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Resumo

Nesta dissertagdo foram desenvolvidas duas classes flexiveis de modelos de regres-
sao para dados continuos, assimétricos e/ou de caudas pesadas. Uma para dados
independentes e outra para dados dependentes. Consideramos uma abordagem semi-
paramétrica, utilizando Modelos Lineares Parciais Aditivos Generalizados (MLPAG),
para dados independentes, e MLPAG com Equacgdes de Estimacdo Generalizadas
(EEQG), para dados dependentes. Em ambos os casos foram considerados preditores
semi-paramétricos para as médias das respostas e erros (marginais) seguindo dis-
tribuices de misturas de escala normal assimétrica centralizada (MENAC). No caso
de dados dependentes, as estruturas de dependéncia foram modeladas via EEG. Em
relacédo as distribuicoes MENAC, consideramos medidas misturadoras usuais (gama,
beta e binaria) e outras nunca consideradas (gama generalizada, Birnbaum-Saunders
e beta prime). Foram desenvolvidos métodos de estimacao, medidas de qualidade de
ajuste e de diagndstico para esses modelos, sob a ética frequentista. Foram criadas
rotinas computacionais para permitir a utilizagdo das metodologias desenvolvidas, bem
como foram conduzidos estudos de simulacao para verificar seus desempenhos. Tam-
bém, modelagens de problemas reais, através das metodologias desenvolvidas, foram
consideradas, ilustrando o potencial dos resultados obtidos.

Palavras-chave: Dados longitudinais, Misturas de escala normal assimétrica centra-
lizada, EquacOes de Estimagao generalizadas, Modelos Lineares Parciais Aditivos
Generalizados, Inferéncia frequentista.



Abstract

In this dissertation, two classes of regression models for continuous, skewed and/or
heavy tailed data were developed. One for independent data and another for dependent
data. We considered a semi-parametric approach using Generalized Additive Partially
Linear Models (GAPLM), for independent data, and GAPLM with Generalized Estimation
Equations (GEE), for dependent data. In both cases, semi-parametric predictors for
response means and scale mixtures of centered skew-normal (SMCSN) distributions for
the (marginal) errors were considered. For dependent data, the dependence structures
were modelled through GEE. Concerning the SMCSN distributions we considered
either usual mixing measures (gamma, beta and binary distributions) as well as never
used ones (generalized gamma, Birnbaum-Saunders and beta prime distributions).
Estimation methods, goodness of model fit and diagnostic tools for these models, under
the frequentist paradigm, were developed. Computational routines were created, to
allow for the use of the developed methodologies, as well as simulation studies were
performed to study the their performance. Also, the modelling of real problems, through
such methodologies, were considered, illustrating the potential of the obtained results.

Keywords: Longitudinal data, Scale Mixtures of Centered Skew-Normal, Generalized
Estimating Equations, Generalized Additive Partially Linear Models, Frequentist infer-
ence.
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Chapter 1

SCALE MIXTURE OF CENTERED
SKEW-NORMAL DISTRIBUTIONS

1.1 Introduction

In the following, we will introduce the first part of this work talking about a
motivating example for the proposed methodologies and a brief review of the literature
of methods similar to the ones we will be using.

1.1.1 Motivating example

Let us consider the following study about daily ragweed pollen levels (Stark
et al., 1997; Ruppert et al., 2003). This data set was collected from 1991 to 1994 during
the ragweed season in Kalamazoo, Michigan, totaling 335 observations. According to
Ruppert et al. (2003) the main goal is to analyze the pollen concentration (grains/m?) as
function of: the number of days in the current ragweed pollen season (days in season),
the temperature in the following day (in F°) (temperature), an indicator of significant
rain the in following day (1 = at least 3 hours of steady or brief but intense rain, 0 =
otherwise) and wind speed forecast for the following day (wind speed).

This data set was analyzed by Ferreira and Paula (2017) and we will use
their results as a motivation for the first part of this dissertation. Figure 2 presents the
Histogram and estimated densities in the original scale (Figure 1a) and in the square
root-scale (Figure 1c). According to Ferreira and Paula (2017), the original response
distribution is highly skewed, that would over complicate the data analysis. On the
other hand, the square root transformation induces a lesser skewed behavior of the
response, which is more easily for the modeling process. These authors also analyzed
the response variable on the logarithmic scale. However, this transformation lead to
non finite values. Table 1 provides descriptive statistics, which suggest an apparent
skewness (1.12) and heavy tails (Kurtosis = 3.59).
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Figure 1 — Histograms, estimated densities and boxplots for Pollen concentration and
v/Pollen concentration.

Table 1 — Summary statistics for original scale and the square root transformation of the
pollen concentration (SD is sample standard deviation and CV is coefficient
of variation).

Scale Min Max Mean Median SD  Skewness Kurtosis CV
Original 0 440 44.32 9 73.76 2.49 9.82 1.66
squareroot | 0 20.98 4.71 3 4.71 1.12 3.59 0.99

Even after the square root transformation, the skewness still persists (see
Chaves et al. (2020)) and, on the other hand, the original distribution is not easy
to model. In this case, the use of scale mixture of skew-normal distributions can be
suitable. Figures 2a-2c¢ present the Scatter plots between the squared root of the pollen
concentration and the explanatory variables along with regression curves fitted by
LOESS. They indicate a nonlinear relationship between the response variable and
days, in such a way that a non-parametric structure could be suitable for modeling such
relation. For the other covariates, it is suitable to assume a linear relationship. Ferreira
and Paula (2017) used a skew-normal partially linear model, comparing the respective
results with those obtained by the fit through a normal partially linear model.

Therefore, the first part of this dissertation comprises the following contribu-



Chapter 1. SMCSN DISTRIBUTIONS 24

tions:

1. We review a family of distributions, namely, scale mixture of skew-normal densi-
ties, useful for modeling skewed and/or heavy-tailed data. The related centered
parameterization, which presents several advantages, in terms of inferential and
interpretation aspects , over the original parameterization, is presented. Consid-
ering additional mixing distributions, besides the usual ones, we developed new
members for this class namely, generalized Gamma, Birnbaum-Saunders and
Beta Prime, which can be useful alternatives for the usual members.

2. We develop a class of additive partially linear models based on this family.

3. We present the necessary/required inferential tooling, as well as goodness of fit
measurements, diagnostic techniques of global and local influence, simulation
studies and application to the ragweed pollen data showing the good performance
of the developed models.
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Figure 2 — Scatter plots between the squared root of the pollen concentration and the
temperature, wind speed and days in season, fitted by LOESS curve.
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1.1.2 Literary review

The normal distribution has been widely used in many areas of knowledge
since the early days of statistical modeling, mainly due to mathematical and compu-
tational advantages over the others distributions. However, very often, the data sets
present some departing from normality as: asymmetry and/or heavy/light tails. In this
case the use of the normal distribution (or other symmetric distributions) may lead to
misleading inference (Eling, 2012).

To handle this issue, several asymmetric and/or heavy tails distributions
have been proposed in the literature. The skew-normal distribution (Azzalini, 1985),
was one the first generalizations of the normal one, allowing several different shapes
in terms of asymmetry. Ferreira et al. (2011) presented a class called scale mixture
of skew-normal distributions (SMSN), which is an extension of the scale mixture of
normal distributions (Andrews and Mallows, 1974). The SMSN distributions are very
useful for analyzing skewed and/or heavy tailed data. As particular cases we have: the
skew-normal distribution, skew Student-t, skew slash, skew generalized t and skew
contaminated normal, besides their respective symmetrical cases. This class has been
recently improved, in order to circumvent several inferential problems and limitations, for
(Maioli, 2018Db), using the centered version of the skew-normal distribution (Arellano-
Valle and Azzalini, 2008).

