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Resumo

Nesta dissertação foram desenvolvidas duas classes flexíveis de modelos de regres-

são para dados contínuos, assimétricos e/ou de caudas pesadas. Uma para dados

independentes e outra para dados dependentes. Consideramos uma abordagem semi-

paramétrica, utilizando Modelos Lineares Parciais Aditivos Generalizados (MLPAG),

para dados independentes, e MLPAG com Equações de Estimação Generalizadas

(EEG), para dados dependentes. Em ambos os casos foram considerados preditores

semi-paramétricos para as médias das respostas e erros (marginais) seguindo dis-

tribuições de misturas de escala normal assimétrica centralizada (MENAC). No caso

de dados dependentes, as estruturas de dependência foram modeladas via EEG. Em

relação às distribuições MENAC, consideramos medidas misturadoras usuais (gama,

beta e binária) e outras nunca consideradas (gama generalizada, Birnbaum-Saunders

e beta prime). Foram desenvolvidos métodos de estimação, medidas de qualidade de

ajuste e de diagnóstico para esses modelos, sob a ótica frequentista. Foram criadas

rotinas computacionais para permitir a utilização das metodologias desenvolvidas, bem

como foram conduzidos estudos de simulação para verificar seus desempenhos. Tam-

bém, modelagens de problemas reais, através das metodologias desenvolvidas, foram

consideradas, ilustrando o potencial dos resultados obtidos.

Palavras-chave: Dados longitudinais, Misturas de escala normal assimétrica centra-

lizada, Equações de Estimação generalizadas, Modelos Lineares Parciais Aditivos

Generalizados, Inferência frequentista.



Abstract

In this dissertation, two classes of regression models for continuous, skewed and/or

heavy tailed data were developed. One for independent data and another for dependent

data. We considered a semi-parametric approach using Generalized Additive Partially

Linear Models (GAPLM), for independent data, and GAPLM with Generalized Estimation

Equations (GEE), for dependent data. In both cases, semi-parametric predictors for

response means and scale mixtures of centered skew-normal (SMCSN) distributions for

the (marginal) errors were considered. For dependent data, the dependence structures

were modelled through GEE. Concerning the SMCSN distributions we considered

either usual mixing measures (gamma, beta and binary distributions) as well as never

used ones (generalized gamma, Birnbaum-Saunders and beta prime distributions).

Estimation methods, goodness of model fit and diagnostic tools for these models, under

the frequentist paradigm, were developed. Computational routines were created, to

allow for the use of the developed methodologies, as well as simulation studies were

performed to study the their performance. Also, the modelling of real problems, through

such methodologies, were considered, illustrating the potential of the obtained results.

Keywords: Longitudinal data, Scale Mixtures of Centered Skew-Normal, Generalized

Estimating Equations, Generalized Additive Partially Linear Models, Frequentist infer-

ence.
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Chapter 1

SCALE MIXTURE OF CENTERED

SKEW-NORMAL DISTRIBUTIONS

1.1 Introduction

In the following, we will introduce the first part of this work talking about a

motivating example for the proposed methodologies and a brief review of the literature

of methods similar to the ones we will be using.

1.1.1 Motivating example

Let us consider the following study about daily ragweed pollen levels (Stark

et al., 1997; Ruppert et al., 2003). This data set was collected from 1991 to 1994 during

the ragweed season in Kalamazoo, Michigan, totaling 335 observations. According to

Ruppert et al. (2003) the main goal is to analyze the pollen concentration (grains/m3) as

function of: the number of days in the current ragweed pollen season (days in season),

the temperature in the following day (in F˝) (temperature), an indicator of significant

rain the in following day (1 = at least 3 hours of steady or brief but intense rain, 0 =

otherwise) and wind speed forecast for the following day (wind speed).

This data set was analyzed by Ferreira and Paula (2017) and we will use

their results as a motivation for the first part of this dissertation. Figure 2 presents the

Histogram and estimated densities in the original scale (Figure 1a) and in the square

root-scale (Figure 1c). According to Ferreira and Paula (2017), the original response

distribution is highly skewed, that would over complicate the data analysis. On the

other hand, the square root transformation induces a lesser skewed behavior of the

response, which is more easily for the modeling process. These authors also analyzed

the response variable on the logarithmic scale. However, this transformation lead to

non finite values. Table 1 provides descriptive statistics, which suggest an apparent

skewness (1.12) and heavy tails (Kurtosis = 3.59).
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Figure 1 – Histograms, estimated densities and boxplots for Pollen concentration and?
Pollen concentration.

Table 1 – Summary statistics for original scale and the square root transformation of the
pollen concentration (SD is sample standard deviation and CV is coefficient
of variation).

Scale Min Max Mean Median SD Skewness Kurtosis CV
Original 0 440 44.32 9 73.76 2.49 9.82 1.66

square root 0 20.98 4.71 3 4.71 1.12 3.59 0.99

Even after the square root transformation, the skewness still persists (see

Chaves et al. (2020)) and, on the other hand, the original distribution is not easy

to model. In this case, the use of scale mixture of skew-normal distributions can be

suitable. Figures 2a-2c present the Scatter plots between the squared root of the pollen

concentration and the explanatory variables along with regression curves fitted by

LOESS. They indicate a nonlinear relationship between the response variable and

days, in such a way that a non-parametric structure could be suitable for modeling such

relation. For the other covariates, it is suitable to assume a linear relationship. Ferreira

and Paula (2017) used a skew-normal partially linear model, comparing the respective

results with those obtained by the fit through a normal partially linear model.

Therefore, the first part of this dissertation comprises the following contribu-
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tions:

1. We review a family of distributions, namely, scale mixture of skew-normal densi-

ties, useful for modeling skewed and/or heavy-tailed data. The related centered

parameterization, which presents several advantages, in terms of inferential and

interpretation aspects , over the original parameterization, is presented. Consid-

ering additional mixing distributions, besides the usual ones, we developed new

members for this class namely, generalized Gamma, Birnbaum-Saunders and

Beta Prime, which can be useful alternatives for the usual members.

2. We develop a class of additive partially linear models based on this family.

3. We present the necessary/required inferential tooling, as well as goodness of fit

measurements, diagnostic techniques of global and local influence, simulation

studies and application to the ragweed pollen data showing the good performance

of the developed models.
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Figure 2 – Scatter plots between the squared root of the pollen concentration and the
temperature, wind speed and days in season, fitted by LOESS curve.
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1.1.2 Literary review

The normal distribution has been widely used in many areas of knowledge

since the early days of statistical modeling, mainly due to mathematical and compu-

tational advantages over the others distributions. However, very often, the data sets

present some departing from normality as: asymmetry and/or heavy/light tails. In this

case the use of the normal distribution (or other symmetric distributions) may lead to

misleading inference (Eling, 2012).

To handle this issue, several asymmetric and/or heavy tails distributions

have been proposed in the literature. The skew-normal distribution (Azzalini, 1985),

was one the first generalizations of the normal one, allowing several different shapes

in terms of asymmetry. Ferreira et al. (2011) presented a class called scale mixture

of skew-normal distributions (SMSN), which is an extension of the scale mixture of

normal distributions (Andrews and Mallows, 1974). The SMSN distributions are very

useful for analyzing skewed and/or heavy tailed data. As particular cases we have: the

skew-normal distribution, skew Student-t, skew slash, skew generalized t and skew

contaminated normal, besides their respective symmetrical cases. This class has been

recently improved, in order to circumvent several inferential problems and limitations, for

(Maioli, 2018b), using the centered version of the skew-normal distribution (Arellano-

Valle and Azzalini, 2008).

Due to its flexibility the SMSN family has been widely studied and regression

models have been proposed based on such class. Basso et al. (2010) showed the

inference for finite mixture of SMSN. Lachos et al. (2010a) proposed a multivariate linear

error-in-variables regression model based on the scale mixtures of multivariate skew-

normal distributions. Cancho et al. (2011) developed a Bayesian nonlinear regression

model for SMSN family. Zeller et al. (2011) developed local influence analysis for

the multivariate SMSN regression models. Garay et al. (2011) proposed a non-linear

regression model using SMSN distributions. da Silva Ferreira et al. (2011) developed

several properties for the SMSN family of distributions, also discussing the inference

process and the obtaining of the respective standard errors. Lachos et al. (2011)

developed a heteroscedastic non-linear regression model for SMSN. Labra et al. (2012)

built global and local influence analysis for heteroscedastic non-linear regression models

based on the SMSN distributions. Zeller et al. (2012) developed the local influence

analysis for multivariate error-in-variables regression models for SMSN distributions.

Garay et al. (2014) presented the local influence analysis and generalized Cook’s

distance for nonlinear regression models based on SMSN distributions. Ferreira et al.

(2015) showed the global and local influence analysis for SMSN models, as well as

generalized leverage. Zeller et al. (2016) proposed a linear regression model based

on finite mixture of SMSN distributions. Ferreira et al. (2016) proposed a multivariate
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regression model based on SMSN distributions. Ferreira and Lachos (2016) showed a

non-linear regression model for finite mixture of SMSN. Massuia et al. (2017) developed,

under the Bayesian paradigm, a censored regression model for the SMSN family.

Galarza Morales et al. (2017) proposed a quantile regression model for finite mixture

of SMSN distributions. Mattos et al. (2018) showed a censored regression model

for SMSN under the Frequentist paradigm. Castro et al. (2019) developed a semi-

parametric Bayesian mixed model for the SMSN family, using wavelets penalization.

da Silva Ferreira et al. (2019) developed diagnostic tools for heteroscedastic non-

linear regression models based on finite mixture of SMSN. Hajrajabi and Maleki (2019)

developed an autoregressive non-linear semi-parametric regression model for the SMSN

class.

It is worth to note that all the literature cited above is based on the usual

parameterization of the skew-normal, which can present some problems, that we will

discuss later.

1.2 Centered skew-normal distribution

A random variable Y follows a skew-normal distribution with location pa-

rameter α P R, scale parameter β P R
` and skewness parameter λs P R, i.e.,

Y „ SNpα, β2, λq, if its probability density function (p.d.f) is given by (Azzalini, 1985):

fY py|α, β, λsq “ 2

β
φ

ˆ

y ´ α

β

˙

Φ

ˆ

λs

ˆ

y ´ α

β

˙˙

1p´8,8qpyq,

where φ and Φ stands for the p.d.f and cumulative function of standard Normal distribu-

tion. Note that if λs “ 0, the normal distribution is recovered. Multivariate versions of this

distribution can be found in Azzalini and Valle (1996) and Padilla et al. (2018).

On the other hand, Henze (1986) proposed an useful stochastic representa-

tion of the (original) skew-normal, which is given by:

Y “ α ` β
´

δH `
?

1 ´ δ2T
¯

, (1.1)

where H „ HNp0, 1q K T „ Np0, 1q, HNp0, 1q denotes the standard half-normal distri-

bution (i.e., a standard Normal distribution truncated below zero) and δ “ λs{
a

1 ` λ2
s.

From (1.1) we have that the expectation and variance of Y are given, respectively, by

EpY q “ α ` βδ

c

2

π
and VarpY q “ β2

ˆ

1 ´ δ2 2

π

˙

.

Arellano-Vale and Azzalini (2008) presented some problems, through a

practical example, induced by the above parameterization. Among them when λ Ñ 0,

the expected Fisher information matrix is singular, even if all parameters are identifiable,
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which leads to: lack of some asymptotic proprieties of the respective maximum likelihood

estimators and a non quadratic shape of the log-likelihood. Even under Bayesian

inference, these problems still remain, unless (very) informative priors be used Maioli

(2018a); Azevedo et al. (2018). These problems can be solved if we use the centered

parameterization of the skew-normal distribution proposed by Azzalini (1985).

It is said that Yc has a skew-normal distribution under the centered parame-

terization (or centered skew-normal distribution) with centered parameters µ P R, σ P R
`

and γ P p´0, 99527; 0, 99527q, denoted by Yc „ SNcpµ, σ2, γq, if

Yc “ µ ` σZ0, (1.2)

where Z0 “ pZ ´ µzq{σz, Z „ SNp0, 1, λsq, µz “
a

2{πδ and σz “
a

1 ´ p2{πqδ2. We also

have:

µ “ EpYcq “ α ` βµz, σ2 “ VarpYcq “ β2p1 ´ µ2
zq and γ “ 4 ´ π

2

´b

2
π
δ
¯3

`

1 ´ 2
π
δ2

˘3{2
,

where γ denotes the Pearson’s index of Skewness. Using the Jacobian transformation

method, the p.d.f of (1.2) is given by

fY py|µ, σ2, γq “ 2

ω
φ

ˆ

y ´ ξ

ω

˙

Φ

ˆ

λ

ˆ

y ´ ξ

ω

˙˙

,

where

ξ “ µ ´ σγ1{3s, s “
ˆ

2

4 ´ π

˙1{3

, ω “ σ
a

1 ` s2γ2{3 and λ “ sγ1{3

b

2
π

` s2γ2{3
`

2
π

´ 1
˘

.

Notice that the SNcpµ, σ2, γq is equivalent to SNpξ, ω2, λq. As in (1.1), the

Henze’s stochastic representation for the centered skew-normal distribution is given by

Yc “ ξ ` ω
´

δH `
?

1 ´ δ2T
¯

, (1.3)

with H, T , ξ, ω and δ as defined above.

1.3 Scale mixture of skew-normal distribution under the cen-

tered parameterization

In this section we present the scale mixture of centered skew-normal distri-

butions. We considered, as mixing measure, usual choice as gamma, beta and binary

distributions as well as interesting alternatives as: beta prime, Birnbaum-Saunders and

generalized gamma.
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A random variable Y follows a scale mixture of skew-normal distribution under

the centered parameterization (or scale mixture of centered skew-normal distribution

- SMCSN) with mean µ, scale parameter σ2, skewness parameter γ, mixing measure

H and shape parameters ν, i.e, Y „ SMCSNpµ, σ2, γ, H, νq, if it can be stochastilly

represented by

Y “ µ ` kpUq1{2W, (1.4)

where W „ SNcp0, σ2, γqKU , kp.q is a positive real arbitrary function and U is a mixing

distribution, with cdf Hp.; νq. Also, it is possible to prove that:

• If E
´

a

kpUq
¯

ă 8, then EpY q “ µ;

• If E pkpUqq ă 8, then VarpY q “ σ2k2;

• If E pkpUqq ă 8 and E

´

a

kpUq
¯

ă 8 then the skewness coefficient is given by

µ̃3 “ EpY ´ EpY qq3

pVarpY qq3{2
“ Epk1{2pUqW q3

σ3k
3{2
2

“ k3

k
3{2
2

γ;

• If E pkpUqq ă 8 and E

´

a

kpUq
¯

ă 8 then the kurtosis coefficient is given by

µ̃4 “ EpY ´ EpY qq4

pVarpY qq2
“ Epk1{2pUqW q4

σ4k2
2

“ k4

σ4k2
2

EpW 4q

where km “ ErkpUqm{2s.

Note that if γ “ 0, the SMCSN family reduces to the scale mixture of normal

distributions family. Let Y „ SMCSNpµ, σ2, γ, H, νq. Then, Y |U “ u „ SNcpµ, σ2kpuq, γq,
U „ Hp.|νq. Analogous to the Henze’s representation given in (1.3), we also have that

Y |U “ u, H “ h „ Npξu ` ωuδh, ω2
up1 ´ δ2qq, H „ HNp0, 1q, U „ Hp.|νq, where

ξu “ µ ´ σ
a

kpuqγ1{3s, s “
ˆ

2

4 ´ π

˙1{3

, ωu “ σ
a

kpuq
a

1 ` s2γ2{3, δ “ λ?
1 ` λ2

λ “ sγ1{3

a

2{π ` s2γ2{3p2{π ´ 1q
.

The p.d.f of (1.4) is given by

fpy|µ, σ2, γ, νq “
ż 8

0

2

ωu

φ

ˆ

y ´ ξu

ωu

˙

Φ

ˆ

λ

ˆ

y ´ ξu

ωu

˙˙

dHpu|νq,

where

y ´ ξu

ωu

“ y ´ pµ ´ σ
a

kpuqγ1{3sq
σ

a

kpuq
a

1 ` s2γ2{3
“ py ´ µq ` σ

a

kpuqγ1{3s

σ
a

kpuq
a

1 ` s2γ2{3



Chapter 1. SMCSN DISTRIBUTIONS 29

“ py ´ µq
σ

a

kpuq
a

1 ` s2γ2{3
` σ

a

kpuqγ1{3s

σ
a

kpuq
a

1 ` s2γ2{3
“ d

1
a

kpuq
` γ1{3s

a

1 ` s2γ2{3

“ d
1

a

kpuq
´ ξ1

ω1

,

and

ω1 “
a

1 ` s2γ2{3, ξ1 “ ´γ1{3s and d “ y ´ µ

σ
a

1 ` s2γ2{3
“ y ´ µ

σω1

.

1.4 Examples of Scale Mixtures of Centered Skew-Normal

Distribution

The following will show the density of SMCSN distributions based on the

Gamma, Beta, Binary, BP, BS and GG distributions as mixing measure. Here we consider

kpuq “ 1{u.

1.4.1 Centered skew generalized t distribution

Considering U „ gammapν1{2, ν2{2q with pdf:

hpu|ν1, ν2q “ pν2{2qν1{2

Γpν1{2q uν1{2´1 exp
!

´ν2u

2

)

1p0,8qpuq, (1.5)

we obtain the Centered skew generalized t distribution denoted by Y „ CSGT pµ, σ2, γ,

ν1, ν2q. As noted by Maioli (2018a), this distribution has some identifiability issues,

since different values of pσ2, ν2qJ can lead to the same likelihood. Maioli (2018a)

proposed to use σ2 “ 1 to avoid this problem. Therefore, in this work we assume

Y „ CSGTσ2“1pµ, γ, ν1, ν2q whose p.d.f is given by:

fpy|µ, γ, ν1, ν2q “ 2ν2

2

ν1

2

ω1

?
2πΓ

`

ν1

2

˘e
´

ξ2

1

2ω2

1

ż 8

0

u
ν1`1

2
´1e

´ 1

2

„

u

ˆ

pu´µq2

ω2

1

`ν2

˙

´2
?

upy´µq ξ1

ω2

1



ˆ

ˆ Φ

ˆ

λ

ˆ?
u

py ´ µq
ω1

´ ξ1

ω1

˙˙

du,

where µ is the mean, γ is the skewness and ν1 and ν2 are the shape parameters, since

V arpY q “ ν2{pν1 ´ 2q. Note that if ν1 “ ν2 “ ν the CSGT distribution is reduced to

Centered skew t distribution (CST) with σ2 “ 1.

1.4.2 Centered skew t distribution

Considering U „ gammapν{2, ν{2q whose p.d.f is given by:

hpu|ν1, ν2q “ pν2{2qν1{2

Γpν1{2q uν1{2´1 exp
!

´ν2u

2

)

1p0,8qpuq,
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we obtain the Centered skew t distribution denoted by CST pµ, σ2, γ, νq whose p.d.f is

given by:

fpy|µ, σ2, γ, νq “ 2pν{2qν{2e
´

ξ2

1

2ω2

1

σω1

?
2πΓpν{2q

ż 8

0

u
ν`1

2 exp

"

´1

2

„

upd2 ` νq ´ 2
?

ud
ξ1

ω1

*

ˆ Φ

ˆ

λ

ˆ?
ud ´ ξ1

ω1

˙˙

du,

where µ is the mean, γ is the skewness parameter, ν is the degree of freedom and

V arpY q “ σ2ν{pν ´ 2q.

1.4.3 Centered Skew-Slash distribution

Considering U „ betapν, 1q whose p.d.f is given by hpu|νq “ νuν´1
1p0,1qpuq,

we obtain the Centered Skew-Slash distribution denoted by CSSpµ, σ2, γ, νq whose p.d.f

is given by:

fpy|µ, σ2, γ, νq “ 2ν

σω1

?
2π

e
´

ξ2

1

2ω2

1

ż 1

0

uν´ 1

2 e
´ 1

2

”

ud2´2
?

ud
ξ1

ω1

ı

Φ

ˆ

λ

ˆ?
ud ´ ξ1

ω1

˙˙

du,

where µ is the mean, γ is the skewness parameter, ν is the degree of freedom and

V arpY q “ σ2ν{pν ´ 1q.

1.4.4 Centered Skew-contaminated Normal distribution

Considering U a discrete random variable whose p.d.f is given by hpu|ν1, ν2q “
ν11u“ν2

puq ` p1 ´ ν1q1u“1puq, we obtain the Centered Skew-contaminated Normal distri-

bution denoted by Y „ CSCNpµ, σ2, γ, ν1, ν2q whose p.d.f is given by:

fpy|µ, σ2, γ, ν1, ν2q “ 2

„

ν1

?
ν2

σω1

?
2π

e
´ 1

2

´?
ν2d´ ξ1

ω1

¯

2

Φ

ˆ

λ

ˆ?
ν2d ´ ξ1

ω1

˙˙

`

` p1 ´ ν1q 1

σω1

?
2π

e
´ 1

2

´

d´ ξ1

ω1

¯

2

Φ

ˆ

λ

ˆ

d ´ ξ1

ω1

˙˙ 

,

where µ is the mean, γ is the skewness parameter, ν1 and ν2 are the proportion of

outliers and scale parameter, respectively, and V arpY q “ σ2pν1 ` ν2p1 ´ ν1qq{ν2.

1.5 New distributions of scale mixture of skew-normal un-

der the centered parameterization

In this section we develop three new members of the CSMN family based

on the: Beta prime (BP) (Keeping, 1962), Birnbaum-Saunders (BS) (Birnbaum and

Saunders, 1969b,a) and generalized gamma (GG) (Stacy, 1962) distributions.
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1.5.1 Centred skew Beta Prime Normal

Considering U „ beta primepν1, ν2q whose p.d.f is given by

uν1´1

Bpν1, ν2qp1 ` uqpν1`ν2q1p0,8qpuq,

we obtain the Centred skew Beta Prime Normal, denoted by Y „ CSBPNpµ, σ2, ν1, ν2q,
whose p.d.f is given by:

fpy|µ, σ2, γ, ν1, ν2q “ 2e
´

ξ2

1

2ω2

1

σω1

?
2πBpν1, ν2q

ż 8

0

u
ν1´1

2

pu ` 1qν1`ν2

e
´ 1

2

´

ud2´2
?

ud
ξ1

ω1

¯

Φ

„

λ

ˆ?
ud

´ ξ1

ω1

˙

du,

where µ is the mean, γ is the skewness, ν1 and ν2 are the shape parameters and

V arpY q “ σ2ν2{pν1 ´ 1q. As special case when γ “ 0 we have the beta prime normal

distribution, whose p.d.f is given by:

fpy|µ, σ2, ν1, ν2q “
ż 8

0

?
u?

