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Resumo

Considere A a subélgebra de UT3(K) dada por
A=K(e1n+e33) D Keao® Keyo® Kegs® Key g,

onde ¢; ; denotam as matrizes unitarias. Primeiramente, examinamos as graduagoes na
algebra A definidas por um grupo abeliano. Além disso, determinamos uma base para as
identidades Zo-graduadas de A, para as identidades com involucao e para as identidades

Zo-graduadas com involugao graduada. Também exploramos seus cocaracteres.

Em seguida, consideramos as algebras Z,-graduadas M 1(K), UTy 1 (K) e UT5(K) 01,0
com uma superinvolugao, juntamente com o produto tensorial graduado com a algebra
de Grassmann F, naturalmente dotada com uma Zs-graduacao e também com uma
superinvolugao. Consideramos tais produtos tensoriais dotados com uma involugao gra-
duada e descrevemos as =-identidades polinomiais graduadas junto com os cocaracteres

correspondentes.

Finalmente, apresentamos alguns resultados sobre o problema do mergulho para alge-
bras simples com involucao, usando identidades polinomiais standard de grau minimo e

considerando-os como #-polinémios.

Palavras-chave: Identidade polinomial, PI-algebra, algebra de matrizes, dlgebra de

Grassmann, cocaracteres, involucgao.



Abstract

Consider A the subalgebra of UT3(K) given by
A=K(ep1+es3s3)DKero® Keyo® Kegs® Key 3,

where e; ;’s denote the matrix units. First, we examine the gradings in the algebra A
defined by an abelian group. Then, we determine a basis for the Zs-graded identities of A,
for the identities with involution, and for the Zs-graded identities with graded involution.

We also explore their cocharacters.

We then consider the Zy-graded algebras M, (K), UTy1(K), and UT5(K)oq1,0) with a
superinvolution, along with their corresponding graded tensor products with the Grassmann
algebra F, naturally endowed with a Z,-grading and also with a superinvolution. We
examine these algebras as endowed with a graded involution and describe the graded

#-polynomial identities and the corresponding cocharacters.

Finally, we present some results concerning the embedding problem for simple algebras with
involution, using standard polynomials identities of minimal degree as a tool, considering

them as #-polynomials.

Keywords: Polynomial identity, PI-algebra, matrix algebra, Grassmann algebra, cochar-

acters, involution.
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Introduction

In this thesis we study polynomial identities of certain associative algebras.
Let K be a field and let K{(X) be the free associative algebra freely generated by the
countable set of indeterminates X. One can view K{X) as the set of all polynomials in the
non-commuting variables from the set X. Given an associative algebra A, a polynomial
fin K{(X) is called a polynomial identity of A if f evaluates to zero when its variables
are substituted with arbitrary elements of A. An algebra satisfying a non-zero polynomial
identity is called a Pl-algebra. The set of all identities for A is denoted by T'(A). Clearly
T(A) is an ideal in K{X). Moreover it is closed under endomorphisms of the free algebra
K({X). It can be seen that every such ideal coincides with T'(A) for some A. Among
the algebras that satisfy non-zero polynomial identities, those that have been of greatest
interest in the development of the theory of polynomial identities and that will play a
significant role in this thesis include the Grassmann algebra, the full matrix algebras
M, (K), and UT,(K), the algebra of the upper triangular matrices of order n. In general,

finite-dimensional algebras and commutative algebras are classical examples of Pl-algebras.

One initial problem to be considered in the theory of algebras with polynomial
identities, which we will address in this thesis, is determining the set of all identities
satisfied by a particular algebra, as well as a generating set for them. In the case of a
Pl-algebra A over a field of characteristic zero, it is known that the polynomial identities
of A follow from the multilinear polynomial identities. Therefore, we can restrict our study

to multilinear polynomials.

Given that the space P, of multilinear polynomials in the variables x, o, ...,
x,, has the structure of a left S,,-module and P, nT'(A) is invariant under this action of S,,,
it follows that the vector space P, n T'(A) is a submodule of P,. Studying the multilinear
identities of A might be a difficult problem since a well known theorem due to A. Regev,
proved in 1972, gives us that P, n T(A) tends to become very large when n — co. Hence
one is led to study P,(A) = P,/P, n T(A), this quotient inherits an induced structure of
a left S,,-module. The S,-character of P,(A) is referred to as the nth cocharacter of A. We
emphasize that the study of characters is of interest since, when considering finite groups
and algebraically closed fields, finite dimensional representations are determined up to
isomorphism by their characters. Decomposing the n-th cocharacter of A into irreducibles,

we have that

Xn(A) = Z maXx,
An

where ) is the irreducible S,,-character associated with the partition A with multiplicity

m = 0.
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We are interested in considering the infinite dimensional Grassmann algebra
E =1, ey, e,... |e;e; = —eje;) as a superalgebra, that is, a Zs-graded algebra. The
grading is given by the subspaces Ey and E7, of elements of even or odd length respectively.
Given a superalgebra A = Ay @ A;, we consider the Grassmann envelope of A defined by
G(A) = (Ay® Ep) ® (A1 ® E1). In general, given A and B two Zy-graded algebras we can
consider the graded tensor product AQB = (Ay® By) ® (A, ® By).

Matrix algebras with entries in Grassmann algebras have been the subject of
various studies. Of particular interest is determining a basis of their polynomial identities
as well as their corresponding cocharacters. Let E be the infinite dimensional Grassmann
algebra over K and M, (K) the matrix algebra of order n x n over K. According to the
theory developed in the 80-ies by A. Kemer, it can be deduced that if charK = 0 the
only non-trivial T-prime T-ideals in K{(X) are T'(M,(K)), T(M,(E)), for n = 1; and
T(M,(E)), where M, ,(E) = M,,(K)RE and a > b > 1. It follows from Kemer’s Tensor
Product Theorem that if charK = 0, then M;,(F) and E ® E share the same polynomial
identities. The theorem further proves that the tensor product of two T-prime algebras
is Pl-equivalent to a T-prime algebra as well. However, this does not hold in the case of

positive characteristic, as shown in [2].

Considering the algebras of upper triangular matrices of order 3, we refer to the
algebra A = K(e11 +e33) D Keao @ Keyo® Keos® Key 3. Here and in what follows, e; ;
is the matrix with an entry 1 at position (7, 7) and 0 elsewhere. A basis for the identities
of this algebra was described by Gordienko in [23]. It turns out that the algebra A is
Pl-equivalent to the generic algebra of M;;(E) in two generators, which in turn was
studied by Koshlukov and de Mello in [25].

In [11], Di Vincenzo and Koshlukov studied the graded identities of the algebra
M, 1(FE) as an algebra with graded involution, while da Silva in [32] considered the Zo-
graded identities of UTy(K)®E. A generalization to UTy,;(K)®FE was presented by Di
Vincenzo and da Silva in [14]. Centrone and da Silva studied in [7] the case of Zy-graded
identities of UT»(F) in characteristic different from 2. Also, Centrone in [6] considered
ordinary and Zs-graded cocharacters of UTy(E).

An involution (of the first kind) on an algebra A is an antiautomorphism of

*

order two, that is, a linear map * : A — A satisfying (ab)* = b*a* and (a*)* = a, for all

a,be A. A G-graded algebra A = @Ag with involution = is called a graded involution
geG
algebra if (A,)* = A, for all g € G. In this case, we say that = is a graded involution on A.

If A is a graded involution algebra, we say it is a (G, =)-algebra.

Given a superalgebra A = Ag @ A, a superinvolution = on A is a graded linear
map of order two such that (ab)* = (—1)1lp*a* | for any homogeneous elements a, b €

ApUA;. Here |z| denotes the homogeneous degree of x € Agu A;. The Zs-graded involutions
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and the superinvolutions of the upper triangular matrix algebra UT,, (K) were described
by Ioppolo and Martino in [24], and the corresponding result about the superinvolutions
of M 1(K) was given by Gomez and Shestakov in [22]. Also, note that on E' we can define
the superinvolutions 7z and —ig, induced by the identity map on the generators e; of E.
Note that if ® and ¢ are a pair of superinvolutions defined on the superalgebras A and
B respectively, then the map * defined on AQB = (4y ® By) (P(A;1 ® By) by putting
(a®b)* = a® ®0b° is an involution on ARQB.

Let us consider Y = {y; ,: i€ N,ge G}, Z = {2, ,: i € N, g € G} two countable
disjoint sets of indeterminates. We denote by degg v; 4 = degg zig = ¢ the G-degree of the
variables Y U Z with respect to the G-grading. Then Y, = {y; ,: i e N}, Z;, = {2, ,: i ¢ N}

are homogeneous variables of GG-degree g € G.
We can define a =-action on the monomials over Y U Z by the equalities

&
.9

=—zig, ;€Y VUZ (1)

in in?

*
where y;, = yig, 2

where the linear extension of this action is an involution on the free associative algebra
K{Y,Z) generated by the set Y u Z. The algebra F = K(Y,Z) is G-graded with the
grading F = @ F, defined by

geG

Fy = Spang{wz; vy ... x;,: degg i, ... degaxi, =g, x; €Y U Z}.

It is clear that the involution (1) is graded. The algebra F is the free associative graded
algebra with involution and its elements are called graded *-polynomials. We are interested

in the group G = Z,, that is, we consider Z,-graded identities with involution.

Another problem of interest in PI-theory is the classification of algebras based
on their polynomial identities. In particular, we can consider the Isomorphism Problem.
Consider A and B to be two associative K-algebras. It is easy to see that in the case
of A and B being isomorphic, they satisfy the same set of polynomial identities. Thus,
the natural question to consider is: If A and B satisfy the same identities, will they be
isomorphic? The answer is No, and the known (easy) counterexamples lead us to focus
on the study of central simple algebras over algebraically closed fields. Here we recall
that if A is PI then A and A @ A satisfy the same identities. Another example can be
given by the 2 x 2 matrices M>(R) and the real quaternion algebra, they satisfy the same
identities but are not isomorphic. That is why one considers central simple algebras over
an algebraically closed field. A more general problem than the Isomorphism Problem is the
Embedding Problem. Once again, we consider two K-algebras, A and B, and the question
to be examined is: If the set of polynomial identities of A is a subset of the identities of B,

can we view B as a subalgebra of A? Or of some scalar extension of A?

This thesis is organized as follows.
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Chapter 1 introduces the notions necessary for the development of this thesis.
Our main focus will be on multilinear polynomials and representations of the symmetric
group S, as well as their applications to the study of polynomial identities. As a special

topic, we will consider the Grassmann algebra, its identities, and cocharacters.

In Chapter 2, we consider the algebra of upper triangular matrices A =
K(ei1+e33) @ Keao® Keyo® Key s @ Key 3. Initially, we consider its possible gradings
and show that these are isomorphic to elementary gradings and compute their graded
identities as well as their cocharacters. We also consider identities with involution and
graded identities with involution, where the grading is given by the group Zs. In each case,

we also compute the respective cocharacters.

In Chapter 3, we consider the Zs-graded algebras M (K), UT;1(K), and
UTs(K)0,1,0) with a superinvolution, along with their corresponding super tensor products
with the Grassmann algebra E, naturally endowed with a Zs-grading, and also with a
superinvolution induced by the identity function iz and by —ig. We regard the resulting
algebras as endowed with a graded involution and describe the graded #-polynomial

identities and the corresponding cocharacters.

In Chapter 4, we consider the embedding problem for algebras with polynomial
identities. We introduce the particular case of the isomorphism problem, as well as its
historical context. We present some results concerning the embedding problem for simple
algebras with involution, using minimal degree standard polynomial identities as a tool,

considering them as #-polynomials. Among the main results, we have:

Theorem: Let A and B two finite-dimensional central simple algebras with
involution over the algebraically closed field K of characteristic 0, A with
involution of orthogonal type and A satisfying the identities with involution of

the algebra B. Then, there exists an embedding that preserves the involutions
of A into B.

Theorem: Let A and B two finite-dimensional central simple algebras with
involution over the algebraically closed field K of characteristic 0, B with
involution of symplectic type and A satisfying the identities with involution of
the algebra B. Then, there exists an embedding that preserves the involutions

of A into B.
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1 Preliminaries

In this chapter, we will introduce the main notions that will be used throughout
this thesis. Our primary interest lies in introducing the concept of polynomial identities in
associative algebras, as well as considering identities in algebras with additional structures
such as graded algebras and algebras with involution. Another key topic of study will be
the action of the symmetric group and the general linear group on the space of multilinear
and multihomogeneous polynomials. To conclude the chapter, we will study the Grassmann
algebra, its identities, and cocharacters. We will assume that we are working with unitary

algebras over fields of characteristic zero. As main references, we will use [16, 17, 18, 30].

1.1 Pl-algebras

Let K be a field and X = {x1,zs,...} a countable set of non-commutative
variables. We denote by K(X) the free algebra freely generated by the set X.

Definition 1.1. (i) Let f = f(x1,...,2,) € K{(X) and let A be an associative algebra.
We say that f =0 (or f) is a polynomial identity for A if f(ai,...,a,) =0 for all

ai, ..., Gy € A.

(13) If the associative algebra A satisfies a non-trivial polynomial identity f =0 (i.e. fis
a non-zero element of K(X)), we call A a Pl-algebra.

Example 1.1. (i) The algebra A is commutative if and only if it satisfies the polynomial

identity |1, xe] = T129 — To1 = 0.

(i1) Let A be a finite dimensional associative algebra and let dim A < n. Then A satisfies
the standard identity of degree n
Stp(x1,...,2,) = Z (signw) (1)« - * Tuwn) = 0,
weSh

where S, is the symmetric group of degree n.

Here we present the famous Amitsur-Levitzki theorem regarding matrix algebra

and standard polynomials.

Theorem 1.1. The n x n matriz algebra M, (K) satisfies the standard identity of degree
2n.

As a consequence of the previous theorem, up to a multiplicative constant,
the standard identity is the only multilinear polynomial identity for M, (K) of degree 2n.
Additionally, it is known that M, (K) does not satisfy identities of lower degree.
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Definition 1.2. An ideal J of K(X) is called a T-ideal if (J) < J for all endomorphisms
b of K(X).

If A is any algebra, we denote by T'(A) (or Id(A)) the T-ideal of the polynomial
identities of A. Also, we will denote by F'(A) the quotient K(X)/T(A). It is the relatively
free algebra for A (and its identities).

Definition 1.3. The polynomial identity g(z1,...,x,) = 0 is called a consequence of
the polynomial identities fi(x1,...,xym) =0, i€ I, if any algebra satisfying the identities
filx1, ..., xm) = 0 satisfies also g(z1,...,z,) = 0. We denote by

(fi(xl,...,xm) |Z€ I)T

the smallest T-ideal U containing all fi(x1,...,%y), i € I. This T-ideal coincides with the

set of all consequences of the identities f; = 0, 1 € I, and its elements have the form
Zuiwfi(wla ey Win, ) Vi, Wi, ey Wingy Wiy Vi € KX,

The generating set {fi(x1,...,xm) | i € I} is called a basis of the T-ideal U,
even if it is not a minimal generating set. (Any generating set of the T-ideal T(A) is called

a basis of the polynomial identities of the algebra A.)

Definition 1.4. Two sets of polynomial identities are equivalent if they generate the same
T-ideal.

1.2 Multilinear Polynomials

In the case of algebras over fields of characteristic zero, multilinear polynomials
play an important role since T-ideals are generated by such polynomials. For this reason,

one can study Pl-algebras in characteristic 0 through their multilinear identities.

Definition 1.5. A polynomial f(xy,...,x,) in the free associative algebra K{(X) is called
multilinear of degree n if the degree of [ with respect to each variable x;, denoted deg,, f,
is equal to 1 (i.e., f is linear in the variable x;) for i = 1,... ,n. We denote by P, the

vector space of all polynomials in K{X ) which are multilinear of degree n.
Proposition 1.1. Let .
flan,. ) =) fie K(X),
i=0
where f; is the homogeneous component of f of degree i in xy.

(1) If the base field K contains more than n elements (e.g. K is infinite), then the
polynomial identities f; = 0,1 =20, 1, ..., n, follow from f = 0.



Chapter 1. Preliminaries 18

(12) If the base field is of characteristic 0 (or if char K > deg f), then f = 0 is equivalent

to a set of multilinear polynomial identities.

Remark 1.1. Let P, be the set of all multilinear polynomials of degree n in the free
associative algebra K(X). The following action of the symmetric group S, makes P, a

left S,,-module, isomorphic to the group algebra K S, considered as a left S, -module:

o (Z oG4 - - xzn) = Z QiTo(ir) - - - Lo(in)s

o€ Sy, a;e K, x;y...x; € P,. Thus we can consider P, as isomorphic to the regular

representation of S,,.

1.3 Graded Algebras

Definition 1.6. Let G be an arbitrary group. We say that an associative algebra A over
a field K is a G-graded algebra (or equipped with a G-grading) if, for each g € G, there

exists a subspace Ay S A such that A can be written as:
A = @gecAy and AjA, S Ay, for all g, h e G.

The subspaces Ay are called the homogeneous components of A, and the elements of each

Ay are called the homogeneous elements of A with homogeneous degree g. A subspace
V € A is called a homogeneous (or graded) subspace if V = (P(V n Ay).

geG

In the case of matrix algebras M, (K), we can consider certain gradings, known

as elementary gradings, defined as follows:

Definition 1.7. Let A = M, (K) be the algebra of n x n matrices over K and let the e; ;’s
be the usual matriz units. Given an n-tuple § = (g1, ...,gn) of an arbitrary group G we

set dege; ; = g;'g; and let A, = Span{e; ;: g7 'g; = g}. Then A = @Ag is a G-grading
geG
of A called the elementary G-grading defined by the n-tuple §.

Example 1.2. Consider the matrixz algebra M,(K) and integers k and h such that
k+h =n. My ,(K) denotes M,(K) with Zs-grading given by

(Mion (K)o = { (i ;) . Se My(K), T e Mh(K)} ,

(Min ()1 = { (; E) Y € My (K), Z € thk(K)} |
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Now, for UT,,(K) be the algebra of n x n upper triangular matrices over K we

have the following classification of gradings given by Valenti and Zaicev (see [36]).

Theorem 1.2. Let G be an arbitrary group and K a field. Suppose that the algebra

UT.(K)=B = @By of n x n upper triangular matrices over the field K is G-graded.
geG
Then B, as a G-graded algebra, is isomorphic to UT,(K) with an elementary G-grading.

Let G be a group, and consider the set of indeterminates X = U Xg, where
geG
X, {:L‘l ,xg ,...} is a countable infinite set for each g. We say that the indetermi-
nates in X, have a homogeneous degree g, and the homogeneous degree of a monomial
xElg“) : ngjm) e K(X) is given by g¢;, - - - g;,,- We will write K(X)?" to denote the graded
algebra K(X) with X = U X,
geG

Definition 1.8. Let f(z\%, 2% ... 2\9)) e K(X)" be a polynomial. If A = P A, isa
geG

G-graded algebra then f is a G-graded polynomial identity (or simply a G-graded identity)

for A if f(a; (@) glo2) a9y = 0 in A for every homogeneous substitution a9 e Ay,

) 22 Y r

We denote by Idg(A) or To(A) the ideal of all graded identities of A in K{X)".

The ideal Idg(A) is closed under all G-graded endomorphisms of K(X)’"; such
ideals are called G-graded T-ideals.

A particular case is when the group G is given by Z,, in this case, we say
that an associative algebra is a superalgebra if A is a Zo-graded algebra. While the two
terms are synonymous for associative algebras, we draw the readers’ attention that, say,
in the Lie case, a Lie superalgebra seldom is a Lie algebra, and the same holds for Jordan,

alternative, etc., algebras.

Definition 1.9. Let A and B be two Zs-graded K-algebras. AQB denotes the graded
tensor product, i.e,

A®B = (Ay® By) ® (A1 ® By).

1.4 Involutions and superinvolutions

Involutions are important in the structure theory of both associative and
non-associative algebras. In this section, we introduce the notions of involution and
superinvolution, as well as identities with involution. As particular examples of algebras
with involution, we consider matrix algebras M, (K) and upper triangular matrix algebras
UT,.(K).
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1.4.1 Involutions

Definition 1.10. Given algebras Ay and As, we say that a linear map ¢ : Ay — As, is
an anti-homomorphism if ¢p(aras) = ¢(ag)d(ar) for all ay, ag in Ay. Moreover, if ¢ is an
isomorphism of vector spaces, we call ¢ an anti-isomorphism, and if A1 = Ay, we call ¢

an anti-automorphism of A;.

A classical example of an anti-isomorphism is given by the map a — a from A

to A, the opposite algebra of A.

Definition 1.11. An involution is an anti-automorphism ¢ such that ¢* = 1, i.e., ¢*(a) =
a for all a € A.

