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"In the end,

it’s only a passing thing,

this shadow.

Even darkness must pass.

A new day will come.

And when the sun shines,

it’ll shine out the clearer."

Samwise Gamgee



Resumo

Considere A a subálgebra de UT3pKq dada por

A � Kpe1,1 � e3,3q `Ke2,2 `Ke1,2 `Ke2,3 `Ke1,3,

onde ei,j denotam as matrizes unitárias. Primeiramente, examinamos as graduações na

álgebra A definidas por um grupo abeliano. Além disso, determinamos uma base para as

identidades Z2-graduadas de A, para as identidades com involução e para as identidades

Z2-graduadas com involução graduada. Também exploramos seus cocaracteres.

Em seguida, consideramos as álgebras Z2-graduadas M1,1pKq, UT1,1pKq e UT3pKqp0,1,0q

com uma superinvolução, juntamente com o produto tensorial graduado com a álgebra

de Grassmann E, naturalmente dotada com uma Z2-graduação e também com uma

superinvolução. Consideramos tais produtos tensoriais dotados com uma involução gra-

duada e descrevemos as �-identidades polinomiais graduadas junto com os cocaracteres

correspondentes.

Finalmente, apresentamos alguns resultados sobre o problema do mergulho para álge-

bras simples com involução, usando identidades polinomiais standard de grau mínimo e

considerando-os como �-polinômios.

Palavras-chave: Identidade polinomial, PI-álgebra, álgebra de matrizes, álgebra de

Grassmann, cocaracteres, involução.



Abstract

Consider A the subalgebra of UT3pKq given by

A � Kpe1,1 � e3,3q `Ke2,2 `Ke1,2 `Ke2,3 `Ke1,3,

where ei,j’s denote the matrix units. First, we examine the gradings in the algebra A

defined by an abelian group. Then, we determine a basis for the Z2-graded identities of A,

for the identities with involution, and for the Z2-graded identities with graded involution.

We also explore their cocharacters.

We then consider the Z2-graded algebras M1,1pKq, UT1,1pKq, and UT3pKqp0,1,0q with a

superinvolution, along with their corresponding graded tensor products with the Grassmann

algebra E, naturally endowed with a Z2-grading and also with a superinvolution. We

examine these algebras as endowed with a graded involution and describe the graded

�-polynomial identities and the corresponding cocharacters.

Finally, we present some results concerning the embedding problem for simple algebras with

involution, using standard polynomials identities of minimal degree as a tool, considering

them as �-polynomials.

Keywords: Polynomial identity, PI-algebra, matrix algebra, Grassmann algebra, cochar-

acters, involution.
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Introduction

In this thesis we study polynomial identities of certain associative algebras.

Let K be a field and let KxXy be the free associative algebra freely generated by the

countable set of indeterminates X. One can view KxXy as the set of all polynomials in the

non-commuting variables from the set X. Given an associative algebra A, a polynomial

f in KxXy is called a polynomial identity of A if f evaluates to zero when its variables

are substituted with arbitrary elements of A. An algebra satisfying a non-zero polynomial

identity is called a PI-algebra. The set of all identities for A is denoted by T pAq. Clearly

T pAq is an ideal in KxXy. Moreover it is closed under endomorphisms of the free algebra

KxXy. It can be seen that every such ideal coincides with T pAq for some A. Among

the algebras that satisfy non-zero polynomial identities, those that have been of greatest

interest in the development of the theory of polynomial identities and that will play a

significant role in this thesis include the Grassmann algebra, the full matrix algebras

MnpKq, and UTnpKq, the algebra of the upper triangular matrices of order n. In general,

finite-dimensional algebras and commutative algebras are classical examples of PI-algebras.

One initial problem to be considered in the theory of algebras with polynomial

identities, which we will address in this thesis, is determining the set of all identities

satisfied by a particular algebra, as well as a generating set for them. In the case of a

PI-algebra A over a field of characteristic zero, it is known that the polynomial identities

of A follow from the multilinear polynomial identities. Therefore, we can restrict our study

to multilinear polynomials.

Given that the space Pn of multilinear polynomials in the variables x1, x2, . . . ,

xn has the structure of a left Sn-module and PnXT pAq is invariant under this action of Sn,

it follows that the vector space Pn X T pAq is a submodule of Pn. Studying the multilinear

identities of A might be a difficult problem since a well known theorem due to A. Regev,

proved in 1972, gives us that Pn X T pAq tends to become very large when nÑ 8. Hence

one is led to study PnpAq � Pn{Pn X T pAq, this quotient inherits an induced structure of

a left Sn-module. The Sn-character of PnpAq is referred to as the nth cocharacter of A. We

emphasize that the study of characters is of interest since, when considering finite groups

and algebraically closed fields, finite dimensional representations are determined up to

isomorphism by their characters. Decomposing the n-th cocharacter of A into irreducibles,

we have that

ÇnpAq �
¸
λ$n

mλÇλ,

where Çλ is the irreducible Sn-character associated with the partition ¼ with multiplicity

m ¥ 0.
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We are interested in considering the infinite dimensional Grassmann algebra

E � x1, e1, e2, . . . | eiej � �ejeiy as a superalgebra, that is, a Z2-graded algebra. The

grading is given by the subspaces E0 and E1, of elements of even or odd length respectively.

Given a superalgebra A � A0 ` A1, we consider the Grassmann envelope of A defined by

GpAq � pA0 bE0q ` pA1 bE1q. In general, given A and B two Z2-graded algebras we can

consider the graded tensor product Ab̂B � pA0 bB0q ` pA1 bB1q.

Matrix algebras with entries in Grassmann algebras have been the subject of

various studies. Of particular interest is determining a basis of their polynomial identities

as well as their corresponding cocharacters. Let E be the infinite dimensional Grassmann

algebra over K and MnpKq the matrix algebra of order n� n over K. According to the

theory developed in the 80-ies by A. Kemer, it can be deduced that if charK � 0 the

only non-trivial T-prime T-ideals in KxXy are T pMnpKqq, T pMnpEqq, for n ¥ 1; and

T pMa,bpEqq, where Ma,bpEq �Ma,bpKqb̂E and a ¥ b ¥ 1. It follows from Kemer’s Tensor

Product Theorem that if charK � 0, then M1,1pEq and E bE share the same polynomial

identities. The theorem further proves that the tensor product of two T-prime algebras

is PI-equivalent to a T-prime algebra as well. However, this does not hold in the case of

positive characteristic, as shown in [2].

Considering the algebras of upper triangular matrices of order 3, we refer to the

algebra A � Kpe1,1 � e3,3q `Ke2,2 `Ke1,2 `Ke2,3 `Ke1,3. Here and in what follows, ei,j

is the matrix with an entry 1 at position pi, jq and 0 elsewhere. A basis for the identities

of this algebra was described by Gordienko in [23]. It turns out that the algebra A is

PI-equivalent to the generic algebra of M1,1pEq in two generators, which in turn was

studied by Koshlukov and de Mello in [25].

In [11], Di Vincenzo and Koshlukov studied the graded identities of the algebra

M1,1pEq as an algebra with graded involution, while da Silva in [32] considered the Z2-

graded identities of UT2pKqb̂E. A generalization to UTk,lpKqb̂E was presented by Di

Vincenzo and da Silva in [14]. Centrone and da Silva studied in [7] the case of Z2-graded

identities of UT2pEq in characteristic different from 2. Also, Centrone in [6] considered

ordinary and Z2-graded cocharacters of UT2pEq.

An involution (of the first kind) on an algebra A is an antiautomorphism of

order two, that is, a linear map � : AÑ A satisfying pabq� � b�a� and pa�q� � a, for all

a, b P A. A G-graded algebra A �
à
gPG

Ag with involution � is called a graded involution

algebra if pAgq
� � Ag for all g P G. In this case, we say that � is a graded involution on A.

If A is a graded involution algebra, we say it is a pG, �q-algebra.

Given a superalgebra A � A0 `A1, a superinvolution � on A is a graded linear

map of order two such that pabq� � p�1q|a||b|b�a�, for any homogeneous elements a, b P

A0YA1. Here |x| denotes the homogeneous degree of x P A0YA1. The Z2-graded involutions
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and the superinvolutions of the upper triangular matrix algebra UTnpKq were described

by Ioppolo and Martino in [24], and the corresponding result about the superinvolutions

of M1,1pKq was given by Gomez and Shestakov in [22]. Also, note that on E we can define

the superinvolutions iE and �iE, induced by the identity map on the generators ei of E.

Note that if f and � are a pair of superinvolutions defined on the superalgebras A and

B respectively, then the map � defined on Ab̂B � pA0 b B0q
à

pA1 b B1q by putting

pab bq� � af b b� is an involution on Ab̂B.

Let us consider Y � tyi,g : i P N, g P Gu, Z � tzi,g : i P N, g P Gu two countable

disjoint sets of indeterminates. We denote by degG yi,g � degG zi,g � g the G-degree of the

variables Y Y Z with respect to the G-grading. Then Yg � tyi,g : i P Nu, Zg � tzi,g : i P Nu

are homogeneous variables of G-degree g P G.

We can define a �-action on the monomials over Y Y Z by the equalities

pxi1 � � �xinq
� � x�in � � �x

�
in
, where y�i,g � yi,g, z

�
i,g � �zi,g, xj P Y Y Z (1)

where the linear extension of this action is an involution on the free associative algebra

KxY, Zy generated by the set Y Y Z. The algebra F � KxY, Zy is G-graded with the

grading F �
à
gPG

Fg defined by

Fg � SpanKtxi1xi2 . . . xin : degG xi1 . . . degG xi1 � g, xj P Y Y Zu.

It is clear that the involution (1) is graded. The algebra F is the free associative graded

algebra with involution and its elements are called graded �-polynomials. We are interested

in the group G � Z2, that is, we consider Z2-graded identities with involution.

Another problem of interest in PI-theory is the classification of algebras based

on their polynomial identities. In particular, we can consider the Isomorphism Problem.

Consider A and B to be two associative K-algebras. It is easy to see that in the case

of A and B being isomorphic, they satisfy the same set of polynomial identities. Thus,

the natural question to consider is: If A and B satisfy the same identities, will they be

isomorphic? The answer is No, and the known (easy) counterexamples lead us to focus

on the study of central simple algebras over algebraically closed fields. Here we recall

that if A is PI then A and A ` A satisfy the same identities. Another example can be

given by the 2� 2 matrices M2pRq and the real quaternion algebra, they satisfy the same

identities but are not isomorphic. That is why one considers central simple algebras over

an algebraically closed field. A more general problem than the Isomorphism Problem is the

Embedding Problem. Once again, we consider two K-algebras, A and B, and the question

to be examined is: If the set of polynomial identities of A is a subset of the identities of B,

can we view B as a subalgebra of A? Or of some scalar extension of A?

This thesis is organized as follows.
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Chapter 1 introduces the notions necessary for the development of this thesis.

Our main focus will be on multilinear polynomials and representations of the symmetric

group Sn, as well as their applications to the study of polynomial identities. As a special

topic, we will consider the Grassmann algebra, its identities, and cocharacters.

In Chapter 2, we consider the algebra of upper triangular matrices A �

Kpe1,1 � e3,3q `Ke2,2 `Ke1,2 `Ke2,3 `Ke1,3. Initially, we consider its possible gradings

and show that these are isomorphic to elementary gradings and compute their graded

identities as well as their cocharacters. We also consider identities with involution and

graded identities with involution, where the grading is given by the group Z2. In each case,

we also compute the respective cocharacters.

In Chapter 3, we consider the Z2-graded algebras M1,1pKq, UT1,1pKq, and

UT3pKqp0,1,0q with a superinvolution, along with their corresponding super tensor products

with the Grassmann algebra E, naturally endowed with a Z2-grading, and also with a

superinvolution induced by the identity function iE and by �iE. We regard the resulting

algebras as endowed with a graded involution and describe the graded �-polynomial

identities and the corresponding cocharacters.

In Chapter 4, we consider the embedding problem for algebras with polynomial

identities. We introduce the particular case of the isomorphism problem, as well as its

historical context. We present some results concerning the embedding problem for simple

algebras with involution, using minimal degree standard polynomial identities as a tool,

considering them as �-polynomials. Among the main results, we have:

Theorem: Let A and B two finite-dimensional central simple algebras with

involution over the algebraically closed field K of characteristic 0, A with

involution of orthogonal type and A satisfying the identities with involution of

the algebra B. Then, there exists an embedding that preserves the involutions

of A into B.

Theorem: Let A and B two finite-dimensional central simple algebras with

involution over the algebraically closed field K of characteristic 0, B with

involution of symplectic type and A satisfying the identities with involution of

the algebra B. Then, there exists an embedding that preserves the involutions

of A into B.
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1 Preliminaries

In this chapter, we will introduce the main notions that will be used throughout

this thesis. Our primary interest lies in introducing the concept of polynomial identities in

associative algebras, as well as considering identities in algebras with additional structures

such as graded algebras and algebras with involution. Another key topic of study will be

the action of the symmetric group and the general linear group on the space of multilinear

and multihomogeneous polynomials. To conclude the chapter, we will study the Grassmann

algebra, its identities, and cocharacters. We will assume that we are working with unitary

algebras over fields of characteristic zero. As main references, we will use [16, 17, 18, 30].

1.1 PI-algebras

Let K be a field and X � tx1, x2, . . . u a countable set of non-commutative

variables. We denote by KxXy the free algebra freely generated by the set X.

Definition 1.1. piq Let f � fpx1, . . . , xnq P KxXy and let A be an associative algebra.

We say that f � 0 (or f) is a polynomial identity for A if fpa1, . . . , anq � 0 for all

a1, . . . , an P A.

piiq If the associative algebra A satisfies a non-trivial polynomial identity f � 0 (i.e. f is

a non-zero element of KxXy), we call A a PI-algebra.

Example 1.1. piq The algebra A is commutative if and only if it satisfies the polynomial

identity rx1, x2s � x1x2 � x2x1 � 0.

piiq Let A be a finite dimensional associative algebra and let dimA   n. Then A satisfies

the standard identity of degree n

Stnpx1, . . . , xnq �
¸
ωPSn

psignÉqxωp1q � � �xωpnq � 0,

where Sn is the symmetric group of degree n.

Here we present the famous Amitsur-Levitzki theorem regarding matrix algebra

and standard polynomials.

Theorem 1.1. The n� n matrix algebra MnpKq satisfies the standard identity of degree

2n.

As a consequence of the previous theorem, up to a multiplicative constant,

the standard identity is the only multilinear polynomial identity for MnpKq of degree 2n.

Additionally, it is known that MnpKq does not satisfy identities of lower degree.
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Definition 1.2. An ideal J of KxXy is called a T-ideal if ÈpJq � J for all endomorphisms

È of KxXy.

If A is any algebra, we denote by T pAq (or IdpAq) the T-ideal of the polynomial

identities of A. Also, we will denote by F pAq the quotient KxXy{T pAq. It is the relatively

free algebra for A (and its identities).

Definition 1.3. The polynomial identity gpx1, . . . , xmq � 0 is called a consequence of

the polynomial identities fipx1, . . . , xmq � 0, i P I, if any algebra satisfying the identities

fipx1, . . . , xmq � 0 satisfies also gpx1, . . . , xmq � 0. We denote by

pfipx1, . . . , xmq | i P Iq
T

the smallest T-ideal U containing all fipx1, . . . , xmq, i P I. This T-ideal coincides with the

set of all consequences of the identities fi � 0, i P I, and its elements have the form¸
uiwfipw1, . . . , wmi

qviw, w1, . . . , wmi
, uiw, viw P KxXy.

The generating set tfipx1, . . . , xmq | i P Iu is called a basis of the T-ideal U ,

even if it is not a minimal generating set. (Any generating set of the T-ideal T pAq is called

a basis of the polynomial identities of the algebra A.)

Definition 1.4. Two sets of polynomial identities are equivalent if they generate the same

T-ideal.

1.2 Multilinear Polynomials

In the case of algebras over fields of characteristic zero, multilinear polynomials

play an important role since T-ideals are generated by such polynomials. For this reason,

one can study PI-algebras in characteristic 0 through their multilinear identities.

Definition 1.5. A polynomial fpx1, . . . , xnq in the free associative algebra KxXy is called

multilinear of degree n if the degree of f with respect to each variable xi, denoted degxi
f ,

is equal to 1 (i.e., f is linear in the variable xi) for i � 1, . . . , n. We denote by Pn the

vector space of all polynomials in KxXy which are multilinear of degree n.

Proposition 1.1. Let

fpx1, . . . , xnq �
ņ

i�0

fi P KxXy,

where fi is the homogeneous component of f of degree i in x1.

piq If the base field K contains more than n elements (e.g. K is infinite), then the

polynomial identities fi � 0, i � 0, 1, . . . , n, follow from f � 0.
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piiq If the base field is of characteristic 0 (or if char K > deg f), then f � 0 is equivalent

to a set of multilinear polynomial identities.

Remark 1.1. Let Pn be the set of all multilinear polynomials of degree n in the free

associative algebra KxXy. The following action of the symmetric group Sn makes Pn a

left Sn-module, isomorphic to the group algebra KSn considered as a left Sn-module:

Ã
�¸

³ixi1 . . . xin

	
�
¸

³ixσpi1q . . . xσpinq,

Ã P Sn, ³i P K, xi1 . . . xin P Pn. Thus we can consider Pn as isomorphic to the regular

representation of Sn.

1.3 Graded Algebras

Definition 1.6. Let G be an arbitrary group. We say that an associative algebra A over

a field K is a G-graded algebra (or equipped with a G-grading) if, for each g P G, there

exists a subspace Ag � A such that A can be written as:

A � `gPGAg and AgAh � Agh for all g, h P G.

The subspaces Ag are called the homogeneous components of A, and the elements of each

Ag are called the homogeneous elements of A with homogeneous degree g. A subspace

V � A is called a homogeneous (or graded) subspace if V �
à
gPG

pV X Agq.

In the case of matrix algebras MnpKq, we can consider certain gradings, known

as elementary gradings, defined as follows:

Definition 1.7. Let A �MnpKq be the algebra of n�n matrices over K and let the ei,j’s

be the usual matrix units. Given an n-tuple ĝ � pg1, . . . , gnq of an arbitrary group G we

set deg ei,j � g�1

i gj and let Ag � Spantei,j : g�1

i gj � gu. Then A �
à
gPG

Ag is a G-grading

of A called the elementary G-grading defined by the n-tuple ĝ.

Example 1.2. Consider the matrix algebra MnpKq and integers k and h such that

k � h � n. Mk,hpKq denotes MnpKq with Z2-grading given by

pMk,hpKqq0 �

#�
S 0

0 T

�
: S PMkpKq, T PMhpKq

+
,

pMk,hpKqq1 �

#�
0 Y

Z 0

�
: Y PMk�hpKq, Z PMh�kpKq

+
.
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Now, for UTnpKq be the algebra of n� n upper triangular matrices over K we

have the following classification of gradings given by Valenti and Zaicev (see [36]).

Theorem 1.2. Let G be an arbitrary group and K a field. Suppose that the algebra

UTnpKq � B �
à
gPG

Bg of n � n upper triangular matrices over the field K is G-graded.

Then B, as a G-graded algebra, is isomorphic to UTnpKq with an elementary G-grading.

Let G be a group, and consider the set of indeterminates X �
¤
gPG

Xg, where

Xg � tx
pgq
1 , x

pgq
2 , . . . u is a countable infinite set for each g. We say that the indetermi-

nates in Xg have a homogeneous degree g, and the homogeneous degree of a monomial

x
pgj1

q
i1

� � �x
pgjm q
im

P KxXy is given by gj1 � � � gjm . We will write KxXygr to denote the graded

algebra KxXy with X �
¤
gPG

Xg.

Definition 1.8. Let fpx
pg1q
i1

, x
pg2q
i2

, . . . , x
pgrq
ir

q P KxXygr be a polynomial. If A �
à
gPG

Ag is a

G-graded algebra then f is a G-graded polynomial identity (or simply a G-graded identity)

for A if fpa
pg1q
i1

, a
pg2q
i2

, . . . , a
pgrq
ir

q � 0 in A for every homogeneous substitution apgtq P Agt
.

We denote by IdGpAq or TGpAq the ideal of all graded identities of A in KxXygr.

The ideal IdGpAq is closed under all G-graded endomorphisms of KxXygr; such

ideals are called G-graded T-ideals.

A particular case is when the group G is given by Z2, in this case, we say

that an associative algebra is a superalgebra if A is a Z2-graded algebra. While the two

terms are synonymous for associative algebras, we draw the readers’ attention that, say,

in the Lie case, a Lie superalgebra seldom is a Lie algebra, and the same holds for Jordan,

alternative, etc., algebras.

Definition 1.9. Let A and B be two Z2-graded K-algebras. Ab̂B denotes the graded

tensor product, i.e,

Ab̂B � pA0 bB0q ` pA1 bB1q.

1.4 Involutions and superinvolutions

Involutions are important in the structure theory of both associative and

non-associative algebras. In this section, we introduce the notions of involution and

superinvolution, as well as identities with involution. As particular examples of algebras

with involution, we consider matrix algebras MnpKq and upper triangular matrix algebras

UTnpKq.
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1.4.1 Involutions

Definition 1.10. Given algebras A1 and A2, we say that a linear map ϕ : A1 Ñ A2, is

an anti-homomorphism if ϕpa1a2q � ϕpa2qϕpa1q for all a1, a2 in A1. Moreover, if ϕ is an

isomorphism of vector spaces, we call ϕ an anti-isomorphism, and if A1 � A2, we call ϕ

an anti-automorphism of A1.

A classical example of an anti-isomorphism is given by the map a ÞÑ a from A

to Aop, the opposite algebra of A.

Definition 1.11. An involution is an anti-automorphism ϕ such that ϕ2 � 1, i.e., ϕ2paq �

a for all a P A.

We observe that such involutions are known as involutions of the first kind

(when the map ϕ is a K-linear transformation). There exist involutions of the second kind

which we will not consider here, hence we only give an idea what they are. Take the n� n

matrix algebra over the complex numbers C, then the usual transpose is an example of an

involution of the first kind (it is a linear transformation). But it is not that important

when considering MnpCq. The map A ÞÑ A
t

that sends every matrix to its transpose and

conjugate matrix is more relevant. Formally it does not fall into our definition since it is

not C-linear, but it is linear over R. Similar involutions are of the second type.

An important example of algebra with involution is the matrix algebra MnpKq.

Example 1.3. (i) The transpose involution t, given by the classical transpose of a

matrix.

(ii) The symplectic involution s, defined by xs � axta for all x P M2mpKq, where

a �
m̧

i�1

pei,i�m�ei�m,iq. In other words, partitioning a 2m�2m matrix A into m�m

blocks Ai, 1 ¤ i ¤ 4, we have�
A1 A2

A3 A4

�s

�

�
At

4
�At

2

�At
3

At
1

�
,

where t is the transpose on MmpKq.

Let us establish some conventions regarding algebras with involution.

We write � to denote a given involution of an algebra; �-algebra means algebra

with involution. Write a� for the image of a under the involution �.

pA, �q will denote the algebra A with involution �. We define a �-homomorphism

ϕ : pA1, �1q Ñ pA2, �2q to be a homomorphism ϕ : A1 Ñ A2, such that ϕpa�1q � ϕpaq�2 for

all a in A1; equivalently, we say that ϕ is a �-homomorphism. Let I be an ideal of A, we
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say that I is a �-ideal of A if I� � I, and we denote that by I ◁ pA, �q. If I ◁ pA, �q, then

� induces an involution on A{I by pa� Iq� � a� � I, and the canonical map AÑ A{I is

a �-homomorphism; conversely, the kernel of every �-homomorphism is a �-ideal.

Definition 1.12. An element x of pA, �q is symmetric (resp. anti-symmetric or skew-

symmetric) if x� � x (resp. x� � �x). We shall write A� (resp. A�) to denote the set of

symmetric (resp. skew-symmetric) elements of A.

Example 1.4.

(i) Let A be an algebra. Then A` Aop has an involution ex given by pa1, a2q
ex � pa2, a1q,

which is called the exchange involution.

