pj,mq, we first show that (2.26) holds

when the scaling parameters are not comparable, that is,

lim
nÑ8

�
¼j

n

¼m
n

� ¼m
n

¼
j
n



� 8. (2.27)

By the Cauchy-Schwarz inequality,

|xIn,ψy 9H1
x
| À min

 }∆In}L2
x
}ψ}L2

x
, }In}L2

x
}∆ψ}L2

x

(
À min

"
¼j

n

¼m
n

}∆φ}L2
x
}ψ}L2

x
,
¼m

n

¼
j
n

}φ}L2
x
}∆ψ}L2

x

*
,
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which converge to zero if n Ñ 8, for all ψ P C8
c pR6q. Therefore, if (2.27) holds, we get

(2.26).

From now on, we assume that

lim
nÑ8

¼j
n

¼m
n

� ¼1 P p0,8q.

Suppose now that the time parameters diverge, that is,

lim
nÑ8

|tjnp¼j
nq2 � tmn p¼m

n q2|
¼

j
n¼m

n

� 8.

Thus, we also have�����tmn � tjn

�
¼j

n

¼m
n


2
����� � |tjnp¼j

nq2 � tmn p¼m
n q2|

¼
j
n¼m

n

� ¼
j
n

¼m
n

Ñ 8, as nÑ 8.

Under this condition, (2.26) follows from

¼2
1

�
U

�
tmn � tjn

�
¼j

n

¼m
n


2
�
φ

��
¼1x� xj

n � xm
n

¼m
n



á 0 in 9H1

x,

which is a direct consequence of Remark 2.25.

Finally, if we have

¼j
n

¼m
n

Ñ ¼1 P p0,8q, |tjnp¼j
nq2 � tmn p¼m

n q2|
¼

j
n¼m

n

Ñ t1, but
|xj

n � xm
n |2

¼
j
n¼m

n

Ñ 8. (2.28)

Then, we should have tmn � tjnp¼j
nq2{p¼m

n q2 Ñ ¼1t1. Then, it suffices to show that

¼2
1Upt1¼1qφp¼1x� ynq á 0 in 9H1

x, (2.29)

where

yn :� xj
n � xm

n

¼m
n

� xj
n � xm

nb
¼

j
n¼m

n

d
¼

j
n

¼m
n

Ñ 8 asnÑ 8.

and this follows from Remark 2.25.

Finally, we prove the last statement of the theorem, with respect to behavior

of tjn. For each j, passing to a subsequence, we may assume that tjn Ñ tj P r�8,8s. Using

a diagonal argument, we may assume that such limit exists for all j ¥ 1.

Fixing j ¥ 1, if tj � �8, there is nothing to show. Suppose that tj P p�8,8q.
Then, since we change φj by Uptjqφj, we may redefine tjn � 0. Indeed, we may incorporate

the errors into wJ
n, namely,

lim
nÑ8

}gj
nUptjnqφj � gj

nUptjqφj}
9H1

x
� 0,

which follows from the strong convergence of the linear propagator, finishing the proof.
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2.2.4 Asymptotic decoupling

We start defining the operators T j
n by

pT j
nuqpt, xq :� p¼j

nq�2u

�
t

p¼j
nq2 � tjn,

x� xj
n

¼
j
n



,

where p¼j
nq � p0,8q and ptjn, xj

nq � R� R
d. We have the following result

Lemma 2.27. Suppose that the parameters associated to j, k are orthogonal in the sense

of (2.21). Then, for each Èj, Èk P C8
c pR� R

dq,

}T j
nÈ

jT k
nÈ

k}
L

d�2

d�2

t,x

� }T j
nÈ

j∇pT k
nÈ

kq}
L

d�2

d�1

t,x

� }∇pT j
nÈ

jq∇pT k
nÈ

kq}
L

d�2

d
t,x

converges to zero as nÑ 8.

Proof. See (KOCH; TATARU; VISAN, 2014, Lemma 7.1, page 261).

2.2.5 Coercivity lemmas

Lemma 2.28. Let I � R be an open interval with 0 P I, a P R, b ¡ 0 and q ¡ 1. Define

µ � pbqq�1{pq�1q and fprq � a� r � brq, for r ¡ 0. Let Gptq be a nonnegative continuous

function such that f � G ¥ 0 in I. Assume that a   p1 � ¶q
�

1� 1

q



µ, for some ¶ ¡ 0

sufficiently small, we have

(i) If Gp0q   µ then there exists ¶1 � ¶1p¶q ¡ 0 such that Gptq   p1� ¶1qµ, for all t P I;

(ii) If Gp0q ¡ µ then there exists ¶2 � ¶2p¶q such that Gptq ¡ p1� ¶2qµ, for all t P I.

Proof. See Corollary 3.2 in (PASTOR, 2015).

The next lemmas reproduce observations of (KENIG; MERLE, 2006). We

include details for the sake of completeness.

Lemma 2.29. (Coercivity I). Assume that u0 P 9H1pR6q and let u be a solution of (1.2)

with maximal existence interval I. Let ψ P G6 be a ground state. Suppose that

Epu0q   p1� ¶̃qEpψq.

(i) If

Kpu0q   Kpψq,
then there exists ¶̃1 � ¶̃1p¶̃q such that

Kpuptqq   p1� ¶̃1qKpψq,

for all t P I.
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(ii) If

Kpu0q ¡ Kpψq,
then there exists ¶̃2 � ¶̃2p¶̃q such that

Kpuptqq ¡ p1� ¶̃2qKpψq,

for all t P I.

Proof. From the conservation of the energy and (1.24), we deduce

Kpuptqq ¤ Epu0q � 2C6Kpuptqq3{2, @t P I. (2.30)

Let Gptq � Kpuptqq, a � Epu0q, b � 2C6 and q � 3{2 in Lemma 2.28. By (2.30) we see

that f �G ¥ 0 on I. Besides that, (1.25) gives us

µ � pbqq� 1

q�1 � p3C6q�2 � Kpψq.

By Lemma 2.28 we get the result.

Lemma 2.30. (Energy coercivity). Under hypothesis of Lemma 2.29 we have

(i) If

Kpu0q   Kpψq,
then there exists ¶1 � ¶1p¶̃q ¡ 0 such that

Kpuptqq � 3P puptqq ¥ ¶1Kpuptqq,

for all t P I.

(ii) If

Kpu0q ¡ Kpψq,
then there exists ¶2 � ¶2p¶̃q ¡ 0 such that

Kpuptqq � 3P puptqq ¤ �¶2Kpuptqq,

for all t P I.

Proof. We will just show item (i). The second one is proved in an analogous way. Using

(1.24), Lemma 2.28 and Lemma 2.29, we deduce

1� 3
P puptqq
Kpuptqq ¥ 1� 3C6Kpuptqq1{2 � 1�

�
Kpuptqq
Kpψq

�1{2

¥ 1� p1� ¶̃1q1{2 �: ¶1.

Multiplying both sides by Kpuptqq we get the result.
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Lemma 2.31. (Energy trapping). Let u be a solution of (1.2) with maximal existence

interval I and initial data u0. If Epu0q ¤ p1� ¶qEpψq and Kpu0q ¤ p1� ¶1qKpψq, then

Kpuptqq � Epuptqq, @t P I. (2.31)

Proof. By (1.24) and Epu0q ¤ p1� ¶qEpψq we obtain

Epuptqq ¤ Kpuptqq � |P puptqq|
¤ Kpuptqq � C6|Kpuptqq|3{2

¤ �
1� C6rp1� ¶1qKpψq1{2s�Kpuptqq.

On the other hand,

Epuptqq ¥ 1

3
Kpuptqq � 2

3
rKpuptqq � 3P puptqqs

¥ 1

3
Kpuptqq � 2

3
¶1Kpuptqq

� 1

3
p1� 2¶1qKpuptqq.

Combining both inequalities, we get the result.

2.2.6 Virial identities

In this section we present some virial identities that will be useful in our

analyses. Originally, these kind of identity was introduced in (GLASSEY, 1973) in the

context of the wave equation.

Proposition 2.32. Assume that u0 P H1pR6q and xu0 P L2pR6q. Define

V ptq �
ļ

k�1

³2
k

µk

}xukptq}2
L2 �

ļ

k�1

³2
k

µk

»
|x|2|ukpt, xq|2dx. (2.32)

Then,

V 1ptq � 4

ļ

k�1

³kIm

»
∇uk � x sukdx (2.33)

and

V 2ptq � 12Epu0q � 4Kpuq, (2.34)

for all t P I.

Proof. See Proposition 5.3 in (NOGUERA; PASTOR, 2021).

Proposition 2.33. Assume that u0 P H1pR6q and let u be the corresponding solution of

(1.2). Let φ P C8
0 pR6q and define

Mptq � 1

2

»
φpxq

�
ļ

k�1

³2
k

µk

|uk|2
�
dx.
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Then,

M 1ptq �
ļ

k�1

³kIm

»
∇φ �∇uk sukdx,

and

M2ptq � 2
¸

1¤m,j¤6

Re

» B2φ

BxmBxj

�
ļ

k�1

µkBxj
ūkBxm

uk

�
dx

� 1

2

»
∆2φ

�
ļ

k�1

µk|uk|2
�
dx� Re

»
∆φF puqdx.

(2.35)

Proof. See Theorem 5.7 in (NOGUERA; PASTOR, 2021).
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CHAPTER 3

BLOW-UP OF THE RADIALLY SYMMETRIC SOLUTIONS FOR A

CUBIC NLS TYPE SYSTEM IN DIMENSION 4

In this chapter we will study the following cubic-type system$'&'%
iut �∆u� u�

�
1

9
|u|2 � 2|w|2



u� 1

3
ū2w � 0,

iÃwt �∆w � µw � p9|w|2 � 2|u|2qw � 1

9
u3 � 0.

(3.1)

We are going to show local well-posedness to the Cauchy problem associated, existence of

ground state solutions and blow-up for radially symmetric initial data.

3.1 Local well-posedness

As mentioned before, this section is devoted to prove the local well-posedness

to the Cauchy problem associated to (1.1) in H1pR4q � H1pR4q. We work in the space

Y pIq, defined in (1.6), in which the norm is given by

}f}Y � }f}L8
t H1

x
� }f}

L4

t H
1, 8

3
x

.

Before proceeding to the main result, notice that, using Hölder and Sobolev’s inequalities,

we have

}fgh}
L

8

5
x

À }f}L8
x
}g}L8

x
}h}

L
8

3
x

À }f}
H

1, 8

3
x

}g}
H

1, 8

3
x

}h}
H

1, 8

3
x

. (3.2)

and

}fgh}
L

4{3
t L

8

5
x

À }f}
L4

t H
1, 8

3
x

}g}
L4

t H
1, 8

3
x

}h}
L4

t H
1, 8

3
x

. (3.3)
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In a similar way, exchanging fgh for the product fg∇h we obtain

}fg∇h}
L

4

3

t L
8

5
x

À }f}
L4

t L
8

3
x

}g}
L4

t L
8

3
x

}∇h}
L4

t L
8

3
x

À }f}
L4

t H
1, 8

3
x

}g}
L4

t H
1, 8

3
x

}h}
L4

t H
1, 8

3
x

. (3.4)

Proof of Theorem 1.1. We start with some estimates for the nonlinearities F and G defined

in (1.8). A direct calculation shows that

|F pu,wq � F pu1, w1q| À p|u|2 � |u1|2 � |w|2 � |w1|2qp|u� u1| � |w � w1|q,

and

|Gpu,wq �Gpu1, w1q| À p|u|2 � |u1|2 � |w|2 � |w1|2qp|u� u1| � |w � w1|q.
Then, using (3.2), we get

}p|u|2 � |u1|2 � |w|2 � |w1|2qp|u� u1|q}
L

8

5
x

À
�
}u}2

H
1, 8

3
x

� }u1}2

H
1, 8

3
x

� }w}2

H
1, 8

3
x

� }w1}2

H
1, 8

3
x



}u� u1}

H
1, 8

3
x

and

}p|u|2 � |u1|2 � |w|2 � |w1|2qp|u� u1|q}
L

8

5
x

À
�
}u}2

H
1, 8

3
x

� }u1}2

H
1, 8

3
x

� }w}2

H
1, 8

3
x

� }w1}2

H
1, 8

3
x



}w � w1}

H
1, 8

3
x

.

Hence,

}F pu,wq � F pu1, w1q}
L

8

5
x

À
�
}u}2

H
1, 8

3
x

� }u1}2

H
1, 8

3
x

� }w}2

H
1, 8

3
x

� }w1}2

H
1, 8

3
x


�
}u� u1}

L
8

3
x

� }w � w1}
L

8

3
x



,

and using (3.3), we get

}F pu,wq � F pu1, w1q}
L

4

3

t L
8

5
x

À�
}u}2

L4

t H
1, 8

3
x

� }u1}2

L4

t H
1, 8

3
x

� }w}2

L4

t H
1, 8

3
x

� }w1}2

L4

t H
1, 8

3
x


�
}u� u1}

L4

t H
1, 8

3
x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.5)

In a similar way, we get

}Gpu,wq �Gpu1, w1q}
L

4

3

t L
8

5
x

À�
}u}2

L4

t H
1, 8

3
x

� }u1}2

L4

t H
1, 8

3
x

� }w}2

L4

t H
1, 8

3
x

� }w1}2

L4

t H
1, 8

3
x


�
}u� u1}

L4

t H
1, 8

3
x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.6)

Once more, a direct calculation give us

|∇rF pu,wq � F pu1, w1qs| À p|u|2 � |u1|2 � |w|2 � |w1|2qp|∇ru� u1s �∇rw � w1sq
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and

|∇rGpu,wq �Gpu1, w1qs| À p|u|2 � |u1|2 � |w|2 � |w1|2qp|∇ru� u1s �∇rw � w1sq.

By the same argument used previously, we obtain

}∇rF pu,wq � F pu1, w1qs}
L

4

3

t L
8

5
x

À�
}u}2

L4

t H
1, 8

3
x

� }u1}2

L4

t H
1, 8

3
x

� }w}2

L4

t H
1, 8

3
x

� }w1}2

L4

t H
1, 8

3
x


�
}u� u1}

L4

t H
1, 8

3
x

� }w � w1}
L4

t H
1, 8

3
x



(3.7)

and

}∇rGpu,wq �Gpu1, w1qs}
L

4

3

t L
8

5
x

À�
}u}2

L4

t H
1, 8

3
x

� }u1}2

L4

t H
1, 8

3
x

� }w}2

L4

t H
1, 8

3
x

� }w1}2

L4

t H
1, 8

3
x


�
}u� u1}

L4

t H
1, 8

3
x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.8)

By Strichartz’s inequality, (3.5), (3.6), (3.7) and (3.8), we have�����
» t

0

Upt� ÄqrF pu,wq � F pu1, w1qsdÄ
�����

L4

t H
1, 8

3
x

À

}F pu,wq � F pu1, w1q}
L

4

3

t L
8

5
x

� }∇rF pu,wq � F pu1, w1qs}
L

4

3

t L
8

5
x

À�
}u}2

L4

t H
1, 8

3
x

� }u1}2

L4

t H
1, 8

3
x

� }w}2

L4

t H
1, 8

3
x

� }w1}2

L4

t H
1, 8

3
x


�
}u� u1}

L4

t H
1, 8

3
x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.9)

Similarly�����
» t

0

W pt� ÄqrGpu,wq �Gpu1, w1qsdÄ
�����

L4

t H
1,8{3
x

À�
}u}2

L4

t H
1, 8

3
x

� }u1}2

L4

t H
1, 8

3
x

� }w}2

L4

t H
1, 8

3
x

� }w1}2

L4

t H
1, 8

3
x


�
}u� u1}

L4

t H
1, 8

3
x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.10)

Finally, taking pu1, w1q � p0, 0q in (3.9) and (3.10) we have����» t

0

Upt� ÄqF pu,wqdÄ
����

L4

t H
1,8{3
x

À
�
}u}

L4

t H
1, 8

3
x

� }w}
L4

t H
1, 8

3
x


3

(3.11)

and ����» t

0

W pt� ÄqGpu,wqdÄ
����

L4

t H
1,8{3
x

À
�
}u}

L4

t H
1, 8

3
x

� }w}
L4

t H
1, 8

3
x


3

. (3.12)
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Moreover, combining Strichartz’s inequality, (3.5), (3.6), (3.7) and (3.8), we obtain�����
» t

0

Upt� ÄqrF pu,wq � F pu1, w1qsdÄ
�����

L8
t H1

x

À

}F pu,wq � F pu1, w1q}
L

4

3

t L
8

5
x

� }∇rF pu,wq � F pu1, w1qs}
L

4

3

t L
8

5
x

À�
}u}2

L4

t H
1, 8

3
x

� }u1}2

L4

t H
1, 8

3
x

� }w}2

L4

t H
1, 8

3
x

� }w1}2

L4

t H
1, 8

3
x


�
}u� u1}

L4

t H
1, 8

3
x

� }w � w1}
L4

t H
1, 8

3
x



(3.13)

and, similarly�����
» t

0

W pt� ÄqrGpu,wq �Gpu1, w1qsdÄ
�����

L8
t H1

x

À�
}u}2

L4

t H
1, 8

3
x

� }u1}2

L4

t H
1, 8

3
x

� }w}2

L4

t H
1, 8

3
x

� }w1}2

L4

t H
1, 8

3
x


�
}u� u1}

L4

t H
1, 8

3
x

� }w � w1}
L4

t H
1, 8

3
x



.

(3.14)

Taking pu1, w1q � p0, 0q, we get����» t

0

Upt� ÄqF pu,wqdÄ
����

L8
t H1

x

À
�
}u}

L4

t H
1, 8

3
x

� }w}
L4

t H
1, 8

3
x


3

, (3.15)

and ����» t

0

W pt� ÄqGpu,wqdÄ
����

L8
t H1

x

À
�
}u}

L4

t H
1, 8

3
x

� }w}
L4

t H
1, 8

3
x


3

. (3.16)

Existence and uniqueness: Define the operator Hpu,wq � pH1pu,wq, H2pu,wqq where,

H1puptq, wptqq � Uptqu0 � i

» t

0

Upt� sqF pupsq, wpsqqds,

H2puptq, wptqq � W ptqw0 � i

» t

0

W pt� sqGpupsq, wpsqqds.

By the Strichartz inequality, (2.2) and (3.11), we get that for any ϵ ¡ 0 fixed there exists

T ¡ 0 such that

}H1pu,wq}L4

t H
1,8{3
x

À }Uptqu0}L4

t H
1,8{3
x

�
����» T

0

Upt� sqF pu,wqds
����

L4

t H
1,8{3
x

À ϵ�
�
}u}

L4

t H
1, 8

3
x

� }w}
L4

t H
1, 8

3
x


3

,

(3.17)

and similarly, using (3.12),

}H2pu,wq}L4

t H
1,8{3
x

À }W ptqw0}L4

t H
1,8{3
x

�
����» T

0

W pt� sqGpu,wqds
����

L4

t H
1,8{3
x

À ϵ�
�
}u}

L4

t H
1, 8

3
x

� }w}
L4

t H
1, 8

3
x


3

.

(3.18)
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On the other hand, by (3.15), we have

sup
tPr0,T s

}H1puptq, wptqq � Uptqu0}H1
x
�
����» t

0

Upt� ÄqF pu,wqdÄ
����

L8
t H1

x

À
�
}u}

L4

t H
1, 8

3
x

� }w}
L4

t H
1, 8

3
x


3

,

(3.19)

and, by (3.16),

sup
tPr0,T s

}H2puptq, wptqq �W ptqw0}H1
x
�
����» t

0

W pt� ÄqGpu,wqdÄ
����

L8
t H1

x

À
�
}u}

L4

t H
1, 8

3
x

� }w}
L4

t H
1, 8

3
x


3

.

(3.20)

Now, set the norms

|||v|||1 :� }vptq � Uptqu0}L8
t H1

x
� }v}

L4

t H
1, 8

3
x

,

|||v|||2 :� }vptq �W ptqw0}L8
t H1

x
� }v}

L4

t H
1, 8

3
x

,

and consider the ball

B̄pT, aq � tpv, hq P Y � Y ; |||pv, hq|||T :� |||v|||1 � |||h|||2   au .
Then, using (3.17), (3.18), (3.19) and (3.20) we have for all ϵ ¡ 0 there exists T ¡ 0 such

that for pu,wq P B̄pT, aq
|||H1pu,wq|||1 � }H1pu,wq � Uptqu0}L8

t H1
x
� }H1pu,wq}

L4

t H
1, 8

3
x

À ϵ�
�
}u}

L4

t H
1, 8

3
x

� }w}
L4

t H
1, 8

3
x


3

À ϵ� a3

(3.21)

and

|||H2pu,wq|||2 À ϵ� a3. (3.22)

Choosing a � 2ε we have

|||Hpu,wq|||T � |||H1pu,wq|||1 � |||H2pu,wq|||2 À
�

1

2
� a2



a.

Now, choosing ε ¡ 0 such that a2   1

2
we have that H is well defined on B̄pT, aq. It

remains to show that H is a contraction in B̄pT, aq. Indeed, take pu,wq, pu1, w1q P B̄pT, aq.
By (3.9), (3.10), (3.13) and (3.14), we have

|||Hpu,wq �Hpu1, w1q|||T � |||H1pu,wq �H1pu1, w1q|||1 � |||H2pu,wq �H2pu1, w1q|||2

� |||
» T

0

Upt� ÄqrF pu,wq � F pu1, w1qs|||1 � |||
» T

0

W pt� ÄqrGpu,wq �Gpu1, w1qs|||2
À a2p}u� u1}

L4

t H
1, 8

3
x

� }w � w1}
L4

t H
1, 8

3
x

q

À a2 p|||u� u1|||1 � |||w � w1|||2q
À a2|||pu,wq � pu1, w1q|||T .
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But, we choose ε such that a2   1

2
, so 2a2   1 hence H is a contraction. By the fixed

point theorem, there exists a unique solution on B̄pT, aq.
The blow-up alternative can be done as in Theorem 4.5.1 of (CAZENAVE,

2003). We will omit the details.

3.2 Existence of ground state solution

This section is devoted to prove the existence of ground state solutions. As

mentioned before, we will follow the ideas in (NOGUERA; PASTOR, 2022). We start with

the deduction of a critical Sobolev-type inequality.

3.2.1 Critical Sobolev-type inequality and localized version

The first result states that the function N must be positive for a pair pP,Qq of

non-trivial solutions to (1.12).

Lemma 3.1. Let N :� tpP,Qq P 9H1pR4q � 9H1pR4q; NpP,Qq ¡ 0u. Then C � N , where

C denotes the set of all non-trivial solutions of (1.12) and N is defined in (1.14).

Proof. Let pP,Qq P C. Taking pf, gq � pP,Qq in (1.15) we have»
|∇P |2 �

»
1

9
P 4 � 2Q2P 2 � 1

3
P 3Q

and »
|∇Q|2 �

»
9Q4 � 2Q2P 2 � 1

9
P 3Q.

By summing both equations, we get

KpP,Qq �
»

1

9
P 4 � 9Q4 � 4Q2P 2 � 4

9
P 3Q � 4NpP,Qq. (3.23)

Since pP,Qq are non-trivial, it follows that NpP,Qq ¡ 0 and pP,Qq P N as desired.

Let us introduce the functional

JpP,Qq :� KpP,Qq2
NpP,Qq , pP,Qq P N . (3.24)

Remark 3.2. (i) The energy functional for system (1.12) is

EpP,Qq :� 1

2
KpP,Qq �NpP,Qq, pP,Qq P 9H1pR4q � 9H1pR4q. (3.25)

Then, if pP,Qq is a non-trivial solution, we have EpP,Qq � SpP,Qq.
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(ii) Observe that, using (3.23),

SpP,Qq � 1

2
KpP,Qq �NpP,Qq � NpP,Qq.

Moreover,

JpP,Qq � KpP,Qq2
NpP,Qq � 16NpP,Qq � 16SpP,Qq.

Hence, a non-trivial solution of (1.12) is a ground state if, and only if, it has

least energy E among all solutions if, and only if, it minimizes J .

From now on, we will assume that u and w are real-valued functions. We

start noticing that if we apply Hölder’s inequality with p � 4 and q � 4

3
, in view of

ab À pap � bqq and
1

p
� 1

q
� 1, then

»
u3w ¤

»
|u|3|w| ¤ }u3}

L
4

3
}w}L4 � }u}3

L4}w}L4 À pp}u}3
L4q 4

3 � }w}4
L4q À p}u}4

L4 � }w}4
L4q

(3.26)

and u2w2 ¤ |u|2|w|2 À p|u|2q2 � p|w|2q2 � |u|4 � |w|4, thus»
u2w2 À

»
|u|4 � |w|4 � }u}4

L4 � }w}4
L4 . (3.27)

Therefore, we have Npu,wq À }u}4
L4 � }w}4

L4 . Using Sobolev’s inequality

}f}4
L4 À }∇f}4

L2

we get,

Npu,wq À }u}4
L4 � }w}4

L4

À }∇u}4
L2 � }∇w}4

L2

À }∇u}4
L2 � }∇w}4

L2 � 2p}∇u}2
L2}∇w}2

L2q
À Kpu,wq2.

(3.28)

Hence, if pu,wq P N then

Npu,wq À Kpu,wq2. (3.29)

Consequently, there exists a positive constant C such that

1

C
¤ Jpu,wq, @pu,wq P N , (3.30)

that is, the functional J is bounded from below by a positive constant. The best constant

we can place in (3.30) is given by

C�1
4 � inftJpu,wq; pu,wq P N u, (3.31)
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where the subscript 4 in C4 is motivated by the dimension d � 4. To show that this

infimum is attained, we will consider the normalized version of the problem as follows

I � inftKpu,wq; pu,wq P N , Npu,wq � 1u. (3.32)

Since we assumed that N can take negative values outside the origin, we should slightly

modify our problem. For this end, we are considering the problem in N instead of
9H1pR4q � 9H1pR4q.

Definition 3.3. A minimizing sequence for (3.31) is a sequence pum, wmq in N such

that Jpum, wmq Ñ C�1
4 . In the same way, a minimizing sequence for (3.32) is a sequence

pum, wmq in N such that Npum, wmq � 1, for all m and Kpum, wmq Ñ I.

Next, notice that Bxi
|u| � u

|u|Bxi
u thus

|∇|u||2 �
ḑ

i�1

���� u|u|Bxi
u

����2 ¤ ḑ

i�1

|Bxi
u|2 ¤ |∇u|2.