We observe that such involutions are known as involutions of the first kind
(when the map ¢ is a K-linear transformation). There exist involutions of the second kind
which we will not consider here, hence we only give an idea what they are. Take the n x n
matrix algebra over the complex numbers C, then the usual transpose is an example of an
involution of the first kind (it is a linear transformation). But it is not that important
when considering M,,(C). The map A — A' that sends every matrix to its transpose and
conjugate matrix is more relevant. Formally it does not fall into our definition since it is

not C-linear, but it is linear over R. Similar involutions are of the second type.

An important example of algebra with involution is the matrix algebra M, (K).

Example 1.3. (i) The transpose involution t, given by the classical transpose of a
matriz.

(ii) The symplectic involution s, defined by x° = az'a for all x € Mo, (K), where

a= Z(emm —€im.i)- In other words, partitioning a 2m x 2m matriz A into m x m

i=1
blocks A;, 1 <1i < 4, we have

A A\ (A A
As Ay —AL AL
where t is the transpose on M,,(K).

Let us establish some conventions regarding algebras with involution.

We write = to denote a given involution of an algebra; =-algebra means algebra

with involution. Write a* for the image of a under the involution =.

(A, ») will denote the algebra A with involution . We define a »-homomorphism
¢ : (A1, #1) = (Asg, #2) to be a homomorphism ¢ : A} — A, such that ¢(a™) = ¢(a)** for

all a in Ay; equivalently, we say that ¢ is a *-homomorphism. Let I be an ideal of A, we
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say that [ is a #-ideal of A if I* < I, and we denote that by I <1 (A, =). If I < (A, =), then
« induces an involution on A/I by (a + I)* = a* 4+ I, and the canonical map A — A/I is

a =-homomorphism; conversely, the kernel of every *-homomorphism is a =-ideal.

Definition 1.12. An element x of (A, =) is symmetric (resp. anti-symmetric or skew-
symmetric) if ¥* = x (resp. x* = —x). We shall write A" (resp. A~) to denote the set of

symmetric (resp. skew-symmetric) elements of A.

Example 1.4.

(i) Let A be an algebra. Then A® A has an involution ex given by (a1, a2)® = (az,a1),

which is called the exchange involution.

(7i) If (A, *) is a K-algebra with involution and B is a commutative K -algebra, then (»® 1)

is an involution of ARk B.

A proof of the following results concerning algebras with involution can be found in [30].
Proposition 1.2. Let A be a =-algebra. Then Nil(A) <1 (A, *) and Jac(A) < (A, =).
Definition 1.13. (A, ) is simple if 0 and A are the only =-ideals of (A, *).

Proposition 1.3. Suppose (A, *) is simple. Then either A is simple, or A has a simple
homomorphic image Ay such that (A, =) = (A; @ A ex).

Definition 1.14. The center of (A, =), written Z(A, =), is {z € Z(A) | z* = z}.

Proposition 1.4. Z(A, =) is a a subalgebra of A fized by =. If (A, =) is simple, then Z(A, *)
is a field.

Let X = {z1,22,...} be a countable set of non-commutative variables and
consider K(X, ) = K{xy,z],x9,23,...), the free algebra with involution in X over K.
By defining y; = z; + a2} and z; = x; — x for each i = 1,2,..., we consider K(X,«) =
K{y1, 21,2, 22, - . .y as generated by symmetric and skew-symmetric variables. The elements
of K{(X, =) will be called #-polynomials. Observe that we can write x; = (y; + 2;)/2 and
x! = (y; — z;)/2, hence if the base field is of characteristic different from 2, this change of

variables (free generators) can be performed.

Definition 1.15. A =-polynomial f (y1, ..., Yn,21,- -, 2m) € KXY U Z, *) is a =-polynomial
identity of and algebra with involution (A, =) if

fur, .o up,v1,. .0, 00) =0 for allu; € AT and v; € A™.

Given an algebra with involution (A, *) we denote by Id(A,«) or T'(A,*) the set of »-

polynomial identities of A.
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Proposition 1.5 ([30], Proposition 2.5.5). Suppose n is even. Then Id(M,(K),s) &
(M, (K). ) and 1d(M,(K), ) & (M, (K), 5).

In the case of the algebra of upper triangular matrices UT,, (K), the classification
of its involutions was presented in [12]. Below, we present the results related to this

classification.

Definition 1.16. For every matriz A € UT,(K) define A° = JA'J where A — A" denotes

the usual matrixz transpose and J is the following permutation matriz:

0
0 - 0
J = .
1 00

Note that for the matrix units we have ezj = Cn+l—jntl—i-

Definition 1.17. Let n = 2m be an even integer and consider the matrix

I, 0
D:(O _%>EMMK)

Define the involution s on UT,(K) by putting A’ = DA°D for all Ae UT,(K), s is called

the symplectic involution on UT,.

Proposition 1.6. Every involution on UT, (K) is equivalent either to o or to s.

In the same paper, the following results were proved about the #-identities of
UT,(K) and UT3(K).

Proposition 1.7. The ideal T(UTy(K),0) is generated as a T*-ideal by the set
w2l L2220 [y ailye 2], zin2 — ez
Proposition 1.8. The ideal T(UT,(K),s) is generated as a T*-ideal by the set
[y v2]s [zl L2 22)lzs, 2], 212028 — 232020
Proposition 1.9. The ideal T(UT3(K), o) is generated as a T*-ideal by the set
(1) s3(21,29,23) = 21[22, 23] — 20[21, 23] + 23[21, 22],
(i) (=D, @]y, 4] — (1)K g, 2] [0, 2],

(#ii) (=12 [y, wo][wg, 2a] — (= 1) [y, @3] [, 24] + (1) 2y, 4] [0, 25],
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(iv) z1[ws, x4]20 + (=1)1%5% 2525, 24] 21,
(v) 21, w2]zs[2s, 24],

(U’l) 21 [I4, x5]22x3 + (—1)‘333‘.1’321 [I4, 375]22.
Here |xz| = 0 whenever x is skew-symmetric, and |x| = 1 if x is symmetric element.

Another important structure concerning involutions are graded involutions.

Definition 1.18. An involution = on a G-graded algebra A = (—BAQ is said to be a graded
geG
involution if A} = Ay for all g € G.

Graded involutions of M, (K), subject to certain restrictions, were described in
[3]. In the context of upper-triangular matrix algebras, graded involutions were described
in [37].

1.4.2 Superinvolution

Definition 1.19. Given a superalgebra A = Aqg@® Ay, a superinvolution = on A is a graded

linear map of order 2 such that
(ab)* = (=)o,

for any homogeneous elements a, b€ Ay u Ay. Here |x| denotes the homogeneous degree of

ZL'EA()UAl.

Remark 1.2. If ® and ¢ is a pair of superinvolutions defined on the superalgebras A
and B respectively, then the map = defined on ARB = (Ay® By) @ (A1 ® By) by putting
(a®b)* = a® ®0b° is an involution on ARQB.

The superinvolutions on the algebra of upper-triangular matrices were described

in [24]. We present some of the main results.

Definition 1.20. Let A = Ay @ Ay be the upper-triangular matriz superalgebra UT, (K)
endowed with the elementary Zo-grading given by the n-tuple (g1, . ..,9n) € Zy. We define
¢ : A — A such that ® = ®,,_4, where ®o(e; ;) =e;; and for allk=1,..., n—1,

q)kfl(ei,j) Z'f €ij ¢ AIfH

Py(ei) = :
_(I)k—l(ei,j) Zf ei,j S A]f+1

foralll <i<j<n.

Let o and s be the reflection and the symplectic involution as in Definition 1.16

and Definition 1.17, respectively.
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Definition 1.21. The superinvolution s : UT,(K) — UT,(K), defined by & = o®d, is

called the super-reflection superinvolution.

Definition 1.22. The superinvolution s : UT,(K) — UT,(K), defined by s = s®, is

called the super-symplectic superinvolution.

Theorem 1.3. Every superinvolution on UT, (K) is equivalent either to s or tos. The

superinvolution 3 can occur only when n is even.

Example 1.5. In the case of 2 x 2 upper-triangular matrices we have that the superinvo-

lutions coincide with the involutions and are given by

I I 9 R GO R

Example 1.6. In the case of 3 x 3 upper-triangular matrices it is only possible to define a
superinvolution when we consider the elementary Zs-grading defined by the triple (0, 1,0),

and we have that

a b c f e —c
0O d e|l=1]104d b
0 0 f 0 0 a

1.5 Proper Polynomials

Definition 1.23. A polynomial f € K{(X) is called a proper polynomial, if it is a linear

combination of products of commutators

f(Il,...,ZEm):ZOéi ..... j[xila"‘axip]"'[xj17"'7qu]7 Qg .. jEK. (11)

We assume that 1 is a product of an empty set of commutators. We denote by B the set of
all proper polynomials in K{X ), that is, polynomials in the form (1.1). We also define the

spaces B, as
B, =Bn K{xy,...,xm),m=1,2,..., T'y=BnP,n=0,1,2,...,

i.e. By, is the set of the proper polynomials in m variables and I',, is the set of all proper

multilinear polynomials of degree n.

If A is a Pl-algebra, we denote by B(A), B, (A) and T',,(A) the images in
F(A) = K(X)/T(A) of the corresponding vector subspaces of K{X).

The importance of proper polynomials for the study of polynomial identities is
presented in the following result which combines the Poincaré-Birkhoff-Witt theorem (or
PBW theorem) and the Witt theorems.
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Proposition 1.10. (i) Let us choose an ordered basis of the free Lie algebra L(X)

L1, T2y .-+, [xi17xi2]7 [xj17'rj2]7 ey [xk17xk27xk3]7 ceey

consisting of the variables x1, xs, ...and some commutators, such that the variables

precede the commutators. Then the vector space K{X) has a basis

x(111 T x%zm [ximxiz]b e [xh? <. 7371;7]07
where ay,..., Gy, b,..., ¢ =0 and [z;,x5,] < - <[xy,..., 2] in the ordering of
the basis of L(X). The basis elements of K{X) with ay = -+ = a,, =0 form a basis

for the vector space B of the proper polynomials.

(13) If R is a unitary Pl-algebra over an infinite field K, then all polynomial identities
of R follow from the proper ones (i.e. from those in T(R) n B). If char K =0, then
the polynomial identities of R follow from the proper multilinear identities (i.e. from

those in T(R) n Ty, , m=2,3,...).

Proposition 1.11. A basis of the vector space Iy, of all proper multilinear polynomials of

degree n = 2 consists of the following products of commutators

[ZL'Z'I,...,CCZ‘k] [l‘jl,...,l’jl],

where:

(1) All products are multilinear in the variables x1,. .., x,;

(it) Each factor [x,,,Zp,, ..., xp,] i a left normed commutator of length = 2 and the

maximal index is in the first position, i.e. p1 > Pa, ..., Ds;

(17i) In each product the shorter commutators precede the longer, i.e. in the beginning of

the statement of the theorem k < --- < [;

(iv) If two consecutive factors are commutators of equal length, then the first variable of

the first commutator is smaller that the first variable in the second one, i.e.

"'[xplvxm?"'7xps][xq1>xq2""7xqs]"'

satisfies p1 < q1.

1.5.1 Y-Proper Polynomials

Definition 1.24. Let K{Y, Z) be the unitary free algebra, and denote by B(Y') the unitary
subalgebra of K{Y,Z) generated by the elements from Z and all non-trivial commutators.

The elements of B(Y') are called Y -proper polynomials.
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For the following result, we consider the free G-graded algebra K{(X), where

for X¢ = U Xy, we consider the decomposition: X;, =Y and Z = U X,
geG geG\lg

Proposition 1.12. Let A be a unitary G-graded K -algebra.

(1) If K is an infinite field, then 1dg(A) is generated, as a Tg-ideal, by Y -proper

polynomials.

(13) If K has characteristic zero, then Idg(A) is generated, as a Tg-ideal, by multilinear

Y -proper polynomials.

Proof. Let f be a graded identity of A. If K is an infinite field, then we can assume

=1y, - Ym, 21, -, 2m) to be multihomogeneous, we can write f in the form
f: Z Aaytlll'"yyoyélmwa(ylw"7ym721a"'7z’m)a )‘QEFv
a=(a1,...,aem)
where wo (Y1, - - Ym, 21, - - -, Zm) 1S a linear combination of
zfl e zﬁ"[uil, (7% KRR VTR 17 u;; € X,

If no variable y appears in f, then f is already Y-proper.

Suppose that y; appears in f. Since f(1 + y1,%2, - Ym, 21, - - -, 2m) s also a
graded polynomial identity of A, we have

0Ef(l+y1:y27"'7ym7zla"-7zm)
= Z )\a(yl + 1)a1y32 "'yglmwoz(yl + 17-~,?/m>2’17---72’m)

a=(a1,...,am)

< «Q e «a
= Z )\a [Z(l;)y’f] y22"'ymmwa(yla--'>ym7217"'azm)-
m)

a=(ay,..,a k

The homogeneous component of minimal degree with respect to y; is obtained from the
summands with a; maximal among those with A, # 0. Since the Tg-ideal Idg(A) is

homogeneous, we obtain that

0.

Z )‘aySQ te 'y%mwa(yh sy Ymsy 21, .- 7Zm)

a1 max

Multiplying from the left this polynomial identity by y{* and subtracting the product

from f, we obtain an identity which is similar to f but involving lower values of ;.

By induction

Z Aals  YnmWo (Y1y -y Yy 215 - - -5 2m) € Ida(A).

oy fixed
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Proceeding in the same way with the other variables ys,. .., ¥,,, we conclude that

Wa(yl, L] 7ym7zl7 s )Zm) € IdG(A)

In this way we prove the first statement. The second follows directly by the fact that the
base field is of characteristic 0. O

A similar argument can be considered in the case of G-algebras with graded

involution. To keep notation simple we consider the case of superalgebras.

Proposition 1.13. Let A be a unitary Zs-graded K -algebra with graded involution. Let
Ky, Y1, Zy, Z1) be the free associative Zo-graded algebra with involution, where Yy is
the set of symmetric variables of even degree, Y1 is the set of symmetric variables of
odd degree, Zy is the set of skew-symmetric variables of even degree and Zy is the set of

skew-symmetric variables of odd degree.

(i) If K is an infinite field, then 1d;(A) is generated, as a Tg-ideal, by Yo-proper

polynomials.

i1) If K has characteristic zero, then 1dy(A) is generated, as a Tji-ideal, by multilinear
G g G Yy

Yo-proper polynomzials.

1.6 Finite dimensional representations of groups

Our main objective is to consider representations of the symmetric group 5,
as well as the action of the symmetric group on the space of multilinear polynomials in n
variables and some consequences applied to T-ideals. Partitions and Young tableaux will

play an important role in our study.
Let V be a vector space over a field K and let GL(V') be the group of invertible

endomorphisms of V. We will consider that the field K has characteristic zero.

Definition 1.25. A representation of a group G on V is a homomorphism of groups
p:G— GL(V).

Given p a representation of a group G on V, we can consider V as a left
G-module in the following way: gv = p(g)(v) for all ge G, ve V.

Definition 1.26.

(i) If p: G — GL(V) and p' : G — GL(W) are two representations of a group G, we
say that p and p' are equivalent, and we write p ~ p', if V. and W are isomorphic as

G-modules.
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(ii) A representation p : G — GL(V) is irreducible if V' is an irreducible G-module. p is

completely reducible if V' is the direct sum of irreducible submodules.

Theorem 1.4 (Maschke). Let G be a finite group. Then the group algebra KG is semisimple
and
KG = M,,(D,)®---® M,,(Dy)

where Dy, ..., Dy are finite dimensional division algebras over K.

Maschke’s theorem holds in a more general situation: when the characteristic p
of the field K does not divide |G|.

Considering G a finite group, we have that K G is a finite dimensional semisimple
algebra, then every one-side ideal of K'G is generated by an idempotent. If a € A is such

that a®> = aa for some o # 0, we say that a is an essential idempotent of A.
Definition 1.27. An idempotent is minimal if it generates a minimal one-sided ideal.

Proposition 1.14. If M is an irreducible representation of G, then M = J;, a minimal
left ideal of M,,(D;), for some i € 1,..., k. Hence there exists a minimal idempotent
e € KG such that M = KGe.

Definition 1.28. Let p: G — GL(V) be a representation of G. Then the map

Xo: G =K, x,(9)=tr(p(g)),

is called the character of the representation p and dimV = deg x, is called the degree of

the character x,. The character x, is irreducible if p is irreducible.

Remark 1.3. If ¢ and v are two finite dimensional representations of the group G then
Xoow = Xo + Xy and Xogy = X¢ * Xy-

The knowledge of characters is crucial as it reveals a wealth of information about
representations. Remarkably, the number of irreducible representations, a key property in

ring theory, is uniquely determined by a fundamental group property.

Theorem 1.5. Let G be a finite group and let the field K be algebraically closed.

(i) Every finite dimensional representation of G is determined up to isomorphism by its

character.

(ii) The number of the non-isomorphic irreducible representations of G is equal to the

number of conjugacy classes of G.
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1.6.1 S,-representations

Now, we shift our focus to representations of the symmetric group 5,. We
introduce the concepts of Young Diagrams and Tableaux, highlighting their significance
in the analysis of S,-modules. A particular emphasis will be placed on the study of PI-
algebras, where we study the space of multilinear polynomials endowed with an S,,-module

structure and examine their corresponding characters.

Definition 1.29. A partition of the non-negative integer m (notation A = m or |A\| = m)

is a sequence of integers X = (A,...,\.) such that
M=) =20 and M+ -+ A =m.

We assume that two partitions A = (A1, ..., A\.) and p = (p1, ..., ps) are equal if, for some
k
AL = [, A = gy Mgl = =0 - = N = g = - = g = 0.

When X = (A1, ..., Moy gotk,) a0

AL == Apy = [y Ak gothyor 11 = 0 = Ay ik, = Hps

we adopt the notation
k k
A= (gt 7))

Given o € S,,, we have a unique decomposition of the form
g = 0'10'2 e O’t

where 01, 09, ..., 0, are independent cycles of lengths \; = Ay > --- = \. = 1, respectively.
Furthermore, since the conjugacy class of o in S, is determined by these cycle lengths,

the partition A = (A1, Aa, ..., A.) determines the conjugacy class of o.

Definition 1.30. The Young diagram [\] of the partition X = (A1, ..., \.) is the set of
all knots (points, or square bozes) (i,j) € Z*, such that 1 < j < N, i =1,...,r.

It is convenient to represent the Young diagrams graphically as follows. We
replace the knots with square boxes such that the first coordinate ¢ (the index of the
row) increases from top to bottom and the second coordinate j (the index of the column)
increases from left to right. For example, the diagram of the partition A\ = (5,32, 2) is

given in the figure below.
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Definition 1.31. (i) A Young tableau T\ of the diagram |\] with m boxes is a filling
of the boxes of [A] with the positive integers 1,2,... ,m without repetitions. If X is a
partition of m and T € S,,, we denote by Tx(7) the tableau such that its first column
contains the integers (1), ..., (k) written in this order from top to bottom, the

second column contains consequently written 7(ky + 1), ..., 7(k1 + k2), etc.

(13) The tableau T is called standard, if the integers written in each column and each

row increase, respectively, from top to bottom and from left to right.

For example, for A = (4, 3,1),

12345678 12345678
T = , T1= ,
3458216 7 ""\1 36245 7%

the tableau T)(7) is not standard and the tableau T)(71) is standard:

Th(t)=|412|6 () =3 |4
5

Given any tableau T) of shape A - n, we denote by T\ = Dy(a; ), where a; ;

is the integer in the (i, j) box. Then, we define the row and column stabilizers as follows.

Definition 1.32. The row stabilizer of Ty is the subgroup R(Ty) of all permutations p in

Sm, such that i and p(i) are in the same row of Ty, i =1, ..., m. That is,

R(TA) = S)\l (al,h a1,27 s 7a1,>\1) X X SAr(aT‘J? a’f‘727 e 7a7’7/\r)
where Sy,(a;1,ai2,...,a;y) denotes the symmetric group acting on the following symbols:
i1, A2, - -5 Qi

Definition 1.33. The column stabilizer of T is the subgroup C(T) of all permutations p

in Sy, such that i and p(i) are in the same column of Ty, i = 1,...,m. That is,
C(T)\) = SXI (al,la a’2,17 s 70’)\’1,1) X X S)\’S (al,)\17a2,>\17 L 7a)\g,)\1)
where X' = (\},..., \,) is the conjugate partition of .

Definition 1.34. For a given tableau T, define

er,= Y. > (signy)py.

PER(Tx) veC(Tr)

It can be shown that e% = aer,, where a = d— = H hi; is a non-zero integer.
A i
So, er, is an essential idempotent of K.S,,.

For each partition A of m we denote by M(A) and x, the corresponding

irreducible S,,-module and its character, respectively.
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Theorem 1.6. Let K be any field of characteristic 0 and let T € S,,. For a partition
A= (A,...,\) of m, let T = Ty(T) be the corresponding Young tableau, and let R(T)

and C(T) be, respectively, the row and column stabilizers of T'. Consider the element of

Z Z sign y)p

PER(TX) veC(Ty)

the group algebra K S,,

(i) Up to a multiplicative constant the element of KSy,, er, is a minimal idempotent

which generates a submodule of KS,, isomorphic to M()).