(ii) If pA, �q is a K-algebra with involution and B is a commutative K-algebra, then p�b 1q

is an involution of AbK B.

A proof of the following results concerning algebras with involution can be found in [30].

Proposition 1.2. Let A be a �-algebra. Then NilpAq◁ pA, �q and JacpAq◁ pA, �q.

Definition 1.13. pA, �q is simple if 0 and A are the only �-ideals of pA, �q.

Proposition 1.3. Suppose pA, �q is simple. Then either A is simple, or A has a simple

homomorphic image A1 such that pA, �q � pA1 ` A
op
1 , exq.

Definition 1.14. The center of pA, �q, written ZpA, �q, is tz P ZpAq | z� � zu.

Proposition 1.4. ZpA, �q is a a subalgebra of A fixed by �. If pA, �q is simple, then ZpA, �q

is a field.

Let X � tx1, x2, . . .u be a countable set of non-commutative variables and

consider KxX, �y � Kxx1, x
�
1
, x2, x

�
2
, . . .y, the free algebra with involution in X over K.

By defining yi � xi � x�i and zi � xi � x�i for each i � 1, 2, . . ., we consider KxX, �y �

Kxy1, z1, y2, z2, . . .y as generated by symmetric and skew-symmetric variables. The elements

of KxX, �y will be called �-polynomials. Observe that we can write xi � pyi � ziq{2 and

x�i � pyi � ziq{2, hence if the base field is of characteristic different from 2, this change of

variables (free generators) can be performed.

Definition 1.15. A �-polynomial f py1, . . . , yn, z1, . . . , zmq P KxY YZ, �y is a �-polynomial

identity of and algebra with involution pA, �q if

f pu1, . . . , un, v1, . . . , vmq � 0 for all ui P A
� and vj P A

�.

Given an algebra with involution pA, �q we denote by IdpA, �q or T pA, �q the set of �-

polynomial identities of A.
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Proposition 1.5 ([30], Proposition 2.5.5). Suppose n is even. Then IdpMnpKq, sq �

IdpMnpKq, tq and IdpMnpKq, tq � IdpMnpKq, sq.

In the case of the algebra of upper triangular matrices UTnpKq, the classification

of its involutions was presented in [12]. Below, we present the results related to this

classification.

Definition 1.16. For every matrix A P UTnpKq define A� � JAtJ where A ÞÑ At denotes

the usual matrix transpose and J is the following permutation matrix:

J �

������
0 � � � 0 1

0 � � � 1 0
...

...
...

1 � � � 0 0

�����

Note that for the matrix units we have e�i,j � en�1�j,n�1�i.

Definition 1.17. Let n � 2m be an even integer and consider the matrix

D �

�
Im 0

0 �Im

�
PMnpKq.

Define the involution s on UTnpKq by putting As � DA�D for all A P UTnpKq, s is called

the symplectic involution on UTn.

Proposition 1.6. Every involution on UTnpKq is equivalent either to � or to s.

In the same paper, the following results were proved about the �-identities of

UT2pKq and UT3pKq.

Proposition 1.7. The ideal T pUT2pKq, �q is generated as a T �-ideal by the set

ry1, y2s, rz1, z2s, ry1, z1sry2, z2s, z1y1z2 � z2y1z1.

Proposition 1.8. The ideal T pUT2pKq, sq is generated as a T �-ideal by the set

ry1, y2s, rz1, y1s, rz1, z2srz3, z4s, z1z2z3 � z3z2z1.

Proposition 1.9. The ideal T pUT3pKq, �q is generated as a T �-ideal by the set

piq s3pz1, z2, z3q � z1rz2, z3s � z2rz1, z3s � z3rz1, z2s,

piiq p�1q|x1x2|rx1, x2srx3, x4s � p�1q|x3x4|rx3, x4srx1, x2s,

piiiq p�1q|x1x2|rx1, x2srx3, x4s � p�1q|x1x3|rx1, x3srx2, x4s � p�1q|x1x4|rx1, x4srx2, x3s,
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pivq z1rx3, x4sz2 � p�1q|x3x4|z2rx3, x4sz1,

pvq rx1, x2sz5rx3, x4s,

pviq z1rx4, x5sz2x3 � p�1q|x3|x3z1rx4, x5sz2.

Here |x| � 0 whenever x is skew-symmetric, and |x| � 1 if x is symmetric element.

Another important structure concerning involutions are graded involutions.

Definition 1.18. An involution � on a G-graded algebra A �
à
gPG

Ag is said to be a graded

involution if A�
g � Ag for all g P G.

Graded involutions of MnpKq, subject to certain restrictions, were described in

[3]. In the context of upper-triangular matrix algebras, graded involutions were described

in [37].

1.4.2 Superinvolution

Definition 1.19. Given a superalgebra A � A0 `A1, a superinvolution � on A is a graded

linear map of order 2 such that

pabq� � p�1q|a||b|b�a�,

for any homogeneous elements a, b P A0 YA1. Here |x| denotes the homogeneous degree of

x P A0 Y A1.

Remark 1.2. If f and � is a pair of superinvolutions defined on the superalgebras A

and B respectively, then the map � defined on Ab̂B � pA0 bB0q ` pA1 bB1q by putting

pab bq� � af b b� is an involution on Ab̂B.

The superinvolutions on the algebra of upper-triangular matrices were described

in [24]. We present some of the main results.

Definition 1.20. Let A � A0 ` A1 be the upper-triangular matrix superalgebra UTnpKq

endowed with the elementary Z2-grading given by the n-tuple pg1, . . . , gnq P Zn
2
. We define

Φ : AÑ A such that Φ � Φn�1, where Φ0pei,jq � ei,j and for all k � 1,. . . , n� 1,

Φkpei,jq �

$&%Φk�1pei,jq if ei,j R A
k�1

1

�Φk�1pei,jq if ei,j P A
k�1

1

,

for all 1 ¤ i ¤ j ¤ n.

Let � and s be the reflection and the symplectic involution as in Definition 1.16

and Definition 1.17, respectively.
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Definition 1.21. The superinvolution � : UTnpKq Ñ UTnpKq, defined by � � �Φ, is

called the super-reflection superinvolution.

Definition 1.22. The superinvolution s : UTnpKq Ñ UTnpKq, defined by s � sΦ, is

called the super-symplectic superinvolution.

Theorem 1.3. Every superinvolution on UTnpKq is equivalent either to � or to s. The

superinvolution s can occur only when n is even.

Example 1.5. In the case of 2� 2 upper-triangular matrices we have that the superinvo-

lutions coincide with the involutions and are given by�
a c

0 b

��

�

�
b c

0 a

�
and

�
a c

0 b

�s

�

�
b �c

0 a

�
.

Example 1.6. In the case of 3� 3 upper-triangular matrices it is only possible to define a

superinvolution when we consider the elementary Z2-grading defined by the triple p0, 1, 0q,

and we have that ���a b c

0 d e

0 0 f

��

�

�

���f e �c

0 d b

0 0 a

��
.
1.5 Proper Polynomials

Definition 1.23. A polynomial f P KxXy is called a proper polynomial, if it is a linear

combination of products of commutators

fpx1, . . . , xmq �
¸

³i,...,jrxi1 , . . . , xips � � � rxj1 , . . . , xjqs, ³i,...,j P K. (1.1)

We assume that 1 is a product of an empty set of commutators. We denote by B the set of

all proper polynomials in KxXy, that is, polynomials in the form (1.1). We also define the

spaces Bm as

Bm � B XKxx1, . . . , xmy, m � 1, 2, . . . , Γn � B X Pn, n � 0, 1, 2, . . . ,

i.e. Bm is the set of the proper polynomials in m variables and Γn is the set of all proper

multilinear polynomials of degree n.

If A is a PI-algebra, we denote by BpAq, BmpAq and ΓnpAq the images in

F pAq � KxXy{T pAq of the corresponding vector subspaces of KxXy.

The importance of proper polynomials for the study of polynomial identities is

presented in the following result which combines the Poincaré–Birkhoff–Witt theorem (or

PBW theorem) and the Witt theorems.
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Proposition 1.10. piq Let us choose an ordered basis of the free Lie algebra LpXq

x1, x2, . . . , rxi1 , xi2s, rxj1 , xj2s, . . . , rxk1
, xk2

, xk3
s, . . . ,

consisting of the variables x1, x2, . . . and some commutators, such that the variables

precede the commutators. Then the vector space KxXy has a basis

xa1

1
� � �xam

m rxi1 , xi2s
b � � � rxl1 , . . . , xlps

c,

where a1,. . . , am, b,. . . , c ¥ 0 and rxi1 , xi2s   � � �   rxl1 , . . . , xlps in the ordering of

the basis of LpXq. The basis elements of KxXy with a1 � � � � � am � 0 form a basis

for the vector space B of the proper polynomials.

piiq If R is a unitary PI-algebra over an infinite field K, then all polynomial identities

of R follow from the proper ones (i.e. from those in T pRq XB). If char K � 0, then

the polynomial identities of R follow from the proper multilinear identities (i.e. from

those in T pRq X Γn , n � 2, 3, . . . ).

Proposition 1.11. A basis of the vector space Γn of all proper multilinear polynomials of

degree n ¥ 2 consists of the following products of commutators

rxi1 , . . . , xiks � � � rxj1 , . . . , xjls,

where:

piq All products are multilinear in the variables x1,. . . , xn;

piiq Each factor rxp1
, xp2

, . . . , xps
s is a left normed commutator of length ¥ 2 and the

maximal index is in the first position, i.e. p1 ¡ p2, . . . , ps;

piiiq In each product the shorter commutators precede the longer, i.e. in the beginning of

the statement of the theorem k ¤ � � � ¤ l;

pivq If two consecutive factors are commutators of equal length, then the first variable of

the first commutator is smaller that the first variable in the second one, i.e.

� � � rxp1
, xp2

, . . . , xps
srxq1

, xq2
, . . . , xqs

s � � �

satisfies p1   q1.

1.5.1 Y-Proper Polynomials

Definition 1.24. Let KxY, Zy be the unitary free algebra, and denote by BpY q the unitary

subalgebra of KxY, Zy generated by the elements from Z and all non-trivial commutators.

The elements of BpY q are called Y -proper polynomials.
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For the following result, we consider the free G-graded algebra KxXGy, where

for XG �
¤
gPG

Xg, we consider the decomposition: X1G
� Y and Z �

¤
gPGz1G

Xg.

Proposition 1.12. Let A be a unitary G-graded K-algebra.

piq If K is an infinite field, then IdGpAq is generated, as a TG-ideal, by Y -proper

polynomials.

piiq If K has characteristic zero, then IdGpAq is generated, as a TG-ideal, by multilinear

Y -proper polynomials.

Proof. Let f be a graded identity of A. If K is an infinite field, then we can assume

f � fpy1, . . . , ym, z1, . . . , zmq to be multihomogeneous, we can write f in the form

f �
¸

α�pα1,...,αmq

¼αy
α1

1
� � � yαm

m Éαpy1, . . . , ym, z1, . . . , zmq, ¼α P F,

where Éαpy1, . . . , ym, z1, . . . , zmq is a linear combination of

z
β1

1 � � � zβn

n rui1 , ui2s
τ � � � rul1 , . . . , ulps

σ, uij P X
G.

If no variable y appears in f , then f is already Y -proper.

Suppose that y1 appears in f . Since fp1 � y1, y2, . . . , ym, z1, . . . , zmq is also a

graded polynomial identity of A, we have

0 � fp1� y1, y2, . . . , ym, z1, . . . , zmq

�
¸

α�pα1,...,αmq

¼αpy1 � 1qα1yα2

2
� � � yαm

m Éαpy1 � 1, . . . , ym, z1, . . . , zmq

�
¸

α�pα1,...,αmq

¼α

�
α1̧

k

�
³1

k



yk

1

�
yα2

2
� � � yαm

m Éαpy1, . . . , ym, z1, . . . , zmq.

The homogeneous component of minimal degree with respect to y1 is obtained from the

summands with ³1 maximal among those with ¼α � 0. Since the TG-ideal IdGpAq is

homogeneous, we obtain that¸
α1 max

¼αy
α2

2
� � � yαm

m Éαpy1, . . . , ym, z1, . . . , zmq � 0.

Multiplying from the left this polynomial identity by yα1

1
and subtracting the product

from f , we obtain an identity which is similar to f but involving lower values of ³1.

By induction¸
α1 fixed

¼αy
α2

2
� � � yαm

m Éαpy1, . . . , ym, z1, . . . , zmq P IdGpAq.
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Proceeding in the same way with the other variables y2,. . . , ym, we conclude that

Éαpy1, . . . , ym, z1, . . . , zmq P IdGpAq.

In this way we prove the first statement. The second follows directly by the fact that the

base field is of characteristic 0.

A similar argument can be considered in the case of G-algebras with graded

involution. To keep notation simple we consider the case of superalgebras.

Proposition 1.13. Let A be a unitary Z2-graded K-algebra with graded involution. Let

KxY0, Y1, Z0, Z1y be the free associative Z2-graded algebra with involution, where Y0 is

the set of symmetric variables of even degree, Y1 is the set of symmetric variables of

odd degree, Z0 is the set of skew-symmetric variables of even degree and Z1 is the set of

skew-symmetric variables of odd degree.

piq If K is an infinite field, then Id�GpAq is generated, as a T �
G-ideal, by Y0-proper

polynomials.

piiq If K has characteristic zero, then Id�GpAq is generated, as a T �
G-ideal, by multilinear

Y0-proper polynomials.

1.6 Finite dimensional representations of groups

Our main objective is to consider representations of the symmetric group Sn,

as well as the action of the symmetric group on the space of multilinear polynomials in n

variables and some consequences applied to T-ideals. Partitions and Young tableaux will

play an important role in our study.

Let V be a vector space over a field K and let GLpV q be the group of invertible

endomorphisms of V . We will consider that the field K has characteristic zero.

Definition 1.25. A representation of a group G on V is a homomorphism of groups

Ä : GÑ GLpV q.

Given Ä a representation of a group G on V , we can consider V as a left

G-module in the following way: gv � Äpgqpvq for all g P G, v P V .

Definition 1.26.

(i) If Ä : G Ñ GLpV q and Ä1 : G Ñ GLpW q are two representations of a group G, we

say that Ä and Ä1 are equivalent, and we write Ä � Ä1, if V and W are isomorphic as

G-modules.
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(ii) A representation Ä : G Ñ GLpV q is irreducible if V is an irreducible G-module. Ä is

completely reducible if V is the direct sum of irreducible submodules.

Theorem 1.4 (Maschke). Let G be a finite group. Then the group algebra KG is semisimple

and

KG �Mn1
pD1q ` � � � `Mnk

pDkq

where D1, . . . , Dk are finite dimensional division algebras over K.

Maschke’s theorem holds in a more general situation: when the characteristic p

of the field K does not divide |G|.

Considering G a finite group, we have thatKG is a finite dimensional semisimple

algebra, then every one-side ideal of KG is generated by an idempotent. If a P A is such

that a2 � ³a for some ³ � 0, we say that a is an essential idempotent of A.

Definition 1.27. An idempotent is minimal if it generates a minimal one-sided ideal.

Proposition 1.14. If M is an irreducible representation of G, then M � Ji, a minimal

left ideal of Mni
pDiq, for some i P 1, . . . , k. Hence there exists a minimal idempotent

e P KG such that M � KGe.

Definition 1.28. Let Ä : GÑ GLpV q be a representation of G. Then the map

Çρ : GÑ K, Çρpgq � trpÄpgqq,

is called the character of the representation Ä and dim V � degÇρ is called the degree of

the character Çρ. The character Çρ is irreducible if Ä is irreducible.

Remark 1.3. If ϕ and È are two finite dimensional representations of the group G then

Çφ`ψ � Çφ � Çψ and Çφbψ � Çφ � Çψ.

The knowledge of characters is crucial as it reveals a wealth of information about

representations. Remarkably, the number of irreducible representations, a key property in

ring theory, is uniquely determined by a fundamental group property.

Theorem 1.5. Let G be a finite group and let the field K be algebraically closed.

(i) Every finite dimensional representation of G is determined up to isomorphism by its

character.

(ii) The number of the non-isomorphic irreducible representations of G is equal to the

number of conjugacy classes of G.
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1.6.1 Sn-representations

Now, we shift our focus to representations of the symmetric group Sn. We

introduce the concepts of Young Diagrams and Tableaux, highlighting their significance

in the analysis of Sn-modules. A particular emphasis will be placed on the study of PI-

algebras, where we study the space of multilinear polynomials endowed with an Sn-module

structure and examine their corresponding characters.

Definition 1.29. A partition of the non-negative integer m (notation ¼ $ m or |¼| � m)

is a sequence of integers ¼ � p¼1, . . . , ¼rq such that

¼1 ¥ � � � ¥ ¼r ¥ 0 and ¼1 � � � � � ¼r � m.

We assume that two partitions ¼ � p¼1, . . . , ¼rq and µ � pµ1, . . . , µsq are equal if, for some

k

¼1 � µ1, . . . , ¼k � µk, ¼k�1 � � � � � ¼r � µk�1 � � � � � µs � 0.

When ¼ � p¼1, . . . , ¼k1�����kp
q and

¼1 � � � � � ¼k1
� µ1, . . . , ¼k1�����kp�1�1 � � � � � ¼k1�����kp

� µp,

we adopt the notation

¼ � pµk1

1
, . . . , µkp

p q.

Given Ã P Sn, we have a unique decomposition of the form

Ã � Ã1Ã2 � � �Ãt

where Ã1, Ã2, . . . , Ãt are independent cycles of lengths ¼1 ¥ ¼2 ¥ � � � ¥ ¼r ¥ 1, respectively.

Furthermore, since the conjugacy class of Ã in Sn is determined by these cycle lengths,

the partition ¼ � p¼1, ¼2, . . . , ¼rq determines the conjugacy class of Ã.

Definition 1.30. The Young diagram r¼s of the partition ¼ � p¼1, . . . , ¼rq is the set of

all knots (points, or square boxes) pi, jq P Z2, such that 1 ¤ j ¤ ¼i, i � 1, . . . , r.

It is convenient to represent the Young diagrams graphically as follows. We

replace the knots with square boxes such that the first coordinate i (the index of the

row) increases from top to bottom and the second coordinate j (the index of the column)

increases from left to right. For example, the diagram of the partition ¼ � p5, 32, 2q is

given in the figure below.

r¼s �
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Definition 1.31. piq A Young tableau Tλ of the diagram r¼s with m boxes is a filling

of the boxes of r¼s with the positive integers 1,2,. . . ,m without repetitions. If ¼ is a

partition of m and Ä P Sm, we denote by TλpÄq the tableau such that its first column

contains the integers Äp1q, . . . , Äpk1q written in this order from top to bottom, the

second column contains consequently written Äpk1 � 1q, . . . , Äpk1 � k2q, etc.

piiq The tableau Tλ is called standard, if the integers written in each column and each

row increase, respectively, from top to bottom and from left to right.

For example, for ¼ � p4, 3, 1q,

Ä �

�
1 2 3 4 5 6 7 8

3 4 5 8 2 1 6 7

�
, Ä1 �

�
1 2 3 4 5 6 7 8

1 3 6 2 4 5 7 8

�
,

the tableau TλpÄq is not standard and the tableau TλpÄ1q is standard:

TλpÄq �

3 8 1 7

4 2 6

5

TλpÄ1q �

1 2 5 8

3 4 7

6

Given any tableau Tλ of shape ¼ $ n, we denote by Tλ � Dλpai,jq, where ai,j

is the integer in the pi, jq box. Then, we define the row and column stabilizers as follows.

Definition 1.32. The row stabilizer of Tλ is the subgroup RpTλq of all permutations Ä in

Sm, such that i and Äpiq are in the same row of Tλ, i � 1, . . . , m. That is,

RpTλq � Sλ1
pa1,1, a1,2, . . . , a1,λ1

q � � � � � Sλr
par,1, ar,2, . . . , ar,λr

q

where Sλi
pai,1, ai,2, . . . , ai,λi

q denotes the symmetric group acting on the following symbols:

ai,1, ai,2, . . . , ai,λi
.

Definition 1.33. The column stabilizer of Tλ is the subgroup CpTλq of all permutations Ä

in Sm, such that i and Äpiq are in the same column of Tλ, i � 1, . . . ,m. That is,

CpTλq � Sλ1
1
pa1,1, a2,1, . . . , aλ1

1
,1q � � � � � Sλ1spa1,λ1

, a2,λ1
, . . . , aλ1s,λ1

q

where ¼1 � p¼1
1
, . . . , ¼1sq is the conjugate partition of ¼.

Definition 1.34. For a given tableau Tλ, define

eTλ
�

¸
ρPRpTλq

¸
γPCpTλq

psign µqÄµ.

It can be shown that e2

Tλ
� aeTλ

, where a �
n!

dλ
�
¹
i,j

hij is a non-zero integer.

So, eTλ
is an essential idempotent of KSn.

For each partition ¼ of m we denote by Mp¼q and Çλ the corresponding

irreducible Sm-module and its character, respectively.
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Theorem 1.6. Let K be any field of characteristic 0 and let Ä P Sm. For a partition

¼ � p¼1, . . . , ¼rq of m, let T � TλpÄq be the corresponding Young tableau, and let RpT q

and CpT q be, respectively, the row and column stabilizers of T . Consider the element of

the group algebra KSm

eTλ
�

¸
ρPRpTλq

¸
γPCpTλq

psign µqÄµ.

(i) Up to a multiplicative constant the element of KSm, eTλ
is a minimal idempotent

which generates a submodule of KSm isomorphic to Mp¼q.

(ii) The sum of all left Sm-modules KSmeTλ
, where Tλ runs over the set of standard

¼-tableaux, is direct. It is equal to the minimal two-sided ideal Ip¼q of KSm corre-

sponding to ¼, and

KSm �
à
λ$m

Ip¼q.

(iii) The dimension dλ � dimMp¼q of Mp¼q is given by the hook formula

dimMp¼q �
m!±

p¼i � ¼1j � i� j � 1q
,

where ¼1
1
, . . . , ¼1r, are the lengths of the columns of r¼s and the product in the denom-

inator is on all boxes of r¼s. The dimension dimMp¼q is equal also to the number

of standard ¼-tableaux TλpÄq, Ä P Sm.

For example, if ¼ � pmq, then the diagram of ¼ has one row only and for any

pmq-tableau T

RpT q � Sm, CpT q � 1.

Hence the one-dimensional trivial Sm-module Mp¼q is spanned by the element

eTλ
�
¸
ρPSm

Ä.

In the other extreme case ¼ � p1mq we have RpT q � 1, CpT q � Sm. The one-dimensional

Sm-module Mp1mq corresponds to the sign representation and is spanned by

eTλ
�
¸
γPSm

psign µqµ.

Lemma 1.1. Let M be an irreducible left Sn-module with character ÇpMq � Çλ, ¼ $ n.

Then M can be generated as an Sn-module by an element of the form eTλ
f for some f PM

and some Young tableau Tλ of shape ¼. Moreover, for any Young tableau T �
λ of shape ¼

there exist f 1 PM such that M � KSneT�
λ
f 1.
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Lemma 1.2. Let Tλ be a Young tableau corresponding to ¼ $ n and let M be an Sn-module

such that M � M1 ` � � � `Mm where M1, . . . , Mm are irreducible Sn-submodules with

character Çλ. Then m is equal to the maximal number of linearly independent g PM such

that Ãg � g for all Ã P RTλ
.

All the above considerations hold, formally speaking, for K an algebraically

closed field of characteristic 0. But it is well known that the irreducible representations of

Sn over the rational numbers Q are absolutely irreducible (that is they remain irreducible

under field extensions). This means the above statements concerning the representations

of Sn hold for every field of characteristic 0.

Now, we consider A a PI-algebra and IdpAq its T-ideal of identities. We know

that in characteristic zero, the T-ideal IdpAq is determined by its multilinear polynomials.

Define the map

ϕ : KSn Ñ Pn,
¸
σPSn

³σÃ ÞÑ
¸
σPSn

³σxσp1q � � �xσpnq.