2πσ
e´ ud

2

uν1´1

Bpν1, ν2qp1 ` uqpν1`ν2q du

“ 1?
2πσBpν1, ν2q

ż 8

0

uν1´1{2

p1 ` uqpν1`ν2q e´ ud
2 du

“ 1?
2πσBpν1, ν2q

ˆ

d

2

˙ν1`1{2

G
1,2
2,1

˜

2

d

ˇ

ˇ

ˇ

ˇ

1{2 ´ ν1, 1 ´ pν1 ` ν2q
0

¸

,

where G is the Meijer G-function (Meijer, 1936) given by:

Gm,n
p,q

˜

x

ˇ

ˇ

ˇ

ˇ

a1, . . . , ap

b1, . . . , bq

¸

“ 1

2πi

ż

L

śm

j“1 Γpbj ` tq śn

j“1 Γp1 ´ aj ´ tq
śp

j“n`1 Γpaj ` tq śq

j“m`1 Γp1 ´ bj ´ tqx´tdt,

where i “
?

´1 is the complex unit and L denotes an integration path (see, Gradshteyn

and Ryzhik (2014), for example).

1.5.2 skew Birnbaum-Saunders Normal

Considering U „ BSpν1, ν2q whose p.d.f is given by

hpu|ν1, ν2q “ 1

2
?

2πν1ν2

„

´ν2

u

¯1{2

`
´ν2

u

¯3{2


exp

"

´ 1

2ν2
1

ˆ

u

ν2

` ν2

u
´ 2

˙*

1p0,8qpuq,

we obtain the Centred skew Birnbaum-Saunders Normal, denoted by Y „ CSBSNpµ,

σ2, γ, ν1, ν2q, whose p.d.f is given by:

fpy|µ, σ2, γ, ν1, ν2q “ e
1

ν2

1

´
ξ2

1

2ω2

1

σω12πν1

?
ν2

ż 8

0

exp

"

´1

2

ˆ

ud2 ´ 2
?

ud
ξ1

ω1

` 1

ν2
1

ˆ

u

ν2

` ν2

u

˙˙*

ˆ
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ˆ Φ

ˆ

λ

ˆ?
ud ´ ξ1

ω1

˙˙

”

1 ` ν2

u

ı

du,

where µ is the mean, γ is the skewness, ν1 and ν2 shape parameters and V arpY q “
σ2pν2

1 ` 2q{p2ν2q. As special case when γ “ 0 we have the Birnbaum-saunders normal

distribution whose p.d.f is given by:

fpy|µ, σ2, ν1, ν2q “ e
1

ν2

1

?
ν2

2πσν1

„

K0 pβ˚q ` ν2
1

1 ` dν2ν
2
1

K´1pβ˚q


,

with β˚ “
a

1 ` dν2ν
2
1{ν2

1 and Kηpzq is the modified Bessel function given by

Kηpzq “ 1

2

´z

2

¯η
ż 8

0

exp

"

´t ´ z2

4t

*

1

tν`1
dt. (1.6)

1.5.3 Centred skew generalized Gamma Normal

Considering U „ GGpν1, ν2, ν3q whose p.d.f is given by

hpu|ν1, ν2, ν3q “ ν2

ν3Γpν1q

ˆ

u

ν3

˙ν1ν2´1

exp

"

´
ˆ

u

ν3

˙ν2
*

1p0,8qpuq,

we obtain the Centred skew generalized Gamma Normal, denoted by Y „ CSGGNpµ,

σ2, γ, ν1, ν2, ν3q, whose p.d.f is given by:

fpy|µ, σ2, γ, ν1, ν2q “ 2e
´

ξ2

1

2ω2

1 ν2

σω1

?
2πνν1ν2

3 Γpν1q

ż 8

0

exp

"

´1

2

ˆ

ud2 ´ 2
?

ud
ξ1

ω1

` 2

ˆ

u

ν3

˙ν2
˙*

ˆ

ˆ Φ

ˆ

λ

ˆ?
ud ´ ξ1

ω1

˙˙

uν1ν2´1{2du,

where µ is the mean, γ is the skewness, ν1, ν2 and ν3 are shape parameters and

V arpY q “ σ2Γpν1 ´1{ν2q{rν3Γpν1qs. As special case when γ “ 0 we have the generalized

gamma normal distribution whose p.d.f is given by:

fpy|µ, σ2, ν1, ν2, ν3q “ 1?
2πσΓpν1q

8
ÿ

m“0

p´1qm pν3d{2qm

m!
Γ

ˆ

ν1 ` m

ν1

` 1

2ν2

´ 1

˙

.

The following figures present examples of densities of aforementioned dis-

tributions . In Figures (3a) and (3b) we have the skew Beta Prime Normal with µ “ 0,

σ “ 4, varying pν1, ν2q “ p5, 10q and pν1, ν2q “ p10, 5q and γ by ´0.9, 0 and 0.9. In Fig-

ures (4a) and (4b) we have the skew Birnbaum-Saunders Normal with µ “ 0, σ “ 4

and pν1, ν2q “ p1, 2q and pν1, ν2q “ p4, 2q, and γ by ´0.9, 0 and 0.9. In Figures (5a) and

(5b) we have the skew generalized Gamma Normal with µ “ 0, σ “ 4 and varying

pν1, ν2, ν3q “ p2, 1, 4q and pν1, ν2, ν3q “ p4, 2, 1q, and γ by ´0.9, 0 and 0.9.

From Figures from 6 to 14, we can see that the considered members of the

SMCSN family may present different behaviors in terms of variability, skewness and
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(b) Probability density function of the skew
Beta Prime Normal with ν1 “ 10 and
ν2 “ 5 varying the skewness parameter
in ´0.9, 0 and 0.9.

Figure 3 – Probability density function of the skew Beta Prime Normal with µ “ 0, σ “ 4

and varying the shape and skewness parameters.
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(a) Probability density function of the skew
Birnbaum-Saunders Normal with ν1 “ 1

and ν2 “ 2 varying the skewness pa-
rameter in ´0.9, 0 and 0.9.
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(b) Probability density function of the skew
Birnbaum-Saunders Normal with ν1 “ 4

and ν2 “ 2 varying the skewness pa-
rameter in ´0.9, 0 and 0.9.

Figure 4 – Probability density function of the skew Birnbaum-Saunders Normal with
µ “ 0, σ “ 4 and varying the shape and skewness parameters.

kurtosis. For example, for the CST distribution the skewness depends not only on γ but

also on ν. Therefore, more than one parameter can affects the behavior of the variability,

kurtosis and skewness. For the variability we can observe that the variance is directly

influenced by EpU´1q. In addition, it is noted that certain distributions may have kurtosis

and skewness greater (in module) than others.
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(a) Probability density function of the skew
generalized Gamma Normal with ν1 “ 2,
ν2 “ 1 and ν3 “ 4 varying the skewness
parameter in ´0.9, 0 and 0.9.
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(b) Probability density function of the skew
generalized Gamma Normal with ν1 “ 4,
ν2 “ 2 and ν3 “ 1 varying the skewness
parameter in ´0.9, 0 and 0.9.

Figure 5 – Probability density function of the skew generalized Gamma Normal with
µ “ 0, σ “ 4 and varying the shape and skewness parameters.
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Figure 6 – Skewness (a) and excess of kurtosis (b) for CST distribution with µ “ 0, σ “ 1

and varying shape and skewness parameters.
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Figure 7 – Skewness (a) and excess of kurtosis (b) for the CSS distribution with µ “ 0,
σ “ 1 and varying the shape and skewness parameters.
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Figure 8 – Skewness (a,b) and excess of kurtosis (c) for the CSGT distribution with
µ “ 0, σ “ 1 and varying the shape and parameters.
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Figure 9 – Skewness (a,b) and excess of kurtosis (c) for the CSCN distribution with
µ “ 0, σ “ 1 and varying the shape and parameters.
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Figure 10 – Skewness (a,b) and excess of kurtosis (c) for CSBPN distribution with µ “ 0,
σ “ 1 and varying shape and parameters.
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Figure 11 – Skewness (a,b) and excess of kurtosis (c) for the CSBSN distribution with
µ “ 0, σ “ 1 and varying the shape and parameters.
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Figure 12 – Skewness (a,b) and excess of kurtosis (c) for the CSGGN distribution with
µ “ 0, σ “ 1, varying the skewness parameter, ν1 and ν2, and fixed ν3 “ 2.
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Figure 13 – Skewness (a,b) and excess of kurtosis (c) for the CSGGN distribution with
µ “ 0, σ “ 1, varying the skewness parameter, ν1 and ν2, and fixed ν3 “ 4.
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Figure 14 – Skewness (a,b) and excess of kurtosis (c) for the CSGGN distribution with
µ “ 0, σ “ 1, varying the skewness parameter, ν1 and ν2, and fixed ν3 “ 6.
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1.6 Profiled log-likelihood for γ

As cited before, the advantages of centered parameterization are in general

an improvement in the interpretation and estimation of the parameters compared to the

usual parameterization (see Arellano-Vale and Azzalini (2008) and Chaves et al. (2019),

for example).

Arellano-Vale and Azzalini (2008) mentioned that under the direct param-

eterization of skew-normal defined in subsection 1.3, as λ Ñ 0 the expected Fisher

information matrix becomes singular. In order to illustrate one of the advantages of

the centered parameterization we follow Arellano-Vale and Azzalini (2008) and Maioli

(2018a), that is, we analyze the behavior of the profile log-likelihood for the skewness

parameter.

Let us consider lDP pµ̂pλq, σ̂2pλq, ν̂pλq, λq the profile log-likelihood for λ, where

µ̂pλq, σ̂2pλq, ν̂pλq are the respective maximum likelihood estimates for a given λ, and the

Relative Profile log-likelihood (RPLL) given by lDP pµ̂pλq, σ̂2pλq, ν̂pλq, λq´lDP pµ̂pλ̂q, σ̂2pλ̂q,
ν̂pλ̂q, λ̂q. Similarly, for the centered parameterization the RPLL is given by lDP pµ̂pγq, σ̂2pγq,
ν̂pγq, γq ´ lDP pµ̂pγ̂q, σ̂2pγ̂q, ν̂pγ̂q, γ̂q

We generated a sample of 100 values from the SMCSN where: µ “ 0,

σ2 “ 1, γ “ 0.7 and ν “ 5 for the Centered Skew-t, ν “ 3 for the Centered Skew-Slash,

ν “ p0.5, 0.5q for the Centered Skew-contaminated Normal, ν “ p6, 5q for the Centered

skew generalized-t, ν “ p3, 5q for the Centered skew Beta Prime Normal, ν “ p1, 1q for

the Centered skew Birnbaum-Saunders Normal and ν “ p2, 2, 2q for Centered skew

generalized Gamma Normal.

From Figures 15-21, it is possible to see that under the direct parameteri-

zation, the relative profile log-likelihood presents a non-quadratic shape around zero,

in addition it presents local maximums, which could lead to a difficult in the obtaining

maximum likelihood estimates. Therefore, we can see some of the advantages of the

CP under the DP (Maioli, 2018a).
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Figure 15 – Profile twice the relative log-likelihood for γ in the centered parameterization
(a) and for λ in the direct parameterization (b) for the skew t distribution
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Figure 16 – Profile twice the relative log-likelihood for γ in the centered parameterization
(a) and for λ in the direct parameterization (b) for the skew Slash distribution
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Figure 17 – Profile twice the relative log-likelihood for γ in the centered parameterization
(a) and for λ in the direct parameterization (b) for the skew Contaminated
Normal distribution
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Figure 18 – Profile twice the relative log-likelihood for γ in the centered parameterization
(a) and for λ in the direct parameterization (b) for the skew generalized t
distribution
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Figure 19 – Profile twice the relative log-likelihood for γ in the centered parameterization
(a) and for λ in the direct parameterization (b) for the skew Beta Prime
Normal distribution
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Figure 20 – Profile twice the relative log-likelihood for γ in the centered parameterization
(a) and for λ in the direct parameterization (b) for the skew Birnbaum-
Saunders distribution



Chapter 1. SMCSN DISTRIBUTIONS 42

-6

-4

-2

0

-0.5 0.0 0.5

γ

2
 R

P
L

L
(µ̂

(γ
),

 σ̂
(γ

),
 ν̂

(γ
),

 γ
)

(a)

-10.0

-7.5

-5.0

-2.5

0.0

-4 -2 0 2 4

λ

2
 R

P
L

L
(µ̂

(λ
),

 σ̂
(λ

),
 ν̂

(λ
),

 λ
)

(b)

Figure 21 – Profile twice the relative log-likelihood for γ in the centered parameterization
(a) and for λ in the direct parameterization (b) for the skew generalized
Gamma Normal distribution
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Chapter 2

A new Semi-parametric model based

on the scale mixture of Centered

skew-normal

Some real problems, where some covariates (explanatory variables) are

related to a response of interest, can be suitably modeled by

Yi “ xJ
i β ` εi, i “ 1, . . . , n, (2.1)

where xi “ p1, xi1, . . . , xipqJ is the vector of explanatory variables of the ith subject, Yi

is the ith observation of the response variable, β “ pβ0, β1, . . . , βpqJ is the vector of

regression parameters and pε1, . . . , εnqJ is the vector of the independent random errors

with Epεiq “ 0 and V arpεiq “ σ2. Maioli (2018a), for example, under the structure of

Equation (2.1), proposed a class of Bayesian regression models where the errors follow

a SMCSN family.

However in some cases we can observe that one or more covariates does

not present a clear relation with the response. An usual approach for that is to include a

non-parametric component in Equation (2.1), that is:

Yi “ xJ
i β ` gpTiq ` εi, i “ 1, . . . , n, (2.2)

where Ti “ pti1, . . . , tiqqJ is a vector of explanatory variables related to the ith experi-

mental unit, g is an unknown function g : Rq Ñ R. A special case of model (2.2) is the

non-parametric regression model given by

Yi “ gpTiq ` εi, i “ 1, . . . , n, (2.3)

where each all components are as defined above. An important issue in estimating the

related parameters is that g has an unknown shape.
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In this work we develop a semi-parametric model of the form (2.2) which has

as special case the non-parametric class of models of the form (2.3), where the errors

belong the SMCSN family, being an extension of the parametric model proposed by

Maioli (2018a). We addressed the frequentist paradigm, using a penalized likelihood

approach through a combination of the SAEM (Delyon et al., 1999) and the ECME (Liu

and Rubin, 1994) algorithms. Also, we proposed diagnostic measures of global and

local influence and goodness-of-fit tools. In addition we performed simulation studies for

parameters recovery and misspecification of the distribution and an application to a real

data set.

2.1 Basis functions

Any continuous function in a function space (Kolmogorov and Fomin, 1999)

can be represented as a linear combination of basis functions. Therefore, we can

represent g as a linear combination of k ď n known basis functions b1, . . . , bK , i.e.,

gpxq « gkpxq “
k

ÿ

i“1

κibipxq,

where κ “ κ1, . . . , κk are unknown coefficients (to be estimated) and k controls the

flexibility (shape) of the curve (Dias, 1999). An important issue is that the base (or

basis) functions must represent the target function g. Additionally, we need to seek for

parsimony, in the sense of having a compromise between the value of k and the choice

of b’s. Therefore, we need to have a balance between the computational effort and the

interpretation of the coefficients pκ1, . . . , κkq.

There are many proposals for choosing the basis functions, as the poly-

nomials, Fourier series, splines and basis splines (B-splines). For more details we

recommend the reading of De Boor (1978) and Kohn et al. (2001), for example. In the

following, we briefly describe the splines approach.

2.1.1 Spline function

Let us suppose an interval, says, ra, bs of the domain of g, and the partition

into k sub-intervals, say rζj´1, ζjs, 1 ď j ď k, where a ă ζ0 ă ¨ ¨ ¨ ă ζk ă b. Then a

polynomial, say, pj is considered to approximate the function g in each interval rζj´1, ζjs,
leading to a polynomial approximation function by parts, say pjpxq in the interval rζj´1, ζjs,
with j “ 1, . . . , k. The values ζ0, . . . , ζk are known in the literature as knots, where ζ0 and

ζk are called external knots and ζ1, . . . , ζk´1 are the internal knots.

Since pjpxq, j “ 1, . . . , k are constructed independently from each other, so

it is not continuous over ra, bs (Hastie and Tibshirani, 1990). This can be problematic,
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mainly if we intend to approximate a smooth function, then, we can connect the polyno-

mials on the internal knots ζ1, . . . , ζk´1, obtaining what we know as a spline function.

A spline of order m “ degree ` 1 with k ´ 1 internal knots is such that

spxq “
m´1
ÿ

i“0

cix
i `

k´1
ÿ

j“1

djpx ´ ζjqm´1
` , where c0, . . . , cm´1 P R and d1, . . . , dk´1 P R, and ur

`

is truncated power function of degree r given by:

ur
`puq “

#

ur, if u ě 0

0, if u ă 0.

Notice that the spline function is a combination of m ` k basis functions.

2.1.2 B-splines

The set of spline functions of order m and interior knots ζ1, . . . , ζk´1 is called

a spline space. It corresponds to a linear space of dimension m ` k (Schumaker, 2007).

The so-called B-splines form a basis of splines spaces, i.e., they consist on pieces of

polynomials, joined together in certain values, called knots. B-splines having compact

support, i.e. they are non-zero within a small interval and zero outside them.

The ith B-spline of order m can be defined recursively as (De Boor, 1978)

Bi,mpxq “ x ´ ζi

ζi`m´1 ´ ζi

Bi,m´1pxq ` ζi`m ´ x

ζi`m ´ ζi`1

Bi`1,m´1pxq,

where

Bi,1pxq “
#

1, if ζi ď x ď ζi`1

0, otherwise

More details on splines and B-splines can be seen at De Boor (1978), Eubank

(1988) and Green and Silverman (1994), for example.

2.2 Curve estimation with splines

Let us consider the model described in Equation (2.2) and that the response

variable Yi comes from a family of distributions F , indexed by a set of q parameters

θ P R
q, which includes the mean, says µ “ fpβ, κq and κ is a vector of non-parametric

parameters.

2.2.1 Regression analysis with splines

In the regression using splines, the estimated coefficients (θ̂) are obtained

by maximizing the log-likelihood associated to F . The degree of smoothing is related to
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the number of basis functions pkq. An usual choice for the basis functions is the cubic

B-splines. The main difficulties in working with this method is the choice of both knot

positions and the number of bases.

2.2.2 Smooth splines

In the smoothing splines the estimated coefficients θ̂ are obtained by maxi-

mizing

`pθ|yq ´ α

2

ż

χ

”

g
p2q
k ptq

ı2

dt, (2.4)

where `p.q is the log-likelihood associated to the family F , α is the smoothing parameter,

χ is a range that covers the support of the variable of interest and the superscript

symbol pkq means the kth derivative. The second component in (2.4) that penalizes the

log-likelihood represents a penalty in the curvature of the estimated function. Conse-

quently, high values of this penalty represent many oscillations in the curvature of the

nonparametric function. With respect to α, large values lead to smooth curves, whereas

small values imply curves with more curvature.

According to Green and Silverman (1994) the function ĝ that maximizes (2.4)

is necessarily a natural cubic spline, see also Craven and Wahba (1978) and Wahba

(1981), for example. Notice that in this case the number of coefficients may be as large

as the number of observations. Consequently, the computational effort becomes higher.

2.3 Semi-parametric penalized likelihood regression

Let us consider: Y “ pY1, . . . , YnqJ a vector of response variables, X “
pxJ

1 , . . . , xJ
n q, xi “ p1, xi1, . . . , xipqJ the covariates related to the ith subject, i “ 1, . . . , n

and T “ pT J
1 , . . . , T J

q q, Tj “ pT1j, . . . , TnjqJ the observations related to covariate Tj

j “ 1, . . . , q. Then, the model (2.2) can be rewritten as:

Y “ Xβ ` gpT1, . . . , Tqq ` ε, (2.5)

where gpT1, . . . , Tqq “ rgpT11, . . . , T1qq, . . . , gpTn1, . . . , TnqqsJ, ε is a vector of random

errors with Epεq “ 0n and Covpεq “ σ2In, where In is an identity matrix of order n

and 0n is a vector of zeros of order n. We adopt the semi-parametric additive model

or additive partially linear model (APLM) as it is known in the literature such that

gpTi1, . . . , Tiqq “
q

ÿ

j“1

gjpTijq, where gjpTijq “
kj
ÿ

l“1

κljblpxijq, bl is a known cubic B-splines

basis, l “ 1, . . . , kj, j “ 1, . . . , q. The estimation by additive models provides a more

simple approximation for the function g, mainly due to the their simpler interpretability,

for example when considering interaction effects between the predictors. That is, once
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the model was fitted, one can examine the effect of each predictor separately (e.g.

gpT1, T2q becomes gpT1q ` gpT2q). Therefore, the model (2.5) can be written as: Y “

Xβ `
q

ÿ

j“1

Tjκj ` ε, where Tj is a matrix with kj basis functions and κj “ pκj1, . . . , κjkj
qJ,

j “ 1, . . . , q. In the usual penalized likelihood regression approach for the APLM, the

estimates of β and g1, . . . , gq are obtained through the maximization of:

`pθ|yq ´ 1

2

q
ÿ

j“1

αj

ż

χ

”

g
p2q
j pwq

ı2

dw “ `pθ|yq ´ 1

2

q
ÿ

j“1

αjκ
J
j Ωjκj, (2.6)

where θ is related to F , associated to the distribution function of ε, and Ωj is a ma-

trix pkj ˆ kjq based on knots. The equation (2.6) can also be simplified to `pθ|yq ´
1

2
κJ

Λκ, where Λ “ diagpα1Ω1, . . . , αqΩqq is a block diagonal matrix. The proof that
ż

χ

”

g
p2q
j pwq

ı2

dw can be rewritten as κJ
j Ωjκj can be seen in Appendix B.

This model can be unidentifiable, unless g˚
j “ Tjκj, j “ 1, ..., k be subject

to some constraint. Vanegas and Paula (2016) and Wood (2017) proposed to use

1
J
n g˚

j “ 0. The technical details related the using of such constrain in the estimation

process can be seen in Appendix C.