In the same way, |∇|w||2 ¤ |∇w|2 and then Kp|u|, |w|q ¤ Kpu,wq. Moreover,

Npu,wq ¤ |Npu,wq| ¤
»

1

36
|u|4 � 9

4
|w|4 � |u|2|w|2 � 1

9
|u|3|w| � Np|u|, |w|q.

Hence, Jp|u|, |w|q ¤ Jpu,wq, that is, if pum, wmq is a minimizing sequence for (3.31) (or

(3.32)) then so is p|um|, |wm|q. In particular, there is no loss of generality in assuming that

minimizing sequences are always non-negative.

Remark 3.4. Observe that C4 � I�2. Indeed, denote A :� tpu,wq P N , Npu,wq � 1u.
Then, for any pu,wq P A we have Jpu,wq � Kpu,wq2 and, hence, C�1

4 ¤ Kpu,wq2 or,

equivalently, C�1{2
4 ¤ Kpu,wq, for all pu,wq P A, that is, C�1{2

4 is a lower bound to

the set tKpu,wq; pu,wq P N , Npu,wq � 1u. Therefore, C�1{2
4 ¤ I, i.e., I�2 ¤ C4. On

the other hand, since N and K are homogeneous of degree 4 and 2, respectively, we

have that Jp¼pu,wqq � Jpu,wq, for any ¼ ¡ 0. Now, given ϵ ¡ 0, let pu,wq P N be

such that Jpu,wq   C�1
4 � ϵ and set pũ, w̃q :� Npu,wq�1{4pu,wq. Then Npũ, w̃q � 1,

Jpũ, w̃q � Jpu,wq and

I2 ¤ Kpũ, w̃q2 � Jpũ, w̃q � Jpu,wq   C�1
4 � ϵ.

Hence, C4 ¤ I�2 and then C4 � I�2. Therefore, (3.29) becomes

Npu,wq ¤ I�2Kpu,wq2, @pu,wq P N . (3.33)

In addition, if pu,wq is a minimizer for (3.32), then Kpu,wq � I and Npu,wq � 1, so

Jpu,wq � Kpu,wq2
Npu,wq � I2 � C�1

4 .

Thus, pu,wq is also a minimizer for (3.31).
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Before proceeding, it is convenient to set the function

φpu,wq :� 1

36
u4 � 9

4
w4 � u2w2 � 1

9
u3w.

Notice that φ is homogeneous of degree 4. Also, for R ¡ 0 and y P R
4, the function

uR,y :� R�1upR�1px� yqq, satisfies

NpuR,y, wR,yq � NpR�1upR�1px� yqq, R�1wpR�1px� yqqq
� R�4

»
φpupR�1px� yqq, wpR�1px� yqqqdx

�
»
φpupzq, wpzqqdz

� Npu,wq,

where we used the change of variables z � R�1px � yq. In the same way, since K is

homogeneous of degree 2, it follows that

KpuR,y, wR,yq � KpR�1upR�1px� yqq, R�1wpR�1px� yqqq
� R�2

»
|∇pupR�1px� yqq|2 � |∇wpR�1px� yqq|2dx

�
»
|∇upzq|2 � |∇wpzq|2dz

� Kpu,wq.

Thus, the functionals K and N are invariant under the transformation

pu,wq ÞÑ puR,y, wR,yq � pR�1upR�1px� yqq, R�1wpR�1px� yqqq. (3.34)

As mentioned before, to finish this part we will set some results about a localized

version of Sobolev’s inequality. We will start with a useful tool to achieve the goal. The

result was essentially proved in (FLUCHER; MüLLER, 1999), Lemma 8.

Lemma 3.5. For all ¶ ¡ 0, there exists a constant Cp¶q ¡ 0 with the following property:

if r{R   Cp¶q and x P R
4, then there is a cut-off function Çr

R P H1,8pR4q such that Çr
R � 1

on Bpx, rq, Çr
R � 0 outside Bpx,Rq and

KpÇr
Ru, Ç

r
Rwq ¤

»
Bpx,Rq

�|∇u|2 � |∇w|2� dy � ¶Kpu,wq, (3.35)

and

Kpp1� Çr
Rqu, p1� Çr

Rqwq ¤
»
R4zBpx,rq

�|∇u|2 � |∇w|2� dy � ¶Kpu,wq, (3.36)

for any pu,wq P 9H1pR4q � 9H1pR4q.
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Proof. There is no loss of generality in assuming x � 0. Define the function

Çr
Rpyq :�

$'''&'''%
1, |y| ¤ r,

logp|y|{Rq
logpr{Rq , r ¤ |y| ¤ R,

0, |y| ¥ R.

Note that for r   |y|   R and 1 ¤ i ¤ 4, we have

BÇr
R

Byi

� 1

logpr{Rq
yi{pR|y|q
|y|{R � yi

logpr{Rq|y|2 .

Since R ¡ r and logpr{Rq � � logpR{rq, we have

|∇Çr
R| �

|y|
logpR{rq|y|2 �

1

logpR{rq|y| .

Hence

|∇Çr
R|4 �

1

logpR{rq4|y|4 .

Besides that, ∇Çr
R � 0 for |y|   r. Therefore, using polar coordinates we have»
Bp0,Rq

|∇Çr
R|4dy �

1

logpR{rq4
»
tr¤|y|¤Ru

1

|y|4dy

� 1

logpR{rq4
» R

r

�»
BBp0,tq

1

|y|4dSpyq


dt

� 1

logpR{rq4
» R

r

³4

t3

t4
dt

� ³4

logpR{rq4
» R

r

1

t
dt

� ³4

logpR{rq3 .

where ³4 is the measure of the unit sphere in R
4. Now, using Young’s inequality, we have

|∇pÇr
Ruq|2 � |u∇Çr

R � Çr
R∇u|2

� |u|2|∇Çr
R|2 � 2pu∇Çr

RqpÇr
R∇uq � |Çr

R|2|∇u|2

¤ |u|2|∇Çr
R|2 �

1

ϵ
|u∇Çr

R|2 � ϵ|Çr
R∇u|2 � |Çr

R|2|∇u|2

� p1� ϵq|Çr
R|2|∇u|2 �

�
1� 1

ϵ



|u|2|∇Çr

R|2.

In addition, Hölder’s inequality with p � q � 2 implies»
Bp0,Rq

|u|2|∇Çr
R|2dy ¤ C}u}2

L4

�»
Bp0,Rq

|∇Çr
R|4dy


1{2

.

Hence, using the above estimates and Sobolev’s inequality

}u}2
L4 ¤ C}∇u}2

L2
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we have»
Bp0,Rq

|∇rÇr
Rus|2dy ¤

»
Bp0,Rq

p1� ϵq|Çr
R|2|∇u|2 �

�
1� 1

ϵ


»
Bp0,Rq

|u|2|∇Çr
R|2.

¤
»

Bp0,Rq

p1� ϵq|Çr
R|2|∇u|2 �

�
1� 1

ϵ



C}u}2

L4

�»
Bp0,Rq

|∇Çr
R|4dy


1{2

¤ p1� ϵq
»

Bp0,Rq

|Çr
R|2|∇u|2dy �

�
1� 1

ϵ



C³

1{2
4

plogpR{rqq3{2
»
R4

|∇u|2dy.

Similarly for w,»
Bp0,Rq

|∇rÇr
Rws|2dy ¤

»
Bp0,Rq

p1� ϵq|Çr
R|2|∇w|2 �

�
1� 1

ϵ



C³

1{2
4

logpR{rq3{2
»
R4

|∇w|2dy.

Summing the above estimates, we get

KpÇr
Ru, Ç

r
Rwq ¤

»
Bp0,Rq

|∇u|2 � |∇w|2dy �
�
ϵ�

�
1� 1

ϵ



À2

logpR{rq3{2
�
Kpu,wq,

where À �
?
C³

1{4
4 . Taking ϵ �

?
¶ � 1� 1 and

Cp¶q :� exp

�
�
�

À?
¶ � 1� 1


4{3
�
,

we have that if r{R ¤ Cp¶q then�
ϵ�

�
1� 1

ϵ



À2

logpR{rq3{2
�
¤ ¶

and (3.35) follows. To show (3.36), observe that»
R4zBp0,rq

|∇rp1� Çr
Rqus|2dy ¤

p1� ϵq
»
R4zBp0,rq

|1� Çr
R|2|∇u|2dy �

�
1� 1

ϵ


»
R4zBp0,rq

|u|2|∇p1� Çr
Rq|2dy,

and»
R4zBp0,rq

|∇rp1� Çr
Rqws|2dy ¤

p1� ϵq
»
R4zBp0,rq

|1� Çr
R|2|∇w|2dy �

�
1� 1

ϵ


»
R4zBp0,rq

|w|2|∇p1� Çr
R|2dy.

Thus, since |∇p1� Çr
Rq|2 � |∇Çr

R|2 and Çr
R � 0 outside Bp0, Rq, then (3.36) follows as in

(3.35) thereby, finishing the proof.

With this at hand, we can state the localized version of the Sobolev inequality

as follows.
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Corollary 3.6. Let pu,wq P 9H1pR4q � 9H1pR4q with u,w ¡ 0. Fix ¶ ¡ 0 and r{R ¤ Cp¶q
with Cp¶q as in Lemma 3.5. Then»

Bpx,Rq

φpu,wqdy ¤ I�2

�»
Bpx,Rq

|∇u|2 � |∇w|2dy � ¶Kpu,wq
�2

, (3.37)

»
R4zBpx,Rq

φpu,wqdy ¤ I�2

�»
R4zBpx,Rq

|∇u|2 � |∇w|2dy � p2¶ � ¶2qKpu,wq
�2

. (3.38)

Proof. There is no loss of generality in assuming x � 0. Observe that Çr
R � 1 on Bp0, rq

and supppÇr
Rq � Bp0, Rq. Then, (3.33) and (3.35) give us»

Bp0,Rq

φpu,wqdx ¤
»
R4

φpÇr
Ru, Ç

r
Rwqdx

¤ I�2KpÇr
Ru, Ç

r
Rwq2

¤ I�2

�»
|∇u|2 � |∇w|2dx� ¶Kpu,wq

�2

,

which is exactly (3.37). For (3.38), we use the function p1�Çr
RqÇR1

R2
where r   R   R1   R2

and R1{R2 ¤ Cp¶q. Naturally, p1� Çr
RqÇR1

R2
� 1 on Bp0, R1qzBp0, Rq and we have»

Bp0,R1qzBp0,Rq

φpu,wqdx �
»

Bp0,R1qzBp0,Rq

φ
�p1� Çr

RqÇR1

R2
u, p1� Çr

RqÇR1

R2
w
�
dx

¤
»

Bp0,R1q

φ
�p1� Çr

RqÇR1

R2
u, p1� Çr

RqÇR1

R2
w
�
dx

¤ I�2

�»
Bp0,R2q

|∇rp1� Çr
Rqus|2 � |∇rp1� Çr

Rqws|2dx� ¶Kpp1� Çr
Rqu, 1� Çr

Rqwq
�2

,

where, in the last inequality, we use (3.37). Taking R1 and R2 as large as we want such

that
R1

R2

¤ Cp¶q, the last inequality gives us

»
R4zBp0,Rq

φpu,wqdx ¤ I�2rKpp1� Çr
Rqu, 1� Çr

Rqwq � ¶Kpp1� Çr
Rqu, 1� Çr

Rqws2.

Finally, using (3.36), we get»
R4zBp0,Rq

φpu,wqdx ¤ I�2

�»
R4zBp0,Rq

|∇u|2 � |∇w|2dy � ¶Kpu,wqq � ¶p1� ¶qKpu,wq
�2

,

as desired.

3.2.2 Concentration-compactness method

We start with a result, that is called concentrarion-compactness lemma I, which

is a slightly modification of the Lemma presented in (LIONS, 1984).
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Lemma 3.7. [Concentrarion-compactness lemma I]. Suppose that p¿mq is a sequence in

M1
�pR4q. Then, there is a subsequence, still denoted by p¿mq, such that one of the following

conditions holds:

(i) (Vanishing) For all R ¡ 0 it holds

lim
mÑ8

�
sup
xPR4

¿mpBpx,Rqq


� 0.

(ii) (Dichotomy) There is a number ¼ P p0, 1q such that for all ϵ ¡ 0 there exists R ¡ 0

and a sequence pxmq with the following property: given R1 ¡ R

¿mpBpxm, Rqq ¥ ¼� ϵ,

¿mpR4zBpxm, R
1qq ¥ 1� ¼� ϵ,

for m sufficiently large.

(iii) (Compactness) There exists a sequence pxmq � R
4 such that for each ϵ ¡ 0 there is a

radius R ¡ 0 with the property

¿mpBpxm, Rqq ¥ 1� ϵ,

for all m.

Proof. One can see the proof in (FLUCHER; MüLLER, 1999) Lemma 23.

To achieve our goal and find a minimizer for the minimization problem (3.32),

we will built a suitable sequence of probability Radon measures and then, as a consequence

of Lemma 3.7, up to a subsequence, it will satisfy one of the three conditions above. From

that, we will avoid vanishing and dichotomy implying in the compactness of the sequence.

Hence, we shall get a vague convergence in Mb
�pR4q. Such convergence allows us to use,

what is called concentration-compactness lemma II, which was inspired in the limit case

lemma in (LIONS, 1985), roughly speaking, this guarantee dilation invariance for the

minimization problem.

Lemma 3.8. [Concentration-compactness lemma II] Let pum, wmq � 9H1pR4q � 9H1pR4q be

a sequence such that um, wm ¥ 0 and$'&'%
pum, wmq á pu,wq, in 9H1pR4q � 9H1pR4q,
µm :� p|∇um|2 � |∇wm|2qdx �á µ, in Mb

�pR4q
¿m :� φpum, wmqdx �á ¿, in Mb

�pR4q.
(3.39)

Then,
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(i) There exists an at most countable set J , a family of distinct points txj P R
4; j P Ju,

and a family of non-negative numbers taj; j P Ju such that

¿ � φpu,wqdx�
¸
jPJ

aj¶xj
. (3.40)

(ii) Moreover, we have

µ ¥ �|∇u|2 � |∇w|2� dx�¸
jPJ

bj¶xj
(3.41)

fore some family tbj; j P Ju, bj ¡ 0, such that

aj ¤ I�2b2
j , @j P J. (3.42)

In particular,
¸
jPJ

a
1{2
j   8.

Remark 3.9. Since um, wm ¥ 0, then φpum, wmq ¥ 0. Thus, ¿m is indeed a positive

measure. In addition, the weak converge of pum, wmq á pu,wq implies that, up to a

subsequence, we have pum, wmq Ñ pu,wq a.e. in R
4. Hence u,w ¥ 0.

Proof. Step 1. Assume that pu,wq � p0, 0q.
Let À P C8

0 pR4q. From the weak convergence of p¿mq and the homogeneity of φ,»
|À|4d¿ � lim

mÑ8

»
|À|4φpum, wmqdx

� lim
mÑ8

»
φp|À|um, |À|wmqdx

¤ I�2 lim inf
mÑ8

KpÀum, Àwmq2.

(3.43)

Since pum, wmq á p0, 0q in 9H1pR4q � 9H1pR4q, we know that (see Theorem 8.6 of (LIEB;

LOSS, 2001)), for all M � R
4 with finite measure, by Lemma 2.5, we have

ÇMpum, wmq Ñ p0, 0q, (3.44)

strongly in L2pR4q � L2pR4q. Then, taking M � supp|∇À| and using the triangular

inequality, we obtain���}∇pÀumq}2
L2 � }∇pÀwmq}2

L2

�1{2 � p}À∇pumq}2
L2 � }À∇pwmq}2

L2q1{2
��

¤ �}∇pÀumq � À∇um}2
L2 � p}∇pÀwmq � À∇wm}2

L2

�1{2

� �}um∇À}2
L2 � }wm∇À}2

L2

�1{2

À
�»

|ÇMum|2 � |ÇMwm|2

1{2

Ñ 0, mÑ 8.
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Combining with the vague convergence of pµmq, we get

lim inf
mÑ8

KpÀum, Àwmq2 � lim inf
mÑ8

�»
|À|2p|∇um|2 � |∇wm|2qdx


2

� lim inf
mÑ8

�»
|À|2dµm


2

�
�»

|À|2dµ

2

.

Then, from (3.43), we deduce»
|À|4d¿ ¤ I�2

�»
|À|2dµ


2

, À P C8
0 pR4q. (3.45)

We claim that (3.45) implies that

¿pEq ¤ I�2µpEq2, @E P BpR4q. (3.46)

Indeed, let U � R
4 be an open set and take a compact set K � U . By C8 Urysohn’s

lemma (see (FOLLAND, 1999), Lemma 8.18), there exists g P C8
0 pR4q obeying 0 ¤ g ¤ 1,

g � 1 on K and supppgq � U . Thus, by (3.45)

¿pKq �
»

K

g4d¿ ¤
»
g4d¿ ¤ I�2

�»
g2dµ


2

¤ I�2

�»
supppgq

g2dµ


2

¤ I�2

�»
U

dµ


2

.

Thus, ¿pKq ¤ I�2µpUq2, for all K � U compact. Since ¿ is a Radon measure, by its inner

regularity, we have

¿pUq ¤ I�2µpUq2, @U � R
4, U open. (3.47)

Now, if E P BpR4q, where B denotes the Borel Ã-algebra, and U is an open set E � U ,

then from (3.47), we get ¿pEq ¤ ¿pUq ¤ I�2µpUq2. Since µ is a Radon measure, we can

use its outer regularity to get

¿pEq ¤ I�2µpEq2, @E P BpR4q.

Now, consider D � tx P R
4; µptxuq ¡ 0u. We may write D �

8¤
k�1

Dk, where

Dk � tx P R
4; µptxuq ¡ 1{ku. Since µ is a finite measure, then Dk is finite for all k. Indeed,

assume that exists k0 such that Dk0
has infinitely many elements, i.e., Dk0

� txj, j P Nu.
Then µpDk0

q �
¸
jPN

µptxjuq ¡
¸
jPN

1{k0 � 8, which contradicts the fact that µ is finite.

Hence, Dk is finite for all k P N and the set D is at most countable. Thus we write

D � txj; j P Ju, with J � N.

Set bj � µptxjuq, j P J , then for any E P BpR4q, we have¸
jPJ

bj¶xj
pEq �

¸
jPJ

xjPE

bj �
¸
jPJ

xjPE

µptxjuq ¤ µpEq, (3.48)
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where ¶xj
pEq � 1 if xj P E and ¶xj

pEq � 0 if not. From (3.47) we have (3.41) for the case

pu,wq � p0, 0q.
Now, observe that from (3.46) we have ¿ ! µ and, by Radon-Nikodym theorem

(see (EVANS; GARIEPY, 1992), Section 1.6) there is a non-negative function h P L1pR4, µq
such that

¿pEq �
»

E

hpxqdµpxq, @E P BpR4q. (3.49)

Moreover, h satisfies

hpxq � lim
rÑ0

¿pBpx, rqq
µpBpx, rqq , µ a.e. x P R

4. (3.50)

Using (3.50) and (3.46), we get 0 ¤ hpxq ¤ I�2µptxuq. Thus, hpxq � 0, µ a.e. on R
4zD.

In particular, we can rewrite the integral (3.49) as»
E

hpxqdµpxq �
¸
jPJ

xjPE

hpxjqµptxjuq. (3.51)

Setting aj � ¿ptxjuq, j P J , we have from (3.49) and (3.51) that in fact aj � hpxjqbj,

@j P J . Then, for all E P BpR4q, we have

¿pEq �
¸
jPJ

xjPE

hpxjqµptxjuq �
¸
jPJ

xjPE

aj �
¸
jPJ

aj¶xj
pEq,

which establishes (3.40) for pu,wq � p0, 0q. Finally, inequality (3.42) follows immediately

from the definitions of aj e bj and (3.46). Note also that by taking E � R
4 in (3.48) we

deduce that
¸
jPJ

bj is convergent. Hence, the convergence of the series
¸
jPJ

a
1{2
j follows from

(3.46).

Step 2. Case pu,wq � p0, 0q.
Since um, wm ¥ 0, then we have φpu,wq ¥ 0 thus φpu,wqdx defines a positive

measure.

Claim The measures

µ� p|∇u|2 � |∇w|2qdx and ¿ � φpu,wqdx (3.52)

are non-negative.

Indeed, set pym, zmq � pum�u,wm�wq and consider the sequence of measures

µ̃m :� p|∇ym|2 � |∇zm|2qdx and ¿̃m :� φp|ym|, |zm|qdx.

Since pym, zmq á p0, 0q in 9H1pR4q � 9H1pR4q, the sequence pKpym, zmqq is uniformly

bounded. Hence, since ����» fdµ̃m

���� ¤ }f}L8Kpym, zmq, f P C8
0 pR4q,
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we have that pµ̃mq is vaguely bounded on Mb
�pR4q. Therefore, Lemma 2.5 gives us a

subsequence, still denoted by pµ̃mq, and µ̃ P Mb
�pR4q obeying

µ̃m
�á µ̃, in Mb

�pR4q. (3.53)

Now, if

µm
�á µ̃� p|∇u|2 � |∇w|2qdx, in Mb

�pR4q, (3.54)

then by uniqueness of the vague limit,

µ � µ̃� p|∇u|2 � |∇w|2qdx

and, by the finiteness of all involved measures, we may conclude that µ�p|∇u|2�|∇w|2qdx
is non-negative.

Now, we turn our attention to establish (3.54). Since Bxi
ym á 0 and Bxi

zm á 0

in L2pR4q and fBxi
u, fBxi

w P L2pR4q for each f P CcpR4q, then

lim
mÑ8

»
f∇ym �∇udx � 0,

lim
mÑ8

»
f∇zm �∇wdx � 0.

(3.55)

Thus,

0 ¤
����» fdµm �

»
f
�
dµ̃� p|∇u|2 � |∇w|2qdx�����

�
����» fp|∇um|2 � |∇wm|2qdx�

»
f
�
dµ̃� p|∇u|2 � |∇w|2qdx�����

�
����» f �|∇ym|2 � 2∇ym �∇u� |∇u|2 � |∇zm|2 � 2∇zm �∇w � |∇w|2� dx
�
»
fdµ̃�

»
fp|∇u|2 � |∇w|2qdx

����
¤
����» fdµ̃m �

»
fdµ̃

����� 2

�����» f∇ym �∇udx
����� ����» f∇zm �∇wdx

����� .
Since the first and the second terms goes to zero by (3.53) and (3.55), respectively, then

(3.54) holds.

Now, let us show that p¿̃mq is vaguely bounded in Mb
�pR4q. As seen before,

pKpym, zmqq is uniformly bounded. Then, (3.29), implies����» fd¿̃m

���� ¤ }f}L8

»
φp|ym|, |zm|qdx � CNp|ym|, |zm|q ¤ CKp|ym|, |zm|q2  M,

for some constant M . Again, from Lemma 2.5, we obtain a subsequece, still denoted by

p¿̃mq, such that

¿̃m
�á ¿̃, in Mb

�pR4q, (3.56)
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Now, observe that if

¿m
�á ¿̃ � φpu,wqdx, in Mb

�pR4q, (3.57)

holds, then ¿ � ¿̃ � φpu,wqdx and, hence, ¿ � φpu,wqdx is non-negative. So, let us prove

(3.57).

We know that φpu,wq ¤ Cp|u|4 � |w|4q. Then, we are able to use Brezis-Lieb’s

Lemma 2.6 with φp|u|, |w|q instead of Gpxq in the following way: We first assume that

pym, zmq Ñ 0 a.e. in R
4 (see Remark 3.9). Then, by Sobolev’s inequality }f}2

L4 ¤ }∇f}2
L2 ,

we have pu,wq P L4pR4q � L4pR4q. Then, φp|u|, |w|q P L1pR4q. Moreover, we have that

pym, zmq is uniformly bounded in L4pR4q. Thus,

|φp|a1 � b1|, |a2 � b2|q � φp|b1|, |b2|q| ¤ ϵϕpa1, a2q � Èϵpb1, b2q,

where ϕpa1, a2q � |a1|4 � |a2|4 and Èϵpb1, b2q ¤ Cϵp|b1|4 � |b2|4q with ϵ ¡ 0. Also,»
ϕpym, zmqdx ¤M and

»
Èϵpu,wqdx   8,

for M indenpendent of ϵ and m. The Brezis-Lieb Lemma gives us

lim
mÑ8

»
|φp|um|, |wm|q � φp|ym|, |zm|q � φp|u|, |w|q|dx � 0. (3.58)

Hence, for all g P CcpR4q,

0 ¤
����» gd¿m �

»
grd¿̃ � φpu,wqdxs

����
�
����» gφpum, wmqdx�

»
gφp|ym|, |zm|qdx�

»
gφp|ym|, |zm|qdx�

»
grd¿̃ � φpu,wqsdx

����
¤ }g}L8

»
|φp|um|, |wm| � φp|ym|, |zm|q � φp|u|, |w|q|dx�

����» gd¿̃m �
»
f¿̃

���� .
The first term vanishes by taking the limit and using (3.58). The second term goes to

zero by the vague convergence of p¿̃mq. So (3.57) holds and, consequently, ¿ � φpu,wqdx
is non-negative, which finish the claim. Therfore,#

p|∇ym|2 � |∇zm|2qdx �á µ� p|∇u|2 � |∇w|2qdx, in Mb
�pR4q,

φp|ym|, |zm|qdx �á ¿ � φpu,wqdx, in Mb
�pR4q,

and we complete the proof of the lemma after applying Step 1. We notice that Step 1

still holds even if we do not have um, wm ¥ 0; in that case we change p¿mq in (3.39) by

¿m :� φp|um|, |wm|qdx.

Before proving Theorem 1.3, we will establish an adapted version of Lemma

1.7.4 in (CAZENAVE, 2003), which will help us to avoid the vanishing property.
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Lemma 3.10. Let pum, wmq � L3pR4q � L3pR4q be such that, um, wm ¥ 0 and»
φpum, wmqdx � 1, for any m P N. Let QmpRq be the concentration function of φpum, wmq,

that is,

QmpRq :� sup
yPR4

»
Bpy,Rq

φpum, wmqdx, R ¡ 0.

Then, for each m there is y � ypm,Rq such that

QmpRq �
»

Bpy,Rq

φpum, wmqdx.

Proof. Fix m P N. By the definition of Qm, for any R ¡ 0 there is pyiq in R
4 such that

QmpRq � lim
iÑ8

»
Bpyi,Rq

φpum, wmqdx ¡ 0.