ϕ is a linear isomorphism, so we use the same notation for an element f P KSn and its

image in Pn.

Let xi1xi2 � � �xin a monomial and Ä P Sn, and consider the right action

pxi1xi2 � � �xinqÄ
�1 � xiτp1qxiτp2q � � �xiτpnq .

For example, if n � 4, xi1xi2xi3xi4 � x2x3x1x4 and Ä � p1234q, then

px2x3x1x4qÄ
�1 � pxi1xi2xi3xi4qÄ

�1 � xi2xi3xi4xi1 � x3x1x4x2.

We also can consider a left action given by

Ãpxi1xi2 � � �xinq � xσpi1qxσpi2q � � �xσpinq.

Since T-ideals are invariant under permutations of the variables, we obtain that PnX IdpAq

is a left Sn-submodule of Pn. Thus,

PnpAq �
Pn

Pn X IdpAq

has a structure of left Sn-module.

Definition 1.35. For n ¥ 1, the Sn-character of PnpAq � Pn{pPn X IdpAqq is called the

n-th cocharacter of A and is denoted by ÇnpAq.

Decomposing the n-th cocharacter into irreducibles, we obtain

ÇnpAq �
¸
λ$n

mλÇλ,

where Çλ and mλ ¥ 0 is the corresponding multiplicity. For details about cocharacters, see

[16].
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Theorem 1.7. Let A be a PI-algebra with nth cocharacter ÇnpAq �
¸
λ$n

mλÇλ. For a

partition µ $ n, the multiplicity mµ is equal to zero if and only if for any Young tableau

Tµ of shape µ and for any polynomial f � fpx1, . . . , xnq P Pn, the algebra A satisfies the

identity eTµ
f � 0.

1.6.2 GLmpKq-representations

We now shift our focus to representations of the group GLmpKq, specifically

examining its action on the free associative algebra of rank m. Our objective is to study the

equivalence between representations of the symmetric group and the general linear group,

acting on the space of multilinear polynomials and homogeneous polynomials, respectively.

Fix the vector space Vm with basis tx1, . . . , xmu and with the canonical action

of GLmpKq, and consider KxVmy � Kxx1, . . . , xmy.

Definition 1.36. Let ϕ be a finite dimensional representation of the general linear group

GLmpKq, i.e. ϕ : GLmpKq Ñ GLspKq for some s. The representation ϕ is polynomial

if the entries pϕpgqqpq of the s � s matrix ϕpgq are polynomials of the entries akl of g

for g P GLmpKq, k, l � 1, . . . , m, p, q � 1, . . . , s. The polynomial representation ϕ is

homogeneous of degree d if the polynomials pϕpgqqpq are homogeneous of degree d. The

GLmpKq-module W is called polynomial if the corresponding representation is polynomial.

Similarly one introduces homogeneous polynomial modules.

Theorem 1.8. (i) Every polynomial representation of GLmpKq is a direct sum of

irreducible homogeneous polynomial subrepresentations.

(ii) Every irreducible homogeneous polynomial GLmpKq-module of degree n ¥ 0 is

isomorphic to a submodule of pKxVmyq
pnq.

The irreducible homogeneous polynomial representations of degree n ofGLmpKq

are characterized by partitions of n with at most m parts and Young diagrams.

Theorem 1.9. (i) The non-isomorphic irreducible homogeneous polynomial GLmpKq-

representations of degree n ¥ 0 are in 1-1 correspondence with the partitions ¼ �

p¼1, . . . , ¼mq of n. We denote by Wmp¼q the irreducible GLmpKq-module related to

¼.

(ii) Let ¼ � p¼1, . . . , ¼mq be a partition of n. The GLmpKq-module Wmp¼q is isomorphic

to a submodule of pKxVmyq
pnq. The GLmpKq-module pKxVmyq

pnq has a decomposition

pKxVmyq
pnq �

¸
dλWmp¼q,

where dλ is the dimension of the irreducible Sn-module Mp¼q and the summation

runs over all partitions ¼ of n in not more than m parts.
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(iii) As a subspace of pKxVmyq
pnq, the vector space Wmp¼q is multihomogeneous. The

dimension of its multihomogeneous component W pn1,...,nmq
m is equal to the number of

semistandard ¼-tableaux of content pn1, . . . , nmq.

Let ¼ � p¼1, . . . , ¼mq be a partition of n and let q1, . . . , qk be the lengths of the

columns of the diagram r¼s. Denote by sλpx1, . . . , xqq, q � q1, the polynomial of KxVmy

sλpx1, . . . , xqq �
k¹
j�1

Stqj
px1, . . . , xqj

q,

where Stppx1, . . . , xpq is the standard polynomial.

Theorem 1.10. Let ¼ � p¼1, . . . , ¼mq be a partition of n in not more than m parts and

let pKxVmyq
pnq be the homogeneous component of degree n in KxVmy.

piq The element sλpx1, . . . , xqq, defined above, generates an irreducible GLmpKq-submodule

of pKxVmyq
pnq isomorphic to Wmp¼q.

piiq Every Wmp¼q � KxVmy
pnq is generated by a non-zero element

Éλpx1, . . . , xqq � sλpx1, . . . , xqq
¸
σPSn

³σÃ, ³σ P K.

The element Éλpx1, . . . , xqq is called the highest weight vector of Wmp¼q. It is unique

up to a multiplicative constant and is contained in the one-dimensional vector space

of the multihomogeneous elements of degree p¼1, . . . , ¼mq in Wmp¼q.

piiiq If the GLmpKq-submodules W 1 and W 2 of pKxVmyq
pnq are isomorphic to Wmp¼q and

have highest weight vectors É1 and É2, respectively, then the mapping ϕα : É1 ÞÑ ³É2,

0 � ³ P K, can be uniquely extended to a GLmpKq-module isomorphism. Every

isomorphism W 1 � W 2 is obtained in this way.

Proposition 1.15. Let ¼ � p¼1, . . . , ¼mq be a partition of n and let Wmp¼q � pKxVmyq
pnq.

The highest weight vector Éλ of Wmp¼q can be expressed uniquely as a linear combination of

the polynomials wσ � sλÃ
�1, where the Ã’s are such that the ¼-tableaux T pÃq are standard.

Proof. We know that

pKxVmyq
pnq �

¸
λ$n

dλWmp¼q

and dλ is equal to the number of standard ¼-tableaux. On the other hand, the homogeneous

component of degree ¼ � p¼1, . . . , ¼mq of each of the dλ copies of Wmp¼q is one-dimensional.

Hence the ¼-homogeneous component of the direct sum is of dimension equal to dλ. Now,

we will see that the polynomials Éσ, with T pÃq standard, are linearly independent. We

consider the lexicographic ordering on KxVmy assuming that x1 ¡ � � � ¡ xm. If T pÃq is a
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standard ¼-tableau, then its entries increase from top to bottom and from left to right,

then the leading term of Éσ is xλ1

1
� � �xλr

r Ã
�1. Hence the polynomials Éσ have pairwise

different leading terms for different T pÃq and are linearly independent.

Theorem 1.11. Let A be a PI-algebra and let

ÇnpAq �
¸
λ$n

mλpAqÇλ, n � 0, 1, 2, . . . ,

be the cocharacter of the T-ideal of A, and consider the relative free algebra FmpAq. If

m ¥ n and

F pnq
m pAq �

¸
λ$n

¸λpAqWmp¼q,

for some ¸λpAq, then mλ � ¸λ.

Example 1.7 ([15], Theorem 3.1). The cocharacter sequence of the T-ideal T pM2pKqq is

ÇnpM2pKqq �
¸
λ$n

mλÇλ, n � 0, 1, 2, . . . ,

where ¼ � p¼1, ¼2, ¼3, ¼4q and

(i) mpnq � 1;

(ii) mpλ1,λ2q � p¼1 � ¼2 � 1q¼2, if ¼2 ¡ 0;

(iii) mpλ1,1,1,λ4q � ¼1p2� ¼4q � 1;

(iv) mλ � p¼1 � ¼2 � 1qp¼2 � ¼3 � 1qp¼3 � ¼4 � 1q for all other partitions.

1.6.3 The action of Sn1
� Sn2

on Pn1,n2
pAq.

In the following chapters, we will explore the polynomial identities of certain

Z2-graded algebras. For this reason, we introduce the action of the group Sn1
� Sn2

on the

space of multilinear polynomials Pn1,n2
.

Since we are going to consider G � Z2, we write x
p0q
i � yi and x

p1q
i � zi. Let

us consider Pm,n the space of multilinear polynomials in the variables y1, . . . , ym and

z1, . . . , zn. Given a Z2-graded algebra A, denote by Pm,npAq the quotient space

Pm,npAq �
Pm,n

Pm,n X IdZ2
pAq

.

Consider n1, n2 ¥ 0 and the action of the group Sn1
� Sn2

on Pn1,n2
given by

pÉ, Äqfpy1, . . . , yn1
, z1, . . . , zn2

q � fpyωp1q, . . . , yωpn1q, zτp1q, . . . , zτpn2qq,

where pÉ, Äq P Sn1
� Sn2

and fpy1, . . . , yn1
, z1, . . . , zn2

q P Pn1,n2
.
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It is known that the irreducible Sn1
� Sn2

-characters are obtained from the

outer tensor product of irreducible characters of Sn1
and Sn2

. Therefore, we have that

there is a bijective correspondence between the irreducible characters of Sn1
� Sn2

and the

pairs of partitions p¼, µq, where ¼ $ s and µ $ t. We denote by Çλ b Çµ the irreducible

Sn1
� Sn2

-character associated to the pair of partitions p¼, µq.

Given a Z2-graded algebra A, the space Pn1,n2
pAq is a Sn1

� Sn2
-module, and

its character Çn1,n2
pAq is called the pn1, n2q-th (graded)-cocharacter of A. Therefore,

Çn1,n2
pAq �

¸
pλ,µq$pn1,n2q

mλ,µÇλ b Çµ, (1.2)

where mλ,µ is the multiplicity of Çλ b Çµ.

Similarly, if A is a �-algebra we define the pn1, n2q-th p�q-cocharacter of A.

Theorem 1.12 ([10], Lemma 2, Lemma 5). Let I be the T2-ideal of graded identities of

M1,1pKq, then

(1) I is generated by y1y2 � y2y1 and z1z2z3 � z3z2z1,

(2) Let Çn1,n2
pM1,1pKqq �

¸
pλ1,λ2q$pn1,n2q

mλ1,λ2
Çλ1

b Çλ2
be the pn1, n2q-cocharacter of

M1,1pKq. Then

(i) mλ1,H � 1, if ¼1 � pn1q $ n1;

(ii) for n2 ¡ 0, 0 ¤ r ¤
�n1

2

�
and 0 ¤ s ¤

�n2

2

�
, mλ1,λ2

� n1 � 1 � 2r, if

¼1 � pn1 � r, rq $ n1, ¼2 � pn2 � s, sq $ n2.

1.6.4 The action of Sn1
� Sn2

� Sn3
� Sn4

on Pn1,n2,n3,n4
pAq.

We consider the characters of Z2-graded algebras with graded involutions. So

we can consider Pn1,n2,n3,n4
the space of multilinear polynomials in symmetry variables

of degree 0, skew-symmetry variables of degree 0, symmetry variables of degree 1 and

skew-symmetry variables of degree 1.

Given a Z2-graded algebra A with a graded involution, denote by Pn1,n2,n3,n4
pAq

the quotient space

Pn1,n2,n3,n4
pAq �

Pn1,n2,n3,n4

Pn1,n2,n3,n4
X Id�Z2

pAq
.

We examine the action of Sn1
� Sn2

� Sn3
� Sn4

on Pn1,n2,n3,n4
pAq.

Consider n1, n2, n3, n4 ¥ 0 and the action of the group Sn1
� Sn2

� Sn3
� Sn4

on Pn1,n2,n3,n4
given by

pÉ, Ã, Ä, Äqfpy1, . . . , yn1
, u1, . . . , un2

, z1, . . . , zn3
, v1, . . . , vn4

q

� fpyωp1q, . . . , yωpn1q, uσp1q, . . . , uσpn2q, zτp1q, . . . , zτpn3q, vρp1q, . . . , vρpn4qq,
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where pÉ, Ã, Ä, Äq P Sn1
� Sn2

� Sn3
� Sn4

and f P Pn1,n2,n3,n4
.

As in the case of Sn1
� Sn2

, the Sn1
� Sn2

� Sn3
� Sn4

-characters are obtained

from the outer tensor product of irreducible characters of Sn1
, Sn2

, Sn3
and Sn4

, and we

have 1-1 correspondence between the irreducible characters of Sn1
� Sn2

� Sn3
� Sn4

and

the 4-tuples of partitions pÉ, Ã, Ä, Äq, where É $ n1, Ã $ n2, Ä $ n3 and Ä $ n4. We denote

by Çω b Çσ b Çτ b Çρ the irreducible Sn1
� Sn2

� Sn3
� Sn4

-character associated to the

4-tuple of partitions pÉ, Ã, Ä, Äq.

Let A be a Z2-graded algebra with graded involution. The space Pn1,n2,n3,n4
pAq

is a Sn1
�Sn2

�Sn3
�Sn4

-module, and its character Çn1,n2,n3,n4
pAq is the pn1, n2, n3, n4q-th

cocharacter of A. Thus,

Çn1,n2,n3,n4
pAq �

¸
pω,σ,τ,ρq$pn1,n2,n3,n4q

mω,σ,τ,ρÇω b Çσ b Çτ b Çρ, (1.3)

where mω,σ,τ,ρ is the multiplicity of Çω b Çσ b Çτ b Çρ.

1.7 Grassmann algebras

Definition 1.37. Let V be a vector space with ordered basis tei : i P Iu, with I an ordered

set of index. The Grassmann (or exterior) algebra EpV q of V is the associative algebra

generated by tei : i P Iu and with defining relations

eiej � ejei � 0, i, j P I,

(and e2

i � 0 if charK � 2). Then EpV q is isomorphic to the algebra KxXy{J , where

X � txi : i P Iu and the ideal J is generated by xixj � xjxi, i, j P I. If dim V is countable,

we assume that V has a basis te1, e2, . . . u and denote EpV q by E.

The polynomial identities for the Grassmann algebra E were described by

Krakowski and Regev [27], and its cocharacters by Olsson and Regev [29].

Theorem 1.13. Let charK � 0 and let E be the Grassmann algebra of an infinite

dimensional vector space. The T-ideal T pEq is generated by rx1, x2, x3s.

Theorem 1.14. Let E be the Grassmann algebra of an infinite dimensional vector space.

Then the cocharacter sequence of the polynomial identities of E is

ÇnpEq �
n�1̧

k�0

Çpn�k,1kq.

We are especially interested in the Grassmann algebra as a Z2-graded algebra

considering the canonical Z2-grading given by E � E0 `E1, where E0 is the set generated

by all monomials in the variables ei of even length and E1 is the set generated by all

monomials in the variables ei of odd length.
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Definition 1.38. Denote by iE and �iE the superinvolutions on E induced by the identity

map on the generators ei of E as follows:

• eiEi � ei and e�iEi � �ei,

• pabqiE � p�1q|a||b|biEaiE and pabq�iE � p�1q|a||b|b�iEa�iE , for a, b homogeneous

elements of E.

Remark 1.4. Note that for ei1 , ei2 , . . . , ein generator elements of E we have

einein�1
� � � ei1 � ¼nei1ei2 � � � ein

where

¼n �

$&%1 if n � 2n1 or n � 2n1 � 1, with n1 even,

�1 if n � 2n1 or n � 2n1 � 1, with n1 odd.

Also,

pei1ei2 � � � einq
iE � Äneinein�1

� � � ei1 where Ä2 � Ä3 � �1, Än � �Än�2 for n ¥ 4.

Therefore, Än � ¼n and the superinvolution iE is equal to the identity function on E. In

the case of �iE we have

�iEpaq � a, �iEpcq � �c, for a P E0, c P E1.

The results regarding the identities and characters of E as a superalgebra were

given in [21].

Theorem 1.15. For the canonical Z2-grading of the Grassmann algebra, it holds that:

(i) IdZ2
pEq � xry1, y2s, ry1, z1s, z1z2 � z2z1yT ;

(ii) Çr,n�r � Çprq b Çp1n�rq, for every r ¥ 0.

In [13], other Z2-gradings for the Grassmann algebra were considered, and their

identities along with their corresponding characters were computed. In the case of the

algebra M1,1pEq, its graded identities and cocharacters were described by Di Vincenzo in

[10] as follows:

Theorem 1.16. Let J be the TZ2
-ideal of graded identities of M1,1pEq, then

(1) J is generated by y1y2 � y2y1 and z1z2z3 � z3z2z1,

(2) Let

Çn1,n2
pM1,1pEqq �

¸
pλ1,λ2q$pn1,n2q

mλ1,λ2
Çλ1

b Çλ2

be the pn1, n2q-cocharacter of M1,1pEq. Then
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(i) mλ1,H � 1, if ¼1 � pn1q $ n1;

(ii) for n2 ¡ 0, 0 ¤ r ¤
�n1

2

�
and 0 ¤ s ¤

�n2

2

�
, mλ1,λ2

� n1 � 1 � 2r, if

¼1 � pn1 � r, rq $ n1, ¼2 � p2s, 1n2�2sq $ n2.
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2 Identities of an algebra of upper triangular

matrices

Consider A the subalgebra of UT3pKq given by

A � Kpe1,1 � e3,3q `Ke2,2 `Ke1,2 `Ke2,3 `Ke1,3,

where ei,j denote the matrix units, that is, A consists of the matrices

���d a c

0 g b

0 0 d

��
.

The polynomial identities of A were described by Gordienko in [23]. Furthermore,

in [25] the authors considered the generic algebra of M1,1pEq in two generators, and it was

shown that its polynomial identities are the same as the identities of A. We are interested in

the identities of the algebra A when considering additional structures (grading, involution,

etc.), with the aim of determining a new PI-equivalence like in the case of traditional

polynomial identities. Here we point out that the research in [25] was motivated by a

question posed by A. Berele, about the centre of the generic algebra of M1,1pEq in d ¥ 2

generators. It is well known that the algebra generated by d generic matrices for MnpKq

is a (noncommutative) domain. hence its centre is a commutative domain, and can me

embedded into its field of fractions. Several very important questions in PI theory could be

solved by using this simple trick; we will not enter into details about these as this thesis is

not related to such problems.

The algebra A, with involution, is also considered in [28]. Here we first study

the gradings on the algebra A, given by an abelian group. Additionally, we determine

a basis for the Z2-graded identities of A, for the identities with involution, and for the

Z2-graded identities with graded involution. We also determine its cocharacters sequence.

2.1 Gradings on A

We want to characterize the gradings on A starting from elementary gradings.

As the main result of this section, we have that the gradings on the algebra A are equivalent

to elementary gradings.

Definition 2.1. Given a triple ĝ � pg1, g2, g3q of elements of an arbitrary group G and

1 ¤ i, j ¤ 3, we set the degrees for the unitary matrices as deg ei,j � g�1

i gj for i � j

or i � j � 2 , and degpe1,1 � e3,3q � 1G. Given g P G let Ag � Spantei,j | g
�1

i gj � gu

for g � 1G and A1G
� Span

�
tei,j | g

�1

i gj � 1Gu Y te1,1 � e3,3u
�
. Then A �

à
gPG

Ag is a

G-grading of A called the elementary G-grading defined by the 3-tuple ĝ.
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We start considering the idempotents of the algebra A.

If e �

���x a c

0 y b

0 0 x

��
� 0 and e2 � e then

���x
2 apx� yq 2xc� ab

0 y2 bpx� yq

0 0 x2

��
�

���x a c

0 y b

0 0 x

��
which

implies that x, y P t0, 1u where x and y are not simultaneously zero. So, we consider the

following cases:

• If x � 0, y � 1 then e �

���0 a ab

0 1 b

0 0 0

��
. Let q �

���1 �a 0

0 1 b

0 0 1

��
and note that qeq�1 �

���0 0 0

0 1 0

0 0 0

��
.

• If x � 1, y � 0 then e �

���1 a �ab

0 0 b

0 0 1

��
. Let q �

���1 a 0

0 1 �b

0 0 1

��
, so qeq�1 �

���1 0 0

0 0 0

0 0 1

��
.

• If x � 1, y � 1 then e �

���1 0 0

0 1 0

0 0 1

��
.

Therefore we have the following result.

Proposition 2.1. If e P A is an idempotent element, then e is conjugated with a diagonal

element of A.

Remark 2.1. Note that if we have two orthogonal idempotent elements, then each one of

these is conjugated to an element of the set tpe1,1 � e3,3q, e2,2u.

Remark 2.2. Let A �
à
gPG

Ag be graded by an abelian group. Since for g, h P G, rAg, Ahs �

Agh � Ahg � Agh, it follows that the commutator subalgebra rA,As is a nilpotent non-zero

graded ideal of A.

Lemma 2.1. Let A �
à
gPG

Ag be graded by an abelian group G with identity element

1G P G. Then A1G
contains 2 orthogonal idempotents.

Proof. Let E be the identity element of A. Since E P A1G
, there exists a non trivial

maximal semisimple subalgebra B of A1G
. Let C be one of the simple summands of B

and let e be its unit element.

We know that e is conjugated to a diagonal idempotent. Hence either e and

E � e are two orthogonal idempotents or e � E and C � B � SpanE.
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Consider the case e � E and B � SpanE, we want to show that this case is

not possible.

First, note that any homogeneous element of A is either nilpotent or invertible.

In fact, suppose that a P Ag is not nilpotent. For m large enough the elements

a, a2,. . . , am are linearly dependent and homogeneous. It follows that g must have finite

order k and ak P A1G
. Moreover being not nilpotent the element ak does not lie in the

Jacobson radical JpA1G
q of A1G

. Since A1G
{JpA1G

q � F � E, it follows that ak � ¼E is

nilpotent for some ¼ P F , ¼ � 0. This means that ak and hence also a is invertible.

Next we prove that the Jacobson radical JpAq of A, i.e. the subalgebra of all

strictly upper-triangular matrices does not contain non-zero homogeneous elements. JpAq

is homogeneous in the G-grading since φpJpAqq � JpAq for any φ P AutA.

In fact suppose by contradiction that 0 � a P Ag is nilpotent and consider its

left annihilator La � tx P A : xa � 0u and right annihilator Ra � tx P A : ax � 0u, these

are graded subspaces of A. Then, as the elements of La and Ra are zero divisors they are

not invertible, hence they are nilpotent. By our hypothesis a is nilpotent, a �

���0 a1 a3

0 0 a2

0 0 0

��

and a2 �

���0 0 a1a2

0 0 0

0 0 0

��
. Note that, if a2 � 0, a2 P Agg and then e2,2 P La2 , a contradiction.

Now, if a2 � 0 then a �

���0 a1 a3

0 0 0

0 0 0

��
or a �

���0 0 a3

0 0 a2

0 0 0

��
, so e2,2 P La or e2,2 P Ra, again

a contradiction. Therefore, JpAq has no homogeneous elements. But this cannot happen

because rA,As � JpAq.

Thus, we have e and E � e are two orthogonal idempotents belonging to

A1G
.

Lemma 2.2. Let A �
à
gPG

Ag be G-graded. Then the grading is elementary if and only if

all matrix units ei,j, 1 ¤ i   j ¤ 3, e2,2 and pe1,1 � e3,3q are homogeneous.

Proof. If the G-grading is elementary then those matrices are homogeneous by definition.

Suppose that the said matrices are homogeneous. If we set g1 � 1G, g2 � deg e1,2 and

g3 � g2 deg e2,3 then the triple pg1, g2, g3q satisfies the conditions for the grading to be

elementary.

Lemma 2.3. Let A �
à
gPG

Ag be G-graded. Then the grading is elementary if and only if

the matrices e2,2 and pe1,1 � e3,3q belong to A1G
.
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Proof. It is clear that if the grading is elementary then e2,2, pe1,1 � e3,3q P A1G
.