2.4 SMCSN additive partial linear model

The SMCSN additive partial linear model is given by: Yi “ xiβ`
q

ÿ

j“1

gjpTijq`εi,

with all related elements defined above, assuming that εi
ind„ SMCSNp0, u´1

i σ2, γ, νq.
Similarly to Maioli (2018a), we have that:

Yi|Ui “ ui
ind„ CSN

˜

xJ
i β `

q
ÿ

j“1

gjpTijq, σ2

ui

, γ

¸

, Ui
iid„ Hp.|νq,

which leads to

Yi|pUi “ uiq D“ xJ
i β `

q
ÿ

j“1

gjpTijq ` σ?
ui

ˆ

Vi ´ µv

σv

˙

,

where Vi
iid„ SNp0, 1, γq and µv and σv are the mean and the variance of Vi respectively.

Then, using Henze’s stochastic representation of Vi in (1.3), we have that

Yi|Ui “ ui
D“ xJ

i β `
q

ÿ

j“1

gjpTijq ´ σ?
ui

µv

σv

` σ

σv

?
ui

pδHi `
?

1 ´ δ2Ziq,

where Hi
iid„ HNp0, 1q K Zi

iid„ Np0, 1q, i “ 1, 2, ..., n. Setting µv “ δb and σv “
?

1 ´ b2δ2,

it comes that

Yi|Ui “ ui
D“ xJ

i β `
q

ÿ

j“1

gjpTijq ´ σδb
?

ui

?
1 ´ b2δ2

` σδ
?

ui

?
1 ´ b2δ2

Hi ` σ
?

1 ´ δ2

?
ui

?
1 ´ b2δ2

Zi
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“ xJ
i β `

q
ÿ

j“1

gjpTijq ` σδ
?

ui

?
1 ´ b2δ2

pHi ´ bq ` σ
?

1 ´ δ2

?
ui

?
1 ´ b2δ2

Zi.

Maioli (2018a) considers ∆ “ σδ{
?

1 ´ b2δ2 and τ “ σ2p1 ´ δ2q{p1 ´ b2δ2q,
such that we can recover σ and δ through: δ “ ∆{

?
τ ` ∆2 and σ2 “ τ ` ∆2p1 ´ b2q.

Then

Yi|Ui “ ui
D“ xJ

i β `
q

ÿ

j“1

gjpTijq ` ∆?
ui

pHi ´ bq `
?

τ?
ui

Zi.

Finally, we have that

Yi|Ui “ ui, Hi “ hi
ind„ N

˜

xJ
i β `

q
ÿ

j“1

gjpTijq ` ∆?
ui

phi ´ bq, τ

ui

¸

, (2.7)

Hi
iid„ HNp0, 1q, (2.8)

Ui
iid„ hp.|νq. (2.9)

In next Section we show the estimation process for θ via penalized maximum

log-likelihood using the hierarchical structure defined in Equation (2.7).

2.5 Maximum penalized log-likelihood estimation

The complete likelihood is given by:

Lcpθ|y, u.hq9
n

ź

i“1

φ

ˆ

yi|µi,
τ

ui

˙

fphiqhpui|νq

9
n

ź

i“1

?
ui?
τ

exp
!

´ ui

2τ
pyi ´ µiq2

)

exp

"

´h2
i

2

*

hpui|νq

9
śn

i“1

?
ui

τn{2
exp

#

´ 1

2τ

n
ÿ

i“1

uipyi ´ µiq2

+

exp

"

´
řn

i“1 h2
i

2

* n
ź

i“1

hpui|νq,

where µi “ xJ
i β`

q
ÿ

j“1

gjpTijq`∆phi´bq{?
ui, remembering that

q
ÿ

j“1

gjpTijq “
q

ÿ

j“1

kj
ÿ

l“1

κljblptijq

“
n

ÿ

j“1

κJ
j bpTijq, µi “ xJ

i β `
n

ÿ

j“1

κJ
j bpTijq ` ∆phi ´ bq{?

ui, θ “ pβJ, κJ, ∆, τ, νJqJ,

β “ pβ1, . . . , βpqJ, κ “ pκ1, . . . , κqqJ, κj “ pκ1j, . . . , κkjjq and k “ pk1, . . . , kqqJ.

For the skew generalized T model, since we set σ2 “ 1, ∆ and τ depend only

on γ, in such way that is better to sample directly from δ (Maioli, 2018a). Therefore, for

this model we have that θ “ pβJ, κJ, δ, νJqJ.

Let yobs “ py1, . . . , ynqJ be an observed sample from Y “ pY1, . . . , YnqJ ind„
SMCSN , and the latent vectors u “ pu1, . . . , unqJ and h “ ph1, . . . , hnqJ. Then the
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complete penalized log-likelihood of the parameters θ is given by:

lP pθ|y, u, hq “ log

˜

śn

i“1

?
ui

τn{2
exp

#

´ 1

2τ

n
ÿ

i“1

uipyi ´ µiq2

+

exp

"

´
řn

i“1 h2
i

2

* n
ź

i“1

hpui|νq
¸

(2.10)

´ 1

2
κJ

Λκ (2.11)

“ 1

2

n
ÿ

i“1

log ui ´ n

2
log τ ´ 1

2τ

n
ÿ

i“1

uipyi ´ µiq2 ´ 1

2

n
ÿ

i“1

h2
i `

n
ÿ

i“1

log phpui|νqq

(2.12)

´ 1

2
κJ

Λκ, (2.13)

where µi “ xJ
i β `

q
ÿ

j“1

gjpTijq ` ∆phi ´ bq{?
ui. The maximum penalized likelihood

estimators are obtained by maximizing (2.10). However, no analytical expression are

obtained from this process. The use of the Expectation-Maximization algorithm (EM

algorithm), as pointed out by Ferreira et al. (2013), leads to an intractable E-step, in this

case, the Expectation-Conditional-Maximization-Either algorithm (ECME algorithm) (Liu

and Rubin, 1994) proposes to maximize the expected complete data function (Q-

function) with CML-steps that maximize the corresponding constrained actual marginal

likelihood function, which may be more treatable in our case.

However, in our case the E-step can not be calculated analytically and

some approximation need to be considered (either analytical or numerical). Two usual

numerical approaches to handle that are the Monte Carlo EM (MCEM), proposed by

Wei et al. (1998) and the Stochastic Approximation of the EM (SAEM), proposed by

Delyon et al. (1999). The first method can be computationally expensive, since a large

number of simulations of the missing data is required. On the other hand, the SAEM

algorithm replaces the E-step by a stochastic approximation, while the Maximization

step remains the same as that of the MCEM. This algorithm has good convergence

properties, see for example Kuhn and Lavielle (2005) and Allassonnière et al. (2010). In

this work we consider a combination of the SAEM and the ECME, where the E- Step

is done through the stochastic approximation of the SAEM algorithm, along with the

CML structure of the ECME algorithm to perform the M-step. This leads to an algorithm

that we name Stochastic Approximation of Expectation-Conditional-Maximization-Either

(SAECME) algorithm. In the following we explain our approach.

Let us consider u “ pu1, . . . , unqJ and t “ pt1, . . . , tnqJ the missing data and

yc “ pyJ, uJ, tJqJ. In the E-step of the ECME algorithm we must obtain the Q-function

given by: Qpθ|θ̂pkqq “ E

”

lP pθ|ycq|yobs, θ̂pkq
ı

, where the superscript pkq indicates the kth

iteration of the algorithm. Thus, dropping out the constants, the Q-function can be written
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as:

Qpθ|θ̂pkqq “ ´n

2
log τ̂ pkq ´ 1

2τ̂ pkq

n
ÿ

i“1

E

´

Uipyi ´ µ̂
pkq
i q2|θ̂pkq

¯

´ 1

2
κ̂pkqJ

Λκ̂pkq

“ ´n

2
log τ̂ pkq ´ 1

2τ̂ pkq

n
ÿ

i“1

E

¨

˝Ui

«

´

yi ´ µ̂
pkq
ci

¯

´ ∆

U
1{2
i

pHi ´ bq
ff2

|θ̂pkq

˛

‚

´ 1

2
κ̂pkqJ

Λκ̂pkq

“ ´n

2
log τ̂ pkq ´ 1

2τ̂ pkq

n
ÿ

i“1

E

ˆ

Ui

´

yi ´ µ̂
pkq
ci

¯2

´ 2
´

yi ´ µ̂
pkq
ci

¯

∆U
1{2
i pHi ´ bq

` ∆2pHi ´ bq2|θ̂pkq
˙

´1

2
κ̂pkqJ

Λκ̂pkq,

where µci “ xJ
i β `

q
ÿ

j“1

gjpTijq and since that Hi ´ b “ Fi, where H denote the Half

Normal distribution, we have that

Qpθ|θ̂pkqq “ ´n

2
log τ̂ pkq ´ 1

2τ̂ pkq

n
ÿ

i“1

„

´

yi ´ µ̂
pkq
ci

¯2

EpUi|θ̂pkqq ´ 2
´

yi ´ µ̂
pkq
ci

¯

∆ˆ

ˆ E

´

U
1{2
i Fi|θ̂pkq

¯

` ∆2
E

´

F 2
i |θ̂pkq

¯



´1

2
κ̂pkqJ

Λκ̂pkq

“ ´n

2
log τ̂ pkq ´ 1

2τ̂ pkq

n
ÿ

i“1

„

´

yi ´ µ̂
pkq
ci

¯2

E
p1;0q
i ´ 2

´

yi ´ µ̂
pkq
ci

¯

∆E
p0.5;1q
i `

∆2E
p0;2q
i



´1

2
κ̂pkqJ

Λκ̂pkq

“ ´n

2
log τ̂ pkq ´ 1

2τ̂ pkq

„

py ´ µ̂pkq
c qJ

E
p1;0qpy ´ µ̂pkq

c q ´ 2∆py ´ µ̂pkq
c qJ

E
p0.5;1q

1n

` ∆2
1

J
n E

p0;2q
1n



´1

2
κ̂pkqJ

Λκ̂pkq,

where E
ps;lq
i “ E

´

U s
i F l

i |yobs, θ̂pkq
¯

and E
ps;lq “ diag

´

E
ps;lq
1 , . . . , E ps;lq

n

¯

.

Notice that E
ˆ

log Ui|yobs, θ̂pkq
˙

and E

´

log hpUi|νq|yobs, θ̂pkq
¯

depend only on

ν, which is assumed to be fixed at this point and we will estimate them after. Also, in

this work we focus on the estimation of δ instead γ due to its ease of working with this

transformation of the skewness parameter, mainly in obtaining the estimators. In order to

calculate the necessary/required expectations we need to draw samples from fpui, hi|yiq
through the conditional method (Ripley, 2009), that consists on drawing samples from

fpui|yiq and fphi|yi, uiq, sequentially. Indeed, to sample from Ui|Yi “ yi we consider the

Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) as explained in

Algorithm 1.

The function gpuiq in Algorithm 1 has to be a probability density function with

the same support as fpui|yiq. Notice that, since (from the Bayes theorem):fpui|yiq “
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Algorithm 1 – Algorithm for simulate Ui|Yi

Given θ “ θ̂pkq, for i “ 1, . . . , n:

1. Starting with an initial value u0
i and set m1 “ 0;

2. Draw u˚
i „ gpu˚

i q from a proper density;

3. Generate C „ Up0, 1q;

4. If C ď min

#

1,
fpu˚

i |θ̂pkq, yiqhpum1

i q
hpu˚

i qfpum1

i |θ̂pkq, yiq

+

, u
pm1`1q
i “ u˚

i , else, u
pm1`1q
i “ u

pm1q
i .

5. Return to step 2 until m1 “ m.

fpyi|uiqhpui|νq{fpyiq9fpyi|uiqhpui|νq, the objective function is a product of two others

(both with positive support). Therefore, a suitable choice for the proposal density can be

the density of Ui itself, which leads to a simpler expression in the Metropolis-Hasting

algorithm. On the other hand, for Hi|yi, ui, considering Equation (2.7) we have that

Lcpθ|yi, ui, hiq92φ

ˆ

yi|µci ` ∆?
ui

hi ´ ∆?
ui

b,
τ

ui

˙

φ phi|0, 1q1phiqp0,8q

9 exp

#

´ ui

2τ

„

yi ´ µci ` ∆?
ui

b ´ ∆?
ui

hi

2
+

exp

"

´1

2
h2

i

*

1phiqp0,8q

9 exp

#

´ ui

2τ

«

ˆ

yi ´ µci ` ∆?
ui

b

˙2

´ 2

ˆ

yi ´ µci ` ∆?
ui

b

˙

∆?
ui

hi ` ∆2

ui

h2
i

ff+

ˆ

exp

"

´1

2
h2

i

*

1phiqp0,8q

9 exp

#

´ ui

2τ

ˆ

yi ´ µci ` ∆?
ui

b

˙2
+

ˆ

exp

"

´1

2
h2

i `
ˆ

yi ´ µci ` ∆?
ui

b

˙ ?
ui∆

τ
hi ´ ∆2

2τ
h2

i

*

1phiqp0,8q

9 exp

#

´ ui

2τ

ˆ

yi ´ µci ` ∆?
ui

b

˙2
+

ˆ

exp

"

´1

2
h2

i

ˆ

1 ` ∆2

τ

˙

`
ˆ

yi ´ µci ` ∆?
ui

b

˙ ?
ui∆

τ
hi

*

1phiqp0,8q

9φ

ˆ

yi|µc ´ ∆?
ui

b,
τ

ui

˙

φ

¨

˝hi|

´

yi ´ µci ` ∆?
ui

b
¯

`

1 ` ∆2

τ

˘

?
ui∆

τ
,

1
`

1 ` ∆2

τ

˘

˛

‚1phiqp0,8q

9φ

ˆ

yi|µc ´ ∆?
ui

b,
τ

ui

˙

φ

ˆ

hi|
∆2b ` ∆

?
uipyi ´ µciq

∆2 ` τ
,

τ

pτ ` ∆2q

˙

1phiqp0,8q.
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Then

Hi|ui, yi
ind„ N

ˆ

∆2b ` ∆
?

uipyi ´ µciq
∆2 ` τ

,
τ

pτ ` ∆2q

˙

1phiqp0,8q, (2.14)

which can be simulated using the rtruncnorm function from the R program (R Core

Team, 2020). Therefore, we can simulate from Ui, Hi|yi according to Algorithm 2 and,

then, estimate to fit the model through the Algorithm 3.

Algorithm 2 – Algorithm for simulate Ui, Hi|Yi

Given θ “ θ̂pkq, for i “ 1, . . . , n:

1. Draw u˚
i from Algorithm 1;

2. Draw h˚
i from the distribution in 2.14, considering ui “ u˚

i , obtained a set of
simulated values, the vector pu˚

i , h˚
i q is a simulated vector of ui, hi|yi,

i “ 1, 2, . . . , n.

We can obtain δpk`1q and σ̂2pk`1q using: δpk`1q “ ∆̂pk`1q{
b

τ̂ pk`1q ` ∆̂2pk`1q and

σ̂2pk`1q “ τ̂ pk`1q ` ∆̂2pk`1qp1 ´ b2q.

In Algorithm 3, δ˚
k is a smoothness parameter (Kuhn and Lavielle, 2004) which

is a decreasing sequence of positive numbers such that
8
ÿ

k“1

δ˚
k “ 8 and

8
ÿ

k“1

δ˚2

k ă 8.

The E-step in the SAECME and MCEM algorithms are essentially the same. However,

in the former a significant smaller number of simulations is necessary/required in the

stochastic simulation, which is suggested to be smaller than 20. This is possible since

SAEM-based algorithms use all the previous steps, weighted by the δ˚
k .

It is noteworthy that if δ˚
k “ 1, @k, the SAECME will have no memory, i.e., it

will be equivalent to a combination of the MCEM and the ECME algorithms and it will

converge (in distribution) to a solution in a neighborhood of the maximum likelihood

estimator. On the other hand, a SAECME with memory (0 ă δ˚
k ă 1) will converge to the

ML solution. Galarza et al. (2017) suggest to use:

δ˚
k “

$

&

%

1, if 1 ď k ď cw

1

k ´ cw
, if cw ` 1 ď k ď w,

where w is the maximum number of iterations and 0 ď c ď 1 is a constant that determines

the percentage of initial iterations with no memory. As pointed by Galarza et al. (2017),

if c “ 0 the algorithm will have memory for all iterations, and hence it will converge to the

ML estimates. If c “ 1, the algorithm will have no memory, and then, it will converge to a

solution in a neighborhood of the maximum likelihood estimator. For the first case (c “ 0),

we need a large w in order to obtain the ML estimates. For the second case (c “ 1), the
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algorithm will output a chain where after applying a burn in and thin, and apply a mean

on the observations can be a reasonable estimate, for example. The choice of suitable

values for w and c can be made through a graphical approach. That is, we can monitor

the behavior of the consecutive estimates and/or the log-likelihood plpθ|yobsqq, using, as

a convergence criterion: ||lpθpk`1q|yobsq ´ lpθpkq|yobsq|| or ||lpθpk`1q|yobsq{lpθpkq|yobsq ´ 1||,
for example.
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Algorithm 3 – SAECME algorithm

E-step: Given θ “ θ̂pkq, for i “ 1, . . . , n do:

• Simulation step: To draw pupl,kq
i , h

pl,kq
i q from fpU,Hi|Yi “ yiq using the Algorithm

2, l “ 1, . . . , m and given m (we discuss such choice later).

• Stochastic approximation: To compute the stochastic approximations for the
conditional expectations necessaries to estimate θ given by:

E
p1;0qpkq
i “ E

p1;0qpk´1q
i ` δ˚

k

«

1

m

m
ÿ

l“1

u
pl,kq
i ´ E

p1;0qpk´1q
i

ff

E
p0.5;1qpkq
i “ E

p0.5;1qpk´1q
i ` δ˚

k

«

1

m

m
ÿ

l“1

b

u
pl,kq
i phpl,kq

i ´ bq ´ E
p0.5;1qpk´1q
i

ff

E
p0;2qpkq
i “ E

p0;2qpk´1q
i ` δ˚

k

«

1

m

m
ÿ

l“1

phpl,kq
i ´ bq2 ´ E

p0;2qpk´1q
i

ff

;

CM-step

Update θ̂pkq by maximizing Qpθ|θ̂pkqq over θ, which leads to obtain the following
expressions:

τ̂ pk`1q “ 1

n

n
ÿ

i“1

„

´

yi ´ µ̂
pkq
ci

¯2

E
p1;0qpkq
i ´ 2

´

yi ´ µ̂
pkq
ci

¯

∆E
p0.5;1qpkq
i ` ∆2E

p0;2qpkq
i



∆̂pk`1q “
˜

n
ÿ

i“1

E
p0;2qpkq
i

¸´1
n

ÿ

i“1

pyi ´ µ̂
pkq
ci qE p0.5;1qpkq

i

β̂pk`1q “
˜

n
ÿ

i“1

xJ
i E

p1;0qpkq
i xi

¸´1
n

ÿ

i“1

xi

«

yiE
p1;0qpkq
i ´

q
ÿ

j“1

ĝjpTijqE p1;0qpkq
i ´ ∆̂pkqE

p0.5;1qpkq
i

ff

“
´

XJ
E

p1;0qpkqX
¯´1

XJ
´

E
p1;0qpkqy ´ E

p1;0qpkqT κ̂pkq ´ E
p0.5;1qpkq

∆̂
pkq

¯

κ̂pk`1q
m “

˜

n
ÿ

i“1

T J
i E

p1;0qpkq
i Ti ` τ̂ pkq

Λm

¸´1
n

ÿ

i“1

Ti

„

yiE
p1;0qpkq
i ´ xJ

i βE
p1;0qpkq
i

´
q

ÿ

j‰m

ĝjpTijqE p1;0qpkq
i ´ ∆̂pkqE

p0.5;1qpkq
i



; , for m “ 1, . . . , q.

CML-step

Update ν̂pk`1q by maximizing the log-likelihood function using, for example,
optim or nlminb R functions, obtaining

ν̂pk`1q “ arg maxν

#

n
ÿ

i“1

log
”

fSMCSNpyi|µ̂pk`1q
i , τ̂ pk`1q, ∆̂pk`1q, νq

ı

+

. (2.15)

Until some convergence criterion has been met, for example, ||θ̂pk´1q ´ θ̂pkq|| ă c,
where c ą 0.
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2.5.1 Effective degrees of freedom

Within the context of additive partially linear models, the degrees of freedom

are approximately the number of parameters related to the non-parametric compo-

nents (Hastie and Tibshirani, 1990; Ibacache-Pulgar et al., 2013). The effective degrees

of freedom, based on the estimator of κ, are given by:

dfpαq “ tr tT Sf u “ tr
"

T
´

T J
E

p1;0qT ` τ̂Λ

¯´1

T J
*

“ tr
"

T J
´

T J
E

p1;0qT ` τ̂Λ

¯´1

T

*

“ tr
"

”

T J´1

´

T J
E

p1;0qT ` τ̂Λ

¯

T ´1
ı´1

*

“ tr
"

´

E
p1;0q ` τ̂T J´1

ΛT ´1
¯´1

*

“
n

ÿ

j“1

1

Ljpαq ,

where Ljpαq is the jth eigenvalue of
´

E
p1;0q ` τ̂T J´1

ΛT ´1
¯

.

2.5.2 Information Criteria

The Akaike Information Criterion (AIC) (Akaike, 1974), Bayesian Information

Criterion (BIC) (Schwarz et al., 1978), Corrected AIC (AICc) (Hurvich and Tsai, 1989),

Hannan-Quinn Information Criterion (HQIC) (Hannan and Quinn, 1979), Consistent AIC

(CAIC) (Bozdogan, 1987) and Sample-size Adjusted BIC (SABIC) are given respectively

by

AICpαq “ ´2lppθ̂, αq ` 2 rp ` q ` dfpαqs ,

BICpαq “ ´2lppθ̂, αq ` logpnq rp ` q ` dfpαqs ,

AICcpαq “ ´2lppθ̂, αq ` 2 rp ` q ` dfpαqs rp ` q ` dfpαq ` 1s
n ´ p ´ q ´ dfpαq ´ 1

,

HQICpαq “ ´2lppθ̂, αq ` 2 logplogpnqq rp ` q ` dfpαqs ,

CAICpαq “ ´2lppθ̂, αq ` plogpnq ` 1q rp ` q ` dfpαqs ,

SABICpαq “ ´2lppθ̂, αq ` log

ˆ

n ` 2

24

˙

rp ` q ` dfpαqs ,

where lppθ̂, αq denotes the penalized log-likelihood function available at θ̂ for a fixed α.