(i) The sum of all left S,,-modules KSy,er,, where T\ runs over the set of standard
A-tableauz, is direct. It is equal to the minimal two-sided ideal I(\) of KS,, corre-

sponding to X\, and

- @10

A-m
(iii) The dimension dy = dim M(X) of M(\) is given by the hook formula

m/!
[T+ X —i—j+ 1)

dim M()\) =

where N}, ..., \., are the lengths of the columns of [\] and the product in the denom-

? )

inator is on all boxes of [A]. The dimension dim M(\) is equal also to the number
of standard A-tableaux T\(T), T € S,,.

For example, if A = (m), then the diagram of A has one row only and for any
(m)-tableau T
R(T)=S,, C(T)=1.

Hence the one-dimensional trivial S,,-module M ()) is spanned by the element

- Y

PESm

In the other extreme case A = (1) we have R(T") = 1, C(T') = S,,. The one-dimensional

Sm-module M (1™) corresponds to the sign representation and is spanned by

€Ty = Z (sign 7).
YESm
Lemma 1.1. Let M be an irreducible left S,-module with character x(M) = xx, A+ n.
Then M can be generated as an S,-module by an element of the form er, f for some f € M
and some Young tableau Ty of shape A. Moreover, for any Young tableau Ty of shape A
there exist f' € M such that M = KSyerx f".
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Lemma 1.2. Let T be a Young tableau corresponding to A = n and let M be an S, -module
such that M = M, @ ---® M,, where My, ..., M,, are irreducible S, -submodules with
character xx. Then m is equal to the maximal number of linearly independent g € M such

that og = g for all o € Ry, .

All the above considerations hold, formally speaking, for K an algebraically
closed field of characteristic 0. But it is well known that the irreducible representations of
S,, over the rational numbers Q are absolutely irreducible (that is they remain irreducible
under field extensions). This means the above statements concerning the representations

of S, hold for every field of characteristic 0.
Now, we consider A a Pl-algebra and Id(A) its T-ideal of identities. We know

that in characteristic zero, the T-ideal Id(A) is determined by its multilinear polynomials.

Define the map

¢: KS, - P,, Z Q0 —> Z QoTo(1) " * To(n)-

oSy o€Sn
¢ is a linear isomorphism, so we use the same notation for an element f € K5, and its

image in P,.
Let x;,x;, - - - x;, a monomial and 7 € S,,, and consider the right action
(i, iy -+, )T = Ti 1\ Ty " Lipgn
For example, if n =4, x;,z;,x;,%;, = rowsrixy and 7 = (1234), then
(2930104)T ™" = (T4, 03y 3y 03, )T 1 = D404, T4, T, = T3T1T4To.
We also can consider a left action given by
O(Tiy iy Tiyy) = To(iy)Tolin) " Tolin)-

Since T-ideals are invariant under permutations of the variables, we obtain that P, nId(A)
is a left S,,-submodule of P,. Thus,

has a structure of left .S,,-module.

Definition 1.35. For n > 1, the S,-character of P,(A) = P,/(P, n1d(A)) is called the
n-th cocharacter of A and is denoted by x,,(A).

Decomposing the n-th cocharacter into irreducibles, we obtain
Xn(A) = Z MAXX
AFn

where x, and m) > 0 is the corresponding multiplicity. For details about cocharacters, see
[16].
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Theorem 1.7. Let A be a Pl-algebra with nth cocharacter x,(A) = Z myxa- For a
A-n
partition p - n, the multiplicity m,, is equal to zero if and only if for any Young tableau

T, of shape p and for any polynomial f = f(z1,...,x,) € P,, the algebra A satisfies the
identity er, f = 0.

1.6.2 GL,,(K)-representations

We now shift our focus to representations of the group GL,,(K), specifically
examining its action on the free associative algebra of rank m. Our objective is to study the
equivalence between representations of the symmetric group and the general linear group,

acting on the space of multilinear polynomials and homogeneous polynomials, respectively.

Fix the vector space V,, with basis {z1, ..., 2, } and with the canonical action

of GL,,(K), and consider K(V,,) = K{xy,...,&Tm).

Definition 1.36. Let ¢ be a finite dimensional representation of the general linear group
GL,(K), i.e. ¢ : GLyn(K) — GLs(K) for some s. The representation ¢ is polynomial
if the entries (¢(g))pg of the s x s matriz ¢(g) are polynomials of the entries ay of g
forge GL(K), k, l=1, ..., m,p,q=1, ..., s. The polynomial representation ¢ is
homogeneous of degree d if the polynomials (¢(g))pq are homogeneous of degree d. The
GL,,(K)-module W is called polynomial if the corresponding representation is polynomial.

Similarly one introduces homogeneous polynomial modules.

Theorem 1.8. (i) Every polynomial representation of GL,,(K) is a direct sum of

irreducible homogeneous polynomial subrepresentations.

(ii) Every irreducible homogeneous polynomial GL,,(K)-module of degree n > 0 is
isomorphic to a submodule of (K{V,,))™.

The irreducible homogeneous polynomial representations of degree n of G L,, (K)

are characterized by partitions of n with at most m parts and Young diagrams.

Theorem 1.9. (i) The non-isomorphic irreducible homogeneous polynomial G L,,(K)-

representations of degree n = 0 are in 1-1 correspondence with the partitions \ =
(A1, Am) of n. We denote by W,,(\) the irreducible G L,,(K)-module related to
A

(i) Let A = (A1,..., A\m) be a partition of n. The GL,,(K)-module W,,(\) is isomorphic
to a submodule of (K{V;,))™. The G L,,(K)-module (K{V,,»)™ has a decomposition

(K V)™ = 3 da Wi (V).

where dy is the dimension of the irreducible S,-module M(\) and the summation

runs over all partitions X\ of n in not more than m parts.
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(iii) As a subspace of (K{V,))™, the vector space Wi, (X) is multihomogeneous. The

Nm)

dimension of its multihomogeneous component Wg“ """ is equal to the number of

semistandard \-tableauz of content (ny, ..., ny).

Let A = (A1,...,\n) be a partition of n and let ¢y, ..., g be the lengths of the
columns of the diagram [A]. Denote by s)(z1,...,%,), ¢ = ¢, the polynomial of K(V,,,)

k
sx(z1,...,2y) = H Stg,(w1,...,24,),
j=1
where St,(x1,...,x,) is the standard polynomial.
Theorem 1.10. Let A = (A, ..., \y) be a partition of n in not more than m parts and

let (K{V,,))™ be the homogeneous component of degree n in K{(Vy,).

(i) The element sy(x1,...,x,), defined above, generates an irreducible G L., (K)-submodule

of (K{V, )™ isomorphic to Wi, ().

(i1) Bvery Wn(\) € K(V,)™ s generated by a non-zero element

wa(T1, ..., xq) = sx(@1, ..., xq) Z a,o, o5 € K.
o€ES,
The element wy(z1,...,x,) is called the highest weight vector of W, (N). It is unique
up to a multiplicative constant and is contained in the one-dimensional vector space

of the multihomogeneous elements of degree (A1, ..., Am) in Wi ().

(111) If the G Ly, (K)-submodules W' and W" of (K{V,,))™ are isomorphic to Wy, (\) and
have highest weight vectors w' and ", respectively, then the mapping ¢ : W' — aw”,
0 # a € K, can be uniquely extended to a GL,,(K)-module isomorphism. Every

isomorphism W' = W" is obtained in this way.

Proposition 1.15. Let A = (A1, ..., \n) be a partition of n and let W,,(\) < (K{(V,))™.
The highest weight vector wy of Wi, (\) can be expressed uniquely as a linear combination of

1

the polynomials w, = syo ~, where the o’s are such that the A-tableaux T'(o) are standard.

Proof. We know that

(K V)™ = 3 Wi (V)

and d), is equal to the number of standard A-tableaux. On the other hand, the homogeneous
component of degree A = (A1,..., \,,) of each of the d copies of W,,,(\) is one-dimensional.
Hence the A-homogeneous component of the direct sum is of dimension equal to dy. Now,
we will see that the polynomials w,, with T'(¢) standard, are linearly independent. We

consider the lexicographic ordering on K(V,,) assuming that z; > --- > z,,. If T(0) is a
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standard A-tableau, then its entries increase from top to bottom and from left to right,
then the leading term of w, is 7' ---2"o~". Hence the polynomials w, have pairwise

different leading terms for different 7'(o) and are linearly independent. O

Theorem 1.11. Let A be a Pl-algebra and let

X”(A) = Z m)\(A)X)H n= 071727"'7
AFn

be the cocharacter of the T-ideal of A, and consider the relative free algebra F,,(A). If

m = n and

FGI(A) = Y m(AWin(Y),

AN

for some n\(A), then my = n,.

Example 1.7 ([15], Theorem 3.1). The cocharacter sequence of the T-ideal T(My(K)) is

Xn(Ma(E)) = Y maxa, n=0,1,2,...,
An

where A = (A1, Ay, Az, A\y) and

(i) mm) = 1;
(ZZ) M, \2) = ()\1 — A + 1))\2, Zf Ay > 0,
(ZZZ) m()\171,17,\4) = )\1(2 — )\4) — 1,’

(iv) my= (A1 —Ag + 1)(Aa — A3 + 1)(A3 — Ay + 1) for all other partitions.

1.6.3  The action of S, X S;,, on Py, »,(A).

In the following chapters, we will explore the polynomial identities of certain
Zs-graded algebras. For this reason, we introduce the action of the group S,, x S,, on the

space of multilinear polynomials P,, ,,.

Since we are going to consider G = Z,, we write a;§°> = y; and xgl) = 2;. Let
us consider P, , the space of multilinear polynomials in the variables yi, ..., ¥y, and

21,y ..., %,. Given a Zo-graded algebra A, denote by P, ,,(A) the quotient space

Pm,n
Prn 0 1dg, (A)

Pon(A) =
Consider ny,ne = 0 and the action of the group S, x Sp, on P,, ,, given by

(qu)f(yb <oy Yngy 1y e 7Zn2) = f(yw(l)a s 7yw(n1)7z7’(1)7 R Z’T(n2))7

where (w,7) € Sy, X Sp, and f(y1, ..., Ynys 215« - Zny) € Pryny-
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It is known that the irreducible S,, x S,,-characters are obtained from the
outer tensor product of irreducible characters of S,, and S,,. Therefore, we have that
there is a bijective correspondence between the irreducible characters of S,,, x S, and the
pairs of partitions (A, i), where A = s and p - t. We denote by x» ® x,, the irreducible

Sny X Sp,-character associated to the pair of partitions (A, u).

Given a Zs-graded algebra A, the space P, ,,,(A) is a S, x Sp,-module, and
its character Xy, »,(A) is called the (ny,n9)-th (graded)-cocharacter of A. Therefore,

Xni,na (A) = Z M XA & X s (12)
(Avu)l_(nlvnQ)
where my , is the multiplicity of x\ ® x,.

Similarly, if A is a #-algebra we define the (n1,n2)-th (¥)-cocharacter of A.

Theorem 1.12 ([10], Lemma 2, Lemma 5). Let Z be the Ty-ideal of graded identities of
Ml,l(K); then

(1) T is generated by y1ys — yo2y1 and z1z923 — 232921,

(2) Let Xnymy,(Mi1(K)) = Z M X ® X, be the (ny,ng)-cocharacter of
(A1,22)(n1,n2)
Ml,l(K)- Then

(Z) m,\L@ = 1, Zf/\l = (nl) — ni,
U

1) forng > 0, 0 < r < @ and 0 < s < | =
2

2], My N, = N1+ 1— 27“, Zf

)\1 = (nl—r,r) l_nly )\2: (n2_878) = no.

1.6.4  The action of S, x Sy, X Sy, X Sy, on Py, s, (A).

We consider the characters of Zy-graded algebras with graded involutions. So
we can consider P, ,, ns.n, the space of multilinear polynomials in symmetry variables
of degree 0, skew-symmetry variables of degree 0, symmetry variables of degree 1 and

skew-symmetry variables of degree 1.

Given a Zo-graded algebra A with a graded involution, denote by P, .m0, (4)

the quotient space

P,
P A — ni,n2,n3,n4 )
e e L)

We examine the action of Sy, x Sp, X Spy X Spy 00 Py sy ngma (4).
Consider nq, ng, n3, ngy = 0 and the action of the group S, x S,, X Sp, X Sy,
on Pﬂ1,n2,n3,n4 given by
(W, 0, Ty P) F YLy e o Yy Uly e v ey Uy 215+ -+ s Zngs U1y« -+ s Uny )

= f(yw(l)a <oy Yo(na)s Ua(1)s - -+ 5 Uo(na)s (1) + -+ 5 Z7(ng)s Up(1)s -+ - - :Up(n4))7
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where (w, 0,7, p) € Spy X Spy X Spy X Sp, and f € Py, ny g na-

As in the case of S, x Sy,, the S,,, x S, x S,, x S,,-characters are obtained
from the outer tensor product of irreducible characters of S, S,,, Sn, and S,,, and we
have 1-1 correspondence between the irreducible characters of S,, x Sy, x S,, x S, and
the 4-tuples of partitions (w, o, T, p), where w + ny, o = ng, 7 - ng and p — ny. We denote
by Xw ® Xo ® X+ ® X, the irreducible S, x Sy, x S, x S,,-character associated to the
4-tuple of partitions (w, o, 7, p).

Let A be a Zy-graded algebra with graded involution. The space Py, 1,y .ns.n, (4)
is & Sy, X Spy X Spy X Sp,-module, and its character X, g ngn, (4) is the (n1, na, ns, ng)-th
cocharacter of A. Thus,

Xni,n2,n3,ng (A) = Z My,orpXw ® Xo &® Xr &® Xps (13)
(w,0,7,p)(n1,n2,n3,n4)

where my, -, is the multiplicity of x., & x» @ X+ ® X,-

1.7 Grassmann algebras

Definition 1.37. Let V' be a vector space with ordered basis {e;: i € I}, with I an ordered
set of index. The Grassmann (or exterior) algebra E(V') of V' is the associative algebra

generated by {e;: i € I} and with defining relations
eiej +eje; =0,14,7€1,

(and € = 0 if charK = 2). Then E(V) is isomorphic to the algebra K{(X)/J, where
X ={x;: i€ I} and the ideal J is generated by x;x; + x;x;, 1,5 € I. If dim V' is countable,
we assume that V' has a basis {e1, e, ...} and denote E(V') by E.

The polynomial identities for the Grassmann algebra E were described by

Krakowski and Regev [27], and its cocharacters by Olsson and Regev [29].

Theorem 1.13. Let charK = 0 and let E be the Grassmann algebra of an infinite

dimensional vector space. The T-ideal T(FE) is generated by |z, xa, x3].

Theorem 1.14. Let E be the Grassmann algebra of an infinite dimensional vector space.

Then the cocharacter sequence of the polynomial identities of E is
n—1
Xn(E) = Z X(n—k,1k)-
k=0

We are especially interested in the Grassmann algebra as a Zo-graded algebra
considering the canonical Zs-grading given by F = Ey@® E;, where Ej is the set generated
by all monomials in the variables e; of even length and FE is the set generated by all

monomials in the variables e; of odd length.
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Definition 1.38. Denote by ig and —ig the superinvolutions on E induced by the identity

map on the generators e; of E as follows:

e e =¢; and e; 'F = —¢;,

o (ab)’® = (=1)MpiEgie gnd (ab)™F = (—DlMy=iEq7E for a, b homogeneous

elements of E.
Remark 1.4. Note that for e;,, e;,,...,e; generator elements of E we have

€iyCip """ Ciy = An€i €iy €

n

where
N 1 ifn=2n; orn=2n; + 1, with ny even,
—1 ifn=2n; orn=2n; + 1, with ny odd.
Also,
(€i,€iy -+~ €)' E = pnei€i ,---e; where py=ps=—1, pp=—pp_a forn=4.

Therefore, p, = A\, and the superinvolution ip is equal to the identity function on E. In

the case of —ip we have
—ig(a) = a, —ig(c) = —c, for a€ Ey, c€ Ej.
The results regarding the identities and characters of E as a superalgebra were
given in [21].

Theorem 1.15. For the canonical Zo-grading of the Grassmann algebra, it holds that:

(i) 1dz,(E) = {[y1, y2]; [y1, 21], 2120 + 202175

(i) Xrm—r = X(@r) ® X(n-r), for every r = 0.

In [13], other Zs-gradings for the Grassmann algebra were considered, and their
identities along with their corresponding characters were computed. In the case of the
algebra M, 1(E), its graded identities and cocharacters were described by Di Vincenzo in
[10] as follows:

Theorem 1.16. Let J be the 1y,-ideal of graded identities of M;1(E), then

(1) T is generated by y1ys — yoy1 and z12923 + 232221,

(2) Let

X e (M1 (E)) = D M @ X
(A1,22)(n1,n2)

be the (ny,nq)-cocharacter of My1(E). Then
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(7’) mx,g = 1, Zf/\l = (nl) = ngy
(ii) for ng > 0, 0 < 7 < [%] and 0 < s < [@

B ]; My = M1+ 1 —2r, if
)\1 = (nl - T) = ny, )\2 = (257 1712728) = no.
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2 ldentities of an algebra of upper triangular

matrices

Consider A the subalgebra of UT3(K) given by
A=K(e11+e33) @ Keso® Keyo® Keys® Key 3,

d a c
where e; ; denote the matrix units, that is, A consists of the matrices [ 0 ¢ b |.
0 0 d

The polynomial identities of A were described by Gordienko in [23]. Furthermore,
in [25] the authors considered the generic algebra of M 1,1(E) in two generators, and it was
shown that its polynomial identities are the same as the identities of A. We are interested in
the identities of the algebra A when considering additional structures (grading, involution,
etc.), with the aim of determining a new Pl-equivalence like in the case of traditional
polynomial identities. Here we point out that the research in [25] was motivated by a
question posed by A. Berele, about the centre of the generic algebra of M (E) in d > 2
generators. It is well known that the algebra generated by d generic matrices for M, (K)
is a (noncommutative) domain. hence its centre is a commutative domain, and can me
embedded into its field of fractions. Several very important questions in PI theory could be
solved by using this simple trick; we will not enter into details about these as this thesis is

not related to such problems.

The algebra A, with involution, is also considered in [28]. Here we first study
the gradings on the algebra A, given by an abelian group. Additionally, we determine
a basis for the Z,-graded identities of A, for the identities with involution, and for the

Zo-graded identities with graded involution. We also determine its cocharacters sequence.

2.1 Gradings on A

We want to characterize the gradings on A starting from elementary gradings.
As the main result of this section, we have that the gradings on the algebra A are equivalent

to elementary gradings.

Definition 2.1. Given a triple § = (g1, 92, g3) of elements of an arbitrary group G and
1 < 4,7 < 3, we set the degrees for the unitary matrices as dege; ; = gi_lgj foriv # 7
ori=j =2, anddeg(ers +e33) = lg. Given g € G let A, = Span{e;; | g;'g; = g}

for g # 1¢ and Ay, = Span ({e;; | g; 'g; = 1g} U {e11 + e33}). Then A = P A, is a
geG
G-grading of A called the elementary G-grading defined by the 3-tuple §.
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We start considering the idempotents of the algebra A.

T a c 2? a(r+y) 2wc+ab T oa c
Ife=]0 y b|#0ande®=ethen | 0 y? b(x+y) =10 y b | which
00 z 0 0 a? 00 z

implies that z,y € {0, 1} where x and y are not simultaneously zero. So, we consider the

following cases:

0 a ab 1 —a 0
e Ifx=0,y=1thene=|0 1 b |.Let¢g=|0 1 b |andnotethat geqg ' =
00 0 0 0 1
000
010
000
1 a —ab 1 a 0 1 00
e Ifx=1,y=0thene= [0 0 b | Letq=]0 1 —b|,soqe¢* =10 0 0
00 1 0 0 1 0 01
100
o Ifxr=1,y=1thene=]0 1 0
0 01

Therefore we have the following result.

Proposition 2.1. If e € A is an idempotent element, then e is conjugated with a diagonal
element of A.

Remark 2.1. Note that if we have two orthogonal idempotent elements, then each one of

these is conjugated to an element of the set {(e11 + e33), €22}

Remark 2.2. Let A = @Ag be graded by an abelian group. Since for g, h € G, [A,, An] <

geG
Agp + Ang < Agp, it follows that the commutator subalgebra [A, A is a nilpotent non-zero

graded ideal of A.

Lemma 2.1. Let A = @Ag be graded by an abelian group G with identity element
geG
lg € G. Then A, contains 2 orthogonal idempotents.

Proof. Let E be the identity element of A. Since E € A, there exists a non trivial
maximal semisimple subalgebra B of A;,. Let C' be one of the simple summands of B

and let e be its unit element.