Due to its flexibility the SMSN family has been widely studied and regression
models have been proposed based on such class. Basso et al. (2010) showed the
inference for finite mixture of SMSN. Lachos et al. (2010a) proposed a multivariate linear
error-in-variables regression model based on the scale mixtures of multivariate skew-
normal distributions. Cancho et al. (2011) developed a Bayesian nonlinear regression
model for SMSN family. Zeller et al. (2011) developed local influence analysis for
the multivariate SMSN regression models. Garay et al. (2011) proposed a non-linear
regression model using SMSN distributions. da Silva Ferreira et al. (2011) developed
several properties for the SMSN family of distributions, also discussing the inference
process and the obtaining of the respective standard errors. Lachos et al. (2011)
developed a heteroscedastic non-linear regression model for SMSN. Labra et al. (2012)
built global and local influence analysis for heteroscedastic non-linear regression models
based on the SMSN distributions. Zeller et al. (2012) developed the local influence
analysis for multivariate error-in-variables regression models for SMSN distributions.
Garay et al. (2014) presented the local influence analysis and generalized Cook’s
distance for nonlinear regression models based on SMSN distributions. Ferreira et al.
(2015) showed the global and local influence analysis for SMSN models, as well as
generalized leverage. Zeller et al. (2016) proposed a linear regression model based
on finite mixture of SMSN distributions. Ferreira et al. (2016) proposed a multivariate
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regression model based on SMSN distributions. Ferreira and Lachos (2016) showed a
non-linear regression model for finite mixture of SMSN. Massuia et al. (2017) developed,
under the Bayesian paradigm, a censored regression model for the SMSN family.
Galarza Morales et al. (2017) proposed a quantile regression model for finite mixture
of SMSN distributions. Mattos et al. (2018) showed a censored regression model
for SMSN under the Frequentist paradigm. Castro et al. (2019) developed a semi-
parametric Bayesian mixed model for the SMSN family, using wavelets penalization.
da Silva Ferreira et al. (2019) developed diagnostic tools for heteroscedastic non-
linear regression models based on finite mixture of SMSN. Hajrajabi and Maleki (2019)
developed an autoregressive non-linear semi-parametric regression model for the SMSN
class.

It is worth to note that all the literature cited above is based on the usual
parameterization of the skew-normal, which can present some problems, that we will
discuss later.

1.2 Centered skew-normal distribution

A random variable Y follows a skew-normal distribution with location pa-
rameter o € R, scale parameter 3 € R* and skewness parameter \, € R, i.e.,
Y ~ SN(a, 5%, )), if its probability density function (p.d.f) is given by (Azzalini, 1985):

a3 (50 s (57)) et

where ¢ and ¢ stands for the p.d.f and cumulative function of standard Normal distribu-
tion. Note that if \; = 0, the normal distribution is recovered. Multivariate versions of this
distribution can be found in Azzalini and Valle (1996) and Padilla et al. (2018).

On the other hand, Henze (1986) proposed an useful stochastic representa-
tion of the (original) skew-normal, which is given by:

Y=a+ﬁ(5H+mT), (1.1)

where H ~ HN(0,1) L T~ N(0,1), HN(0, 1) denotes the standard half-normal distri-
bution (i.e., a standard Normal distribution truncated below zero) and § = A\;/+/1 + A2
From (1.1) we have that the expectation and variance of Y are given, respectively, by

E(Y) = a + 65\/5 and Var(Y) = 42 (1 - 522> .
T e

Arellano-Vale and Azzalini (2008) presented some problems, through a
practical example, induced by the above parameterization. Among them when A — 0,
the expected Fisher information matrix is singular, even if all parameters are identifiable,
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which leads to: lack of some asymptotic proprieties of the respective maximum likelihood
estimators and a non quadratic shape of the log-likelihood. Even under Bayesian
inference, these problems still remain, unless (very) informative priors be used Maioli
(2018a); Azevedo et al. (2018). These problems can be solved if we use the centered
parameterization of the skew-normal distribution proposed by Azzalini (1985).

It is said that Y. has a skew-normal distribution under the centered parame-
terization (or centered skew-normal distribution) with centered parameters i € R, o € R*
and v € (—0,99527;0,99527), denoted by Y, ~ SN.(u,c?,7), if

Y, = i+ 0, (1.2)

where ZO = (Z—p)/0. Z ~SN(0,1, ), pt. = /2/mdand o, = /1 — (2/m)0%. We also

e (V)

(127

j=B(Y) = o+ Bpe, o = Var(Y,) = 51— ) and 5 = -

where v denotes the Pearson’s index of Skewness. Using the Jacobian transformation
method, the p.d.f of (1.2) is given by

Pt = 20 (V=5 o (2 (1F)),
where

2 1/3 1/3
fzﬂ—071/337 § = <) , w=041+s223and \ = il

o Virs -1

Notice that the SN,(u,c?,v) is equivalent to SN(£,w? \). As in (1.1), the
Henze’s stochastic representation for the centered skew-normal distribution is given by

=§+w<5H+WT>, (1.3)

with H, T', £, w and ¢ as defined above.

1.3 Scale mixture of skew-normal distribution under the cen-
tered parameterization

In this section we present the scale mixture of centered skew-normal distri-
butions. We considered, as mixing measure, usual choice as gamma, beta and binary
distributions as well as interesting alternatives as: beta prime, Birnbaum-Saunders and
generalized gamma.
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A random variable Y follows a scale mixture of skew-normal distribution under
the centered parameterization (or scale mixture of centered skew-normal distribution
- SMCSN) with mean y, scale parameter o2, skewness parameter v, mixing measure
H and shape parameters v, i.e, Y ~ SMCSN(y,0?, ~, H,v), if it can be stochastilly
represented by

Y = p+ (U)W, (1.4)

where W ~ SN.(0,02,v) LU, k(.) is a positive real arbitrary function and U is a mixing
distribution, with cdf H(.;v). Also, it is possible to prove that:

¢ IfE ( k(U)) < o0, then E(Y) = u;
o IfE(k(U)) < oo, then Var(Y) = 0%k,;
o fE(K(U)) <wandE < k(U)) < o then the skewness coefficient is given by

E(Y —E(Y))?  ERE2U)W)?  ky

s = Var (V)92 Y ER

o IfE(k(U)) <cwandE ( k:(U)) < oo then the kurtosis coefficient is given by

. EY -EX))' EFPZAO)W) K s
He = (Valr(Y))2 B o4k3 _a4k‘§E<W)

where k,, = E[k(U)™?].

Note that if v = 0, the SMCSN family reduces to the scale mixture of normal
distributions family. Let Y ~ SMCSN(p, 02, v, H,v). Then, Y|U = u ~ SN.(u, 0*k(u),7),
U ~ H(.|v). Analogous to the Henze’s representation given in (1.3), we also have that
Y|IU=u,H=h~ N +w,h,w2(1 -8)), H~ HN(0,1), U ~ H(.|v), where

9 \ /3
Su=p—0 k(u)71/3s,s=(4_ > —0'\//{? \/14_372/375:\/“_7)\2

T
sy1/3

T \2)r+ s B(2fr — 1)

The p.d.f of (1.4) is given by

folnotonw) = [ 2o (PS5 )0 (A (1S5 ) dita)

where

y—&  y—(u—ok(w"®s)  (y—p)+o/k(u)y"s

wy or/k(u)/1 + 52923 or/k(u)4/1 + 52923
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_ (y — 1) okutts 1 s
a\/k(u)\/1+32”y2/3 or/k(u)/1 + 52923 k() A1+ 52923
el &

k(u) wi

and

y— y—p
=1+ 82923 & = and d = = .
w1 s2y23, & = —y'3s LT ow

1.4 Examples of Scale Mixtures of Centered Skew-Normal
Distribution

The following will show the density of SMCSN distributions based on the
Gamma, Beta, Binary, BP, BS and GG distributions as mixing measure. Here we consider

k(u) = 1/u.

1.4.1 Centered skew generalized t distribution
Considering U ~ gamma(v, /2, 1»/2) with pdf:

_ (V2/2)V1/2 v1/2—1 _hu
h(ulvy, va) = WU exp{ 7} 10,000 (1), (1.5)
we obtain the Centered skew generalized t distribution denoted by Y ~ CSGT (i, 02,7,
v1,10). As noted by Maioli (2018a), this distribution has some identifiability issues,
since different values of (o2 1,)" can lead to the same likelihood. Maioli (2018a)
proposed to use ¢° = 1 to avoid this problem. Therefore, in this work we assume

Y ~ CSGT,2_1(p, v, 11, v2) Whose p.d.f is given by:

2% ? _i? Yo —%[“(L*S)QH@) 2v/u(y— u)%]
f(ylu,% V17V2) = ! J w2 e “1 11x
ot (@ )y

o ()

where 1 is the mean, v is the skewness and v, and v, are the shape parameters, since
Var(Y) = vy/(v1 — 2). Note that if vy, = 1, = v the CSGT distribution is reduced to
Centered skew t distribution (CST) with 0% = 1.