These measures can be used to select an appropriate model and/or value of α (see

Ibacache-Pulgar and Reyes (2017) who used the AIC for this purpose, for example).

2.5.3 Obtaining the standard errors

There are several ways to obtain (approximate) estimates for the neces-

sary/required standard errors, when some EM type algorithm is employed. Usually

the observed information matrix is considered, see for example (Segal et al., 1994).

In this work we consider the Louis principle (Louis, 1982), which relates the score
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function of complete and incomplete log-likelihood through the conditional expectation

50pθq “ Er5cpθ, Yc|Yobsqs, where 50pθq “ Bl0pθ, Yobsq{Bθ and 5cpθq “ Blcpθ, Ycq{Bθ

are the score function of incomplete and complete data, respectively. Also, Meilijson

(1989) defined the empirical information as

Iepθ, yq “
n

ÿ

i“1

spyi|θqspyi|θqJ ´ 1

n
Spy|θqSpy|θqJ, (2.16)

where Spy|θq “
n

ÿ

i“1

spyi|θq and spyi|θq is the empirical score function for the ith obser-

vation, which is given by

spyi|θq “ E

„Blcpθ, ycq
Bθ

|yc



“
`

spyi|βq, spyi|κq, spyi|σ2q, spyi|δq
˘J

,

where

spyi|βq “ ´1

τ

“

xJ
i ∆E0.5;1

i ´ xJ
i pyi ´ µciqE1;0

i

‰

spyi|κq “ ´1

τ

“

T J
i ∆E0.5;1

i ´ T J
i pyi ´ µciqE1;0

i

‰

´ 1

2
κJ

Λ.

Therefore

B∆

Bσ2
“ ∆

2σ2
, A1 “ Bτ

Bσ2
“ τ

σ2
, A2 “ B∆{τ

Bσ2
“ ´ δ

?
1 ´ b2δ2

2σ3p1 ´ δ2q ,

spyi|σ2q “ ´n

2

1

τ
A1 ´ 1

2

n
ÿ

i“1

´ 1

τ 2
A1pyi ´ µciq2E1;0

i ´ 2pyi ´ µciqE0.5;1
i A2

“ ´ n

2σ2
` 1

2

n
ÿ

i“1

1

τσ2
pyi ´ µciq2E1;0

i ` 2pyi ´ µciqE0.5;1
i A2,

A3 “ B∆

Bδ
“ σ?

1 ´ b2δ2

ˆ

1 ` δ2b2

1 ´ b2δ2

˙

,

A4 “ Bτ

Bδ
“ 2δσ2

1 ´ b2δ2

„p1 ´ δ2qb2

1 ´ b2δ2
´ 1



, A5 “ B∆{τ

Bδ
“ τA3 ´ ∆A4

τ 2
,

A6 “ B∆2{τ

Bδ
“ 2∆τA3 ´ ∆2A4

τ 2

spyi|δq “ ´ n

2τ
A4 ´ 1

2

n
ÿ

i“1

´ 1

τ 2
A4(yi ´ µciq2E1;0

i ´ 2A5pyi ´ µciqE0.5;1
i ` A6E

0;2
i .

Replacing θ for the respective maximum likelihood estimate, say θ̃, and

assuming that 50pθ̂q “ 0, we have that Equation (2.16) can be rewritten as Iepθ̂, yq “
n

ÿ

i“1

spyi|θqspyi|θqJ.

Finally, the variance-covariance matrix of the maximum likelihood estimates

can be approximated by Covpθ̂q “ I´1
e pθ̂, yq and the respective standard errors are

given by the square of root of the diagonal values of Covpθ̂q.
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2.5.4 Diagnostic analysis

Since the statistical models tend to be sensitive to the lack of underlying

assumptions, performing diagnostic analysis is an essential step in data analysis.

Residual analysis are useful diagnostic tools for checking the departing from

some specific model assumptions, as well as to provide overall subsidies concerning

the goodness of model fit. The works of Cox and Snell (1968), Belsley et al. (1980) and

Cook and Weisberg (1982) are seminal references. In terms of the so-called QQ-plots

Atkinson (1981) proposed to build simulated based confidence bands (the so-called

envelopes) to allow a better comparison between the residuals of interest and the

percentiles of the reference (expected) distribution.

Another set of important techniques is the sensitive analysis, consisting

on evaluating changes in the fitted model when perturbations are introduced into the

data and/or (some) model assumptions. These techniques are divided into global and

local influence analysis. In its turn, global influence analysis is usually divided into

two approaches. The first one is the leverage analysis, which consists on studying

the influence of a given observation on its respective predicted value (Hoaglin and

Welsch, 1978). The second approach is the case deletion analysis, which can assess,

for example, the impact of removing a particular observation on the parameter estimates

of a regression model. In this case the Cook’s distance (Cook, 1977) is commonly used

for this purpose. On the other hand, in the local influence analyses (Cook, 1986) the

effect of an infinitesimal perturbation on the data and/or on some component of the

model, using a likelihood-based measure namely likelihood displacement, is considered.

For the proposed model we can use several of the aforementioned techniques

and their respective generalizations. Indeed, Zhu and Lee (2001) proposed an one-

step pseudo approximation for case deletion analysis which can be used to build a

kind of generalized Cook’s distance measure. Osorio (2006) proposed a generalized

leverage measure for incomplete data. Maioli (2018b) proposed a residual that can be

used for the SMCSN family. Cadigan and Farrell (2002a) proposed a generalization of

likelihood displacement, which can be used to construct of perturbation schemes for

local influence analysis.

2.5.5 Residual analysis

Based on the developed residuals in Maioli (2018b), we define the following

residuals

Ri “
Yi ´ xJ

i β̂ ´ řn

j“1 κ̂J
j bpTijq

σ̂
, (2.17)

where, according to Maioli (2018b), Ri
iid„ SMCSNp0, 1, γ, νq.
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2.5.6 Case deletion analysis

A given observation is said to be influential if, according to some criterion,

it has a significant impact on the inference related to a given model. One of the most

common techniques for influence analysis is the Cook’s distance. It measures the

impact of each observation on the respective predicted value by assessing the distance

between θ̂ (the estimate obtained with all observations), and without the observation

yi, namely θ̂p´iq. Let lcppθ, ycp´iqq be the complete-data penalized log-likelihood cal-

culated without the observation yi. Also, let θ̂p´iq “
´

β̂p´iq, κ̂p´iq, τ̂p´iq, ∆̂p´iq, ν̂p´iq

¯

be

the argument that maximizes the penalized maximum likelihood using Qp´iqpθ|θ̂q “
E

”

lP pθ|ycp´iqq|yobsp´iq, θ̂
ı

. To obtain
´

θ̂p´iq

¯

we can use Algorithm 3 n times, i.e., remov-

ing each one of the observations. However, the computational effort can be quite high,

mainly for large sample sizes. To circumvent that Zhu and Lee (2001) proposed the

following one-step pseudo approximation:

θ̂˚
p´iq “ θ̂ `

”

´Qp2qpθ|θ̂q
ı´1

Q
p1q
p´iqpθ|θ̂q, (2.18)

where

Qp2qpθ|θ̂q “ B2Qpθ|θ̂q
BθBθJ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

and Q
p1q
p´iqpθ|θ̂q “ BQp´iqpθ|θ̂q

Bθ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

,

are the Hessian matrix and the individual score vector evaluated at θ̂, respectively. Notice

that Q
p1q
p´iqpθ|θ̂q “ pQp1q

p´iqβpθ|θ̂q, Q
p1q
p´iqκpθ|θ̂q, Q

p1q
p´iqτ pθ|θ̂q, Q

p1q
p´iq∆pθ|θ̂q, Q

p1q
p´iqνpθ|θ̂qqJ where

Q
p1q
p´iqβpθ|θ̂q “ BQp´iqpθ|θ̂q

Bβ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ 1

τ̂

n
ÿ

l“1,l‰i

”

xJ
l pyl ´ µ̂clqE p1;0q

l ´ xJ
l ∆̂E

p0.5;1q
l

ı

Q
p1q
p´iqκpθ|θ̂q “ BQp´iqpθ|θ̂q

Bκ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ 1

τ̂

n
ÿ

l“1,l‰i

„

T J
l pyl ´ µ̂clqE p1;0q

l ´ T J
l ∆̂E

p0.5;1q
l ´ 1

n
Λκ̂



Q
p1q
p´iqτ pθ|θ̂q “ BQp´iqpθ|θ̂q

Bτ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ ´ 1

2τ̂ 2

n
ÿ

l“1,l‰i

„

τ̂ ´ pyl ´ µ̂clq2E
p1;0q
l

` 2pyl ´ µ̂clq∆̂E
p0.5;1q
l ´ ∆̂2E

p0;2q
l



Q
p1q
p´iq∆pθ|θ̂q “ BQp´iqpθ|θ̂q

B∆

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ 1

τ̂

n
ÿ

l“1,l‰i

”

pyl ´ µ̂clqE p0.5;1q
l ´ ∆̂E

p0;2q
l

ı

.

According to Zhu and Lee (2001) to measure the distance between θ̂p´iq and

θ̂, we can compute the generalized Cook’s distance:

GCDi “
´

θ̂p´iq ´ θ̂
¯J !

´Qp2qpθ|θ̂q
) ´

θ̂p´iq ´ θ̂
¯

. (2.19)

Now, using (2.19) in (2.18) we obtain an approximation to the generalized

Cook’s distance, given by GCD1
i “ Qp1qpθ|θ̂qJ

!

´Qp2qpθ|θ̂q
)´1

Qp1qpθ|θ̂q, i “ 1, . . . , n,
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where:

Q
p2q
β pθ|θ̂q “ BQpθ|θ̂q

BβBβJ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ ´1

τ̂

n
ÿ

i“1

xix
J
i E

p1;0q
i

Q
p2q
βκpθ|θ̂q “ BQpθ|θ̂q

BβBκJ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ ´1

τ̂

n
ÿ

i“1

Tix
J
i E

p1;0q
i

Q
p2q
βτ pθ|θ̂q “ BQpθ|θ̂q

BβBτ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ ´ 1

τ̂ 2

n
ÿ

i“1

”

xJ
i pyl ´ µ̂ciqE p1;0q

i ´ xJ
i ∆̂E

p0.5;1q
i

ı

Q
p2q
β∆pθ|θ̂q “ BQpθ|θ̂q

BβB∆

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ ´1

τ̂

n
ÿ

i“1

xJ
i E

p0.5;1q
i

Qp2q
κ pθ|θ̂q “ BQpθ|θ̂q

BκBκJ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ ´1

τ̂

n
ÿ

i“1

TiT
J
i E

p1;0q
i ´ Λ

Qp2q
κτ pθ|θ̂q “ BQpθ|θ̂q

BκBτ

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ ´ 1

τ̂ 2

n
ÿ

i“1

„

T J
i pyi ´ µ̂ciqE p1;0q

i ´ T J
i ∆̂E

p0.5;1q
i ´ 1

n
Λκ̂



Q
p2q
κ∆pθ|θ̂q “ BQpθ|θ̂q

BκB∆

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ ´1

τ̂

n
ÿ

i“1

T J
i E

p0.5;1q
i

Qp2q
τ pθ|θ̂q “ BQpθ|θ̂q

Bτ 2

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ 1

τ̂ 3

n
ÿ

i“1

„

τ̂

2
´ pyi ´ µ̂ciq2E

p1;0q
i

` 2pyi ´ µ̂ciq∆̂E
p0.5;1q
i ´ ∆̂2E

p0;2q
i



Q
p2q
τ∆pθ|θ̂q “ BQpθ|θ̂q

BτB∆

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ 1

τ̂ 2

n
ÿ

i“1

”

∆̂E
p0;2q
i ´ pyi ´ µ̂ciqE p0.5;1q

i

ı

Q
p2q
∆ pθ|θ̂q “ BQpθ|θ̂q

B∆2

ˇ

ˇ

ˇ

ˇ

θ“θ̂

“ ´1

τ̂

ÿ

i“1

E
p0;2q
i .

2.5.7 Generalized leverage

In Normal Linear models the main idea of the leverage analysis is to study the

influence of the ith observation yi on the fitted value itself ŷi through hii, the elements of

main diagonal of the Hat matrix H , once hii “ Bŷi{Byi, i.e., hii is the variation of ŷi when

yi is increased by an infinite one. For more details about the leverage analysis, see for

example, Hoaglin and Welsch (1978), Emerson et al. (1984) and Wei et al. (1998).

Wei et al. (1998) proposed a leverage measure for a general class of re-

gression models, namely, generalized leverage. Following this idea, Osorio (2006)

introduced the generalized leverage for incomplete data and Ferreira et al. (2015) ex-

tended this concept to the SMSN regression models. The generalized leverage is given

by GHpθ̂q “ Dθ

”

´ :Qθ

ı´1
:Qθ,y, where Dθ “ Bµ{BθJ and :Qθ,y “ B2Qθpθ|θ̂q{BθByJ

are the Hessian matrix given in section 2.5.6. Thus, the elements of Dθ are given by

Dβ “ X, Dκ “ T and D∆ “ Dτ “ 0, and the elements of :Qθ,y are given by :Qβ,y “
1

τ
XJ

E
p1;0q, :Qκ,y “ 1

τ
T J

E
p1;0q, :Q∆,y “ 1

τ
E

p0.5;1q, :Qτ ,y “ 1

τ 2

”

py ´ µcqE p1;0q ´ ∆E
p0.5;1q

ı

.
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2.5.8 Local influence

The local influence method proposed by Cook (1986) consists on the assess-

ment of the model under small perturbations on the model assumptions and/or on the

data. If such perturbations lead to significance inferential changes, the model could not

be robust against them. Therefore, the model could be not suitable to analyze the data.

Through this methodology we can assess the model robustness against outliers and/or

lacking of model assumptions, as heteroscedasticidity. Also, the behavior of covariates

in the regression structures, can be analyzed.

The most usual measure of influence is the likelihood displacement proposed

by Cook (1986). However, for our case we can build a displacement measure using the

function Q, following the idea of Zhu and Lee (2001) and Cadigan and Farrell (2002b)

we can define the Q-displacement and we can get various perturbation schemes using

it.

Let us consider a perturbation vector, say ω “ pω1, . . . , ωmqJ restricted to

some open subset Ω P R
m. Let lcppθ, ω|ycq be the penalized complete log-likelihood of

the perturbed model. Also, let θ̂pωq “
´

β̂pωqJ, κ̂pωqJ, τ̂pωqJ, ∆̂pωqJ
¯J

be the maximum

of the function Qpθ, ω|θ̂q “ E

”

lP pθ, ω|ycq|yobs, θ̂
ı

. Then the Q-displacement is given by

QDpωq “ 2
!

Qpθ̂|θ̂q ´ Qpθ̂pωq|θ̂q
)

.

Cook (1986) proposed to study the local behavior of QDpωq for any value

of ω in a neighborhood of ω0, which represents the null perturbation vector, such that

Qpθ̂pω0q|θ̂q “ Qpθ̂|θ̂q ùñ QDpω0q “ 0. The length of the vector ω, m, depends on the

proposed perturbation scheme. It is considered a pm ` 1q-dimensional surface called

Influence Graph, which is function of αω “
“

ωJ, QDpωq
‰J

when ω P Ω. Then, the local

influence method consists on evaluating how the surface αω deviates from the tangent

plane in ω0. Such analysis can be done by studying the curvatures of the normal surface

sections αω in ω0. Verbeke and Molenberghs (2000) illustrated through Figure 22 the

normal curvature for a surface αω.

The intersection between the normal section and the tangent plane T0 is

named projected line. Cook (1986) suggests to study the normal curvature (Bates and

Watts, 1980) of the projected line on the plot QDpω0 ` adq ˆ a, where a P R and d is

an arbitrary direction of norm equals to one (||d|| “ 1). It can be shown that the normal

curvature in the d direction is given by (Cook, 1986):

CQD,d “ 2|dJ
Υ

J
θ,ω0

!

Qp2qpθ|θ̂q
)´1

Υθ,ω0
d|, (2.20)

leading to ´Qp2q
ω0

“ Υ
J
θ,ω0

!

Qp2qpθ|θ̂q
)´1

Υθ,ω0
, where Υθ,ω0

“ B2Qpθ, ω|θ̂q{BθBωJ “
`

Υ
J
β,ω0

, Υ
J
κ,ω0

, Υ
J
τ,ω0

, Υ
J
∆,ω0

˘J
at θ “ θ̂. According to Cook (1986) the information pro-

vided by ´Qp2q
ω0

is fundamental for detecting influential observations in QDpωq. We can



Chapter 2. Semi-parametric SMCSN model 61

Figure 22 – Normal curvature for a surface αω and unitary direction h.

Source: Verbeke and Molenberghs (2000).

analyze the direction of the dmax, the eigenvector corresponding to the projected line of

largest curvature Cmax associated with the highest eigenvalue of the matrix ´Qp2q
ω0

. The

most usual plot for local influence analysis is the index versus dmax.

We developed local influence schemes for case-weight perturbation, the

response variable perturbation, the scale parameter perturbation, the skewness pa-

rameter perturbation and continuous covariate perturbation. In a general way, the

case-weight perturbation can be interpreted as a perturbation in the variance of each

experimental unit. The response variable disturbance can be seen as a tool for identify-

ing outliers (Schwarzmann, 1991a). The individual perturbation scheme of covariates

helps to evaluate the influence of each one of them on the estimation process. However,

this scheme makes sense only if the covariate is continuous. Disturbances in the scale

parameter and skewness are useful for checking the model sensitivity to the lacking of

the homogeneity of these parameters along the observations.

2.5.8.1 Case-weight perturbation

Let us consider the following the perturbation scheme:

Qpθ, ω|θ̂q “
n

ÿ

i“1

ωiE

”

lcpipθ|ycq|yobs, θ̂
ı

“
n

ÿ

i“1

ωiQipθ|θ̂q ´ 1

2
κJ

Λκ,
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where ω “ pω1, . . . , ωnqJ and ω0 “ p1, . . . , 1qJ. The elements of Υθ,ω0
of Equation (2.20)

are given by:

Υβ,ω0
“ B2Qpθ, ω|θ̂q

BβBωi

“ 1

τ̂
xJ

i

”

pyi ´ µ̂ciqE p1;0q
i ´ ∆̂E

p0.5;1q
i

ı

Υκ,ω0
“ B2Qpθ, ω|θ̂q

BκBωi

“ 1

τ̂
T J

i

”

pyi ´ µ̂ciqE p1;0q
i ´ ∆̂E

p0.5;1q
i

ı

Υσ2,ω0
“ B2Qpθ, ω|θ̂q

Bσ2Bωi

“ ´ 1

2σ2
` 1

2τσ2
pyi ´ µciq2E

p1;0q
i ` A2pyi ´ µciqE p0.5;1q

i ´ 1

2
A7E

p0;2q
i

Υδ,ω0
“ B2Qpθ, ω|θ̂q

BδBωi

“ ´A4

2τ
` A4

2τ 2
pyi ´ µciq2E

p1;0q
i ` A5pyi ´ µciqE p0.5;1q

i ´ 1

2
A6E

p0;2q
i ,

where

A7 “ B∆2{τ

Bσ2
“ ∆2τ

σ6
´ A1∆

2

σ4
.

2.5.8.2 Scale perturbation

We assume that Yi
ind„ SMCSNpµi, ω´1

i σ2, γ, νq, ωi ą 0 for i “ 1, . . . , n. The

perturbed Q-function, under this scheme, is given by:

Qpθ, ω|θ̂q “
n

ÿ

i“1

´1

2
log

ˆ

τ̂

ωi

˙

´ ωi

2τ̂

„

´

yi ´ µ̂
pkq
ci

¯2

E
p1;0q
i ´ 2

´

yi ´ µ̂
pkq
ci

¯ ∆?
ωi

E
p0.5;1q
i

` ∆2

ωi

E
p0;2q
i



´1

2
κ̂pkqJ

Λκ̂pkq

“
n

ÿ

i“1

´1

2
log

ˆ

τ̂

ωi

˙

´ 1

2τ̂

„

ωi

´

yi ´ µ̂
pkq
ci

¯2

E
p1;0q
i ´ 2

´

yi ´ µ̂
pkq
ci

¯ ?
ωi∆E

p0.5;1q
i

` ∆2E
p0;2q
i



´1

2
κ̂pkqJ

Λκ̂pkq,

where ω “ pω1, . . . , ωnqJ, ∆ωi
“ ∆{?

ωi, τωi
“ τ{ωi and ω0 “ p1, . . . , 1qJ. The elements

of Υθ,ω0
in Equation (2.20) are given by:

Υβ,ω0
“ B2Qpθ, ω|θ̂q

BβBωi

“ 1

τ̂
xJ

i

„

pyi ´ µ̂ciqE p1;0q
i ´ 1

2
∆̂E

p0.5;1q
i



Υκ,ω0
“ B2Qpθ, ω|θ̂q

BκBωi

“ 1

τ̂
T J

i

„

pyi ´ µ̂ciqE p1;0q
i ´ 1

2
∆̂E

p0.5;1q
i



Υσ2,ω0
“ B2Qpθ, ω|θ̂q

Bσ2Bωi

“ A1

2τ 2
pyi ´ µciq2E

p1;0q
i ` A2

2
pyi ´ µciqE p0.5;1q

i

Υγ,ω0
“ B2Qpθ, ω|θ̂q

BγBωi

“ A4

2τ 2
pyi ´ µciq2E

p1;0q
i ` A5

2
pyi ´ µciqE p0.5;1q

i .