We know that e is conjugated to a diagonal idempotent. Hence either e and

E — e are two orthogonal idempotents or e = E and C' = B = Span E.
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Consider the case e = F and B = Span E, we want to show that this case is

not possible.
First, note that any homogeneous element of A is either nilpotent or invertible.

In fact, suppose that a € A, is not nilpotent. For m large enough the elements
a, a®,..., a™ are linearly dependent and homogeneous. It follows that ¢ must have finite
order k and a* € Ay. Moreover being not nilpotent the element a® does not lie in the

Jacobson radical J(A;,) of A;.. Since A;,/J(A1.) = F - E, it follows that a* — \E is

nilpotent for some A € F, A # 0. This means that a” and hence also a is invertible.

Next we prove that the Jacobson radical J(A) of A, i.e. the subalgebra of all
strictly upper-triangular matrices does not contain non-zero homogeneous elements. J(A)

is homogeneous in the G-grading since p(J(A)) = J(A) for any ¢ € AutA.

In fact suppose by contradiction that 0 # a € A, is nilpotent and consider its
left annihilator L, = {z € A: za = 0} and right annihilator R, = {z € A: ax = 0}, these

are graded subspaces of A. Then, as the elements of L, and R, are zero divisors they are

0 a1 a3
not invertible, hence they are nilpotent. By our hypothesis a is nilpotent,a = | 0 0 a»
0 0 0
0 0 ajas
anda’*= [0 0 0 [ Notethat,ifa®+#0,a*€ Ay and then ego € L2, a contradiction.
00 O
0 a; as 0 0 as
Now, if a> =0thena= |0 0 0 |ora=]0 0 ay , S0 €29 € L, or ex5 € R,, again
0 0 O 0 0 O

a contradiction. Therefore, J(A) has no homogeneous elements. But this cannot happen
because [A, A] < J(A).

Thus, we have e and E — e are two orthogonal idempotents belonging to

Ay [l

a*

Lemma 2.2. Let A = @Ag be G-graded. Then the grading is elementary if and only if
geG

all matriz units e; ;, 1 <i < j <3, ean and (e11 + e33) are homogeneous.

Proof. 1f the G-grading is elementary then those matrices are homogeneous by definition.
Suppose that the said matrices are homogeneous. If we set ¢, = 1g, g» = dege; 2 and
g3 = gadegeas then the triple (g1, g2, g3) satisfies the conditions for the grading to be

elementary. O

Lemma 2.3. Let A = @Ag be G-graded. Then the grading is elementary if and only if
geG

the matrices ess and (e11 + es3) belong to Ay.
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Proof. 1t is clear that if the grading is elementary then ey, (e11 + e33) € Ay,.

Now, assume that e, (e11 + €33) € Ay, and note that

* C12 € (6171 + 6373)146272 with dim(€171 + 6373)146272 = 1,
* C23€ 627214(6171 + 6373) with dim 627214(6171 + 6373) = ]_,

o e13€ (e11 +ess)Alern +es3) = K(ern +e33) @ Keys.

Since (11 +e33)Aess, (e11+e33)A(e11+e33) and easA(er 1 +e33) are graded subalgebras
then we can conclude that the elements e; 5, €13 and e; 2 are homogeneous. Thus, by

Lemma 2.2 the grading is elementary. [

Lemma 2.4. Let A = @Ag be G-graded. Then there exist two orthogonal idempotents
geG
that are simultaneously diagonalizable and belonging to A, .

Proof. Suppose A is G-graded, then the identity matrix £ is homogeneous.

Also J, the Jacobson radical of A is homogeneous. So is J? = span(e;3). By
Wedderburn-Malcev theorem, A = K + K + J, direct sum of vector spaces, where K + K
is a subalgebra. Hence we have two orthogonal idempotents. We show we can choose these

homogeneous and simultaneously diagonalizable.

First take the intersection of the left and right annihilators of J?, it is homoge-

neous. But this is exactly the span span(e; 2, €13, €23, €22). There exists an idempotent in
0 a ac
it, and all idempotents in it are of the form |0 1 ¢
0 0 0

Suppose the element above is the homogeneous idempotent, call it t. Now,

considering A acting in a 3-dimensional vector spaces with base {ej, es, e3}, then
teg =0, tey =ae; + ey, tes = ace; + ces.

Now consider the basis fi, fa, f3 such that tf; =0, tfo = fo, tfs = 0. Such basis can be

obtained as

fi=e, fa=ae +ey, f3=—ces+es.

(f1 and f3 are a basis of the kernel of ¢, and f, of its image.)

1 a O
The change of basis (matrix) is P= |0 1 —c |.
00 1

Form I —t, this is an idempotent which is orthogonal to ¢, and clearly the same

P diagonalizes it. As t is homogeneous and [ is, then I — t is homogeneous. O]
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Theorem 2.1. Let G be an abelian group and K a field. Suppose that the K-algebra
A = (—BAQ is G-graded. Then A, as a G-graded algebra, is isomorphic to A with an

geG
elementary G-grading.

Proof. Let A = @Ag be G-graded. By Lemma 2.1 the homogeneous component A4,
geG
contains two orthogonal idempotents. Now, by Remark 2.1 one of this idempotents is

conjugate to ey by some h € A. So as a G-graded algebra A is isomorphic to A" = (—B A;
geG
where A} = h~'A,h. Note that in A’ the unit matrix ey and the matrix identity E lie in

A!. Therefore, by Lemma 2.3 A’ has an elementary G-grading. O
Another possible proof of Theorem 2.1 can be given as follows.

Proof. Let A = @Ag be G-graded. By Lemma 2.4 the homogeneous component A,
geG
contains two orthogonal idempotents simultaneously diagonalizable by a element P. So as

a G-graded algebra A is isomorphic to A" = () A, where A = P~'A,P. Note that in A’
geG
the unit matrix es» and the matrix identity E lie in A]. Therefore, by Lemma 2.3 A’ has

an elementary G-grading. O

Next, we will consider the graded identities of the algebra A, where the grading
is given by the group Zs. We can view A as a Zs-graded algebra with gradings

-

3\

-

N

d 0 ¢ 0
Ac=<410 g 0|}, A=A b (2.1)
L \0 0 d/) L 0/ )
or
([d a 0\) ( c\ )
Ag=<10 g o}, A = b (2.2)
L \0 0 d/ L 0/}
or
([d 0 0 0 a c\)
Ao=<10 ¢ b}, A =<0 0 0 (2.3)
L\0 0 d \ 0/

Denote by A' the graded algebra A with grading given by (2.1), A* the graded algebra A
with grading given by (2.2) and A® the graded algebra A with grading given by (2.3).

Remember that, given a group G, for each g € G, we consider the set of variables

X, = {:Egg),:cgg), .

} of homogeneous variables of degree g, X¢ = U Xy, and the free

associative algebra K (X G> as a G-graded algebra. We are going to consider G = Zy and

(0)

)

we write x

= 9; and xgl) = z;. Let us consider P, ,, the space of multilinear polynomials
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in the variables yi, ...,y and z1, ..., z,. Given a Zy-graded algebra A, denote by P, ,,(A4)

the quotient space
Pm,n

P,.(A) = )
’ ( ) Pm,n M IdZ2 (A)

2.2 Graded polynomial identities of A

It is easy to see that the followings are graded identities of A'.

(a) [y1,92] =0,

(b) z12923 =0,
(¢) [y, z122] = 0.

The Identity (c) is a direct consequence of Identity (a).

Note that Py, ,(A") = 0 if n > 3. By the identity (a) it is clear that

Py o(A') = Span{yiys - - - ym}- (2.4)

Casen =1

Given a monomial y in P, ;(A"), from (a) we can reorder the variables y; such
that modulo Id(A")

= YirYis - Yie21Yin Yjs Ui (2.5)

where 11 <9 <ig, J1 <Jo---<jrand s+t =m, s,t = 0.

Proposition 2.2. The monomials of the form (2.5) are linearly independent modulo

Idz, (A").
Proof. Let f be a sum of monomials of the form (2.5)
f= Z LY Yis * " Yis21Y5j1 Yja =~ Yss -
17

Note that if y;, = 5, (e11 + e33), 21 = Ae1o and y;, = ;€22 then

f= Z 1,78 Biy - Big A Mg+ + My~ €1,2-
1,0

Suppose that f is a polynomial identity of A and that there exist o Io.Jo 7 0. Consider the
evaluation y;, = e;1 + es3 for iy € Iy, y;, = eao for ji € Jy and 2 = ey 9, then oy, 5, = 0,

a contradiction. So, the monomials in the form (2.5) are linearly independent. O
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Case n = 2

Given a monomial g in P, »(A"), again from (a) we can reorder the variables
y; such that modulo Idz, (A")

M= Yy Yis2u Y51 Yo Yje ZlaYha Yho = Yh,

where 11 <o - <ig, J1 <Jo- - <Jy, hy < hg---<h,and s+t+r=m, s, t,r =>0.

As a consequence of (¢) we have 2,y;21,yn = Yn21,Y;21,- Therefore, P, o(A") is

spanned by monomials in the form
YirYio = Yis Y Yjo ~ Y5 2o (26)
where 11 <9 - <ig, J1 <Jo - <jy, and s+t =m, s,t = 0.

Proposition 2.3. The monomials in the form (2.6) are linearly independent modulo

Id(AY).

ahk 0 Chk 0 dlz O
Proof. Note that if y,, = | 0 b, 0 [andz, = [0 0 ¢, |then
0 0 ap, 0 0 0

YirYio *Yis R Yj Yig * " YjeRly = Qig * " aisdhbjl U bjtdlz *€1,3.

Let f be a sum of monomials in the form (2.6)

f = Z A1 g, LYir Yis = Yis 211 Y51 Yjo * " Yji Rl
I.JL

= Z QgL Qi dy by, - bjer, e
1,J.L

Suppose that f is a polynomial identity of A' and that there exist ay, 5,1, # 0. Consider
the evaluation y;, = e11 + ez 3 for iy € Iy, y;, = €22 for ji € Jo, 2, = e12 and 2, = ez 3.
Then, ay, j,., = 0, a contradiction. So, the monomials in the form (2.6) are linearly

independent. L

As a consequence of (2.4) Proposition 2.2 and Proposition 2.3, we have the

following result.

Theorem 2.2. The identities (a) and (b), form a basis for the Zo-graded identities for
the algebra A'.
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2.3 Graded polynomial identities of .4

Consider some products of homogeneous elements

ry a; O T9 ay O 1Ty Tiao + arys O
0w O 0y O0]=1 0 Y1Yy2 0 1.
0 0 = 0 0 =z 0 0 T1T2
r a 0 0 0 ¢ 0 0 xzc+ab
0y O 0 0 bl=10 0 yb ,
0 0 =z 0 00 0 0 0
0 c z a 0 0 0 xc
0 0Oy 0Ol=10 0 xb],
0 0 0 =z 00 O
c1 0 0 ¢ 0 00
b1 0 0 be=10 0 O
0 0 0 0 0 00

Hence modulo Id(.A?) we have that

Rj1%je = 0 and [yiu yiQ][yi37yi4] =0 (2'7)

Again, our idea is considering the space P,,,, of multilinear polynomials in the variables
Yivs Yior - -+ s Yim> Zj1s Zias - - -5 Zjn- NOte that since zj,2j, = 0, Py, = 0 if n > 2. Thus we

consider the cases n =0 and n = 1.

Casen =0

By (2.7) we have that [y, , ¥i,|[¥is, ¥i,] = 0, then considering proper polynomials,

we have only sums of commutators. Also from (2.7) and since

[[yipyzé]: [yzg,yu]] = [yilayizayigayu] - [yi17yi27yi47yi3]7

given a commutator we can reorder the variables in the way [yk, yi, Yi,, Y, - - - » Yi,,,_, | Where
ih <9 < --+ <1iy 2, and by Jacobi identity we can only consider the case [y;,, Yi, - - -, Yi,,. |

where i1 > iy < i3 < -+ < fpy_o.

Also, note that the subalgebra A2 is isomorphic to the algebra UTy(K). So,
the polynomial [v;,, yi,]|¥is, ¥, | is a basis of the identities in the variables y;.
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Casen =1

For this case, we consider proper polynomials, that is, sums of products of left

normed commutators.

Note that since [vi,, Yi,|[¥is, ¥i,] = 0 and we have only one z; then we can

consider sums of commutators with products of two commutators.

Now, since [vi,, yi,| = ve1 2, then

Zj1 [yi17yi2] = 0. (28)

hence in the case when we have products of two commutators we get that z;, lies in the

second commutator.

By direct computation, we also have the following identity:

[[yiwyiz]zjlvyi:s] =0, (29)

Note that from (2.8) [y, Yiss 2j1] = [¥irsYin)?j, and using the identity (2.9) we have
[Yirs Yiss Zj1s Yis] = 0. Therefore, if z;, lies in a commutator w, that commutator has the
form w = [2j,, Yirs Yigs - - - Yir ) OF W = [Yirs Yins - - - Yirs Zin | = [Yirs Yins - - - Yir | %1 -

Let us consider the case w = [2j,, ¥iy, Yiys - - - » ¥i,, |- Note that by Jacobi identity

[Zjl y Yiys yiz] + [yil y Yias Zjl] + [%27 Zj1s yil] = 07 then [Zj1 y Yigs yil] = [Zjl » Yivs yi2] + [yil ) yi2]zjl‘
So we can write the variables y; in any order in w.

I w = [Yirs Yiss - Yirs Zin ] = [Yirs Yins - - - Yir |22, @s in the case P, o, we can
reorder the variables y;,, yi,, - - ., ¥, such that [y, ¥i,, ..., ¥ ]2, is a linear combination
of polynomials [Yi,, Uiy, Yigs - - - » Yigs - - - » Yin |25, Where i > iy <idg < -+ < .

At this point, we have that if B is the space of proper polynomials in the

variables 2j,, Uiy, Uiy, - - - » Yip, modulo Idz,(A?), B is spanned by
° [Zjlvyimyizv"-uyikLil<i2<"'<ik7
® [yimyimyiza s 7yil7' .. ,?Jik]sz /L'l > Z‘1 < Z‘2 < - < ik?
® [yilayilayiza"'ayim"'7yi5][zj1ayh17yh27-'-ayht]a il > Z‘1 < 'é2 < -0 < ik) h’l < h? <
<hs-

Proposition 2.4. The polynomial

[yip yiz] [Zj1 ) yza] + [yil sy Yigs yi3]zj1 (210)

is a polynomial identity of the algebra A*.
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Proof. Note that
[yiwyiz][zjuyis] = [y’h ) yiz]zjd Yis — [yiu yiz]yi3zj1
by (29) = Yis [yiu yi2]2j1 - [yiu yi2]yi3zj1
= [Wis, [Yir» Yin11251
- [yil sy Yigs yis]zh . [

Hence from Proposition 2.4 we consider linear combinations of

® [Zj17yi17yi27 QR 7yik]7 Z'1 < ?:2 <0 < ika
o Wi Virs Yiss - Tirs - > Vi 120, 01 > iy < g < o0 < i,
dik aik 0 0 0 le
Note that, ify;, = | 0 ¢, 0 |andz; = [0 0 by [, then
0 0 d, 00 0
[Zj1>yi1>yi27 v 7yim] = m+1 1_[ ik gzk Q;,, * €13 + b]l H in gzk) €23
k=1 k=1
and
[yiw Yivs Yigs - - - 7@;7 SR 7yik:|zjl = {[a’il (dlz - giz) + a; (giz - dll)] n(glk - dlk)} bjl © €23
k#l

Theorem 2.3. The following identities form a basis for the Zq-graded identities of the
algebra A*:
(Z) Ri1 Ry s
(i)
(#49) 2, [Yir» Yin]
)

[yil ’ yi2] [yi37 yi4] ’

(iv [[yiu yiz]zjl ) yi3]'

Proof. We want to prove that the polynomials [z, ¥i,, Yigs - - - Yi,, | With i3 <ip < -+ <
imy A0 [Yny, Ynys Yhos - - s Uhys -« > Y J2j0 With by > hy < hy < -+ < hy, are linearly
independent modulo Idz,(.A?). Consider f the polynomial given by

f = a[szyilayiga--'?yim] +Zﬁl[yhuyh1>yh27--'737fl\l7"'7yhm]zj1
=2

and suppose that f e Idz,(A?). Now, considering the evaluation zj, = eg3 and y; =

(e11 +e33) for i =1,...,m one has aes3 = 0, so a = 0. Then,

Z yhl7yh17yh27"'7?7h\17"'7yhm]zj1:0‘
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Suppose that there exists [y such that 3, # 0, and consider the evaluation Yn,, = €1,2,
Yn, = €22 for ¢ # ly and z;, = ez 3. Then, fje13 = 0, therefore 5, = 0, a contradiction.

Thus, we have the desired result. O

2.4  Graded polynomial identities of A®

Consider A%, the algebra A with Z,-grading given by

d 0 0 0 a c
A =L {0 g b]p, APV =Z10 0 0
0 0 d 0 00

By direct computation we have that the following polynomials are identities of A%

(@) zj,2js,
() [Yirs Yiol[Yis» Yiu ]
(©) [y, yis) 2,
() [z [Yirs Yia ], Yis]-
Proposition 2.5. The polynomial
(20> Yial[Wir s Vil + 25 [Yir s Vo s ] (2.11)

is a polynomial identity of the algebra A>.
Proof. Note that

(250 Yis Wi s Vil = 230 Yis [Wir s Yin] — Y25 [Yin s i)
by (d) = ZjYis[Yirs Yis] — 232 [Yins Yia 1Y
= 2y [Yis» [Yir+ Yio ]
= —2j, [Yir» Yiz» Yia - L

Consider the vector space P, , of multilinear polynomials in the variables y;,,
Yigs -3 Yimer Zj1r Zjas - -+ Zjn- OiNCE 2,25, = 0, Py = 0'if n = 2. So, we consider the cases

n=0andn=1.

Casen =0

Since [¥i,, Yi, |[Yis, ¥is] = 0, then considering proper polynomials, we have
only sums of commutators, and by Jacobi identity we can reorder the variables of that

commutator and consider only the case [yi,, Uiy, - - -, Ui, | Where i1 > iy <z < -+ < iy 9.
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Proposition 2.6. The polynomials [Yn,, Ynys Ynss - - - s Unys - - - » Yho ] With by > hy < hy <
<o+ < hy, are linearly independent modulo 1dz, (A®).

Proof. Consider f the polynomial given by
f = Zﬂl[yhuyhuyhza s 7%7 ce 7yhm]
1=2

and suppose that Idz,(A?). Suppose there exists [y such that 3, # 0, and consider the
evaluation yy, = ez3 and yp, = (€11 + ess) for i # ly. Then, 5 e23 = 0, therefore £, = 0,

a contradiction. Thus, we have the desired result. O

Casen =1

Once again we consider proper polynomials. Since [yi,, ¥i,|[¥is, ¥i,] = 0 and
we have only one z;, then we only consider sums of commutators with products of two

commutators.

As [¥i,, ¥i,]%j, = 0, when we have products of two commutators then z;, is in

the first commutator.

From the identity (¢) [¥i,, Yin, 2j,] = =24 [¥ir» Uin ] and using the identity (d) we
have [vi,, Yiys 21, Yis| = 0. Therefore, if z;, lies in a commutator w, that commutator has
the form w = [2),, Yiy, Yigs - - - s Yir] OF W = [Yiy, Yigs - - - s Yins Zi1 ] = =%y [Yirs Yins - - > Yir)-

Let us consider the case w = [2j,, ¥iy, Yiys - - - » ¥i,, |- Note that by Jacobi identity
(20 Yirs Yio ]+ [Yirs Yins 23 ]+ [Wins 205 Yin ] = 0550 1250, Yirs Yio ] = 25 [Yin s Wi ] = 1250 Ui yin ] = O
and [2j,, Yiy, Yir | = [Zj1s Yirs Yin] — %1 [Yirs Yin |- Therefore, we can write the variables y; in

any order in w.

If w = [Yirs Yiss - - - s Yins Zin | = =21 [Yirs Yias - - -+ i |, s in the case P, o, we can
reorder the variables v;,, ¥i,, - - ., ¥i, such that z; [vi,, iy, - - ., ¥s, | 18 & linear combination
of polynomials z;, [Vi,, Yirs Yiss - - - s Yigs - - - » Yis ] Where i > iy < idg < -+ < ip.

A nonzero product of commutators has the form [2;,, ¥i,, - - Ui, [Yn1s Ynos - - - Yne)
and by Proposition 2.5 we reduce it to the form zj, [vi,, ¥i,, - - -, ¥i,,, ). Then, if B is the
space of proper polynomials in the variables z;,, ¥i,, ¥i,, - - -, ¥i,, modulo Idz, (A%), B is
spanned by

® [Zj17yi1>yi27 s 7yik]> Z‘1 < Z‘2 << ik,
o 2 [Yirs Yirs Yins > Uiy -+ Yir ], 11 > 11 < g < -+ v <.