1.4.2 Centered skew t distribution
Considering U ~ gamma(v/2,v/2) whose p.d.f is given by:

Uy /2)V1/2 Vol
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we obtain the Centered skew t distribution denoted by C'ST (i1, 0%, v, v) whose p.d.f is
given by:
4

) B 2v/2)"2e T [* vt 1 2 &
ol o) = 2 [ oxp { - |ate? ) -2yt

co(r(vaa- )

where 1 is the mean, v is the skewness parameter, v is the degree of freedom and
Var(Y) = o?v/(v —2).

1.4.3 Centered Skew-Slash distribution

Considering U ~ beta(v, 1) whose p.d.f is given by h(u|v) = vu’ " 1) (u),
we obtain the Centered Skew-Slash distribution denoted by C'SS(u, o2, ~, v) whose p.d.f
is given by:

2v 3 Rt et ¢

2 _ 27 vl —Hud?—2/ud ] 1

9 ) ) - € 1 Uu 26 1 @ A ud - du,
flylp,o”,v,v) s ) ( <\f M))

where 1 is the mean, v is the skewness parameter, v is the degree of freedom and
Var(Y) = o*v/(v —1).

1.4.4 Centered Skew-contaminated Normal distribution

Considering U a discrete random variable whose p.d.fis given by h(u|vy, o) =
1 Lyey, (w) + (1 — 1) 1,21 (u), we obtain the Centered Skew-contaminated Normal distri-
bution denoted by Y ~ CSCN(p, 02,7, v1, 1) whose p.d.f is given by:

A/ _1 _a)? 3
2 =2 Y2 -3(vmd-E) g (o d— 1)) &
f(y|/,b,0' )77”17”2) Vlawl\/%e \/72 o1

w8 e (3 (o 8))]

where p is the mean, v is the skewness parameter, 14, and v, are the proportion of
outliers and scale parameter, respectively, and Var(Y) = o*(v1 + v5(1 — v1)) /1.

1.5 New distributions of scale mixture of skew-normal un-
der the centered parameterization

In this section we develop three new members of the CSMN family based
on the: Beta prime (BP) (Keeping, 1962), Birnbaum-Saunders (BS) (Birnbaum and
Saunders, 1969b,a) and generalized gamma (GG) (Stacy, 1962) distributions.
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1.5.1 Centred skew Beta Prime Normal

Considering U ~ beta prime(v,, ) whose p.d.f is given by

ulllfl

1
B, va)(1 + u) @it - (0)

(u),

we obtain the Centred skew Beta Prime Normal, denoted by Y ~ C.SBPN (i, 02, vy, v5),
whose p.d.f is given by:

&
5.2 vi—1

2e 1 o uTe 4 (w221 )
2 “1/O| A\ d
owi\ 2w B(vy, 17) fo (u+ 1)V1+V2e v

f(y|/'L70-2777V17 VQ) =

where u is the mean, ~ is the skewness, v; and v, are the shape parameters and
Var(Y) = 0*vy/(v1 — 1). As special case when v = 0 we have the beta prime normal
distribution, whose p.d.f is given by:

uV1—1

2 _ —ud d
f(y“‘ag 7V17V2) L 271‘0‘6 B(l/l,l/g)(l +u)(u1+u2) Y

1 © uy1_1/2 udd
= e 2du
V2ro B, 1) L (1 + u)tnrtr2)

B 1 d ”1+1/2G172 20 1/2 — v, 1 — (11 + o)
B V210 B(vy, 1) \ 2 21\ g 0 ’

where G is the Meijer G-function (Meijer, 1936) given by:

L'(b; +1t I'l—a; —t
G;n;]n al: 7a J )H ( J ) x_tdt’
: bi,..., by T omi ]_[J nir L(a; +1) I'(1—b;—1t)

j m+1
where i = +/—1 is the complex unit and L denotes an integration path (see, Gradshteyn
and Ryzhik (2014), for example).

1.5.2 skew Birnbaum-Saunders Normal

Considering U ~ BS(v4, ») whose p.d.f is given by

1/2 125} 3/2 1 u Vo
h(ujvy, v <—> +<7> ——— | —+—= =2 Lo (u),
(ulpn, v2) = 2\/%V1V2 { u P 20\, u (00 (1)

we obtain the Centred skew Birnbaum-Saunders Normal, denoted by Y ~ CSBSN(y,
a?,7,v1, 1), whose p.d.f is given by:

2
1 &

V2 202 0
vy 29 1
f(y|/%0'2777 V17V2) = e — eXP{—Q <Ud2 - 2\/>d7 + = <u + W))} X

OW12TV1 A/ Vo wr o v\ U
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( <fd—)> [1+%]du,

where 1 is the mean, v is the skewness, v, and v, shape parameters and Var(Y) =
o?(v? +2)/(2v,). As special case when v = 0 we have the Birnbaum-saunders normal
distribution whose p.d.f is given by:

f(y‘,u,70'2,1/171/2) = - \/72 lKO (ﬁ*) Ilel(B*>:| )

2mov; 1 + dvov?

with 8* = v/1 + dev?/vi and K, (2) is the modified Bessel function given by

I AN 22 1
K,(z) = 5 (5) Jo exp {—t — 475} tu+1dt' (1.6)

1.5.3 Centred skew generalized Gamma Normal

Considering U ~ GG(v1, s, v3) whose p.d.f is given by

vivo—1 12
Vs U 2 U
h =—— | — — | — 1
(u‘V17V27V3) V3F(V1) <V3> exp{ <I/3) } (0700)(“)7

we obtain the Centred skew generalized Gamma Normal, denoted by Y ~ CSGGN (p,
o2, 7,1, e, 13), Wwhose p.d.f is given by:

fylp, o, v, v1,10) = 2¢ v, Jooex 1 ud® — 2[(1—4—2 - X
Y|, » Vs V1, V2 0'&)1\/% 12F(l/1) 0 p 9 V3

()

where p is the mean, v is the skewness, v, 1, and v3 are shape parameters and
Var(Y) = oT'(v1 —1/1,)/[vs'(11)]. As special case when v = 0 we have the generalized
gamma normal distribution whose p.d.f is given by:

flylp, o v, v, v3) = ——— i ”3d/2)r V—l—T—FL—l
YK, y V1, V2, V3 2’]TO'F I/l — 1 21/2

The following figures present examples of densities of aforementioned dis-
tributions . In Figures (3a) and (3b) we have the skew Beta Prime Normal with ;1 = 0,
o = 4, varying (v1,1») = (5,10) and (v1,,) = (10,5) and v by —0.9,0 and 0.9. In Fig-
ures (4a) and (4b) we have the skew Birnbaum-Saunders Normal with . = 0, 0 = 4
and (vy,1») = (1,2) and (v4,1») = (4,2), and v by —0.9,0 and 0.9. In Figures (5a) and
(5b) we have the skew generalized Gamma Normal with 4 = 0, ¢ = 4 and varying
(v1,v9,v3) = (2,1,4) and (v, 19, v3) = (4,2,1), and v by —0.9,0 and 0.9.

From Figures from 6 to 14, we can see that the considered members of the
SMCSN family may present different behaviors in terms of variability, skewness and
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(a) Probability density function of the skew (b) Probability density function of the skew

Beta Prime Normal with vy = 5and 1, = Beta Prime Normal with »; = 10 and
10 varying the skewness parameter in 1, = 5 varying the skewness parameter
—0.9,0 and 0.9. in —0.9,0 and 0.9.