Now, assume that e2,2, pe1,1 � e3,3q P A1G
and note that

• e1,2 P pe1,1 � e3,3qAe2,2 with dimpe1,1 � e3,3qAe2,2 � 1,

• e2,3 P e2,2Ape1,1 � e3,3q with dim e2,2Ape1,1 � e3,3q � 1,

• e1,3 P pe1,1 � e3,3qApe1,1 � e3,3q � Kpe1,1 � e3,3q `Ke1,3.

Since pe1,1�e3,3qAe2,2, pe1,1�e3,3qApe1,1�e3,3q and e2,2Ape1,1�e3,3q are graded subalgebras

then we can conclude that the elements e1,2, e1,3 and e1,2 are homogeneous. Thus, by

Lemma 2.2 the grading is elementary.

Lemma 2.4. Let A �
à
gPG

Ag be G-graded. Then there exist two orthogonal idempotents

that are simultaneously diagonalizable and belonging to A1G
.

Proof. Suppose A is G-graded, then the identity matrix E is homogeneous.

Also J , the Jacobson radical of A is homogeneous. So is J2 � spanpe13q. By

Wedderburn-Malcev theorem, A � K �K � J , direct sum of vector spaces, where K �K

is a subalgebra. Hence we have two orthogonal idempotents. We show we can choose these

homogeneous and simultaneously diagonalizable.

First take the intersection of the left and right annihilators of J2, it is homoge-

neous. But this is exactly the span spanpe1,2, e1,3, e2,3, e2,2q. There exists an idempotent in

it, and all idempotents in it are of the form

���0 a ac

0 1 c

0 0 0

��
.

Suppose the element above is the homogeneous idempotent, call it t. Now,

considering A acting in a 3-dimensional vector spaces with base te1, e2, e3u, then

te1 � 0, te2 � ae1 � e2, te3 � ace1 � ce2.

Now consider the basis f1, f2, f3 such that tf1 � 0, tf2 � f2, tf3 � 0. Such basis can be

obtained as

f1 � e1, f2 � ae1 � e2, f3 � �ce2 � e3.

(f1 and f3 are a basis of the kernel of t, and f2 of its image.)

The change of basis (matrix) is P �

���1 a 0

0 1 �c

0 0 1

��
.

Form I � t, this is an idempotent which is orthogonal to t, and clearly the same

P diagonalizes it. As t is homogeneous and I is, then I � t is homogeneous.
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Theorem 2.1. Let G be an abelian group and K a field. Suppose that the K-algebra

A �
à
gPG

Ag is G-graded. Then A, as a G-graded algebra, is isomorphic to A with an

elementary G-grading.

Proof. Let A �
à
gPG

Ag be G-graded. By Lemma 2.1 the homogeneous component A1G

contains two orthogonal idempotents. Now, by Remark 2.1 one of this idempotents is

conjugate to e2,2 by some h P A. So as a G-graded algebra A is isomorphic to A1 �
à
gPG

A1
g

where A1
g � h�1Agh. Note that in A1 the unit matrix e2,2 and the matrix identity E lie in

A1
1
. Therefore, by Lemma 2.3 A1 has an elementary G-grading.

Another possible proof of Theorem 2.1 can be given as follows.

Proof. Let A �
à
gPG

Ag be G-graded. By Lemma 2.4 the homogeneous component A1G

contains two orthogonal idempotents simultaneously diagonalizable by a element P . So as

a G-graded algebra A is isomorphic to A1 �
à
gPG

A1
g where A1

g � P�1AgP . Note that in A1

the unit matrix e2,2 and the matrix identity E lie in A1
1
. Therefore, by Lemma 2.3 A1 has

an elementary G-grading.

Next, we will consider the graded identities of the algebra A, where the grading

is given by the group Z2. We can view A as a Z2-graded algebra with gradings

A0 �

$'&'%
���d 0 c

0 g 0

0 0 d

��

,/./- , A1 �

$'&'%
���0 a 0

0 0 b

0 0 0

��

,/./- , (2.1)

or

A0 �

$'&'%
���d a 0

0 g 0

0 0 d

��

,/./- , A1 �

$'&'%
���0 0 c

0 0 b

0 0 0

��

,/./- , (2.2)

or

A0 �

$'&'%
���d 0 0

0 g b

0 0 d

��

,/./- , A1 �

$'&'%
���0 a c

0 0 0

0 0 0

��

,/./- . (2.3)

Denote by A1 the graded algebra A with grading given by (2.1), A2 the graded algebra A

with grading given by (2.2) and A3 the graded algebra A with grading given by (2.3).

Remember that, given a group G, for each g P G, we consider the set of variables

Xg � tx
pgq
1 , x

pgq
2 , . . . u of homogeneous variables of degree g, XG �

¤
gPG

Xg, and the free

associative algebra KxXGy as a G-graded algebra. We are going to consider G � Z2 and

we write x
p0q
i � yi and x

p1q
i � zi. Let us consider Pm,n the space of multilinear polynomials
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in the variables y1, . . . , ym and z1, . . . , zn. Given a Z2-graded algebra A, denote by Pm,npAq

the quotient space

Pm,npAq �
Pm,n

Pm,n X IdZ2
pAq

.

2.2 Graded polynomial identities of A1

It is easy to see that the followings are graded identities of A1.

(a) ry1, y2s � 0,

(b) z1z2z3 � 0,

(c) ry1, z1z2s � 0.

The Identity (c) is a direct consequence of Identity (a).

Note that Pm,npA
1q � 0 if n ¥ 3. By the identity (a) it is clear that

Pm,0pA
1q � Spanty1y2 � � � ymu. (2.4)

Case n � 1

Given a monomial µ in Pm,1pA
1q, from (a) we can reorder the variables yi such

that modulo IdpA1q

µ � yi1yi2 � � � yisz1yj1yj2 � � � yjt (2.5)

where i1   i2 � � �   is, j1   j2 � � �   jt and s� t � m, s, t ¥ 0.

Proposition 2.2. The monomials of the form (2.5) are linearly independent modulo

IdZ2
pA1q.

Proof. Let f be a sum of monomials of the form (2.5)

f �
¸
I,J

³I,Jyi1yi2 � � � yisz1yj1yj2 � � � yjt .

Note that if yik � ´ikpe1,1 � e3,3q, z1 � ¼e1,2 and yjl � ¸jle2,2 then

f �
¸
I,J

³I,J´i1´i2 � � � ´is¼¸j1¸j2 � � � ¸jt � e1,2.

Suppose that f is a polynomial identity of A1 and that there exist ³I0,J0
� 0. Consider the

evaluation yik � e1,1 � e3,3 for ik P I0, yjk � e2,2 for jk P J0 and z1 � e1,2, then ³I0,J0
� 0,

a contradiction. So, the monomials in the form (2.5) are linearly independent.
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Case n � 2

Given a monomial µ in Pm,2pA
1q, again from (a) we can reorder the variables

yi such that modulo IdZ2
pA1q

µ � yi1yi2 � � � yiszl1yj1yj2 � � � yjtzl2yh1
yh2

� � � yhr

where i1   i2 � � �   is, j1   j2 � � �   jt, h1   h2 � � �   hr and s� t� r � m, s, t, r ¥ 0.

As a consequence of (c) we have zl1yjzl2yh � yhzl1yjzl2 . Therefore, Pm,2pA
1q is

spanned by monomials in the form

yi1yi2 � � � yiszl1yj1yj2 � � � yjtzl2 (2.6)

where i1   i2 � � �   is, j1   j2 � � �   jt, and s� t � m, s, t ¥ 0.

Proposition 2.3. The monomials in the form (2.6) are linearly independent modulo

IdpA1q.

Proof. Note that if yhk
�

���ahk
0 chk

0 bhk
0

0 0 ahk

��
and zli �

���0 dli 0

0 0 eli

0 0 0

��
 then

yi1yi2 � � � yiszl1yj1yi2 � � � yjtzl2 � ai1 � � � aisdl1bj1 � � � bjtdl2 � e1,3.

Let f be a sum of monomials in the form (2.6)

f �
¸
I,J,L

³I,J,Lyi1yi2 � � � yiszl1yj1yj2 � � � yjtzl2

�
¸
I,J,L

³I,J,Lai1 � � � aisdl1bj1 � � � bjtel2 � e1,3.

Suppose that f is a polynomial identity of A1 and that there exist ³I0,J0,L0
� 0. Consider

the evaluation yik � e1,1 � e3,3 for ik P I0, yjk � e2,2 for jk P J0, zl1 � e1,2 and zl2 � e2,3.

Then, ³I0,J0,L0
� 0, a contradiction. So, the monomials in the form (2.6) are linearly

independent.

As a consequence of (2.4) Proposition 2.2 and Proposition 2.3, we have the

following result.

Theorem 2.2. The identities (a) and (b), form a basis for the Z2-graded identities for

the algebra A1.
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2.3 Graded polynomial identities of A2

Consider some products of homogeneous elements���x1 a1 0

0 y1 0

0 0 x1

��

���x2 a2 0

0 y2 0

0 0 x2

��
�
���x1x2 x1a2 � a1y2 0

0 y1y2 0

0 0 x1x2

��
,
���x a 0

0 y 0

0 0 x

��

���0 0 c

0 0 b

0 0 0

��
�
���0 0 xc� ab

0 0 yb

0 0 0

��
,
���0 0 c

0 0 b

0 0 0

��

���x a 0

0 y 0

0 0 x

��
�
���0 0 xc

0 0 xb

0 0 0

��
,
���0 0 c1

0 0 b1

0 0 0

��

���0 0 c2

0 0 b2

0 0 0

��
�
���0 0 0

0 0 0

0 0 0

��
.
Hence modulo IdpA2q we have that

zj1zj2 � 0 and ryi1 , yi2sryi3 , yi4s � 0 (2.7)

Again, our idea is considering the space Pm,n of multilinear polynomials in the variables

yi1 , yi2 , . . . , yim , zj1 , zj2 , . . . , zjn. Note that since zj1zj2 � 0, Pm,n � 0 if n ¥ 2. Thus we

consider the cases n � 0 and n � 1.

Case n � 0

By (2.7) we have that ryi1 , yi2sryi3 , yi4s � 0, then considering proper polynomials,

we have only sums of commutators. Also from (2.7) and since

rryi1 , yi2s, ryi3 , yi4ss � ryi1 , yi2 , yi3 , yi4s � ryi1 , yi2 , yi4 , yi3s,

given a commutator we can reorder the variables in the way ryk, yl, yi1 , yi2 , . . . , yim�2
s where

i1   i2   � � �   im�2, and by Jacobi identity we can only consider the case ryi1 , yi2 , . . . , yims

where i1 ¡ i2   i3   � � �   im�2.

Also, note that the subalgebra A2

0
is isomorphic to the algebra UT2pKq. So,

the polynomial ryi1 , yi2sryi3 , yi4s is a basis of the identities in the variables yi.
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Case n � 1

For this case, we consider proper polynomials, that is, sums of products of left

normed commutators.

Note that since ryi1 , yi2sryi3 , yi4s � 0 and we have only one zj then we can

consider sums of commutators with products of two commutators.

Now, since ryi1 , yi2s � ¿e1,2, then

zj1ryi1 , yi2s � 0. (2.8)

hence in the case when we have products of two commutators we get that zj1 lies in the

second commutator.

By direct computation, we also have the following identity:

rryi1 , yi2szj1 , yi3s � 0, (2.9)

Note that from (2.8) ryi1 , yi2 , zj1s � ryi1 , yi2szj1 and using the identity (2.9) we have

ryi1 , yi2 , zj1 , yi3s � 0. Therefore, if zj1 lies in a commutator É, that commutator has the

form É � rzj1 , yi1 , yi2 , . . . , yiks or É � ryi1 , yi2 , . . . , yik , zj1s � ryi1 , yi2 , . . . , yikszj1 .

Let us consider the case É � rzj1 , yi1 , yi2 , . . . , yiks. Note that by Jacobi identity

rzj1 , yi1 , yi2s� ryi1 , yi2 , zj1s� ryi2 , zj1 , yi1s � 0, then rzj1 , yi2 , yi1s � rzj1 , yi1 , yi2s� ryi1 , yi2szj1 .

So we can write the variables yi in any order in É.

If É � ryi1 , yi2 , . . . , yik , zj1s � ryi1 , yi2 , . . . , yikszj1 , as in the case Pm,0, we can

reorder the variables yi1 , yi2 , . . . , yik such that ryi1 , yi2 , . . . , yikszj1 is a linear combination

of polynomials ryil , yi1 , yi2 , . . . ,xyil , . . . , yisszj1 where il ¡ i1   i2   � � �   ik.

At this point, we have that if B is the space of proper polynomials in the

variables zj1 , yi1 , yi2 , . . . , yik , modulo IdZ2
pA2q, B is spanned by

• rzj1 , yi1 , yi2 , . . . , yiks, i1   i2   � � �   ik,

• ryil , yi1 , yi2 , . . . ,xyil , . . . , yikszj1 , il ¡ i1   i2   � � �   ik,

• ryil , yi1 , yi2 , . . . ,xyil , . . . , yissrzj1 , yh1
, yh2

, . . . , yht
s, il ¡ i1   i2   � � �   ik, h1   h2  

� � �   hs.

Proposition 2.4. The polynomial

ryi1 , yi2srzj1 , yi3s � ryi1 , yi2 , yi3szj1 (2.10)

is a polynomial identity of the algebra A2.
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Proof. Note that

ryi1 , yi2srzj1 , yi3s � ryi1 , yi2szj1yi3 � ryi1 , yi2syi3zj1

by p2.9q � yi3ryi1 , yi2szj1 � ryi1 , yi2syi3zj1

� ryi3 , ryi1 , yi2sszj1

� �ryi1 , yi2 , yi3szj1 .

Hence from Proposition 2.4 we consider linear combinations of

• rzj1 , yi1 , yi2 , . . . , yiks, i1   i2   � � �   ik,

• ryil , yi1 , yi2 , . . . ,xyil , . . . , yikszj1 , il ¡ i1   i2   � � �   ik.

Note that, if yik �

���dik aik 0

0 gik 0

0 0 dik

��
and zj1 �

���0 0 cj1

0 0 bj1

0 0 0

��
, then

rzj1 , yi1 , yi2 , . . . , yims � p�1qm�1bj1

m�1¹
k�1

pdik � gikqaim � e1,3 � bj1

m¹
k�1

pdik � gikq � e2,3

and

ryil , yi1 , yi2 , . . . ,xyil , . . . , yikszj1 �
#
rai1pdil � gilq � ailpgil � dilqs

m¹
k�l

pgik � dikq

+
bj1 � e2,3

Theorem 2.3. The following identities form a basis for the Z2-graded identities of the

algebra A2:

piq zi1zi2,

piiq ryi1 , yi2sryi3 , yi4s,

piiiq zi1ryi1 , yi2s,

pivq rryi1 , yi2szj1 , yi3s.

Proof. We want to prove that the polynomials rzj1 , yi1 , yi2 , . . . , yims with i1   i2   � � �  

im, and ryhl
, yh1

, yh2
, . . . ,xyhl

, . . . , yhm
szj1 with hl ¡ h1   h2   � � �   hm are linearly

independent modulo IdZ2
pA2q. Consider f the polynomial given by

f � ³rzj1 , yi1 , yi2 , . . . , yims �
m̧

l�2

´lryhl
, yh1

, yh2
, . . . ,xyhl

, . . . , yhm
szj1

and suppose that f P IdZ2
pA2q. Now, considering the evaluation zj1 � e2,3 and yi �

pe1,1 � e3,3q for i � 1, . . . ,m one has ³e2,3 � 0, so ³ � 0. Then,

f �
m̧

l�2

´lryhl
, yh1

, yh2
, . . . ,xyhl

, . . . , yhm
szj1 � 0.
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Suppose that there exists l0 such that ´l0 � 0, and consider the evaluation yhl0
� e1,2,

yhi
� e2,2 for i � l0 and zj1 � e2,3. Then, ´l0e1,3 � 0, therefore ´l0 � 0, a contradiction.

Thus, we have the desired result.

2.4 Graded polynomial identities of A3

Consider A3, the algebra A with Z2-grading given by

Ap0q �

$'&'%
���d 0 0

0 g b

0 0 d

��

,/./- , Ap1q �

$'&'%
���0 a c

0 0 0

0 0 0

��

,/./- .

By direct computation we have that the following polynomials are identities of A3:

(a) zj1zj2 ,

(b) ryi1 , yi2sryi3 , yi4s,

(c) ryi1 , yi2szj1 ,

(d) rzj1ryi1 , yi2s, yi3s.

Proposition 2.5. The polynomial

rzj1 , yi3sryi1 , yi2s � zj1ryi1 , yi2 , yi3s (2.11)

is a polynomial identity of the algebra A3.

Proof. Note that

rzj1 , yi3sryi1 , yi2s � zj1yi3ryi1 , yi2s � yi3zj1ryi1 , yi2s

by (d) � zj1yi3ryi1 , yi2s � zj1ryi1 , yi2syi3

� zj1ryi3 , ryi1 , yi2ss

� �zj1ryi1 , yi2 , yi3s.

Consider the vector space Pm,n of multilinear polynomials in the variables yi1 ,

yi2 , . . . , yim , zj1 , zj2 , . . . , zjn . Since zj1zj2 � 0, Pm,n � 0 if n ¥ 2. So, we consider the cases

n � 0 and n � 1.

Case n � 0

Since ryi1 , yi2sryi3 , yi4s � 0, then considering proper polynomials, we have

only sums of commutators, and by Jacobi identity we can reorder the variables of that

commutator and consider only the case ryi1 , yi2 , . . . , yims where i1 ¡ i2   i3   � � �   im�2.
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Proposition 2.6. The polynomials ryhl
, yh1

, yh2
, . . . ,xyhl

, . . . , yhm
s with hl ¡ h1   h2  

� � �   hm are linearly independent modulo IdZ2
pA3q.

Proof. Consider f the polynomial given by

f �
m̧

l�2

´lryhl
, yh1

, yh2
, . . . ,xyhl

, . . . , yhm
s

and suppose that IdZ2
pA3q. Suppose there exists l0 such that ´l0 � 0, and consider the

evaluation yhl0
� e2,3 and yhi

� pe1,1 � e3,3q for i � l0. Then, ´l0e2,3 � 0, therefore ´l0 � 0,

a contradiction. Thus, we have the desired result.

Case n � 1

Once again we consider proper polynomials. Since ryi1 , yi2sryi3 , yi4s � 0 and

we have only one zj, then we only consider sums of commutators with products of two

commutators.

As ryi1 , yi2szj1 � 0, when we have products of two commutators then zj1 is in

the first commutator.

From the identity (c) ryi1 , yi2 , zj1s � �zj1ryi1 , yi2s and using the identity (d) we

have ryi1 , yi2 , zj1 , yi3s � 0. Therefore, if zj1 lies in a commutator É, that commutator has

the form É � rzj1 , yi1 , yi2 , . . . , yiks or É � ryi1 , yi2 , . . . , yik , zj1s � �zj1ryi1 , yi2 , . . . , yiks.

Let us consider the case É � rzj1 , yi1 , yi2 , . . . , yiks. Note that by Jacobi identity

rzj1 , yi1 , yi2s�ryi1 , yi2 , zj1s�ryi2 , zj1 , yi1s � 0, so rzj1 , yi1 , yi2s�zj1ryi1 , yi2s�rzj1 , yi2 , yi1s � 0

and rzj1 , yi2 , yi1s � rzj1 , yi1 , yi2s � zj1ryi1 , yi2s. Therefore, we can write the variables yi in

any order in É.

If É � ryi1 , yi2 , . . . , yik , zj1s � �zj1ryi1 , yi2 , . . . , yiks, as in the case Pm,0, we can

reorder the variables yi1 , yi2 , . . . , yik such that zj1ryi1 , yi2 , . . . , yiks is a linear combination

of polynomials zj1ryil , yi1 , yi2 , . . . ,xyil , . . . , yiss where il ¡ i1   i2   � � �   ik.

A nonzero product of commutators has the form rzj1 , yi1 , . . . , yissryh1
, yh2

, . . . , yht
s

and by Proposition 2.5 we reduce it to the form zj1ryi1 , yi2 , . . . , yis�t
s. Then, if B is the

space of proper polynomials in the variables zj1 , yi1 , yi2 , . . . , yik , modulo IdZ2
pA3q, B is

spanned by

• rzj1 , yi1 , yi2 , . . . , yiks, i1   i2   � � �   ik,

• zj1ryil , yi1 , yi2 , . . . ,xyil , . . . , yiks, il ¡ i1   i2   � � �   ik.

Theorem 2.4. The following identities form a basis for the Z2-graded identities for the

algebra A3:
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piq zi1zi2,

piiq ryi1 , yi2sryi3 , yi4s,

piiiq ryi1 , yi2szi1,

pivq rzj1ryi1 , yi2s, yi3s.

Proof. Let us show that the polynomials rzj1 , yi1 , yi2 , . . . , yims with i1   i2   � � �   im, and

zj1ryhl
, yh1

, yh2
, . . . ,xyhl

, . . . , yhm
s with hl ¡ h1   h2   � � �   hm are linearly independent

modulo IdZ2
pA3q. Consider f the polynomial given by

f � ³rzj1 , yi1 , yi2 , . . . , yims �
m̧

l�2

´lzj1ryhl
, yh1

, yh2
, . . . ,xyhl

, . . . , yhm
s

and suppose that f P IdZ2
pA3q. Now, considering the evaluation zj1 � e1,2 and yi �

pe1,1 � e3,3q for i � 1, . . . ,m one has ³e1,2 � 0, so ³ � 0. Then,

f �
m̧

l�2

´lzj1ryhl
, yh1

, yh2
, . . . ,xyhl

, . . . , yhm
s � 0.

Suppose there exists l0 such that ´l0 � 0, and consider the evaluation yhl0
� e2,3, yhi

�

pe1,1 � e3,3q for i � l0 and zj1 � e1,2. Then, ´l0e1,3 � 0, therefore ´l0 � 0, a contradiction.

Thus, we have the desired result.

2.5 Sm � Sn-characters of A1

In this section, we consider the cocharacters of the Z2-graded algebra A1 with

the grading given by (2.1). We recall that a basis for the graded identities of A1 is given

by the polynomials ry1, y2s and z1z2z3.

Let Sm act on the variables y1, . . . , ym and let Sn act on z1, . . . , zn. Then

Pm,npA
1q becomes a left Sm � Sn-module. Let Çm,npA

1q be its character. The irreducible

Sm�Sn characters are obtained by taking the outer tensor product of Sm and Sn irreducible

characters, respectively. Then, we can write

Çm,npA
1q �

¸
pλ,µq$pm,nq

mλ,µÇλ b Çµ,

where mλ,µ ¥ 0 are the corresponding multiplicities.

Let ¼ $ m, µ $ n, and let Wλ,µ be a left irreducible Sm � Sn-module. If Tλ is

a tableau of shape ¼ and Tµ a tableau of shape µ, then Wλ,µ � F pSm � SnqeTλ
eTµ

with

Sm and Sn acting on disjoint sets of integers.

From the identity ry1, y2s � 0 we have mpmq,H � 1 and mλ,H � 0 for ¼ � pmq.

Also, from ry1, y2s � 0, we obtain mλ,µ � 0 for hp¼q ¡ 2.
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Let us consider the case n � 1. Since Pm,1pA
1q � Spantyi1yi2 � � � yiszyj1yj2 � � � yitu,

we consider the case ¼ $ m with ¼ � pp� q, pq.

For every i � 0, . . . , q define the following two tableaux: T
piq
λ is the tableau

i� 1 i� 2 � � � i� p 1 2 � � � i i� 2p� 2 � � � 2p� q � 1

i� p� 2 i� p� 3 � � � i� 2p� 1
,

T piq
µ � i� p� 1 .

The associated polynomial is

apiqp,qpy1, y2, zq � yi
1
ȳ1 � � � ỹ1loomoon

p

z ȳ2 � � � ỹ2loomoon
p

y
q�i
1 , (2.12)

where¯and˜mean alternation on the corresponding elements. That is,

fpx1, . . . , xi, xi�1, . . . , xnq �
¸
σPSi

p�1qσfpxσp1q, . . . , xσpiq, xi�1, . . . , xnq.