Theorem 2.4. The following identities form a basis for the Zs-graded identities for the
algebra A®:
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(l) Ri1 Rig

(1) 1Yirs Yiol[Wis» i
(717) [Yir, Yir2is
(1) {25 [Yirs Yin ] Yis |-

Proof. Let us show that the polynomials [2;,, ¥y, Uiy, - - -, Yi,, | With i3 < iy < -+ < ip,, and
Zi [Ynys Yns Yngs - - - sUhys -+ s Yny, ] With by > hy < hg < «-- < h,, are linearly independent
modulo Idz,(A?). Consider f the polynomial given by

f = a[zjlayiuyiza"'?yim] +Zﬁl’zjl[yhz7yh17yh27"'7%7"'7yhm]
=2

and suppose that f € Idz,(A%). Now, considering the evaluation z;, = e and y; =

(€11 +e33) fori=1,...,m one has ae; 5 = 0, so a = 0. Then,

f = Zﬂlzjl[yhnyhmyhm“'7:&};5--'7yhm] = 0.
=2

Suppose there exists [y such that 3;, # 0, and consider the evaluation Yny = €23, Yn, =
(€11 + es3) for i # Iy and z;, = e12. Then, fj,e13 = 0, therefore §;, = 0, a contradiction.
Thus, we have the desired result. O

25 S, x S, -characters of A'

In this section, we consider the cocharacters of the Z,-graded algebra A with
the grading given by (2.1). We recall that a basis for the graded identities of A" is given
by the polynomials [y1, 32| and 2z;2923.

Let S,, act on the variables yq,...,y,, and let S, act on z,...,2,. Then
Prn(A') becomes a left S, x S,-module. Let X, ,(.A") be its character. The irreducible
Sm xS, characters are obtained by taking the outer tensor product of S,, and .S,, irreducible

characters, respectively. Then, we can write
Xm,n (Al) = Z mx XX ® X
(A p)=(m,n)
where my , = 0 are the corresponding multiplicities.

Let A =m, p = n, and let W) , be a left irreducible S, x S,-module. If T} is
a tableau of shape A and T}, a tableau of shape p, then Wy, = F(S,, x S,)er,er, with

S, and S, acting on disjoint sets of integers.

From the identity [y1,y2] = 0 we have m(y) g = 1 and my g = 0 for A # (m).
Also, from [y1,y2| = 0, we obtain m, , = 0 for h()\) > 2.
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Let us consider the case n = 1. Since Py, 1(A") = Span{yi, v, - = ¥i. 2Uj Yin - ** Vi }
we consider the case A = m with A = (p + ¢, p).

For every ¢ = 0, ..., ¢ define the following two tableaux: T ﬁi) is the tableau
141 i+ 2 i+ p 120 Je|e+2p+2]- | 2p+q+1
i+p+2|itp+3 |- |i+2p+1 ’

TO =i+p+1|

The associated polynomial is

ag (Y Y2, 2) =Yg -G 2o Gayi (2.12)
—. — —. —

S —_
p p

where ~and “mean alternation on the corresponding elements. That is,

f(Tla coo s Ly Tig 1y e e 7xn) = Z (_1)0]1'(1,0(1), sy Loy ity - - - 7$n)-

O‘ESZ'

Proposition 2.7. Modulo Idz,(A"), the polynomials a (yl, Yo, 2) as in (2.12) are linearly
independent, 1 =0, ..., q.

Proof. The proof is similar to that of Theorem 3 in [35]. Suppose that the polynomials
(’) are linearly dependent. Modulo Idz,(A"), there exist a;, i = 0, ..., q such that

q
Z Oéiag}l(yla Y2, Z) = 0.
=0

Let t = max{i: a; # 0}. Then

awal) (yr yo, 2) + Y iaS) (y1, 92, 2) = 0. (2.13)
i<t
Considering y; = y; + y3 in (2.13), we have that
ar (yr +u3) (1 +ys) - (g +ys) 2B G (g1 + y3)T

+ > 0+ ys) (g +us) - (v +ys)2la - G2 (1 + ys) ™" = 0.

i<t

Let us consider the homogeneous component of degree t 4+ p in the variable 1,

and degree ¢ — t in the variable ys,

T TIRERE NEI R -ggyg_t + .. =0.

Substituting y; = e11 + €33, Y2 = Y3 = €22 and z = e; 9, we obtain a; - ey = 0, s0o oy = 0

and we have the desired result. O

Proposition 2.8. myqy=q¢+ 1, if A= (p+q¢,p) - m
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P
Proposition 2.7 myay = ¢+ 1if A = (p + ¢,p) = m. Also, given Ty and T}, two tableaux

Proof. For every i, e e, (Y1, - - -, Ym, 2) is the complete linearization of al) (y1, 92, 2). By
b 1

and f = e meqm (Y1, Ym, 2) ¢ Idz, (A'), any two alternating variables in f must lie on
PR

different sides of z. Since f is a linear combination (modulo Idz,(A")) of polynomials, each

alternating on p pairs of y;’s, we have that f is a linear combination (modulo Idz,(A")) of

the polynomials e e. Hence my 1y = ¢ + 1, if A = (p+ ¢, p) = m. O
A

(i
Ty

NOW7 consider the case n = 2a Pm,2(“41) = Span{yi1yi2 Y 2L Y Yo yitZZQ}'
For p1 2 we have the possibilities p = (2) and p = (1,1). Define the tableaux T/@ as

1+ 1 1+ 2 1+ p 112 ]¢|i+2p+2 |-+ |2p+q+1
ttp+2i+p+3 |- i +2p+1
and -
‘ ; i+p+1
T =[i+p+1]2p+q+2] TY, =
(2) p P+4q I PSR
Then, the associated polynomials are
Ay e ) = v g B2l e (2.14)
- -
p p
and respectively
a%(yby% 2, 2) = U Yo griiye -jggyf_’,@, (2.15)
-~ -~
p p

We consider the case of the polynomials (2.14).

Proposition 2.9. Modulo Idz,(A"), the polynomials az()?](yl, Yo, 2) as in (2.14) are linearly
independent, 1 =0, ..., q.

(]

Proof. Suppose that the polynomials aplz are linearly dependent. So, modulo Idz,(A")

there exist a;, ¢ =0, ..., ¢ such that
q .
D aial) (y1,y2,2) = 0.
i=0
Let t = max{i | o # 0}. Then,

ata%(yl,yg, z) + Zaiaéfgl(yl, Y2, z) = 0. (2.16)
i<t
Considering y; = y; + y3 in (2.16), we have that
ar (Y1 +u3) (1 T ys) - (g1 +y3) 20 o (g1 + y3)T 2

+ > 0y +ys) (v +ys) - (v +ys)2la - G2 (1 +ys) ™ 2 = 0.

i<t
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We consider the homogeneous component of degree ¢t + p in y; and of degree
q— t in Y3,
Oéty@l Ce Y12 -nggftZ + ... =0.
Substituting y; = e + €33, Y2 = Y3 = €22 and 2z = e; 2 + €33, we obtain oy - €13 = 0, s0

oy = 0 and we have the result. O

From Proposition 2.9 and with a similar argument to Proposition 2.8, we obtain

Proposition 2.10. my @y =q¢+1, if \=(p+q,p) - m.

Finally, we consider the case of the polynomial (2.15),

&%(yhyz,zhzz) = y Y1

Proposition 2.11. Modulo Idz,(A"), the polynomials a%(yl,yg, 21,29) as in (2.15) are

linearly independent, 1 =0, ..., q.
Proof. If we consider the evaluation z; = e; 2 and 29 = ey 3, then

a}(,?](yl, Y2, 21, 22) = yi 3?1 y1 21 Z/z y2 Yl 22-
N
p P

Suppose the polynomials ag?} are linearly dependent. Modulo Idz, (A") there exist oy, i = 0,
.., q such that
q
Z Oéial()%(yh Y2, 21, 22) =0.
i=0
Let t = max{i | o # 0}. Then,

aall) (2, 21, 22) +Zaz apo (Y1, Y2, 21, 22) = 0. (2.17)

i<t
Considering y; = y; + y3 in (2.17), we have that

o (y1 + ?JS)tM' (y +ys)aye o (yr + yg)q_t s

—

* Z a (g +ys) (1 +ys) - (r +ys)Eada G (1 + 3)" " %2 = 0.
1<t
Consider the homogeneous component of degree t + p in y; and of degree ¢ — ¢
n ys,
Qi iEale Gyl Bt =0.
Substituting y; = €11 + €33, Yo = Y3 = €22, 21 = €12 and 2y = ey 3, we obtain oy - €13 = 0,

so oy = 0 and we are done. O

Proposition 2.12. m, , =q+ 1, if \=(p+¢,p) - m and pp = (1,1).
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Proof. For every i, € € (Y1, - -+, Ym, 21, 22) is the complete linearisation of the element
az(ole(yl,yg,zl,zQ). By Proposition 2.11, my , = ¢+ 1if A = (p+¢,p) - m and p = (1,1).
Also, given T and T}, two tableaux, and f = Cr®Cr) (Y1, - Ym, 21, 22) ¢ 1dz, (AY), any
two alternating variables in f must lie on different sides of z; or 29, or the two alternating
variables are z; and 2,. Since f is a linear combination (modulo Idz,(A")) of polynomials,
each alternating on p pairs of y;’s, and alternating on z;’s, we have that f is a linear

combination (modulo Idz,(A")) of the polynomials e_ e Hence mjy 1) = ¢ + 1, if
A

T‘Ei).
A= (p+q,p) - m. O

Finally, based on the previous results, we have the following theorem on the

graded cocharacters of the algebra A'.

Theorem 2.5. Let
Xm,n (Al) = Z My XA Q Xu

(p)i=(m,n)

be the (m,n)-cocharacter of A'. Then

(1) mag =1, if \ = (m) =m;
(2) m)\,(l) =q+ 17 Zf)‘ = (p+q7p) = m;

(3) myu=q+1, if \=({p+qp) —mand pt 2.

In all remaining cases my , = 0.

2.6 Involutions on A

Now, we are interested in studying the identities of the algebra A, considering
A as an algebra with involution. We can define on the algebra A the involution * obtained
by reflecting a matrix along its secondary diagonal, i.e.

&

d a c d b c
0 g bl =10 g a
0 0 d 0 0 d
Then,
d a c 0 a O
At*=10 g aland A= =[0 0 —a
0 0 d 00 0

This involution was studied in [28]. On the other hand, the identities with involution for
the algebra UT5(F') were found in [12].
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Denote the free algebra with involution by K{(X,+) = K{Y U Z) generated by

symmetric and skew elements, that is
KY U Z) =Ky, 21,92, 22, - - )
where y; stands for a symmetric variable and z; for a skew-symmetric variable.
Given f(y1,.. . Ym, 21,---,2s) € FXY U Z), we say f is a =-polynomial identity
of A, if for every ui,...,u, € AT and vy, ..., v, € A™,
flug, .oy, vy, ..., 08) =0,
and we denote by Id*(A) = {f e F{Y uZ): f =0 on A} the T*-ideal of =-identities of A.

If in a polynomial it is allowed some variable to be either y; or z;, we denote
it as z;, and we set |z;| = 0 if z; = 2; and |z;| = 1 when z; = y;. Put |2;2;] = 0 when
the commutator [x;,x;] is skew-symmetric, and |z;z;| = 1 if the commutator [x;, x;] is

symmetric.

The following theorem describes a basis of Id*(A).

Theorem 2.6. The T*-ideal 1d*(A) is generated by the following polynomials:

1. zipmyezs 2. [21,22] 8. [;iize, 2] 4. 219122 — 220121

5. (=)l [y, o [ws, 4] — (=1) "4 [, 4] [21, 2]

6. (—1) " [y, wo][w5, ma] — (=1) "7 [y, w3][wa, 2a] + (1)1 [y, 24][w2, 23]
7.

[$1, 952]25 [$3; x4]
The proof of Theorem 2.6 will be a consequence of the following propositions.
Let Z be the T*-ideal generated by the identities (1) to (7) of Theorem 2.6.
Proposition 2.13. The following is an identity modulo T
Yo(in)Yoliz) " * Yoli) 21YpG)Yp(z) " Yol 22 = YirYis " Yis 21Yja Yja ** * Yo 22, (2.18)

for o e Ss and p € S;.

Proof. Consider the case y;,y;, 219;,y;, 22 and note that [y1,y2] € A™. Then,
YirVin 21Yja¥js 22 = YirYin 1YY 22 + [Yins Yin | 2195 Y1 22
= YiYia21Y52 Y5, 22
= Uiy Yin 2195 Yja 22+ Yir Yia 21 [Vja» Yjy | 22
= YiYi21Y5j1 Yja 22-

It follows that

Yo(i)Yo(iz) " " Yo(is) 21Yp(i1)Yp(Ga) = " Yp(j) 22 = YirYiz = " Yis21Y51 Yja = Yj. 22,

for o € S and p € S;. O
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Let P, ,, be the set of multilinear polynomials in n symmetric variables and m
skew-symmetric variables. By Identity 1., P, ., = 0 if m > 2. Then, we consider the cases

m = 0, 1, 2 separately.

Case m =0

Let I';,0(Z) be the subspace of the Y-proper multilinear polynomials in the
variables y1, ..., ym of the relatively free algebra F(Y, Z, «)/T.

Since [z1, z2][z3, z4][xs5, 6] belongs to Z, the vector space I',, o(Z) is spanned
by the proper polynomials
EZ TP N | 7

where s, t >0, s # 1, t # 1, j1 > jo < -+ < Js, and ky > kg < -+ < ky.

Note that A" = UT3(K)". We use a result of [12].

Definition 2.2. A polynomial f is called Ss-standard if f is either of type |y, - -, Yj.]
or [Yjrs -+ s Yin ol [Ykys Uks |, where the commutator [y, ..., ui,] satisfies iy > iy < -+ < i,
and if f is of the second type we have that 71 > ki, jo > ko.

As a particular case of Proposition 5.8 and Lemma 6.2 of [12] we obtain the

next result.

Proposition 2.14. The following statements hold:

(i) The Ss-standard polynomials span the vector space T’y o(A).

(i7) The Ss-standard polynomials in I, o are linearly independent modulo the 1d*(A).

Casem =1

First, we describe a spanning set of P, 1(A).

Proposition 2.15. P, ;(A) is spanned by elements of the form

(0) YirUis =+ YieZYissa Yigsn * ** Yins With iy < -+ <ig and igq < -+ < lp;

(10) YirYio *** Yis Yigs1 Yisro " Yino Yino1s Yin |, With i1 < -+ <'ig, Gg41 < -+ < ip_q1 and

iy < Tp—1-

Proof. Let w e P, 1(A) be a monomial. Then, w = y;,yi, - - - ¥i, 2Yj, Yjp - - Y5, With s +1 = n.

Suppose w = wyzwsy, there are the following two cases for ws:
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Case 1.

Case 2.

wo with indices in non-increasing order.

Consider w = wjzwy with wy = w2 1y, Y1, w22 and yy,, y;, the first pair of variables
such that {5 > ;.

We can rewrite wy as

W = W21y, Y1, W22 + w2,1[yz27 Ui, Jwa 2,

then

W = W12Wa1 Y1, Yi, W22 + W12Wa1 Yy, Yty |Wa,2 = w1 2Wa + wiWa 22W2 1 [ Yy, Ui, |-

Note that by Proposition 2.13, in the element wyws 22ws 1|y, Y1, ] we can reorder the
variables of wiwy 2 and wy; (separately) with the condition that if wy1 = yx, ...y,

then yp, < - - <wyr, <y, and y, < yy,.

We can repeat the process for w2, until getting an ascending order in the indices

of the y’s to the right side of z in the element without commutator.

Thus, w = wyzws can be written as
W= WYy Y ) QLY Y2 Y Yo (Ui Y
1,J

with Ay <= < hy, 63 <2 <ig, 1 <+ <Yj,_,, and Jy < Je_1.

If the indices of the variables of w; are in increasing order, then we have w in the
desired form.

wy with indices in increasing order.

Let w = wy 2wy with wy = wy 1y, Y1, w12, and let y;,, y;, be the first pair of variables

such that [, > [; and the indices of the variables of ws increase.
We rewrite w; as
W1 = W1 1YL YW1 2 + Wi Y, Y, Jwi e,
then
W = W11 Y1, Y W1 ,22W2 + W11 [Yiy, Yo, |W1,22ws = Wy 2w + Wi ywezw 2| Yy, iy |-

We apply once again Proposition 2.13 to the element wy jwazwi 2[yi,, Ui, |- Thus we

reorder the variables of wyw, and wy o (separately). Then,
w = W1zwa + @122 Yiy s Uit |,

with the indices of the variables of wy, w; and wy in increasing order, respectively.

Note that there is no relation between the indices of the variables of wy and those

of the variables of [y, y;,]. Take
W = Wi2Ws + W12W2Y, Y1, — W12W2Y Y, -

For wy zwsoy,yi, and w2y, yi, we have two options:
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e The indices of the variables of wsyy;,y;, or wyy,yi, are not in increasing order.

In this case, we proceed as in Case 1 for wzway, Y, Or w1 2T02Y1, Y1, -
e The indices of the variables of wsy;,y;, are in increasing order. In this case, we

have the desired order for w;zwoy;, yi, -

Finally, if necessary, we repeat the process for i zws.

This process of rearranging the variables using cases 1. and 2., has finitely many steps. [

Now, we show that the polynomials of Proposition 2.15 are linearly independent.

Proposition 2.16. The polynomials of the form

(I) YirUis* * Yis ZYis 1 Yinro = Yins With iy < -+ <ig and ls41 < -+ <'p;

(I]) YinYis * y’iszyis+1yis+2 o Yin o [yinfu yin]7 with le < - < 2.57 is-i—l < - < in—l and
'l'n < Z.nfly

are linearly independent modulo 1d*(A).

Proof. Let f be a linear combination of elements of the form () and (I/I), such that f is
a =-polynomial identity of A.

Suppose that not all elements of f of the form (I) have non-zero coefficients,
and consider
m =Yy Y RYlq1 " Yl

Consider the evaluation

Y ==Y, =€r1te€3 2Z=~€2—"€3 Yy =" =Y, =C22. (2.19)
Since e1 1 + e33 and ey 5 commute, the elements with commutator in f vanish.

Now, suppose there exists m = yj, - - - Yj,2Yj,,, - - ¥j, of the form (I) such that
m is non-zero on the evaluation (2.19). Then, in M the eys’s can only be substituted
on one side of z and similarly for the (e;; + es3)’s. Then we have two possibilities:
{91, = Al - L and {Giat, -y dnd = {lsats - Lot ot L, 0ed = {lsas - o)
and {ji11, ..., Jn} = {l1,...1s}. In the first case m = m and m has zero coeflicient in f. In
the second case the evaluations of m and m are e; » and ey 3, respectively. Therefore, m

and T have coeflicient zero.

Suppose not all elements with one commutator have zero coefficient, and

consider
M = YiyYio =" " Yir, FYip 1 Yigyo " Yin_o [yin717y7;n]

with the following properties:
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(1) its coefficient is non-zero,

(77) the number n — k — 2 of variables between z and the commutator is the largest

among all elements with non-zero coefficient,

(419) i,,—1 is the least of all elements such that the properties (i) and (4¢) hold.

Consider the evaluation

Yip ==Y, = E, 2 =€19— €23, Yir,, = " = Yin_, = €22, Yir, = €12 + €23.  (2.20)

Let M = yj, - Yj. 2Yjurr *** Yjn_s|Yin_r+ Yj.] be a polynomial of the form (/I), such that m

does not vanish under the substitution (2.20). We look for the conditions 7 must satisfy.

Since £ and ez o commute, the elements to be substituted in the commutator will
be €19+ €23 and eg5. Also €95 can only be substituted on the right side of z = (€12 —e233),
and since n — k — 2 > n — s — 2, then the E’s only can be substituted on the left side of z.
Then s = k and {ji,...,Js} = {i1,... ik}

If ju—1 ¢ {in—1,in} then j,_y € {ig41,...,ip—2}, then j,_; < i,—y, but this

contradicts the hypothesis of minimality of ¢, 1. So j, 1 € {in_1,1n}, and since i, < i, 4

we have j, 1 = i, and j, = i,,. We conclude {ixi1,...,0n,} = {Jrits - sJny}, m =M
and the coefficient of m is zero. O
Case m =2

By Proposition 2.13 and the identities 3. and 4., P, 5(A) is spanned by mono-

mials of the form
YirYis " Yis21Y51Yjs = Y5 22

with 41 <ig--- <y j1 < Jo---<jrand s+t =n.
Proposition 2.17. The polynomials
YirYis *** Yis 21951 Yo+~ Y5 22 (2.21)
with iy <ig--+ <ig, 1 < Jo--+ <Jji and s+t =n, are linearly independent modulo Id(A).
Proof. Suppose that
f= Z argYinYio - Yis21Yji Yjo - Yje 22
IJ

is a #identity of A. Choose oy ;o # 0, such that |J'| = ¢' is the largest possible. Now,
consider the substitution y;;, = --- =y;, = FE, y;; = -+ = y;, = €22 and 21 = 2 =
(€12 — e23). Considering the order of the indices and that |J] is the largest, the only non-
zero term of f after the substitution will be the one with coefficient ar . Hence ap y» = 0,

a contradiction. Thus, the polynomials in Equation (2.21) are linearly independent. [
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Finally, by Proposition 2.14, Proposition 2.15, Proposition 2.16 and Proposition
2.17 we have that Theorem 2.6 holds.