2.5.8.3 Skewness perturbation

We assume that δωi
“ δ{ωi, ωi ą 0 for i “ 1, . . . , n. The perturbed Q-function,

under this scheme, is given by:
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Qpθ, ω|θ̂q “
n

ÿ

i“1

´1

2
logpτ̂ωi

q ´ 1

2τ̂ωi

„

´

yi ´ µ̂
pkq
ci

¯2

E
p1;0q
i ´ 2

´

yi ´ µ̂
pkq
ci

¯

∆ωi
E

p0.5;1q
i

` ∆2
ωi

E
p0;2q
i



´1

2
κ̂pkqJ

Λκ̂pkq

“
n

ÿ

i“1

´1

2
logpτ̂ωi

q `
„

´ 1

2τ̂ωi

´

yi ´ µ̂
pkq
ci

¯2

E
p1;0q
i ` ∆ωi

τ̂ωi

´

yi ´ µ̂
pkq
ci

¯

E
p0.5;1q
i

´ ∆2
ωi

2τ̂ωi

E
p0;2q
i



´1

2
κ̂pkqJ

Λκ̂pkq,

where ω “ pω1, . . . , ωnqJ and ω0 “ p1, . . . , 1qJ. The elements of Υθ,ω0
in Equation (2.20)

are given by:

Υβ,ω0
“ B2Qpθ, ω|θ̂q

BβBωi

“ δxJ
i

„

A5E
p0.5;1q
i ´ A4

τ 2
pyi ´ µciqE p1;0q

i



Υκ,ω0
“ B2Qpθ, ω|θ̂q

BκBωi

“ δT J
i

„

A5E
p0.5;1q
i ´ A4

τ 2
pyi ´ µciqE p1;0q

i



Υσ2,ω0
“ B2Qpθ, ω|θ̂q

Bσ2Bωi

“ A4δ

2σ2τ 2
pyi ´ µciq2E

p1;0q
i ´ δAδ

2pyi ´ µciqE p0.5;1q
i

Υδ,ω0
“ B2Qpθ, ω|θ̂q

BδBωi

“ δ

2τ 2

`

Aδ
4τ ´ A2

4

˘

` δ

2τ 4

`

Aδ
4τ

2 ´ 2A2
4τ

˘

pyi ´ µciq2E
p1;0q
i ´

δAδ
5pyi ´ µciqE p0.5;1q

i ` δAδ
6

2
E0;2

i ,

where

Aδ
2 “ BA2

Bδ
“ ´ 1

2σ3p1 ´ δ2q2

ˆ?
1 ´ b2δ2 ` δ2b2

?
1 ´ b2δ2

˙

Aδ
4 “ BA4

Bδ
“ 2σ2

p1 ´ b2δ2q2

"

b2

1 ´ b2δ2

“

p1 ´ δ2qp1 ´ b2δ2q ` 4δ2b2p1 ´ δ2q
‰

´ p1 ` b2δ2q
*

Aδ
3 “ BA3

Bδ
“ σδb2

p1 ´ b2δ2q3{2

"

1 ` 1

1 ´ b2δ2

“

2p1 ´ b2δ2q ` 3δ2b2
‰

*

B2∆

Bδ2
“ σ

„

´ 1

2p1 ´ b2δ2qp3{2q ` b2

p1 ´ b2δ2q3

`

2δp1 ´ b2δ2q3{2 ` 3δ3b2p1 ´ b2δ2q
˘



Aδ
5 “ BA5

Bδ
“ 1

τ 3

“

τ
`

τAδ
3 ´ ∆Aδ

4

˘

´ 2Aδ
4pτA3 ´ ∆A4q

‰

Aδ
6 “ BA6

Bδ
“ 1

τ 3

“

τp2A2
3τ ` 2∆τAδ

3 ´ ∆2Aδ
4q ´ 2A4p2∆τA3 ´ ∆2A4q

‰

.

2.5.8.4 Continuous explanatory variable perturbation

Let ω “ pω1, . . . , ωnqJ be the perturbation vector. We consider an additive

perturbation to the r-th covariate given by xJ
iω “ xJ

i ` ωiSre
J
r , i “ 1, . . . , n and r “

1, . . . , p, where Sr is the standard deviation of the rth covariate vector and eJ
r is a

p-vector with 1 in r-th position and 0’s elsewhere. In this scheme we have:
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Qpθ, ω|θ̂q “ ´n

2
log τ̂ pkq ´ 1

2τ̂ pkq

n
ÿ

i“1

„

´

yi ´ µ̂˚pkq

ci

¯2

E
p1;0q
i ´ 2

´

yi ´ µ̂˚pkq

ci

¯

∆E
p0.5;1q
i

` ∆2E
p0;2q
i



´1

2
κ̂pkqJ

Λκ̂pkq,

where µ̂˚
ci “ xJ

iωβ `
k

ÿ

j“1

Tijκj. In this case the non perturbation vector is given by

ω0 “ p0, . . . , 0qJ. The elements of Υθ,ω0
in Equation (2.20) are given by:

Υβ,ω0
“ B2Qpθ, ω|θ̂q

BβBωi

“ 1

τ

!

“

Sre
J
r pyi ´ µciq ´ xJ

i Sre
J
r β

‰

E
p1;0q
i ´ Sre

J
r ∆E

p0.5;1q
i

)

Υκ,ω0
“ B2Qpθ, ω|θ̂q

BκBωi

“ ´Sre
J
r β

τ̂
T J

i E
p1;0q
i

Υσ2,ω0
“ B2Qpθ, ω|θ̂q

Bσ2Bωi

“ 1

τσ2
Sre

J
r pyi ´ µciqE p1;0q

i ´ Sre
J
r A2E

p0.5;1q
i

Υγ,ω0
“ B2Qpθ, ω|θ̂q

BγBωi

“ 1

τ 2
A4Sre

J
r pyi ´ µciqE p1;0q

i ´ Sre
J
r A5E

p0.5;1q
i .

2.5.8.5 Response variable perturbation

In this case we consider again an additive perturbation scheme given by

yiωi
“ yi ` Syωi, for i “ 1, . . . , n. The perturbation and non-perturbation vectors are

given by ω “ pω1, . . . , ωnqJ and ω0 “ p0, . . . , 0qJ, respectively. The perturbed Q-function

is given by

Qpθ, ω|θ̂q “ ´n

2
log τ̂ pkq ´ 1

2τ̂ pkq

n
ÿ

i“1

„

´

yiωi
´ µ̂

pkq
ci

¯2

E
p1;0q
i ´ 2

´

yiωi
´ µ̂

pkq
ci

¯

∆E
p0.5;1q
i

` ∆2E
p0;2q
i



´1

2
κ̂pkqJ

Λκ̂pkq,

the elements of Υθ,ω0
, in Equation (2.20), are given by:

Υβ,ω0
“ B2Qpθ, ω|θ̂q

BβBωi

“ Sy

τ̂
xJ

i E
p1;0q
i

Υκ,ω0
“ B2Qpθ, ω|θ̂q

BκBωi

“ Sy

τ̂
T J

i E
p1;0q
i

Υσ2,ω0
“ B2Qpθ, ω|θ̂q

Bσ2Bωi

“ ´ Sy

τσ2
pyi ´ µciqE p1;0q

i ` A2SyE
p0.5;1q
i

Υδ,ω0
“ B2Qpθ, ω|θ̂q

BδBωi

“ ´A4

τ 2
Sypyi ´ µciqE p1;0q

i ` A5SyE
p0.5;1q
i .
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2.5.9 Simulation studies

Following, we will analyze the performance of the proposed models and the

estimators through two simulation studies: one for the parameters recovery and another

for the misspecification of the distribution of the response variable.

2.5.9.1 Simulation study 1

This simulation study aims to investigate asymptotic properties of the pro-

posed model. We generate 100 Monte Carlo replicas from: Yi “ x1i`2x2i`cosptiq`εi, i “
1, . . . , n, where x11, . . . , x1n

iid„ Up0, 1q and x21, . . . , x2n
iid„ Up0, 2q, considering n “ 50, 100

and 300, ti P p0, 3πq, 300 iterations of the SAEM algorithm, k “ 1{3 and the following

scenarios, chosen in such a way that we have error distributions with high asymme-

try and heavy tails: εi
iid„ CSNp0, 1, 0.8q, εi

iid„ CST p0, 1, ´0.8, 5q, εi
iid„ CSSp0, 1, 0.8, 3q,

εi
iid„ CSCNp0, 1, ´0.8, 0.5, 0.5q, εi

iid„ CSGT p0, 1, 0.8, 15, 5q, εi
iid„ CSBP p0, 1, ´0.8, 3, 3q,

εi
iid„ CSBSp0, 1, 0.8, 1, 1q and εi

iid„ CSGGp0, 1, ´0.8, 2, 1, 0.66q, independent for i “
1, . . . , n.

We decided to set the smoothness parameter α at 0.01, since for certain

replicas under low sample size, the poor estimation of the scale parameter lead to

non-smooth non-parametric curves. Indeed, small values of α can lead to an overfit-

ting (Hastie and Tibshirani, 1990). However, since in the simulations we only want to

check how close the estimated and curves are, we can consider that value.

For the CSGGN distribution we noticed a bias in its estimates that increase

as the sample size increases. Maybe this is due to some identifiability problem, probably,

between the scale parameter and the shape parameters. As example, when ν2 “ 1 the

mixing distribution generalized gamma reduces to the gamma distribution and in this

case the CSGGN distribution reduces to CSGT distribution that has this identifiability

problem. Therefore, we decided, also, for the CSGGN distribution assume that σ2 “ 1,

for simulations and in the rest of this work.

The results for all models can be found in Appendix E. It can be seen from

the boxplots that as the sample size increases, the bias and variability of β0, β1, σ2

and δ estimates, decrease, except for β0 in the CSGT model, where we can observe

an underestimation. For the CST and CSGT distributions, both bias and variability

for ν estimates decrease as the sample size increase. For the other distributions ν is

either overestimated or underestimated. However, the respective bias decreases as the

sample size increases, as shown by the
?

MSE{ν plots. For the non parametric curves,

the variability of the estimates over the replicas decreases as the sample size increases,

for all models.
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2.5.9.2 Simulation study 2

To evaluate the proposed model on the robustness of the estimates against

model misspecification, we generated only one Monte Carlo replica from: Yi “ 2x1i `
sinpt2

i ´ ti ` 2q ` εi, i “ 1, . . . , 300, where x1i
iid„ Up0, 1q, ti P p0, 3q, 500 iterations of

the SAEM algorithm, k “ 2{3 and the following scenarios, chosen in such way that

we have situations of high asymmetry and high heavy tails: εi
iid„ CST p0, 1, 0.8, 3q and

εi
iid„ CSSp0, 1, ´0.8, 2q. Then, we fitted all models of the SMCSN and CSN distributions,

for this simulated data.

From Figures 23 and 26, we can see that the nonparametric fitted curves

are close to the actual ones. For the data set generated from the CST model, the

regression parameters estimates are close to the actual ones, except for the CSN

and CSS distributions. Also, the variance is clearly overestimated for the CSS model.

For the model generated from the CSS we notice that the regression parameters and

the estimated variances are close to the real values. These results give us a strong

indication that a distribution within the SMCSN class may be better than the others in

certain situations. However, we strongly recommended to fit and compare all developed

models in this work, for a given data set.
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Figure 23 – Fitted and actual curves by distribution for the simulation study 2 generated
by CST distribution.
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Figure 24 – β̂ along the iterations of the SAEM algorithm for each fitted model - simula-
tion study 2 with the data set generated by CST distribution.
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Figure 25 – V̂arpY q along the iterations of the SAEM algorithm for each fitted model -
simulation study 2 with the data set generated by CST distribution.
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Figure 26 – Fitted and actual curves by distribution and the actual curve for the simula-
tion study 2 generated by CSS distribution.
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Figure 27 – β̂ along the iterations of the SAEM algorithm for each fitted model - simula-
tion study 2 with the data set generated by CSS distribution.
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Figure 28 – V̂arpY q along the iterations of the SAEM algorithm for each fitted model -
simulation study 2 with the data set generated by CSS distribution.
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2.5.10 Application to Ragweed data

The data description can be found in Section 1. We fitted several models

within the developed class, to explain the variability of the square root of the rag-

weed pollen concentration as a function of those mentioned environmental variables:
a

Yi “ β1raini ` β2temperaturei ` β3windspeedi ` fpdaysiq ` εi, i “ 1, . . . , n, where yi

denotes observed ragweed pollen concentration in the ith day and εi are independent

errors following some scale mixture of centered skew-normal distribution, including the

Centered skew-normal distribution, for comparative purposes. We use 67 knots equally

spaced which to be an adequate number to represent the non-parametric curves, in the

sense that the inclusion of one more knot would not positively impact the goodness-of-fit

measures. We used 500 iterations of the SAEM algorithm and k “ 1{2, leading to

the convergence of all parameters. Some inferential results and information criteria

are given in Table 2. All models lead to similar conclusions, with all the effects being

significant (at a significance level of 0.10) except for the CSBSN model, which indicates

no significance for the covariate rain. The information criteria indicate that the Centered

skew Birnbaum-Saunders Normal presents the best fit.

Figure 29 presents quantile-quantile plots with confidence bands of 95%

for the residuals presented in Equation (2.17). We can notice that the Centered skew-

normal and Centered skew generalized Gamma Normal presents many observations

outside of the confidence bands, whereas the others show a good fit, mainly the CST

and CSBPN models. From Figure 30, we have the confidence bands for each point

of the nonparametric fitted curve between days in season and pollen ragweed. We

may notice that the CSBSN model estimate a different shape in its curve in the end of

season. Given all the above results, we selected the CSBSN model.

Since under the CSBSN model the covariate rain was not significant, a re-

spective reduced model was fitted. The results are presented in Table 3. The information

criteria still indicate that the CSBSN model is the best when compared to the models in

the Table 2. Also, no significant changes are observed in the nonparametric fit as well

as the envelope plot (both still indicating a well model fit), as can bee seen in Figure 31.

In addition, in Table 2 we added confidence intervals for the parameters and a nullity

test for the skewness parameter, and the most interesting thing to note is that the final

model estimated a value for the skewness parameter very high and significantly different

from 0, this information and the ν values reinforce the use of an asymmetric model of

heavy tails.

In Figure 32 we have the generalized Cook’s Distance and the Diagonal of

the generalized Leverage matrix for the selected model. They suggest the absence

of aberrant points. From Figure 33 we see no evidence of the presence of influential

observations. These two results stress the well model fit to the data. In Appendix E We
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Table 2 – Estimates, Standard errors (SE), p-values and results for the parameters of
ragweed levels model.

Model Parameter Est. SE p-value (Wald)
β0 1.3660 0.5075 0.0071
β1 0.0773 0.0268 0.0039
β2 0.2226 0.0484 ă 0.0001

σ2 4.5758 0.7139 -
CSN δ 0.8768 0.0749 -

α 210.6303 - -
dfpαq 10.7114 - -
AIC 1494.403 - -
BIC 1554.328 - -
AICc 1464.630 - -
HQIC 1518.293 - -
CAIC 1570.040 - -

SABIC 1504.490 - -

Model Parameter Est. SE p-value (Wald)
β0 1.4707 0.4454 0.0009
β1 0.0755 0.0199 0.0001
β2 0.1820 0.0406 ă 0.0001

σ2 2.9001 0.0165 -
CST δ 0.9901 0.0120 -

ν 4.4098 - -
α 354.4412 - -

dfpαq 17.3291 - -
AIC 1502.844 - -
BIC 1591.824 - -
AICc 1459.838 - -
HQIC 1538.317 - -
CAIC 1615.153 - -

SABIC 1517.822 - -

Model Parameter Est. SE p-value (Wald)
β0 0.8186 0.4244 0.054
β1 0.0821 0.0210 ă 0.0001

β2 0.2235 0.0404 ă 0.0001

σ2 1.9789 0.0105 -
CSS δ 0.9174 0.0117 -

ν 1.4696 - -
α 806.2733 - -

dfpαq 23.3605 - -
AIC 1536.495 - -
BIC 1648.480 - -
AICc 1483.626 - -
HQIC 1581.140 - -
CAIC 1677.841 - -

SABIC 1555.346 - -

Model Parameter Est. SE p-value (Wald)
β0 1.1465 0.4403 0.0092
β1 0.0842 0.0197 ă 0.0001

β2 0.1840 0.0395 ă 0.0001

CSGT δ 0.9915 0.0104 -
ν1 4.6615 - -
ν2 15.0000 - -
α 1682.355 - -

dfpαq 39.4994 - -
AIC 1597.428 - -
BIC 1768.968 - -
AICc 1519.096 - -
HQIC 1664.613 - -
CAIC 1814.468 - -

SABIC 1624.640 - -
Model Parameter Est. SE p-value (Wald)

β0 1.3305 0.5570 0.0170
β1 0.0836 0.0288 0.0037
β2 0.2362 0.0515 ă 0.0001

σ2 2.3866 0.0868 -
CSCN δ 0.9380 0.0274 -

ν1 0.3877 - -
ν2 0.2830 - -
α 556.6058 - -

dfpαq 19.0927 - -
AIC 1519.58 - -
BIC 1619.122 - -
AICc 1471.977 - -
HQIC 1559.264 - -
CAIC 1645.220 - -

SABIC 1536.335 - -

Model Parameter Est. SE p-value (Wald)
β0 1.0777 0.3701 0.0036
β1 0.0777 0.0194 ă 0.0001

β2 0.1949 0.0401 ă 0.0001

σ2 2.7412 0.0166 -
CSBPN δ 0.9889 0.0136 -

ν1 2.9095 - -
ν2 3.5315 - -
α 600.0000 - -

dfpαq 13.7178 - -
AIC 1505.157 - -
BIC 1584.177 - -
AICc 1466.594 - -
HQIC 1536.660 - -
CAIC 1604.895 - -

SABIC 1518.458 - -

Model Parameter Est. SE p-value (Wald)
β0 0.3430 0.2379 0.15
β1 0.0586 0.0115 ă 0.0001

β2 0.1543 0.0054 ă 0.0001

σ2 21.5736 0.1202 -
CSBSN δ 0.9930 0.0101 -

ν1 2.0000 - -
ν2 9.1914 - -
α 70 - -

dfpαq 1.5771 - -
AIC 1467.285 - -
BIC 1499.999 - -
AICc 1450.635 - -
HQIC 1480.327 - -
CAIC 1508.576 - -

SABIC 1472.791 - -

Model Parameter Est. SE p-value (Wald)
β0 1.0907 0.1760 ă 0.0001

β1 0.0571 0.0079 ă 0.0001

β2 0.1897 0.0169 ă 0.0001

CSGGN δ 0.9976 0.0030 -
ν1 1.5 - -
ν2 1.5 - -
ν3 1.5 - -
α 857.01 - -

dfpαq 25.6044 - -
AIC 1796.578 - -
BIC 1924.749 - -
AICc 1737.111 - -
HQIC 1847.676 - -
CAIC 1958.354 - -

SABIC 1818.153 - -

have the line plots showing the convergence of all parameters.
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Table 3 – Estimates, Standard errors (SE), p-values and results for the parameters of
ragweed levels CSBSN model without rain.

Parameter Est. SE p-value (Wald) CI (95%)
β2 0.065 0.011 <0.001 (0.0434,0.0866)
β3 0.164 0.025 <0.001 (0.115,0.213)
σ2 23.075 0.039 - (22.9986, 23.1514)
δ 0.998 0.003 <0.001 (0.9921,1.0000)
ν (2.000, 9.644) - -
α 70 - -
dfpαq 1.924 - -
AIC 1468.176 - -
BIC 1498.400 - -
AICc 1452.761 - -
HQIC 1480.225 - -
CAIC 1506.324 - -
SABIC 1473.263 - -
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(c) Quantile-Quantile envelope for residuals of
Additive partially linear Centered skew gen-
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(d) Quantile-Quantile envelope for residuals of
Additive partially linear Centered skew Slash
model.
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(e) Quantile-Quantile envelope for residuals of
Additive partially linear Centered skew Con-
taminated Normal model.
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(f) Quantile-Quantile envelope for residuals of
Additive partially linear Centered skew Beta
Prime Normal model.
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(g) Quantile-Quantile envelope for residuals
of Additive partially linear Centered skew
Birnbaum-Saunders Normal model.
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(h) Quantile-Quantile envelope for residuals of
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eralized Gamma Normal model.

Figure 29 – Quantile-Quantile envelopes for fitted models to Ragweed data.



Chapter 2. Semi-parametric SMCSN model 73

−10

−5

0

5

10

0 25 50 75

Days in season

P
o
ll

en
 c

o
n
ce

n
tr

at
io

n
−

X
β

(a) 95% pointwise confidence bands for f(Days
in season) of Additive partially linear Cen-
tered skew Normal model.
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(b) 95% pointwise confidence bands for f(Days
in season) of Additive partially linear Cen-
tered skew t model.
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(c) 95% pointwise confidence bands for f(Days
in season) of Additive partially linear Cen-
tered skew generalized t model.
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(d) 95% pointwise confidence bands for f(Days
in season) of Additive partially linear Cen-
tered skew Slash model.
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(e) 95% pointwise confidence bands for f(Days
in season) of Additive partially linear Cen-
tered skew Contaminated Normal model.
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(f) 95% pointwise confidence bands for f(Days in
season) of Additive partially linear Centered
skew Beta Prime Normal model.
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(g) 95% pointwise confidence bands for f(Days
in season) of Additive partially linear Cen-
tered skew Birnbaum-Saunders Normal
model.
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(h) 95% pointwise confidence bands for f(Days
in season) of Additive partially linear Cen-
tered skew generalized Gamma Normal
model.

Figure 30 – 95% pointwise confidence bands for f(Days in season) of fitted models.
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(a) 95% pointwise confidence bands for f(Days
in season) of Additive partially linear Cen-
tered skew Birnbaum-Saunders Normal
model.
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(b) Pointwise Quantile-Quantile envelope for
residuals of Additive partially linear Centered
skew Birnbaum-Saunders Normal model.

Figure 31 – 95% pointwise confidence bands for f(Days in season) and pointwise
Quantile-Quantile envelope of CSBSN model.
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(b) Diagonal of generalized Leverage matrix
for Additive partially linear Centered skew
Birnbaum-Saunders Normal model.

Figure 32 – Generalized Cook’s Distance and Diagonal of generalized Leverage matrix
for the selected model.
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Figure 33 – Local influence for the selected model.
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Chapter 3

Longitudinal data modeling using

semi-parametric SMCSN model

3.1 Introduction

In many situations of fields of research it is common to carry out experiment

where several observations of the outcome(s) of interest are made on the same experi-

mental units, over the so-called conditions of evaluation. These situations are named

repeated measurements. The respective data sets/methods of analysis are named

repeated measurement data/analysis. When these evaluation conditions can not be

mutually randomized, for example, when they correspond to time-points, we have the

so-called longitudinal data. Longitudinal data studies are a powerful research strategy,

since it is possible to characterize and evaluate global and individual changes over time,

relating them to a set of covariates of interest (besides the time-points). Due to the

longitudinal structure of the data it is expected to observe within-subject dependence.