Proposition 2.7. Modulo IdZ2
pA1q, the polynomials apiqp,qpy1, y2, zq as in (2.12) are linearly

independent, i � 0, . . . , q.

Proof. The proof is similar to that of Theorem 3 in [35]. Suppose that the polynomials

apiqp,q are linearly dependent. Modulo IdZ2
pA1q, there exist ³i, i � 0, . . . , q such that

q̧

i�0

³ia
piq
p,qpy1, y2, zq � 0.

Let t � maxti : ³i � 0u. Then

³ta
ptq
p,qpy1, y2, zq �

¸
i t

³ia
piq
p,qpy1, y2, zq � 0. (2.13)

Considering y1 � y1 � y3 in (2.13), we have that

³t py1 � y3q
t py1 � y3q � � � �py1 � y3qzȳ2 � � � ỹ2 py1 � y3q

q�t

�
¸
i t

³i py1 � y3q
i py1 � y3q � � � �py1 � y3qzȳ2 � � � ỹ2 py1 � y3q

q�i � 0.

Let us consider the homogeneous component of degree t� p in the variable y1

and degree q � t in the variable y3,

³ty
t
1
ȳ1 � � � ỹ1zȳ2 � � � ỹ2y

q�t
3 � � � � � 0.

Substituting y1 � e1,1 � e3,3, y2 � y3 � e2,2 and z � e1,2, we obtain ³t � e1,2 � 0, so ³t � 0

and we have the desired result.

Proposition 2.8. mλ,p1q � q � 1, if ¼ � pp� q, pq $ m.
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Proof. For every i, e
T
piq
λ

e
T
piq
µ
py1, . . . , ym, zq is the complete linearization of apiqp,qpy1, y2, zq. By

Proposition 2.7 mλ,p1q ¥ q � 1 if ¼ � pp� q, pq $ m. Also, given Tλ and Tµ two tableaux

and f � e
T
piq
λ

e
T
piq
µ
py1, . . . , ym, zq R IdZ2

pA1q, any two alternating variables in f must lie on

different sides of z. Since f is a linear combination (modulo IdZ2
pA1q) of polynomials, each

alternating on p pairs of yi’s, we have that f is a linear combination (modulo IdZ2
pA1q) of

the polynomials e
T
piq
λ

e
T
piq
µ

. Hence mλ,p1q � q � 1, if ¼ � pp� q, pq $ m.

Now, consider the case n � 2, Pm,2pA
1q � Spantyi1yi2 � � � yiszl1yj1yj2 � � � yitzl2u.

For µ $ 2 we have the possibilities µ � p2q and µ � p1, 1q. Define the tableaux T
piq
λ as

i� 1 i� 2 � � � i� p 1 2 � � � i i� 2p� 2 � � � 2p� q � 1

i� p� 2 i� p� 3 � � � i� 2p� 1

and

T
piq
p2q � i� p� 1 2p� q � 2 , T

piq
p1,1q �

i� p� 1

2p� q � 2

Then, the associated polynomials are

apiqp,qpy1, y2, zq � yi
1
ȳ1 � � � ỹ1loomoon

p

z ȳ2 � � � ỹ2loomoon
p

y
q�i
1 z, (2.14)

and respectively

apiqp,qpy1, y2, z1, z2q � yi
1
ȳ1 � � � ỹ1loomoon

p

ž1 ȳ2 � � � ỹ2loomoon
p

y
q�i
1 ž2, (2.15)

We consider the case of the polynomials (2.14).

Proposition 2.9. Modulo IdZ2
pA1q, the polynomials apiqp,qpy1, y2, zq as in (2.14) are linearly

independent, i � 0, . . . , q.

Proof. Suppose that the polynomials apiqp,q are linearly dependent. So, modulo IdZ2
pA1q

there exist ³i, i � 0, . . . , q such that

q̧

i�0

³ia
piq
p,qpy1, y2, zq � 0.

Let t � maxti | ³i � 0u. Then,

³ta
ptq
p,qpy1, y2, zq �

¸
i t

³ia
piq
p,qpy1, y2, zq � 0. (2.16)

Considering y1 � y1 � y3 in (2.16), we have that

³t py1 � y3q
t py1 � y3q � � � �py1 � y3qzȳ2 � � � ỹ2 py1 � y3q

q�t
z

�
¸
i t

³i py1 � y3q
i py1 � y3q � � � �py1 � y3qzȳ2 � � � ỹ2 py1 � y3q

q�i
z � 0.
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We consider the homogeneous component of degree t� p in y1 and of degree

q � t in y3,

³ty
t
1
ȳ1 � � � ỹ1zȳ2 � � � ỹ2y

q�t
3 z � � � � � 0.

Substituting y1 � e1,1 � e3,3, y2 � y3 � e2,2 and z � e1,2 � e2,3, we obtain ³t � e1,3 � 0, so

³t � 0 and we have the result.

From Proposition 2.9 and with a similar argument to Proposition 2.8, we obtain

Proposition 2.10. mλ,p2q � q � 1, if ¼ � pp� q, pq $ m.

Finally, we consider the case of the polynomial (2.15),

apiqp,qpy1, y2, z1, z2q � yi
1
ȳ1 � � � ỹ1loomoon

p

ž1 ȳ2 � � � ỹ2loomoon
p

y
q�i
1 ž2.

Proposition 2.11. Modulo IdZ2
pA1q, the polynomials apiqp,qpy1, y2, z1, z2q as in (2.15) are

linearly independent, i � 0, . . . , q.

Proof. If we consider the evaluation z1 � e1,2 and z2 � e2,3, then

apiqp,qpy1, y2, z1, z2q � yi
1
ȳ1 � � � ỹ1loomoon

p

z1 ȳ2 � � � ỹ2loomoon
p

y
q�i
1 z2.

Suppose the polynomials apiqp,q are linearly dependent. Modulo IdZ2
pA1q there exist ³i, i � 0,

. . . , q such that
q̧

i�0

³ia
piq
p,qpy1, y2, z1, z2q � 0.

Let t � maxti | ³i � 0u. Then,

³ta
ptq
p,qpy1, y2, z1, z2q �

¸
i t

³ia
piq
p,qpy1, y2, z1, z2q � 0. (2.17)

Considering y1 � y1 � y3 in (2.17), we have that

³t py1 � y3q
t py1 � y3q � � � �py1 � y3qž1ȳ2 � � � ỹ2 py1 � y3q

q�t
ž2

�
¸
i t

³i py1 � y3q
i py1 � y3q � � � �py1 � y3qž1ȳ2 � � � ỹ2 py1 � y3q

q�i
ž2 � 0.

Consider the homogeneous component of degree t� p in y1 and of degree q � t

in y3,

³ty
t
1
ȳ1 � � � ỹ1ž1ȳ2 � � � ỹ2y

q�t
3 ž2 � � � � � 0.

Substituting y1 � e1,1 � e3,3, y2 � y3 � e2,2, z1 � e1,2 and z2 � e2,3, we obtain ³t � e1,3 � 0,

so ³t � 0 and we are done.

Proposition 2.12. mλ,µ � q � 1, if ¼ � pp� q, pq $ m and µ � p1, 1q.
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Proof. For every i, e
T
piq
λ

e
T
piq
µ
py1, . . . , ym, z1, z2q is the complete linearisation of the element

apiqp,qpy1, y2, z1, z2q. By Proposition 2.11, mλ,µ ¥ q � 1 if ¼ � pp� q, pq $ m and µ � p1, 1q.

Also, given Tλ and Tµ two tableaux, and f � e
T
piq
λ

e
T
piq
µ
py1, . . . , ym, z1, z2q R IdZ2

pA1q, any

two alternating variables in f must lie on different sides of z1 or z2, or the two alternating

variables are z1 and z2. Since f is a linear combination (modulo IdZ2
pA1q) of polynomials,

each alternating on p pairs of yi’s, and alternating on zi’s, we have that f is a linear

combination (modulo IdZ2
pA1q) of the polynomials e

T
piq
λ

e
T
piq
µ

. Hence mλ,p1,1q � q � 1, if

¼ � pp� q, pq $ m.

Finally, based on the previous results, we have the following theorem on the

graded cocharacters of the algebra A1.

Theorem 2.5. Let

Çm,npA
1q �

¸
pλ,µq$pm,nq

mλ,µÇλ b Çµ

be the pm,nq-cocharacter of A1. Then

(1) mλ,H � 1, if ¼ � pmq $ m;

(2) mλ,p1q � q � 1, if ¼ � pp� q, pq $ m;

(3) mλ,µ � q � 1, if ¼ � pp� q, pq $ m and µ $ 2.

In all remaining cases mλ,µ � 0.

2.6 Involutions on A

Now, we are interested in studying the identities of the algebra A, considering

A as an algebra with involution. We can define on the algebra A the involution � obtained

by reflecting a matrix along its secondary diagonal, i.e.���d a c

0 g b

0 0 d

��

�

�

���d b c

0 g a

0 0 d

��
.
Then,

A� �

���d a c

0 g a

0 0 d

��
 and A� �

���0 a 0

0 0 �a

0 0 0

��
.
This involution was studied in [28]. On the other hand, the identities with involution for

the algebra UT3pF q were found in [12].
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Denote the free algebra with involution by KxX, �y � KxY Y Zy generated by

symmetric and skew elements, that is

KxY Y Zy � Kxy1, z1, y2, z2, , . . . y

where yi stands for a symmetric variable and zi for a skew-symmetric variable.

Given fpy1, . . . , ym, z1, . . . , zsq P F xY YZy, we say f is a �-polynomial identity

of A, if for every u1, . . . , um P A� and v1, . . . , vs P A
�,

fpu1, . . . , um, v1, . . . , vsq � 0,

and we denote by Id�pAq � tf P F xY YZy : f � 0 on Au the T �-ideal of �-identities of A.

If in a polynomial it is allowed some variable to be either yi or zi, we denote

it as xi, and we set |xi| � 0 if xi � zi and |xi| � 1 when xi � yi. Put |xixj| � 0 when

the commutator rxi, xjs is skew-symmetric, and |xixj| � 1 if the commutator rxi, xjs is

symmetric.

The following theorem describes a basis of Id�pAq.

Theorem 2.6. The T �-ideal Id�pAq is generated by the following polynomials:

1. z1y1z2y2z3 2. rz1, z2s 3. rz1y1z2, y2s 4. z1y1z2 � z2y1z1

5. p�1q|x1x2|rx1, x2srx3, x4s � p�1q|x3x4|rx3, x4srx1, x2s

6. p�1q|x1x2|rx1, x2srx3, x4s � p�1q|x1x3|rx1, x3srx2, x4s � p�1q|x1x4|rx1, x4srx2, x3s

7. rx1, x2sz5rx3, x4s

The proof of Theorem 2.6 will be a consequence of the following propositions.

Let I be the T �-ideal generated by the identities (1) to (7) of Theorem 2.6.

Proposition 2.13. The following is an identity modulo I

yσpi1qyσpi2q � � � yσpisqz1yρpj1qyρpj2q � � � yρpjtqz2 � yi1yi2 � � � yisz1yj1yj2 � � � yjtz2, (2.18)

for Ã P Ss and Ä P St.

Proof. Consider the case yi2yi1z1yj2yj1z2 and note that ry1, y2s P A
�. Then,

yi2yi1z1yj2yj1z2 � yi1yi2z1yj2yj1z2 � ryi2 , yi1sz1yj2yj1z2

� yi1yi2z1yj2yj1z2

� yi1yi2z1yj1yj2z2 � yi1yi2z1ryj2 , yj1sz2

� yi1yi2z1yj1yj2z2.

It follows that

yσpi1qyσpi2q � � � yσpisqz1yρpj1qyρpj2q � � � yρpjtqz2 � yi1yi2 � � � yisz1yj1yj2 � � � yjtz2,

for Ã P Ss and Ä P St.
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Let Pn,m be the set of multilinear polynomials in n symmetric variables and m

skew-symmetric variables. By Identity 1., Pn,m � 0 if m ¡ 2. Then, we consider the cases

m � 0, 1, 2 separately.

Case m � 0

Let Γn,0pIq be the subspace of the Y -proper multilinear polynomials in the

variables y1, . . . , ym of the relatively free algebra F xY, Z, �y{I.

Since rx1, x2srx3, x4srx5, x6s belongs to I, the vector space Γn,0pIq is spanned

by the proper polynomials

rxj1 , . . . , xjssrxk1
, . . . , xkt

s,

where s, t ¥ 0, s � 1, t � 1, j1 ¡ j2   � � �   js, and k1 ¡ k2   � � �   kt.

Note that A� � UT3pKq
�. We use a result of [12].

Definition 2.2. A polynomial f is called S3-standard if f is either of type ryj1 , . . . , yjns

or ryj1 , . . . , yjn�2
sryk1

, yk2
s, where the commutator ryi1 , . . . , yiss satisfies i1 ¡ i2   � � �   is,

and if f is of the second type we have that j1 ¡ k1, j2 ¡ k2.

As a particular case of Proposition 5.8 and Lemma 6.2 of [12] we obtain the

next result.

Proposition 2.14. The following statements hold:

piq The S3-standard polynomials span the vector space Γn,0pAq.

piiq The S3-standard polynomials in Γn,0 are linearly independent modulo the Id�pAq.

Case m � 1

First, we describe a spanning set of Pn,1pAq.

Proposition 2.15. Pn,1pAq is spanned by elements of the form

piq yi1yi2 � � � yiszyis�1
yis�2

� � � yin, with i1   � � �   is and is�1   � � �   in;

piiq yi1yi2 � � � yiszyis�1
yis�2

� � � yin�2
ryin�1

, yins, with i1   � � �   is, is�1   � � �   in�1 and

in   in�1.

Proof. Let É P Pn,1pAq be a monomial. Then, É � yi1yi2 � � � yiszyj1yj2 � � � yjt with s� t � n.

Suppose É � É1zÉ2, there are the following two cases for É2:
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Case 1. É2 with indices in non-increasing order.

Consider É � É1zÉ2 with É2 � w2,1yl2yl1w2,2 and yl2 , yl1 the first pair of variables

such that l2 ¡ l1.

We can rewrite É2 as

É2 � w2,1yl1yl2w2,2 � w2,1ryl2 , yl1sw2,2,

then

É � É1zw2,1yl1yl2w2,2 � É1zw2,1ryl2 , yl1sw2,2 � É1zÉ2 � É1w2,2zw2,1ryl2 , yl1s.

Note that by Proposition 2.13, in the element É1w2,2zw2,1ryl2 , yl1s we can reorder the

variables of É1w2,2 and w2,1 (separately) with the condition that if w2,1 � yk1
. . . ykp

,

then yk1
  � � �   ykp

  yl2 and yl1   yl2 .

We can repeat the process for É1zÉ2 until getting an ascending order in the indices

of the y’s to the right side of z in the element without commutator.

Thus, É � É1zÉ2 can be written as

É � É1zyh1
� � � yhr

�
¸
I,J

³I,Jyi1 � � � yiszyj1 � � � yjt�2
ryjt�1

, yjts

with h1   � � �   hr, i1   � � �   is, j1   � � �   yjt�1
, and jt   jt�1.

If the indices of the variables of É1 are in increasing order, then we have É in the

desired form.

Case 2. É2 with indices in increasing order.

Let É � É1zÉ2 with É1 � w1,1yl2yl1w1,2, and let yl2 , yl1 be the first pair of variables

such that l2 ¡ l1 and the indices of the variables of É2 increase.

We rewrite É1 as

É1 � w1,1yl1yl2w1,2 � w1,1ryl2 , yl1sw1,2,

then

É � w1,1yl1yl2w1,2zÉ2 � w1,1ryl2 , yl1sw1,2zÉ2 � É1zÉ2 � w1,1É2zw1,2ryl2 , yl1s.

We apply once again Proposition 2.13 to the element w1,1É2zw1,2ryl2 , yl1s. Thus we

reorder the variables of w1,1É2 and w1,2 (separately). Then,

É � É1zÉ2 �ϖ1zϖ2ryl2 , yl1s,

with the indices of the variables of É2, ϖ1 and ϖ2 in increasing order, respectively.

Note that there is no relation between the indices of the variables of ϖ2 and those

of the variables of ryl2 , yl1s. Take

É � É1zÉ2 �ϖ1zϖ2yl2yl1 �ϖ1zϖ2yl1yl2 .

For ϖ1zϖ2yl2yl1 and ϖ1zϖ2yl1yl2 we have two options:
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 The indices of the variables of ϖ2yl2yl1 or ϖ2yl2yl1 are not in increasing order.

In this case, we proceed as in Case 1 for ϖ1zϖ2yl2yl1 or ϖ1zϖ2yl2yl1 .


 The indices of the variables of ϖ2yl2yl1 are in increasing order. In this case, we

have the desired order for ϖ1zϖ2yl1yl2 .

Finally, if necessary, we repeat the process for É1zÉ2.

This process of rearranging the variables using cases 1. and 2., has finitely many steps.

Now, we show that the polynomials of Proposition 2.15 are linearly independent.

Proposition 2.16. The polynomials of the form

pIq yi1yi2 � � � yiszyis�1
yis�2

� � � yin, with i1   � � �   is and is�1   � � �   in;

pIIq yi1yi2 � � � yiszyis�1
yis�2

� � � yin�2
ryin�1

, yins, with i1   � � �   is, is�1   � � �   in�1 and

in   in�1,

are linearly independent modulo Id�pAq.

Proof. Let f be a linear combination of elements of the form pIq and pIIq, such that f is

a �-polynomial identity of A.

Suppose that not all elements of f of the form pIq have non-zero coefficients,

and consider

m � yl1 � � � ylszyls�1
� � � yln .

Consider the evaluation

yl1 � � � � � yls � e1,1 � e3,3, z � e1,2 � e2,3, yls�1
� � � � � yln � e2,2. (2.19)

Since e1,1 � e3,3 and e2,2 commute, the elements with commutator in f vanish.

Now, suppose there exists m � yj1 � � � yjtzyjt�1
� � � yjn of the form pIq such that

m is non-zero on the evaluation (2.19). Then, in m the e2,2’s can only be substituted

on one side of z and similarly for the pe1,1 � e3,3q’s. Then we have two possibilities:

tj1, . . . , jtu � tl1, . . . lsu and tjt�1, . . . , jnu � tls�1, . . . lnu, or tj1, . . . , jtu � tls�1, . . . lnu,

and tjt�1, . . . , jnu � tl1, . . . lsu. In the first case m � m and m has zero coefficient in f . In

the second case the evaluations of m and m are e1,2 and e2,3, respectively. Therefore, m

and m have coefficient zero.

Suppose not all elements with one commutator have zero coefficient, and

consider

m � yi1yi2 � � � yikzyik�1
yik�2

� � � yin�2
ryin�1

, yins

with the following properties:
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piq its coefficient is non-zero,

piiq the number n � k � 2 of variables between z and the commutator is the largest

among all elements with non-zero coefficient,

piiiq in�1 is the least of all elements such that the properties piq and piiq hold.

Consider the evaluation

yi1 � � � � � yik � E, z � e1,2 � e2,3, yik�1
� � � � � yin�1

� e2,2, yin � e1,2 � e2,3. (2.20)

Let m � yj1 � � � yjszyjs�1
� � � yjn�2

ryjn�1
, yjns be a polynomial of the form pIIq, such that m

does not vanish under the substitution (2.20). We look for the conditions m must satisfy.

Since E and e2,2 commute, the elements to be substituted in the commutator will

be e1,2� e2,3 and e2,2. Also e2,2 can only be substituted on the right side of z � pe1,2� e2,3q,

and since n� k � 2 ¥ n� s� 2, then the E’s only can be substituted on the left side of z.

Then s � k and tj1, . . . , jsu � ti1, . . . iku.

If jn�1 R tin�1, inu then jn�1 P tik�1, . . . , in�2u, then jn�1   in�1, but this

contradicts the hypothesis of minimality of in�1. So jn�1 P tin�1, inu, and since in   in�1

we have jn�1 � in�1 and jn � in. We conclude tik�1, . . . , in2
u � tjk�1, . . . , jn2

u, m � m

and the coefficient of m is zero.

Case m � 2

By Proposition 2.13 and the identities 3. and 4., Pn,2pAq is spanned by mono-

mials of the form

yi1yi2 � � � yisz1yj1yj2 � � � yjtz2

with i1   i2 � � �   is, j1   j2 � � �   jt and s� t � n.

Proposition 2.17. The polynomials

yi1yi2 � � � yisz1yj1yj2 � � � yjtz2 (2.21)

with i1   i2 � � �   is, j1   j2 � � �   jt and s� t � n, are linearly independent modulo IdpAq.

Proof. Suppose that

f �
¸
I,J

³I,Jyi1yi2 � � � yisz1yj1yj2 � � � yjtz2

is a �-identity of A. Choose ³I 1,J 1 � 0, such that |J 1| � t1 is the largest possible. Now,

consider the substitution yi1 � � � � � yis1 � E, yj1 � � � � � yjt1 � e2,2 and z1 � z2 �

pe1,2 � e2,3q. Considering the order of the indices and that |J 1| is the largest, the only non-

zero term of f after the substitution will be the one with coefficient ³I 1,J 1 . Hence ³I 1,J 1 � 0,

a contradiction. Thus, the polynomials in Equation (2.21) are linearly independent.
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Finally, by Proposition 2.14, Proposition 2.15, Proposition 2.16 and Proposition

2.17 we have that Theorem 2.6 holds.

2.7 Graded involution

In this section we consider A as a graded algebra with the grading as in (2.1),

and the involution from Section 2.6. Then � is a graded involution and

A�
0
� A0, A�

0
� t0u,

A�
1
� Kpe1,2 � e2,3q, A�

1
� Kpe1,2 � e2,3q.

2.7.1 Graded �-polynomial identities of A

Consider the free algebra with involution KxY YZ, �y, generated by symmetric

and skew elements of even and odd degree, that is

KxY Y Z, �y � Kxy�
1
, y�

1
, z�

1
, z�

1
, y�

2
, y�

2
, z�

2
, z�

2
, . . . y

where y�i stands for a symmetric variable of even degree, y�i for a skew variable of even

degree, z�i for a symmetric variable of odd degree and z�i for a skew variable of odd degree.

Given fpy�
1
, . . . , y�m, y

�
1
, . . . , y�n , z

�
1
, . . . , z�s , z

�
1
, . . . , z�t q P F xY Y Z, �y, then f

is a graded �-polynomial identity for A, if for all u�
1
, . . . , u�m P A�

0
, u�

1
, . . . , u�n P A�

0
,

v�
1
, . . . , v�s P A�

1
and v�

1
, . . . , v�t P A�

1
,

fpu�
1
, . . . , u�m, u

�
1
, . . . , u�n , v

�
1
, . . . , v�s , v

�
1
, . . . , v�t q � 0.

We denote by Id�Z2
pAq � tf P KxY YZ, �y : f � 0 on Au the T �

2
-ideal of graded �-identities

of A.

The following theorem gives a basis of Id�Z2
pAq.

Theorem 2.7. The T �
2

-ideal Id�Z2
pAq is generated, as a T �

2
-ideal, by the following polyno-

mials:

1. y� 2. ry�
1
, y�

2
s 3. rz�

1
, z�

2
s

4. rz�
1
, z�

2
s 5. z�

1
� z�

1
6. ry�, z1z2s

7. ry�
1
, z1y

�
2
z2s 8. z1z2z3 9. z�

1
y�z�

2
� z�

2
y�z�

1

10. z�
1
y�z�

2
� z�

2
y�z�

1
11. z�

1
y�z�

2
� z�

2
y�z�

1

Proof. One easily sees that the polynomials 1. - 11. are graded �-identities. Let Pn1,n2,n3,n4
pAq

be the set of multilinear graded �-polynomials modulo Id�Z2
pAq in n1 symmetric variables

of degree 0, n2 skew variables of degree 0, n3 symmetric variables of degree 1 and n1 skew

variables of degree 1. From identities 1. and 8., we have that Pn1,n2,n3,n4
pAq � t0u if n2 ¡ 0

or n3 � n4 ¡ 2.
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(i) Case n3 � n4 � 0. From identity 2., it is easy to see that

Pn1,0,0,0pAq � Spanty�
1
y�

2
� � � y�n1

u.