2.7 Graded involution

In this section we consider A as a graded algebra with the grading as in (2.1),

and the involution from Section 2.6. Then = is a graded involution and
Ag = A07 AO_ = {0}7

A;r = K(eLQ + 62’3), A; = K(el’z — 6273).

2.7.1 Graded =#-polynomial identities of A

Consider the free algebra with involution K(Y U Z, ), generated by symmetric

and skew elements of even and odd degree, that is

K<YU Za*> = K<yf:yf721+>zfay;ﬂ;%;%;--->
where ;" stands for a symmetric variable of even degree, y; for a skew variable of even

degree, z;" for a symmetric variable of odd degree and z; for a skew variable of odd degree.

Given f(y, ... yt s yn 22 2,20 ) € F(Y U Z %), then f

Y8 )

is a graded =-polynomial identity for A, if for all uy,...,u} € AL, uy,...,u, € Ay,
+ oA+ - — -
v, .., v € AT and vy, ...y € A
+ + - -+ + - -y
flud, oo uwh ur, oo, v vl e, ) = 0.

We denote by Id;_ (A) = {f € K{Y'UZ,+): f =0 on A} the T;-ideal of graded #-identities
of A.

The following theorem gives a basis of Id;_(A).

Theorem 2.7. The Ty -ideal 1d;,(A) is generated, as a T -ideal, by the following polyno-

maials:
1. 2. [yl 2 ] 3. 2, 2 ]
4. [z 25 | 5. 21 o2y 6. [y, 212]
7. i, 21y5 2] 8. 212923 9. 2yt — gyt

10. 2y ytzy —2oytzy 11 ziytz) + 2yt

Proof. One easily sees that the polynomials 1. - 11. are graded #-identities. Let Py, 1y ng.n, (4)
be the set of multilinear graded #-polynomials modulo Idy, (A) in n; symmetric variables
of degree 0, ny skew variables of degree 0, n3 symmetric variables of degree 1 and n; skew
variables of degree 1. From identities 1. and 8., we have that Py, n, nyn, (A) = {0} if ng >0

or ng + ng > 2.
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(i)

(i)

(iii)

Case ng + ny = 0. From identity 2., it is easy to see that
Pry000(A) = Span{yyys -yt ).

Case ng +mny = 1. We consider the case n3 = 1 (the case ny = 1 is analogous). Again,

by identity 2., we see that

Prio10(A) = Span{yfl o '?JZZ'JFZ/;E e Z/;}y (2.22)

with s+t=nq,11 <---<igand j; <--- < js.

o+t

But the monomials y;| ---4;" 27y, ---y; are linearly independent. Indeed, let

_ + + ot +
f—ZOéI,inl"'yisz Yi o Yjy
1,J

Suppose f = 0 modulo /d7,(A) and that there are sets of indices Iy and Jy, such that
ez, # 0. Considering the evaluation y = e11 + es3, y = ex2, 27 = €12 + €23,
for i € Iy, j € Jy, we obtain ay, je12 = 0. So, oy, 5, = 0, a contradiction. Then, the

polynomials in (2.22) are linearly independent.

Case ng + ny = 2. Consider the case ng = 2 (the cases ny =2 and ng = ny = 1 are

analogous). From the identities 2., 3., 6., 7. and 9., we conclude
Py 0,20(A) = Span{y; -yl 2y - y20 b, (2.23)

with s+t =mnq1, 4 <--- <igand j; <...J.

In order to see that the polynomials in (2.23) are linearly independent modulo
Idy, (A), suppose that

ZOéLJy;; . yjzfy; ---y;-gz; =0 mod 1d7,_(A)
7

and that there are index sets Iy and Jy, such that «ay, j, # 0. Considering the
evaluation y;" = e11 + ess, Y, = €22, 2 = €12 + ea3, for i € Iy, j € Jy, we obtain
agype2s = 0. So, ag,j, = 0, a contradiction. Then, the polynomials in (2.23) are

linearly independent.

Therefore, from items (i), (ii) and (iii), we conclude that the set of polynomials 1.-11.

determines a basis for the graded =-identities of the algebra A. O

2.7.2  Cocharacters of (A, gr, =)

Let (A) = (A(1),A(2),A(3),A(4)) be a multipartition of (ni,ng,ns,ny), i.e.

A(7) E n;. We are interested in computing the (ny,...,ny)-th cocharacter of (A, gr, =),
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Xy ,nzmgna (A) = Z MOSXA(L) @ -+ - & Xa4)- (2.24)
O(n1,n2,n3,n4)

Since dim(A")" = dim(A")~ = 1, then my, = 0 if h(A(i)) > 1 for i = 3, 4. Also, by the
graded #-identities of A, we have my, = 0 if A(A(1)) > 2.

In the following results, we consider only the case h(A(i)) < 1 for i = 3, 4.

First, we consider the case of even degree variables only or odd degree variables only.

Proposition 2.18. If either {\) = ((n1), &, J, &) withny > 0 or Ny = (&, &, (n3), (n4))
with 0 < ng + ny < 2, then moy = 1 in (2.24).

Proof. Let (A1) = (m),d, D, ) and o) = (I, T, (n3), (ng)) as in the statement.
Then wy = (y )™ and wy = (2;,)" (27 )™ are highest weight vectors corresponding to the

multipartitions (A1) and (\2) respectively. Since w; and wy are not polynomials identities
of A then my,y, = 1. By the identities in Theorem 2.7 we conclude that w; and w; are the
only (up to a scalar) highest weight vectors corresponding to (A1) and {Ay). Therefore,
meyy = 1 fori =1, 2. O

Before dealing with the case ns + ny = 1, we state a technical result (similar
results can be found in [8, 19]).
Proposition 2.19. Modulo 1d3;,(A), the following equality holds:

Uy () P ()2 s T
—_—— —_——

p p

D YE (f) () (s 2 () (i,

(2.25)

where iy, 19 = 0 and p = 1.

Proof. We prove it by induction on p. The case p = 1 is a straightforward computation.

Let p > 1 and let w be the polynomial (2.25).

w=g{ U )" T )Y
— ~—
p p
=7 G )T ) Ny
1 1
p— p—

— g )T ey () e D g g
———

p—1

ﬁ{
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Applying induction to p — 1 we obtain

p—1
w=Y(-1) (p . 1) (v ) (yg ) 2 (y )2 Do (e =i
0
Pl P — 1 . . . . . . (226)
- (—1)]( j )<yr><“-1>-f<y;>f+lz+<yf>”-<p-1>+ﬂ (g,

The j-th monomial of the second summand is similar to the j + 1-th monomial of the first
summand, for every j =0, ..., p— 2. Considering the sum of these monomials, for the

corresponding coefficients we have

(—1)+! (?; D (1) (P; ) = (—1)7*! ((f;i) i (p;1)> = (—1)/*! (j i 1).

Thus the sum of the similar monomials of (2.26) corresponds to the j + 1-th monomial of
o1 = 2P (D) 0
j=0

for j =0, ..., p— 2. But the first monomial of the first summand of (2.26) is equal to the
first monomial of w;, whereas the (p — 1)-th monomial of the second summand of (2.26) is

equal to the p-monomial of w;. Thus, we have the desired equality. O

Proposition 2.20. If (\) = ((p + ¢,p), &, (1), &) or ) = ((p + ¢,p), &, F, (1)), where
P, ¢ =0, then m¢yy = (g + 1) in (2.24).

Proof. We deal with the case (\) = ((p+q,p), &, (1), &). The case {\) = ((p+q,p), &, T, (1))

is analogous.

Consider Young diagrams of shape (\) filled in the standard way. From the

identity [y7", 5 ], fixed the tableaux Ty = | ¢; |for an integer ¢, then ¢; must be larger

than all the integers lying in the first p positions of the first row of T)(;) and less than the
ones lying in the second row. Otherwise, the corresponding highest weight vector will be a

polynomial identity of A.

Thus, the possibilities for the standard Young tableaux, such that the corre-

sponding highest weight vectors are linearly independent, are given by

1 9 S X EE T 7R I [P I (PR A
Ty = ; ;
o+l to+2] - [ m
Tha) =\t |, Tye) =T = I,

and the corresponding highest weight vectors are

=T )T ()T B
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where ty =p+1, ..., p+ g+ 1. We can rewrite the polynomials wy, as
we =71 U )" PR W)
where t; = p,...,p+ q and t; + t = ny. By Equation (2.25)
o = R (M)
7=0

Let us see that the elements of the set {w;, : t; =p,...,p + ¢} are linearly independent.

Consider the evaluations z* = e15 + €93, y;" = ai(er1 + e33) + Sieaz. Then,
o= | D0 (7)ot st |era + Lens
. p . . _ _ _ _
(17 (%) et a7 fena + Fens

= [(52% — 51a2)p04§1_p5§2_p]61,2 + [*]ea -

Now, (B2aq — Praz)? appears in each evaluation of wy,, so we consider just the part

o rgleTr e1,2. Suppose that there are 7;’s such that

Pty
Z Ve, wi, = 0.
ti=p
Then, for all aq, 51 € F
ptq . .
Z %laf—pﬁlz—p =0.
t1=p

It follows ; = 0 for each i. Therefore, the highest weight vectors wy, are linearly independent

forty =p, ..., p+qand myy = (¢ +1). ]

Now, we consider the case n3z + ny = 2.

Proposition 2.21. If {(\) = ((p + q,p), T, (n3), (n4)), where p, ¢ = 0 and n3 + ny = 2,
then meyy = (¢ + 1) in (2.24).

Proof. We prove the case (A) = ((p+¢,p), F, (2), @) The cases (A) = ((p+4,p), &, (1), (1))
and (\) = ((p + ¢q,p), T, T, (2)) are analogous. Consider Young diagrams of shape (\)
filled in the standard way.

As in the proof of Proposition 2.20, fixed an integer ¢; in the tableau

Thay=|t1]| |5

ty; must be larger than the integers lying in the first p position of the first row of Ty and

less than all the ones lying in the second row. Also, by the identities [y", 2122, [y1, 2195 22],
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and 27 y" 25 — 25y 2, we can fix the integer ny + 2 in the second block of the tableaux
Thus, the possibilities for the standard Young tableaux, such that the corre-

sponding highest weight vectors are linearly independent, are given by

S 1 92 p R I 7R I I M I VU IS
M i 2 [ [t ’

Thgy=|t | ni+2]|, T = Tha = I,

and the corresponding highest weight vectors are
wo =1 G )" )T s A
where t; = p, ..., p+q and t; + t5 = ny. By Equation (2.25)

=§<—1>f(§) Yo )P

We prove the elements of the set {w;, : t; = p,...,p+q} are linearly independent. Consider

the evaluations z;” = e15 + €23, ¥y = a;(e11 + e33) + PBieas. Then,

[Z () t1—1 Jﬁiz p+35p J] €13
[i <>6Ja PJPJ t1 pﬁtz p]
Bacry

= [( - 51042)‘7)@11 p@frp]el,g-
tl*pﬁiQ*p

Since (B0 — 1 a0)? appears in each evaluation of wy, , we consider only the part a; e1,2.
Suppose there exist v;’s such that

Ptq

Z Wt = 0.
t1=p
Then, for all oy, 51 € F
ptq
Z e 1 p6t2 P _
L .
t1=p

It follows that 7; = 0 for each i. Therefore, the highest weight vectors w;, are linearly
independent for ¢, = p, ..., p+ g and moy = (¢ + 1). O
Hence we obtain the following theorem.

Theorem 2.8. Let

Xninomam(A) = Z Moy XA1) @ Xa@2) @ Xai) @ Xaw)
M (n1,n2,n3,n4)

be the (ny,ng, ng, ny)-cocharacter of A. Then
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(1) moy = 1, if (A) = ((m), B, T, &) or {\) = (B, T, (n3), (na)), where ny > 0 and

0<ng+ng <2.
(2) m()\) =q + 17 ZfA = ((p+ QJp)7®7 (n3)7 (n4))7 where b, q = 0 and ng +ny = 1;

(3) moy=q+1,if\=(p+q,p),d, (n3), (na)), where p,q =0 and ng +ny = 2.

In all remaining cases mgyy = 0.
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3 Matrices over the Grassmann algebra

Let E = (1, ey, €s,... | e;e; = —eje;) be the infinite dimensional Grassmann
algebra over K with its natural Z,-grading £ = Ey@ E, given by the subspaces Ey and E',
of elements of even or odd length respectively. One can define on £ the superinvolutions ig
and —ig induced by the identity map on the generators e; of E, as presented in Definition
1.38 and Remark 1.4.

Matrix algebras with entries in Grassmann algebras have been subject of
extensive studies, of particular interest is determining a basis of their polynomial identities
as well as the corresponding cocharacters. Given a superalgebra A = Ay @ A;, we consider
the Grassmann envelope given by G(A) = (Ay® Ey) @ (A1 ® Ey). Furthermore, if ® and ¢
are superinvolutions defined on the superalgebras A and B respectively, the map = defined
on AQB = (Ao ® By) @(Al ® By) by putting (a®b)* = a® ®b° is an involution on ARQB.

We consider the Zy-graded algebras M, (K), UTy;(K), and UT3(K),1,0)
with a superinvolution, along with their corresponding super tensor products with the
Grassmann algebra E, naturally endowed with a Z,-grading and also with a superinvolution.
We regard the resulting algebras as endowed with a graded involution and describe the

graded =-polynomial identities and the corresponding cocharacters.

In this chapter we will consider graded =-polynomials in the following way: Let
us consider Y = {y; ,: i€ N,ge G}, Z = {z,,: i € N, g € G} two countable sets of pairwise
different indeterminates. We denote by deg,vy;, = degs ziy = g the G-degree of the
variables Y U Z with respect to the G-grading. Then Y, = {y; ,: i € N}, Z, = {z;4: i € N}
are homogeneous variables of G-degree g € G. We can define the #-action on monomials
over Y U Z by the equalities

(mil "'xin)* = x* I'*

in i1

* *
where Y, = Yig, 2{, = —2ig, T €Y U Z, (3.1)

the linear extension of this action is an involution on the free associative algebra K{Y, Z)
generated by the set Y u Z. The algebra F = K(Y,Z) is G-graded with the grading
F = P F, defined by

geG

Fy = Spang{zr, i, ... x;, 0 degg g, ...dega iy, =9, v; €Y U Z}.

3.1 Graded #-identities of M (F)

By [22], we have two superinvolutions on M; ;(K) given by

(o) =) e () -0
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A b
Consider the algebra M, 1(E) = M1 (K)QF = { <a d) ca,d€ FEy, b,ce El}.
c

On M 1(E) can be considered the graded involutions:

+ induced by (o,ig),
=+ induced by (o, —ig) ,
e 9 induced by (e,ig),

« #3 induced by (e, —ip),

where * = 3, #; = *9 and these involutions are defined as follows. If a,b € Ey, c € E;

o) () (9 ()

C

c d b a
the algebras with involution (M, 1(E), *) and (M 1(E), #1).

b d
and note that the linear map v define by “ = <

> is an isomorphism of

Let R be the algebra M (F) endowed with the involution * induced by the

pair (o,ig), that is
a by (d Db
c d — al’

0 0
Note that R = g ca€ Eyp, Ry = E)L ca€ Fyp,
a —a

0 b 00
R = :be by y and Ry = cce by .
00 c 0

We consider the free graded algebra with involution K(Y, Z), where Y = YyuY;
is the set of symmetric variables of degree 0 and 1, and Z = Z; u Z; is the set of skew-
symmetric variables of degree 0 and 1. So, y;0 and y;1 (2,0 and z; ;) denote symmetric

(skew-symmetric) variables of degree 0 and degree 1, respectively.

One sees directly that the following polynomials in K(Y, Z) are identities on

Ml,l(E).
L. vi1yj1, 2. %121,
3. 21 0 Zj0, 4. zigoyja,
5. [2i0s Zj0]s 6. (i1, yjol,
7. (210, Yia ] [2r,05 Y] 8. [2i1, 2j0l[2k,15 210]
9. y1,1211Y2,1 + Y2,121,1Y1.1, 10. z1ay1,122,1 + 22,191,121,1,

11. |yip,z] forallzeY U Z.

Our goal is to prove the following theorem, which provides a basis for the

graded =-identities of M ;(E). To this end, we make use of Yy-proper polynomials.
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Theorem 3.1. Let (M;1(E), *) be the algebra of 2 x 2 matrices with entries in Grassmann

algebra and with the canonical Zo-grading and endowed with the involution = given by

a b\ [d b
c d — a)
Then, its Ty -ideal of identities is generated, as a Ty -ideal, by the identities 1-11.

From now on, we denote by H the Ty-ideal of K{Y,Z) generated by the
identities 1-11. Note that for the last two identities, we can only consider products of
Zil and Yii in the order Y1,171,1Y2,122,1 * * * Y1,k%1k and 211Y1,122,1Y2,1 - R1,6Y1,k- Also, it is

useful to note that

[R,,R,]S R, [R{,Ry)]JS R/, [R,R]<SRy.

The following three propositions are easy to deduce. The first of them follows
directly from Id. (3) and Id. (4) together with the inclusions above, the second can be
deduced from the first and again Id. (3) and Id. (4), while the third is a direct consequence
of Id. (2) and Id. (1).

Proposition 3.1. The polynomials
, . R N 1 o .
[yl,l, Zi1,05 Rig,09 « - - ,sz,o] Y1,1%41,0%i2,0 * * * iy, 05
4 . S 1 O .
[21,17 Zi1,05 Zig,05 - - - 7sz,0] 21,1%i1,0%i2,0 * * * Ziy,,0
belong to the ideal H.
Proposition 3.2. The polynomials
k
[Y1,15 21,05 Zin,05 - - -5 Zig,05 21,1] = (—=1)"[211, 261,05 Zin05 - -+ » Zige,0, Y1,1]-
belong to the ideal H.
Proposition 3.3. The polynomials
y1,12171[y2,1, 2’2,1] —Y1,121,1Y2,122,1 and 21,1y1,1[y2,1, 2271] + 21,1Y1,172,1Y2,1

belong to the ideal H.

3.1.1 Y{-proper polynomials for M 1(E)

Since 1p is in Ry, every proper polynomial is a linear combination of products
of variables y; 1, 2i0, 2,1 followed by a product of commutators. We consider the spaces
Ly imk(R) where n, I, m, k = 0 of all multilinear Yj-proper polynomials on M ;(E) in
the variables ¥10, ..., Ynos Y115 ---» Y15 2105 ---» Zm0s 211, - - -, 261 in the free algebra
KY v Z).

By [yi0,2] = 0 we have I, x(R) = 0 if n > 0. Hence we consider the
possibilities for I'g ., x(R). It is clear that by the identities in H we have that:
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e Tooor(R)=0,if k> 1;
e To0mo(R) =Span{zio---Zmo};
e Toom1(R) =Span{zio- - 2moz11} and Togmi(R) = 0, if &k > 1;
e Do1mo(R) =Span{z;, 02, 0y1,1} and Topmo(R) =0, if k> 1.
Consider now I'g; k. By Proposition 3.3 we have that I'g;;(R) is gener-
ated by polynomials in the forms zi1y11221%21 - 211Y11, Y1,1211Y2,1%2,1 - Y121 and

[v11, 211] -+ [Y11, 201]. Furthermore, since [y11,211] = y1.1211 — 211Y1.1 We obtain that

Fo,z,o,z(R) = Span{21,1y1,122,1y2,1 R, Y1,121,1Y21%2,1 7 'yl,lzl,l}-

The remaining possible cases are I'g;410,(R) and g 041(R), and in these

cases we have that

. FO,H—LO,Z(R) is spanned by y11211Y2,1221 - Y1201 Yi41,1

d F0,1,0,1+1(R) is spanned by 21,1y1,122,192.1 * * * Z1Y1,12041,1-

Losmk(R)

In each commutator, at most one y;; and one z;; can appear. The non
zero commutators are of the form [y1.1, 2i, 0, Zig.05 - - - Zip.0)s [21.15 Ziy.05 Zin.0 - - - 5 Zif.0], and

[y171, Zi1,05 Rig,09 « + 5 Rig,09 Z171]. Also FO,Lch(R) = 0 if |l — k| > 1.

Consider the polynomials

* Dl = Yi1 17511 Yi0,1%52,1 ** " Yiy 1551
* D T Yi 1%51,1Yi2,1%55,1 " " " Yig1
* @i = Z5j1,1Yi1,1%752,1Yi0,1 7 7t 25101

* @ = 2511V, 1%52,1Yi0,1 "0 Zy 1

Lokmi(R)

We can generate I'g g .k (R) by products of z; ¢ and the polynomials p;, ¢, and

commutators [Y;1, Zi, 0, Zip,0, - - - » %05 24,1]. Now, for the commutators we have that
k k
[yl,la Zi1,05 Zi,05 « + + 5 Zig,05 21,1] = 2724, 0%i3,0 " Zig 0 ((—1) Yj1et1 — Zt,lyj,l) .