When we do not take into account such feature in a proper way, misleading inference

can be obtained, as to underestimate or overestimate, for example. For more details

on longitudinal studies, among others, see: Ware (1985), Diggle et al. (1994), Vonesh

and Chinchilli (1996), Singer and Andrade (2000), Demidenko (2013) and Singer et al.

(2017).

There are many challenges in the analysis of longitudinal data, as to handle

with multivariate response and complex correlation structures. Therefore, it is important

to consider appropriate techniques to handle all these features, properly. Indeed, there

are a wide variety of techniques, many of them based on the so-called mixed models,

as: Normal Linear Mixed Models (Henderson, 1953; Henderson et al., 1959), nonlinear

Mixed Models (Lindstrom and Bates, 1990), generalized Linear Mixed Models (Breslow

and Clayton, 1993), Semi-parametric Linear Mixed Models (Diggle and Zeger, 1994),

skew Linear Mixed Models (Arellano-Vale et al., 2005) and Elliptical Linear Mixed
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Models (Savalli et al., 2006). They are very important when there is an interesting in

measuring the between-subjects heterogeneity and/or to account for extra (unknown)

sources of variability.

Another approach is based on the so-called estimation functions (Godambe,

1991). They are particularly important when the interest is more focused on the popu-

lation variations (than the individual ones) and/or in modeling the marginal response

distributions. An estimation function depend on the data and the parameters (of interest).

Also, under some regularity conditions they have good properties such as consistency

and known asymptotic distribution. Liang and Zeger (1986), based on estimating func-

tions, proposed the analysis of repeated measurement data using generalized Linear

Models (GLM), introducing the Generalized Estimation Equations (GEE) estimation

method. Based on some properties of the estimation functions and under some regular-

ity conditions, these authors obtain consistent estimators for the regression parameters,

provided that the marginal distributions are correctly specified.

The GEE methodology is easy to implement and very flexible, since it is

only necessary to specify the regression structure, the correlation matrix and some

characteristics of the marginal distributions (it is not required to specify the whole

multivariate distribution). Under some regularity conditions (Sen and Singer, 1993),

consistent estimators can be derived to the regression coefficients and its covariance

matrix, even if that the response correlation matrix does not match the true underlying

one. In addition, GEE may be preferred to the mixed models, when the interest lies

on the marginal (population) characteristics. Besides the work of Liang and Zeger

(1986), that focus on the exponential family of distributions, we can cite the GEE-based

models for rates and proportions (Song et al., 2004; Freitas et al., 2021b), for positive

data (Tsuyuguchi et al., 2020; Freitas et al., 2021a) and for count data (Kong et al.,

2015; Sarvi et al., 2019), among others.

Recently, Manghi et al. (2019) proposed the use of generalized Additive

Partially Linear Models with GEE, for modeling correlated data under linear and/or

nonlinear relations of covariates with the response variable. There are few works

related to this approach in the literature. Most of them under rely on the assumption of

exponential family for the marginal distributions. To the best of our knowledge, there are

no works considering SMCSN distributions (including the skew normal distribution).

The second part of this dissertation deals with the following contributions:

1. We developed a family of generalized additive partially linear models based on

the scale mixtures of centered skew-normal distributions using GEE.

2. We developed appropriate estimation methods, information criteria for model

comparison, residual analysis, global and local influence tools.
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3. We performed simulation studies and real data set analysis. We show that our

proposal is more flexible in relation to its competitors in exponential family.

3.2 Estimating functions

We say that a function ψ is an estimation function associated with the random

vector Y and parameters of interest θ, if, for each θ P Θ, ψpppθ;Y qqq “ pψ1, ..., ψpqJ is a

random variable, where Θ Ď R
p is the parameter space. In this work we will consider

the regular cases, that is, Θ is compact with finite dimension (p), and the true parameter

θ0 is an interior point of Θ.

Assuming a random sample of n independent random vectors Yi “ pYi1, ...,

Yiti
qJ, i “ 1, ..., n and that each sample vector is related to an estimation function, say

ψi, then a sample estimating function Ψnpθq is given by ΨnpY ;θq “
nÿ

i“1

ψipYi;θq, where

Y “ pY J
1
, ...,Y J

n qJ. We also restrict our attention to estimation functions whose roots

are estimators of the parameters of interest, i.e., ΨnpY ; θ̂q “ 0.

Let Y1, ..., Yn be a random sample with EpYi|θq “ µipθq, where µi doubly

differentiable regarding θ and Varpyiq “ σ2. Then

Ψnpy;θq “
nÿ

i“1

Bµipθq
Bθ ryi ´ µipθqs “ 0 (3.1)

is an estimating equation.

On the other hand, Ψnpθq is an unbiased function if EθrΨnpθqs “ 0, @θ P Θ.

If all estimating functions ψi are unbiased, then Ψn will be also unbiased. Furthermore,

let Ψn be an unbiased estimating function then, the related variability and sensibility

matrices (both p ˆ p and square), are given, respectively, by:

VΨpθq “ EθrΨnpθqΨJ
n pθqs, SΨpθq “ Eθ

„ B
BθJ

Ψnpθq

. (3.2)

Let (Ω,A,P) be a probability space, Ω Ă R a sample space P “ tPθ : θ P
Θ Ď R

pu, for some p P N. An estimating function Ψnpθq : Ω ˆ Θ Ñ R
p is said to be

regular if @θ P Θ and i, j “ 1, ..., p,

1. Ψnpθq is an unbiased estimating function;

2. The derivative BΨnpθq{Bθi D and is almost sure continuous @y P Ω;

3. It is possible to exchange the integration and derivation operators as follows:

B
Bθi

ż

Ω

Ψnpθ,yqdPθ “
ż

Ω

B
Bθi

rΨnpθ,yqs dPθ.
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The fact of ψpθq be integrable as a function of y for each θi, the propriety 2, and

supposing that Bψpθ,yq{Bθi is dominated by an integrable function, guarantees

this propriety;

4. EθrΨipθqΨjpθqs P R and VΨpθq is positive definite;

5. Eθ

„ B
θl

Ψipθq B
θk

Ψjpθq


P R, where l, k “ 1, ..., p and SΨpθq is non singular.

On the other hand, The Godambe Information Matrix of θ, associated to a

regular estimating function Ψn is given by: JΨpθq “ SJ
Ψ

pθqV ´1

Ψ
pθqSΨpθq.

The Godambe information matrix plays a similar role to the Fisher information

matrix, i.e., the former is related to the information about the variability of the estimators.

Notice that if SΨpθq “ ´VΨpθq, then the Godambe Information Matrix coincides with the

Fisher Information Matrix.

Let Qipθq, i “ 1, ..., n be non stochastic matrices and ui “ uipyi;θq zero mean

vectors mutually independents. Then an estimating function class is said to be additive

or linear if (Crowder, 1987): Ψnpppθqqq “
nÿ

i“1

Qipθquipyi;θq.

A regular estimating function is said to be optimal if its associated estima-

tors have minimal asymptotic variance. The element within class of linear estimating

functions, according to Crowder (1987), is given by: Ψ˚
npθq “

nÿ

i“1

Q˚
i pθquipyi;θq, where

Q˚
i pθq “ E

ˆ Bui

BθJ

˙J

Covpuiq´1,

and Covpuiq “ diagtVarpuiq1{2uRvpuiqdiagtVarpuiq1{2u, being Rvpuiq the correlation ma-

trix of ui, for i “ 1, . . . , n.

In the following we show the conditions that guarantee the asymptotic nor-

mality of the estimators obtained from the regular estimating functions.

Following Jørgensen and Labouriau (1994), let Ψ : Ω ˆ Θ Ñ R
p be a regular

estimating function and tθ̂nuně1 a sequence of estimators of an estimating equations,

and suppose that D θ P Θ such that θ̂n
PÝÑ θ, where θ̂n is asymptotically Normal, i.e.,?

npθ̂ ´ θq DÝÑ N p0, J̄´1

Ψ
pθqq, where

J̄Ψpθq “ lim
nÑ8

1

n
tSJ

Ψ
pθqV ´1

Ψ
pθqSΨpθqu,

here the symbol " DÝÑ" stands for the convergence in distribution (related to Pθ) and " PÝÑ"

the convergence. The conditions that guarantee the above propriety are:

1. yi, i “ 1, ..., n are independent ti-random vectors;
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2. ψipθq “ pψi1, ..., ψipqJ, i “ 1, ..., n, are regular estimating functions;

3. Ψnpθq “
nÿ

i“1

ψipθq;

4. For δ ą 0:

Eθ

#
sup

h:||h||ďδ

ˇ̌
ˇ̌
ˇ̌
ˇ̌ B
BθJJJ

ψipθ ` hq ´ B
BθJJJ

ψipθq
ˇ̌
ˇ̌
ˇ̌
ˇ̌
+

PÝÑ φδ,

according to n Ñ 8, φδ Ñ 8 when δ Ñ 8 and φδ Ñ 0 when δ Ñ 0;

5. As n Ñ 8:
1

n

BΨn

BθJ
pθq PÝÑ SΨpθq;

6. We have that
1

n

nÿ

i“1

Covpψiq Ñ V pθq positive definite;

7. As n Ñ 8:
Ψnpθq?

n

DÝÑ Npp0,VΨpθqq;

8. θ̂n is the solution of Ψnpwq “ 0, w P Θ;

In addition under conditions that guarantee the existence of a sequence

of roots of Ψnpwq that are limited in probability, or restricted to a compact set almost

certainly when n Ñ 8, it comes that θ̂n
PÝÑ θ and

?
npθ̂ ´ θq DÝÑ N p0, J̄´1

Ψ
pθqq. A proof

for this theorem can be seen in Jørgensen and Labouriau (1994), for example.

In practice, the correlation matrix Rv is unknown. Liang and Zeger (1986)

proposed to use a so-called working correlation matrix Ripρq, which depends on ρ. We

will use this approach with work correlation matrices.

3.3 GEE for Additive Partially Linear scale mixture of cen-

tered skew-normal regression models

Let Yi “ pYi1, . . . , Yiti
qJ be the individual profile of the ith experimental unit,

i “ 1, . . . , n. Let us assume that the marginal density of Yij follows a SMCSN distribution,

i.e., Yij
ind„ SMCSNpµij, σ

2, γ,νq, where σ2, γ, ν are assumed to be constant over the

N observations, where N “
ÿ

i

ti. For modeling the marginal means (µij) we assume

that fpµijq “ ηij “ xJ
ijβ `

qÿ

k“1

gkpTijkq “ xJ
ijβ `

qÿ

k“1

κkbpTijkq, where β “ pβ1, . . . , βpqJ

is a vector of regression parameters pp ă nq, gjpTijkq “
k˚

kÿ

l“1

κlkblpxijklq, bl is a cubic
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B-spline, l “ 1, . . . , k˚
k , k “ 1, . . . , q, fp¨q is called link function, which is assumed to

be monotonous and at least doubly differentiable, xij “ pxij1, . . . , xijpqJ and Tk “
pT11k, . . . , TNkq are fixed and known covariate vectors related to the jth observation of

the ith experimental unit.

For developing the GEE approach of interest, let us ui “ uipyi,βq “
pui1, . . . , uiti

qJ, i “ 1, . . . , n a zero mean vector mutually independent, within the context

of Additive Partially Linear SMCSN regression models for repeated measurement we

propose to use:

ui “ 1

τ
pyi ´ µciq “ p1 ´ b2δ2q

σ2p1 ´ δ2qpyi ´ µciq, (3.3)

with i “ 1, . . . , n. Due to the good results obtained from the developed approach

for the independent data, we considered the Score Vector related to the developed

EM algorithm, properly transformed, as propose for ui. Also, we have that Epuq “
p1{τqpEpYiq ´ µciq “ 0 and VarpuΨijq “ p1{τ 2qVarpYiq.

The idea, based on Liang and Zeger (1986), is to consider a suitable working

correlation matrix, sayRpρq, in VarpUiq, for modeling the within-subject dependency, i.e.,

Covpuiq “ Σi “ Varpuiq1{2RpρqVarpuiq1{2 where ρ is a vector of correlation parameters

of ui. Therefore, we can define a penalized GEE (Manghi et al., 2019) for ξ “ pβJ,κJqJ,

as we did for log-likelihood in independent case, given by:

Ψpξq “
nÿ

i“1

«
´E

ˆ Bui

BξJ

˙J
ff

Σ´1

i ui ´ P pαq “
nÿ

i“1

MJ
i ΛiΣ

´1

i uΨi ´ P pαq

“
nÿ

i“1

MJ
i WiΛ

´1

i uΨi ´ P pαq,

where Mi “ pxi,Ni1, . . . ,Niqq, Wi “ ΛJ
i Σ´1

i Λi, Λi “ EpBui{Bηiq “ diagpai1, . . . , aiti
q,

aij “ p1{τqBµij{Bηij, i “ 1, . . . , n, and P pαq “ p0J
p , α1κ

J
1

Ω1, . . . , αq,κ
J
q Ωqq.

The estimators ξ̂ of ξ are obtained by solving Ψpξq “ 0, for this we need

to calculate the related sensibility and variability matrices, which are also useful for

obtaining the related standard errors. Indeed, the sensibility matrix for ΨpΞq is given by

Sξ “ E

ˆ B
BξJ

Ψpξq
˙

“ ´
nÿ

i“1

MJ
i WiM ´Mpαq,

where Mpαq “ diagp0pp, α1Ω1, . . . , αqΩqq. On the other hand, the variability matrix for

ΨpΞq is given by Vξ “ CovtΨpξqΨpξJJJqu “
nÿ

i“1

MJ
i WiΛ

´1

i CovpuiqΛ´1

i W
J
i Mi.

We have that the asymptotic distribution of ξ̂ is given by (Jørgensen and

Knudsen, 2004; Godambe, 1991): ξ̂ „ N
`
ξ,S´1

ξ VξS
´J
ξ

˘
, where p.q´J stands for the

inverse of the transpose of a given matrix. Furthermore, this result is valid when
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ti Ñ 8, @i, n Ñ 8 or both. The sandwich variance covariance matrix estimator of pξ (this

is referred to as "robust estimator" in the literature) is given (Liang and Zeger, 1986) by:

Varppξq “ S´1

ξ

˜
nÿ

i“1

MJ
i WiΛ

´1

i u
J
i uiΛ

´1

i W
J
i Mi

¸
S´1

ξ .

Using the Gauss-Seidel method (see Hastie and Tibshirani (1990) and

Manghi et al. (2019)), a current estimate of ξ at pk ` 1q-th iteration is updated, given

pσ̂2pkq, γ̂pkq, ν̂pkqq, by:

β̂pk`1q “
˜

nÿ

i“1

xJ
i W

pkq
i xi

¸´1
nÿ

i“1

xJ
i W

pkq
i

#
z

pkq
i ´

ÿ

są0

Nisκ
pk`1q
s

+

κ̂pk`1q
m “

˜
nÿ

i“1

T J
i W

pkq
i Ti ` αmΩm

¸´1
nÿ

i“1

T J
i W

pkq
i

#
z

pkq
i ´

ÿ

s‰m

Nisκ
pk`1q
s ´

nÿ

i“1

xJ
i β

+
,

m “ 1, . . . , q, where zi “ ηi ` Λ´1

i ui. On the other hand, we can update pσ̂2pk`1q

, γ̂pk`1q,

ν̂pk`1qq by maximizing the log-likelihood, given µ̂pk`1q, associated to a SMCSN distribu-

tion. Also, in order to have a faster algorithm, we estimate ϕ “ 1{ν instead ν, since

that ϕ P p0, 1q the respective algorithm is speeded up due to its parametric space being

reduced. Thus, we have:

pσ̂2pk`1q

, γ̂pk`1q, ϕ̂pk`1qq “ arg maxpσ2,γ,ϕq

#
nÿ

i“1

log
”
fSMCSNpyi|µ̂pk`1q

i , σ2, γ,ϕq
ı+

, (3.4)

ν̂pk`1q “ 1{ϕ, s (3.5)

For the correlation parameters (ρ) we can use consistent estimators based on

the method of the moments using the Covpuiq which can be
?
n-consistently estimated

by
ÿ

i

uiu
J
i {n. In the following, we present the specific estimators for some structured

working correlation matrices commonly considered.

Unstructured

In this case we have tpt ´ 1q{2 parameters to be estimated. Let ρjj1 be the

pj, j1q element of Ω, for j ‰ j1, which may be estimated by

ρ̂jj1 “
řn

i“1
uijuij1břn

i“1
u2

ij

břn

i“1
u2

ij1

.

Exchangeable

Here the diagonal elements of Ω are 1 and the others are ρ, i.e., it is assumed

that the correlation between any two observations of the same individual is always the

same. Thus ρ can be estimated by

ρ̂ “
řn

i“1

ř
jąj1 uijuij1

řti

j“1
u2

ij

Nřn

i“1

tipti´1q
2

.
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First-order autoregressive (AR-1)

In this case the diagonal elements of Ω are 1 and for the jth line and j1th

column are ρ|j´j1|, for j ‰ j1. That is, we assume that the within-subject correlation

decreases as the distance between the time-points increases. In this case ρ can be

estimated by

ρ̂ “
řn

i“1

řti´1

j“1
uijuipj`1qbřn

i“1

řti´1

j“1
u2

ij

řn

i“1

řti

j“2
u2

ij

.

3.3.1 Effective degrees of freedom related to the nonparametric compo-

nents

In context of GEE and generalized Additive Partially Linear models, following

the idea of Manghi et al. (2019), the degrees of freedom can be derived from the solution

of linear predictors given by

η̂ “ Mξ̂ “ Ŝαẑ “ MpMJŴM `MpαqqMJŴ ẑ, (3.6)

where Ŝα may be interpreted as a projection matrix or smoother matrix (Manghi et al.,

2019) and the effective degrees of freedom are given by dfpαq “ trpŜαq and M “
diagpM1, . . . ,Mnq, W “ diagpW1, . . . ,Wnq.

Therefore, we can consider information criteria for model selection based on

some of the quasi-likelihood measure for goodness of fit. For the SMCSN family, the

quasi-likelihoods is given by

Qpµ,yq “
nÿ

i“1

tiÿ

j“1

ż µij

yij

yij ´ a

Var(Y)
da “ ´

nÿ

i“1

pyij ´ µijq2

2Var(Y)
.

Then, we can define the quasi Akaike Information Criterium (QAIC) and quasi

Bayesian Information Criterium (QBIC) given by:

QAIC “ 2pp ` dfpαq ` qq ´ 2Qpµ,yq
QBIC “ logpNqpp ` dfpαq ` qq ´ 2Qpµ,yq,

These measures can be used to select the best model and the smoothness

parameter α, since the lower the value the better is the model fit.

3.4 Simulation study

In this section we present a simulation study to analyze some asymptotic

proprieties of the proposed estimators. We generate 100 Monte Carlo replicas based
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on a given distribution of scale mixtures of centered skew-normal distribution (error

distribution, see below) considering µij “ 2xij ` cospttijq, i “ 1, . . . , n, j “ 1, . . . , t,

where xij
iid„ Up0, 1q and ttij P p0, 3πq, i “ 1, . . . , n, j “ 1, . . . , t and a suitable working

correlation matrix. Due to the within-experimental unity dependence structure, the

simulated responses were obtained via Student-t copulas (Demarta and McNeil, 2005).

The covariate values were kept constant during along the replicas. We also considered

n “ 10, 50, t “ 3, 10 and ρ “ 0.3, 0.8. Also, we set σ2 “ 1, α “ 10 and considered:

CSNpγ “ 0.8q, CSGTpγ “ ´0.8, ν1 “ 15, ν2 “ 5q, CSTpγ “ 0.8, ν “ 5q, CSCNpγ “
´0.8, ν1 “ 0.5, ν2 “ 0.5q, CSSpγ “ 0.8, ν “ 3q, CSBPNpγ “ ´0.8, ν1 “ 3, ν2 “ 3q,
CSBSNpγ “ 0.8, ν1 “ 1, ν2 “ 1q and CSGGNpγ “ ´0.8, ν1 “ 2, ν2 “ 1, ν2 “ 0.66q, as the

error distribution. For each case the SMCSN GEE models were fitted using different

correlation matrices (AR(1), exchangeable and unstructured) including the true working

correlation matrix one.

The results for all scenarios can be found in Appendix E. In general we can

notice that the results were similar to those presented for the independent data (see

subsection 2.5.9). The “sample sizes” are presented as: pn, tq. For the sample size

(10,10), the β and σ2 estimates under the unstructured correlation matrix present a high

variability that impaired the visualization of the boxplots, so we decided to remove the

(10,10) case from some plots.

It can be seen from boxplots and MSE plots that as the sample size increases,

the bias and variability of β0, β1, σ
2, δ and ν estimates decrease, except for the CSBSN

distribution, where we can observe a bias in the estimates of σ2, γ and ν2. For the non

parametric curves plots, the variability over the replicas decreases as the sample size

increases along the subjects over the replicas, for all models. The only caveat is for

the case under (10,10) where we can notice that for some replicas the shape of the

estimated and actual nonparametric curves presented do not match, indicating that, for a

low number of experimental units, regardless of the number of repeated measurements,

we may have unreliable inferences and estimates for non-parametric curves.

3.5 Diagnostic analysis

Additionally to all issues mentioned for the diagnostic analysis for models for

independent data, here we have the needing of checking the suitableness of the working

correlation matrix too. Venezuela et al. (2007), based on developed tools for generalized

Linear Models, developed some concepts of leverage analysis for the GEE setup, as

well as case deletion (Cook’s Distance) and residual analysis based on the proposals

of Preisser and Qaqish (1996) and Tan et al. (1997). Venezuela et al. (2011) extended

the idea of local influence (Cook, 1986) using the generalized local influence (Cadigan
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and Farrell, 2002b). Later Manghi et al. (2019) presented diagnostic measures for GEE

Additive Partially Linear Models.

Here, we adapt the measures developed by Manghi et al. (2019), for our

approach.

3.5.1 Leverage analysis

From Equation (3.6) we have that the Sα can be used to construct a leverage

measure considering that:

trpSαq “ tr
`
MpMJWM `Mpαqq´1MJW

˘

“ tr
`
W 1{2MpMJWM `Mpαqq´1MJW 1{2

˘

“ trpHpαqq.

Then Hpαq plays a role of an orthogonal projection matrix of vectors in

R
n in the subspace generated by the columns of the matrix W 1{2M . Then, a given

observation is said to be leverage if it is an influential point with respect to the values

of W 1{2M . The index plot of the values of the diagonal of Hpαq provide an easy

identification of candidates to be influential observations.