(ii) Case n3�n4 � 1. We consider the case n3 � 1 (the case n4 � 1 is analogous). Again,

by identity 2., we see that

Pn1,0,1,0pAq � Spanty�i1 � � � y
�
is
z�y�j1 � � � y

�
jt
u, (2.22)

with s� t � n1, i1   � � �   is and j1   � � �   jt.

But the monomials y�i1 � � � y
�
is
z�y�j1 � � � y

�
jt

are linearly independent. Indeed, let

f �
¸
I,J

³I,Jy
�
i1
� � � y�isz

�y�j1 � � � y
�
jt
.

Suppose f � 0 modulo Id�Z2
pAq and that there are sets of indices I0 and J0, such that

³I0,J0
� 0. Considering the evaluation y�i � e1,1 � e3,3, y

�
j � e2,2, z

� � e1,2 � e2,3,

for i P I0, j P J0, we obtain ³I0,J0
e1,2 � 0. So, ³I0,J0

� 0, a contradiction. Then, the

polynomials in (2.22) are linearly independent.

(iii) Case n3 � n4 � 2. Consider the case n3 � 2 (the cases n4 � 2 and n3 � n4 � 1 are

analogous). From the identities 2., 3., 6., 7. and 9., we conclude

Pn1,0,2,0pAq � Spanty�i1 � � � y
�
is
z�

1
y�j1 � � � y

�
jt
z�

2
u, (2.23)

with s� t � n1, i1   � � �   is and j1   . . . jt.

In order to see that the polynomials in (2.23) are linearly independent modulo

Id�Z2
pAq, suppose that¸

I,J

³I,Jy
�
i1
� � � y�isz

�
1
y�j1 � � � y

�
jt
z�

2
� 0 mod Id�Z2

pAq

and that there are index sets I0 and J0, such that ³I0,J0
� 0. Considering the

evaluation y�i � e1,1 � e3,3, y
�
j � e2,2, z

�
l � e1,2 � e2,3, for i P I0, j P J0, we obtain

³I0,J0
e2,3 � 0. So, ³I0,J0

� 0, a contradiction. Then, the polynomials in (2.23) are

linearly independent.

Therefore, from items (i), (ii) and (iii), we conclude that the set of polynomials 1.-11.

determines a basis for the graded �-identities of the algebra A.

2.7.2 Cocharacters of pA, gr, �q

Let x¼y � p¼p1q, ¼p2q, ¼p3q, ¼p4qq be a multipartition of pn1, n2, n3, n4q, i.e.

¼piq $ ni. We are interested in computing the pn1, . . . , n4q-th cocharacter of pA, gr, �q,
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Çn1,n2,n3,n4
pAq �

¸
xλy$pn1,n2,n3,n4q

mxλyÇλp1q b � � � b Çλp4q. (2.24)

Since dimpA1q� � dimpA1q� � 1, then mxλy � 0 if hp¼piqq ¡ 1 for i � 3, 4. Also, by the

graded �-identities of A, we have mxλy � 0 if hp¼p1qq ¡ 2.

In the following results, we consider only the case hp¼piqq ¤ 1 for i � 3, 4.

First, we consider the case of even degree variables only or odd degree variables only.

Proposition 2.18. If either x¼y � ppn1q,H,H,Hq with n1 ¡ 0 or x¼y � pH,H, pn3q, pn4qq

with 0   n3 � n4 ¤ 2, then mxλy � 1 in (2.24).

Proof. Let x¼1y � ppn1q,H,H,Hq and x¼2y � pH,H, pn3q, pn4qq as in the statement.

Then É1 � py�
1
qn1 and É2 � pz�

1
qn3pz�

1
qn4 are highest weight vectors corresponding to the

multipartitions x¼1y and x¼2y respectively. Since É1 and É2 are not polynomials identities

of A then mxλiy ¥ 1. By the identities in Theorem 2.7 we conclude that É1 and É2 are the

only (up to a scalar) highest weight vectors corresponding to x¼1y and x¼2y. Therefore,

mxλiy � 1 for i � 1, 2.

Before dealing with the case n3 � n4 � 1, we state a technical result (similar

results can be found in [8, 19]).

Proposition 2.19. Modulo Id�Z2
pAq, the following equality holds:

y�
1
� � � ry�

1looomooon
p

py�
1
qi1�pz�py�

1
qi2�p y�

2
� � � ry�

2looomooon
p

�
p̧

j�0

p�1qj
�
p

j



py�

1
qi1�jpy�

2
qjz�py�

1
qi2�p�jpy�

2
qp�j,

(2.25)

where i1, i2 ¥ 0 and p ¥ 1.

Proof. We prove it by induction on p. The case p � 1 is a straightforward computation.

Let p ¡ 1 and let É be the polynomial (2.25).

É � y�
1
� � � ry�

1looomooon
p

py�
1
qi1�pz�py�

1
qi2�p y�

2
� � � ry�

2looomooon
p

� y�
1
� � � ry�

1looomooon
p�1

py�
1
qi1�pp�1qz�py�

1
qi2�1�pp�1qy�

2
y�

2
� � � ry�

2looomooon
p�1

� y�
1
� � � ry�

1looomooon
p�1

py�
1
qi1�1�pp�1qy�

2
z�py�

1
qi2�pp�1q y�

2
� � � ry�

2looomooon
p�1

.
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Applying induction to p� 1 we obtain

É �
p�1¸
j�0

p�1qj
�
p� 1

j



py�

1
qi1�jpy�

2
qjz�py�

1
qpi2�1q�pp�1q�jpy�

2
qpp�1q�j�1

�
p�1¸
j�0

p�1qj
�
p� 1

j



py�

1
qpi1�1q�jpy�

2
qj�1z�py�

1
qi2�pp�1q�jpy�

2
qpp�1q�j.

(2.26)

The j-th monomial of the second summand is similar to the j � 1-th monomial of the first

summand, for every j � 0, . . . , p � 2. Considering the sum of these monomials, for the

corresponding coefficients we have

p�1qj�1

�
p� 1

j � 1



� p�1qj

�
p� 1

j



� p�1qj�1

��
p� 1

j � 1



�

�
p� 1

j




� p�1qj�1

�
p

j � 1



.

Thus the sum of the similar monomials of (2.26) corresponds to the j � 1-th monomial of

É1 �
p̧

j�0

p�1qj
�
p

j



py�

1
qi1�jpy�

2
qjz�py�

1
qi2�p�jpy�

2
qp�j,

for j � 0, . . . , p� 2. But the first monomial of the first summand of (2.26) is equal to the

first monomial of É1, whereas the pp� 1q-th monomial of the second summand of (2.26) is

equal to the p-monomial of É1. Thus, we have the desired equality.

Proposition 2.20. If x¼y � ppp� q, pq,H, p1q,Hq or x¼y � ppp� q, pq,H,H, p1qq, where

p, q ¥ 0, then mxλy � pq � 1q in (2.24).

Proof. We deal with the case x¼y � ppp�q, pq,H, p1q,Hq. The case x¼y � ppp�q, pq,H,H, p1qq

is analogous.

Consider Young diagrams of shape x¼y filled in the standard way. From the

identity ry�
1
, y�

2
s, fixed the tableaux Tλp3q � t1 for an integer t1, then t1 must be larger

than all the integers lying in the first p positions of the first row of Tλp1q and less than the

ones lying in the second row. Otherwise, the corresponding highest weight vector will be a

polynomial identity of A.

Thus, the possibilities for the standard Young tableaux, such that the corre-

sponding highest weight vectors are linearly independent, are given by

Tλp1q �
1 2 � � � p � � � t1 � 1 t1 � 1 � � � t2

t2 � 1 t2 � 2 � � � n1

,

Tλp3q � t1 , Tλp2q � Tλp4q � H,

and the corresponding highest weight vectors are

Ét1 � y�
1
� � � ry�

1
py�

1
qt1�1�pz�py�

1
qt2�t1y�

2
� � � ry�

2
,
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where t1 � p� 1, . . . , p� q � 1. We can rewrite the polynomials Ét1 as

Ét1 � y�
1
� � � ry�

1
py�

1
qt1�pz�py�

1
qt2�py�

2
� � � ry�

2
,

where t1 � p, . . . , p� q and t1 � t2 � n1. By Equation (2.25)

Ét1 �
p̧

j�0

p�1qj
�
p

j



py�

1
qt1�jpy�

2
qjz�py�

1
qt2�p�jpy�

2
qp�j.

Let us see that the elements of the set tÉt1 : t1 � p, . . . , p� qu are linearly independent.

Consider the evaluations z� � e1,2 � e2,3, y
�
i � ³ipe1,1 � e3,3q � ´ie2,2. Then,

Ét1 �

� p̧

j�0

p�1qj
�
p

j



³t1�1

1
³
j
2´

t2�p�j
1 ´

p�j
2

�
e1,2 � r�se2,3

�

� p̧

j�0

p�1qj
�
p

j



´
j
1³

j
2´

p�j
2 ³

p�j
1 ³

t1�p
1 ´

t2�p
1

�
e1,2 � r�se2,3

�
�
p´2³1 � ´1³2q

p³
t1�p
1 ´

t2�p
1

�
e1,2 � r�se2,3.

Now, p´2³1 � ´1³2q
p appears in each evaluation of Ét1 , so we consider just the part

³
t1�p
1 ´

t2�p
1 e1,2. Suppose that there are µi’s such that

p�q̧

t1�p

µt1Ét1 � 0.

Then, for all ³1, ´1 P F
p�q̧

t1�p

µt1³
t1�p
1 ´

t2�p
1 � 0.

It follows µi � 0 for each i. Therefore, the highest weight vectors Ét1 are linearly independent

for t1 � p, . . . , p� q and mxλy � pq � 1q.

Now, we consider the case n3 � n4 � 2.

Proposition 2.21. If x¼y � ppp � q, pq,H, pn3q, pn4qq, where p, q ¥ 0 and n3 � n4 � 2,

then mxλy � pq � 1q in (2.24).

Proof. We prove the case x¼y � ppp�q, pq,H, p2q,Hq. The cases x¼y � ppp�q, pq,H, p1q, p1qq

and x¼y � ppp � q, pq,H,H, p2qq are analogous. Consider Young diagrams of shape x¼y

filled in the standard way.

As in the proof of Proposition 2.20, fixed an integer t1 in the tableau

Tλp3q � t1 ,

t1 must be larger than the integers lying in the first p position of the first row of Tλp1q and

less than all the ones lying in the second row. Also, by the identities ry�, z1z2s, ry
�
1
, z1y

�
2
z2s,
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and z�
1
y�z�

2
� z�

2
y�z�

1
, we can fix the integer n1 � 2 in the second block of the tableaux

Tλp3q.

Thus, the possibilities for the standard Young tableaux, such that the corre-

sponding highest weight vectors are linearly independent, are given by

Tλp1q �
1 2 � � � p � � � t1 � 1 t1 � 1 � � � t2

t2 � 1 t2 � 2 � � � n1 � 1
,

Tλp3q � t1 n1 � 2 , Tλp2q � Tλp4q � H,

and the corresponding highest weight vectors are

Ét1 � y�
1
� � � ry�

1
py�

1
qt1�pz�

1
py�

1
qt2�py�

2
� � � ry�

2
z�

1
,

where t1 � p, . . . , p� q and t1 � t2 � n1. By Equation (2.25)

Ét1 �
p̧

j�0

p�1qj
�
p

j



py�

1
qt1�jpy�

2
qjz�

1
py�

1
qt2�p�jpy�

2
qp�jz�

1
.

We prove the elements of the set tÉt1 : t1 � p, . . . , p�qu are linearly independent. Consider

the evaluations z�
1
� e1,2 � e2,3, y

�
i � ³ipe1,1 � e3,3q � ´ie2,2. Then,

Ét1 �

� p̧

j�0

p�1qj
�
p

j



³t1�1

1
³
j
2´

t2�p�j
1 ´

p�j
2

�
e1,3

�

� p̧

j�0

p�1qj
�
p

j



´
j
1³

j
2´

p�j
2 ³

p�j
1 ³

t1�p
1 ´

t2�p
1

�
e1,3

�
�
p´2³1 � ´1³2q

p³
t1�p
1 ´

t2�p
1

�
e1,3.

Since p´2³1�´1³2q
p appears in each evaluation of Ét1 , we consider only the part ³t1�p1 ´

t2�p
1 e1,2.

Suppose there exist µi’s such that

p�q̧

t1�p

µt1Ét1 � 0.

Then, for all ³1, ´1 P F
p�q̧

t1�p

µt1³
t1�p
1 ´

t2�p
1 � 0.

It follows that µi � 0 for each i. Therefore, the highest weight vectors Ét1 are linearly

independent for t1 � p, . . . , p� q and mxλy � pq � 1q.

Hence we obtain the following theorem.

Theorem 2.8. Let

Çn1,n2,n3,n4
pAq �

¸
xλy$pn1,n2,n3,n4q

mxλyÇλp1q b Çλp2q b Çλp3q b Çλp4q

be the pn1, n2, n3, n4q-cocharacter of A. Then



Chapter 2. Identities of an algebra of upper triangular matrices 68

(1) mxλy � 1, if x¼y � ppn1q,H,H,Hq or x¼y � pH,H, pn3q, pn4qq, where n1 ¡ 0 and

0   n3 � n4 ¤ 2.

(2) mxλy � q � 1, if ¼ � ppp� q, pq,H, pn3q, pn4qq, where p, q ¥ 0 and n3 � n4 � 1;

(3) mxλy � q � 1, if ¼ � ppp� q, pq,H, pn3q, pn4qq, where p, q ¥ 0 and n3 � n4 � 2.

In all remaining cases mxλy � 0.
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3 Matrices over the Grassmann algebra

Let E � x1, e1, e2, . . . | eiej � �ejeiy be the infinite dimensional Grassmann

algebra over K with its natural Z2-grading E � E0`E1, given by the subspaces E0 and E1,

of elements of even or odd length respectively. One can define on E the superinvolutions iE

and �iE induced by the identity map on the generators ei of E, as presented in Definition

1.38 and Remark 1.4.

Matrix algebras with entries in Grassmann algebras have been subject of

extensive studies, of particular interest is determining a basis of their polynomial identities

as well as the corresponding cocharacters. Given a superalgebra A � A0 `A1, we consider

the Grassmann envelope given by GpAq � pA0 bE0q ` pA1 bE1q. Furthermore, if f and �

are superinvolutions defined on the superalgebras A and B respectively, the map � defined

on Ab̂B � pA0 bB0q
à

pA1 bB1q by putting pab bq� � afb b� is an involution on Ab̂B.

We consider the Z2-graded algebras M1,1pKq, UT1,1pKq, and UT3pKqp0,1,0q

with a superinvolution, along with their corresponding super tensor products with the

Grassmann algebra E, naturally endowed with a Z2-grading and also with a superinvolution.

We regard the resulting algebras as endowed with a graded involution and describe the

graded �-polynomial identities and the corresponding cocharacters.

In this chapter we will consider graded �-polynomials in the following way: Let

us consider Y � tyi,g : i P N, g P Gu, Z � tzi,g : i P N, g P Gu two countable sets of pairwise

different indeterminates. We denote by degG yi,g � degG zi,g � g the G-degree of the

variables Y Y Z with respect to the G-grading. Then Yg � tyi,g : i P Nu, Zg � tzi,g : i P Nu

are homogeneous variables of G-degree g P G. We can define the �-action on monomials

over Y Y Z by the equalities

pxi1 � � �xinq
� � x�in � � �x

�
i1
, where y�i,g � yi,g, z

�
i,g � �zi,g, xj P Y Y Z, (3.1)

the linear extension of this action is an involution on the free associative algebra KxY, Zy

generated by the set Y Y Z. The algebra F � KxY, Zy is G-graded with the grading

F �
à
gPG

Fg defined by

Fg � SpanKtxi1xi2 . . . xin : degG xi1 . . . degG xi1 � g, xj P Y Y Zu.

3.1 Graded �-identities of M1,1pEq

By [22], we have two superinvolutions on M1,1pKq given by�
a b

c d

��

�

�
d b

�c a

�
and

�
a b

c d

�


�

�
d �b

c a

�
.
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Consider the algebraM1,1pEq �M1,1pKqb̂E �

#�
a b

c d

�
: a, d P E0, b, c P E1

+
.

On M1,1pEq can be considered the graded involutions:

• � induced by p�, iEq,

• �1 induced by p�,�iEq ,

• �2 induced by p
, iEq,

• �3 induced by p
,�iEq,

where � � �3, �1 � �2 and these involutions are defined as follows. If a, b P E0, c P E1�
a b

c d

��

�

�
d b

�c a

�
,

�
a b

c d

��1

�

�
d �b

c a

�

and note that the linear map È define by È

��
a b

c d

��
�

�
d c

b a

�
is an isomorphism of

the algebras with involution pM1,1pEq, �q and pM1,1pEq, �1q.

Let R be the algebra M1,1pEq endowed with the involution � induced by the

pair p�, iEq, that is �
a b

c d

��

�

�
d b

�c a

�
.

Note that R�
0
�

#�
a 0

0 a

�
: a P E0

+
, R�

0
�

#�
a 0

0 �a

�
: a P E0

+
,

R�
1
�

#�
0 b

0 0

�
: b P E1

+
and R�

1
�

#�
0 0

c 0

�
: c P E1

+
.

We consider the free graded algebra with involution KxY, Zy, where Y � Y0YY1

is the set of symmetric variables of degree 0 and 1, and Z � Z0 Y Z1 is the set of skew-

symmetric variables of degree 0 and 1. So, yi,0 and yi,1 (zi,0 and zi,1) denote symmetric

(skew-symmetric) variables of degree 0 and degree 1, respectively.

One sees directly that the following polynomials in KxY, Zy are identities on

M1,1pEq.

1. yi,1yj,1, 2. zi,1zj,1,

3. zi,1 � zj,0, 4. zi,0 � yj,1,

5. rzi,0, zj,0s, 6. ryi,1, yj,0s,

7. rzi,0, yj,1srzk,0, yl,1s, 8. rzi,1, zj,0srzk,1, zl,0s ,

9. y1,1z1,1y2,1 � y2,1z1,1y1,1, 10. z1,1y1,1z2,1 � z2,1y1,1z1,1,

11. ryi,0, xs for all x P Y Y Z.

Our goal is to prove the following theorem, which provides a basis for the

graded �-identities of M1,1pEq. To this end, we make use of Y0-proper polynomials.
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Theorem 3.1. Let pM1,1pEq, �q be the algebra of 2�2 matrices with entries in Grassmann

algebra and with the canonical Z2-grading and endowed with the involution � given by�
a b

c d

��

�

�
d b

�c a

�
.

Then, its T �
2

-ideal of identities is generated, as a T �
2

-ideal, by the identities 1-11.

From now on, we denote by H the T �
2

-ideal of KxY, Zy generated by the

identities 1-11. Note that for the last two identities, we can only consider products of

zi,1 and yj,1 in the order y1,1z1,1y2,1z2,1 � � � y1,kz1,k and z1,1y1,1z2,1y2,1 � � � z1,ky1,k. Also, it is

useful to note that

rR�
1
, R�

0
s � R�

1
, rR�

1
, R�

0
s � R�

1
, rR�

1
, R�

1
s � R�

0
.

The following three propositions are easy to deduce. The first of them follows

directly from Id. (3) and Id. (4) together with the inclusions above, the second can be

deduced from the first and again Id. (3) and Id. (4), while the third is a direct consequence

of Id. (2) and Id. (1).

Proposition 3.1. The polynomials

ry1,1, zi1,0, zi2,0, . . . , zik,0s � 2ky1,1zi1,0zi2,0 � � � zik,0,

rz1,1, zi1,0, zi2,0, . . . , zik,0s � 2kz1,1zi1,0zi2,0 � � � zik,0

belong to the ideal H.

Proposition 3.2. The polynomials

ry1,1, zi1,0, zi2,0, . . . , zik,0, z1,1s � p�1qkrz1,1, zi1,0, zi2,0, . . . , zik,0, y1,1s.

belong to the ideal H.

Proposition 3.3. The polynomials

y1,1z1,1ry2,1, z2,1s � y1,1z1,1y2,1z2,1 and z1,1y1,1ry2,1, z2,1s � z1,1y1,1z2,1y2,1

belong to the ideal H.

3.1.1 Y0-proper polynomials for M1,1pEq

Since 1R is in R�
0

, every proper polynomial is a linear combination of products

of variables yi,1, zi,0, zk,1 followed by a product of commutators. We consider the spaces

Γn,l,m,kpRq where n, l, m, k ¥ 0 of all multilinear Y0-proper polynomials on M1,1pEq in

the variables y1,0, . . . , yn,0, y1,1, . . . , yl,1, z1,0, . . . , zm,0, z1,1, . . . , zk,1 in the free algebra

KxY Y Zy.

By ryi,0, xs � 0 we have Γn,l,m,kpRq � 0 if n ¡ 0. Hence we consider the

possibilities for Γ0,l,m,kpRq. It is clear that by the identities in H we have that:
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• Γ0,0,0,kpRq � 0, if k ¡ 1;

• Γ0,0,m,0pRq � Spantz1,0 � � � zm,0u;

• Γ0,0,m,1pRq � Spantz1,0 � � � zm,0z1,1u and Γ0,0,m,kpRq � 0, if k ¡ 1;

• Γ0,1,m,0pRq � Spantzi1,0 � � � zim,0y1,1u and Γ0,l,m,0pRq � 0, if k ¡ 1.

Consider now Γ0,l,0,k. By Proposition 3.3 we have that Γ0,l,0,lpRq is gener-

ated by polynomials in the forms z1,1y1,1z2,1y2,1 � � � zl,1yl,1, y1,1z1,1y2,1z2,1 � � � yl,1zl,1 and

ry1,1, z1,1s � � � ryl,1, zl,1s. Furthermore, since ry1,1, z1,1s � y1,1z1,1 � z1,1y1,1 we obtain that

Γ0,l,0,lpRq � Spantz1,1y1,1z2,1y2,1 � � � zl,1yl,1, y1,1z1,1y2,1z2,1 � � � yl,1zl,1u.

The remaining possible cases are Γ0,l�1,0,lpRq and Γ0,l,0,l�1pRq, and in these

cases we have that

• Γ0,l�1,0,lpRq is spanned by y1,1z1,1y2,1z2,1 � � � yl,1zl,1yl�1,1

• Γ0,l,0,l�1pRq is spanned by z1,1y1,1z2,1y2,1 � � � zl,1yl,1zl�1,1.

Γ0,l,m,kpRq

In each commutator, at most one yi,1 and one zj,1 can appear. The non

zero commutators are of the form ry1,1, zi1,0, zi2,0, . . . , zik,0s, rz1,1, zi1,0, zi2,0, . . . , zik,0s, and

ry1,1, zi1,0, zi2,0, . . . , zik,0, z1,1s. Also Γ0,l,m,kpRq � 0 if |l � k| ¡ 1.

Consider the polynomials

• pl � yi1,1zj1,1yi2,1zj2,1 � � � yil,1zjl,1

• p�l � yi1,1zj1,1yi2,1zj2,1 � � � yil,1

• ql � zj1,1yi1,1zj2,1yi2,1 � � � zjl,1yil,1

• q�l � zj1,1yi1,1zj2,1yi2,1 � � � zjl,1

Γ0,k,m,kpRq

We can generate Γ0,k,m,kpRq by products of zi,0 and the polynomials pl, ql, and

commutators ryj,1, zi1,0, zi2,0, . . . , zik,0, zt,1s. Now, for the commutators we have that

ry1,1, zi1,0, zi2,0, . . . , zik,0, z1,1s � 2kzi1,0zi2,0 � � � zik,0
�
p�1qkyj,1zt,1 � zt,1yj,1

�
.