Thus, by identities 5, 7, 10 and 11 we conclude that I'g x ,, 1 is spanned, modulo

‘H, by the monomials
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m

* n Zi0Y1,121,1 " " Y1,k21k
i=1
m

* n Z2i,021,1Y1,1 " " 21 kY1k
i=1

Cosmrt1(R) and Tg gr1.mi(R)

Now, considering p; and ¢; and extending the analysis of case gy m x(R) to
Fokt1mi(R) and T g mis1(R) we can conclude that
m
 Dopr1mr(R) is generated by 1—[ Zi0Y1,121,1 " Y1 kZ1LEY L k+1,

i=1

m
* Tokmp+1(R) is generated by H Zi021,1Y1,1 " Z1kY1EZL k+1-
i=1

Note that modulo H the elements of the subspaces I, are linearly inde-

pendent. Therefore, Theorem 3.1 has been proven.

3.1.2 Cocharacters of (M 1(F), *)

Now, we study the cocharacters of (M;(E), ). Consider the vector spaces
Poimk(R), n, I, m, k = 0 of all multilinear polynomials for R = M; ;(E) in the sets
of variables y10, ..., Yno, Y11, ---» Y11, 21,0, ---» Zm0, 211, ---, 2,1 in the free algebra
KY UZ)=K{10,Y1.1,21.00 211, - - - )-

Let {A\) be a multipartition of n, (A\) = (A(1), A(2), A(3), A(4)), where \(7) - ny,
1 < i < 4. Let us consider the (ny, ng, n3, ny4)-th cocharacter of R = (M 1(E), *),

Xni,n2,m3,n4 (R) = Z MOSXA1) & Xa@2) @ Xa@) © Xaw)- (3.2)
Theorem 3.2. Let

Xninamsng () = Z Moy Xa) @ Xae) & Xa3) @ Xam)
be the (n1,ng2,n3, ny)-th cocharacter of R = (M 1(E), *).

(Z) ]f <)‘> = ((n1)7®7 (713),@) with ny + ns = 1, then m<>\> = 1,’
(ii) If () = ((n1), (1™2), (ng), (1)) with ng = 1, then meyy = 2;
(iii) If Ay = ((n1), (1"11), (n3), (172)) with ny = 0, then moy = 1;

(iv) If () = ((ny), (1"2), (n3), (1"1)) with ny = 0, then meyy = 1;
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In all remaining cases mgyy = 0.

Proof. From the identities in Theorem 3.1, m¢y = 0 if:

o |ng—ny| > 1.

Given a multipartition {(\) we consider the corresponding Young diagrams filled in a

standard way.

If Ty, Th(2), T3y and T\(4) are the corresponding tableaux, due to the identities
of Theorem 3.1 we can fill T)(;y with the integers 1, 2, ..., ny, and Ty(3) with ny +1, ny +2,
..., n1 + ns. Also, by the identities y; 1y;1 = 0 and z;12;1 = 0 we can’t write consecutive
integers in the same tableaux T)(9) or T\4). So, we consider the tableaux Ty and T))
with the integers ny +ng + 1, ..., ny + no + ng + ny. For convenience, we consider the

tableaux T2y and T4 with the integers 1, 2, ..., m.

Let us consider first (A) = ((nq1), (1"?), (n3), (1"*)) with ny > 0. For it, consid-
ering the standard tableaux, for T)() and T)4) we have only the possibilities:

2 2

Ty = : , Ty = : or Thg = b T =

m—1 m m m—1

The corresponding highest weight vectors are given by

w= Z (sign o) (i8N 7)Yo(1),12r (1)1 * * * Yo (p),1 Zr(p),1

0,TESp
and

W= Z (sign o) (sign 7) 27 (1) 1Yo (1),1 - * * Zr(p) 1Yo (p).1-

o,TESy
Modulo the identities satisfied by (M;1(E), ), we can rewrite the above polynomials as
W= (P!)2y1,121,1 c o Yp1zpy and w = (P!)221,1y1,1 " Zp1Yp,1-

For (\) = ((ny), (1™1), (n3), (1)) with ny > 0 we have

m—1

m+1
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where the corresponding highest weight vector

wh = Z(sign a)(sign T)ya(l),127(1),1 * Yo (p), 127 (p), 1Yo (p+1),1

o,T
can be rewritten as w™ = (p+ 1)Iplyr 1211 Yp12p 1 Yps1-

Finally, for (A = ((n1), (1"), (n3), (1"2%1)) with ny > 0 we have

Ty = t Ty =

m—1

m—+1

where the corresponding highest weight vector is

W= Z(sign o) (SIgN T)2r(1) 1Yo (1)1 * Zr(p) 1Yo (p),1 Zr(p+1).1>

o, T
which can be rewritten as w* = (p+ 1)!plz11y11 - 2p1Yp12pr11-

The highest weight vectors are not polynomial identities of A, and w, @

are linearly independent. Therefore, since dim Py, yyngm, (R) = 2 with ny > 0, and
dim P,y 1m0 (R) = dim Py, 1y name+1(R) = 1 with ny = 0, we conclude that the multi-
plicities myy are as in the statement. O

3.2 Graded #-identities of UT} 1(F)

The algebra of upper triangular matrices of size two, UTy(K), as graded algebra
has only two possible grading (up to isomorphism), the trivial grading and the canonical
Zy-grading given by UTy(K) = (UTH(K))o@B(UT2(K))1; where (UT2(K))g = Key1+ Kea o
and (UT2(K)); = Key o (see [35]). We denote by UT 1(K) the algebra UT(K') with the

canonical Zs-grading.

The superinvolutions on UTj ; coincide with the graded involutions, and the

only graded involutions (up to equivalence) on UT} ; are given by
a c) (b ¢ a c) (b —c
0 b 0 a)’ 0 b 0 a

We consider the algebra UT) ;(E) = { <g Z) ca,d€ Ey, b,ce El}. One can

(see [24]).

consider on UT} 1(F) = UTy1(K)®E the following graded involutions:
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+ induced by (o,ig),
1 induced by (s,ig),
e =9 induced by (o, —ig),

e =3 induced by (s, —ig),

where = = =3, *; = x9 and these involutions are defined as follows. If a,b € Fy, c € E;
a c\ (b ¢ a c\ (b —c
0 b 0 a)’ 0 b 0 a/
Let A= UT;1(E) be endowed with the involution * given by
a c\ (b ¢
0 b 0 a)
0 0
A(J{z{(a ):aEEO}, A5={<a >:aeE0},
0 a 0 —a
0 0 0
A = Vioceml, A= .
0 0 0 0

We have the following relations in K<Y, Z) modulo Id*(UT}:(E))

(a) [i0, 2] =0,  (b) ¥i1y;1 =0,  (c) zi1 =0,
(d) [2i0,2j0] =0, (e) zigoy;1 =0.

Then,

3.2.1 Yj-proper polynomials on UT} 1(F)

Since 14 is in A, every proper polynomial is a linear combination of products
of variables y; 1, 20, 21 followed by a product of commutators. Consider the vector spaces
Loimi(A) (n,l,m, k = 0) of all multilinear Yy-proper polynomials on A = UT} 1(E) in the
sets of variables Y10, ..., Yn0, Y115 -« -5 Yi1s 21,05 - - -5 Zm0s 2115 - - -5 2,1 i0 the free algebra
K U Z) and denote by Z the T5-ideal of K(Y u Z) generated by the corresponding

polynomials in the relations (a)-(e). The identity (e) gives us the following proposition.

Proposition 3.4. The polynomial [y1,1, 2s(i,),05 - - - zg(ik)70]—(—2)kzi1’o, ooy Zip oY1 belongs
to T.

Note that modulo Z:

o if k>0, then by 211 =0, [y mi(A) = {0},

o if n >0, then by [y10,2] =0, 'y 1 mi(A) = {0}.



Chapter 3. Matrices over the Grassmann algebra 7

Thus, we only need to consider I'g ;. 0(A) with I,m > 0. Since z;9oy;1 = 0 and y;1y;1 = 0

then 'y mo(A) = {0} if [ > 1, and for the remaining cases we have:

i F0,1,0,0(14) = Span{yl,l}a
o To0mo(A) = Span{z 9220 2Zmo}, m <1

o To1.mo(A) = Span{zi 0220 Zmoy11}, m < 1

Modulo Z the elements of the subspaces I';, ;1 (A) are linearly independent, this proves

the following theorem:

Theorem 3.3. Let (UT11(E),*) be the algebra of 2 x 2 upper-triangular matrices over

the Grassmann algebra, with the canonical Zo-grading and endowed with the involution «

() -()

Then its Ty -ideal of identities is generated, as a Ty -ideal, by

given by

(4) [Yi0, ], (i1) yinyin,  (499) 2,

(iv) [Zz',o, Zj,O]; (v) Zi0 O Yj1-

3.2.2 Cocharacters of (UT11(E), =)

Let (A) be a multipartition of n, (\) = (A(1), A(2), A(3), A(4)), where A(i) - n;,
1 < i < 4. Let us consider the (nq,ng, ns, ng)-th cocharacter of A = (UTy;1(E), #),

Xni,n2,n3,n4 (A) = Z MOSX A1) ® XA(2) &® XA(3) ® XA(4)- (33)
Theorem 3.4. Let

Xninangmna (A) = Z MOSX A1) & Xa2) @ Xa@) & Xaw)
(WH{(n,...,n4)

be the (ny,n2,n3, ny)-th cocharacter of A = (UTy1(E), *).

(i) If N = ((m1), &, (n3), &) with ny +ng =1, then my = 1;

(i) If () = ((n1), (1), (n3), &), then my = 1.

In all remaining cases my = 0.
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Proof. From the identities in Theorem 3.3, m¢y = 0 if A(A(1)) > 1, or h(A(3)) > 1, or
ny > 0, or ny > 1. In this way we have to consider the cases (\) = ((n1), &, (n3), &) and
) = ((n1), (1), (n3), d). We deal with {\) = ((n1, I, (n3), &) with ny + ng > 0. To this

end, consider the tableaux

T/\(l): 112)--- ny 7T)\(3): n1+1 n1+2 ny + ns ,T)\(Q)ZT)\(4):®.

The corresponding highest weight vector w = (y1,0)" (210)" is not an identity of A.
Therefore, m¢y, = 1. By the identities of A, there is only one linearly independent highest

weight vector corresponding to the multipartition (A). Thus, my = 1.

For (A\) = ((n1), (1), (n3), &) consider the tableaux

T)\(l)z 112 ny |, T)\(g)z m+1l|{n+21--- ni +ns |,

TA(Q) =|ny+nsg+ 1 5 TA(4) = @

The corresponding highest weight vector w = (y1,0)" (21,0)"*y1,1 is not an identity of A

and from the identities of A, it is the only one. Therefore, m,, = 1. O

3.3 Graded =-identities of UT{( 1 0)(£)

Consider UT3(K) the algebra of upper triangular matrices of size three. As in
24] we consider C' = UT5(K )(0,1,0) the algebra UT5(K) with the Z,-grading given by

Co=Kei1®DKeyo® Kezs® Key 3, Ci=Keia®Keys

In [24] it was shown that, up to an isomorphism, the only superinvolution on C' is given by

[e]

—d
f
a

o O Q2
[

d c
gl =10
c 0

o o

Then, on G(UT3) = UT3(E)0,1,0&FE we consider the following graded involutions:

= induced by (o,ig),

=1 induced by (o, —ig).

Let B be the algebra G(UT3) with involution =. That is, if a,b,¢,d € Ey, f, g€ Ey,

*

o O Q2

O

o @ o
I

S O O

o o

Q
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Then,
a 0 0 ) (
By = 0 b 0):abebkyy, B, = 0 0 0 |:cdekE
0 0 a ) L —d
(/0 ¢ O ) (/0 f O
Bf =<10 0 g|:9€E ¢, 1 =210 0 —f|:fek
L \0 0 O ) (\0 0 O
Let P, nsns.ma be the multilinear polynomials in the variables y10, ..., Yn, .0, 1,1, - - -, Uno 1,
2105 -5 Zng0y 21,15 - - -5 Zng,1 Where y; 5 is symmetric of degree j and z; ; is skew symmetric

of degree j. The following polynomials in K{Y, Z) are identities of B.

i) [Yi0, 2j0]
iv) [Z/z’,sz,l];
V1) Yi1Yj.0Yk1 + YkaYs0Yils

(1) [yi0,Yiol, (
(
(
Vi) 2195021 + 2,1Y5,0%0,15 (Vi49) Yi1Y5.0%k1 — Z,15,0Yi.15
(
(i
(

ii1) Yi1 © Yj1,

V) 210 Zj1,

I) [Zz',(b Zj,o] [Zk,07 Zz,o]>
xii) [Zz‘,O;Zj,O]xk,lv x € {y, 2},

l‘ZU) $i712’k70w]’,1, T, w € {ya Z},

1) 2,0%5,0%k0 — Zk,0%§,0%,0;

x1) Tal2i0, Zi0), T € {y, 2},
TUL) Zi0Tp1%i0, T € {Y, 2},

(20) TinZj1Th1,  Ta1 € {Yals Za}-

Let J be the T5-ideal of K(Y, Z) generated by these polynomials. We prove

(
(
(
(
(
(

Theorem 3.5. Let B = (G(UT3), ) be the Grassmann envelope of the algebra of 3 x 3
upper-triangular matrices, with the Zo-grading induced by the tuple (0,1,0), and endowed

with the involution = given by

*®

—d
f
a

o O 2
S T

d c
gl =10
c 0

o o Q

Then its Ty -ideal is generated, as a Ty -ideal, by the identities (i) — (zv).

Since By - By, By - By < By, from the identity (xv) we obtain that if ny +n4 > 2

then P, 1ynsm, (B) = 0. Hence, we consider the following three cases:

(1) ng =0 and ny = 0.
Considering the multilinear Yy-proper polynomials I',,, ¢ .,.0(B), since [ By, By | € By,
then Iy, 0.n5.0(B) = 01if ny > 1. From the identity 2; 02;0%k0 — 2k,0%50%2i,0 = 0 we have
[2i.05 2.0, 2.0] = —22k0[2i0, 2j0]- Thus Lo gns0(B) = Span{[zi, 0, iy.0, - - - ,ZinS,o]}-
By [[z1, 2], [73, 24]] = [21, %2, T3, 4] — [21, T2, 4, 23], [2i05 Zj0][280, 210] = 0, and

the Jacobi Identity, we conclude that modulo 7,

F0,0,n3,0(3) = Span{[zl,o, 21,05 -+ 5 271})7 cee 7Zn3,0]}7
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where 2 < [ < n3 and Z o means that the variable z; o can be omitted.

Suppose
n3
Dl 21002 F0s - Zna0] =0 mod (Id(B)),
=2

and that there exists oy # 0, then by the evaluation 2,9 = €13 and 2,0 = 11 — €33,
i € {1,2,...,n3}\{l}, we obtain a;(—2)"*"'e;3 = 0, a contradiction. Thus, the
commutators (21,0, 21,0, - - 200 - - - » 2ng.0] (2 <1 < ng) are linearly independent.
ny = 1 and ny = 0 (the case ny = 0, ny = 1 is analogous).
By [4i0, Y0l = 0, [4i0: zj0] = 0, zioy112;0 = 0 and the identities zj o - 2j,, o¥11 =
ZLQ Tt Zns,0U1,1 and yLlehO s Zjn3,0 = y1,12170 s Zn3,0 we obtain that Pnl,l,n3,0 18
spanned modulo J by the monomials

Yi1,0 " " Yim,021,0 * " Zng,091,1Yk1,0 * " Yk 05 Yi1,0 " " Yi ,0Y1,1Yk1,0 * * * YKy, 01,0 * * * Fng 05
where m+r =nq, 11 <t < -+ <, k1 < ko <--- <k,.

To prove these monomials are linearly independent we consider the polynomial

f= Z Or KYi1,0° " Uiy ,021,0 °° ° Zns,0U1,1Y%1,0  * " Yk, 0
I.K
+ Z BJ,Hyjl,o 0 Y55,0Y1,1YR1,0 0 YR, 0210 ° 0 Rng 0
J.H

withm+r = s+t =mny, I = {iy,....0n}, K = {ki,... .k}, J = {j1,---,Js}h
H={hy,....,h},and iy < - <ip, by <+ <k, 1 <o+ <Js, hy <+ < hy.
Suppose f € Id(B) and that there exists ayx # 0 or Sy x # 0 for some I and
K. Now, if we consider y;,0 = e11 +es3 for l =1, ..., m, yp0 = €22 for ¢ = 1,
T, Y11 = er(ers +ex3) and 2z = ey —eg3 for j = 1, ..., n3, we obtain

arkeiers * Brxeiess = 0. Therefore, a; x = Brx = 0, a contradiction.
ny = 2 and ny = 0 (the cases ny =0, ny = 2 and ny = 1, ny = 1 are analogous).

Since 29,0Y1,1%2,121,0 = 21,0¥1,1%2,122,0 and Yo,0¥1,1%2,1%1,0 = Y1,0Y1,1¥2,1Y2,0 (because
B - Bf < By), by the identities above we obtain Py, 2,0 is spanned, modulo 7,
by

Yir,0 " Yim 01,0 * " 2L0Y1.1Y51,0 " Y5 .0Y2,1 Y 41,0~ Yiny 0, 02141,0 """ Zng 0
with 77 < 99 < -+ < ip—s, 71 < Jo < -+ < Js. These monomials are linearly

independent modulo J: consider the polynomial

l
f= E Or,gYi1,0 " Yim,021,0 * " 21,0Y1,1Y51,0 * " Y5s 0921 i 10,0 °* Yiny -5, 02141,0 "7 " Zng,0
1,J1

where [ = {il,. .. 7in1—s}7 J = {jl?' .. 7,js}7 <o < inl_s, jl < < js.
Suppose f € Id(B) and there exists 0/17 ; # 0 for some I, K, . Considering the
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evaluation vy;, 0 = e;1 +es3 forn =1, ..., ny —s,y;, = e fork =1,...,s,
yj1 = ejlero+e3) for j =1, 2 and z.0 = €11 —ez3 for ¢ = 1, ..., ng we obtain

()élLJelegeLg = 0. Thus, O/I’J = 0, a contradiction.

As a consequence of (1)-(3) we have the proof of the Theorem 3.5.

3.3.1 Cocharacters of B

Consider the spaces Py, nyngn, (B) (n1,n2,n3,n4 = 0) of all multilinear polyno-
mials on B in the variables y10, ..., Yni.0, Y11, -+ Ynoils 21,05 -« -5 Zng,05 ZL1s « -5 Zng,1 i1k
the free algebra K{Y U Z) = K{y10,Y1.1, 21,0, 21,1, - - - p- Let () = (A(1), A(2), A(3), A(4))
be a multipartition of n = nj 4+ ny + nz + ny, where \(i) - n;, 1 <i < 4, and consider the

(n1,ng, n3, ny)-th cocharacter of B,
Xni,n2,n3,n4 (B) = Z TN XA(L) 02y XA(2 ® XX(3) & XA(4)- (34)
O=(n1,...m4)

Our next aim is to compute the multiplicities of the cocharacters, starting with the case

when we only have variables of degree zero, that is ny + ny = 0.

In order to find the cocharacters of B, we consider Young diagrams of shape
) = (A1), A(2),A(3),A(4)) - (n1,n2,n3n4) and the corresponding standard tableaux.

Let w be the highest weight vector associated to (A = (A(1), &, A\(3), ). By

the identities 1, 2, 9 and 10 we conclude that w = 0 in the following situations:

HAD) > 1, ST, | | T,

Therefore, we consider the cases (\) = ((n; 3), ) and
<)‘> = ((n1)7 @7 (n3 - 17 1)7 @)

Proposition 3.5. If {\) = ((n1), d, (n3), &) with ny + ng >0 or
N = ((n), B, (n3g — 1,1), ) for ng > 1, then mey = 1 in the cocharacter (3.4).

Proof. Since Py, ¢.n,.0(B) is spanned by the monomial y1 ¢ - - - Yn, 021,0 - - - Zng,0 We have that
the only (linearly independent) highest weight vector associated to {(A\) = ((n1), &, (n3), &)
is w = (y1,0)" (21,0)"* which is not an identity of A. Thus, if (A\) = ((n1), &, (n3), &) then
mey = 1.

Now we examine the case (\y = ((n1), &, (n3 — 1, 1), ). The tableaux with
possibly linearly independent highest weight vectors are

m+1l1|n+2| - |mp+t—1|n+2+1]| -+ | n+n3

T3 =

n1+i
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Ty=|1|2]--|n|, Th=d, Tha = I,

Then, from the identity (ix) for each i = 2, ..., n3 the corresponding highest weight vector

has the form

w; = (y1,o)m21,0(21,0)k22,0(21,0)l, E+l=n3—2
0, k odd

(y1,0)™ [21,0, 22,0](21,0)n3_2, k even.