3.5.2 Residual analysis

The ordinary residuals are given by (Venezuela et al., 2007; Manghi et al.,

2019): ê “ Ŵ 1{2pẑ ´ η̂q “ rI ´ ĤpαqsŴ 1{2ẑ, which have zero mean with e “
peJ

1
, . . . , eJ

n qJ and ei “ pei1, . . . , eiti
qJ. Next, we will talk about their variance and stan-

dardization.

3.5.2.1 Naive residual

Given that µ̂ “ µ ` Op1q then ê “ e ` Op1q “ rI ´ HpαqsW 1{2z ` Op1q,
and it follows that Covpêq “ Covpeq ` Op1q “ rI ´HpαqsW 1{2Λ´1CovpuqΛ´1W 1{2rI ´
Hpαqs ` Op1q.

If we assume that Ripρq is the true correlation matrix of Yi, @i “ 1, . . . , n, we

have that:

yCovpêq “ rI ´ ĤpαqsŴ 1{2Λ̂´1ryVarpuq1{2Rpρ̂qyVarpuq1{2sΛ̂´1Ŵ 1{2rI ´ Ĥpαqs
“ rI ´ ĤpαqsrI ´ Ĥpαqs.

Therefore, the naive residuals are given by r̂N
ij “ êij{p1 ´ ĥijjq, i “ 1, . . . , n

and j “ 1, . . . , ti.
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3.5.2.2 Robust residuals

In this case if the true covariance matrix of ui is unknown we can use a robust

estimator for this and we have that yCovpêqR “ rI ´ ĤpαqsŴ 1{2Λ̂´1ûûJΛ̂´1Ŵ 1{2rI ´
Ĥpαqs. Then, the robust residual is given by r̂R

ij “ êij{yCovpêqR
ij, for i “ 1, . . . , n and

j “ 1, . . . , ti.

Another usual approach is the quantile residual given, under the SMCSN

distributions, by rq
ij “ Φ´1pFSMCSN pyij, µij, σ

2, γ,νqq, where FSMCSN denotes the related

cdf of a distribution of SMCSN family of distributions. We performed simulations to

evaluate the mean, standard deviation, skewness and excess of kurtosis of naive, robust

and quantile residuals. We shall only outline the main conclusions . As expected, the

quantile residuals distribution is very well approximated by the standard normal one: the

mean, skewness and excess of kurtosis are closer to 0 and the standard deviation to 1.

The mean and the standard deviation of the naive and robust residuals are close to zero

and one, respectively, but they displays considerable skewness and excess of kurtosis.

Therefore, we can analyze the quantile residuals in the usual way, that is, through

histograms, box-plots, index plots, and fitted values plot. Also, QQplot with envelopes

can be made quickly, since the respective confidence bands can be simulated from the

standard normal distributions

3.5.3 Local influence

Venezuela et al. (2011) proposed a generalized displacement measure to

any, which is given, in our case, by FDpωq “ 2
!

Fppξq ´ Fppξωq
)

, where F is a function,

doubly differentiable, such that the estimator of ξ, denoted by pξ, is the solution of

BFpξq
Bξ “ 0,

where pξ and pξω are the estimated value for the original and perturbed model, respectively,

with FDpωq ě 0. Also ω “ pω1, . . . , ωmqJ is a perturbation vector, where m depends on

the proposed perturbation scheme. Based on Cook (1986), the idea is to study the local

behavior of FDpωq for any value of ω in a neighborhood of ω0, which represents the null

perturbation vector, such that Fppξω0
q “ Fppξq ñ FDpω0q “ 0.

Essentially, Venezuela et al. (2011) generalized the proposal of Cadigan

and Farrell (2002b) to the GEE framework, replacing the likelihood equations by the

estimation functions, such that, for a given perturbed estimating equation Ψpξ̂ω|ωq “
0, there is a null perturbation vector such that Ψpξω|ω0q “ Ψpξq. Venezuela et al.

(2011) also proposed a local influence measure for the GEE approach given by the

eigenvector dmax, corresponding to the largest eigenvalue of the matrix pBG “ ´∆S´1∆,

where ∆ “ BΨ1pξ|ωq{BωJ, S “ BΨ1pξq{BξJ “ MJp 9ΛΣ´1u ´ ΛΣ´1qM ´ Mpαq,
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9Λ “ diagp 9aijq “ diagpBaij{Bηijq, 9aij “ p1{τqB2µij{Bη2

ij, which all are evaluated at ξ “ pξ
and ω “ ω0. In this work we calculate the matrix ∆ for six different perturbation

schemes based on the proposals of Venezuela et al. (2011) and Manghi et al. (2019),

namely: case-weight perturbation, response perturbation, single-covariate perturbation,

scale parameter perturbation, skewness parameter perturbation, shape parameters

perturbation and working correlation matrix perturbation.

In general, flagged observations under the case-weight perturbation scheme

can be interpreted as a perturbation in variance of each experimental unit (Venezuela

et al., 2011). Perturbations in the response variable can be seen as an alternative way

of identifying outliers (Schwarzmann, 1991b). The single-covariate perturbation scheme

helps to evaluate the influence of each continous covariate in the estimating process.

Perturbations in the scale, shape and skewness parameters are useful for checking

the model sensitivity to the lacking of the homogeneity of these parameters, along the

observations. Working correlation matrix perturbations could indicate, for example, the

misspecification of such structure.

3.5.3.1 Case-weight perturbation

Let us consider the following perturbation scheme (Manghi et al., 2019):

Ψpξ|ωq “ MJWΛ´1diagpωqu´ P pαq, where ω “ pωJ
1
, . . . ,ωJ

n qJ, ωi “ pωi1, . . . , ωiti
qJ,

i “ 1, . . . , n and ω0 is a vector of 1’s. Therefore ∆ “ MJWΛ´1u.

3.5.3.2 Response perturbation

Let us consider an additive perturbation scheme for the response variable Yij

(Venezuela et al., 2011), i “ 1, . . . , n and j “ 1, . . . , ti given by yωij “ yij ` ωij

b
Varpyijq,

where the non-perturbation vector is ωij “ 0, i.e., ω0 “ 0. Thus, the perturbed es-

timating function is given by Ψpξ|ωq “ MJWΛ´1
1

τ
pyω ´ µq ´ P pαq. In this case

∆ “ MJWΛ´1

b
Varpyijq{τ .

3.5.3.3 Explanatory variable perturbation

Based on Thomas and Cook (1989), we propose an additive perturbation

scheme on the k-th column of the design matrix X, that is, xk “ px11k, x12k, . . . , xNkqJ,

where each component of the perturbed vector xωk is given by: xωijk “ xijk ` ωijsxk
,

where sxk
is the standard deviation of xk, where i “ 1, . . . , n and j “ 1, . . . , ti. Here, the

non-perturbation vector is ω0 “ 0.

The perturbed estimating functions is given by: Ψpξ|ωq “ MJ
ω ΛωΣ´1uω ´

P pαq, where Mω “ M ` Bkω, Bkω is a matrix with ωsxk
in the k-th column and zeros

elsewhere, Λω “ diagpaωq, aijω “ p1{τqBµijω{Bηijω and uω “ p1{τqpy ´ µωq. Noticing
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that µωij
“ g´1pηωij

q and ηωij
“ β1x1ij ` ¨ ¨ ¨ ` βkpxkij ` ωijskq ` βpxpij `

qÿ

l“1

gkpTijlq, we

have that ∆ij “ 9MJ
ωij

Λωij
Σ´1uωij

`MJ
ωij

”
9Λωij

Σ´1uωij
` Λωij

Σ´1
9uωij

ı
, where 9Mωij

“

sxk
p 9MJ

ω1ij
, . . . , 9MJ

ωnij
qJ, 9Λωij

“ BΛωij

Bωij

“ βksxk

τ
diagt0, . . . , B2µωij

{Bη2

ωij
, . . . , 0u,

Buωij

Bωij

“

´βksxk

τ
diagt0, . . . , Bµωij

{Bηωij
, . . . , 0u

3.5.3.4 Scale parameter perturbation

Let us consider a multiplicative perturbation scheme for the scale parameter

σ2 given by: σ2

ωij “ σ2{ωij, where i “ 1, . . . , n and j “ 1, . . . , ti. In this case, ω0 “ 1,

the perturbed estimating function is given by: Ψpξ|ωq “ MJΛωΣ´1

ω uω ´ P pαq, the ∆

matrix is given by:

∆ “ BΛω

Bω Σ´1

ω uω ` Λω

«
BΣ´1

ωij

Bωij

uω ` Σ´1
Buωij

Bωij

ff
,

where:

BΛωij

Bωij

“ ´ σ2

ω2
ij

τ˚pBµij{Bηijq, τ˚ “ Bτ´1

Bσ2
“ 1 ´ δ2

1 ´ b2δ2
,

BΣ´1

ωij

Bωij

“ ´Σ´1
BΣωij

Bωij

Σ´1,

BΣωij

Bωij

“ BVarpuijq1{2

Bωij

RpρqVarpuijq1{2 ` BVarpuijq1{2

Bωij

RpρqVarpuijq1{2,

BVarpuijq1{2

Bωij

“ ´
σ3

ωij

a
EpU´1q
ω2

ij

1 ´ δ2

1 ´ b2δ2
,

Buωij

ωij

“ ´ σ2

ω2
ij

τ˚pyij ´ µijq.

3.5.3.5 Skewness parameter perturbation

To make the related calculations easier, we consider the following parameter-

ization of the skewness parameter:

δ “ λ?
1 ` λ2

, λ “ sγ1{3

b
2

π
` s2γ2{3

`
2

π
´ 1

˘ .

Also, a multiplicative perturbation scheme is given by δωij “ δ{ωij, where i “ 1, . . . , n

and j “ 1, . . . , ti and ω0 “ 1. The perturbed estimating function is given by: Ψpξ|ωq “
MJΛωΣ´1

ω uω ´ P pαq, where

∆ “ BΛω

Bω Σ´1

ω uω ` Λω

«
BΣ´1

ωij

Bωij

uω ` Σ´1
Buωij

Bωij

ff
,

and

BΛωij

Bωij

“ ´ δ

ω2
ij

τ :pBµij{Bηijq, τ˚ “ Bτ´1

Bδ “ ´2
σ2δp1 ´ b2q
p1 ´ b2δ2q2

,
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BΣ´1

ωij

Bωij

“ ´Σ´1
BΣωij

Bωij

Σ´1,

BΣωij

Bωij

“ BVarpuijq1{2

Bωij

RpρqVarpuijq1{2 ` BVarpuijq1{2

Bωij

RpρqVarpuijq1{2,

BVarpuijq1{2

Bωij

“ 2σ9δ2p1 ´ δ2q3p1 ´ b2q
a
EpU´1q

ω2
ijp1 ´ b2δ2q5

,
Buωij

ωij

“ ´ δ

ω2
ij

τ˚pyij ´ µijq,

which all quantities are evaluated at ω “ ω0 and θ “ θ̂.

3.5.3.6 Shape parameter perturbation

Let us consider a multiplicative perturbation scheme for the kth shape pa-

rameter νk given by: νkωij “ νk

ωij

, where i “ 1, . . . , n, j “ 1, . . . , ti, k “ 1 for the CST and

CSS distributions, k “ 1, 2 for the CSGT, CSCN, CSBPN and CSBSN distributions, and

k “ 1, 2, 3 for the CSGGN distribution. In this case, ω0 “ 1 and the perturbed estimating

function is given by: Ψpξ|ωq “ MJΛΣ´1

ω u´ P pαq, and

∆ “ ´MJΛΣ´1
BΣωij

Bωij

Σ´1u,

where

BΣωij

Bωij

“ BVarpuijq1{2

Bωij

RpρqVarpuijq1{2 ` BVarpuijq1{2

Bωij

RpρqVarpuijq1{2,

BVarpuijq1{2

Bωij

“ ´νkωij

ω2
ij

1

2
a
V arpYijq

σ2

τ

BEpU´1qωij

Bνkωij

,

which all quantities are evaluated at ω “ ω0 and θ “ θ̂.

The derivatives BEpU´1q{νk are presented in Table 4, remembering that:

9Γpxq “ BΓpxq
Bx “

ż 8

0

tx´1e´t logptqdt, Rpxq ą 0,

where Rpxq is the real part of x.

3.5.3.7 Working correlation matrix perturbation

Let Rpρq be a working correlation matrix indexed by a
ˆ
ti

2

˙
dimensional

vector ρ “
´
ρ12, . . . , ρpti

2
q
¯J

. Since each experimental unit may have a specific working

correlation matrix, Venezuela et al. (2011) proposed a related perturbation scheme given

by ρωipjlq “ ρjl{ωipjlq, where i “ 1, . . . , n, j ă l and j, l “ 1, . . . , ti. For this perturbation

scheme ω “ pω1p12q, . . . , ω1ppti´1qtiq, . . . , ωnp12q, . . . , ωnppti´1qtiqqJ is a perturbation vector

and ω0 “ 1. The perturbation estimating equation is given by: Ψpξ|ωq “ MJΛΣ´1

ω u´
P pαq.
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Table 4 – Derivatives of BEpU´1

i q{Bνk for each distribution of the SMCSN family.

Distribution BEpU´1

i q{Bν1 BEpU´1

i q{Bν2 BEpU´1

i q{Bν3

CST ´ 2

pν ´ 2q2
pν1 “ νq - -

CSS ´ 1

pν ´ 1q2
pν1 “ νq - -

CSGT ´ ν2

pν1 ´ 2q2

1

ν1 ´ 2
-

CSCN
1 ´ ν2

ν2

´ν1

ν2
2

-

CSBPN ´ ν2

pν1 ´ 1q2

1

ν1 ´ 1
-

CSBSN
ν1

ν2

´ν2

1
` 2

2ν2
2

-

CSGGN
9Γpν1 ´ 1{ν2qΓpν1q ´ Γpν1 ´ 1{ν2q 9Γpν1q

ν3Γpν1q2

9Γpν1 ´ 1{ν2q
ν3ν

2
2Γpν1q ´Γpν1 ´ 1{ν2q

ν2
3Γpν1q

Each column of the matrix ∆ can be expressed by:

BΨpξ|ωq
BωJ

pjlq

“ ´MJΛΣ´1
BΣω

BωJ
ij

Σ´1u,

where the ith diagonal block of Σω is Σωi “
a

Varpuiq\Rpρωiq
a

Varpuiq, with ρωi “`
ρωip12q, . . . , ρωippti´1qtiq

˘
and i “ 1, . . . , n. Furthermore, we have:

BΣωi

Bωipjlq

“
a

Varpuiq
BRpρωiq

Bωipjlq

a
Varpuiq,

where BRpρωi
q{Bωipjlq is a symmetric matrix with null diagonal and jl and lj elements

equal to ´αjl, i “ 1, . . . , n and j, l “ 1, . . . , ti.

3.6 Framingham cholesterol data analysis

This data set is related to an unbalanced longitudinal experiment with respect

to the number of repeated measurements involving 200 randomly selected subjects. The

main goal is to examine the role of serum cholesterol as a risk factor for the evolution of

cardiovascular diseases (Zhang and Davidian, 2001). The response variable is defined

as the cholesterol level for each patient, and the covariates are: age in years (age),

sex (0=female, 1=male) and years elapsed since the start of the study (year). Due

to repeated measurement over the subjects, it is expected to observe within-subject

dependence. This data set has been analyzed under different models, as: Zhang and

Davidian (2001) that used linear mixed models with a flexible density for the random
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effects, Lachos et al. (2010b) which used a linear mixed model with skew-normal

random effects and Galarza et al. (2017) that proposed a quantile mixed model. This

data set can be obtained through the package qrLMM (Galarza and Lachos, 2020) of the

R software (R Core Team, 2020).

Figure 34 shows the relationship between years and cholesterol level by sex.

We can see a difference on the response distribution between the males and females.

Also, we can observe a higher variability among the individuals profiles, mainly for the

females.

From Figure 35, we can observer a serial pattern with high values for the

within-subject correlations. Then, among the correlation matrices presented in this work,

the AR-1 seems the be the best option, even though we will compare the results under

all structures. Based on Figure 36 we can not see a clear relationship between age

and cholesterol level, suggesting that a non-parametric regression structure could be

suitable to relate them.
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Figure 34 – Individual and average profiles for cholesterol level by sex.
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Figure 35 – Sample variogram for cholesterol level by year.
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Figure 36 – Scatter plot between the cholesterol level and age, fitted by LOESS

We fitted several models, comparing our approach with some usual sugges-

tions found in the literature, more specifically, we fitted a model for cholesterol level

based on GEE and gamma, inverse gaussian (IG), CSN and SMCSN distributions using,

exchangeable, AR-1 and unstructured working correlation matrices and considering:

Yij „ gammapµij, φq,
Yij „ IGpµij, φq,
Yij „ CSNpµij, σ

2, γq,
Yij „ SMCSNpµij, σ

2, γ,νq,
µij “ β1sex ` β2year˚

ij ` fpageijq,

where Yij is the cholesterol level divided by 100 at the jth time point for the ith sub-

ject (Zhang and Davidian, 2001), year˚
ij = pyearij ´ 5q{10, and SMCSN is a member of

that family presented in this work.

From Table 5 the best working correlation matrices for each model is: ex-

changeable for Gamma, IG and CSBPN, unstructured for CSN, CST, CSCN, CSGT and

CSBSN, and AR-1 for CSS and CSGGN.

Under the selected working correlation matrices, the results of Normal prob-

ability plots with 95% confidence simulated envelope for the quantile residuals are given

in Figure 37. We have that the GEE CST, CSS, CSCN, CSGT and CSBPN models

present a good fit, since there are no points outside the envelopes. On the other hand,

for the Gamma, IG, CSN, CSBSN and CSGGN, we can see some points outside the

envelope, indicating a poor fit. In Figure 38 we have the estimated nonparametric curves

for the selected models, according to the QQ-plots. The dotted and dashed lines refer to

95% confidence bands built under the naive and robust variances, respectively. We can

noticed similar behavior among all models, even though for the CST, CSCN and CSBPN

models present bands with larger width, compared to the CSS and CSGT models. The
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Table 5 – QAIC and QBIC of the fitted models for cholesterol level data.

QAIC QBIC

Distribution
Correlation

Exchangeable Unstructured AR-1 Exchangeable Unstructured AR-1

Gamma 1348.668 1353.073 1353.947 1394.079 1398.638 1401.068
Inverse Gaussian 1524.998 1568.22 1563.14 1570.422 1593.086 1615.362

CSN 1078.371 1077.681 1079.68 1127.987 1126.916 1131.419
CST 1072.220 1072.081 1072.176 1126.739 1126.588 1128.806
CSS 1034.767 1034.311 1032.835 1090.345 1089.941 1089.724

CSCN 1024.716 1029.911 1034.544 1085.168 1090.451 1096.382
CSGT 1015.315 1018.762 1024.203 1070.769 1074.293 1081.035

CSBPN 1029.329 1031.264 1030.945 1089.810 1091.813 1092.759
CSBSN 854.3898 856.124 857.945 913.6731 915.473 918.525
CSGGN 1390.302 15731.770 12240.310 1452.812 15815.210 12323.150

results of the respective fitted models are given in Table 6. From the naive and robust

standard errors and the p-values for the individual test for nullity (within parentheses),

we have that all coefficients were significant under for all models.

All models well fitted to the data, according to the QQ-plots, also present a

well fit for the perturbation measures, then we select the model that showed the lowest

QAIC and QBIC values. Even though these criterias based on the quasi-likelihood are

not suitable for model selection concerning the error distribution (see Wang (2014), for

example), we consider such results as an indicative. In this case, the CSGT model is

the best one. Through the Figure 39 we can notice that for all perturbation schemes

there are no influential points, showing the good fit of the selected model to the data.

Analyzing the respective estimates we can notice that men have, on average,

higher cholesterol levels than women. Also, there is an increasing in cholesterol levels

over time. From the inspection of the non-parametric curves, we can see that patients

around 55 years old tend to have a higher cholesterol level (in average), whereas

patients over 60 and around 30 years old, tend to have low cholesterol levels.



Chapter 3. Longitudinal data modeling using semi-parametric SMCSN model 94

Table 6 – Estimates, Standard errors (SE), p-values of Wald test and results for the
parameters of gee models.

Model Parameter Est. SE naive SE robust
β1 -0.0053 0.0079(0.51) 0.0003(ă 0.01)
β2 0.1205 0.0021(ă 0.01) ă 0.0001(ă 0.01)

Gamma σ2 0.0252 - -
dfpαq 6.1726 - -

β1 -0.0222 0.0051(ă 0.01) 0.0003(ă 0.01)
β2 0.1212 0.0013(ă 0.01) ă 0.0001(ă 0.01)

IG σ2 0.0096 - -
dfpαq 6.1750 - -

β1 0.0126 0.0013(ă 0.01) 0.0004(ă 0.01)
β2 0.1197 0.0006(ă 0.01) ă 0.0001(ă 0.01)

CSN σ2 0.1803 - -
γ 0.5486 - -

dfpαq 6.0201 - -
β1 0.0126 0.0229(0.58) 0.0004(ă 0.01)
β2 0.1197 0.0101(ă 0.01) ă 0.0001(ă 0.01)

CST σ2 0.1673 - -
γ 0.6018 - -
ν 25.1381 - -

dfpαq 6.0098 - -
β1 0.0054 0.0190(0.78) ă 0.0001(ă 0.01)
β2 0.1230 0.0134(ă 0.01) ă 0.0001(ă 0.01)

CSS σ2 0.1478 - -
γ 0.6164 - -
ν 4.5119 - -

dfpαq 6.4908 - -
β1 0.0330 0.0213(0.12) 0.0002(ă 0.01)
β2 0.1209 0.0055(ă 0.01) ă 0.0001(ă 0.01)

CSGT γ 0.6626 - -
ν (20.0000, 3.5396) - -

dfpαq 6.2009 - -
β1 0.0330 0.0212(0.12) 0.0002(ă 0.01)
β2 0.1209 0.0055(ă 0.01) ă 0.0001(ă 0.01)

CSCN σ2 0.1 - -
γ 0.6540 - -
ν (0.7762, 0.4492) - -

dfpαq 6.2105 - -
β1 0.0330 0.0211(0.12) 0.0002(ă 0.01)
β2 0.1209 0.0055(ă 0.01) ă 0.0001(ă 0.01)

CSBPN σ2 0.1884 - -
γ 0.6358 - -
ν (33.3333,33.3333) - -

dfpαq 6.2164 - -
β1 0.0204 0.0005(ă 0.01) 0.0003(ă 0.01)
β2 0.1214 0.0002(ă 0.01) ă 0.0001(ă 0.01)

CSBSN σ2 0.3220 - -
γ 0.9 - -
ν (1.0000,2.0753) - -

dfpαq 5.9877 - -
β1 0.0340 0.0014(ă 0.01) 0.0012(ă 0.01)
β2 0.1208 0.0004(ă 0.01) 0.0001(ă 0.01)

CSGGN σ2 0.2111 - -
γ 0.6113 - -
ν (5.577702, 1.000000, 19.304003) - -

dfpαq 10.9715 - -
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(a) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear gamma model
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(b) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear IG model
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(c) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CSN model
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(d) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CST model
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(e) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CSS model
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(f) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CSCN model
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(g) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CSGT model
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(h) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CSBPN model
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(i) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CSBSN model
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(j) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CSGGN model

Figure 37 – Quantile-Quantile envelopes for fitted models to cholesterol data
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(a) 95% confidence bands for f(age) of Additive
partially linear CST model.
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(b) 95% confidence bands for f(age) of Additive
partially linear CSS model.
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(c) 95% confidence bands for f(age) of Additive
partially linear CSCN model.
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(d) 95% confidence bands for f(age) of Additive
partially linear CSGT model.
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(e) 95% confidence bands for f(age) of Additive
partially linear CSBPN model.