Hence, there exists i0 such that if i ¡ i0 then
»

Bpyi,Rq

φpum, wmqdx ¥ ϵ, where ϵ ¡ 0.

Let us show that pyiq is bounded. If not, there is a subsequence, still denoted

by pyiq, such that Bpyj, Rq XBpyi, Rq � H, @i � j. Thus

1 �
»
φpum, wmqdx ¥

¸
i¥i0

»
Bpyi,Rq

φpum, wmqdx � 8,

which is an absurd. Therefore pyjq has a convergent subsequence pyjk
q with limit y �

ypm,Rq. Applying the dominated convergence theorem, we get

QmpRq � lim
jkÑ8

»
Bpyjk

,Rq

φpum, wmqdx �
»

Bpy,Rq

φpum, wmqdx,

which finish the proof.

3.2.3 Proof of Theorem 1.3

Following the strategy in (NOGUERA; PASTOR, 2022), before proceeding to

the proof of Theorem 1.3, we first state the following result.

Theorem 3.11. Suppose that pum, wmq is a minimizing sequence for (3.32) with um, wm ¥
0. Then, up to translation and dilation pum, wmq is relatively compact in N , that is, there

exist a subsequence pumj
, wmj

q and sequences pRjq � R, pyjq � R
4 such that the pair

pvj, zjq given by

vj :� R�1
j umj

pR�1
j px� yjqq, zj :� Rjt

�1wmj
pR�1

j px� yjqq,

strongly converges in N to some pv, zq, which minimizes (3.32).
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Proof. The proof will proceed in 6 steps. We start taking pum, wmq in N a minimizing

sequence for (3.32) with um, wm ¥ 0. Then,

lim
mÑ8

Kpum, wmq � I, Npum, wmq �
»
φpum, wmqdx � 1, @m. (3.59)

Step 1. There exist sequences pRmq in R and pymq in R
4 such that

vm :� R�1umpR�1
m px� ymqq, zm :� R�1wmpR�1

m px� ymqq (3.60)

satisfies

sup
yPR4

»
Bpy,1q

φpvm, zmqdx �
»

Bp0,1q

φpvm, zmqdx � 1

2
. (3.61)

To show that, let us take R ¡ 0, s P R
4 and consider the following scaling

vR,s
m :� R�1umpR�1px� sqq, zR,s

m :� R�1wmpR�1px� sqq.

From (3.34) we get KpvR,s
m , zR,s

m q � Kpum, wmq and NpvR,s
m , zR,s

m q � Npum, wmq � 1. Let

us consider the concentration function corresponding to φpvm, zmq given by

QR,s
m ptq � sup

yPR4

»
Bpy,tq

φpvR,s
m pxq, zR,s

m pxqqdx.

A change of variables give us Qmpt{Rq � QR,s
m ptq for all t ¥ 0 and s P R

4, where Qm is

defined as in Lemma 3.10. In particular, for all m, Qm is a non-decreasing function with

Qmp0q � 0, Qmp1{Rq � QR,s
m p1q and Qmptq Ñ 1 as tÑ 8. Therefore,

lim
RÑ0�

QR,s
m p1q � lim

RÑ0�
Qmp1{Rq � 1.

Consequently, for any m we can find Rm ¡ 0 obeying

QRm,s
m p1q � Qmp1{Rmq � 1

2
, @s P R

4, (3.62)

i.e.,

sup
yPR4

»
Bpy,1q

φpvRm,s
m , zRm,s

m qdx � QRm,s
m p1q � 1

2
, @s P R

4. (3.63)

On the other hand, since
»
φpvRm,s

m , zRm,s
m qdx � 1 and vRm,s

m , zRm,s
m ¥ 0, Lemma

3.10 gives us ym P R
4 obeying

sup
yPR4

»
Bpy,1q

φpvRm,s
m pxq, zRm,s

m pxqqdx �
»

Bpym,1q

φpvRm,s
m pxq, zRm,s

m pxqqdx

�
»

Bp0,1q

φpR�1
m umpR�1

m pr � ym � sqq, R�1
m wmpR�1

m pr � ym � sqqqdr,
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where we used the change of variables x � r � ym. Choosing s � 2ym and using (3.63), we

get »
Bp0,1q

φpR�1
m umpR�1

m pr � ymq, R�1
m wmpR�1

m pr � ymqqdr

� sup
yPR4

»
Bpy,1q

φpR�1
m umpR�1

m px� 2ymqq, R�1
m wmpR�1

m px� 2ymqqqdx

� QRm,2ym

m p1q
� 1

2
,

which is the second equality in (3.61). For the first one, observe

sup
yPR4

»
Bpy,1q

φpvm, zmqdx � sup
yPR4

»
Bpy,1q

φpR�1
m umpR�1

m px� ymqq, R�1
m wmpR�1

m px� ymqqqdx

� sup
yPR4

»
Bpy,1q

φpvRm,ym

m , zRm,ym

m qdx

� 1

2
,

where in the last equality we used (3.63).

Next, from (3.34) and Step 1, pvm, zmq is also a minimizing sequence for (3.32)

with vm, zm ¥ 0, that is,

lim
mÑ8

Kpvm, zmq � I, Npvm, zmq �
»
φpvm, zmqdx � 1, @m P N. (3.64)

Particularly, pvm, zmq is uniformly bounded in N . Thus, there exist pv, zq P 9H1pR4q �
9H1pR4q such that, up to a subsequence,

pvm, zmq á pv, zq in 9H1pR4q � 9H1pR4q. (3.65)

Let us show that pvm, zmq Ñ pv, zq in N and pv, zq is a minimizer for (3.32). Indeed, from

Remark (3.9) we have v, z ¥ 0. Set the sequence of measure

µm :� p|∇vm|2 � |∇zm|2qdx, ¿m :� φpvm, zmqdx. (3.66)

The identity in (3.64) give us that p¿mq is a probability sequence of measures for all m.

Thus, by Lemma 3.7, up to a subsequence, occurs one of the following cases: vanishing,

dichotomy or compactness. Let us exclude the vanishing and dichotomy cases.

Step 2 Vanishing does not occur.

Indeed, in view of (3.61) it follows that for R � 1

lim
mÑ8

sup
yPR4

¿mpBpy, 1qq ¥ 1

2
.

Step 3. Dichotomy does not occur.
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Suppose the opposite. Then, there is ¼ P p0, 1q such that for all ϵ ¡ 0, there

exist R ¡ 0 and a sequence pxmq in R
4 such that given R1 ¡ R and m sufficiently large,

¿mpBpxm, Rq ¥ ¼� ϵ, ¿mpR4zBpxm, R
1qq ¥ 1� ¼� ϵ. (3.67)

Thus, for m sufficiently large, fixing ¶ ¡ 0, Corollary 3.6 yields that choosing Ä satisfying

R   Ä   R1 with Ä{R1 ¤ Cp¶q and R{Ä ¤ Cp¶q then»
Bpxm,Rq

φpvm, zmqdx ¤ I�2

�»
Bpxm,Äq

|∇vm|2 � |∇zm|2dx� ¶Kpvm, zmq
�2

and»
R4zBpxm,R1q

φpvm, zmqdy ¤ I�2

�»
R4zBpxm,Äq

|∇vm|2 � |∇zm|2dy � p2¶ � ¶2qKpu,wq
�2

.

Combining both inequalities with (3.67), we get

I
�p¼� ϵq1{2 � p1� ¼� ϵq1{2� ¤ Kpvm, zmq � p3¶ � ¶2qKpvm, zmq. (3.68)

From (3.64) the right-hand side of (3.68) is bounded by Kpvm, zmq � p3¶ � ¶2qM , where

M ¡ 0 does not depend on m. Therefore, taking ¶, ϵÑ 0 and mÑ 8 leads to

Ir¼1{2 � p1� ¼q1{2s ¤ I, (3.69)

that is, ¼1{2 � p1 � ¼q1{2 ¤ 1. But this contradicts the fact that if ¼ P p0, 1q then

¼1{2 � p1� ¼q1{2 ¡ 1. Hence, dichotomy does not occurs.

Thereby, Lemma 3.7 implies that compactness occurs, that is, there is a sequence

pxmq in R
4 such that for all ϵ ¡ 0 there is a radius R ¡ 0 such that

¿mpBpxm, Rqq ¥ 1� ϵ, @m. (3.70)

Step 4. The sequence p¿mq is uniformly tight.

Indeed, we first show that Bpxm, Rq XBp0, 1q � H, for all m. Otherwise, there

is m0 such that Bpxm0
, Rq XBp0, 1q � H. Taking ϵ P p0, 1{2q in (3.70) leads us to»

Bpxm0
,Rq

φpvm0
, wm0

qdx ¡ 1

2
.

Combining with (3.61) we have»
φpvm0

, wm0
qdx ¥

»
Bpxm0

,Rq

φpvm0
, wm0

qdx�
»

Bp0,1q

φpvm0
, wm0

qdx ¡ 1

2
� 1

2
� 1,

which is a contradiction with (3.64). Hence, the claim follows.

Now, since Bpxm, Rq � Bp0, 2R � 1q, for all m, (3.70) give us

¿mpBp0, 2R � 1qq ¥ 1� ϵ, @m.
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Then, because p¿mq is a sequence of probability measures,

¿m

�
R

4zBp0, 2R � 1q
	
� 1� ¿mpBp0, 2R � 1qq ¤ ϵ, @m.

that is, p¿mq uniformly tight.

Step 5. Up to a subsequence, p¿mq weakly converge to ¿ P M1
�pR4q.

In fact, note that for each f P CcpR4q,����» fd¿m

���� ¤ }f}L8¿mpR4q � }f}L8   8.

Hence by Lemma 2.5, there is ¿ P Mb
�pR4q such that, up to a subsequence, ¿m á ¿ weakly

in Mb
�pR4q, that is, »

fd¿m Ñ
»
fd¿, @f P CbpR4q. (3.71)

In particular, taking f � 1, we have

¿pR4q � lim
mÑ8

¿mpR4q � 1, (3.72)

which implies that ¿ P M1
�pR4q.

Now, since Kpvm, zmq is uniformly bounded, then pµmq is vaguely bounded.

Therefore, up to a subsequence, there is µ P Mb
�pR4q obeying

µm
�á µ in Mb

�pR4q. (3.73)

Thus, with (3.65), (3.71) and (3.73) in hand, we can use Lemma 3.8 to get

µ ¥ p|∇v|2 � |∇z|2qdx�
¸
jPJ

bj¶xj
, ¿ � φpv, zqdx�

¸
jPJ

aj¶xj
(3.74)

for a family txj P R
4; j P Ju with J at most countable and aj, bj ¥ 0 satisfying

aj ¤ I�2b2
j , @j P J (3.75)

with
¸
jPJ

a
1{2
j convergent. Hence, (3.33), (3.72) and (3.75) lead us to

I � lim inf
mÑ8

µmpR4q ¥ µpR4q
¥ Kpv, zq �

¸
jPJ

bj

¥ I

�
Npv, zq1{2 �

¸
jPJ

a
1{2
j

�

¥ I

�
Npv, zq �

¸
jPJ

aj

�1{2

� Ir¿pR4qs1{2

� I,

(3.76)



Chapter 3. Blow-up of the radially symmetric solutions for a cubic NLS type system in dimension 4 68

where we have used that ¼ ÞÑ ¼1{2 is a strictly concave function. Then, for all the inequalities

above to be in fact equalities, it is necessary that at most one of the terms Npv, zq or

aj, j P J must be different from zero.

Step 6. aj � 0 for all j P J .

Suppose that there exist j0 P J such that aj0
� 0. Then, by the above discussion,

(3.72) and the decomposition (3.74) it follows that ¿ � aj0
¶xj0

, and hence

1 � ¿pR4q � aj0
. (3.77)

The condition (3.61) gives us

1

2
¥
»

Bpxj0
,1q

φpvm, zmqdx � ¿mpBpxj0
, 1qq, @m,

which leads to

1

2
¥ lim

mÑ8
¿mpBpxj0

, 1qq � ¿pBpxj0
, 1qq �

»
Bpxj0

,1q

d¿ � aj0
,

where the first equality is a consequence of weak convergence (3.71). But, this contradicts

(3.77) which finish this step.

With this in hand, we must be in the case ¿ � φpu, vqdx and from (3.72), we

obtain

Npv, zq �
»
φpv, zqdx � 1, (3.78)

which means that pv, zq P N .

To show that pv, zq is a minimizer for (3.32), it remains to guarantee that

Kpv, zq � I. Indeed, from the definition of I and (3.78) it follows that I ¤ Kpv, zq. On

the other hand, the lower semi-continuity of the weak convergence (3.65), gives

Kpv, zq ¤ lim inf Kpvm, zmq � I.

Then Kpv, zq � I and pvm, zmq Ñ pv, zq strongly in N , completing the proof.

Corollary 3.12. There is pv, zq P N satisfying Npv, zq � 1 and Kpv, zq � C
�1{2
4 , where

C4 is the best constant in the critical Sobolev-type inequality (3.29).

We are now in position to prove Theorem 1.3.

Proof of Theorem 1.3. We start applying Theorem 3.11 to get a minimizer of (3.32), which

will be denoted by pv, zq. By Lagrange’s multiplier theorem, there is a constant Λ such

that for any pair pf, gq P 9H1pR4q � 9H1pR4q it holds

2

»
∇v �∇fdx � Λ

» �
1

9
v3 � 2z2v � 1

3
v2z



fdx,

2

»
∇z �∇gdx � Λ

» �
9z3 � 2v2z � 1

9
v3



gdx.

(3.79)
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Taking f � v and g � z we see that Λ � 0. Then, setting pP0, Q0q :�
�

Λ

2


 1

2

pv, zq we

deduce that pP0, Q0q is non-trivial. Let us show that pP0, Q0q is indeed a ground state

solution for (1.12). Note that»
∇P0 �∇fdx �

�
Λ

2


 1

2

»
∇v �∇fdx

�
» �

Λ

2


 3

2

�
1

9
v3 � 2z2v � 1

3
v2z



fdx

�
» �

1

9
P 3

0 � 2Q2
0P0 � 1

3
P 2

0Q0



fdx

and »
∇Q0 �∇fdx �

�
Λ

2


 1

2

»
∇z �∇gdx

�
» �

Λ

2


 3

2

�
9z3 � 2v2z � 1

9
v3



gdx

�
» �

9Q3
0 � 2P 2

0Q0 � 1

9
P 3

0



gdx.

therefore pP0, Q0q is a solution of (1.12). Also, from Remark 3.2 we have JpP0, Q0q �
4�2SpP0, Q0q. Then,

JpP0, Q0q � KpP0, Q0q2
NpP0, Q0q �

K
��

Λ
2

� 1

2 pv, zq
	2

N
��

Λ
2

� 1

2 pv, zq
	 �

�
Λ
2

�2�
Λ
2

�2

Kpv, zq2
Npv, zq � Jpv, zq,

and consequently, pP0, Q0q minimizes J and then minimizes the action functional S. Hence

pP0, Q0q is a ground state solution of (1.12).

Corollary 3.13. The inequality

Npu,wq ¤ C
opt
4 Kpu,wq2, (3.80)

holds for all pu,wq P N , with the optimal constant given by

C
opt
4 � 1

16EpP,Qq , (3.81)

where pP,Qq is any ground state solution of (1.12).

Proof. We have seen in Remark 3.4 that (3.80) holds with

C�1
4 � pCopt

4 q�1 � inftJpu,wq; pu,wq P N u.

Now, if pP,Qq is a ground state of (1.12), then Remark 3.2 leads to

C�1
4 � JpP,Qq � 16SpP,Qq � 16EpP,Qq,

which is the desired.
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3.3 Blow-up

As mentioned before, the goal of this section is to establish some blow-up

results. We start considering for each ϕ P C8
0 pR4q the funcion

Vptq �
»
ϕpxqp|u|2 � 3Ã|w|2qdx.

Now, setting Uptq �
»
ϕ|u|2dx, we have that

U 1ptq � 2Re
»
ϕsuutdx

� 2Re
»
ϕsupi∆u� iu� ifpu,wqqdx

� 2Re
»
iϕsu∆udx� 2Re

»
iϕ|u|2dx� 2Re

»
iϕsufpu,wqdx

� 2Re
»
�ip∇ϕsu� ϕ∇suq∇udx� 2Re

»
iϕ|u|2dx� 2Re

»
iϕsufpu,wqdx

� 2Im
» su∇ϕ∇udx� 2Im

»
ϕ|∇u|2dx� 2Im

»
ϕ|u|2dx� 2Im

»
ϕsufpu,wqdx,

where fpu,wq �
�

1

9
|u|2 � 2|w|2



u� 1

3
ū2w. Similarly, for Wptq �

»
ϕ3Ã|w|2dx, we obtain

W 1ptq � 2Im
»

3 sw∇ϕ∇wdx� 2Im
»

3 swgpu,wqdx.
where gpu,wq � p9|w|2 � 2|u|2qw � 1

9
u3. Now, if Vptq � Uptq �Wptq, we have

V 1ptq � 2Im
»

∇ϕpsu∇u� 3 sw∇wqdx� 2Im
»
ϕsufpu,wq � 3 swgpu,wqqdx. (3.82)

As mentioned before, since the second term in (3.82) does not necessarily vanishes, we

will follow the ideas presented in (INUI; KISHIMOTO; NISHIMURA, 2020) and work

with radially symmetric solutions and the function

Rptq � 2Im
»

∇ϕpū∇u� 3w̄∇wqdx (3.83)

instead of V . Following the strategy presented in (KAVIAN, 1987, Lemma 2.9), we have

R1ptq �4
¸

1¤m,j¤4

Re
» B2ϕ

BxmBxj

pBxj
ūBxm

u� Bxj
w̄Bxm

wqdx

�
»

∆2ϕp|u|2 � |w|2qdx� 2Re
»

∆ϕHpu,wqdx,
(3.84)

where Hpu,wq :� ūfpu,wq � w̄gpu,wq. See also Proposition 2.33. This last identity is

known as localized virial identity. Now, observe that if u0, w0 are radially symmetric, so
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are the respective solutions u,w. Besides, if we also take ϕ to be radially symmetric, we

can write ϕpxq � ϕp|x|q, upxq � p|x|q and wpxq � wp|x|q. Then, for r � |x|, we have

Bϕ
Bxm

� ϕ1prqxm

r
and

B2ϕ

BxmBxj

� ϕ2prqxmxj

r2
� ϕ1prq¶mj

r
� ϕ1prqxmxj

r3
,

where ¶mj is the Kroenecker delta. Multiplying the second derivative by pxmxjq{r2 and

summing in m and j, we obtain¸
1¤m,j¤4

B2ϕ

BxmBxj

� xmxj

r2
� ϕ2prq

¸
1¤m,j¤4

x2
mx

2
j

r4
� ϕ1prq

¸
1¤m,j¤4

xmxj

r3
¶mj � ϕ1prq

¸
1¤m,j¤4

x2
mx

2
j

r5

� ϕ2prq.

Now, since
B
Bxm

u � u1prqxm

r
, then |∇u|2 � |u1prq|2, whence

B
Bxj

ū
B
Bxm

u � |∇u|2xmxj

r2
.

Therefore, gathering all the above information leads to¸
1¤m,j¤4

Re
B2ϕ

BxmBxj

pBxj
ūBxm

u� Bxj
w̄Bxm

wq � ϕ2prq �|∇u|2 � |∇w|2� .
Doing the same for w and replacing in (3.84), we may rewrite R1 as

R1ptq � 4

»
ϕ2p|∇u|2 � |∇w|2qdx�

»
∆2ϕp|u|2 � |w|2qdx� 2Re

»
∆ϕHpu,wqdx (3.85)

Let us introduce the functional

Ppu,wq �
» �

1

36
|u|4 � 9

4
|w|4 � |u|2|w|2 � 1

9
Repū3wq



dx.

Observe that

Hpu,wq � sufpu,wq � swgpu,wq � 1

9
|u|4 � 9|w|4 � 4|u|2|w|2 � 3

9
su3w � 1

9
u3 sw,

and consequently

Re
»
Hpu,wqdx �

» �
1

9
|u|4 � 9|w|4 � 4|u|2|w|2 � 4

9
Repsu3wq



dx � 1

4
Ppu,wq.

Now, we define the “Pohozaev” functional by

Äpuptq, wptqq � Kpuptq, wptqq � 4Ppuptq, wptqq (3.86)

Using the definitions of the energy (1.4) and the mass (1.5) we may rewrite

Äpu,wq � 4Epu,wq �Kpu,wq � 2Mpu,wq. (3.87)

Our first result reads as follow.
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Theorem 3.14. Assume that pu0, w0q P H1pR4q�H1pR4q and let pu,wq be the correspond-

ing solution of (1.1) defined in the maximal time interval of existence I. If

Epu0, w0q   EpP,Qq (3.88)

and

Kpu0, w0q ¡ KpP,Qq, (3.89)

where pP,Qq is a ground state and E is the energy in (3.25), then there exists ¶ ¡ 0, such

that Äpuptq, wptqq ¤ �¶   0, for all t P I.

Proof. Notice that from the definition of the energy (3.25) and (3.23) we have

KpP,Qq � 4EpP,Qq. (3.90)

Moreover, using (3.80) we get |Ppu,wq| ¤ Np|u|, |w|q ¤ C
opt
4 Kp|u|, |w|q2 ¤ C

opt
4 Kpu,wq2.

Thus, by conservation of the energy

Kpu,wq � 2Epu0, w0q �Mpu,wq � 2Ppu,wq
¤ 2Epu0, w0q � 2|Ppu,wq|
¤ 2Epu0, w0q � 2C

opt
4 Kpu,wq2.

(3.91)

Therefore, taking a � 2Epu0, w0q, b � 2C
opt
4 and q � 2 in Lemma 2.7, we have µ � p4Copt

4 q�1

and fprq � 2Epu0, w0q � r � 2C
opt
4 r2, for r ¡ 0. Also, setting Gptq � Kpuptq, wptqq, it

follows from (3.91) that

f �Gptq � 2Epu0, w0q �Kpuptq, wptqq � 2C
opt
4 Kpuptq, wptqq2 ¥ 0.

Thus,

a  
�

1� 1

q



µ ô Epu0, w0q   1

16
pCopt

4 q�1 � EpP,Qq,

and

Gp0q ¡ µ ô Kpu0, w0q ¡ 1

4C
opt
4

� 4EpP,Qq � KpP,Qq.

Therefore, applying Lemma 2.28 we get

Kpuptq, wptqq ¡ KpP,Qq, @t P I. (3.92)

The hypothesis (3.88) together with the energy conservation gives us

4Epuptq, wptqq � 4Epu0, w0q   4EpP,Qq � KpP,Qq   Kpuptq, wptqq,

and as a consequence of (3.87)

Äpuptq, wptqq   0, t P I. (3.93)
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Now, let us show that there is ¹ ¡ 0, such that

Äpuptq, wptqq   �¹Kpuptq, wptqq, @t P I. (3.94)

Indeed, if Epu0, w0q ¤ 0, then we can take ¹ � 1, and by (3.87) we have the desired

estimate. On the other hand, suppose that Epu0, w0q ¡ 0 and (3.94) does not hold. Thus,

there exist sequences ptmq � I and ¹m Ñ 0 obeying

�¹m

1

4
Kpuptmq, wptmqq ¤ Äpuptmq, wptmqq   0.

Which implies

Epuptmq, wptmqq � 1

4
Äpuptmq, wptmqq � 1

4
Kpuptmq, wptmqq � 1

2
Mpuptmq, wptmqq

¥ p1� ¹mq1
4
Kpuptmq, wptmqq.

Again, the energy conservation, (3.90) and (3.92) lead to

Epu0, w0q � Epuptmq, wptmqq ¥ p1� ¹mq1
4
Kpuptmq, wptmqq

¡ p1� ¹mq1
4
KpP,Qq

¥ p1� ¹mqEpP,Qq.

Taking m Ñ 8 we arrive at a contradiction with (3.88). Hence, the result follows from

(3.92) and (3.94).

Lemma 3.15. For x P R
4, we set r � |x|. Given a constant c ¡ 0, define

Çprq �
#
r2, 0 ¤ r ¤ 1,

c, r ¥ 3.
(3.95)

Assume also that Ç2prq ¤ 2 and 0 ¤ Ç1prq ¤ 2r, @r ¥ 0. Let ÇRprq � R2Çpr{Rq. Then

(i) If r ¤ R,

∆ÇRprq � 8 and ∆2ÇRprq � 0. (3.96)

(i) If r ¥ R,

∆ÇRprq ¤ C and |∆2ÇRprq| ¤ C

R2
, (3.97)

where C is a constant independent of R.

Proof. piq Since r ¤ R then ÇRprq � r2. Hence,

Bxi
ÇRprq � Bxi

p|x|2q � 2xi ñ B2
xi
ÇRprq � 2.

Thus, ∆ÇRprq � 8 and ∆2ÇRprq � 0.



Chapter 3. Blow-up of the radially symmetric solutions for a cubic NLS type system in dimension 4 74

piiq A straightforward calculation leads to

BkÇRprq
Brk

� Çpkqpr{Rq
Rk�2

.

So, for k � 0, 1, ... we have ����BkÇRprq
Brk

���� ¤ C

Rk�2
. (3.98)

On the other hand,

Bxi
ÇRprq � R2Bxi

Çp|x|{Rq � R
xi

|x| � Ç
1pr{Rq

and

B2
xi
ÇRprq � R

� |x|2 � x2
i

|x|3 � Ç1pr{Rq � 1

R

x2
i

|x|2 � Ç
2pr{Rq

�
.

Therefore,

∆ÇRprq � 3

r

BÇRprq
Br � B2ÇRprq

Br2
.

Again, a straightforward calculation leads to

∆2ÇRprq � B4ÇRprq
Br4

� 6

r

B3ÇRprq
Br3

� 3

r2

B2ÇRprq
Br2

� 3

r3

BÇRprq
Br .

Hence, using (3.98) and the fact that 1{r ¤ 1{R, allow us to obtain

∆ÇRprq ¤ C and |∆2ÇRprq| ¤ C

R2
.

Now, we are in position to prove Theorem 1.4.