Thus, if (A\) = ((n1), d, (n3 — 1,1), &) then m¢yy = 1. O

Next, we consider the cases when ns + nz = 1.

Proposition 3.6. If (\) = ((p + ¢,p), (1), (n3), &), where p, ¢ = 0 and ng > 0, then
meyy = 2(q + 1) in the cocharacter (3.4).

Proof. Let (\y = ((p+ ¢,p), (1), (n3), ). We determine the linearly independent highest
weight vectors associated to the standard Young tableaux of shape (\) which are not
identities of B. Let Ty¢;y be the tableau associated to A(7) = n; in (A).

A basis for Py, 1.n,0(B) is given by

Yir 0" Yimn,021,0 ** " Zn3,0Y1,1Yk1,0 ** " Yk 00 Yi1,0 " " Yiny 0Y1,1YE1,0 ° 7 Yk, ,021,0 * ° * 03,0,

where m +r =nq, i1 <ig < -+ <y, k1 < ky < --- < k,. Given a positive integer t; and

Ty = | t1 |, we fill T3y with positive integers, all larger than ¢; or all less than ¢;. Also,

since [¥i,0,Yj0] = 0, we need ¢; to be larger than the integers in the first p positions of the

first row of T(;y and less than the integers in the second row of T)y, or vice versa.
These remarks reduce our study to the following cases.

The first case is

n3+1 n3+2 ny+p| - t1—1 t1+1 to
Hho =~

o+l | 2] n

Thoy=|ti|, Thgpy=|1]2]| - |n3|, Tha=d,

where n3g < t; <t < n, and the corresponding highest weight vector is

foo = (210)" Gr0- G1,0(y1,0)" Y11 Y20+ Goo(y1,0)* 7"
— —

p p

The second case is

1 2 | p | (=1t g 1| | b
ta+1|ta+2|-- | n

Ty =
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oy=t1|, They=|tt+1 |t +2]|-- |ti+n3|, D=,

where t; < t; < n, and the corresponding highest weight vector is

f2 =10 T0W10)" Py11(210)™ G0 Poo(y1,0)? "
S— -

p p

We focus on the first case. For iy = p, p+ 1, ..., p+ q, consider the generic
highest weight vector

It =(210)" 910 91.0(M1.0)" Y11 Y20 -+ * Jo0(y1,0) 77,
— —

p p

11 + io = ny. Similarly as in Proposition 2.19, fl-l1 can be written as

fill = Z(_l)j (?) (Zl,o)ns(yl,o)il_j(y2,0)jy1,1(yl,o)iz_pﬂ(y?,o)p_j'
j=0

We consider the evaluation y; o = ai(er1 + e33) + fieaa, Yoo = qaler + e33) + Paeaa,

21,0 = C(61,1 - 63,3) + 5161,3 and Y11 = ’761(6172 + 6273). Then,
111 = [Cns’y@irpﬁirpel(oﬁ@ - 06251)[)] €1,2-

Notice that the coefficient ("*y(a1 82 — aaf1)Per - €12 is present in every evaluation of lel,

foriy =p, p+ 1, ..., p+ q. Therefore, to prove linear independence, we consider only

11—p Qi2—p
a; T8N

p+q
If there exist scalars p;,’s such that Z Ly fil1 = 0, then for every oy, 1 € K,
11=p
we have
pt+q ) )
Z Nilail_pﬁ?_p —0.
11=p

Therefore, p;, vanish for all iy, and { fil1 241 =p,p+1,...,p+ q} are linearly independent.

Similarly the set { fi ciy =p,p+1,...,p+ q} is linearly independent. Since
fl = ae;o and fi = fes 3, then meyy = 2(q + 1). We have considered all possibilities for
the highest weight vectors being linearly independent, as well as generic evaluations, and
thus we conclude that m¢y = 2(q + 1). O

Similarly, in the case of one skew-symmetric variable of degree 1, we have

Proposition 3.7. If (A = ((p + q,p), T, (n3),(1)), where p,q = 0 and ny > 0, then
meyy = 2(q + 1) in the cocharacter (3.4).

In the cases </\> = ((p + Q7p)7 (1)a (n3)7 @) and </\> = ((p + Qap)a @7 (n3)7 (1))7
the division of the two families of highest weight vectors depends on the presence of z; g,

therefore, we consider separately the case when ng = 0.
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Proposition 3.8. If (\) = ((p + ¢,p), (1), S, &), where p, ¢ = 0, then m¢y = ¢+ 1 in
the cocharacter (3.4).

Proof. Considering the corresponding tableaux and the identities of B, we have that given

Ty =| t; |, then we need ¢; to be larger than the integers in the first p positions of the

first row of T)(1) and less than the integers in the second row of T)(y), or vice versa. Taking
into account standard tableaux and looking for highest weight vectors that are linearly

independent, we find that the options are determined by

1 2 e lp e =1 AL e |ty
to+1|ta+2)|--- | n

Ty =

Thoy=|ti|, Thepy=9, Th=¢,

where t; < t; < n, and the corresponding highest weight vector is

fir = 00 T10(10)" Y11 G20+ F20(y10)2 77
— —_——

P P
Through calculations similar to those in the proof of Proposition 3.6, we establish that the
highest weight vectors f;, are linearly independent for iy = p, p+1, ..., p+ q. Considering

that we encompass all possibilities, we conclude that m¢yy, = g + 1. O

Analogously, we have the case of one skew-symmetric variable of degree 1.

Proposition 3.9. If (\) = ((p + ¢,p), &, I, (1)), where p, ¢ = 0, then m¢y = g+ 1 in
the cocharacter (5.4).

Let us now consider the case where ny+mny = 2. First, we recall that P, 2.,,,0(A)
is spanned by polynomials of the form
Yi1,0 " Yir,021,0 " 210Y1,1Y51,0 ° " Y5s,0Y1,1 Y300 41,0 ° " " Ying —5,0214+1,0 * * " Bng,0-
Let (A = ((p+ q,p), (2),(n3), ), where p, g, n3 = 0, then the corresponding highest

weight vectors that are not zero (considering the identities of B) will be of the form

Y10 T.01.0)" P (210) Y11 oo - P20 (Y1.0)2 Py11 (y1.0)? (210)7%
—_— —_—
p p
Consider separately the parts

Z' _
M = Y11Yk,0 " Ykp0(U1,0)2 PY11

where k; € {1,2}, and a generic evaluation y; o = a;(e11 + €33) + bieaa, y11 = c(e12 + €23)
where a;, b; € £y and c € E;. Then m = cbc - e; 3 = 0. Therefore, if
N =(p+4,p),(2),(n3), ) then m¢yy, = 0. Similarly for (A\) = ((p + ¢,p), &, (n3), (2)).

Next, we consider the case when (A\) = ((p+ ¢, p), (1), (n3), (1)).
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Proposition 3.10. If (\) = ((p+q,p), (1), (n3), (1)), where p,q = 0, then my = nz(q+1)
in the cocharacter (3.4).

Proof. Observe that Py, 1,,1(A) is spanned by polynomials of the form

Yi1,0 " " Yim,021,0 * " 21L0Y1,1Y51,0 * * " Yjs,021,1Y i 41,0 * " Yin, —s,021+1,0 " " " Zng,0-

The possible highest weight vectors associated to standard tableaux of shape (\), which

are not identities of B, are described by
fiviogs = Y10 J10Y1,0)" P(21,0) Y11 Uo0* * + Uo0(Y1.0) % P21,1(Y1,0)" (21,0)72,
—_—— —_——
P P
where 71 + 19 + 13 =Ny, p < 11,02 < p+ q and j; + Jo = ng3.

Again, we rewrite f;, 4, ;, in the following manner

p
p i— ‘ in— - i ‘
firjisgr = Z(—l)k <k> (510" (2,0)"(21.0) 511 (41,0) 2 7P (Y2,0)" 211 (1,0) " (21,0)72,
k=0

and considering the evaluation y; o = ai(e11 + €33) + fre22, Yoo = aa(er 1 + e33) + P2,

21,0 = C(61,1 - 63,3) + 0113, Y11 = 61(61,2 + 62,3) and 21, = 6’2(61,2 - 62,3) we obtain
fil,iz,jl = [CHS(QI@ - @251)p€1€2] [(—1)”0/1“71.271)5;27}7] €1,3-

Since the term (" (aq 82 — aaf51)Pere2e1 3 is common to each fi, ;, j,, we can
reduce to considering only the terms (—1)2a* > P41 ? which depend on iy and Jo,
where p < i < p+qgand 0 < jy < n3.

Suppose that there exist p;, j, € F' such that

D ga ()AL < 0,

12,J2
for all aq, 81 € F. Then,
p+q ' '
D (Hiz0 = figa + -+ (Z1) iy ) 07 7B = 0,
ig=p

so for each iy
is0 — Miga + -+ (=1)" iy ny = 0.

We conclude that fixing i¢; we have ng linearly independent variables p;, . Therefore,

meyy = n3(q + 1). As we consider generic evaluations, we get myy = n3(q + 1). O

Similarly to the case when ns + ny = 1, we have some differences between the

cases n3 > 0 and nz = 0. Next, we consider the case ny = ny =1 and n3 = 0.
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Proposition 3.11. If () = ((p+q,p), (1), &, (1)), where p, ¢ =0, then mpy, =g+ 1 in
the cocharacter (3.4).

Proof. Similarly to the previous proposition, we have that the possible linearly independent

highest weight vectors that are not polynomial identities of B are represented by

fivion = Y10°° '?Jl,o(yl,o)il_py1,1 Yoo To0(y1.0)2 P21 (y10)™
e —

p p

(—1)* (i) (Y1.0)™ F(y2.0) 1.1 (11.0)2 P * (y2.0)? F 211 (y1.0)"

p

k=0

where i1 + is + i3 = ny and p < iy,42 < p + ¢. Considering y1 9 = aq(e11 + e33) + Sieas,

Y0 = 062(61,1 + 63,3) + 6262,2, Y11 = €1 (61,2 + 62,3) and 211 = 62(6172 — (3273),
fi17i27j1 = [(a152 - a2ﬁl)p€1€2] [a?l_h_pﬂ?_p] €13

Similarly to the previous propositions, we conclude that myy, = ¢ + 1. O

Based on the above presented results and considering the graded =-identities of

A, we have the description of the cocharacters of B.

Theorem 3.6. Let

Xninamsne(B) = Z MOSX A1) & Xa@2) @ Xa@) @ Xaw)
(O (n1,...,n4)

be the (ny, ng, n3, ny)-cocharacter of B. Then
(1) moy =1, if (A) = ((m), &, (ns), &), where ny + ng >0 or if
Ny =((m),d, (ns—1,1),F) and ng > 1.

(i)) moy =q+ 1, if () =((p+4q,p), (1), &, &) or Xy = ((p+q.p), D, F, (1)), where
ng >0 and ny = 2p + q.

(@) mey = 2(q+ 1), if Q) = ((p+¢,p), (1), (n3), &) or A = ((p + ¢,p), D, (n3), (1)),

where ng > 0 and ny = 2p +q.
(iv) mey =na(g+ 1), if A = (0 + ¢, p), (1), (ns), (1)), where ng >0 and ny = 2p +q.

(U) mey = q + 1, Zf<)‘> = ((p + Qap)a (D?@ﬂ (1))7 where ny = 2p +q.

In all remaining cases meyy = 0.
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4 The embedding problem

Let A and B be two K-algebras. A natural question arises: If Id(A) = Id(B),
then is A = B? In general, this is not true. For example, for any algebra A, it holds that
Id(A) = Id(A® A). Another example to consider is Id(Hg) = Id(M3(R)), but the matrix
algebra M3(R) and the Quaternion algebra Hg are not isomorphic.

Therefore, our strategy is restricting ourselves to the case of central simple

algebras over algebraically closed fields. In this case, we have a positive answer for:

Finite-dimensional associative algebras

Finite-dimensional Lie algebras by Kushkulei and Razmyslov (1983)
« Finite-dimensional Jordan algebras by Drensky and Racine (1992)

o Finite-dimensional algebras by Shestakov and Zaicev (2011).

The case of simple associative algebras graded by an abelian group was solved
by Koshlukov and Zaicev (see [26]), and the result was extended by Aljadeff and Haile
to arbitrary groups (see [1]). For finite-dimensional algebras graded by a semigroup, the
positive answer was given by Bahturin and Yasumura (see [4]). In the latter paper very
general results were obtained concerning the isomorphism of two algebraic systems provided

they satisfy the same identical relations.

A more general problem is the embedding problem: Consider A and B two
K-algebras, such that A satisfies the polynomial identities of B, then is possible to see the
algebra A as a subalgebra of B?

Now, concerning the question about the embedding of simple algebras over an

algebraically closed field, we have positive results for:

« Finite-dimensional associative algebras.

o Algebras graded by an abelian group over a field of characteristic zero, [9].

We consider K to be an algebraically closed field of characteristic different
from 2, and recall that in the case of matrices M,,(K), there are two types of involutions.

For the readers’ convenience we recall it once again here:

o The transpose involution, denoted by ¢:

(ai;)" = (aj), where (a;;)e M,(K).
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o In the case where n = 2k is even, the symplectic involution denoted by s is defined

as follows:

a®* =Ta'T, for all a € My, (K),

k
where T = Z (€iivk — Cithi)-
i=1

That is, if n = 2k and B € My (K), we consider B as a block matrix of size k x k,

and thus .
R S _[Qf _ st

P Q ~P' R

We consider the embedding problem for algebras with involution. In the case

of simple algebras with involution, we have the following classification:

Theorem 4.1 ([34], Lemma 4). Let K be an algebraically closed field. Any finite dimen-
sional =-simple K-algebra with involution A is isomorphic as a =-algebra to one of the
following types:

o (Mp(K),t) - the full matriz algebra with the transpose involution,

o (My(K),s) - the full matriz algebra with the symplectic involution, (k € 27),

o (My(K)®My(K)?, ex) - the direct product of the full matriz algebra and its opposite

algebra with the exchange involution =.

Denote by (M, (K), «) the full matrix algebra with involution =.

Definition 4.1. L(n,d, k, =) stands for the set of all
Sta(Xy + X7\ Xo + XP Xppr — Xags oo Xa— X0,
that are identities for (M, (K),*). Here Sty(z1,...,xq) is the standard polynomial.

A possible approach to the embedding problem can be given based on standard
polynomials, as in the case of simple algebras. Hence we look for the minimum degree

such that a standard polynomial becomes an involution identity for the matrix algebra.
By Amitsur-Levitzki £(n,d, k, =) holds for d = 2n. On the other hand, if » = ¢

(the transpose involution), we have the following classification (see [30]).

Theorem 4.2. L(n,2n — 2,0,t), L(n,2n — 1,0,t) and L(n,2n — 1,1,t) hold for all n;
L(n,2n —2,1,t) holds for all odd n. All other L(n,d, k,t) do not hold whenever d < 2n.

Corollary 4.1. The minimum degree of a standard identity in skew-symmetric variables
for (M,(K),t) is 2n — 2.
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Consider now (M, (K),t) and (M,,(K),t) with m > 1, and suppose that
Id (M, (K),t) < Id (M,,(K),t). By Corollary 4.1, we know that it satisfies L(n,2n—2,0,1).
Therefore, by assumption, we also have £(m,2n — 2,0,t), and once again, by Corollary

4.1, we have 2n — 2 = 2m — 2. Therefore, n = m.

Thus, we have the injective K-homomorphism ¢ : M,,(K) — M, (K), given by

el lf 1 < k,l < m
L((akl)) = (bkl), where bkl = (41)

0 otherwise.
Therefore, ¢ ((an)") = ¢ ((aw))’, and thus (M,,(K),t) embeds into (M, (K),t). In the case
where m = 1, it is evident that M,,(K) embeds into M, (K).

Now, let us consider the case of the symplectic involution.

Theorem 4.3 ([20], Lemma 4.1). Let (M (K),s) be the algebra of 2k x 2k matrices
endowed with the symplectic involution. Then the polynomial Sty (1, ..., xa) is a standard

«-identity of minimal degree in skew variables.

In Rowen’s notation, we have that £(2n,4n,0, s) is satisfied, and we do not
have L£(2n,d, 0, s) for d < 4n.

Let us now consider (My,(K), s) and (Ms,,(K), s) with m
that Id (Ms, (K), s) < Id (Ms,(K), s). By Theorem 4.3, we have that m < n. Furthermore,
if m <n, for Ae M,,(K), we consider A = 1(A) € M,,(K) as in (4.1), and we define

A B A B
@ Moy, (K) — My, (K), (C’ D) —> <C’ D>‘

> 1, and suppose
<
For example,

0 My(K) — My(K), (Z Z)H

S o O 2
o O o O
S Qo -
o O O O

@ is an injective homomorphism that preserves the symplectic involution.
Therefore, if Id (M, (K), s) € Id (My,,,(K), s), then (Ma,,(K), s) — (M, (K), s).

In the case where Id ((M,,(K),t)) < Id ((M2,(K), s)), by Corollary 4.1 and
Theorem 4.3, we have 2m — 2 > 4n. Therefore, it follows that m >m — 1 > 2n, and as a
result, Mo, (K) — M,,(K).

For standard identities in symmetric variables we have the following results.
Theorem 4.4 ([33], Proposition 2). Let (M,(K),t) be the algebra of n x n matrices

endowed with the transpose involution. Then the polynomial Sta,(x1, . .., Ta,) is a standard

s-identity of minimal degree in symmetric variables.
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Theorem 4.5 ([31], Theorem 3). The standard polynomial Say, 2(y1, ..., Yak2) S a *-
identity of (Mo (K), s) in symmetric variables for all k = 1.

Now, we consider some relations between Id ((Ma,(K), s)) and Id ((M,,(K),t)).

If Id (Man(K),s)) < Id ((M,,(K),t)), by Theorem 4.4 and Theorem 4.5, we
have 4n — 2 = 2m. Thus, 2n = m and M,,(K) — Mo, (K).

Proposition 4.1 ([5], Proposition 4.4 ). Let m be a positive integer.

U+ (M (K), £) — (Mo (K, ), ozr—><a 0)

0 «

is a homomorphism of K-algebras with involution.
Corollary 4.2. Id(Ms,,(K), s) < Id(M,,(K),t).

Proposition 4.2 ([30], Corollary 2.5.12). (M, (K),t) € (M2, (K),s) for all m < n.

Even though Rowen’s result specifically references algebras, in its proof, it
is shown that if m < n, then Id(My,,(K),s) € Id(M,(K),t). From Proposition 4.2, if
Id (M2, (K), s)) € Id (M,(K),t)), then n < m. Proposition 4.1, implies

(M (K), 1) = (M (K), 1) = (Mo (K), s) .
Based on the facts described above, we have the following result.
Proposition 4.3. Consider the algebras with involution (M, (K), 1) and (M,,(K), *s),
where n; is even if x; = s.
(a) If 1d ((M,,(K), 1)) € Id (M, (K), *3)), then M,,(K) — M,, (K).
(b) If Id (M, (K), ) € Id (M, (K), *)), then (M,(K), ) — (M, (K), *).

(¢) If1d ((Mn, (K), 5)) < 1d (M, (K), %)), then (Mp,(K), *) < (M, (K), s).

As a consequence of the previous result, we have the following theorems:

Theorem 4.6. Let A and B two finite-dimensional central simple algebras with involution
over the algebraically closed field K of characteristic 0, A with involution of orthogonal
type and A satisfying the identities with involution of the algebra B. Then, there exists an

embedding that preserves the involutions of A into B.

Theorem 4.7. Let A and B two finite-dimensional central simple algebras with involution
over the algebraically closed field K of characteristic 0, B with involution of symplectic
type and A satisfying the identities with involution of the algebra B. Then, there exists an

embedding that preserves the involutions of A into B.
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Note that for &k <
(Mi(K) x M (K)? ex) —» (M(K) x M}(K)?, ex), (A,B)— (Z,E)
and

(Mp(K) x M(K)? ex) —> (My(K),s), (A, B)— (g ;)t)

are embeddings of =-algebras.

Therefore, if Id ((Max(K), s)) € Id ((M(K) x M,(K)?, ex)) considering stan-
dard polynomials in symmetric variables, we have 4k — 2 > 2[. Thus, 2k = [, and we have
an embedding that preserves the involutions from (M;(K) x M;(K)?, ex) to (My(K),s).

Corollary 4.3. Let A be a finite-dimensional simple algebra with involution over the
algebraically closed field K of characteristic 0 such that A satisfies the identities with
involution of the matriz algebra (M,(K),s).

o If A is central, there exists an embedding of A into (M,(K),s) that preserves the
involutions.

e If A is not central, there exists an embedding of A into (Ms,(K),s) that preserves

the involutions.
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