Figure 3 — Probability density function of the skew Beta Prime Normal with 1 = 0, 0 = 4
and varying the shape and skewness parameters.
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(a) Probability density function of the skew (b) Probability density function of the skew
Birnbaum-Saunders Normal with 11 = 1 Birnbaum-Saunders Normal with v, = 4
and v, = 2 varying the skewness pa- and v, = 2 varying the skewness pa-
rameter in —0.9,0 and 0.9. rameter in —0.9,0 and 0.9.

Figure 4 — Probability density function of the skew Birnbaum-Saunders Normal with
u =0, o = 4 and varying the shape and skewness parameters.

kurtosis. For example, for the CST distribution the skewness depends not only on ~ but
also on v. Therefore, more than one parameter can affects the behavior of the variability,
kurtosis and skewness. For the variability we can observe that the variance is directly
influenced by E(U™1). In addition, it is noted that certain distributions may have kurtosis

and skewness greater (in module) than others.
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(a) Probability density function of the skew (b) Probability density function of the skew
generalized Gamma Normal with v, = 2, generalized Gamma Normal with 14, = 4,
vy = 1 and v3 = 4 varying the skewness 1, = 2 and v3 = 1 varying the skewness
parameter in —0.9,0 and 0.9. parameter in —0.9,0 and 0.9.

Figure 5 — Probability density function of the skew generalized Gamma Normal with
1 =0, 0 =4 and varying the shape and skewness parameters.
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Figure 6 — Skewness (a) and excess of kurtosis (b) for CST distribution with 1 = 0,0 = 1
and varying shape and skewness parameters.
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Figure 7 — Skewness (a) and excess of kurtosis (b) for the CSS distribution with 1 = 0,
o = 1 and varying the shape and skewness parameters.
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Skewness(y=0.8)
Skewness(y=-0.8)

Figure 8 — Skewness (a,b) and excess of kurtosis (c) for the CSGT distribution with
i = 0,0 =1 and varying the shape and parameters.

Skewness(Y=0.8)
Skewness(y=-0.8)

Figure 9 — Skewness (a,b) and excess of kurtosis (c) for the CSCN distribution with
1 =0, 0 =1 and varying the shape and parameters.
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Figure 10 — Skewness (a,b) and excess of kurtosis (c) for CSBPN distribution with i = 0,
o = 1 and varying shape and parameters.

wness(y=0.8)

Figure 11 — Skewness (a,b) and excess of kurtosis (c) for the CSBSN distribution with
i =0, 0 =1 and varying the shape and parameters.
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Figure 12 — Skewness (a,b) and excess of kurtosis (c) for the CSGGN distribution with
w =0, 0 =1, varying the skewness parameter, v; and v,, and fixed v = 2.

Figure 13 — Skewness (a,b) and excess of kurtosis (c) for the CSGGN distribution with
uw =0, 0 = 1, varying the skewness parameter, v; and v,, and fixed v53 = 4.
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Figure 14 — Skewness (a,b) and excess of kurtosis (c) for the CSGGN distribution with
u =0, 0 =1, varying the skewness parameter, v; and v,, and fixed v53 = 6.
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1.6 Profiled log-likelihood for

As cited before, the advantages of centered parameterization are in general
an improvement in the interpretation and estimation of the parameters compared to the
usual parameterization (see Arellano-Vale and Azzalini (2008) and Chaves et al. (2019),
for example).

Arellano-Vale and Azzalini (2008) mentioned that under the direct param-
eterization of skew-normal defined in subsection 1.3, as A — 0 the expected Fisher
information matrix becomes singular. In order to illustrate one of the advantages of
the centered parameterization we follow Arellano-Vale and Azzalini (2008) and Maioli
(2018a), that is, we analyze the behavior of the profile log-likelihood for the skewness
parameter.

~2

Let us consider ipp(fi(N),57(AN), 2(N), A) the profile log-likelihood for A\, where
(), 5%(\), ()\) are the respective maximum likelihood estimates for a given ), and the
Relative Profile log-likelihood (RPLL) given by Ipp(2(X), 62(A), 2(A), N)—Ipp(a()), 6%(}),
©(}), A). Similarly, for the centered parameterization the RPLL is given by 15 (fi(y), 62(7),

~ AN A2/ A

0(7),7) = lop(i(%),6°(%), 2(%),9)

We generated a sample of 100 values from the SMCSN where: © = 0,

0> =1,~v=0.7and v = 5 for the Centered Skew-t, v = 3 for the Centered Skew-Slash,

= (0.5,0.5) for the Centered Skew-contaminated Normal, v = (6, 5) for the Centered

skew generalized-t, v = (3, 5) for the Centered skew Beta Prime Normal, v = (1, 1) for

the Centered skew Birnbaum-Saunders Normal and v = (2,2, 2) for Centered skew
generalized Gamma Normal.

From Figures 15-21, it is possible to see that under the direct parameteri-
zation, the relative profile log-likelihood presents a non-quadratic shape around zero,
in addition it presents local maximums, which could lead to a difficult in the obtaining
maximum likelihood estimates. Therefore, we can see some of the advantages of the
CP under the DP (Maioli, 2018a).
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Figure 15 — Profile twice the relative log-likelihood for ~ in the centered parameterization
(a) and for X\ in the direct parameterization (b) for the skew t distribution
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Figure 16 — Profile twice the relative log-likelihood for v in the centered parameterization
(a) and for \ in the direct parameterization (b) for the skew Slash distribution
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Figure 17 — Profile twice the relative log-likelihood for ~ in the centered parameterization
(a) and for X in the direct parameterization (b) for the skew Contaminated
Normal distribution
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Figure 18 — Profile twice the relative log-likelihood for ~ in the centered parameterization
(a) and for X\ in the direct parameterization (b) for the skew generalized t

distribution
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Figure 19 — Profile twice the relative log-likelihood for v in the centered parameterization
(a) and for X\ in the direct parameterization (b) for the skew Beta Prime
Normal distribution
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Figure 20 — Profile twice the relative log-likelihood for v in the centered parameterization
(@) and for X in the direct parameterization (b) for the skew Birnbaum-
Saunders distribution
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Figure 21 — Profile twice the relative log-likelihood for v in the centered parameterization
(a) and for X in the direct parameterization (b) for the skew generalized
Gamma Normal distribution
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Chapter 2

A new Semi-parametric model based
on the scale mixture of Centered
skew-normal

Some real problems, where some covariates (explanatory variables) are
related to a response of interest, can be suitably modeled by

Yi=x/B+e, i=1,...,n, (2.1)

where x; = (1,z;1,...,7;,) " is the vector of explanatory variables of the ith subject, Y;
is the ith observation of the response variable, 8 = (5, 31,...,03,)" is the vector of
regression parameters and (e, ...,¢,)" is the vector of the independent random errors
with E(¢;) = 0 and Var(e;) = 0. Maioli (2018a), for example, under the structure of
Equation (2.1), proposed a class of Bayesian regression models where the errors follow
a SMCSN family.

However in some cases we can observe that one or more covariates does
not present a clear relation with the response. An usual approach for that is to include a
non-parametric component in Equation (2.1), that is:

where T} = (t;1, . .. ,zfiq)T is a vector of explanatory variables related to the ith experi-
mental unit, g is an unknown function g : R? — R. A special case of model (2.2) is the
non-parametric regression model given by

K:g(ﬂ>+€“2:17,n, (23)

where each all components are as defined above. An important issue in estimating the
related parameters is that ¢ has an unknown shape.
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In this work we develop a semi-parametric model of the form (2.2) which has
as special case the non-parametric class of models of the form (2.3), where the errors
belong the SMCSN family, being an extension of the parametric model proposed by
Maioli (2018a). We addressed the frequentist paradigm, using a penalized likelihood
approach through a combination of the SAEM (Delyon et al., 1999) and the ECME (Liu
and Rubin, 1994) algorithms. Also, we proposed diagnostic measures of global and
local influence and goodness-of-fit tools. In addition we performed simulation studies for
parameters recovery and misspecification of the distribution and an application to a real
data set.