Thus, by identities 5, 7, 10 and 11 we conclude that Γ0,k,m,k is spanned, modulo

H, by the monomials
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•

m¹
i�1

zi,0y1,1z1,1 � � � y1,kz1,k

•

m¹
i�1

zi,0z1,1y1,1 � � � z1,ky1,k

Γ0,k,m,k�1pRq and Γ0,k�1,m,kpRq

Now, considering p�l and q�l and extending the analysis of case Γ0,k,m,kpRq to

Γ0,k�1,m,kpRq and Γ0,k,m,k�1pRq we can conclude that

• Γ0,k�1,m,kpRq is generated by
m¹
i�1

zi,0y1,1z1,1 � � � y1,kz1,ky1,k�1,

• Γ0,k,m,k�1pRq is generated by
m¹
i�1

zi,0z1,1y1,1 � � � z1,ky1,kz1,k�1.

Note that modulo H the elements of the subspaces Γn,l,m,k are linearly inde-

pendent. Therefore, Theorem 3.1 has been proven.

3.1.2 Cocharacters of pM1,1pEq, �q

Now, we study the cocharacters of pM1,1pEq, �q. Consider the vector spaces

Pn,l,m,kpRq, n, l, m, k ¥ 0 of all multilinear polynomials for R � M1,1pEq in the sets

of variables y1,0, . . . , yn,0, y1,1, . . . , yl,1, z1,0, . . . , zm,0, z1,1, . . . , zk,1 in the free algebra

KxY Y Zy � Kxy1,0, y1,1, z1,0, z1,1, . . . y.

Let x¼y be a multipartition of n, x¼y � p¼p1q, ¼p2q, ¼p3q, ¼p4qq, where ¼piq $ ni,

1 ¤ i ¤ 4. Let us consider the pn1, n2, n3, n4q-th cocharacter of R � pM1,1pEq, �q,

Çn1,n2,n3,n4
pRq �

¸
xλy$pn1,...,n4q

mxλyÇλp1q b Çλp2q b Çλp3q b Çλp4q. (3.2)

Theorem 3.2. Let

Çn1,n2,n3,n4
pRq �

¸
xλy$pn1,...,n4q

mxλyÇλp1q b Çλp2q b Çλp3q b Çλp4q

be the pn1, n2, n3, n4q-th cocharacter of R � pM1,1pEq, �q.

(i) If x¼y � ppn1q,H, pn3q,Hq with n1 � n3 ¥ 1, then mxλy � 1;

(ii) If x¼y � ppn1q, p1
n2q, pn3q, p1

n2qq with n2 ¥ 1, then mxλy � 2;

(iii) If x¼y � ppn1q, p1
n2�1q, pn3q, p1

n2qq with n2 ¥ 0, then mxλy � 1;

(iv) If x¼y � ppn1q, p1
n2q, pn3q, p1

n2�1qq with n2 ¥ 0, then mxλy � 1;
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In all remaining cases mxλy � 0.

Proof. From the identities in Theorem 3.1, mxλy � 0 if:

• hp¼p1qq ¡ 1,

• hp¼p3qq ¡ 1,

• |n2 � n4| ¡ 1.

Given a multipartition x¼y we consider the corresponding Young diagrams filled in a

standard way.

If Tλp1q, Tλp2q, Tλp3q and Tλp4q are the corresponding tableaux, due to the identities

of Theorem 3.1 we can fill Tλp1q with the integers 1, 2, . . . , n1, and Tλp3q with n1�1, n1�2,

. . . , n1 � n3. Also, by the identities yi,1yj,1 � 0 and zi,1zj,1 � 0 we can’t write consecutive

integers in the same tableaux Tλp2q or Tλp4q. So, we consider the tableaux Tλp2q and Tλp4q

with the integers n1 � n3 � 1, . . . , n1 � n2 � n3 � n4. For convenience, we consider the

tableaux Tλp2q and Tλp4q with the integers 1, 2, . . . , m.

Let us consider first x¼y � ppn1q, p1
n2q, pn3q, p1

n2qq with n2 ¡ 0. For it, consid-

ering the standard tableaux, for Tλp2q and Tλp4q we have only the possibilities:

Tλp2q �

1

3
...

m� 1

, Tλp4q �

2

4
...

m

or T λp2q �

2

4
...

m

, T λp4q �

1

3
...

m� 1

The corresponding highest weight vectors are given by

É �
¸

σ,τPSp

psign Ãqpsign Äqyσp1q,1zτp1q,1 � � � yσppq,1zτppq,1

and

É �
¸

σ,τPSp

psign Ãqpsign Äqzτp1q,1yσp1q,1 � � � zτppq,1yσppq,1.

Modulo the identities satisfied by pM1,1pEq, �q, we can rewrite the above polynomials as

É � pp!q2y1,1z1,1 � � � yp,1zp,1 and É � pp!q2z1,1y1,1 � � � zp,1yp,1.

For x¼y � ppn1q, p1
n2�1q, pn3q, p1

n2qq with n2 ¥ 0 we have

Tλp2q �

1

3
...

m� 1

m� 1

, Tλp4q �

2

4
...

m
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where the corresponding highest weight vector

É� �
¸
σ,τ

psign Ãqpsign Äqyσp1q,1zτp1q,1 � � � yσppq,1zτppq,1yσpp�1q,1

can be rewritten as É� � pp� 1q!p!y1,1z1,1 � � � yp,1zp,1yp�1,1.

Finally, for x¼y � ppn1q, p1
n2q, pn3q, p1

n2�1qq with n2 ¥ 0 we have

Tλp2q �

2

4
...

m

, Tλp4q �

1

3
...

m� 1

m� 1

where the corresponding highest weight vector is

É� �
¸
σ,τ

psign Ãqpsign Äqzτp1q,1yσp1q,1 � � � zτppq,1yσppq,1zτpp�1q,1,

which can be rewritten as É� � pp� 1q!p!z1,1y1,1 � � � zp,1yp,1zp�1,1.

The highest weight vectors are not polynomial identities of A, and É, É

are linearly independent. Therefore, since dimPn1,n2,n3,n2
pRq � 2 with n2 ¡ 0, and

dimPn1,n2�1,n3,n2
pRq � dimPn1,n2,n3,n2�1pRq � 1 with n2 ¥ 0, we conclude that the multi-

plicities mxλy are as in the statement.

3.2 Graded �-identities of UT1,1pEq

The algebra of upper triangular matrices of size two, UT2pKq, as graded algebra

has only two possible grading (up to isomorphism), the trivial grading and the canonical

Z2-grading given by UT2pKq � pUT2pKqq0`pUT2pKqq1; where pUT2pKqq0 � Ke1,1�Ke2,2

and pUT2pKqq1 � Ke1,2 (see [35]). We denote by UT1,1pKq the algebra UT2pKq with the

canonical Z2-grading.

The superinvolutions on UT1,1 coincide with the graded involutions, and the

only graded involutions (up to equivalence) on UT1,1 are given by�
a c

0 b

��

�

�
b c

0 a

�
,

�
a c

0 b

�s

�

�
b �c

0 a

�

(see [24]).

We consider the algebra UT1,1pEq �

#�
a c

0 b

�
: a, d P E0, b, c P E1

+
. One can

consider on UT1,1pEq � UT1,1pKqb̂E the following graded involutions:
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• � induced by p�, iEq,

• �1 induced by ps, iEq,

• �2 induced by p�,�iEq,

• �3 induced by ps,�iEq,

where � � �3, �1 � �2 and these involutions are defined as follows. If a, b P E0, c P E1�
a c

0 b

��

�

�
b c

0 a

�
,

�
a c

0 b

��1

�

�
b �c

0 a

�
.

Let A � UT1,1pEq be endowed with the involution � given by�
a c

0 b

��

�

�
b c

0 a

�
.

Then,

A�
0
�

#�
a 0

0 a

�
: a P E0

+
, A�

0
�

#�
a 0

0 �a

�
: a P E0

+
,

A�
1
�

#�
0 c

0 0

�
: c P E1

+
, A�

1
�

#�
0 0

0 0

�+
.

We have the following relations in KxY, Zy modulo Id�pUT1,1pEqq

(a) ryi,0, xs � 0, (b) yi,1yj,1 � 0, (c) zi,1 � 0,

(d) rzi,0, zj,0s � 0, (e) zi,0 � yj,1 � 0.

3.2.1 Y0-proper polynomials on UT1,1pEq

Since 1A is in A�
0

, every proper polynomial is a linear combination of products

of variables yi,1, zi,0, zk,1 followed by a product of commutators. Consider the vector spaces

Γn,l,m,kpAq pn, l,m, k ¥ 0q of all multilinear Y0-proper polynomials on A � UT1,1pEq in the

sets of variables y1,0, . . . , yn,0, y1,1, . . . , yl,1, z1,0, . . . , zm,0, z1,1, . . . , zk,1 in the free algebra

KxY Y Zy and denote by I the T �
2

-ideal of KxY Y Zy generated by the corresponding

polynomials in the relations (a)-(e). The identity (e) gives us the following proposition.

Proposition 3.4. The polynomial ry1,1, zσpi1q,0, . . . , zσpikq,0s�p�2qkzi1,0, . . . , zik,0y1,1 belongs

to I.

Note that modulo I:

• if k ¡ 0, then by z1,1 � 0, Γn,l,m,kpAq � t0u,

• if n ¡ 0, then by ry1,0, xs � 0, Γn,l,m,kpAq � t0u.



Chapter 3. Matrices over the Grassmann algebra 77

Thus, we only need to consider Γ0,l,m,0pAq with l,m ¥ 0. Since zi,0 �yj,1 � 0 and yi,1yj,1 � 0

then Γ0,l,m,0pAq � t0u if l ¡ 1, and for the remaining cases we have:

• Γ0,1,0,0pAq � Spanty1,1u,

• Γ0,0,m,0pAq � Spantz1,0z2,0 � � � zm,0u, m ¤ 1

• Γ0,1,m,0pAq � Spantz1,0z2,0 � � � zm,0y1,1u, m ¤ 1

Modulo I the elements of the subspaces Γn,l,m,kpAq are linearly independent, this proves

the following theorem:

Theorem 3.3. Let pUT1,1pEq, �q be the algebra of 2 � 2 upper-triangular matrices over

the Grassmann algebra, with the canonical Z2-grading and endowed with the involution �

given by �
a c

0 b

��

�

�
b c

0 a

�
.

Then its T �
2

-ideal of identities is generated, as a T �
2

-ideal, by

piq ryi,0, xs, piiq yi,1yj,1, piiiq zi,1,

pivq rzi,0, zj,0s, pvq zi,0 � yj,1.

3.2.2 Cocharacters of pUT1,1pEq, �q

Let x¼y be a multipartition of n, x¼y � p¼p1q, ¼p2q, ¼p3q, ¼p4qq, where ¼piq $ ni,

1 ¤ i ¤ 4. Let us consider the pn1, n2, n3, n4q-th cocharacter of A � pUT1,1pEq, �q,

Çn1,n2,n3,n4
pAq �

¸
xλy$pn1,...,n4q

mxλyÇλp1q b Çλp2q b Çλp3q b Çλp4q. (3.3)

Theorem 3.4. Let

Çn1,n2,n3,n4
pAq �

¸
xλy$pn1,...,n4q

mxλyÇλp1q b Çλp2q b Çλp3q b Çλp4q

be the pn1, n2, n3, n4q-th cocharacter of A � pUT1,1pEq, �q.

(i) If x¼y � ppn1q,H, pn3q,Hq with n1 � n3 ¥ 1, then mλ � 1;

(i) If x¼y � ppn1q, p1q, pn3q,Hq, then mλ � 1.

In all remaining cases mλ � 0.
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Proof. From the identities in Theorem 3.3, mxλy � 0 if hp¼p1qq ¡ 1, or hp¼p3qq ¡ 1, or

n4 ¡ 0, or n2 ¡ 1. In this way we have to consider the cases x¼y � ppn1q,H, pn3q,Hq and

x¼y � ppn1q, p1q, pn3q,Hq. We deal with x¼y � ppn1,H, pn3q,Hq with n1 � n3 ¡ 0. To this

end, consider the tableaux

Tλp1q � 1 2 � � � n1 , Tλp3q � n1 � 1 n1 � 2 � � � n1 � n3 , Tλp2q � Tλp4q � H.

The corresponding highest weight vector É � py1,0q
n1pz1,0q

n3 is not an identity of A.

Therefore, mxλy ¥ 1. By the identities of A, there is only one linearly independent highest

weight vector corresponding to the multipartition x¼y. Thus, mxλy � 1.

For x¼y � ppn1q, p1q, pn3q,Hq consider the tableaux

Tλp1q � 1 2 � � � n1 , Tλp3q � n1 � 1 n1 � 2 � � � n1 � n3 ,

Tλp2q � n1 � n3 � 1 , Tλp4q � H.

The corresponding highest weight vector É � py1,0q
n1pz1,0q

n3y1,1 is not an identity of A

and from the identities of A, it is the only one. Therefore, mxλy � 1.

3.3 Graded �-identities of UTp0,1,0qpEq

Consider UT3pKq the algebra of upper triangular matrices of size three. As in

[24] we consider C � UT3pKqp0,1,0q the algebra UT3pKq with the Z2-grading given by

C0 � Ke1,1 `Ke2,2 `Ke3,3 `Ke1,3, C1 � Ke1,2 `Ke2,3

In [24] it was shown that, up to an isomorphism, the only superinvolution on C is given by���a f d

0 b g

0 0 c

��

�

�

���c g �d

0 b f

0 0 a

��
.
Then, on GpUT3q � UT3pEqp0,1,0qb̂E we consider the following graded involutions:

• � induced by p�, iEq,

• �1 induced by p�,�iEq.

Let B be the algebra GpUT3q with involution �. That is, if a, b, c, d P E0, f, g P E1,���a f d

0 b g

0 0 c

��

�

�

���c g �d

0 b f

0 0 a

��
.
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Then,

B�
0
�

$'&'%
���a 0 0

0 b 0

0 0 a

��
: a, b P E0

,/./- , B�
0
�

$'&'%
���d 0 c

0 0 0

0 0 �d

��
: c, d P E0

,/./-
B�

1
�

$'&'%
���0 g 0

0 0 g

0 0 0

��
: g P E1

,/./- , B�
1
�

$'&'%
���0 f 0

0 0 �f

0 0 0

��
: f P E1

,/./-
Let Pn1,n2,n3,n4

be the multilinear polynomials in the variables y1,0, . . . , yn1,0, y1,1, . . . , yn2,1,

z1,0, . . . , zn3,0, z1,1, . . . , zn4,1 where yi,j is symmetric of degree j and zi,j is skew symmetric

of degree j. The following polynomials in KxY, Zy are identities of B.

piq ryi,0, yj,0s, piiq ryi,0, zj,0s

piiiq yi,1 � yj,1, pivq ryi,1, zj,1s,

pvq zi,1 � zj,1, pviq yi,1yj,0yk,1 � yk,1yj,0yi,1,

pviiq zi,1yj,0zk,1 � zk,1yj,0zi,1, pviiiq yi,1yj,0zk,1 � zk,1yj,0yi,1,

pixq zi,0zj,0zk,0 � zk,0zj,0zi,0, pxq rzi,0, zj,0srzk,0, zl,0s,

pxiq xk,1rzi,0, zj,0s, x P ty, zu, pxiiq rzi,0, zj,0sxk,1, x P ty, zu,

pxiiiq zi,0xk,1zj,0, x P ty, zu, pxivq xi,1zk,0wj,1, x, w P ty, zu,

pxvq xi,1xj,1xk,1, x�,1 P ty�,1, z�,1u.

Let J be the T �
2

-ideal of KxY, Zy generated by these polynomials. We prove

Theorem 3.5. Let B � pGpUT3q, �q be the Grassmann envelope of the algebra of 3 � 3

upper-triangular matrices, with the Z2-grading induced by the tuple p0, 1, 0q, and endowed

with the involution � given by���a f d

0 b g

0 0 c

��

�

�

���c g �d

0 b f

0 0 a

��
.
Then its T �

2
-ideal is generated, as a T �

2
-ideal, by the identities piq � pxvq.

Since B0 �B1, B1 �B0 � B1, from the identity pxvq we obtain that if n2�n4 ¡ 2

then Pn1,n2,n3,n4
pBq � 0. Hence, we consider the following three cases:

p1q n2 � 0 and n4 � 0.

Considering the multilinear Y0-proper polynomials Γn1,0,n3,0pBq, since rB�
0
, B�

0
s P B�

0
,

then Γn1,0,n3,0pBq � 0 if n1 ¡ 1. From the identity zi,0zj,0zk,0�zk,0zj,0zi,0 � 0 we have

rzi,0, zj,0, zk,0s � �2zk,0rzi,0, zj,0s. Thus Γ0,0,n3,0pBq � Spantrzi1,0, zi2,0, . . . , zin3
,0su.

By rrx1, x2s, rx3, x4ss � rx1, x2, x3, x4s � rx1, x2, x4, x3s, rzi,0, zj,0srzk,0, zl,0s � 0, and

the Jacobi Identity, we conclude that modulo J ,

Γ0,0,n3,0pBq � Spantrzl,0, z1,0, . . . ,xzl,0, . . . , zn3,0su,
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where 2 ¤ l ¤ n3 and xzl,0 means that the variable zl,0 can be omitted.

Suppose
n3̧

l�2

³lrzl,0, z1,0, . . . ,xzl,0, . . . , zn3,0s � 0 mod pIdpBqq,

and that there exists ³l � 0, then by the evaluation zl,0 � e1,3 and zi,0 � e1,1 � e3,3,

i P t1, 2, . . . , n3uztlu, we obtain ³lp�2qn3�1e1,3 � 0, a contradiction. Thus, the

commutators rzl,0, z1,0, . . . ,xzl,0, . . . , zn3,0s (2 ¤ l ¤ n3) are linearly independent.

p2q n2 � 1 and n4 � 0 (the case n2 � 0, n4 � 1 is analogous).

By ryi,0, yj,0s � 0, ryi,0, zj,0s � 0, zi,0y1,1zj,0 � 0 and the identities zj1,0 � � � zjn3
,0y1,1 �

z1,0 � � � zn3,0y1,1 and y1,1zj1,0 � � � zjn3
,0 � y1,1z1,0 � � � zn3,0 we obtain that Pn1,1,n3,0 is

spanned modulo J by the monomials

yi1,0 � � � yim,0z1,0 � � � zn3,0y1,1yk1,0 � � � ykr,0, yi1,0 � � � yim,0y1,1yk1,0 � � � ykr,0z1,0 � � � zn3,0,

where m� r � n1, i1   i2   � � �   im, k1   k2   � � �   kr.

To prove these monomials are linearly independent we consider the polynomial

f �
¸
I,K

³I,Kyi1,0 � � � yim,0z1,0 � � � zn3,0y1,1yk1,0 � � � ykr,0

�
¸
J,H

´J,Hyj1,0 � � � yjs,0y1,1yh1,0 � � � yht,0z1,0 � � � zn3,0

with m � r � s � t � n1, I � ti1, . . . , imu, K � tk1, . . . , kru, J � tj1, . . . , jsu,

H � th1, . . . , htu, and i1   � � �   im, k1   � � �   kr, j1   � � �   js, h1   � � �   ht.

Suppose f P IdpBq and that there exists ³I,K � 0 or ´I,K � 0 for some I and

K. Now, if we consider yil,0 � e1,1 � e3,3 for l � 1, . . . , m, ykc,0 � e2,2 for c � 1,

. . . , r, y1,1 � e1pe1,2 � e2,3q and zj,0 � e1,1 � e3,3 for j � 1, . . . , n3, we obtain

³I,Ke1e1,2 � ´I,Ke1e2,3 � 0. Therefore, ³I,K � ´I,K � 0, a contradiction.

p3q n2 � 2 and n4 � 0 (the cases n2 � 0, n4 � 2 and n2 � 1, n4 � 1 are analogous).

Since z2,0y1,1y2,1z1,0 � z1,0y1,1y2,1z2,0 and y2,0y1,1y2,1y1,0 � y1,0y1,1y2,1y2,0 (because

B�
1
�B�

1
� B�

0
), by the identities above we obtain Pn1,2,n3,0 is spanned, modulo J ,

by

yi1,0 � � � yim,0z1,0 � � � zl,0y1,1yj1,0 � � � yjs,0y2,1yim�1,0 � � � yin1�s,0zl�1,0 � � � zn3,0,

with i1   i2   � � �   in1�s, j1   j2   � � �   js. These monomials are linearly

independent modulo J : consider the polynomial

f �
¸
I,J,l

³lI,Jyi1,0 � � � yim,0z1,0 � � � zl,0y1,1yj1,0 � � � yjs,0y2,1yim�1,0 � � � yin1�s,0zl�1,0 � � � zn3,0

where I � ti1, . . . , in1�su, J � tj1, . . . , jsu, i1   � � �   in1�s, j1   � � �   js.

Suppose f P IdpBq and there exists ³lI,J � 0 for some I, K, l. Considering the
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evaluation yin,0 � e1,1 � e3,3 for n � 1, . . . , n1 � s, yjk � e2,2 for k � 1, . . . , s,

yj,1 � ejpe1,2 � e2,3q for j � 1, 2, and zc,0 � e1,1 � e3,3 for c � 1, . . . , n3 we obtain

³lI,Je1e2e1,3 � 0. Thus, ³lI,J � 0, a contradiction.

As a consequence of (1)-(3) we have the proof of the Theorem 3.5.

3.3.1 Cocharacters of B

Consider the spaces Pn1,n2,n3,n4
pBq pn1, n2, n3, n4 ¥ 0q of all multilinear polyno-

mials on B in the variables y1,0, . . . , yn1,0, y1,1, . . . , yn2,1, z1,0, . . . , zn3,0, z1,1, . . . , zn4,1 in

the free algebra KxY Y Zy � Kxy1,0, y1,1, z1,0, z1,1, . . . y. Let x¼y � p¼p1q, ¼p2q, ¼p3q, ¼p4qq

be a multipartition of n � n1 � n2 � n3 � n4, where ¼piq $ ni, 1 ¤ i ¤ 4, and consider the

pn1, n2, n3, n4q-th cocharacter of B,

Çn1,n2,n3,n4
pBq �

¸
xλy$pn1,...,n4q

mxλyÇλp1q b Çλp2q b Çλp3q b Çλp4q. (3.4)

Our next aim is to compute the multiplicities of the cocharacters, starting with the case

when we only have variables of degree zero, that is n2 � n4 � 0.

In order to find the cocharacters of B, we consider Young diagrams of shape

x¼y � p¼p1q, ¼p2q, ¼p3q, ¼p4qq $ pn1, n2, n3n4q and the corresponding standard tableaux.

Let É be the highest weight vector associated to x¼y � p¼p1q,H, ¼p3q,Hq. By

the identities 1, 2, 9 and 10 we conclude that É � 0 in the following situations:

hp¼p1qq ¡ 1, � Tλp3q, � Tλp3q.

Therefore, we consider the cases x¼y � ppn1q,H, pn3q,Hq and

x¼y � ppn1q,H, pn3 � 1, 1q,Hq.

Proposition 3.5. If x¼y � ppn1q,H, pn3q,Hq with n1 � n3 ¡ 0 or

x¼y � ppn1q,H, pn3 � 1, 1q,Hq for n3 ¡ 1, then mxλy � 1 in the cocharacter (3.4).

Proof. Since Pn1,0,n3,0pBq is spanned by the monomial y1,0 � � � yn1,0z1,0 � � � zn3,0 we have that

the only (linearly independent) highest weight vector associated to x¼y � ppn1q,H, pn3q,Hq

is É � py1,0q
n1pz1,0q

n3 which is not an identity of A. Thus, if x¼y � ppn1q,H, pn3q,Hq then

mxλy � 1.

Now we examine the case x¼y � ppn1q,H, pn3 � 1, 1q,Hq. The tableaux with

possibly linearly independent highest weight vectors are

Tλp3q �
n1 � 1 n1 � 2 � � � n1 � i� 1 n1 � i� 1 � � � n1 � n3

n1 � i
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Tλp1q � 1 2 � � � n1 , Tλp2q � H, Tλp4q � H,

Then, from the identity pixq for each i � 2, . . . , n3 the corresponding highest weight vector

has the form

Éi � py1,0q
n1 ẑ1,0pz1,0q

kẑ2,0pz1,0q
l, k � l � n3 � 2

�

$&%0, k odd

py1,0q
n1rz1,0, z2,0spz1,0q

n3�2, k even.