Proof of Theorem 1.4. Consider I � pT�, T �q. Let us focus in the case T �   8, for T� the

argument follows similarly. Suppose by contradiction that T � � 8. Taking ϕpxq � ÇRp|x|q,
defined as in Lemma 3.15, in (3.83) and (3.85) we obtain

Rptq � 2Im
»

∇ÇRp∇uū� Ã∇ww̄qdx

and

R1ptq � 8Äpu,wq � 4

»
pÇ2R � 2qp|∇u|2 � |∇w|2qdx�

»
∆2ÇRp|u|2 � |w|2qdx

� 2Re
»
p∆ÇR � 8qHpu,wqdx

�: 8Äpu,wq �R1ptq �R2ptq �R3ptq.

As in Lemma 3.15, Ç2R ¤ 2, for any r ¥ 0, so R1 ¤ 0. Now, using conservation

of the mass and (3.96), we get

R2ptq ¤
»
|∆2ÇR|p|u|2 � |w|2qdx ¤ CR�2

»
t|x|¥Ru

p|u|2 � |w|2qdx ¤ CR�2Mpu0, w0q.
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Besides, since |Repzq| ¤ |z| for any z P C, then (3.26), (3.27) and (3.96) give us

R3 � �Re
»
t|x|¥Ru

p∆ÇR � 8qHpu,wqdx

¤ C

»
t|x|¥Ru

|ReHpu,wq|dx

¤ C

»
t|x|¥Ru

|u|4 � |w|4dx

� Cp}u}4
L4p|x|¥Rq � }w}4

L4p|x|¥Rqq.

We know from the literature (see (OGAWA; TSUTSUMI, 1991), equation 3.7), that for

f P H1pR4q radially symmetric, it holds the radial Gagliardo-Nirenberg inequality»
t|x|¥Ru

|f |4 ¤ CR�3}f}3
L2p|x|¥Rq}∇f}L2p|x|¥Rq.

Then, by Young’s inequality, for ϵ ¡ 0, we obtain

R3 � Cp}u}4
L4p|x|¥Rq � }w}4

L4p|x|¥Rqq
¤ CR�3p}u}3

L2p|x|¥Rq}∇u}L2p|x|¥Rq � }w}3
L2p|x|¥Rq}∇w}L2p|x|¥Rqq

¤ CϵR
�6p}u}6

L2p|x|¥Rq � }w}6
L2p|x|¥Rqq � ϵKpu,wq

¤ CϵR
�6Mpu0, w0q3 � ϵKpu,wq,

where Cϵ depends on µ and ϵ.

Now, from (3.87) we have

ϵKpu,wq ¤ �ϵÄpu,wq � 4ϵEpu0, w0q,

then, gathering all above estimates we obtain,

R1ptq ¤ p8�ϵqÄpu,wq�CR�2Mpu0, w0q�CϵR
�6Mpu0, w0q3�4ϵEpu0, w0q, ϵ ¡ 0. (3.99)

Therefore, for ϵ P p0, 1q, Lemma 3.14 and the energy conservation lead to

R1ptq ¤ �p8� ϵq¶ � CR�2Mpu0, w0q � CϵR
�6Mpu0, w0q3 � 4ϵEpu0, w0q. (3.100)

Hence, fixing R as large as necessary and ϵ as small as necessary, we get R1ptq ¤ �2¶.

Integrating in r0, tq we obtain

Rptq ¤ �2¶t�Rp0q. (3.101)

On the other hand, by Hölder’s inequality,

|Rptq| ¤ 2R

»
|Ç1p|x|{Rq|p|∇u||u| � Ã|∇w||w|qdx

¤ CRp}u}L2}∇u}L2 � }w}L2}∇w}L2q
¤ CRMpu0, w0q1{2Kpu,wq1{2.

(3.102)



Chapter 3. Blow-up of the radially symmetric solutions for a cubic NLS type system in dimension 4 76

Taking T0 sufficiently large such that Rp0q{¶   T0, by (3.101) we get

Rptq ¤ �¶t   0, t ¥ T0. (3.103)

Consequently, (3.102) and (3.103) imply that

¶t ¤ �Rptq � |Rptq| ¤ CRMpu0, w0q1{2Kpu,wq1{2,

that is, for some positive constant C0,

Kpuptq, wptqq ¥ C0t
2, t ¥ T0. (3.104)

Now, since ϵ can be chosen arbitrarily small, from (3.99) and (3.87), we deduce that

R1ptq ¤ 32Epu0, w0q � 8Kpu,wq � CR�2Mpu0, w0q � CR�6Mpu0, w0q3, (3.105)

where we have used the energy conservation once again. Notice that in the above inequality,

several terms are independent of t. Thus, we may choose T1 ¡ T0, so that

C04T
2
1 ¥ 32Epu0, w0q � CR�2Mpu0, w0q � CR�6Mpu0, w0q3.

Then, from (3.104) and (3.105) we arrive at

R1ptq ¤ �4Kpuptq, wptqq, t ¡ T1.

Hence, integrating in rT1, tq, we get

Rptq ¤ �4

» t

T1

Kpupsq, wpsqqds,

and combining with (3.102), leads to

4

» t

T1

Kpupsq, wpsqqds ¤ �Rptq ¤ |Rptq| ¤ CRMpu0, w0q1{2Kpuptq, wptqq1{2. (3.106)

Setting ¸ptq :�
» t

T1

Kpupsq, wpsqqds and A :� 16

C2R2Mpu0, w0q , we may write

A ¤ ¸1ptq
¸2ptq ,

taking T 1 ¡ T1 and integrating over rT 1, tq, we get

Apt� T 1q ¤
» t

T 1

¸1psq
¸2psqds �

1

¸pT 1q �
1

¸ptq ¤
1

¸pT 1q ,

that is,

0   ¸pT 1q ¤ 1

Apt� T 1q .

Hence, making t Ñ 8 we derive a contradiction. Therefore, T �   8, and the proof is

complete.
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CHAPTER 4

SCATTERING FOR A QUADRATIC TYPE NLS SYSTEM IN

DIMENSION 6

4.1 Local theory in 9H1
x

In this section we will prove the local well-posedness of (1.2) in 9H1
x. We will

use the approach presented in (KILLIP; VISAN, 2013). The first step is to prove the

local well-posedness assuming that the initial data belongs to the inhomogeneous Sobolev

space H
1
xpR6q, using the usual method of contraction, presented in (CAZENAVE, 2003).

Next step is to present a stability lemma, which allows us to show uniform continuous

dependence of the solution u to the initial data u0. This result allows us to work with

the initial data in the homogeneous Sobolev space 9H
1
x, since every function in 9H

1
x can be

well approximated by H
1
x functions. At the end of the section,we show a standard blow-up

result. We start with the following result.

Theorem 4.1. (Standard local well-posedness). Suppose the hypothesis (H1) and (H2)

hold. Let u0 P H
1
xpRq. Let there exists ¸0 ¡ 0 such that if 0   ¸ ¤ ¸0 and I is a compact

interval containing zero such that

}Uptqu0}
L4

t
9H

1, 12

5
x pI�R6q

¤ ¸, (4.1)

then there exists a unique solution u to (1.2) on I � R
6. Moreover, we have the bounds

}u}
L4

t
9H

1, 12

5
x

¤ 2¸ (4.2)

}∇u}S0pI�R6q À }∇u0}L2
x
� ¸2 (4.3)
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}u}S0pI�R6q À }u0}L2
x
. (4.4)

Proof. As mentioned before, we will use the contraction mapping argument. Define the

solution map φpuqptq � pϕ1puqptq, ..., ϕlpuqptqq, with

ϕkpuqptq :� Ukptquk0 � i

» t

0

1

³k

Ukpt� sqfkpupsqqds,

on the set B1 XB2 where

B1 :�  
u P L

8
t H

1
xpI � R

6q; }u}L
8
t H1

xpI�R6q À 2}u0}H1
x
� p2¸q2(

B2 :�
"

u P L
4
t H

1, 12

5
x pI � R

6q; }u}
L4

t
9H

1, 12

5
x pI�R6q

¤ 2¸ and }u}
L4

t L
12

5
x pI�R6q

À }u0}L2
x

*
,

with the metric

dpu,vq :� }u� v}
L4

t L
12

5
x pI�R6q

.

Note that, with the metric d, both B1 and B2 are closed, and therefore, complete (see

(CAZENAVE, 2003, Theorem 4.4.1)). Using the Strichartz inequality, Lemma 2.11- (iii),

and Sobolev’s embedding, we get that for u P B1 XB2, k � 1, ..., l

}ϕkpuq}L
8
t H1

xpI�R6q À }u0}H1
x
� }fkpuq}

L2

t H
1, 3

2
x pI�R6q

À }u0}H1
x
� }u}

L4

t H
1, 12

5
}u}L4

t,xpI�R6q

À }u0}H1
x
� p2¸ � }u0}L2

x
q}u}

L4

t
9H

1, 12

5 pI�R6q

À }u0}H1
x
� p2¸ � }u0}L2

x
qp2¸q.

Thus,

}φpuq}L
8
t H1

xpI�R6q �
ļ

k�1

}ϕkpuq}L
8
t H1

xpI�R6q À }u0}H1
x
� p2¸ � }u0}L2

x
qp2¸q

similarly,

}φpuq}
L4

t L

12

5
x pI�R6q

À }u0}L2
x
p1� 2¸q.

Arguing as above and using (4.1), we obtain

}φpuq}
L4

t
9H

1, 12

5
x

À ¸ � p2¸q2.

Therefore, taking ¸0 small enough such that 0   ¸ ¤ ¸0, the functional φ maps the set

B1 XB2 to itself. Now, repeating the above computations and using Lemma 2.11 item piq,
allow us to obtain

}φpuq � φpvq}
L4

t L

12

5
x pI�R6q

À p2¸q}u� v}
L4

t L

12

5
x pI�R6q

.

Then, φ : B1XB2 Ñ B1XB2 is a contraction, provided ¸0 is small enough. The fixed point

theorem guarantees the existence of a unique function u P B1XB2 satisfying φpuq � u. In

addition, φ maps into C
0
t H

1
x. So, we may conclude that u is indeed a solution to (1.2).
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Corollary 4.2. There is ¸0 ¡ 0 such that for all u0 P H
1pR6q satisfying }∇u0}L2 À ¶0,

then the solution given in of Theorem 1.9 extends globally.

Proof. Note that by the Strichartz inequality,

}∇Uptqu0}
L4

t L

12

5
x pR�R6q

À }∇u0}L2
x
.

Thus, under the hypothesis, (4.1) holds with I � R.

As a next step, we prove a stability result that, as we mentioned before, will

allow us to remove the restriction on the initial data. More precisely, we remove the

condition that the initial data belongs to the inhomogeneous Sobolev space H
1
x. This result

is also important to prove the Palais-Smale condition and existence of a critical solution.

In (KOCH; TATARU; VISAN, 2014) can be found a more general result, the one we will

state next is a short version, which is enough for our purpose.

Lemma 4.3. Let I be a compact interval containing 0 and v : I � R
6 Ñ C

l be an

approximate solution of (1.2) in the sense that

i³kBtvk � µk∆vk � �fkpvq � ek

for some function e � pe1, ..., elq. Assume also that

}v}
L
8
t

9H1
x
¤ E, (4.5)

SIpvq ¤ L, (4.6)

where E,L are positive constants and SIpvq is defined on page 17. Let u0 P 9H
1. Assume

that

}u0 � vp0q}
9H1

x
¤ ϵ, (4.7)

}∇e}
L

8{5
t,x

¤ ϵ, (4.8)

for some 0   ϵ   ϵ1, where ϵ1 is a constant depending on E and L. Then, there exists a

unique solution u : I � R
6 Ñ C

l to (1.2) with initial data up0, xq � u0 such that

SIpv� uq ¤ CpE,Lqϵ, (4.9)

}∇pu� vq}S0pIq ¤ CpE,Lqϵ, (4.10)

}∇u}S0pIq ¤ CpE,Lq. (4.11)

Proof. We will follow the ideas presented in (KOCH; TATARU; VISAN, 2014). First, we

prove the result under the additional hypothesis that u0 P L
2
x (and consequently u0 P H

1
x).

This allows us to use Theorem 4.1 to ensure the existence of u. We will remove such
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assumption later. Also, there is no loss of generality in assuming that u is defined on the

interval I.

We start assuming that

}∇v}
L4

t L
12{5
x pI�R6q

¤ ¶ (4.12)

for some ¶ ¡ 0 small enough depending on E. Without loss of generality, we may assume

that 0 � inf I. Now, Let w � u� v. Thus, w solves the following system

pi³kBt � µk∆qwk � ek � fkpvq � fkpuq.

Set Aptq �
ļ

k�1

Akptq, where

Akptq :� }∇rpi³kBt � µk∆qwk � eks}L2

t L
3{2
x pr0,ts�R6q

.

Using the integral equation for wk, k � 1, ..., l, and taking the gradient, we deduce

∇wkptq � Ukptq∇wp0q � i

» t

0

Ukpt� sq∇rfkpvq � fkpuq � eksds.

Then, by Sobolev embbeding, Strichartz’s inequality, (4.7) and (4.8), we have for k � 1, ..., l,

}wk}L4

t,xpr0,ts�R6q À }∇wk}L4

t L
12{5
x pp0,ts�R6q

À }wkp0q} 9H1
x
� Akptq � }∇ek}L

8{5
t,x pr0,ts�R6q

À Akptq � ϵ.

Therefore

}w}L4

t,xpr0,ts�R6q À }∇w}
L4

t L
12{5
x pr0,ts�R6q

À Aptq � ϵ. (4.13)

On the other hand, by Lemma 2.11 (ii), (4.12) and (4.8), we obtain

Akptq � }∇rfkpuq � fkpvqs}L2

t L
3{2
x

À }u}L4

t,x
}∇w}

L4

t L
12{5
x

� }w}L4

t,x
}∇v}

L4

t L
12{5
x

À
�
}w}L4

t,x
� }v}L4

t,x

�
}∇w}

L4

t L
12{5
x

� }w}L4

t,x
}∇v}

L4

t L
12{5
x

À rAptq � ϵ� ¶srAptq � ϵs � rAptq � ϵs¶,

(4.14)

where all space time norms are taken in r0, ts � R
6. Summing over k and taking ¶ ¡ 0

small enough, we obtain

0 ¤ CAptq2 � Aptq � Cϵ2. (4.15)

Now, observe that if we take hpxq � Cx2 � x� Cϵ2, we have a parabola facing upwards

and roots given by

x � 1�?
1� 4C2ϵ2

2C
.
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Moreover, notice that
1�?

1� 4C2ϵ2

2C
  ϵ if, and only if, ϵ   1

2C
. Then, by (4.15) we get

hpAptqq ¥ 0 and, since Aptq ¥ 0 for all t P I and Ap0q � 0, by continuity we should have

Aptq ¤ 1�?
1� 4C2ϵ2

2C
.

for all t P I. Hence, if ϵ is sufficiently small, we deduce

Aptq À ϵ, @t P I, k � 1, ..., l, (4.16)

for 0   ϵ   ϵ1. This, together with (4.13) gives us

SIpv� uq À ϵ. (4.17)

Now, to obtain (4.10) using Strichartz’s inequality, (4.7), (4.8) and (4.16), we

get for k � 1, ..., l

}∇wk}S0pIq À }ukp0q � vkp0q} 9H1
x
� Akptq � }∇ek}L2

t L
3{2
x pI�R6q

À ϵ. (4.18)

Combining with (4.17) and (4.18), we get the desired result under (4.12).

Furthermore, to obtain (4.11), observe that by (4.12) and (4.13), for k � 1, ..., l,

}∇uk}L4

t L
12{5
x pI�R6q

À }∇wk}L4

t L
12{5
x pI�R6q

� }∇vk}L4

t L
12{5
x pI�R6q

À ϵ� ¶.

After combine this together with Strichartz’s inequality, Sobolev’s embedding and (4.5),

we deduce

}∇uk}L8
t L2

xpI�R6q À }vkpt0q} 9H1
x
� }ukp0q � vkpt0q} 9H1

x
� }∇uk}2

L4

t L
12{5
x pI�R6q

À E � ϵ� rϵ� ¶s2 À E,
(4.19)

provided ¶, ϵ ¤ ϵ0 � ϵ0pEq.
Next we will remove the assumption (4.12). First, we note that (4.6) implies

∇u P L8t L2
xpI � R

6q. Indeed, subdividing I into N0 � p1� L

¸
q4 subintervals Ij such that

on each Ij we have

}v}L4

t,xpIj�R6q ¤ ¸,

and using Strichartz’s inequality, Lemma 2.11 and (4.5), we may estimate, for k � 1, ..., l,

}∇vk}S0pIjq À }vk}L8
t

9H1
xpI�R6q � }∇fkpvq}L2

t,xpIj�R6q � }∇ek}L2

t L
3{2
x pI�R6q

À E � }v}L4

t,xpIj�R6q}∇v}S0pIj�R6q � ϵ

À E � ¸}∇v}L4

t,xpIj�R6q � ϵ.

Thus, taking ¸ small enough, we get

}∇vk}S0pIjq À E � ϵ, k � 1, ..., l.
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Summing this bound over all intervals Ij, allow us to obtain

}∇vk}S0pI�R6q ¤ CpE,Lq, k � 1, ..., l.

Now, we may subdivide I into N1 subintervals Ji � rti, ti�1s such that on each

Ji we get

}∇v}
L2

t L
12{5
x pJi�R6q

¤ ¶, k � 1, ..., l,

where ¶ is as in (4.12). Choosing ϵ1 small enough, depending on ϵ0 and N1, the same

argument above, implies that for each i and 0   ϵ   ϵ1,

SJi
pv� uq ¤ Cpiqϵ,

}∇pv� uq}S0pJiq ¤ Cpiqϵ,
}∇u}S0pJiq ¤ CpiqE,

Aptiq ¤ Cpiqϵ,
since (4.7) holds when 0 is replaced by ti. We show this using an inductive argument. By

Strichartz’s inequality, we have, for k � 1, ..., l,

}ukpti�1q � vkpti�1q} 9H1
x
À }ukp0q � vkpt0q} 9H1

x
� }∇ek}L2

t L
3{2
x
� Akpti�1q

À ϵ�
i̧

j�0

Cpjqϵ.

where we take t P r0, ti�1s. Choosing ϵ1 small enough depending on ϵ0 and E, we can

continue the inductive argument.

It remains to remove the additional hypothesis that u0 P L
2
x. We use the usual

limiting argument to this end. Let us approximate u0 P 9H
1
x by a sequence tun

0u � H
1
x,

that is, for any ϵ ¡ 0, there exists n0 ¡ 0 such that for n ¡ n0,

}u0 � u
n
0} 9H1

x
¤ ϵ. (4.20)

Observe that we can find an interval In such that

}Uptqun
0}

L4

t
9H

1, 12

5
x pIn�R6q

� }Uptq∇u
n
0}

L4

t L

12

5
x pIn�R6q

¤ ¸,

for some 0   ¸ ¤ ¸0. Then, by Theorem 4.1, we can find a sequence of solutions

u
n : In � R

6 Ñ C to (1.2) in H
1
x with initial data u

np0q � u
n
0 , such that, for all n ¡ n0,

}un}
L
8
t

9H1
xpIn�R6q À }∇u

n}S0pInq À }∇u
n
0}L2

x
� ¸2 ¤ E.

and

}un}L4

t,xpIn�R6q À }un}
L4

t
9H

1, 12

5
x pIn�R6q

À }∇u
n}S0pInq À }∇u

n
0}L2

x
� ¸2 ¤ L.

for some ¸, E, L ¡ 0. Together with (4.20), we can apply the above result for e � 0

and v :� u
m, for m ¡ n0. Thus, we get a solution wn : Im � R

6 Ñ C, with initial data

wnp0q � u
n
0 such that

}v�wn} 9H1
x
  ϵ. (4.21)
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But, by uniquiness of solution, we must have wn � u
n and In � Im for n,m ¡ n0.

Therefore, all solutions u
n with n ¡ n0 are defined in the same interval, namely, Ĩ.

Rewriting (4.21) with v :� u
m and wn � u

n we get that the sequence punq is Cauchy

in 9H
1
x. Then, un converge to a solution u : Ĩ � R

6 Ñ C with initial data u0 that obeys

∇u P L
8
t L

2
xpĨq. This completes the proof.

Now we are in a position to prove local well-posedness in the energy critical

norm.

Corollary 4.4. (Local well-posedness) Let u0 P 9H
1
x. Then, there exists a compact time

interval I containing 0 and a unique solution u to (1.2) with initial data u0 � up0q.

Proof. Let u0 P 9H
1
x. Since 9H

1

x functions can be approximated by H
1
x functions, we may

found a sequence pun
0 q � H

1
x such that, for any ϵ ¡ 0, there exists n0 ¡ 0 such that for

n ¡ n0,

}u0 � u
n
0} 9H1

x
¤ ϵ. (4.22)

Now, by Theorem 4.1, given ¸0 ¡ 0, we can find a sequence of solutions to (1.2), u
n � H

1
x

with initial data u
np0q � u

n
0 , such that

}un}L4

t,x
À }un}

L4

t
9H

1, 12

5
x

À }∇u
n}S0 À }∇u

n
0}L2

x
� ¸2 ¤ L.

for some 0   ¸ ¤ ¸0 and L ¡ 0. Also, arguing as before, we have that all u
n is defined in

the time interval I and is a Cauchy sequence in energy space 9H
1
x, and therefore,

}un}
L
8
t

9H1
x
¤ E.

Then, by Lemma 4.3, there exists a solution u : I � R
6 Ñ C, to (1.2) with initial data

up0q � u0.

We finish this section showing a standard blow-up criterion for solutions of

(1.2).

Theorem 4.5. (Standard blow-up criterion). Let u0 P 9H
1
x and u be the corresponding

solution to (1.2) on r0, T0s � R
6 such that

}u}L4

t,xpr0,T0s�R6q   8. (4.23)

Then, there exists ¶ � ¶pu0q such that the solution u extends to a solution to (1.2) on the

interval r0, T0 � ¶s.

Proof. We follow the ideas presented in (TAO; VISAN, 2005). Let us denote the norm

in (4.23) by M . The first step is to establish an 9H
1 bound on u. To do this, we start

subdviding r0, T0s into N �
�

1� M

a


4

subintervals Ji such that

}u}L4

t,xpJi�R6q   a, (4.24)
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where a is a small positive constant. By the Strichartz inequality, Lemma 2.11, we have

for k � 1, ..., l,

}uk}L8
t

9H1
xpJi�R6q À }ukptiq} 9H1

xpR
6q � }∇fkpuq}

L2

t L

3

2
x

À }ukptiq} 9H1
xpR

6q � }uk}L4

t,xpJi�R6q}∇uk}S0pJiq

À }ukptiq} 9H1
xpR

6q � a}∇uk}S0pJiq,

for each interval Ji and any ti P Ji. If a is sufficiently small, we conclude

}u}
L
8
t

9H1
xpJi�R6q À }uptiq} 9H1

x
.

Thus, inductively we may obtain a bound of the form

}u}
L
8
t

9H1
xpr0,T0s�R6q ¤ Cp}uptiq} 9H1

x
,M, aq,

which implies

}u}
L4

t
9H

1, 12

5
x pr0,T0s�R6q

¤ Cp}uptiq} 9H1
x
,M, aq. (4.25)

Now, let 0 ¤ Ä   T0. By the Strichartz inequality, Lemma 2.11 and the Sobolev embedding,

we have for k � 1, ..., l,

}uk � Upt� ÄqukpÄq}
L4

t
9H

1, 12

5
x prÄ,T0s�R6q

À }∇fkpuq}
L2

t L

3

2
x prÄ,T0s�R6q

À }u}2

L4

t
9H

1, 12

5
x prÄ,T0s�R6q

.
(4.26)

Thus, by triangle inequality,

}Ukpt� ÄqukpÄq}
L4

t
9H

1, 12

5
x prÄ,T0s�R6q

À }u}2

L4

t
9H

1, 12

5
x prÄ,T0s�R6q

� }u}
L4

t
9H

1, 12

5
x prÄ,T0s�R6q

.

Let ¸0 be as in Theorem 4.1. By (4.25), taking Ä sufficiently close to T0, we obtain

}Ukpt� ÄqukpÄq}
L4

t
9H

1, 12

5
x prÄ,T0s�R6q

¤ ¸0

2
.

While from Strichartz’s inequality we have

}Ukpt� ÄqukpÄq}
L4

t
9H

1, 12

5
x pR�R6q

  8.

By the monotone convergence theorem, we deduce that there exists ¶ � ¶pu0q ¡ 0 such

that

}Ukpt� ÄqukpÄq}
L4

t
9H

1, 12

5
x pr0,T0�¶s�R6q

¤ ¸0.

Again, by Theorem 4.1, there exists a unique solution to (1.2) with initial data vpÄq at

time t � Ä which belongs to C 9H
1
xprÄ, T0 � ¶s � R

6q. By using the uniqueness of solution,

we see that u � v on rÄ, T0s � R
6 and so, v is an extension of u to r0, T0 � ¶s � R

6.

Remark 4.6. Note that in the contrapositive, this lemma asserts that if a solution u connot

be continued beyond a time T�, T � ¡ 0 , that is, u has maximal lifespan I � p�T�, T �q and

both T�, T �   8, then the L4
t,x-norm must blow-up at that time T�, T �, i.e.,

SIpuq � 8.
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4.2 Existence of a critical solution

In this section we prove Theorem 1.17. We first define, for any 0 ¤ K0 ¤ Kpψq,
the function

LpK0q :� sup

"
SIpuq; u : I � R

6 Ñ C
l is a solution to (1.2) s.t. sup

tPI

Kpuptqq ¤ K0

*
.

Therefore, L : r0, Kpψqs ÝÑ r0,8s is a nondecreasing function and since the ground state

ψ is time independent, thus SRpψq � 8, and hence LpKpψqq � 8. Let us show that

L is continuous. Indeed, let X � L�1pa, bq � tE P p0, Kpψqq|LpEq P pa, bqu. We show

that XC is closed. Consider pEnq � XC such that En Ñ E when n Ñ 8. Without loss

of generality, we may assume that En is such that LpEnq ¥ b for all n. The case when

LpEnq ¤ a is treated in a similar way. Thus, there exists a sequence pvnq of solutions that

obeys sup
tPIn

Kpvnq ¤ En„ such that SIn
pvnq ¥ b� 1

n
. Let ϵ ¡ 0 and u

n
0 P 9H

1 be such that

}un
0 �vnp0q}L

8
t

9H1
x
  ϵ. By Lemma 4.3, there exists u

ϵ
n solution with initial data u

ϵ
np0q � u

n
0

such that

}vn � u
ϵ
n}L

8
t

9H1 � SIn
pvn � u

ϵ
nq ¤ ϵ. (4.27)

Notice that from (4.27), we have for each n,

}uϵ
n}L

8
t

9H1 � }vn}L
8
t

9H1 ¤ |}uϵ
n}L

8
t

9H1 � }vn}L
8
t

9H1 | ¤ }uϵ
n � vn}L

8
t

9H1   ϵ.