2.1 Basis functions

Any continuous function in a function space (Kolmogorov and Fomin, 1999)
can be represented as a linear combination of basis functions. Therefore, we can
represent g as a linear combination of £ < n known basis functions b, ..., bk, i.e.,

9(x) ~ gr(x) = Z Kibi(),

where «k = ki1, ...,k are unknown coefficients (to be estimated) and k& controls the
flexibility (shape) of the curve (Dias, 1999). An important issue is that the base (or
basis) functions must represent the target function g. Additionally, we need to seek for
parsimony, in the sense of having a compromise between the value of & and the choice
of b’s. Therefore, we need to have a balance between the computational effort and the
interpretation of the coefficients (k, ..., k).

There are many proposals for choosing the basis functions, as the poly-
nomials, Fourier series, splines and basis splines (B-splines). For more details we
recommend the reading of De Boor (1978) and Kohn et al. (2001), for example. In the
following, we briefly describe the splines approach.

2.1.1  Spline function

Let us suppose an interval, says, [a, b] of the domain of g, and the partition
into £ sub-intervals, say [¢;_1,¢;], 1 < j < k, wherea < (5 < --- < (;, <b. Then a
polynomial, say, p; is considered to approximate the function g in each interval [(;_1, (;],
leading to a polynomial approximation function by parts, say p;(z) in the interval [(;_1, {;],
with j = 1,..., k. The values (, ..., (; are known in the literature as knots, where ¢, and
(i are called external knots and (3, ..., (,_1 are the internal knots.

Since p;(z),j = 1, ...,k are constructed independently from each other, so
it is not continuous over [a, b] (Hastie and Tibshirani, 1990). This can be problematic,
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mainly if we intend to approximate a smooth function, then, we can connect the polyno-
mials on the internal knots (i, .. ., {,_1, obtaining what we know as a spline function.

A spline of order m = degree + 1 with £ — 1 internal knots is such that
m—1 k—1

s(z) = Z cxt + Z di(x — Cj)T_l, where ¢, ...,cp—1 € Rand dy, ..., d,—1 € R, and v’
i=0 j=1
is truncated power function of degree r given by:

" () u', if u=0
u,\u) =
i 0, if u<0.

Notice that the spline function is a combination of m + k basis functions.

2.1.2 B-splines

The set of spline functions of order m and interior knots ¢, ..., (x_1 is called
a spline space. It corresponds to a linear space of dimension m + k& (Schumaker, 2007).
The so-called B-splines form a basis of splines spaces, i.e., they consist on pieces of
polynomials, joined together in certain values, called knots. B-splines having compact
support, i.e. they are non-zero within a small interval and zero outside them.

The ith B-spline of order m can be defined recursively as (De Boor, 1978)

TG
Ci-i—m—l - Cz

Ci-i—m — T

Bim(@) Gitm — Git1

BZ‘Vm_1<ZL') + Bi+1,m—1(x)7

where

B () = ¢ . Gi+1
0, otherwise

More details on splines and B-splines can be seen at De Boor (1978), Eubank
(1988) and Green and Silverman (1994), for example.

2.2 Curve estimation with splines

Let us consider the model described in Equation (2.2) and that the response
variable Y; comes from a family of distributions F, indexed by a set of ¢ parameters
0 € R?, which includes the mean, says i = f(B, k) and « is a vector of non-parametric
parameters.

2.2.1 Regression analysis with splines

A

In the regression using splines, the estimated coefficients (8) are obtained
by maximizing the log-likelihood associated to F. The degree of smoothing is related to
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the number of basis functions (k). An usual choice for the basis functions is the cubic
B-splines. The main difficulties in working with this method is the choice of both knot
positions and the number of bases.

2.2.2 Smooth splines

In the smoothing splines the estimated coefficients 8 are obtained by maxi-

(oly) - 2 f [

where ((.) is the log-likelihood associated to the family F, « is the smoothing parameter,
X is a range that covers the support of the variable of interest and the superscript
symbol (k) means the kth derivative. The second component in (2.4) that penalizes the
log-likelihood represents a penalty in the curvature of the estimated function. Conse-
quently, high values of this penalty represent many oscillations in the curvature of the
nonparametric function. With respect to «, large values lead to smooth curves, whereas
small values imply curves with more curvature.

mizing

o2 0] ot @.4)

According to Green and Silverman (1994) the function g that maximizes (2.4)
is necessarily a natural cubic spline, see also Craven and Wahba (1978) and Wahba
(1981), for example. Notice that in this case the number of coefficients may be as large
as the number of observations. Consequently, the computational effort becomes higher.

2.3 Semi-parametric penalized likelihood regression

Let us consider: Y = (Y1,...,Y,)" a vector of response variables, X =
(x!,...,2)), x; = (1,75,...,7;,) the covariates related to the ith subject, i = 1,...,n
and T = (T,...,T,)), T; = (Ty;,....T,;)" the observations related to covariate T}

j=1,...,q. Then, the model (2.2) can be rewritten as:
Y = XpB+9(Th,...,T,) +¢, (2.5)

where g(Ty,...,T,) = [9(Ti1,-..,Tig)s - 9(Th1, ..., Tng)]", € is @ vector of random
errors with E(e) = 0,, and Cov(e) = o°I,,, where I, is an identity matrix of order n
and 0,, is a vector of zeros of order n. We adopt the semi-parametric additive model

or additive partially linear model (APLM) as it is known in the literature such that
k..

q J

9(Ta,.... Tyy) = > g;(Ti;), where g;(T;;) = ¥ kybi(x;), by is a known cubic B-splines
j=1 =1

basis, [ = 1,...,k;, 7 = 1,...,¢q. The estimation by additive models provides a more

simple approximation for the function g, mainly due to the their simpler interpretability,
for example when considering interaction effects between the predictors. That is, once
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the model was fitted, one can examine the effect of each predictor separately (e.g.

g(T1,T;) becomes ¢(11) + g(1»)). Therefore, the model (2.5) can be written as: ¥ =
q

XpB+ 2 T;k; + €, where T; is a matrix with k; basis functions and k; = (k1. ..., k),

j=1
j =1,...,q. Inthe usual penalized likelihood regression approach for the APLM, the

estimates of 8 and ¢, ..., g, are obtained through the maximization of:

q

q
(0ly) — ;; “ ()] dw = £(0ly) - ;Z K]k, (2.6)

where 0 is related to F, associated to the distribution function of €, and €2, is a ma-
trix (k; x k;) based on knots. The equation (2.6) can also be simplified to ¢(8]y) —

;nTAn, where A = diag(a1€,...,,%,) is a block diagonal matrix. The proof that

2
f [gj(?)(w)] dw can be rewritten as n}ﬂjnj can be seen in Appendix B.
X

This model can be unidentifiable, unless g; = Tjk;,j = 1,...,k be subject
to some constraint. Vanegas and Paula (2016) and Wood (2017) proposed to use
lngj = 0. The technical details related the using of such constrain in the estimation
process can be seen in Appendix C.

2.4 SMCSN additive partial linear model

q
The SMCSN additive partial linear model is given by: Y; = @;8+ | g;(Ti;) +e;,

j=1
with all related elements defined above, assuming that ¢; X SMCSN (0, u; "0, v, v).
Similarly to Maioli (2018a), we have that:

) q 2 B

=1

which leads to

q V—,u
Yi|(U; = u;) 2 &) (Ty; g (YT H ’
(U= ) BalB+ o)+ T (0

where V; % SN(0,1,~) and z, and o, are the mean and the variance of V; respectively.
Then, using Henze’s stochastic representation of V; in (1.3), we have that

q a
Yi|Ui=w 22! B+ g;(Ty) - ° 4+ (6H; + V1 —02Z;),
JZ; I oy w?

where H; “ HN(0,1) L Z; ¥ N(0,1),i = 1,2, ...,n. Setting y, = db and o, = V1 — 0262,
it comes that

4 o6b o) 0\/1——52
}/Z|UZ=U1233;_5+ZQJ(E])_ 22+ 22 2452 Zi

7j=1
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gd ov 1 — 62

q
T
—2 B+ N (T +— 2 H -+ g
wlﬂ ;g]( J) \/UZ /1—b252( ) \/717 /1—b262

J

Maioli (2018a) considers A = ¢6/v/1 — 0252 and 7 = o*(1 — 6%)/(1 — b*6?),
such that we can recover o and ¢ through: § = A/vV7 + A? and 0® = 7 + A*(1 — b°).
Then

q
A
=1

J

Finally, we have that

; 2 A T
YilUs = wi, Hy = hi ™ N | @] () + —(hi = ), — 2.7
H; " HN(0,1), (2.8)
U; “ h(|v). (2.9)

In next Section we show the estimation process for 8 via penalized maximum
log-likelihood using the hierarchical structure defined in Equation (2.7).