Figure 38 – 95% pointwise confidence bands for f(age) of fitted models.
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(a) dmax versus subject for case-weight pertur-
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(c) dmax versus subject for skewness parameter
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(d) dmax versus subject for ν1 perturbation.
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(e) dmax versus subject for ν2 perturbation.
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(f) dmax versus subject for working correlation
matrix perturbation.

Figure 39 – Local influence for GEE CSGT Model.
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Chapter 4

Conclusions

Throughout this work we developed a class of regression models based on

the scale mixtures of centred skew-normal distributions, as a natural extension of the

normal regression model and as a more properly approach than the non-centred pa-

rameterization, skewed and/or heavy tailed data. Additionally we consider cases where

we have independent and correlated response. In this sense, we propose regression

models where the response distribution is a mixture between a skew-normal distribution

and a mixing measure. We consider usual mixture distributions such as the beta, gamma

and binary as well as never used models, namely beta prime, Birnbaum-Saunders and

generalized gamma. We also propose a regression structure for the response mean

through semi-parametric linear predictors.

We developed estimation methods under the frequentist approach for inde-

pendent data using the SAEM algorithm, and for correlated data using generalized

Estimation Equations. Through simulation studies, we find that the estimates approach

the true values as the sample size increase, even though, the estimates for the shape

parameters still need to be improved.

For model fit assessment, for independent data, we develop tools for global

and local influence diagnostic analysis. We propose a residual based on the SMCSN

family of distributions and we also present AIC and BIC criteria. Generalized leverage

and Cook distance measures were obtained. In addition, local influence perturbation

schemes were developed for: case-weight perturbation, scale parameter perturbation,

skewness parameter perturbation, continuous covariate perturbation and response

variable perturbation.

On the other hand, for correlated data, we also develop tools for global

and local influence diagnostic analysis. We propose the use of quantile residuals and

present AIC and BIC criteria based on the the respective quasi-likelihood. Local influence

perturbation schemes were developed for: case-weight perturbation, scale parameter

perturbation, skewness parameter perturbation, continuous covariate perturbation,
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response variable perturbation and working correlation matrix perturbation.

Besides the advantages in terms of parameter interpretation, likelihood

behavior and maximum likelihood estimator performance, in the real data analysis it

was shown that our proposal overcomes the usual ones.

4.1 Future works

As future work we suggest the following research topics:

1. To improve the estimators for the shape parameters, proposing new estimation

method such as the method of moments.

2. To propose models for independent and correlated data considering regression

structures for the scale and skewness parameters.

3. To developed Bayesian analysis, including model fit assessment, model compari-

son and influence diagnostics, for the developed class of regression models.
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APPENDIX A

Details to obtain the Scale Mixture of

Normal distributions

A.1 Distribution 2

Has noted by Desmond (1986) the BS can be represented by Inverse Gaus-

sian Distribution (IG). Consider two random variables X1 „ IGpµI , λIq and X´1

2
„

IGpµ´1

I , λµ2

Iq, then the p.d.f. of U is given by

hpu|ν1, ν2q “ 1

2
fX1

pu|µI , λIq ` 1

2
fX2

pu|µI , λIq,

with

fX1
pu|µI , λIq “

ˆ

λI

2πu3

˙1{2

exp

"

´ λI

2µ2
Iu

pu ´ µIq2

*

,

and fX2
pu|µI , λIq “ ufX1

pu|µI , λIq{µI , where ν1 “
a

µI{λI and ν2 “ µI , that implies

λI “ ν2{ν2

1
. That said, we have that the distribution 2, denoted by D2pµ, σ2, ν1, ν2q, and

p.d.f:

fpy|µ, σ2, ν1, ν2q “
ż 8

0

?
u?

2πσ
e´ ud

2

1

2
rfX1

pu|ν1, ν2q ` fX2
pu|ν1, ν2qs du

“
ż 8

0

?
u?

2πσ
e´ ud

2

1

2
fX1

pu|ν1, ν2qdu `
ż 8

0

?
u?

2πσ
e´ ud

2

1

2
fX2

pu|ν1, ν2qdu

“ f1py|µ, σ2, ν1, ν2q ` f2py|µ, σ2, ν1, ν2q,

f1py|µ, σ2, ν1, ν2q “
ż 8

0

?
u?

2πσ
e´ ud

2

1

2

ˆ

λI

2πu3

˙1{2

exp

"

´ λI

2µ2
Iu

pu ´ µIq2

*

du

“ 1

2
?

2πσ

ż 8

0

e´ ud
2

ˆ

λI

2πu2

˙1{2

exp

"

´λIu

2µ2
I

` λI

µI

´ λI

2u

*

du
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“ e
λI
µI

2
?

2πσ

ż 8

0

ˆ

λI

2πu2

˙1{2

exp

"

´λIu

2µ2
I

´ ud

2
´ λI

2u

*

du

“ e
λI
µI

2
?

2πσ

ż 8

0

ˆ

λI

2πu2

˙1{2

exp

"

´
ˆ

1

2µ2
I

` d

2λI

˙

λIu ´ λI

2u

*

du

β2 “ 2λ2

I

ˆ

1

2µ2
I

` d

2λI

˙

, x “
ˆ

1

2µ2
I

` d

2λI

˙

λIu “ β2

2λI

u

“ e
λI
µI

4πσ

ż 8

0

ˆ

β4

x24λI

˙1{2

exp

"

´x ´ β2

4x

*

2λI

β2
dx

“ e
λI
µI

?
λI

4πσ

ż 8

0

exp

"

´x ´ β2

4x

*

1

x
dx

“ e
λI
µI

?
λI

2πσ
K0pβq “ e

λI
µI

?
λI

2πσ
K0

˜

λI

d

2

ˆ

1

2µ2
I

` d

2λI

˙

¸

“ e
λI
µI

?
λI

2πσ
K0

˜

λI

d

2

ˆ

1

2µ2
I

` d

2λI

˙

¸

,

where Kηpzq is the modified Bessel function given in (1.6).

f2py|µ, σ2, ν1, ν2q “
ż 8

0

?
u?

2πσ
e´ ud

2

1

2

u

µI

ˆ

λI

2πu3

˙1{2

exp

"

´ λI

2µ2
Iu

pu ´ µIq2

*

du

“ 1

2
?

2πσµI

ż 8

0

e´ ud
2

ˆ

λI

2π

˙1{2

exp

"

´λIu

2µ2
I

` λI

µI

´ λI

2u

*

du

“ e
λI
µI

?
λI

4πσµI

ż 8

0

exp

"

´λIu

2µ2
I

´ ud

2
´ λI

2u

*

du

“ e
λI
µI

?
λI

4πσµI

ż 8
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exp

"

´
ˆ

1

2µ2
I

` d

2λI

˙

λIu ´ λI

2u

*

du

β2 “ 2λ2

I

ˆ

1

2µ2
I

` d

2λI

˙

, x “
ˆ

1

2µ2
I

` d

2λI

˙

λIu “ β2

2λI

u

“ e
λI
µI

?
λI

4πσµI

ż 8

0

exp

"

´x ´ β2

4x

*

2λI

β2
dx “ e

λI
µI λ

3{2

I

2πσµIβ2
K´1pβq

fpy|µ, σ2, ν1, ν2q “ f1py|µ, σ2, ν1, ν2q ` f2py|µ, σ2, ν1, ν2q

“ e
λI
µI

?
λI

2πσ
K0 pβq ` e

λI
µI λ

3{2

I

2πσµIβ2
K´1pβq “ e

λI
µI λ

1{2

I

2πσ

„

K0 pβq ` λI

µIβ2
K´1pβq
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“ e
1
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1

?
ν2

2πσν1

„

K0 pβ˚q ` ν2

1

1 ` dν2ν
2
1

K´1pβ˚q


,

with β˚ “
a

1 ` dν2ν
2
1{ν2

1
.
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A.2 Distribution 3

fpy|µ, σ2, ν1, ν2q “
ż 8

0

?
u?

2πσ
e´ ud

2

ν2

ν3Γpν1q

ˆ

u

ν3

˙ν1ν2´1

exp

"

´
ˆ

u

ν3

˙ν2
*

du
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2πσν3Γpν1q

ż 8

0

e´ ud
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ˆ

u

ν3

˙ν1ν2´1{2

exp

"

´
ˆ

u

ν3
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e´xν3
d
2xν1ν2´1{2 exp t´xν2u dx
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e´xν3
d
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p´1qm pν3d{2qm

m!
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xν1ν2`m´1{2 exp t´xν2u dx,
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p´1qm pν3d{2qm

m!

ż 8

0

1

ν2

wν1`m{ν2`1{p2ν2q´1 exp t´wu dw,
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APPENDIX B

Matrix form of

ż

χ

”

g
p2q
j pwq

ı2

dw

Let b “ pb1, . . . , bkqJ be a vector of know k basis functions. Consider a

function g that can be approximated as a linear combination of these bases, that is,

gptq “ κJbptq, where κ “ pκ1, . . . , κkqJ. Since gptqp2q is a constant, obtaining the matrix

form of the penalty term to the non-smoothness of the curve is given by:
ż

χ

”

g
p2q
j pwq

ı2

dw “
ż

χ

“

κJbp2qpwq
‰2

dw

“
ż

χ

κJbp2qpwqbp2qpwqκdw

“ κJ

„
ż

χ

bp2qpwqbp2qpwqdw


κ

“ κJ
Ωκ,

where Ω is a square matrix pkˆkq with elements: Ωij “
ż

χ

b
p2q
i pwqbp2q

j pwqdw. Considering

the observed values px1, . . . , xnq, we have to: Ωij “
n

ÿ

l“1

b
p2q
i pxlqbp2q

j pxlq.
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APPENDIX C

Additive Partial Linear Model

Identifiability

Consider the additive partial linear model given by

Y “ Xβ `
q

ÿ

j“1

fj ` ε “ Xβ `
q

ÿ

j“1

Tjθj ` ε “ Xβ ` T θ ` ε.

This model may be unidentifiable, for this we need to impose a restriction

on the parameters θ. As seen in Wood (2017) and Vanegas and Paula (2016) an

appropriate constraint would be 1
J
n fj “ 1

J
n Tjθj “ 0, where 1

J
n is a n-vector of ones.

Note that this is a restriction of type Cθ “ 0. To use this constraint we can

apply the QR decomposition:

CJ “ Q ˆ pR,0qJ

where Q is an orthogonal matrix pk ˆ kq and R is an upper triangular matrix pq ˆ qq,
with k “ 1 ` k1 ` ¨ ¨ ¨ ` kq. The matrix Q can be partitioned as Q ” rD : Zs, where Z is

a matrix k ˆ pk ´ qq.

In this way, θ “ Zθz will satisfy the constraints for any vector θz of dimension

k ´ p, because:

Cθ “ pRJ,0q ˆ pDJ,ZJqJ ˆ Zθz “ pRJ,0q ˆ p0, Ik´qqθz “ 0.

That said, we obtain the QR decomposition to CJ and defines Z as being

the k´ q last columns of the orthogonal array Q. We estimate the parameters of interest

using T̃ “ T Z and Ω̃ “ ZJ
ΩZ and obtain θ̂ “ Zθ̂z.
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APPENDIX D

Convergence plots

D.1 Convergence plots for ragweed pollen Centered Skew

Distribution 2 model
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Figure 40 – Convergence plots for ragweed pollen Centered Skew Birnbaum-Saunders
Normal model parameters.
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APPENDIX E

Simulation study results

E.1 Chapter 2: simulation study 1
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Figure 41 – Box-plots of the bias for Centered Skew Normal model.
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Figure 42 – Box-plots of the bias for Centered Skew-t model.
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Figure 43 – Box-plots of the bias for Centered Skew Generalized t model.
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Figure 44 – Box-plots of the bias for Centered Skew Slash model.
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Figure 45 – Box-plots of the bias for Centered Skew Contamined Normal model.
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Figure 46 – Box-plots of the bias for Centered Skew Beta Prime Normal model.
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Figure 47 – Box-plots of the bias for Centered Skew Birnbaum-Saunders Normal model.
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Figure 48 – Box-plots of the bias for Centered Skew Generalized Gamma Normal model.
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Figure 49 – fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Normal model.
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Figure 50 – fitted curves (gray lines) and actual curves (black lines) for Centered Skew-t
model.
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Figure 51 – fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Generalized t model.
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Figure 52 – fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Slash model.
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Figure 53 – fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Contamined Normal model.
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Figure 54 – fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Beta Prime Normal model.
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Figure 55 – fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Birnbaum-Saunders Normal model.
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Figure 56 – fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Generalized Gamma Normal model.
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Figure 57 – Simulation study: estimated parameters for GEE-based CSN model with
ρ “ 0.3 (exchangeable) by working correlation matrices.
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Figure 58 – Simulation study: relative mean square error of the parameters for GEE-
based CSN model with ρ “ 0.3 (exchangeable) by working correlation
matrices.
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Figure 59 – Simulation study: nonparametric curves for GEE-based CSN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.3 (exchangeable)
by working correlation matrices.



APPENDIX E. Simulation study results 130

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

1

2

3

0

1

2

3

1

2

3

Sample size

β^

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

1

2

3

1

2

1

2

3

Sample size

σ̂
2

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

-0.5

0.0

0.5

Sample size

γ̂

Exchangeable AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

0.00

0.25

0.50

0.75

1.00

Sample size

ρ̂

Figure 60 – Simulation study: estimated parameters for GEE-based CSN model with
ρ “ 0.8 (exchangeable) by working correlation matrices.
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Figure 61 – Simulation study: relative mean square error of the parameters for GEE-
based CSN model with ρ “ 0.8 (exchangeable) by working correlation
matrices.
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Figure 62 – Simulation study: nonparametric curves for GEE-based CSN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.8 (exchangeable)
by working correlation matrices.
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Figure 63 – Simulation study: estimated parameters for GEE-based CST model with
ρ “ 0.3 (exchangeable) by working correlation matrices.
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Figure 64 – Simulation study: relative mean square error of the parameters for GEE-
based CST model with ρ “ 0.3 (exchangeable) by working correlation
matrices.
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Figure 65 – Simulation study: nonparametric curves for GEE-based CST model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.8 (exchangeable)
by working correlation matrices.
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Figure 66 – Simulation study: estimated parameters for GEE-based CST model with
ρ “ 0.8 (exchangeable) by working correlation matrices.
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Figure 67 – Simulation study: relative mean square error of the parameters for GEE-
based CST model with ρ “ 0.8 (exchangeable) by working correlation
matrices.
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Figure 68 – Simulation study: nonparametric curves for GEE-based CST model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.8 (exchangeable)
by working correlation matrices.
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Figure 69 – Simulation study: estimated parameters for GEE-based CSS model with
ρ “ 0.3 (exchangeable) by working correlation matrices.
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Figure 70 – Simulation study: relative mean square error of the parameters for GEE-
based CSS model with ρ “ 0.3 (exchangeable) by working correlation
matrices.
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Figure 71 – Simulation study: nonparametric curves for GEE-based CSS model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.3 (exchangeable)
by working correlation matrices.
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Figure 72 – Simulation study: estimated parameters for GEE-based CSS model with
ρ “ 0.8 (exchangeable) by working correlation matrices.
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Figure 73 – Simulation study: relative mean square error of the parameters for GEE-
based CSS model with ρ “ 0.8 (exchangeable) by working correlation
matrices.
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Figure 74 – Simulation study: nonparametric curves for GEE-based CSS model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.8 (exchangeable)
by working correlation matrices.
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Figure 75 – Simulation study: estimated parameters for GEE-based CSCN model with
ρ “ 0.3 (exchangeable) by working correlation matrices.
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Figure 76 – Simulation study: relative mean square error of the parameters for GEE-
based CSCN model with ρ “ 0.3 (exchangeable) by working correlation
matrices.
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Figure 77 – Simulation study: nonparametric curves for GEE-based CSCN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.3 (exchangeable)
by working correlation matrices.
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Figure 78 – Simulation study: estimated parameters for GEE-based CSCN model with
ρ “ 0.8 (exchangeable) by working correlation matrices.
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Figure 79 – Simulation study: relative mean square error of the parameters for GEE-
based CSCN model with ρ “ 0.8 (exchangeable) by working correlation
matrices.
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Figure 80 – Simulation study: nonparametric curves for GEE-based CSCN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.8 (exchangeable)
by working correlation matrices.
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Figure 81 – Simulation study: estimated parameters for GEE-based CSGT model with
ρ “ 0.3 (exchangeable) by working correlation matrices.
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Figure 82 – Simulation study: relative mean square error of the parameters for GEE-
based CSGT model with ρ “ 0.3 (exchangeable) by working correlation
matrices.
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Figure 83 – Simulation study: nonparametric curves for GEE-based CSGT model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.3 (exchangeable)
by working correlation matrices.
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Figure 84 – Simulation study: estimated parameters for GEE-based CSGT model with
ρ “ 0.8 (exchangeable) by working correlation matrices.
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Figure 85 – Simulation study: relative mean square error of the parameters for GEE-
based CSGT model with ρ “ 0.8 (exchangeable) by working correlation
matrices.
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Figure 86 – Simulation study: nonparametric curves for GEE-based CSGT model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.8 (exchangeable)
by working correlation matrices.
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Figure 87 – Simulation study: estimated parameters for GEE-based CSBPN model with
ρ “ 0.3 (exchangeable) by working correlation matrices.
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Figure 88 – Simulation study: relative mean square error of the parameters for GEE-
based CSBPN model with ρ “ 0.3 (exchangeable) by working correlation
matrices.
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Figure 89 – Simulation study: nonparametric curves for GEE-based CSBPN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.3 (exchangeable)
by working correlation matrices.



APPENDIX E. Simulation study results 160

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

0

1

2

3

Sample size

β^

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)
0.0

2.5

5.0

7.5

10.0

Sample size

σ̂
2

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

-0.5

0.0

0.5

Sample size

γ̂

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

5

10

15

20

Sample size

ν̂
1

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

5

10

15

20

Sample size

ν̂
2

Exchangeable AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

0.2

0.4

0.6

0.8

Sample size

ρ̂

Figure 90 – Simulation study: estimated parameters for GEE-based CSBPN model with
ρ “ 0.8 (exchangeable) by working correlation matrices.
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Figure 91 – Simulation study: relative mean square error of the parameters for GEE-
based CSBPN model with ρ “ 0.8 (exchangeable) by working correlation
matrices.
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Figure 92 – Simulation study: nonparametric curves for GEE-based CSBPN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.8 (exchangeable)
by working correlation matrices.
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Figure 93 – Simulation study: estimated parameters for GEE-based CSBSN model with
ρ “ 0.3 (exchangeable) by working correlation matrices.
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Figure 94 – Simulation study: relative mean square error of the parameters for GEE-
based CSBSN model with ρ “ 0.3 (exchangeable) by working correlation
matrices.
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Figure 95 – Simulation study: nonparametric curves for GEE-based CSBSN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.3 (exchangeable)
by working correlation matrices.



APPENDIX E. Simulation study results 166

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

1

2

3

1

2

3

4

1.0

1.5

2.0

2.5

3.0

Sample size

β^

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

2

4

6

8

Sample size

σ̂
2

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

-0.5

0.0

0.5

Sample size

γ̂

Exchangeable AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

0.0

0.2

0.4

0.6

0.8

Sample size

ρ̂

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)
1.0

1.5

2.0

2.5

3.0

3.5

Sample size

ν̂
1

Exchangeable unstructured AR-1

(10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10) (10,3) (10,10) (50,3) (50,10)

5

10

15

20

Sample size

ν̂
2

Figure 96 – Simulation study: estimated parameters for GEE-based CSBSN model with
ρ “ 0.8 (exchangeable) by working correlation matrices.
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Figure 97 – Simulation study: relative mean square error of the parameters for GEE-
based CSBSN model with ρ “ 0.8 (exchangeable) by working correlation
matrices.
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Figure 98 – Simulation study: nonparametric curves for GEE-based CSBSN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.8 (exchangeable)
by working correlation matrices.
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Figure 99 – Simulation study: estimated parameters for GEE-based CSGGN model with
ρ “ 0.3 (exchangeable) by working correlation matrices.
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Figure 100 – Simulation study: relative mean square error of the parameters for GEE-
based CSGGN model with ρ “ 0.3 (exchangeable) by working correlation
matrices.
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Figure 101 – Simulation study: nonparametric curves for GEE-based CSGGN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.3 (exchange-
able) by working correlation matrices.
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Figure 102 – Simulation study: estimated parameters for GEE-based CSGGN model
with ρ “ 0.8 (exchangeable) by working correlation matrices.
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Figure 103 – Simulation study: relative mean square error of the parameters for GEE-
based CSGGN model with ρ “ 0.8 (exchangeable) by working correlation
matrices.
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Figure 104 – Simulation study: nonparametric curves for GEE-based CSGGN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with ρ “ 0.8 (exchange-
able) by working correlation matrices.
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