Then

}uϵ
n}L

8
t

9H1   }vn}L
8
t

9H1 � ϵ ¤ En � ϵ,

which implies

lim sup
nÑ8,ϵÑ0

}uϵ
n}L

8
t

9H1 ¤ E. (4.28)

Thus, passing to a subsequence if necessary, we are able to get a famlily of solutions

F � tuϵ
nunPN such that sup

tPI

Kpuϵ
nq ¤ E. Furthermore, by (4.27),

SIn
pvnq � SIn

puϵ
nq ¤ |SIpvnq � SIn

puϵ
nq| ¤ SIn

pvn � unq ¤ ϵ,

where, SIn
puϵ

nq ¥ SIn
pvnq � 1

n
¥ b� 1

n
� ϵ and, therefore,

suptSIn
puϵ

nq; un P Fu ¥ b. (4.29)

By arbitrariness of ϵ ¡ 0, combining (4.28) and (4.29), we conclude LpEq ¥ b, that is,

E P XC which shows that XC is closed. Consequently X is open and L is continuous.

Hence, there must exist a critical energy, denoted by Kc, such that

LpK0q
#
  8, K0   Kc

� 8, K0 ¥ Kc.
(4.30)
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In particular, if u : I � R
6 ÝÑ C

l is a maximal solution such that suppKpuqq ¤ Kc, then

u is global and

SRpuq ¤ L

�
sup
tPR

Kpuptqq


  8.

The next result is essential to reach the goal of this section. The proof is addapted to the

one presented in (KILLIP; VISAN, 2010).

Theorem 4.7. (Palais-Smale condition) Let un : In�R
6 ÝÑ C

l be a sequence of solutions

to (1.2) such that

lim sup
nÑ8

�
sup
tPIn

}∇unptq}2
L2

x



� Kc (4.31)

and let ptnq � In be a sequence of times obeying

lim
nÑ8

S¥tn
punq � lim

nÑ8
S¤tn

punq � 8.

Then, the sequence unptnq has a subsequence that converges in 9H
1pR6q modulo symmetries.

Proof. We follow the ideas presented in (KILLIP; VISAN, 2010). Without loss of generality,

we may assume that tn � 0, for all n, by time-translation symmetry. Thus,

lim
nÑ8

S¥0punq � lim
nÑ8

S¤0punq � 8. (4.32)

By (4.31), the sequence unp0q is bounded in 9H
1pR6q. Therefore, up to a subsequence, we

may apply Theorem 2.26 to get the following decomposition

unp0q �
J̧

j�1

gj
nUptjnqφj �w

J
n,

where, for simplicity, we denote by pgj
nuqpxq :� p¼j

nq�1{2
u

�
x� xj

n

¼
j
n



.

Refining the subsequence once to each j and using a diagonal argument, for

each j, we may assume that ptjnqn¥1 converge to some tj P r�8,8s. Thus, if tj P p�8,8q,
since Ukp0q � Id, for k � 1, ...., l, changing φj by Uptjqφj, we may assume that tj � 0.

Besides that,

J̧

j�1

gj
nUptjnqφj �w

J
n �

J̧

j�1

gj
nrUptjnqφj � φj � φjs �w

J
n �

J̧

j�1

gj
nφ

j � w̃
J ,

where w̃
J �

J̧

j�1

gj
nrUptjnqφj � φjs �w

J . Therefore, we may consider that tjn � 0. Hence,

either tjn � 0 or tjn Ñ �8.

Now, we set the nonlinear profiles v
j : Ij � R

6 ÝÑ C
l associated to φj and tjn

by the following
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• If tjn � 0, then v
j is the maximal solution to (1.2) with initial data v

jp0q � φj.

• If tjn Ñ 8, then v
j is the maximal solution to (1.2) which scatters forward in time

to Uptqφj.

• If tjn Ñ �8, then v
j is the maximal solution to (1.2) which scatters backward in

time to Uptqφj.

Now, for each j, n ¥ 1, consider v
j
n : Ij

n � R
6 Ñ C

l given by

v
j
nptq :� T j

n

�
v

jp� � tjnq
� ptq,

where T j
n is defined as in Lemma 2.27 and Ij

n :� tt P R; p¼j
nq�2t� tjn P Iju. This way, each

v
j
n is a maximal solution to (1.2) with initial data v

j
np0q � gj

nv
jptjnq defined on the interval

Ij
n � p�T�

n,j, T
�
n,jq, where �8 ¤ �T�

n,j   0   T�
n,j ¤ 8.

Notice that for each J ¥ 1, using (2.19) and (4.31)
J̧

j�1

}∇φj}2
L2

x
¤ lim

nÑ8

�
J̧

j�1

}∇φj}2
L2

x
� }∇w

J
n}2

L2
x

�
� lim

nÑ8
}∇un}2

L2
x
¤ Kc. (4.33)

Since this holds to everyJ ¥ 1, the series is convergent. Hence, there exists J0 ¥ 1 such

that

}∇φj}L2
x
¤ ¸0, @j ¥ J0,

where ¸0 is the threshold in Corollary 4.2. Then, for every n ¥ 1 and j ¥ J0, the solutions

v
j
n are global and

sup
tPR

}∇v
j
nptq}2

L2
x
� SRpvj

nptqq ¤ }∇φj}2
L2

x
. (4.34)

Claim 1:(At least a bad profile) There exists 1 ¤ j0   J0 such that

lim sup
nÑ8

Sr0,T�
n,j0

qpvj0

n q � 8.
Indeed, suppose by contradiction that for 1 ¤ j   J0,

lim sup
nÑ8

Sr0,T�
n,j0

qpvj
nq   8. (4.35)

In particular, this implies that T�
n,j � 8, 1 ¤ j   J0 and for all n large enough. Thus,

subdividing r0,8q into subintervals obeying SIpvj
nq   ¶, applying Strichartz’s inequality

in each subinterval and summing, we deduce

lim sup
nÑ8

}vj
n}S1pr0,8qq   8, for all 1 ¤ j   J0. (4.36)

Combining (4.34) with (4.35) and using (2.19) and (4.31), we have for n sufficiently large,¸
j¥1

Sr0,8qpvj
nq À

J0�1̧

j�1

Sr0,8qpvj
nq �

¸
j¥J0

Sr0,8qpvj
nq

À 1�
¸

j¥J0

}∇φj}2
L2

x

À 1�Kc.

(4.37)
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Now, define the approximation

u
J
nptq :�

J̧

j�1

v
j
nptq �UptqwJ

n. (4.38)

Note that,

}uJ
np0q � unp0q} 9H1 À

����� J̧

j�1

gj
nv

jptjnq � gj
nUptjnqφj

�����
9H1

À
J̧

j�1

}vjptjnq �Uptjnqφj}
9H1 .

Consenquently, by the choice of v
j,

lim sup
nÑ8

}uJ
np0q � unp0q} 9H1 � 0.

We show now that u
J
n does not blow-up foward in time. First, let us introduce

the notation

}uv}p

L
p
x

:�
ļ

k�1

}ukvk}p

L
p
x
.

Now, note that

lim sup
nÑ8

}vj
nv

i
n}L2

t,x
� 0. (4.39)

Indeed, recall that by (4.34) and (4.36), v
j
n P S1pr0,8qq (see (2.1)) for any j ¥ 1 and n

large enough. Combining this with the Strichartz inequality one can see that

}vj}
9X1pr0,8q�R6sq � }vj

n} 9X1pr0,8q�R6sq À 1,

where 9X
1 :� L

4
t,x X L

8

3

t
9H

1, 8

3
x . Then, we may approximate v

j
n in 9X

1 by C8
0 functions, that

is, given ϵ ¡ 0, there exists ψj
ϵ P C8

0 pR� R
6q such that

}vj
n � T j

nψ
j
ϵ} 9X1pR�R6q   ϵ. (4.40)

Moreover, if j � i and ϵ ¡ 0, using (4.36) and Lemma 2.27 we obtain for n sufficiently

large,

}vj
nv

i
n}L2

t,xpr0,8q�R6q

¤ }vj
npvi

n � T i
nψ

i
ϵq}L2

t,xpr0,8q�R6q � }pvj
n � T j

nψ
j
ϵqT i

nψ
i
ϵ}L2

t,xpr0,8q�R6q

� }T j
nψ

j
ϵT

i
nψ

i
ϵ}L2

t,xpr0,8q�R6q

À }vj
n} 9X1pRq}vi

n � T i
nψ

i
ϵ} 9X1pRq � }vj

n � T j
nψ

j
ϵ} 9X1pRq}ψi

ϵ}S1pRq

� }T j
nψ

j
ϵT

i
nψ

i
ϵ}L2

t,xpr0,8q�R6q

À ϵ,

(4.41)
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and (4.39) holds. Also, notice that for aj, j � 1, ..., J , we have�
J̧

j�1

aj

�4

�
¸
i�k

4̧

j�0

a
j
ia

4�j
k À

J̧

j�1

a4
j � CJ

¸
i�k

a2
ja

2
k.

Then

Sr0,8q

�
J̧

j�1

v
j
n

�
�
����� J̧

j�1

v
j
n

�����
4

L4
x

À
» ļ

k�1

�
J̧

j�1

|vj
nk|4 � CJ

¸
i�j

|vi
nkv

j
nk|2

�

�
J̧

j�1

Sr0,8qpvj
nq � Cj

¸
i�j

}vi
nv

j
n}2

L2
x

(4.42)

Therefore, by (4.42), (2.18), (4.37) and (4.39)

lim
JÑ8

lim sup
nÑ8

Sr0,8qpuJ
nq À lim

JÑ8
lim sup

nÑ8

�
Sr0,8q

�
J̧

j�1

v
j
n

�
� Sr0,8qpUptqwJ

nq
�

À lim
JÑ8

lim sup
nÑ8

�
J̧

j�1

Sr0,8qpvj
nq � CJ

¸
j�i

}vj
nv

i
n}2

L2

t,x

�
À 1�Kc.

(4.43)

Using the same argument that was used to obtain (4.36) from (4.35), we deduce

lim
JÑ8

lim sup
nÑ8

}∇u
J
n}S0pr0,8qq ¤ C   8, (4.44)

where C depends only on Kc. In order to apply Lemma 4.3, we need to show that, for any

k � 1, ..., l

lim
JÑ8

lim sup
nÑ8

}∇ �pi³kBt � µk∆quJ
kn � fkpuJ

nq
� }

L
8{5
t,x pr0,8q�R6q

� 0,

which, by definition of u
J
n, we deduce

ri³kBt � µk∆suJ
kn � fkpuJ

nq �
J̧

j�1

fkpvj
nq � fkpuJ

nq

�
J̧

j�1

fkpvj
nq � fk

�
J̧

j�1

v
j
n

�
� fkpuJ

n �UptqwJ
nq � fkpuJ

nq.

(4.45)

Therefore, by triangle inequality, this is equivalent to show that

lim
JÑ8

lim sup
nÑ8

�����∇
�

J̧

j�1

fkpvj
nq � fk

�
J̧

j�1

v
j
n

�������
L

8{5
t,x pr0,8q�R6q

� 0 (4.46)

and

lim
JÑ8

lim sup
nÑ8

��∇rfkpuJ
n �UptqwJ

nq � fkpuJ
nqs

��
L

8{5
t,x pr0,8q�R6q

� 0. (4.47)
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Let us start with (4.46). Note that, by Lemma 2.12 we may write�����∇
�

J̧

j�1

fkpvj
nq � fk

�
J̧

j�1

v
j
n

������� À¸
j�i

|∇v
j
n||vi

n|, k � 1, ..., l.

Let us show that for j � i,

lim sup
nÑ8

��vj
n∇v

i
n

��
L

8{5
t,x pr0,8q�R6q

� 0.

Indeed, recall that we can approximate v
j
n and ∇v

j
n in 9X

1 by C8
0 functions, that is, given

ϵ ¡ 0, there exists ψj
ϵ P C8

c pR� R
6q such that

}vj
n � T j

nψ
j
ϵ} 9X1pRq � }∇v

i
n �∇pT i

nψ
i
ϵq} 9X1pRq   ϵ. (4.48)

Hence, if j � i and ϵ ¡ 0, using (4.36) and Lemma 2.27 we deduce for n large enough that

}vj
n∇v

i
n}L

8{5
t,x pr0,8q�R6q

¤ }vj
np∇v

i
n �∇pT i

nψ
i
ϵq}L

8{5
t,x pr0,8q�R6q

� }pvj
n � T j

nψ
j
ϵq∇pT i

nψ
i
ϵq}L

8{5
t,x pr0,8q�R6q

� }T j
nψ

j
ϵ∇pT i

nψ
i
ϵq}L

8{5
t,x pr0,8q�R6q

À }vj
n} 9X1pRq}p∇v

i
n �∇pT i

nψ
i
ϵq} 9X1pRq � }vj

n � T j
nψ

j
ϵ} 9X1pRq}∇ψi

ϵ} 9X1pRq

� }T j
nψ

j
ϵ∇pT i

nψ
i
ϵq}L

8{5
t,x pr0,8q�R6q

À ϵ.

(4.49)

Then,

lim sup
nÑ8

�����∇
�

J̧

j�1

fkpvj
nq � fk

�
J̧

j�1

v
j
n

�������
L

8{5
t,x pr0,8qq

À lim sup
nÑ8

¸
i�j

��vj
n∇v

i
n

��
L

8{5
t,x pr0,8q�R6q

� 0,

(4.50)

which proves (4.46). Now, consider (4.47). Henceforth, unless otherwise is said, the norms

are taken on r0,8q � R
6. Combining Hölder’s inequality, (4.38) and Lemma 2.11,

��∇fk

�
u

J
n �UptqwJ

n

��∇fkpuJ
nq
��

L
8{5
t,x

¤
�����
�

J̧

j�1

v
J
n

�
∇UptqwJ

n

�����
L

8{5
t,x

�}UptqwJ
n}L4

t,x
}∇u

J
n}L

8{3
t,x

.

When we take the limit in time, the second term vanishes by (2.18) and (4.44). Hence, is

enough to show

lim
JÑ8

lim sup
nÑ8

�����
�

J̧

j�1

v
J
n

�
∇UptqwJ

n

�����
L

8{5
t,x

� 0. (4.51)

Indeed, let ¸ ¡ 0. By (4.37) there exists J 1 � J 1p¸q ¥ 1 such that¸
j¥J 1

S¥0pvj
nq ¤ ¸.
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Using Hölder’s inequality and an argument as in (4.43), we deduce

lim sup
nÑ8

�����
�

J̧

j�J 1

v
j
n

�
∇UptqwJ

n

�����
4

L
8{5
t,x

À lim sup
nÑ8

�¸
j¥J 1

Sr0,8qpvj
nq
�
}∇UptqpwJ

nq}4

L
8{5
t,x

À ¸.

Since ¸ ¡ 0 is arbitrary, to show (4.51) it suffices to obtain

lim
JÑ8

lim sup
nÑ8

}vj
n∇UptqwJ

n}L
8{5
t,x

� 0, 1 ¤ j ¤ J 1. (4.52)

Fix 1 ¤ j ¤ J 1, by a change of variables

}vj
n∇UptqwJ

n}L
8{5
t,x

� }vj∇w̃
J
n}L

8{5
t,x

,

where w̃
J
n :� rpT j

nq�1
UptqwJ

nsp� � tjnq. Note that,

SRpw̃J
nq � SRpUptqwJ

nq and }∇w̃
J
n}L

8{3
t,x

� }∇UptqwJ
n}L

8{3
t,x

. (4.53)

Again, using Hölder’s inequality

}vj∇w̃
J
n}L

8{5
t,x

À }vj}L8

t,x
}∇w̃

J
n}L2

t,x
.

By a density argument, we may assume v
j P C

8
0 pR � R

6q. Therefore, it is sufficient to

show that

lim
JÑ8

lim sup
nÑ8

}∇w̃
J
n}L2

t,xpKq � 0,

for all compact K � R� R
6. However, this is a consequence of Lemma 2.10, (4.53) and

(2.18). Hence, (4.47) follows.

Now we are in position to apply Lemma 4.3. Using (4.43), we deduce, for n

sufficiently large,

Sr0,8qpunq À 1�Kc,

which contradicts (4.32). This argument finish the proof of Claim 1.

Now, rearranging the index if necessary, we may assume that there exists

1 ¤ J1   J0 such that$&% lim sup
nÑ8

Sr0,T�
n,j

qpvn
j q � 8, para 1 ¤ j ¤ J1

lim sup
nÑ8

Sr0,8qpvn
j q   8, para j ¡ J1.

(4.54)

We can guarantee, up to a subsequence in n, that Sr0,T�
n,1q
pv1

nq Ñ 8.

For each m,n ¥ 1, we set an integer j � jpm,nq P t1, ..., J1u and an interval

Km
n of the form r0, Ä s by ¸

1¤j¤J1

SKm
n
pvj

nq � SKm
n
pvjpm,nq

n q � m. (4.55)
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By the pigeonhole principle, there exists a 1 ¤ j1 ¤ J1 such that, for infinitely many m

and n, we have jpm,nq � j1. Note that the infinite set of n that this holds depends on m.

Rearranging the index, we may assume that j1 � 1. Moreover, by definition of the critical

energy,

lim sup
mÑ8

lim sup
nÑ8

sup
tPKm

n

}∇v
1
nptq}2

L2
x
¥ Kc. (4.56)

On the other hand, in view of (4.55), all v
j
n have finite scattering size in Km

n

for each m ¥ 1. Then, by the same argument used in Claim 1, we see that, for n and J

large enough, u
J
n is a good approximation for un in each interval Km

n . Precisely, we have

the following

lim
JÑ8

lim sup
nÑ8

}uJ
n � un}L

8
t

9H1pKm
n �R6q � 0, @m ¥ 1. (4.57)

Claim 2. For all J ¥ 1, m ¥ 1,

lim sup
nÑ8

sup
tPKm

n

�����}∇u
J
nptq}2

L2
x
�

J̧

j�1

}∇v
j
nptq}2

L2
x
� }∇w

J
n}2

L2
x

����� � 0.

Indeed, fix J ¥ 1 and m ¥ 1. Then, for all t P Km
n , by (4.38),

}∇u
J
nptq}2

L2
x
� x∇u

J
nptq,∇u

J
nptqy

�
J̧

j�1

}∇v
j
nptq}2

L2
x
� }∇w

J
nptq}2

L2
x
�
¸
j�i

x∇v
j
nptq,∇v

i
nptqy

�
J̧

j�1

�x∇UptqwJ
n,∇v

j
nptqy � x∇v

j
nptq,∇UptqwJ

ny
�
.

Thus, to prove the claim, it is enough to show that for all sequence ptnq � Km
n

x∇v
j
nptnq,∇v

i
nptnqy Ñ 0 as nÑ 8, i � j, 1 ¤ i, j ¤ J (4.58)

and

x∇UptnqwJ
n,∇v

j
nptnqy Ñ 0 as nÑ 8, 1 ¤ j ¤ J. (4.59)

We just show the second case, which depends on (2.20). The first one is treated in the

same way using (2.21). After performing a change of variables

x∇UptnqwJ
n,∇v

j
nptnqy �

B
∇Uptnp¼j

nq�2qrpgj
nq�1

w
J
ns,∇v

j

�
tn

p¼j
nq2 � tjn


F
. (4.60)

Since tn P Km
n � r0, T�

n,jq for all 1 ¤ j ¤ J1, then tnp¼j
nq�2 � tjn P Ij, for all j ¥ 1, where

Ij is the maximal interval of existence of v
j. By (4.54), for j ¡ J1, Ij � R. Refining the

sequence once for each j and using again the diagonalisation argument, we may assume

tnp¼j
nq�2 � tjn converges for all j. Now, we fix 1 ¤ j ¤ J .
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Case 1: If tnp¼j
nq�2 � tjn converges to some point Ä j in the interior of Ij, then

by continuity of the flow, v
j
�
tnp¼j

nq�2 � tjn
�

converges to v
jpÄ jq in 9H

1pR6q. On the other

hand, using (4.33), we deduce

lim sup
nÑ8

��Uptnp¼j
nq�2qrpgj

nq�1
w

J
ns
��

9H1pR6q
� lim sup

nÑ8
}wJ

n} 9H1pR6q ¤ Kc. (4.61)

Combining with (4.60), we get

lim
nÑ8

x∇UptnqwJ
n,∇v

j
nptnqy � lim

nÑ8

B
∇U

�
� tn

p¼j
nq2



rpgj

nq�1
w

J
ns,∇v

j

�
tn

p¼j
nq2 � tjn


F
� lim

nÑ8

B
U

�
� tn

p¼j
nq2 � tjn



∇U

�
� tn

p¼j
nq2



rpgj

nq�1
w

J
ns,U

�
� tn

p¼j
nq2 � tjn



∇v

jpÄ jq
F

� lim
nÑ8

@
∇Up�tjnqrpgj

nq�1
w

J
ns,∇Up�Ä jqvjpÄ jqD .

(4.62)

Using (2.20), we obtain (4.59).

Case 2: Consider now that tnp¼j
nq�2 � tjn converges to sup Ij. Then, we should

have sup Ij � 8 and, consequently, v
j scatters foward in time. This holds if tjn Ñ 8 when

nÑ 8. Otherwise, suppose it does not hold. Then

lim sup
nÑ8

Sr0,tnspvj
nq � lim sup

nÑ8
Srtj

n,tnp¼
j
nq�2�t

j
ns
pvjq � 8,

which contradicts tn P Km
n . Hence, it must exist ψj P 9H

1 such that

lim
nÑ8

��vj
�
tnp¼j

nq�2 � tjn
��Uptnp¼j

nq�2 � tjnqψj
��

9H1
� 0.

Doing the same as in (4.62), we arrive at

lim
nÑ8

x∇UptnqwJ
n,∇v

j
nptnqy � lim

nÑ8
x∇Up�tjnqrpgj

nq�1
w

J
ns,∇ψjy,

which, again by (2.20), implies (4.59).

Case 3: Now let us focus on the case that tnp¼j
nq�2 � tjn converges to inf Ij.

Since tnp¼j
nq�2 ¥ 0 and inf Ij   8, for all j ¥ 1, we see that tjn cannot converge to 8.

Moreover, if tjn � 0, then inf Ij   0. Since tnp¼j
nq�2 ¥ 0, then tjn cannot be identically zero.

So, tjn Ñ �8 which leads to inf Ij � �8 and v
j scatters backwards in time to Uptqφj.

Therefore,

lim
nÑ8

��vj
�
tnp¼j

nq�2 � tjn
��Uptnp¼j

nq�2 � tjnqφj
��

9H1
� 0.

Repeating the argument in (4.62), we have

lim
nÑ8

x∇UptnqwJ
n,∇v

j
nptnqy � lim

nÑ8
x∇Up�tjnqrpgj

nq�1
w

J
ns,∇φjy,

which, again by (2.20), implies (4.59). Proving Claim 2.
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Finally, by (4.31), (4.57) and Claim 2,

Kc ¥ lim sup
nÑ8

sup
tnPKm

n

}∇u
J
nptq}2

L2

t,x
� lim

JÑ8
lim sup

nÑ8

�
sup

tPKm
n

J̧

j�1

}∇v
j
nptq}2

L2
x
� }∇w

J
n}2

L2
x

�
.

By (4.56), this implies J1 � 1, v
j
n � 0 for all j ¥ 2, and wn :� w

1
n converges to zero

strongly in 9H
1, that is,

unp0q � gnUpÄnqφ�wn (4.63)

for some gn P G, Än P R and functions φ,wn P 9H
1. Moreover, the sequence Än obeys either

Än � 0 or Än Ñ �8.

If Än � 0, then we have that unp0q converges modulo symmetry to φ, which is

the desired in this case.

To finish the proof, we show that this is the only possible case. Indeed, suppose

whithout loss of generality that Än Ñ 8. The case Än Ñ �8 is analogous. Thus, by

Strichartz’s inequality SRpUptqqφ   8. Therefore,

lim
nÑ8

S¥0 pUptqUpÄnqφq � 0.

Since linear solutions and scattering size are preserved by the action of gn, this leads to

lim
nÑ8

S¥0 pUptqgnUpÄnqφq � 0.

Together with (4.63) and the fact that wn Ñ 0 in 9H
1, we deduce that

lim
nÑ8

S¥0 pUptqunp0qq � 0.

Applying Lemma 4.3, we deduce

lim
nÑ8

S¥0punq � 0,

which contradicts (4.32). This finishes the proof of Theorem 4.7.

Now we have the necessary tools to prove Theorem 1.17.

Proof of Theorem 1.17. Suppose that Theorem 1.10 fails. Since LpKpψqq � 8, by defini-

tion of critical energy Kc we must have Kc ¤ Kpψq. Therefore, we may choose a sequence

of functions un : In � R
6 ÝÑ C

l, with In compact, obeying

sup
n¥1

sup
tPIn

Kpunptqq � Kc and lim
nÑ8

SIn
punq � 8. (4.64)

Let tn P In be such that S¥tn
punq � S¤tn

punq � 1

2
SIn

punq. Then,

lim
nÑ8

S¥tn
punq � lim

nÑ8
S¤tn

punq � 8. (4.65)
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By time-translation symmetry, there is no loss of generality in assuming tn � 0. Using

Palais-Smale condition, we can find a function uc,0 P 9H
1 and gn P G such that gnun Ñ uc,0

strongly in 9H
1, that is,

lim
nÑ8

}Tgn
unp0q � uc,0} 9H1 � 0.

Let uc : Ic � R
6 ÝÑ C

l be the maximal solution corresponding to the initial data uc,0. By

Lemma 4.3, we have Ic � lim inf In and

lim
nÑ8

}Tgn
un � uc}L

8
t

9H1pK�R6q � 0, @K � Ic compact.

Then, by (4.64),

sup
tPIc

Kpucq ¤ Kc. (4.66)

Now, suppose that uc does not blow-up forward in time. Then r0,8q � Ic and S¥0pucq   8.