2.5 Maximum penalized log-likelihood estimation

The complete likelihood is given by:

L.(6ly. uh)ocqus (ym-, ) F(h)h(uslw)
[T e {5t = esn { =5 bt

=1

[[im v 1 & ) S B2

q q q
where 11; = @] B+ g;(Ti;)+A(hi—b)/\/u;, remembering that > g;(Ti;) = 1> ribi(t;)

J=1 j=1 j=11=1
= Y KIb(Ty), i = 2B+ Y K B(Ty) + Alhy — b)/vui, 0 = (BT, &7, A 77T,
=1

Jj= j=1
B:

(51, . ,6p)T, K = (Kll, . ,I‘n‘,q>T, K; = (Kllj, .. .,:‘ikjj) and k = (l{?l, .. .,k?q)T.

For the skew generalized T model, since we set ¢ = 1, A and 7 depend only
on -, in such way that is better to sample directly from ¢ (Maioli, 2018a). Therefore, for
this model we have that 8 = (8", k",6,v")".

Let yos = (y1,...,ys)" be an observed sample from Y = (vi,...,Y,)"
SMCSN, and the latent vectors w = (uy,...,u,)" and h = (hy,...,h,)". Then the
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complete penalized log-likelihood of the parameters 6 is given by:

n_ U; 1 n 7.1_ hZQ -
lp(6ly, u, h) = log (% exXp {‘27 Zuz(yz - Mz’)z} exp {_22_21} H h(uz|’/)>

i=1

(2.10)
1
_ 5,@TA,Q (2.11)
1< n 1 & s 1,
= §Zlogui — ElogT — ?Zuz(yz — i) — izhz + Zlog (h(ui|v))
= Tz i=1 i=1
(2.12)
1
- 5KTAM’ (2.13)

q

where 1; = =/ B + Egj(Tij) + A(h; — b)/y/u;. The maximum penalized likelihood
j=1

estimators are obtained by maximizing (2.10). However, no analytical expression are

obtained from this process. The use of the Expectation-Maximization algorithm (EM
algorithm), as pointed out by Ferreira et al. (2013), leads to an intractable E-step, in this
case, the Expectation-Conditional-Maximization-Either algorithm (ECME algorithm) (Liu
and Rubin, 1994) proposes to maximize the expected complete data function (Q-
function) with CML-steps that maximize the corresponding constrained actual marginal
likelihood function, which may be more treatable in our case.

However, in our case the E-step can not be calculated analytically and
some approximation need to be considered (either analytical or numerical). Two usual
numerical approaches to handle that are the Monte Carlo EM (MCEM), proposed by
Wei et al. (1998) and the Stochastic Approximation of the EM (SAEM), proposed by
Delyon et al. (1999). The first method can be computationally expensive, since a large
number of simulations of the missing data is required. On the other hand, the SAEM
algorithm replaces the E-step by a stochastic approximation, while the Maximization
step remains the same as that of the MCEM. This algorithm has good convergence
properties, see for example Kuhn and Lavielle (2005) and Allassonniére et al. (2010). In
this work we consider a combination of the SAEM and the ECME, where the E- Step
is done through the stochastic approximation of the SAEM algorithm, along with the
CML structure of the ECME algorithm to perform the M-step. This leads to an algorithm
that we name Stochastic Approximation of Expectation-Conditional-Maximization-Either
(SAECME) algorithm. In the following we explain our approach.

Let us consider w = (uy,...,u,)" andt = (t,,...,t,)" the missing data and
y.= (y",u",t")". In the E-step of the ECME algorithm we must obtain the Q-function
given by: Q(8|6%) = E [lp(0|'yc)|yobs7 é“”)], where the superscript (k) indicates the kth
iteration of the algorithm. Thus, dropping out the constants, the Q-function can be written
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as:

A 1 & A 1
Q(O16%) = S 10g 2 — 5 3B (Ui(y — 72109 — SO AR

2%( =1 1
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— —RWTAR

2
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=1
+ A%(H; - b)2|é<’f>) EECLIVD
(A 2 )

q
where . = /B8 + Z g;(T;;) and since that H; — b = F;, where H denote the Half

j=1
Normal distribution, we have that
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where & = E <UfFf|yobs, 9“”) and £ = diag <61(8?”, . ,57(15%1))

Notice that E (log Ui | Yobs, é(’“)) and E <10g h(U| ) [Yobs, é<k)) depend only on
v, which is assumed to be fixed at this point and we will estimate them after. Also, in
this work we focus on the estimation of  instead v due to its ease of working with this
transformation of the skewness parameter, mainly in obtaining the estimators. In order to
calculate the necessary/required expectations we need to draw samples from f(u;, h;|y;)
through the conditional method (Ripley, 2009), that consists on drawing samples from
f(uily;) and f(h;|ys, u;), sequentially. Indeed, to sample from U;|Y; = y; we consider the
Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) as explained in
Algorithm 1.

The function g(u;) in Algorithm 1 has to be a probability density function with
the same support as f(u;|y;). Notice that, since (from the Bayes theorem): f(u;|y;) =



Chapter 2. Semi-parametric SMCSN model 51

Algorithm 1 — Algorithm for simulate U;|Y;

Given 8 = 0™ fori=1,....n
1. Starting with an initial value v and set m; = 0;
2. Draw u] ~ g(u;) from a proper density;

3. Generate C' ~ U(0,1);

#19F) y\h(u™
4. If C < min< 1, Sl ’yl)A (™) L u™H) o else, W™ = M)
hui) f (w16, ys)

5. Return to step 2 until m; = m.

f (yilui)h(us|\v) / f (yi)oc f (yi|us ) h(u;|v), the objective function is a product of two others
(both with positive support). Therefore, a suitable choice for the proposal density can be
the density of U; itself, which leads to a simpler expression in the Metropolis-Hasting
algorithm. On the other hand, for H,|y;, u;, considering Equation (2.7) we have that

A, A
NCAN?

w [ A, A 2 1
oC exp {—27_ _yi — Mei T \/ﬁl \/ﬂz ] } exXp {—Qh?} ]1<hi)(0,oo)
2

w | A A A A2
_ 9 s — s+ — b ) = h, + Th2
OCeXP{ 2T <yl Hai \/ﬂz ) (yZ Hei VU, b) Vi, hi ¥ U; K

1
exp {_2hz2} ]l(hz)(o,oo)

aLexpq — E Yi — ,ucz \/’lj

A U A A2
_ZR2 4 v = p2 )
exp{ h; < — i + o ) ——hi =5l } 1(h:)(0,00)

U; A 2
oC exp _E Yi — Hei + u X

i
Le(0]yi, ui, hi)oc2¢ (yz‘|/~0ci + b, u) ¢ (hi]0,1) L(hi) (0,00

}X

1 uZA
exp {—Qh? (1 + ) + (yl Mei T \/ab> \/7 } ﬂ(hz)(o,oo)
A

AL r — Hei + ﬁb> NN
‘ N — - i 1(h:
OC¢ (yz‘/ic \/—z u; ¢ hz‘ AZ) - ’ (1 T ATQ) (hl)(0,00)

AT Azb + AU (Y — tei) T
OC¢ (yl‘/’tc - \/—l ul) ¢ (hl‘ A2 g ) (7_ + A2)> ]1<h2)(0,00)
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Then
; A?b + AJui(yi — e T
ind i\Y1i ct
Hz|uz,yz N ( A2 + 7 , (7_ n A2)> :H-<h2)(0,®)7 (214)

which can be simulated using the rtruncnorm function from the R program (R Core
Team, 2020). Therefore, we can simulate from U;, H;|y; according to Algorithm 2 and,
then, estimate to fit the model through the Algorithm 3.