Thus, if x¼y � ppn1q,H, pn3 � 1, 1q,Hq then mxλy � 1.

Next, we consider the cases when n2 � n3 � 1.

Proposition 3.6. If x¼y � ppp � q, pq, p1q, pn3q,Hq, where p, q ¥ 0 and n3 ¡ 0, then

mxλy � 2pq � 1q in the cocharacter (3.4).

Proof. Let x¼y � ppp� q, pq, p1q, pn3q,Hq. We determine the linearly independent highest

weight vectors associated to the standard Young tableaux of shape x¼y which are not

identities of B. Let Tλpiq be the tableau associated to ¼piq $ ni in x¼y.

A basis for Pn1,1,n3,0pBq is given by

yi1,0 � � � yim,0z1,0 � � � zn3,0y1,1yk1,0 � � � ykr,0, yi1,0 � � � yim,0y1,1yk1,0 � � � ykr,0z1,0 � � � zn3,0,

where m� r � n1, i1   i2   � � �   im, k1   k2   � � �   kr. Given a positive integer t1 and

Tλp2q � t1 , we fill Tλp3q with positive integers, all larger than t1 or all less than t1. Also,

since ryi,0, yj,0s � 0, we need t1 to be larger than the integers in the first p positions of the

first row of Tλp1q and less than the integers in the second row of Tλp1q, or vice versa.

These remarks reduce our study to the following cases.

The first case is

Tλp1q �
n3 � 1 n3 � 2 � � � n3 � p � � � t1 � 1 t1 � 1 � � � t2

t2 � 1 t2 � 2 � � � n

Tλp2q � t1 , Tλp3q � 1 2 � � � n3 , Tλp4q � H,

where n3   t1   t2   n, and the corresponding highest weight vector is

f 1

t1
� pz1,0q

n3 ȳ1,0 � � � ỹ1,0loooomoooon
p

py1,0q
i1�py1,1 ȳ2,0 � � � ỹ2,0loooomoooon

p

py1,0q
i2�p.

The second case is

Tλp1q �
1 2 � � � p � � � t1 � 1 t1 � n3 � 1 � � � t2

t2 � 1 t2 � 2 � � � n
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Tλp2q � t1 , Tλp3q � t1 � 1 t1 � 2 � � � t1 � n3 , Tλp4q � H,

where t1   t2   n, and the corresponding highest weight vector is

f 2

t1
� ȳ1,0 � � � ỹ1,0loooomoooon

p

py1,0q
i1�py1,1pz1,0q

n3 ȳ2,0 � � � ỹ2,0loooomoooon
p

py1,0q
i2�p.

We focus on the first case. For i1 � p, p � 1, . . . , p � q, consider the generic

highest weight vector

f 1

i1
� pz1,0q

n3 ȳ1,0 � � � ỹ1,0loooomoooon
p

py1,0q
i1�py1,1 ȳ2,0 � � � ỹ2,0loooomoooon

p

py1,0q
i2�p,

i1 � i2 � n1. Similarly as in Proposition 2.19, f 1

i1
can be written as

f 1

i1
�

p̧

j�0

p�1qj
�
p

j



pz1,0q

n3py1,0q
i1�jpy2,0q

jy1,1py1,0q
i2�p�jpy2,0q

p�j.

We consider the evaluation y1,0 � ³1pe1,1 � e3,3q � ´1e2,2, y2,0 � ³2pe1,1 � e3,3q � ´2e2,2,

z1,0 � ·pe1,1 � e3,3q � ¶1e1,3 and y1,1 � µe1pe1,2 � e2,3q. Then,

f 1

i1
�
�
·n3µ³

i1�p
1 ´

i2�p
1 e1p³1´2 � ³2´1q

p
�
e1,2.

Notice that the coefficient ·n3µp³1´2 � ³2´1q
pe1 � e1,2 is present in every evaluation of f 1

i1
,

for i1 � p, p � 1, . . . , p � q. Therefore, to prove linear independence, we consider only

³
i1�p
1 ´

i2�p
1 .

If there exist scalars µi1 ’s such that
p�q̧

i1�p

µi1f
1

i1
� 0, then for every ³1, ´1 P K,

we have
p�q̧

i1�p

µi1³
i1�p
1 ´

i2�p
1 � 0.

Therefore, µi1 vanish for all i1, and tf 1

i1
: i1 � p, p� 1, . . . , p� qu are linearly independent.

Similarly the set tf 2

i1
: i1 � p, p � 1, . . . , p � qu is linearly independent. Since

f 1

i1
� ³e1,2 and f 2

i1
� ´e2,3, then mxλy ¥ 2pq � 1q. We have considered all possibilities for

the highest weight vectors being linearly independent, as well as generic evaluations, and

thus we conclude that mxλy � 2pq � 1q.

Similarly, in the case of one skew-symmetric variable of degree 1, we have

Proposition 3.7. If x¼y � ppp � q, pq,H, pn3q, p1qq, where p, q ¥ 0 and n3 ¡ 0, then

mxλy � 2pq � 1q in the cocharacter (3.4).

In the cases x¼y � ppp � q, pq, p1q, pn3q,Hq and x¼y � ppp � q, pq,H, pn3q, p1qq,

the division of the two families of highest weight vectors depends on the presence of z1,0,

therefore, we consider separately the case when n3 � 0.
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Proposition 3.8. If x¼y � ppp � q, pq, p1q,H,Hq, where p, q ¥ 0, then mxλy � q � 1 in

the cocharacter (3.4).

Proof. Considering the corresponding tableaux and the identities of B, we have that given

Tλp2q � t1 , then we need t1 to be larger than the integers in the first p positions of the

first row of Tλp1q and less than the integers in the second row of Tλp1q, or vice versa. Taking

into account standard tableaux and looking for highest weight vectors that are linearly

independent, we find that the options are determined by

Tλp1q �
1 2 � � � p � � � t1 � 1 t1 � 1 � � � t2

t2 � 1 t2 � 2 � � � n

Tλp2q � t1 , Tλp3q � H, Tλp4q � H,

where t1   t2   n, and the corresponding highest weight vector is

fi1 � ȳ1,0 � � � ỹ1,0loooomoooon
p

py1,0q
i1�py1,1 ȳ2,0 � � � ỹ2,0loooomoooon

p

py1,0q
i2�p.

Through calculations similar to those in the proof of Proposition 3.6, we establish that the

highest weight vectors fi1 are linearly independent for i1 � p, p� 1, . . . , p� q. Considering

that we encompass all possibilities, we conclude that mxλy � q � 1.

Analogously, we have the case of one skew-symmetric variable of degree 1.

Proposition 3.9. If x¼y � ppp � q, pq,H,H, p1qq, where p, q ¥ 0, then mxλy � q � 1 in

the cocharacter (3.4).

Let us now consider the case where n2�n4 � 2. First, we recall that Pn1,2,n3,0pAq

is spanned by polynomials of the form

yi1,0 � � � yim,0z1,0 � � � zl,0y1,1yj1,0 � � � yjs,0y1,1yim�1,0 � � � yin1�s,0zl�1,0 � � � zn3,0.

Let x¼y � ppp � q, pq, p2q, pn3q,Hq, where p, q, n3 ¥ 0, then the corresponding highest

weight vectors that are not zero (considering the identities of B) will be of the form

ȳ1,0 � � � ỹ1,0loooomoooon
p

py1,0q
i1�ppz1,0q

j1y1,1 ȳ2,0 � � � ỹ2,0loooomoooon
p

py1,0q
i2�py1,1py1,0q

i3pz1,0q
j2 .

Consider separately the parts

m � y1,1yk1,0 � � � ykp,0py1,0q
i2�py1,1

where ki P t1, 2u, and a generic evaluation yi,0 � aipe1,1 � e3,3q � bie2,2, y1,1 � cpe1,2 � e2,3q

where ai, bi P E0 and c P E1. Then m � cbc � e1,3 � 0. Therefore, if

x¼y � ppp� q, pq, p2q, pn3q,Hq then mxλy � 0. Similarly for x¼y � ppp� q, pq,H, pn3q, p2qq.

Next, we consider the case when x¼y � ppp� q, pq, p1q, pn3q, p1qq.
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Proposition 3.10. If x¼y � ppp�q, pq, p1q, pn3q, p1qq, where p, q ¥ 0, then mxλy � n3pq�1q

in the cocharacter (3.4).

Proof. Observe that Pn1,1,n3,1pAq is spanned by polynomials of the form

yi1,0 � � � yim,0z1,0 � � � zl,0y1,1yj1,0 � � � yjs,0z1,1yim�1,0 � � � yin1�s,0zl�1,0 � � � zn3,0.

The possible highest weight vectors associated to standard tableaux of shape x¼y, which

are not identities of B, are described by

fi1,i2,j1 � ȳ1,0 � � � ỹ1,0loooomoooon
p

py1,0q
i1�ppz1,0q

j1y1,1 ȳ2,0 � � � ỹ2,0loooomoooon
p

py1,0q
i2�pz1,1py1,0q

i3pz1,0q
j2 ,

where i1 � i2 � i3 � n1, p ¤ i1, i2 ¤ p� q and j1 � j2 � n3.

Again, we rewrite fi1,i2,j1 in the following manner

fi1,i2,j1 �
p̧

k�0

p�1qk
�
p

k



py1,0q

i1�kpy2,0q
kpz1,0q

j1y1,1py1,0q
i2�p�kpy2,0q

p�kz1,1py1,0q
i3pz1,0q

j2 ,

and considering the evaluation y1,0 � ³1pe1,1 � e3,3q � ´1e2,2, y2,0 � ³2pe1,1 � e3,3q � ´2e2,2,

z1,0 � ·pe1,1 � e3,3q � ¶1e1,3, y1,1 � e1pe1,2 � e2,3q and z1,1 � e2pe1,2 � e2,3q we obtain

fi1,i2,j1 � r·n3p³1´2 � ³2´1q
pe1e2s

�
p�1qj2³n1�i2�p

1 ´
i2�p
1

�
e1,3.

Since the term ·n3p³1´2 � ³2´1q
pe1e2e1,3 is common to each fi1,i2,j1 , we can

reduce to considering only the terms p�1qj2³n1�i2�p
1 ´

i2�p
1 , which depend on i2 and j2,

where p ¤ i2 ¤ p� q and 0 ¤ j2 ¤ n3.

Suppose that there exist µi2,j2 P F such that¸
i2,j2

µi2,j2p�1qj2³n1�i2�p
1 ´

i2�p
1 � 0,

for all ³1, ´1 P F . Then,

p�q̧

i2�p

pµi2,0 � µi2,1 � � � � � p�1qn3µi2,n3
q³n1�i2�p

1 ´
i2�p
1 � 0,

so for each i2

µi2,0 � µi2,1 � � � � � p�1qn3µi2,n3
� 0.

We conclude that fixing i2 we have n3 linearly independent variables µi2,k. Therefore,

mxλy ¥ n3pq � 1q. As we consider generic evaluations, we get mxλy � n3pq � 1q.

Similarly to the case when n2 � n4 � 1, we have some differences between the

cases n3 ¡ 0 and n3 � 0. Next, we consider the case n2 � n4 � 1 and n3 � 0.
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Proposition 3.11. If x¼y � ppp� q, pq, p1q,H, p1qq, where p, q ¥ 0, then mxλy � q � 1 in

the cocharacter (3.4).

Proof. Similarly to the previous proposition, we have that the possible linearly independent

highest weight vectors that are not polynomial identities of B are represented by

fi1,i2,j1 � ȳ1,0 � � � ỹ1,0loooomoooon
p

py1,0q
i1�py1,1 ȳ2,0 � � � ỹ2,0loooomoooon

p

py1,0q
i2�pz1,1py1,0q

i3

�
p̧

k�0

p�1qk
�
p

k



py1,0q

i1�kpy2,0q
ky1,1py1,0q

i2�p�kpy2,0q
p�kz1,1py1,0q

i3

where i1 � i2 � i3 � n1 and p ¤ i1, i2 ¤ p � q. Considering y1,0 � ³1pe1,1 � e3,3q � ´1e2,2,

y2,0 � ³2pe1,1 � e3,3q � ´2e2,2, y1,1 � e1pe1,2 � e2,3q and z1,1 � e2pe1,2 � e2,3q,

fi1,i2,j1 � rp³1´2 � ³2´1q
pe1e2s

�
³
n1�i2�p
1 ´

i2�p
1

�
e1,3.

Similarly to the previous propositions, we conclude that mxλy � q � 1.

Based on the above presented results and considering the graded �-identities of

A, we have the description of the cocharacters of B.

Theorem 3.6. Let

Çn1,n2,n3,n4
pBq �

¸
xλy$pn1,...,n4q

mxλyÇλp1q b Çλp2q b Çλp3q b Çλp4q

be the pn1, n2, n3, n4q-cocharacter of B. Then

piq mxλy � 1, if x¼y � ppn1q,H, pn3q,Hq, where n1 � n3 ¡ 0 or if

x¼y � ppn1q,H, pn3 � 1, 1q,Hq and n3 ¡ 1.

piiq mxλy � q � 1, if x¼y � ppp � q, pq, p1q,H,Hq or x¼y � ppp � q, pq,H,H, p1qq, where

n3 ¡ 0 and n1 � 2p� q.

piiiq mxλy � 2pq � 1q, if x¼y � ppp � q, pq, p1q, pn3q,Hq or x¼y � ppp � q, pq,H, pn3q, p1qq,

where n3 ¡ 0 and n1 � 2p� q.

pivq mxλy � n3pq � 1q, if x¼y � ppp� q, pq, p1q, pn3q, p1qq, where n3 ¡ 0 and n1 � 2p� q.

pvq mxλy � q � 1, if x¼y � ppp� q, pq, p1q,H, p1qq, where n1 � 2p� q.

In all remaining cases mxλy � 0.
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4 The embedding problem

Let A and B be two K-algebras. A natural question arises: If IdpAq � IdpBq,

then is A � B? In general, this is not true. For example, for any algebra A, it holds that

IdpAq � IdpA` Aq. Another example to consider is IdpHRq � IdpM2pRqq, but the matrix

algebra M2pRq and the Quaternion algebra HR are not isomorphic.

Therefore, our strategy is restricting ourselves to the case of central simple

algebras over algebraically closed fields. In this case, we have a positive answer for:

• Finite-dimensional associative algebras

• Finite-dimensional Lie algebras by Kushkulei and Razmyslov (1983)

• Finite-dimensional Jordan algebras by Drensky and Racine (1992)

• Finite-dimensional algebras by Shestakov and Zaicev (2011).

The case of simple associative algebras graded by an abelian group was solved

by Koshlukov and Zaicev (see [26]), and the result was extended by Aljadeff and Haile

to arbitrary groups (see [1]). For finite-dimensional algebras graded by a semigroup, the

positive answer was given by Bahturin and Yasumura (see [4]). In the latter paper very

general results were obtained concerning the isomorphism of two algebraic systems provided

they satisfy the same identical relations.

A more general problem is the embedding problem: Consider A and B two

K-algebras, such that A satisfies the polynomial identities of B, then is possible to see the

algebra A as a subalgebra of B?

Now, concerning the question about the embedding of simple algebras over an

algebraically closed field, we have positive results for:

• Finite-dimensional associative algebras.

• Algebras graded by an abelian group over a field of characteristic zero, [9].

We consider K to be an algebraically closed field of characteristic different

from 2, and recall that in the case of matrices MnpKq, there are two types of involutions.

For the readers’ convenience we recall it once again here:

• The transpose involution, denoted by t:

paijq
t � pajiq , where paijq PMnpKq.
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• In the case where n � 2k is even, the symplectic involution denoted by s is defined

as follows:

as � TatT�1, for all a PM2kpKq,

where T �
ķ

i�1

pei,i�k � ei�k,iq.

That is, if n � 2k and B PM2kpKq, we consider B as a block matrix of size k � k,

and thus �
R S

P Q

�s
�

�
Qt �St

�P t Rt

�

We consider the embedding problem for algebras with involution. In the case

of simple algebras with involution, we have the following classification:

Theorem 4.1 ([34], Lemma 4). Let K be an algebraically closed field. Any finite dimen-

sional �-simple K-algebra with involution A is isomorphic as a �-algebra to one of the

following types:

• pMkpKq, tq - the full matrix algebra with the transpose involution,

• pMkpKq, sq - the full matrix algebra with the symplectic involution, (k P 2Z),

• pMkpKq`MkpKq
op, exq - the direct product of the full matrix algebra and its opposite

algebra with the exchange involution �.

Denote by pMnpKq, �q the full matrix algebra with involution �.

Definition 4.1. Lpn, d, k, �q stands for the set of all

StdpX1 �X�
1
, . . . , Xk �X�

k , Xk�1 �X�
k�1

, . . . , Xd �X�
d q,

that are identities for pMnpKq, �q. Here Stdpx1, . . . , xdq is the standard polynomial.

A possible approach to the embedding problem can be given based on standard

polynomials, as in the case of simple algebras. Hence we look for the minimum degree

such that a standard polynomial becomes an involution identity for the matrix algebra.

By Amitsur-Levitzki Lpn, d, k, �q holds for d ¥ 2n. On the other hand, if � � t

(the transpose involution), we have the following classification (see [30]).

Theorem 4.2. Lpn, 2n � 2, 0, tq, Lpn, 2n � 1, 0, tq and Lpn, 2n � 1, 1, tq hold for all n;

Lpn, 2n� 2, 1, tq holds for all odd n. All other Lpn, d, k, tq do not hold whenever d   2n.

Corollary 4.1. The minimum degree of a standard identity in skew-symmetric variables

for pMnpKq, tq is 2n� 2.
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Consider now pMnpKq, tq and pMmpKq, tq with m ¡ 1, and suppose that

Id pMnpKq, tq � Id pMmpKq, tq. By Corollary 4.1, we know that it satisfies Lpn, 2n�2, 0, tq.

Therefore, by assumption, we also have Lpm, 2n� 2, 0, tq, and once again, by Corollary

4.1, we have 2n� 2 ¥ 2m� 2. Therefore, n ¥ m.

Thus, we have the injective K-homomorphism º : MmpKq ÑMnpKq, given by

º ppaklqq � pbklq, where bkl �

$&%akl if 1 ¤ k, l ¤ m

0 otherwise.
(4.1)

Therefore, º
�
paklq

t
�
� º ppaklqq

t, and thus pMmpKq, tq embeds into pMnpKq, tq. In the case

where m � 1, it is evident that MmpKq embeds into MnpKq.

Now, let us consider the case of the symplectic involution.

Theorem 4.3 ([20], Lemma 4.1). Let pM2kpKq, sq be the algebra of 2k � 2k matrices

endowed with the symplectic involution. Then the polynomial St4kpx1, . . . , x4kq is a standard

�-identity of minimal degree in skew variables.

In Rowen’s notation, we have that Lp2n, 4n, 0, sq is satisfied, and we do not

have Lp2n, d, 0, sq for d   4n.

Let us now consider pM2npKq, sq and pM2mpKq, sq with m ¥ 1, and suppose

that Id pM2npKq, sq � Id pM2mpKq, sq. By Theorem 4.3, we have that m ¤ n. Furthermore,

if m ¤ n, for A PMmpKq, we consider A � ºpAq PMnpKq as in (4.1), and we define

φ : M2mpKq ÑM2npKq,

�
A B

C D

�
ÞÑ

�
A B

C D

�
.

For example,

φ : M2pKq ÑM4pKq,

�
a b

c d

�
ÞÑ

������
a 0 b 0

0 0 0 0

c 0 d 0

0 0 0 0

�����
.
φ is an injective homomorphism that preserves the symplectic involution.

Therefore, if Id pM2npKq, sq � Id pM2mpKq, sq, then pM2mpKq, sq ãÑ pM2npKq, sq.

In the case where Id ppMmpKq, tqq � Id ppM2npKq, sqq, by Corollary 4.1 and

Theorem 4.3, we have 2m� 2 ¥ 4n. Therefore, it follows that m ¡ m� 1 ¥ 2n, and as a

result, M2npKq ãÑMmpKq.

For standard identities in symmetric variables we have the following results.

Theorem 4.4 ([33], Proposition 2). Let pMnpKq, tq be the algebra of n � n matrices

endowed with the transpose involution. Then the polynomial St2npx1, . . . , x2nq is a standard

�-identity of minimal degree in symmetric variables.
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Theorem 4.5 ([31], Theorem 3). The standard polynomial S4k�2py1, . . . , y4k�2q is a �-

identity of pM2kpKq, sq in symmetric variables for all k ¥ 1.

Now, we consider some relations between Id ppM2npKq, sqq and Id ppMmpKq, tqq.

If Id ppM2npKq, sqq � Id ppMmpKq, tqq, by Theorem 4.4 and Theorem 4.5, we

have 4n� 2 ¥ 2m. Thus, 2n ¥ m and MmpKq ãÑM2npKq.

Proposition 4.1 ([5], Proposition 4.4 ). Let m be a positive integer.

Ψ : pMmpKq, tq Ñ pM2mpKq, sq, ³ ÞÑ

�
³ 0

0 ³

�
is a homomorphism of K-algebras with involution.

Corollary 4.2. IdpM2mpKq, sq � IdpMmpKq, tq.

Proposition 4.2 ([30], Corollary 2.5.12). pMnpKq, tq � pM2mpKq, sq for all m   n.

Even though Rowen’s result specifically references algebras, in its proof, it

is shown that if m   n, then IdpM2mpKq, sq � IdpMnpKq, tq. From Proposition 4.2, if

Id ppM2mpKq, sqq � Id ppMnpKq, tqq, then n ¤ m. Proposition 4.1, implies

pMnpKq, tq ãÑ pMmpKq, tq ãÑ pM2mpKq, sq .

Based on the facts described above, we have the following result.

Proposition 4.3. Consider the algebras with involution pMn1
pKq, �1q and pMn2

pKq, �2q,

where ni is even if �i � s.

(a) If Id ppMn1
pKq, �1qq � Id ppMn2

pKq, �2qq, then Mn2
pKq ãÑMn1

pKq.

(b) If Id ppMn1
pKq, �qq � Id ppMn2

pKq, �qq, then pMn2
pKq, �q ãÑ pMn1

pKq, �q.

(c) If Id ppMn1
pKq, sqq � Id ppMn2

pKq, �qq, then pMn2
pKq, �q ãÑ pMn1

pKq, sq.

As a consequence of the previous result, we have the following theorems:

Theorem 4.6. Let A and B two finite-dimensional central simple algebras with involution

over the algebraically closed field K of characteristic 0, A with involution of orthogonal

type and A satisfying the identities with involution of the algebra B. Then, there exists an

embedding that preserves the involutions of A into B.

Theorem 4.7. Let A and B two finite-dimensional central simple algebras with involution

over the algebraically closed field K of characteristic 0, B with involution of symplectic

type and A satisfying the identities with involution of the algebra B. Then, there exists an

embedding that preserves the involutions of A into B.
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Note that for k ¤ l

pMkpKq �MkpKq
op, exq Ñ pMlpKq �MlpKq

op, exq, pA,Bq ÞÑ pA,Bq

and

pMkpKq �MkpKq
op, exq Ñ pM2kpKq, sq, pA,Bq ÞÑ

�
A 0

0 Bt

�
are embeddings of �-algebras.

Therefore, if Id ppM2kpKq, sqq � Id ppMlpKq �MlpKq
op, exqq considering stan-

dard polynomials in symmetric variables, we have 4k � 2 ¥ 2l. Thus, 2k ¥ l, and we have

an embedding that preserves the involutions from pMlpKq �MlpKq
op, exq to pM4kpKq, sq.

Corollary 4.3. Let A be a finite-dimensional simple algebra with involution over the

algebraically closed field K of characteristic 0 such that A satisfies the identities with

involution of the matrix algebra pMnpKq, sq.

• If A is central, there exists an embedding of A into pMnpKq, sq that preserves the

involutions.

• If A is not central, there exists an embedding of A into pM2npKq, sq that preserves

the involutions.
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