Invoking again Lemma 4.3, we obtain

S¥0punq � S¥0pTgn
unq   8,

for n large enough, which contradicts (4.65). A similar argument is used to the negative

blow-up case. Hence uc blows-up in finite time. Now, by Theorem 4.7,

sup
tPIc

Kpucptqq ¥ Kc. (4.67)

Hence, by (4.66),

sup
tPIc

Kpucptqq � Kc. (4.68)

It remains to show that uc is almost periodic modulo symmetries. For this

purpose, consider a sequence of times tn P Ic. Since uc blows-up in time, we have

S¥tn
pucq � S¤tn

pucq � 8.

By Palais-Smale, there exists a sequence ucptnq that converges in 9H
1 modulo symmetries.

This implies that the orbit Fc :� tTgn
ucptnq; tn P Icu is pre-compact in 9H

1 modulo

symmetries. Hence, by definition of Tgn
, it follows that uc is almost periodic modulo

symmetries. This completes the proof.

4.3 The enemies

This section is devoted to prove Proposition 1.18. Since the proof does not

rely on the nonlinearities, for the question of completness, we shall present here a slightly

modified version of the proof given in (KILLIP; VISAN, 2010). We also use some ideas

presented in (KILLIP; TAO; VISAN, 2009). Some of the tools is given in the Appendix

A.1.
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To begin with, we note that the existence of an almost periodic modulo

symmetries solution v : J � R
6 Ñ C

l, with minimal kinetic energy is guaranteed by

Theorem 1.17 in the last section. We denote the symmetry parameters of v by Nvptq
and xvptq. It remains to construct a solution uc : Ic � R

6 Ñ C
l such that its frequency

function Nptq satisfies one of the following conditions: Finite-time blow-up, soliton or

low-to-high frequency cascade. The construction of uc is made by taking subsequential

limits of normalizations of v at t0 P J , given by (A.5). This is an almost periodic solution

and has symmetry parameters given by (A.6).

Using the definition of almost periodicity, given a sequence tn P J we may get

a subsequence such that v
tnp0q converges to some u0 P 9H

1
x. Moreover, if we denote by u

the maximal solution with up0q � u0, then u is almost periodic modulo symmetries with

the same compact modulus function as v. Once we have the solution, we set the following

quantities for T ¡ 0,

oscpT q :� inf
t0PJ

suptNvptq; t P J and |t� t0| ¤ TNvpt0q�2u
inftNvptq; t P J and |t� t0| ¤ TNvpt0q�2u

and

apt0q :� Npt0q
suptNptq; t P J and t ¤ t0u �

Npt0q
suptNptq; t P J and t ¥ t0u .

Then, to complete the proof, we divide in three scenarios. The first one is when oscilation

is finite, that is,

(i) lim
TÑ8

oscpT q   8, which allow us to extract a soliton-like solution.

Here, we choose a sequence tn such that

lim sup
nÑ8

suptNptq; t P J and |t� tn| ¤ TNptnq�2u
inftNptq; t P J and |t� tn| ¤ TNptnq�2u   8.

Then, we may find a number A � Av and two sequences, tn P J and Tn Ñ 8, obeying

suptNv; |t� tn| ¤ TnNvptnq�2u
inftNv; |t� tn| ¤ TnNvptnq�2u   A,

for all n. Together with Remark A.5, we get

rtn � TnN
�2
v
, tn � TnN

�2
v
s � J

and

Nvptq � Nvptnq,
for all t in this interval. Now, define the normalizations v

rtns of v at times tn. Then, v
rtns

is a maximal solution with lifespan

Jn :� ts P R; tn �Nvptnq�2s P Ju � r�Tn, Tns.
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It is also an almost periodic solution modulo symmetries with compactness modulus

function C and frequency scale function

Nvrtnspsq :� 1

NvptnqNv

�
tn �Nvptnq�2s

�
.

Particularly, we see that if s P r�Tn, Tns then

Nvrtns � 1. (4.69)

Lemma A.4 now implies, up to a subsequence, that v
rtns converge locally uniformly (see

Appendix, Definition A.1) to an almost periodic modulo symmetries solution u, with

maximal interval of existence I containing the origin and energy Epvq. As Tn Ñ 8, Lemma

A.1 and (4.69) yield that Nu obeys

0   inf
tPI
Nuptq ¤ sup

tPI

Nuptq   8.

By Corollary A.6, I could not have finite endpoints, therefore I must be R. Also, we can

normalize N � 1 by modifying C by a bounded quantity. Hence, u satisfies the conditions

to be a soliton.

The other two scenarios happen when oscpT q is unbounded. In this cases we

work with apt0q, for t0 P J to distinguish them. The second case is the following

(ii) lim
TÑ8

oscpT q � 8 and inf
t0PJ

apt0q � 0.

Since apt0q � 0, we may choose sequences t�n   tn   t�n from J such that aptnq Ñ 0,

Nvpt�n q{Nvpt�n q Ñ 8 and Nvpt�n q{NvpT�
n q Ñ 8. Then, we choose times t1n P pt�n , t�n q such

that

Nvpt1nq ¤ 2 inftNptq; t P rt�n , t�n su. (4.70)

In this way, we have Npt1nq ¤ 2Nptnq, which allow us to deduce that

Nvpt�n q
Nvpt1nq

Ñ 8 and
Nvpt�n q
Nvpt1nq

Ñ 8. (4.71)

Now, let us denote by u the subsequential limit of v
rt1ns and let I be its maximal interval

of existence. If I is bounded, then u is a finite-time blow-up solution in the sense of

Proposition 1.18. Thus it remains to consider the case I � R.

Let s�n :� pt�n qNvpt1nq2. From (4.71) we see that Nups�n q Ñ 8 and then, since

u is a global solution, s�n Ñ 8. Combining with (4.70) we have that Nuptq is uniformly

bounded from below in t P R. Rescaling u, we may conclude that Nuptq ¥ 1 for all t P R.

It follows from oscpT q Ñ 8, that Nvptq must show significant oscilation in

neighborhoods of t1n, which also happens to u. Combining this with the lower bound on Nu,
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one can see that lim sup
|t|Ñ8

Nuptq � 8. Then, up to a time-translation, we have constructed

a low-to-high cascade in the sense of Proposition 1.18.

The last case is when apt0q is strictly positive, or

(iii) lim
TÑ8

oscpT q � 8 and inf
t0PJ

apt0q � 2ϵ ¡ 0.

Let us call t0 P J future-spreading if Nptq ¤ ϵ�1Npt0q, for any t ¥ t0 and past-spreading if

Nptq ¤ ϵ�1Npt0q for any t ¤ t0. Thus, by hypothesis, every t0 is past- or future-spreading.

Notice that J must be infinite in backward or forward time direction, since a

single time is past- or future-spreading, respectively. Also, recall that finite-time blow-up

is accompanied by Nv Ñ 8 as t approaches the blow-up time. Next we will show that

either all sufficiently late times are future-spreading or all sufficiently early times are

past-spreading. Otherwise, it would be possible to find a interval large enough such that it

starts with a future-spreading time and it ends with a past-spreading time. This would

be absurd, as it contradicts the divergence of oscpT q. We will focus only in the case

where t ¥ t0 are future-spreading. The past-spreading case is analogous since we have

time-reversal symmetry.

Take T obeying oscpT q ¡ 2ϵ�1. Let us construct an increasing sequence ttnu8n�0

such that

0 ¤ tn�1 � tn ¤ 8TNptnq�2 and Nptn�1q ¤ 1

2
Nptnq. (4.72)

Given tn, set t1n :� tn � 4TNptnq�2. If 2Npt1nq ¤ Nptnq we choose tn�1 � t1n and the

properties above follows. If 2Npt1nq ¡ Nptnq, then

Jn :� rt1n � TNpt1nq�2, t1n � TNpt1nq�2s � rtn, tn � 8TNptnq�2s.
As tn is future-spreading, we may ensure that Nptq ¤ ϵ�1Nptnq on Jn, however, by the

choice of T , we can find tn�1 P Jn obeying 2Nptn�1q ¤ Nptnq.
Since we have a sequence of times satisfying (4.72), then any subsequential

limit u of v
rtns is a finite-time blow-up solution. Indeed, setting sn :� pt0 � tnqNptnq�2 we

may notice that Nvrtns ¥ 2n. However,

|sn| � Nptnq2
n�1̧

k�0

rtk�1 � tks ¤ 8T

n�1̧

k�0

Nptnq2
Nptkq2 ¤ 8T

n�1̧

k�0

2�pn�kq ¤ 8T.

Thus, sn is bounded and, therefore, the solution u must blow-up at some time �8T ¤ t   0.

This completes the proof of Proposition 1.18.

4.4 Finite-time blow-up

In this section we shall start the process of eliminating of our “enemies”. We

start avoiding the finite-time blow-up solution.
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Theorem 4.8. There is no critical solution, in the sense of Theorem 1.17, for the system

(1.2) which blows-up in finite time.

Proof. Suppose that there exists a maximal finite-time blowing-up solution, namely,

uc : Ic � R
6 ÝÑ C

l. There is no loss of generality in assuming that sup Ic   8. Then

lim inf
tÕsup Ic

Nptq � 8. (4.73)

Indeed, if (4.73) does not occur, we may choose ptnq � Ic converging to sup Ic, and set

vn : In � R
6 ÝÑ C

l given by

vnpt, xq � 1

Nptnq2 uc

�
tn � t

Nptnq2 , xptnq �
x

Nptnq


,

where In :� ttn � Nptnq�2t : t P Icu. Theorem 1.17 tell us that uc is almost periodic

modulo symmetries, which implies that tvnpt, xqunPN is also a solution for the system.

Besides that, combining with Remark 1.15, we have that tvnp0qu � 9H
1pR6q is pre-compact

in 9H
1
x. Hence, after passing to a subsequence if necessary, there exists v0 such that

lim
nÑ8

}vnp0q � v0} 9H1 � 0. (4.74)

Suppose that v0 � 0. Then, since }∇vnp0q}L2 � }∇ucptnq}L2 , by (4.74) we have that

}∇ucptnq}L2 Ñ 0 as n Ñ 8, that is, Kpucptnqq Ñ 0, as n Ñ 8. By Lemma 2.31,

Epucptnqq � Kpucptnqq. Taking n Ñ 8, we get Epucptnqq Ñ 0. By conservation of the

energy, this leads to Epucq � 0, which is a contradiction, since uc � 0. Then, v0 � 0.

Let v : I � R
6 Ñ C

l be the maximal solution to (1.2) with initial data v0 � vp0q, where

I :� p�T�, T �q satisfies �8 ¤ �T�   0   T � ¤ 8. By the well-posedness, for each

compact interval J � I, we have SJpvq   8. This shows that uc is well-posed with finite

scatterting size on the interval ttn � tpNptnqq�2, t P Ju. However, as tn Õ sup Ic and

lim inf
nÑ8

Nptnq � lim inf
tÕsup Ic

Nptq   8, that is, uc has finite scattering size beyond sup Ic, which

contradicts the existence of t1 P Ic such that Srt1,sup Iqpucq � 8. Hence, (4.73) must hold.

Consider uc � puc1, ..., uclq. Let ¸ P p0, 1q and t P Ic. By Hölder’s inequality and

Sobolev’s embedding, for k � 1, ..., l and R ¡ 0,»
|x| R

|uck|2dx ¤
»
|x�xptq|¤¸R

|uck|2dx�
»
|x|¤R, |x�xptq|¡¸R

|uck|2dx

À ¸2R2}uck}2
L3

x
�R2

�»
|x�xptq|¡¸R

|uck|3dx

2{3

À ¸2R2Kpψq �R2

�»
|x�xptq|¡¸R

|uck|3dx

2{3

À ¸2R2Kpψq �R2¸2{3,

where we used (4.73), almost periodicity modulo symmetries and Remark 1.15 in the last

inequality. Then, letting ¸ Ñ 0, we see that

lim sup
tÑsup Ic

»
|x|¤R

|uck|2dx � 0, @R ¡ 0, k � 1, ..., l. (4.75)
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Now, consider

ϕprq �
#

1, r ¤ 1,

0, r ¥ 2,

and

VRptq :�
» �

ļ

k�1

³2
k

µk

|uck|2
�
ϕ

� |x|
R



dx.

By (4.75),

lim sup
tÑsup Ic

VRptq � 0, @R ¡ 0. (4.76)

Using Hardy’s inequality (see (TAO, 2006, Lemma A.2)) and (1.32), we get

|V 1
Rptq| � 2

����� ļ

k�1

³kIm
»

∇ϕR �∇uckūckdx

�����
À }∇uc}L2

x

����uc

|x|
����

L2
x

À rKpucqs2

  rKpψqs2.

By the fundamental theorem of calculus,

VRpt1q À VRpt2q � |t1 � t2|rKpψq|s2, @t1, t2 P Ic, R ¡ 0.

Taking t2 Ñ sup Ic and using (4.76), we see

VRpt1q À | sup Ic � t1|rKpψqs2, @t1 P Ic.

Invoking the conservation of mass and making RÑ 8,

Qpuc0q � Qpucpt1qq À | sup Ic � t1|rKpψq|s, @t1 P Ic.

Letting t1 Õ sup Ic, give us uc0 � 0. By uniquess of solution, it follows that uc � 0, which

contradicts (1.32).

4.5 Negative Regularity

Before proceeding to exclusion of next two “enemies”, we must prove that the

critical solution has some negative regularity. We dedicate this section for this purpose.

We begin by stating the main result of this section.

Theorem 4.9. (Negative Regularity). Let u be a global solution to (1.2) that is almost

periodic modulo symmetries. Suppose also that

sup
tPR

}∇u}L2   8 (4.77)
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and

inf
tPR

Nptq ¥ 1. (4.78)

Then u P L
8
t

9H
�ϵ
x for some ϵ ¡ 0. In particular, u P L

8
t L

2
x.

To prove this theorem we will follow the strategy presented in (KILLIP; VISAN,

2010). The proof will be done in two steps. The first one is to prove that our solution

lies in L
8
t L

p
x, for 2   p   3. The second is to use the “double Duhamel trick” to improve

regularity to u P L
8
t

9H
1�s
x for some s ¡ 0. Having disposed of this two preliminary steps,

we may derive Theorem 4.9. Before proceeding, we need to set some usefull tools. The

first one is the following Duhamel’s formula.

Lemma 4.10. Let u be an almost periodic solution to (1.2) with maximal interval of

existence I. Then, for all t P I,

ukptq � lim
TÕsup I

i

» T

t

Ukpt� sqfkpupsqqds

� � lim
T×inf I

i

» t

T

Ukpt� sqfkpupsqqds
(4.79)

as weak limits in 9H
1
xpR6q.

Proof. The proof can be found in (TAO; VISAN; ZHANG, 2008), Section 6.

Remark 4.11. Assume that u obeys the hypotheses of Theorem 4.9. Consider ¸ ¡ 0 a

small constant that will be chosen later. By Remark 1.16 combined with (4.78), there is

N0 � N0p¸q such that

}∇pP¤N0
uq}L

8
t L2

x
¤ ¸, @¸ ¡ 0. (4.80)

Remark 4.12. Define, for frequencies N ¤ 10N0,

ApNq :� N�1{2}PNuptq}L
8
t L4

xpR�R6q. (4.81)

By Bernstein’s inequality, Sobolev’s embedding H1pR6q ãÑ L3pR6q and (4.77) we see

ApNq � N�1{2}PNuptq}L
8
t L4

x

À N� 1

2Np 6

3
� 6

4
q}PNu}L

8
t L3

x

À }PNu}L
8
t L3

x

À }∇u}L
8
t L2

x
,

which implies that ApNq is well defined.

The next result is a recurrence formula to ApNq.
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Lemma 4.13. For all N ¤ 10N0,

ApNq À
�
N

N0


1{2

� ¸
¸

N
10
¤N1¤N0

�
N

N1


1{2

ApN1q � ¸
¸

N1 
N
10

�
N1

N


1{2

ApN1q, (4.82)

where ApNq is given by (4.81).

Proof. We first fix N such that N ¤ 10N0. By time-translation symmetry, it is sufficient

to show that

N�1{2}PNup0q}L4
x
À
�
N

N0


1{2

� ¸
¸

n
10
¤N1¤N0

�
N

N1


1{2

ApN1q � ¸
¸

N1 
N
10

�
N1

N


1{2

ApN1q.

(4.83)

By Duhamel’s formula (4.79) and triangle inequality, we have

N�1{2}PNukp0q}L4
x
¤ N�1{2

�����
» N�2

0

Ukptq 1

³k

PNfkpuptqqdt
�����

L4
x

�N�1{2

����» 8

N�2

Ukptq 1

³k

PNfkpuptqqdt
����

L4
x

.

(4.84)

For the first term on the right-hand side of the last inequality, using Lemma 2.19, we may

estimate

N�1{2

�����
» N�2

0

Ukptq 1

³k

PNfkpuptqqdt
�����

L4
x

À N�1{2N3{2

�����
» N�2

0

Ukptq 1

³k

PNfkpuptqqdt
�����

L2
x

À N}PNfkpuptqq}L8
t L2

x

�» N�2

0

1dt

�
À N�1N3{2}PNfkpuptqq}L8

t L
4{3
x

� N1{2}PNfkpuptqq}L8
t L

4{3
x
.

(4.85)

Next, for the second term in the right-hand side of (4.84) we may apply Lemma

2.9 to get

N�1{2

����» 8

N�2

Ukptq 1

³k

PNfkpuptqqdt
����

L4
x

À N�1{2}PNfkpuptqq}L8
t L

4{3
x

�» 8

N�2

|t|�3{2dt



� N1{2}PNfkpuptqq}L8

t L
4{3
x
.

(4.86)

From (4.85) and (4.86), we conclude

N�1{2}PNup0q}L4
x
À N1{2}PNfkpuptqq}L8

t L
4{3
x
.

Hence, to obtain (4.83) we need to estimate N1{2}PNfkpucptqq}L8
t L

4{3
x

. Notice that

fkpucq � fkpucq � fkpP¤N0
ucq � fkpP¤N0

ucq
�: gkpucq � fkpP¤N0

ucq.
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Then,

N1{2}PNfkpucq}L8
t L

4{3
x
¤ N1{2}PNgkpucq}L8

t L
4{3
x
�N1{2}P¤N0

fkpucq}L8
t L

4{3
x

�: I � J .
(4.87)

By Lemma 2.11 and the decomposition of the solution

|gkpuq| � |fkpuq � fkpP¤N0
uq|

� |fkpP¤N0
u� P¡N0

uq � fkpP¤N0
uq|

¤ C

ļ

m�1

ļ

j�1

p|P¤N0
uj � P¡N0

uj| � |P¤N0
uj|q |P¡N0

um|

¤ C

ļ

m�1

ļ

j�1

|P¤N0
uj||P¡N0

um| � C

ļ

m�1

|P¡N0
um|2.

Furthermore, using Hölder’s inequality and Lemma 2.19, the first term in the

right-hand side of (4.87) can be bounded as follows

I À N1{2}gkpuq}L8
t L

4{3
x

À N1{2

�
ļ

m�1

ļ

j�1

}|P¤N0
uj||P¡N0

um|}L8
t L

4{3
x
�

ļ

m�1

}|P¡N0
um|2}L8

t L
4{3
x

�

À N1{2

�
ļ

m�1

ļ

j�1

}uj}L8
t L3

x
}P¡N0

um}L8
t L

12{5
x

�
ļ

m�1

}um}L8
t L3

x
}P¡N0

um}L8
t L

12{5
x

�

À N1{2N
�1{2
0

�
ļ

m�1

ļ

j�1

}uj}L8
t L3

x
}|∇|1{2um}L8

t L
12{5
x

�
ļ

m�1

}um}L8
t L3

x
}|∇|1{2um}L8

t L
12{5
x

�
.

Using the embbedings 9H1
xpR6q ãÑ 9H

1

2
, 12

5
x pR6q, see (BERGH; LöFSTRöM, 1976, Theorem

6.5.1, page 153), and 9H1
xpR6q ãÑ L3

xpR6q, see (TAO, 2006, page 335, A.11), and (4.77), the

last inequality gives us

I À N1{2N
�1{2
0 �

�
N

N0


1{2

.

To estimate the second term in the right-hand side of (4.87), the fundamental

theorem of calculus allows us to write

fkpzq � fkpz1q �
ļ

m�1

pzm � z1mq
» 1

0

Bfk

Bzm

pz1 � ¹pz� z
1qqd¹ �

ļ

m�1

pzm � z1mq
» 1

0

Bfk

Bz̄m

pz1 � ¹pz� z
1qqd¹.
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Taking z � PN
10
¤�¤N0

u and z
1 � P¤N0

u, we arrive at

fkpP¤N0
uq � fk

�
PN

10
¤�¤N0

u

	
�

ļ

m�1

P N
10

um

» 1

0

Bfk

Bzm

�
PN

10
¤�¤N0

u� ¹P N
10

u

	
d¹

�
ļ

m�1

P N
10

um

» 1

0

Bfk

Bz̄m

�
PN

10
¤�¤N0

u�¹P N
10

u

	
d¹,

which implies

J À N1{2
���PNfk

�
PN

10
¤�¤N0

u

	���
L8

t L
4{3
x

�N1{2
ļ

m�1

����PN

�
P N

10

um

» 1

0

Bfk

Bzm

�
PN

10
¤�¤N0

u� ¹P N
10

u

	
d¹

�����
L8

t L
4{3
x

�N1{2
ļ

m�1

����PN

�
P N

10

um

» 1

0

Bfk

Bz̄m

�
PN

10
¤�¤N0

u� ¹P N
10

u

	
d¹

�����
L8

t L
4{3
x

�: J1 � J2 � J3.

(4.88)

At first, we shall work with J2 and J3. Effectively, it suffices to estimate J2,

because J3 can be treated in an analogous way.

From pH2q, we have for k � 1, ..., l that the complex derivatives of the nonlin-

earities fk are Hölder continuous of order 1, hence Lemma 2.20 gives us, for m � 1, ..., l,����P¡N
10

Bfk

Bzm

puq
����

L8
t L2

x

À
¸

M¡N
10

����PM

Bfk

Bzm

puq
����

L8
t L2

x

À
¸

M¡N
10

M�1}∇u}L
8
t L2

x

À N�1}∇u}L
8
t L2

x
,

since
¸

M¡N
10

M�1 �
¸
j¡0

2�j 10

N
À N�1. Applying Hölder’s inequality, Remark 2.18, (4.80)

and (4.81),

J2 � N1{2
ļ

m�1

����PN

�
P N

10

um

» 1

0

Bfk

Bzm

�
PN

10
¤�¤N0

u� ¹P N
10

u

	
d¹

�����
L8

t L
4{3
x

À N1{2
ļ

m�1

}P N
10

um}L8
t L4

x

����P¡N
10

» 1

0

Bfk

Bzm

�
PN

10
¤�¤N0

u� ¹P N
10

u

	
d¹

����
L8

t L2
x

À N1{2
ļ

m�1

}P N
10

um}L8
t L4

x
N�1}∇P N0

u}L
8
t L2

x

À ¸N�1{2}P N
10

u}L
8
t L4

x

À ¸N�1{2
¸

N1 
N
10

}PN1
u}L

8
t L4

x

� ¸
¸

N1 
N
10

�
N1

N


1{2

ApN1q.
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Finally, we can estimate J1 in (4.88). By Lemma 2.11,

|fkpzq| À
ļ

m�1

z̄mzm,

so, using Lemma 2.11 and Hölder’s inequality,���PNfk

�
PN

10
¤�¤N0

u

	���
L8

t L
4{3
x

À
���fk

�
PN

10
¤�¤N0

u

	���
L8

t L
4{3
x

À
ļ

m�1

}pPN
10
¤�¤N0

umqpPN
10
¤�¤N0

umq}L8
t L

4{3
x

À
¸

N
10
¤N1,N2¤N0

�
ļ

m�1

}pPN1
umqpPN2

umq}L8
t L

4{3
x

�

À
¸

N
10
¤N1¤N2¤N0

�
ļ

m�1

}pPN1
umq}L8

t L4
x
}pPN2

umq}L8
t L2

x

�

�
¸

N
10
¤N2¤N1¤N0

�
ļ

m�1

}pPN1
umq}L8

t L2
x
}pPN2

umq}L8
t L4

x

�
.

(4.89)

Therefore, using Lemma 2.19 and (4.80),���PNfk

�
PN

10
¤�¤N0

u

	���
L8

t L
4{3
x

À ¸
¸

N
10
¤N1¤N2¤N0

ļ

m�1

N�1
2 }PN1

um}L8
t L4

x

� ¸
¸

N
10
¤N2¤N1¤N0

ļ

m�1

N�1
1 }PN2

um}L8
t L4

x

À ¸
¸

N
10
¤N1¤N2¤N0

ļ

m�1

�
N1

N2



N�1

1 }PN1
um}L8

t L4
x

� ¸
¸

N
10
¤N2¤N1¤N0

ļ

m�1

�
N2

N1



N�1

2 }PN2
um}L8

t L4
x

À ¸
¸

N
10
¤N1¤N0

N
�1{2
1 ApN1q

� ¸
¸

N
10
¤N2¤N1¤N0

�
N2

N1



N

�1{2
2 ApN2q

À ¸
¸

N
10
¤N1¤N0

N
�1{2
1 ApN1q.

(4.90)

Then,

N1{2}PNfkpuq}L8
t L

4{3
x
À
�
N

N0


1{2

� ¸
¸

N
10
¤N1¤N0

�
N

N1


1{2

ApN1q � ¸
¸

N1 
N
10

�
N1

N


1{2

ApN1q

finishing the proof.
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This Lemma leads us directly to our first result.

Proposition 4.14. Let u be as in Theorem 4.9. Then

u P L
8
t L

p
x,

14

5
¤ p   3. (4.91)

In addition,

∇fkpuq P L
8
t L

r
x,

7

6
¤ r   6

5
. (4.92)

Proof. Combining Lemma 4.13 with Lemma 2.8, we deduce

}PNu}L
8
t L4

x
À N1�, for N ¤ 10N0, (4.93)

by setting N � 10 � 2�jN0, xj � Ap2�jN0q and take ¸ sufficiently small. Now, by interpo-

lation, Lemma 2.20 with gpuq � u, (4.93) and (4.77)

}PNu}L
8
t L

p
x
À }PNu}

2pp�2q
p

L
8
t L4

x
}PNu}

4

p
�1

L
8
t L2

x

À N
2pp�2q

p
�
�
N�1}∇u}L

8
t L2

x

� 4

p
�1

À N
2pp�2q

p
�
N

1� 4

p

À N
3� 8

p
�
.