Algorithm 2 — Algorithm for simulate U;, H;|Y;

Given 8 = 0™ fori=1,....n
1. Draw .} from Algorithm 1;

2. Draw A} from the distribution in 2.14, considering u; = u;, obtained a set of
S|mulated values, the vector (u], h}) is a simulated vector of w;, h;|y;,
1=1,2,...,n

We can obtain 6+ and 62*+1 using: 6%+ = A(’““)/\/%(kﬂ) + A2(k+1) gand
a_?(/c-i—l) _ 7/;(k‘+l) + AQ k‘+1)( . b2)

In Algorithm 3, §; is a smoothness parameter (Kuhn and Lavielle, 2004) which

is a decreasing sequence of positive numbers such that Z dp = o and Z 5k < 0.
k=1

The E-step in the SAECME and MCEM algorithms are essentially the same However
in the former a significant smaller number of simulations is necessary/required in the
stochastic simulation, which is suggested to be smaller than 20. This is possible since
SAEM-based algorithms use all the previous steps, weighted by the ¢; .

It is noteworthy that if 6; = 1, Vk, the SAECME will have no memory, i.e., it
will be equivalent to a combination of the MCEM and the ECME algorithms and it will
converge (in distribution) to a solution in a neighborhood of the maximum likelihood
estimator. On the other hand, a SAECME with memory (0 < 4; < 1) will converge to the
ML solution. Galarza et al. (2017) suggest to use:

1, if 1<k<cw
Op = 1

k— cw

, ifcw+ 1<k <w,

where w is the maximum number of iterations and 0 < ¢ < 1 is a constant that determines
the percentage of initial iterations with no memory. As pointed by Galarza et al. (2017),
if ¢ = 0 the algorithm will have memory for all iterations, and hence it will converge to the
ML estimates. If ¢ = 1, the algorithm will have no memory, and then, it will converge to a
solution in a neighborhood of the maximum likelihood estimator. For the first case (¢ = 0),
we need a large w in order to obtain the ML estimates. For the second case (¢ = 1), the
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algorithm will output a chain where after applying a burn in and thin, and apply a mean
on the observations can be a reasonable estimate, for example. The choice of suitable
values for w and ¢ can be made through a graphical approach. That is, we can monitor
the behavior of the consecutive estimates and/or the log-likelihood (1(8|yops)), Using, as
a convergence criterion: |18 |yons) — 1(8™ |yaps) || OF [[L(0F|yone) /(8™ |yaps) — 1],
for example.
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Algorithm 3 — SAECME algorithm

E-step: Given 8 = 6% fori=1,...,ndo:

e Simulation step: To draw (uf»l’k), hgl’k)) from f(U H;|Y; = y;) using the Algorithm
2,1 =1,...,m and given m (we discuss such choice later).

e Stochastic approximation: To compute the stochastic approximations for the
conditional expectations necessaries to estimate 8 given by:

7

S0 _ cow-1) s | L iu(z,k) g0k
% k m 7 7

1

. . 1 & AV (k
5(0.5,1)(k) _ 8(0.5,1)(k—1) + 5* - (l,k) h(-l’k) A 8(0.5,1)(k—1)
% k m Z u ( % ) %

i

5(0;2)(k) _ 8(0;2)(k—1) + 6 [ i(h(hk) _ b)2 . 5(0;2)(14—1)] .

CM-step

Update 8 by maximizing Q(6]8") over 8, which leads to obtain the following
expressions:

1 2 . .
Alk+1) nz[@l _ ﬂff?) giu,o)(k) 9 <yZ _ ﬂﬁf)) Agi(0.5,1)(k) n A2gi(0,2)(k)]

—1
n n q
B(k-‘rl) _ (Z w;rgz(l,O)(k)mZ> Z x; [ylgl(ly())(k) . Z Aj (T'Z])gz(l,())(k) _ A(k)gl(05,1)(k)]

i=1 =1
q
= 2 0(Ty)&Y = AWERIVIN Horm =1, g
j#m
CML-step
Update ©**+Y by maximizing the log-likelihood function using, for example,
optim or nlminb R functions, obtaining
o = arg max,, {2 log [fSMCSN(yz‘mEkH), D) AHD), V)]} : (2.15)
=1

Until some convergence criterion has been met, for example, ||8*~) — ¥ < ¢,
where ¢ > 0.
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2.5.1 Effective degrees of freedom

Within the context of additive partially linear models, the degrees of freedom
are approximately the number of parameters related to the non-parametric compo-
nents (Hastie and Tibshirani, 1990; Ibacache-Pulgar et al., 2013). The effective degrees
of freedom, based on the estimator of x, are given by:

—1 —1
df(a) = tr{TS;} = tr {T (TT£<1%°>T + %A) TT} —tr {TT (TTS(”))T + m) T}

—tr { [TT’1 (TT£<1€0>T + %A) T*l] _1} —tr { (8(1@) + %TT’IAT*) _1}

where L;(«) is the jth eigenvalue of (8(1;0) + %TT”AT*).

2.5.2 Information Criteria

The Akaike Information Criterion (AIC) (Akaike, 1974), Bayesian Information
Criterion (BIC) (Schwarz et al., 1978), Corrected AIC (AlCc) (Hurvich and Tsai, 1989),
Hannan-Quinn Information Criterion (HQIC) (Hannan and Quinn, 1979), Consistent AlC
(CAIC) (Bozdogan, 1987) and Sample-size Adjusted BIC (SABIC) are given respectively
by

AIC(a) = —21,(0, ) + 2[p + q + df ()],

BIC(a) = —21,(6, &) + log(n) [p + ¢ + df ()],

2[p+q+df(a)][p+q+df(a) +1]
n—p—q—df(a)-1 ’

HQIC(a) = —21,(8, a) + 2log(log(n)) [p + ¢ + df (a)],

CAIC(a) = —21,(0, @) + (log(n) + 1) [p + ¢ + df ()],

)@+q+#@ﬂ,

D>

AICC(a) = —21,(

@)

n -+ 2

SABIC(a) = —21,(0, o) + log( o

where [,(8, «) denotes the penalized log-likelihood function available at 6 for a fixed a.
These measures can be used to select an appropriate model and/or value of « (see
Ibacache-Pulgar and Reyes (2017) who used the AIC for this purpose, for example).

2.5.3 Obtaining the standard errors

There are several ways to obtain (approximate) estimates for the neces-
sary/required standard errors, when some EM type algorithm is employed. Usually
the observed information matrix is considered, see for example (Segal et al., 1994).
In this work we consider the Louis principle (Louis, 1982), which relates the score
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function of complete and incomplete log-likelihood through the conditional expectation
Vo(0) = E[V(0, Yc|Yos)], where 70(8) = 0lo(6, Yous) /06 and v7.(6) = 0l.(6,Y.)/00
are the score function of incomplete and complete data, respectively. Also, Meilijson
(1989) defined the empirical information as

= Y s(ul0)stulo)’ | SwiS W) 216)

n

where S(y|0) = Z (v:]@) and s(y;|0) is the empirical score function for the ith obser-

vation, which is é:\/en by

s(ul0) = B [W’yc)m] _ ((01B). s(uilw). s(ui]0?). s(w:16)) "

00
where
1 . )
s(yilB) = 2 [wiTAS?'S’l — ] (y; — Mci)gil’o]
1 . ) 1
s(yilr) = —— [T A& = T (g = pei) €] = 5T A
Therefore
A A or T A WD
002 202" 1T 002 T 02T 002 20%(1-—62)
nl 1 & 1 ) .
s(yilo®) = —§;A ~3 —gAl(yz‘ — 1) 26 = 2(y — pei) E A

a1 : :
= 55 5 D (U e EL 4 2 — )€ A

oA _ o (L 0P
ST05 1 b2 1—0262 )"

A — or 260 [(1—0*)b? ] a4 OA/T  TA3 —AA
Y06 10202 | 102 R
8A2/7' 2ATA3 — A2A4
As = o5 T2
n 1w 1 : : :
s(yild) = —5144 3 Z —§A4(yz‘ — i) 260 = 245 (g — i) € + A€

Replacing 0 for the respective maximum likelihood estimate, say 6, and
assuming that 7,(@) = 0, we have that Equation (2.16) can be rewritten as I.(0,y) =
PEIEII
i=1

Finally, the variance-covariance matrix of the maximum likelihood estimates
can be approximated by Cov(8) = I.'(8,y) and the respective standard errors are
given by the square of root of the diagonal values of Cou(8).
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2.5.4 Diagnostic analysis

Since the statistical models tend to be sensitive to the lack of underlying
assumptions, performing diagnostic analysis is an essential step in data analysis.