Now, if 14{5 ¤ p   3, then 3� 8{p ¤ 1{7. Thereby,

}PNu}L
8
t L

p
x
À N

1

7
�. (4.94)

for all N ¤ 10N0. On the other hand, notice that Lemma 2.16 with s � 1, q � 2 gives us

¹ � 3� 6

p
, consequently,

}PNu}L
8
t L

p
x
À }∇pPNuq}3� 6

p

L
8
t L2

x
}PNu}

6

p
�2

L
8
t L2

x
� }PNp∇uq}3� 6

p

L
8
t L2

x
}PNu}

6

p
�2

L
8
t L2

x
, (4.95)

where we used the commutativity of Littlewood-Paley operators with gradient in the last

inequality. By Lemma 2.6 and (4.77)

}PNp∇ucq}L
8
t L2

x
À }∇uc}L

8
t L2

x
À 1. (4.96)

Using Lemma 2.20 with gpuq � u, and again (4.77), we deduce

}PNu}L
8
t L2

x
À N�1}∇u}L

8
t L2

x
À N�1. (4.97)

Inserting (4.96) and (4.97) in (4.95), we obtain

}PNu}L
8
t L

p
x
À N

2� 6

p . (4.98)
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Finally, by (4.94) and (4.98),

}u}L
8
t L

p
x
¤ }P¤N0

u}L
8
t L

p
x
� }P¡N0

u}L
8
t L

p
x

¤
¸

N¤N0

}PNu}L
8
t L

p
x
�

¸
N¡N0

}PNu}L
8
t L

p
x

À
¸

N¤N0

N
1

7
� �

¸
N¡N0

N
2� 6

p

À 1,

as stated.

In particular, by Lemma 2.11 (iii), with q � 2, and (4.77),

}∇fkpuq}L
8
t Lr

x
À }u}L

8
t L

p
x
}∇u}L

8
t L2

x
À }u}L

8
t L

p
x
.

Since
1

r
� 1

p
� 1

2
and u P L

8
t L

p
x for

14

5
¤ p   3, it follows that ∇fkpuq P L

8
t L

r
x for

7

6
¤ r   6

5
. Finishing the proof.

The second step to reach our goal will be done as in (KILLIP; VISAN, 2010),

where we will prove (4.91) by using Lemma 4.10 twice.

Proposition 4.15. (Some negative regularity) Let u be as in Theorem 4.9. If |∇|sfkpuq P
L8t L

r
x for some

7

6
¤ r   6

5
, s P r0, 1s and k � 1, ..., l, then there is s0 � s0prq ¡ 0 such

that u P L
8
t

9H
s�s0�pRq.

Proof. We first notice that

}|∇|s�s0�uk}L8
t L2

x
¤ }|∇|s�s0�PN¤1uk}L8

t L2
x
� }|∇|s�s0�PN¡1uk}L8

t L2
x

:� A�B. (4.99)

We will work the cases separately. We start with A:

A � }|∇|s�s0�
¸

N¤1

PNuk}L8
t L2

x

À
¸

N¤1

}|∇|s�s0�PNuk}L8
t L2

x

�
¸

N¤1

}|∇|�s0�p|∇|sPNukq}L8
t L2

x

À
¸

N¤1

N�s0�}|∇|sPNuk}L8
t L2

x
,

(4.100)

where we used Bernstein’s inequality in the last line. We will show that

}|∇|sPNuk}L8
t L2

x
À N s0 , N ¡ 0 s0 :� 6

r
� 5 ¡ 0. (4.101)

By time-translation, it suffices to prove

}|∇|sPNukp0q}L2
x
À N s0 , N ¡ 0 s0 :� 6

r
� 5 ¡ 0. (4.102)
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By Duhamel’s formula (4.79), both in the future and the past, for k � 1, ..., l, we write

}|∇|sPNukp0q}L8
t L2

x

� lim
TÑ8

lim
T 1Ñ�8

B
i

» T

0

Ukp�tqPN |∇|sfkpuptqqdt,�i
» 0

T 1

Ukp�ÄqPN |∇|sfkpupÄqqdÄ
F

¤
» 8

0

» 0

�8

|xPN |∇|sfkpuptqq, Ukpt� ÄqPN |∇|sfkpupÄqqy| dtdÄ.
(4.103)

We treat the integral in two ways. First, using Hölder’s inequality and Lemma 2.9,

|xPN |∇|sfkpuptqq, Ukpt� ÄqPN |∇|sfkpupÄqqy|
À }PN |∇|sfkpuptqq}Lr

x
}Ukpt� ÄqPN |∇|sfkpupÄqq}Lr1

x

À |t� Ä |3� 6

r }|∇|sfkpuq}2
L8

t Lr
x
.

(4.104)

On the other hand, by Bernstein’s inequality,

|xPN |∇|sfkpuptqq, Ukpt� ÄqPN |∇|sfkpupÄqqy|
À }PN |∇|sfkpuptqq}L2

x
}Ukpt� ÄqPN |∇|sfkpupÄqq}L2

x

À N2p 6

r
�3q}|∇|sfkpuq}2

L8
t Lr

x
.

(4.105)

Then, combining (4.104) with (4.105), and using in (4.103), we deduce

}|∇|sPNukp0q}2
L2

x
À }|∇|sfkpuq}2

L8
t Lr

x

» 8

0

» 0

�8

mint|t� Ä |�1, N2u 6

r
�3dtdÄ. (4.106)

Now, if t   0   Ä hence, |t� Ä | � Ä � t. If |t� Ä |�1 ¤ N2 then Ä ¥ t� 1

N2
so» 8

0

» 0

�8

mint|t� Ä |�1, N2u 6

r
�3dtdÄ �

¼
tÄ¥t� 1

N2
u

1

pÄ � tq 6

r
�3
dtdÄ

�
» 1

N2

0

» Ä� 1

N2

�8

1

pÄ � tq 6

r
�3
dtdÄ �

» 8

1

N2

» 0

�8

1

pÄ � tq 6

r
�3
dtdÄ.

(4.107)

To simplify notation, we will write q :� 6

r
� 3. Thus,

» 1

N2

0

» Ä� 1

N2

�8

1

pÄ � tqq dtdÄ �
1

q � 1

» 1

N2

0

1

pÄ � tqq�1

����Ä� 1

N2

�8

dÄ

� 1

q � 1

» 1

N2

0

1

pÄ � pÄ �N�2qqq�1
dÄ

� 1

q � 1

» 1

N2

0

N2q�2dÄ

� 1

q � 1
N2q�4.

(4.108)
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Likewise, » 8

1

N2

» 0

�8

1

pÄ � tqq dtdÄ �
1

q � 1

» 8

1

N2

1

pÄ � tqq�1

����0
�8

dÄ

� 1

q � 1

» 8

1

N2

1

Ä q�1
dÄ

� 1

pq � 1qpq � 2q �
1

Ä q�2

����8
1

N2

� 1

pq � 1qpq � 2qN
2q�4.

(4.109)

On the other hand, if N2 ¤ |t� Ä |�1, then Ä ¤ t� 1

N2
. So» 8

0

» 0

�8

mint|t� Ä |�1, N2uqdtdÄ �
¼

tÄ¤t� 1

N2
u

N2qdtdÄ

�
» 1

N2

0

» 0

� 1

N2

N2qdtdÄ

� N2q

» 1

N2

0

1

N2
dÄ

� N2q�4.

(4.110)

By (4.107), (4.108), (4.109) and (4.110), and noticing that 2q � 4 � 2

�
6

r
� 3



� 4 �

12

r
� 10 � 2s0, besides that

6

r
� 3 ¡ 2 since r   6

5
, it follows that» 8

0

» 0

�8

mint|t� Ä |�1, N2u 6

r
�3dtdÄ À N2s0 . (4.111)

Replacing (4.111) in (4.106), we deduce

}|∇|sPNukp0q}2
L2

x
À N2s0}|∇|sfkpuq}2

L8
t Lr

x
.

Then (4.102) holds, and consequently

A À
¸

N¤1

N�s0�N s0 �
¸

N¤1

N0�. (4.112)

To estimate B, by Lemma 2.19, Lemma 2.20 and (4.77), for k � 1, ..., l,

}|∇|s�s0�PNuk}L8
t L2

x
À N s�s0�}PNuk}L8

t L2
x
À N s�s0�pN�1}∇uk}L8

t L2
x
q À N ps�s0�q�1.

Thus

B À
¸

N¡1

}|∇|s�s�
0 PNuk}L8

t L2
x
À

¸
N¡1

N ps�s0�q�1. (4.113)

Replacing (4.112) and (4.113) in (4.99), for k � 1, ..., l, we have

}|∇|s�s0�uk}L8
t L2

x
À

¸
N¤1

N0� �
¸

N¡1

N ps�s0�q�1 À 1.

which completes the proof.
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Proof of Theorem 4.9. By proposition 4.14, we may apply Proposition 4.15 with s � 1 to

show that u P L
8
t

9H
1�s0� for some s0 ¡ 0. Using (2.4) we deduce,

}|∇|1�s0�fkpuq}L
8
t Lr

x
À }u}L

8
t L

p
x
}u}

L
8
t

9H1�s0� .

Then, (4.91) guarantees that |∇|1�s0�fkpuq P L
8
t L

r
x, for

7

6
¤ r   6

5
and k � 1, ..., l.

Another application of Proposition 4.15 helps us to get u P L
8
t

9H
1�2s0�. Iterating this

procedure finitely many times gives us u P L
8
t

9H
�ϵ for some 0   ϵ   s0.

4.6 Soliton

In this section we exclude the soliton-like solution. For this, we need to show

that the critical solution has zero momentum and, from that, get some compactness

properties. We first define the momentum associated to the solution u by

Ppuq :� 4

ļ

k�1

³kIm
»

∇ukūkdx.

Notice that if upt, xq is a solution to (1.2) then the function u
Àpt, xq, called

Galilean transformation, given by

u
À
kpt, xq :� e

ix�À
³k
µk e

�it|À|2
³k
µk ukpt, x� 2tÀq, k � 1, ..., l, (4.114)

is also a solution to (1.2). This is a direct consequence of Gauge condition (see Lemma

2.13). The next Lemma gives us some properties of mass and kinetic energy of Galilean

transformation.

Lemma 4.16. For À P R
6, let u

À be a Galilean transformation. Then

(i)

QpuÀpxqq � Qpupxqq.

(ii) ���∇uÀ
kpxq

���2 � ³2
k

µ2
k

|À|2|ukpxq|2 � 2
³k

µk

À � Imr∇ukūkspxq � |∇ukpxq|2.
In particular,

KpuÀpxqq � |À|2Qpupxqq � À � Ppupxqq �Kpupxqq.

Proof. The proof follows by direct calculations, so we omit the details.

In other words, we can write Epuq � EpuÀpxqq � p4Mpuqq�1Ppuq2, which

express that total energy can be decomposed as the energy viewed in the center of mass

frame plus the energy arising from the motion of the center of the mass. (see (LANDAU;

LIFSHITZ, 1976, §8)).
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Lemma 4.17. Assume that hypothesis (H3) and (H5) hold. Then, the momentum Ppuq
associated with the solution u is a conserved quantity.

Proof. Suppose that u is a sufficiently regular solution. Then, formally, we multiply (1.2)

by Bxj
ūk, and integrate on R

6 and taking the imaginary part to obtain

³kIm
�»

BtukBxj
ūkdx

�
� µkIm

�
i

»
Bt∇ukBxj

ūkdx

�
� Im

�
i

»
fkpuqBxj

ūkdx

�
. (4.115)

First, notice that by integrating by parts i
»
Bt∇ukBxj

ūkdx agrees with the complex

conjugate and then, it is a real number. Thus, the first integral on the right-hand side of

(4.115) vanishes. Hence, (4.115) becomes

³kIm
�»

BtukBxj
ūkdx

�
� Im

�
i

»
fkpuqBxj

ūkdx

�
.

Summing over k � 1, ..., l in the last equality and using Lemma 2.14 (ii), we deduce

ļ

k�1

³kIm
»
BtukBxj

ūkdx �
»
Bxj

ReF puqdx.

Integrating by parts, as a consequence of Lemma 2.14 (iii), the integral on right-hand side

vanishes. Then,
ļ

k�1

³kIm
»
BtukBxj

ūkdx � 0. (4.116)

Now, we use the following identity BtrukBxj
ūks � BtukBxj

ūk �ukBtBxj
ūk, to write (4.116) as

ļ

k�1

³kIm
»
BtrukBxj

ūksdx�
ļ

k�1

³kIm
»
ukBtBxj

ūkdx � 0. (4.117)

Using integration by parts and that uk satisfies (1.2), we may write

³k

»
ūkBtBxj

ukdx � �µk

»
i∆ukBxj

ūkdx� i

»
fkpuqBxj

ūkdx.

Therefore, the second term in(4.117) can be written as

�
ļ

k�1

³kIm
»
ukBtBxj

ūkdx �
ļ

k�1

³kIm
»
ūkBtBxj

ukdx

� �
ļ

k�1

µk

»
i∆ukBxj

ūkdx�
»
Bxj

ReF puqdx,
(4.118)

where in the last integral on the right-hand side of (4.118) we applied Lemma 2.14 (iii).

As before, the two integrals on the right-hand side vanishes. The result follows from this

and (4.117).

Proposition 4.18. (Zero momentum). Assume that uc is a blow-up solution to (1.2) with

minimum kinetic energy and obeys uc P L
8
t H

1
x. Then Ppucq � 0.
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Proof. Suppose that uc : Ic � R
6 Ñ C

l is as in Proposition 4.18. We know that the

mass Qpucq and the momentum Ppucq are conserved quantities. Besides that, Qpucq � 0,

otherwise we would have uc � 0, which is excluded beacuse uc is a blow-up solution. Then,

the vector given by À0 :� � Ppucq
2Qpucq is well defined and the function u

À0

c is a solution to

(1.2) by invariance of the Galilean transformation.

By Lemma 4.16, we deduce

|À0|2Qpucpxqq � À0 � Ppucpxqq � KpuÀ0

c pxqq �Kpucpxqq. (4.119)

Now, SIc
puÀ0

c q � SIc
pucq � 8, hence u

À0

c is also a blow-up solution to (1.2). Moreover, by

hypothesis, uc has minimum kinetic energy, and then, (4.119) implies that

|À0|2Qpucpxqq � À0 � Ppucpxqq ¥ 0.

On the other hand, by the definition of À0, we deduce

0 ¤ |À0|2Qpucpxqq � À0 � Ppucpxqq � �|Ppucpxqq|2
4Qpucpxqq ¤ 0. (4.120)

Since Qpucq � 0, it follows from (4.120) that Ppucpxqq � 0, as we desired.

Lemma 4.19. (Compactness in L2) Let uc be a soliton in the sense of Proposition 1.18.

Then, for all ¸ ¡ 0, there is a constant Cp¸q ¡ 0 such that

sup
tPR

ļ

k�1

»
|x�xptq|¥Cp¸q

|uck|2dx À ¸.

Proof. The argument takes place in a fixed t, in particular, we may assume xptq � 0.

Initially, we control the contribution of low frequency. Using Bernstein’s in-

equality, (2.6) and Theorem 4.9, we obtain, for k � 1, ..., l,

}P Nuckptq}L2
xp|x|¡Rq ¤ }P Nuckptq}L2

x
À N ϵ}P N |∇|�ϵuck}L8

t L2
x
À N ϵ}|∇|�ϵuck}L8

t L2
x
À N ϵ.

This can be smaller than ¸ choosing N � Np¸q sufficiently small.

For the high frequencies case, an application of Schur’s test gives us the following:

For some m ¥ 0 (see (KILLIP; VISAN, 2010), page 408),��Ç|x|¥2R∆�1∇P¥NÇ|x|¤R

��
L2ÑL2

À N�1xRNy�m

uniformly in R,N ¡ 0. On the other hand, by Bernstein’s inequality,

}Ç|x|¥2R∆�1∇P¥NÇ|x|¥R}L2ÑL2 À N�1.

Together, the above inequalities give us»
|x|¥2R

|P¥Nuck|2dx À N�2xRNy�2}∇uckptq}2
L2

x
�N�2

»
|x|¥R

|∇uck|2dx.
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Choosing R as large as necessary, we can make the first term on the right-hand side

smaller than ¸. The same holds to the second term because uc is almost periodic modulo

symmetries

sup
tPR

»
|x�xptq|¥Cp¸q

|∇uck|2dx ¤ ¸.

The result follows combining the estimates of P Nuck and P¥Nuck.

Corollary 4.20. (Control of xptq). Let uc be a soliton solution in the sense of Proposition

1.18. Then

|xptq| � optq, tÑ 8.

Proof. We argue by contradiction. Suppose that there exist ¶ ¡ 0 and a sequence tn Ñ 8
such that

|xptnq| ¡ ¶tn, @n ¥ 1. (4.121)

By spatial-translation symmetry, we may assume xp0q � 0.

Let ¸ ¡ 0 be a constant that will be chosen later. By Remark 1.15 and Lemma

4.19,

sup
tPR

ļ

k�1

»
|x�xptq|¡Cp¸q

�|∇uckpt, xq|2 � |uckpt, xq|2
�
dx ¤ ¸. (4.122)

Define

Tn :� inf
tPr0,tns

t|xptq| � |xptnq|u ¤ tn and Rn :� Cp¸q � sup
tPr0,Tns

|xptq|. (4.123)

Let ϕ be a smooth, radial function such that

ϕprq �
#

1, r ¤ 1

0, r ¥ 2,

and define the “truncated” position

XRptq :�
»
R6

xϕ

� |x|
R



|uckpt, xq|2dx.

By Theorem 4.9, uck P L8t L
2
x. Thus, by (4.123), if |x| ¤ Cp¸q then

|x|
Rn

¤ 1, hence,

ϕ

� |x|
Rn



� 1 and

����»
|x|¤Cp¸q

xϕ

� |x|
Rn



|uckp0, xq|2dx

���� ¤ »
|x|¤Cp¸q

|x|
����ϕ� |x|Rn


���� |uckp0, xq|2dx

¤ Cp¸q
»
R6

|uckp0, xq|2dx À Cp¸qQpuq.
(4.124)
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On the other hand, if |x| ¥ 2Rn then ϕ

� |x|
Rn



� 0. Thus, using (4.122), we deduce����»

|x|¥Cp¸q

xϕ

� |x|
Rn



|uckp0, xq|2dx

���� À 2Rn

»
|x|¥Cp¸q

|uckp0, xq|2dx À 2Rn¸. (4.125)

Therefore, combining (4.124) and (4.125),

|XRn
p0q| ¤

����»
|x|¤Cp¸q

xϕ

� |x|
Rn



|uckp0, xq|2dx

����� ����»
|x|¥Cp¸q

xϕ

� |x|
Rn



|uckp0, xq|2dx

����
À Cp¸qQpuq � 2¸Rn.

(4.126)

On the other hand,

XRn
pTnq �

»
R6

xϕ

� |x|
Rn



|uckpTn, xq|2dx

�
»

R6

xϕ

� |x|
Rn



|uckpTn, xq|2dx� xpTnqQpuq � xpTnqQpuq

�
»

R6

xpTnqϕ
� |x|
Rn



|uckpTn, xq|2dx�

»
R6

xpTnqϕ
� |x|
Rn



|uckpTn, xq|2dx

� xpTnq
�
Qpuq �

»
R6

�
1� ϕ

� |x|
Rn


�
|uckpTn, xq|2dx

�
�
»

R6

rx� xpTnqsϕ
� |x|
Rn



|uckpTn, xq|2dx

� xpTnq
�
Qpuq �

»
R6

�
1� ϕ

� |x|
Rn


�
|uckpTn, xq|2dx

�
�
»
|x�xpTnq| Cp¸q

rx� xpTnqsϕ
� |x|
Rn



|uckpTn, xq|2dx

�
»
|x�xpTnq|¥Cp¸q

rx� xpTnqsϕ
� |x|
Rn



|uckpTn, xq|2dx.

By triangle inequality combined with (4.122) and (4.123),

|XRn
pTnq| Á |xpTnq|

�
Qpuq �

����»
R6

�
1� ϕ

� |x|
Rn


�
|uckpTn, xq|2dx

�����
�
����»
|x�xpTnq|¤Cp¸q

rx� xpTnqsϕ
� |x|
Rn



|uckpTn, xq|2x

����
�
����»
|x�xpTnq|¥Cp¸q

rx� xpTnqsϕ
� |x|
Rn



|uckpTn, xq|2x

����
Á |xpTnq|rQpuq � ¸s � Cp¸qQpuq � ¸r2Rn � |xpTnq|s
Á |xpTnq|rQpuq � ¸s � Cp¸qQpuq � ¸r2Cp¸q � 2|xpTnq| � |xpTnq|s
Á |xpTnq|rQpuq � 4¸s � 3Cp¸qQpuq,

(4.127)

where in the last inequality we used that (4.122) implies ¸ Á Qpuq. Thus, from (4.126)

and (4.127), taking ¸ ¡ 0 sufficiently small (depending on Qpuq),

|XRn
pTnq �XRn

p0q| Á |xpTnq| � Cp¸q. (4.128)
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Note that

X 1
Rptq � 2Im

»
ϕ

� |x|
R



∇uckptq�uckptqdx� 2Im

»
x

|x|Rϕ
1

� |x|
R



x �∇uckptq�uckptqdx.

By Lemma 4.18 Ppucq � 0; this together with Cauchy-Schwarz’s inequality and (4.122),

give

|X 1
Rn
ptq| ¤

����2Im
» �

1� ϕ

� |x|
Rn


�
∇uckptq�uckptqdx

����
�
����2Im

»
x

|x|Rn

ϕ1
� |x|
Rn



x �∇uckptq�uckptqdx

����
�
����2Im

»
|x|¡Rn

�
1� ϕ

� |x|
Rn


�
∇uckptq�uckptqdx

����
�
����2Im

»
Rn¤|x|¤2Rn

x

|x|Rn

ϕ1
� |x|
Rn



x �∇uckptq�uckptqdx

����
À 2

»
|x�xptq|¥Cp¸q

|∇uckptq�uckptq|dx

� 2

»
Rn¤|x|¤2Rn

|x|2
2R2

n

� |∇uckptq�uckptq|dx

À
»
|x�xptq|¡Cp¸q

�|∇uckpt, xq|2 � |uckpt, xq|2
�
dx

À ¸,

for all t P r0, Tns. Hence, using (4.128) and the fundamental theorem of calculus

|xpTnq| � Cp¸q À |XRn
pTnq �XRn

p0q| À
» Tn

0

|X 1
Rn
ptq|dt À ¸Tn.

Since |xpTnq| � |xptnq| ¡ ¶tn ¥ ¶Tn, we have

¶   ¸ � Cp¸q
Tn

.

Taking ¸   ¶{2 and making nÑ 8 we get ¶   ¶{2, which is a contradiction.

We now are in position to exclude the soliton-like solution. When xptq � 0, as

in the radial case, the necessary argument can be found in (KENIG; MERLE, 2006).

Theorem 4.21. There is no solution to (1.2) which is soliton-like, in the sense of

Proposition 1.18.

Proof. Let uc : R�R
6 ÝÑ C

l be a soliton like solution. By definition of almost periodicity

and the embedding 9H1pR6q ãÑ L3pR6q, for any ¸ ¡ 0, there exists Cp¸q ¡ 0 such that

sup
tPR

»
|x�xptq|¥Cp¸q

ļ

k�1

p|∇uck|2 � |uck|3qdx ¤ ¸. (4.129)



Chapter 4. Scattering for a quadratic type NLS system in dimension 6 116

Corollary 4.20 guarantees that there exists T0 � T0p¸q P R such that

|xptq| ¤ ¸t, @t ¥ T0. (4.130)

Setting ϕpxq to be radial, smooth and obeying

ϕpxq �
#
r, r ¤ 1

0, |x| ¥ 2,

let Èpxq � R2ϕ

� |x|2
R2



, where R ¡ 0 will be chose later. We define

VRptq �
» �

ļ

k�1

³2
k

µk

|uck|2
�
Èpxqdx.

By Proposition 2.33, we deduce

V 1
Rptq � 2

ļ

k�1

³kIm
»
ϕ1
� |x|2
R2



∇uck �uckdx.

It follows from Theorem 4.9 that uc P L
8
t L

2
x. By Hölder’s inequality and (1.32),

|V 1
Rptq| � 2

����� ļ

k�1

³kIm
»
ϕ1
� |x|2
R2



ūck∇uckdx

����� À RKpucqQpucq À R, (4.131)

for all t P R and R ¡ 0. Using (2.35), Lemma 2.14, and the fact that, for |x| ¤ R, we have

BjBiϕpxq � 2¶ij, ∆ϕpxq � 12, ∆2ϕpxq � 0, we obtain

V 2
Rptq � 4

¸
1¤m,j¤6

Re
» B2φ

BxmBxj

�
ļ

k�1

µkBxj
ūkBxm

uk

�
dx�

»
∆2φ

�
ļ

k�1

µk|uk|2
�
dx

� 2Re
»

∆φF puqdx� 8

ļ

k�1

»
|x|¡R

µk|∇uk|2dx� 8

ļ

k�1

»
|x|¡R

µk|∇uk|2dx

� 24Re
»
|x|¡R

F puqdx� 24Re
»
|x|¡R

F puqdx

� 8rKpucq � 3P pucqs �O

�»
|x|¥R

ļ

k�1

|∇uck|2 � |uck|3dx
�

�O

�»
R¤|x|¤2R

ļ

k�1

|uck|3dx
� 2

3

.

If for any T0   T1, we choose

R � Cp¸q � sup
T0¤t¤T1

|xptq|,

then |x| ¥ R implies |x � xptq| ¥ Cp¸q and, consequently, we may control the last two

terms using (4.129). Taking ¸ ¡ 0 sufficiently small, by the conservation of energy, Lemma

2.30 and Lemma 2.31

V 2
Rptq Á Kpucq Á Epuc0q. (4.132)
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Applying the fundamental theorem of calculus in rT0, T1s, by (4.131), (4.132) and (4.130),

we deduce

pT1 � T0qEpuc0q À V 1
RpT1q � V 1

RpT0q À |V 1
RpT1q| � |V 1

RpT0q|
À R � Cp¸q � sup

T0¤t¤T1

|xptq|

À Cp¸q � ¸T1, @T1 ¡ T0.

Setting first ¸ small enough and then making T1 Ñ 8 we get Epuc0q � 0. By the

conservation of energy and Lemma 2.31 Epucptqq � 0, for all t P R, that is, uc � 0, which

contradicts SRpucq � 8.

4.7 Low-to-high frequency cascade

In this part, we use negative regularity and some compactness properties to

preclude the low-to-high frequence cascade.

Theorem 4.22. There is no solution to (1.2) that is low-to-high frequency cascade, in the

sense of Proposition 1.18.

Proof. Let uc : R� R
6 ÝÑ C

l be a low-to-high frequency cascade solution. By negative

regularity, we know that uc P L
8
t L

2
x. By the mass conservation, we have for t P R,

0 ¤ Qpuc0q � Qpucptqq :�
ļ

k�1

³2
k

µk

}uck}2
L2   8,

or, equivalently

}ucptq}2
L2   8, @t P R.

Fixing t P R and choosing ¸ ¡ 0 sufficiently small, according to Remark 1.15, we have

ļ

k�1

»
|À|¤Cp¸qNptq

µk|À|2|ûck|2dÀ   ¸. (4.133)

On the other hand, since uc P L
8
t

9H
�ϵ
x for some ϵ ¡ 0, we know that

ļ

k�1

»
|À|¤Cp¸qNptq

µk|À|�2ϵ|ûck|2dÀ À 1. (4.134)

By Hölder’s inequality,

ļ

k�1

»
|À|¤Cp¸qNptq

|ûck|2dÀ À
ļ

k�1

»
|À|¤Cp¸qNptq

p|À||ûck|q
2ϵ

ϵ�1

�|À|�ϵ|ûck|
� 2

ϵ�1 dÀ

À
�

ļ

k�1

»
|À|¤Cp¸qNptq

�
p|À||ûck|q

2ϵ
ϵ�1

	 ϵ�1

ϵ

dÀ

� ϵ
ϵ�1

�
ļ

k�1

»
|À|¤Cp¸qNptq

��|À|�ϵ|ûck|
� 2

ϵ�1

	ϵ�1

dÀ

� 1

ϵ�1

À ¸
ϵ

ϵ�1 .

(4.135)
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Moreover, by the fact that uc has minimum kinetic energy, we deduce

ļ

k�1

»
|À|¥Cp¸qNptq

|ûck|2dÀ À rCp¸qNptqs�2
ļ

k�1

»
|À|2|puck|2dÀ

À rCp¸qNptqs�2Kpucptqq
À rCp¸qNptqs�2Kpψq.

(4.136)

Combining (4.135) with (4.136) and using Plancherel’s identity, we may estimate

0 ¤ Qpucq À ¸
ϵ

1�ϵ � rCp¸qNptqs�2, @t P R.

From definition of low-to-high frequency cascade, we are able to find a sequence ttnu � R

such that tn Ñ 8 and Nptnq Ñ 8 when nÑ 8. Thus,

0 ¤ lim
nÑ8

Qpucptnqq À ¸
ϵ

1�ϵ .

Making ¸ Ñ 0, we obtain Qpuptnqq Ñ 0 as n Ñ 8, which implies uc � 0, contradicting

SRpucq � 8.

4.8 Scattering and blow-up

This section is devoted to prove Corollary 1.11 and Theorem 1.12.

Proof of Corollary 1.11. Suppose that I � pT�, T �q. If T�, T �   8, then by Theorem 4.5

we have that SIpuq � 8. But this contradicts the fact that by Theorem 1.10 SIpuq   8.

So I � R.

Now, for the scattering, we will only prove the statement for u
�, since the u

�

is analogous. Let us start by constructing the scattering state u
�. This will be done by

showing that vptq, where vkptq � Ukp�tqukptq for t ¡ 0 and k � 1, ..., l, converges in 9H
1
x

as tÑ 8, and then set u
� to be the limit. We start applying Duhamel’s formula (1.26),

for k � 1, ..., l, to obatin

vkptq � ukp0q � i

» t

0

Ukp�sq 1

³k

fkpuqds. (4.137)

Therefore, for 0   Ä   t, k � 1, ..., l

vkptq � vkpÄq � �i
» t

Ä

Ukp�sq 1

³k

fkpuqds.

Then, by Strichartz’s inequality, Lemma 2.11 and Hölder’s inequality, we have for k � 1, .., l,

}vkptq � vkpÄq} 9H1
x
À }∇pvkptq � vkpÄqq}L8

t L2
x

À }∇fkpuq}L2

t L
3{2
x prÄ,ts�R6q

À }u}L4

t,xprÄ,ts�R6q}u}L4

t L
12{5
x prÄ,ts�R6q

À }u}L4

t,xprÄ,ts�R6q}u}S1prÄ,ts�R6q.

(4.138)
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Hence,

}vptq � vpÄq}
9H1

x
À }u}L4

t,xprÄ,ts�R6q}u}S1prÄ,ts�R6q.

However, (1.29) implies that there is a constant L ¡ 0 such that SRpuq ¤ L

and then, by the same argument as in Lemma 4.3, we have }u}S1pR�R6q À CpE,Lq, where

E denotes the kinetic energy of the initial data u0. Also, by (1.29), for any ¸ ¡ 0, there

exists t¸ P R
� such that

}u}L4

t,xprt,8q�R6q À ¸,

whenever t ¡ t¸. Therefore,

}vptq � vpÄq}
9H1

x
Ñ 0 as t, Ä Ñ 8.

In particular, this implies that u
� is well defined. Also, looking at (4.137), one can see

that, for k � 1, ..., l

u�k � ukp0q � i

» 8

0

Ukp�sq 1

³k

fkpuqds (4.139)

and thus

Ukptqu�k � Ukptqukp0q � i

» 8

0

Ukpt� sq 1

³k

fkpuqds. (4.140)

By the same arguments as above, (4.140) and Duhamel’s formula (1.26) imply that

}uptq �Uptqu�}
9H1

x
Ñ 0 as tÑ 8,

which completes the proof of Corollary 1.11.

Now we turn our attention to Theorem 1.12. As we said before, the radial case

was already considered in Theorem 4.1. (ii) of (NOGUERA; PASTOR, 2022). Therefore,

it is left to prove the case xu0 P L
2.

Proof of Theorem 1.12. Suppose xu0 P L
2. Define

Äpuq � Kpuptqq � 3P puptqq.

By definition of the energy

Äpuptqq � 3

2
Epuptqq � 1

2
Kpuptqq.

It was shown in (NOGUERA; PASTOR, 2022), Lemma 4.4, that there exists ¶ ¡ 0 such

that Äpuptqq ¤ �¶   0. Besides, notice that defining

V ptq �
ļ

k�1

³2
k

µk

}xukptq}2
L2 �

ļ

k�1

³2
k

µk

»
|x|2|ukpt, xq|2dx,
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by Proposition 2.32, we have

V 2ptq � 12Epuptqq � 4Kpuptqq
� 8Äpuptqq
¤ �8¶.

Hence, the graph of V lies under a parabola that is concave downward and, therefore, the

solution u blows-up in both directions.
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APPENDIX A

APPENDIX

A.1 Almost Periodic Solutions

For completeness of the work, we present here some basic facts about the

frequency scale function Nptq that were needed in the proof of Proposition 1.18. We

reproduce here the proofs established in (KILLIP; TAO; VISAN, 2009). We start with the

following definition.

Definition A.1. (Convergence of solutions). Let u
pnq : Ipnq � R

d Ñ C be a sequence

of solutions to (1.2), let u : I � R
d Ñ C be another solution, and let K be a compact

time interval. We say that u
pnq converges uniformly to u on K if we have K � I and

K � Ipnq for all sufficiently large n, and furthermore, u
pnq converges strongly to u in

L
8
t H

1
xpK�R

6qXL
4
t H

1, 12

5
x pK�R

6q as nÑ 8. We say that u
pnq converges locally uniformly

to u if u
pnq converges uniformly to u on every compact interval K � I.

The first result about the frequency scale function is the following.

Lemma A.2. (Quasi-uniquess of N) Let u be a non-zero solution to (1.2) with lifespan I

that is almost periodic modulo symmetries with frequency scale function N : I ÝÑ R
� and

compact modulus function C : R� ÝÑ R
� and also almost periodic modulo symmetries with

frequency scale function N 1 : I ÝÑ R
� and compact modulus function C 1 : R� ÝÑ R

�.

Then we have

Nptq � N 1ptq,
for allt P I.



APPENDIX A. Appendix 125

Proof. By symmetry, it suffices to establish the bound N 1ptq À Nptq. We write x1ptq for

the spatial center function associated to N 1 and C 1. To begin, fix t and let ¸ ¡ 0 to be

choosen later. By Definition 1.14, for k � 1, ..., l, we have»
|x�x1ptq|¥C1p¸q{N 1ptq

|∇ukpt, xq|2dx À ¸

and »
|À|¥Cp¸qNptq

|À|2|ûkpt, Àq|2dÀ À ¸.

We split ukpt, xq � uk1pt, xq � uk2pt, xq, where uk1pt, xq � ukpt, xqÇ|x�x1ptq|¥C1p¸q{N 1ptq and

uk2pt, xq � ukpt, xqÇ|x�x1ptq| C1p¸q{N 1ptq. Then, by Plancherel’s theorem we have»
R6

|À|2|puk1pt, Àq|2 À ¸, (A.1)

while by the Cauchy-Schwarz inequality we have

sup
ÀPR6

|À|2|puk2pt, Àq|2 À EpuqN 1ptq�6.

Integrating the last inequality over the ball |À| ¤ Cp¸qNptq and using (A.1), we conclude

that »
R6

|À|2|pukpt, Àq|2dÀ À ¸ �OpEpuqNptq6N 1ptq�6q.

Then, by the Plancherel theorem and energy conservation,

Epuq À ¸ �OpEpuqNptq6N 1ptq�6q.

Choosing ¸ to be small multiple of Epuq, we get the result.

Lemma A.3. (Quasi-continuous dependence of N on u). Let u
pnq be a sequence of solutions

to (1.2) with lifespans Ipnq, which are almost periodic modulo symmetries with frequency

scale function N pnq : Ipnq ÝÑ R
� and compactness modulus functions C : R� ÝÑ R

�,

independent of n. Suppose that u
pnq converge locally uniformly to a non-zero solution u to

(1.2) with lifespan I. Then u is almost periodic modulo symmetries with frequency scale

function N : I ÝÑ R
� and compactness modulus function C. Furthermore, we have

Nptq � lim inf
nÑ8

N pnqptq � lim sup
nÑ8

N pnqptq, (A.2)

for all t P I.

Proof. We first show that

0   lim inf
nÑ8

N pnqptq ¤ lim sup
nÑ8

N pnqptq   8, (A.3)

for all t P I. Indeed, if one of these inequalities fail for some t, the (by passing to a

subsequence if necessary) N pnqptq would converge to zero or to infinity as nÑ 8. Thus,
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by Definition 1.14, u
pnqptq would converge weakly to zero, and hence, by the local uniform

convergence, would converge strongly to zero. But, this contradicts the hypothesis that u

is not identically zero. This establishes (A.3).

From (A.3), we see that for each t P I the sequence N pnqptq has at least one

limit point Nptq. Thus, using the local uniform convergence we easily verify that u is

almost periodic modulo scaling with frequency scale function N and compactness modulus

function C.

It remains to establish (A.2), which we prove by contradiction. Suppose it fails.

Then given any A � Au, there exists a t P I for which N pnqptq has at least two limit

points which are separated by a ratio of at least A, and so u has two frequency scale

functions with compactness modulus function C which are separated by this ratio. But

this contradicts Lemma A.2 for A large enough depending on u. Hence (A.2) holds.

Lemma A.4. (Compactness of almost periodic solutions) Let u
pnq be a sequence of

solutions to (1.2) with lifespans Ipnq Q 0, which are almost periodic modulo symmetries

with frequency scale function N pnq : Ipnq ÝÑ R
� and compactness modulus functions

C : R� ÝÑ R
�. Assume that we also have a uniform energy bound

0   inf
n
Epupnqq ¤ sup

n
Epupnqq   8. (A.4)

Then, up to a subsequence, there exists a non-zero maximal solution u to (1.2) which is

almost periodic modulo symmetries such that u
pnq converge locally uniformly to u.

Proof. By hyphotesis and Definition 1.14 we see that for every ϵ ¡ 0 there exists R ¡ 0

such that »
|x|¥R

|∇upnqk p0, xq|2dx À ϵ

and »
|À|¥R

|À|2|pupnqk p0, ÀqdÀ À ϵ,

for all n. From this, (A.4), and the Ascoli-Arzela Theorem, we see that the sequence

u
pnqp0q is precompact in the strong topology of 9H

1
xpR6q. Thus, by passing to a subsequence

if necessary, we can find u0 P 9H
1
xpR6q such that u

pnqp0q converge strongly to u0 in 9H
1
xpR6q.

Again, by (A.4) we see that u0 is not identically zero. Now let u be the maximal solution to

(1.2) corresponding to u0, with lifespan I. By Theorem 4.3, u
pnq converge locally uniformly

to u.

Let u be a solution to (1.2) with lifespan I Q 0, which is almost periodic modulo

symmetries, with frequency scale function N and position center function x. We say that

u is normalized if

Np0q � 1, xp0q � 0.
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We can define the normalization of u at time t0 P I by

u
rt0s :� Tg�x

upt0q
N

upt0q
,N

upt0q
pup� � t0qq � N�2

upt0q
upN�2

upt0q
t� t0, N�1

upt0q
px� xupt0qNupt0qqq (A.5)

Observe that u
t0 is a normalized solution which is almost periodic modulo symmetries

with lifespan

I rt0s :� ts P R; t0 � sNptq�2 P Iu,
frequency scale and center spatial functions given by, respectively,

Nut0 ptq � Nupt0 � tNupt0q�2q
Nupt0q and xut0 ptq � Nupt0qrxupt0�tNupt0q�2q�xupt0qs. (A.6)

and the same compactness modulus function as u. Moreover, if u is maximal solution,

then upt0q also is maximal solution.

Lemma A.5. Let u be a non-zero maximal solution to (1.2) with lifespan I that is almost

periodic modulo symmetries with frequency scale function N : I ÝÑ R
�. Then there exists

¶ ¡ 0, depending on u such that for every t0 P I we have

rt0 � ¶Npt0q�2, t0 � ¶Npt0q�2s � I (A.7)

and

Nptq � Npt0q, (A.8)

whenever |t� t0| ¤ ¶Npt0q�2.

Proof. Let us first establish (A.7). Assume that it fails. So, there exists sequences tn P I
and ¶n Ñ 0 such that tn � ¶nNpTnq�2 R I for all n. Define the normalization u

rtns of u by

(A.5). Then u
rtns are maximal normalized solutions where I rtns contain 0 but not ¶n. They

are also almost periodic modulo symmetries with frequency scale functions N rtns given by

N rtnspsq :� Nptn � sNptnq�2q{Nptnq (A.9)

and the same compactness modulus function as u. By Lemma A.4, passing to a subsequence

if necessary, we conclude that by Theorem 1.9, J is open and so contains ¶n for all sufficiently

large n. This contradicts the local uniform convergence since, by hypothesis, ¶n does not

belong to I rtns. Hence (A.7) holds.

Now, we proceed to show (A.8). Again, assume that it is false no matter how

small ¶ is. Then, we may find sequences tn, t1n P I such that sn :� pt1n � tnqNptnq2 Ñ 0

but Npt1nq{Nptnq converge to either zero or infinity. If we define u
rtns and N rtns as before

and apply Lemma A.4, once again u
rtns converge locally uniformly to a maximal solution

v with lifespan J Q 0. But, then N rtnspsnq converge to either zero or infinity. Hence,

Definition 1.14 gives us that u
rtnspsnq are converging weakly to 0. On the other hand, since

sn Ñ 0 and u
rtns are locally uniformly convergent to v, we may conclude that u

rtnspsnq
converge strongly to vp0q in 9H

1
x. Therefore, vp0q � 0 and Epurtnsq converge to Epvq � 0.

By conservation of energy, u must vanishes, which is a contradiction. So, (A.8) holds.
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Corollary A.6. (Blow-up criterion). Let u be a non-zero maximal solution to (1.2) that

is almost periodic modulo symmetries with frequency scale function N : I Ñ R
�. If T is a

finite endpoint of I, then Nptq Á |T � t|�1{2; in particular, lim
tÑT

Nptq � 8.

Proof. Suppose without loss of generality that T � sup I. By (A.7) we have that for t P I,

|T � t| ¥ |t� t� ¶Nptq�2| � ¶Nptq�2 ô Nptq Á |T � t|�1{2.

In particular, lim
tÑT

Nptq � 8.

A.2 Compactness of almost periodic modulo symmetries

This section is devoted to discuss some compactness properties of almost

periodic modulo symmetries functions. We start with the following definition.

Definition A.7. A subset A of a metric space X is called totally bounded (pre-compact)

if admits a finite cover consisting of open sets of diameter at most ϵ, for any ϵ ¡ 0.

The next theorem gives us sufficient and necessary conditions for a subset of

p-integrable functions space to be totally bounded.

Theorem A.8. (Kolmogorov-Riesz-Sukadov). Let 1 ¤ p   8. A subset F of LppR6q is

totally bounded if, and only if,

(i) for every ϵ ¡ 0 there is R ¡ 0 such that, for every f P F ,»
|x|¡R

|fpxq|pdx   ϵp,

(ii) for every ϵ ¡ 0 there is Ä ¡ 0 such that, for every f P F and y P R
d with |y|   Ä,»

R6

|fpx� yq � fpxq|pdx   ϵp.

Proof. See Theorem 1 in (HANCHE-OLSEN; HOLDEN; MALINNIKOVA, 2019).

From the above Theorem, we can derive a similar result about totally bounded

subsets of 9H1pR6q.

Corollary A.9. A subset F of 9H1pR6q is totally bounded if, and only if,

(C1) for every ϵ ¡ 0 there is R ¡ 0 such that, for every f P F ,»
|x|¡R

|∇fpxq|2dx   ϵ2,
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(C2) for every ϵ ¡ 0 there is Ä ¡ 0 such that, for every f P F and y P R
6 with |y|   Ä,»

R6

|∇fpx� yq �∇fpxq|2dx   ϵ2.

Proof. Note that F is totally bounded in 9H1pR6q if, and only if, the set t∇f, f P Fu is

totally bounded in L2pR6q. Hence, the result follows from Theorem A.8.

The next corollary states alternative conditions for totally boundness of subset

F � 9H1pR6q.

Corollary A.10. Let F be a bounded subset of 9H1pR6q. Then, F is totally bounded if,

and only if,

lim
rÑ8

sup
fPF

»
|x|¡r

|∇fpxq|2dx � 0 (A.10)

and

lim
ÄÑ8

sup
fPF

»
|À|¡Ä

|À|2| pfpÀq|2dÀ � 0 (A.11)

Proof. Suppose that (A.10) and (A.11) hold. By Corollary A.9, it is sufficient to prove

that pC1q and pC2q holds. Observe that pC1q follows directly from the limit in (A.10). For

pC2q, fix Ä ¡ 0. By Plancherel’s theorem,»
R6

|∇fpx� yq �∇fpxq|2dx �
»
R6

| {∇fp� � yqpÀq � x∇fpÀq|2dÀ
�
»
R6

|À|2|eiyÀ pfpÀq � pfpÀq|2dÀ
�
»
R6

|À|2|eiyÀ � 1|2| pfpÀq|2dÀ
¤
»
|À| Ä

|À|2|eiyÀ � 1|2| pfpÀq|2dÀ � 4

»
|À|¥Ä

|À|2| pfpÀq|2dÀ.
By (A.11), for every ϵ ¡ 0, there exist Ä ¡ 0 large enough such that for all f P F ,»

|À|¥Ä

|À|2| pfpÀq|2dÀ   ϵ

8
.

Moreover, since F is bounded, if M ¡ 0 is such that }f}
9H1  M , for all f P F , then»

R6

|∇fpx� yq �∇fpxq|2dx ¤M2 sup
|À| Ä

|eiyÀ � 1|2 � ϵ2

2
.

Now, using the fact that |ei¹ � 1| ¤ |¹|, @¹ P R,»
R6

|∇fpx� yq �∇fpxq|2dx ¤M2 sup
|À| Ä

|yÀ|2 � ϵ2

2
¤M2|y|2Ä2 � ϵ2

2
¤ ϵ2,

provided |y|   ϵ

MÄ
?

2
:� ¶. Then, F is totally bounded.
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Now, suppose that F is totally bounded. By Corollary A.9, pC2q holds, and

then (A.10) follows immediately. It remains to show that (A.11) holds. To this end, we

will follow the ideas presented in (PEGO, 1985), Theorem 4. First, observe that pC2q is

equivalent to

lim
yÑ0

sup
fPF

»
R6

|∇fpx� yq �∇fpxq|2dx � 0. (A.12)

Let Èpxq � p2Ãq�d{2e�|x|
2{2 and set ÈÄpxq � Ä6ÈpÄxq, Ä ¡ 0. Then, È and pÈpÀq � e�|À|

2{2

lies on Schwartz space and pÈp0q � »
R6

ÈÄpxqdx � 1. Also, observe that for |À| ¥ 2Ä, we

have
1

2
¤ 1� pÈÄpÀq, and then, for each f P F , by Plancherel’s theorem,

1

2

�»
|À|¥2Ä

|À|2| pfpÀq|2dÀ
1{2

¤
�»

|À|¥2Ä

|À|2|p1� pÈÄpÀqq pfpÀq|2dÀ
1{2

¤
�»

R6

|∇fpxq � ÈÄ �∇fpxq|2dx

1{2

�
�»

R6

����»
R6

p∇fpxq �∇fpx� yqqÈÄpyqdy
����2 dx

�1{2

.

Since pÈÄp0q � 1, Jensen’s inequality applied to tÑ t2 together with Fubini’s theorem,

1

2

�»
|À|¥2Ä

|À|2| pfpÀq|2dÀ
1{2

¤
�»

R6

�»
R6

|∇fpxq �∇fpx� yq|2ÈÄpyqdy


dx


1{2

�
�»

R6

�»
R6

����∇fpxq �∇f

�
x� y

Ä


����2 dx
�
Èpyqdy

�1{2

¤
�»

R6

H

�
y

Ä



Èpyqdy


1{2

,

where H is the continuity modulo function in L2 for F , that is,

Hpzq � sup
fPF

»
R6

|∇fpx� zq �∇fpxq|2dx.

By (A.12), we have Hpy{Äq Ñ 0 as ÄÑ 8. Furthermore, since H is bounded (beacuse F

is bounded), the dominated convergence theorem implies that the right-hand side of the

last inequality goes to zero as ÄÑ 8. Hence, (A.11) holds.

The Corollary A.10 tells us that if F is a bounded subset of 9H1pR6q and if

given ϵ ¡ 0, there exist ¶ ¡ 0 such that»
|x|¥¶

|∇fpxq|2dx�
»
|À|¥¶

|À|2| pfpÀq|2dÀ   ϵ, @f P F ,

then F is totally bounded in 9H1pR6q. This is equivalent to say that for every ¸ ¡ 0, there

is a function C : R� Ñ R
� such that»

|x|¥Cp¸q

|∇fpxq|2dx�
»
|À|¥Cp¸q

|À|2| pfpÀq|2dÀ   ¸, @f P F .
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With this in hand, we have the following proposition.

Proposition A.11. A family of functions F is totally bounded (or pre-compact) in 9H1pR6q
if, and only if, it is bounded and there exists a function C : R� Ñ R

� such that»
|x|¥Cp¸q

|∇fpxq|2dx�
»
|À|¥Cp¸q

|À|2| pfpÀq|2dÀ   ¸, @¸ ¡ 0, @f P F .

Now, using Definition 2.23 of symmetry group G, we recall the fact that for

g P G,

}gu}
9H1

x
� }u}

9H1
x
.

Also, setting the transformation Tgupt, xq :� ¼�2
up¼�2t, ¼�1px � x0qq, we have that the

map u ÞÑ Tgu maps a solution to (1.2) into a solution with the same energy and scattering

size as u.

Definition A.12. We say that a family of functions F in 9H1
xpR6q is pre-compact modulo

symmetries if the set GF � tgf ; g P G, f P Fu is pre-compact in 9H1
xpR6q.

According to Proposition A.11, the set GF is pre-compact if, and only if, it is

bounded and there exist a function C : R� Ñ R
� such that»

|x|¥Cp¸q

|∇pgfqpxq|2dx�
»
|À|¥Cp¸q

|À|2|xgfpÀq|2dÀ   ¸, (A.13)

for all ¸ ¡ 0, f P F and g � gx0,¼ P G, Also, if gfpxq � ¼�2fp¼�1px� x0qq, the first term

in (A.13) gives us»
|x|¥Cp¸q

|∇r¼�2fp¼�1px� x0qqs|2dx �
»
|x|¥Cp¸q

|¼�3∇fp¼�1px� x0qq|2dx

� ¼�6

»
|x|¥Cp¸q

|∇fp¼�1px� x0qq|2dx

� ¼�6

»
|¼y�x0|¥Cp¸q

||∇fpyq|2¼6dy

�
»
|x�x0

¼ |¥Cp¸q
¼

|∇fpxq|2dx.

To the second term in (A.13), since xgfpÀq � ¼�2 {fp¼�1p� � x0qqpÀq � ¼�2e�ix0�À¼�6 pfp¼Àq,
we have »

|À|¥Cp¸q

|À|2|xgfpÀq|2dÀ � »
|À|¥Cp¸q

|À|2|¼�2e�ix0�À¼�6 pfp¼Àq|2dÀ
� ¼8

»
|À|¥Cp¸q

|À|2| pfp¼Àq|2dÀ
� ¼8

»
|¼�1·|¥Cp¸q

¼�2|·|2| pfp·q|2¼�6d·

�
»
|À|¥Cp¸¼q

|À|2| pfpÀq|2dÀ.
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Hence, the set F is pre-compact in 9H1pR6q modulo symmetries if, and only if, there exist

a function C : R� Ñ R
� such that, for any ¸ ¡ 0, f P F , x0 P R

6 and ¼ ¡ 0,»
|x�x0

¼ |¥Cp¸q
¼

|∇fpxq|2dx�
»
|À|¥Cp¸q¼

|À|2| pfpÀq|2dÀ   ¸.

Combining the above results, one can see that a solution u : I �R
6 Ñ C to (1.2) is almost

periodic modulo symmetries if, and only if, the orbit tuptq; t P Iu � t¼2fp¼px� x0qq : ¼ P
p0,8q, x0 P R

6 and f P Ku for some compact subset K of 9H1
xpR6q.
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