Residual analysis are useful diagnostic tools for checking the departing from
some specific model assumptions, as well as to provide overall subsidies concerning
the goodness of model fit. The works of Cox and Snell (1968), Belsley et al. (1980) and
Cook and Weisberg (1982) are seminal references. In terms of the so-called QQ-plots
Atkinson (1981) proposed to build simulated based confidence bands (the so-called
envelopes) to allow a better comparison between the residuals of interest and the
percentiles of the reference (expected) distribution.

Another set of important techniques is the sensitive analysis, consisting
on evaluating changes in the fitted model when perturbations are introduced into the
data and/or (some) model assumptions. These techniques are divided into global and
local influence analysis. In its turn, global influence analysis is usually divided into
two approaches. The first one is the leverage analysis, which consists on studying
the influence of a given observation on its respective predicted value (Hoaglin and
Welsch, 1978). The second approach is the case deletion analysis, which can assess,
for example, the impact of removing a particular observation on the parameter estimates
of a regression model. In this case the Cook’s distance (Cook, 1977) is commonly used
for this purpose. On the other hand, in the local influence analyses (Cook, 1986) the
effect of an infinitesimal perturbation on the data and/or on some component of the
model, using a likelihood-based measure namely likelihood displacement, is considered.

For the proposed model we can use several of the aforementioned techniques
and their respective generalizations. Indeed, Zhu and Lee (2001) proposed an one-
step pseudo approximation for case deletion analysis which can be used to build a
kind of generalized Cook’s distance measure. Osorio (2006) proposed a generalized
leverage measure for incomplete data. Maioli (2018b) proposed a residual that can be
used for the SMCSN family. Cadigan and Farrell (2002a) proposed a generalization of
likelihood displacement, which can be used to construct of perturbation schemes for
local influence analysis.

2.5.5 Residual analysis

Based on the developed residuals in Maioli (2018b), we define the following
residuals

. (2.17)

where, according to Maioli (2018b), R; %Y SMCSN(0,1,~,v).
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2.5.6 Case deletion analysis

A given observation is said to be influential if, according to some criterion,
it has a significant impact on the inference related to a given model. One of the most
common techniques for influence analysis is the Cook’s distance. It measures the
impact of each observation on the respective predicted value by assessing the distance
between 6 (the estimate obtained with all observations), and without the observation
¥i, namely é (—i)- Let 1.,(0,yc—y) be the complete -data penalized log- Ilkellhood cal-
culated without the observation y;. Also, let (ﬁ(,i),:%(, 0 Ay ) be

the argument that maximizes the penalized maximum likelihood using Q(_i)(e\é) =
E |:lp<0‘yc(_i)>’yobs(—i), é]. To obtain (é(_i)> we can use Algorithm 3 n times, i.e., remov-
ing each one of the observations. However, the computational effort can be quite high,
mainly for large sample sizes. To circumvent that Zhu and Lee (2001) proposed the
following one-step pseudo approximation:

A ~ A~ 11 A
0y =0+ |-Q010)] 010, (2.18)
where
5 _ °Q(616) m 0Q(-(616)
Q@ (016) - = and Q[ (68) - LI
00007 |,_, 0 |y

are the Hessian matrix and the individual score vector evaluated at 8, respectively. Notice
that Q[ (016) = (Q{”,)5(610). Q(",.(016), Q") (618), (", A (610). @7, (616)) where

S QUy60)] 1 ¢ o
Uia(016) = —2EE ] =2 ] (g — i) ESY — ]l APV
—i) (9[3 ot T ZZIZZ:# [ l I ) ]
A ) o 2) n . . 1
Q,.(016) = Qn(010)]  _ 1 3 [Tlr f)ED _pTAg0s L AR}
oK 0= T 1 Tixi n
(?Q _(0 0 " .
=6 lzll;éz

+2(y — ﬂcz)Agzo’S;1 - AQEZ(O;Q)]

Q1 (6]0)

According to Zhu and Lee (2001) to measure the distance between 0 ;) and
6, we can compute the generalized Cook’s distance:

A A

GOD; = (8 - 0>T {02 016)} (0. - 0). (2.19)

Now, using (2.19) in (2.18) we obtain an approximation to the generalized
A A )1 ~
Cook’s distance, given by GCD! = QW (0]6)" {—Q@)(ew)} QW(6l6),i = 1,...,n
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where:
P00 - GO0 1 el
Qi (6]6) = (i%gp - —;;ITZ 2T €00
0l0) - 200! = h el el A0
Qo) - | LS aree
Ql(f)(0|0) _ a(g{(:ié) gzé: _;gEET&(l;O) A
(616) = ag,gf) i :22 [TZ-T(yi — i) €Y — TTAEL
QUA(616) = aggégf) - —;Zﬁ;ﬁg}“ y
Q¥(0)6) = 5Qa(f2|é) ezé: ;32[; (s — i) 5‘1(1 0)
+ 20— i) AESHY — A% 2>]
Q'2(016) = ‘9297(2’5) y :221 [Agl(o )y, ACZ)E(O.S;I)]
D010 - L 2 5ee

2.5.7 Generalized leverage

n

1
Al%}

In Normal Linear models the main idea of the leverage analysis is to study the
influence of the ith observation y; on the fitted value itself ¢; through h;;, the elements of
main diagonal of the Hat matrix H, once h;; = 09;/dy;, i.e., h;; is the variation of §; when
y; Is increased by an infinite one. For more details about the leverage analysis, see for

example, Hoaglin and Welsch (1978), Emerson et al. (1984) and Wei et al. (1998).

Wei et al. (1998) proposed a leverage measure for a general class of re-
gression models, namely, generalized leverage. Following this idea, Osorio (2006)

introduced the generalized leverage for incomplete data and Ferreira et al. (2015) ex-

tended this concept to the SMSN regression models. The generalized leverage is given

by GH () =

. -1 .. . ~
[—Qg] Qo.,, Where Dy = 0p/00" and Qp, = Qe (0]6)/000y™

are the Hessian matrix given in section 2.5.6. Thus, the elements of Dy are given by
Dy =X, D,=Tand Dy = D, = 0 and the elements of Qs are given by Qg, =

lXTg(I;O), Q&y _ lTTg(lo
T T

Qay

051
 Qry =

[(y 11o)E (L0) _ AE 051)]
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2.5.8 Local influence

The local influence method proposed by Cook (1986) consists on the assess-
ment of the model under small perturbations on the model assumptions and/or on the
data. If such perturbations lead to significance inferential changes, the model could not
be robust against them. Therefore, the model could be not suitable to analyze the data.
Through this methodology we can assess the model robustness against outliers and/or
lacking of model assumptions, as heteroscedasticidity. Also, the behavior of covariates
in the regression structures, can be analyzed.

The most usual measure of influence is the likelihood displacement proposed
by Cook (1986). However, for our case we can build a displacement measure using the
function @, following the idea of Zhu and Lee (2001) and Cadigan and Farrell (2002b)
we can define the Q-displacement and we can get various perturbation schemes using
it.

Let us consider a perturbation vector, say w = (wi,...,w,)" restricted to
some open subset 2 € R™. Let [.,(0, w|y.) be the penalized complete log-likelihood of

the perturbed model. Also, let 6 (w) = (B(w)T, Rw) T, 7 (w)T, A@)T)T be the maximum
of the function Q(0,w|0) = E [lp(e, @|Ye) [Yobs: é]. Then the Q-displacement is given by
QD(w) =2{Q(016) — Q(O(w)|8)}.

Cook (1986) proposed to study the local behavior of Q D(w) for any value
of w in a neighborhood of w,, which represents the null perturbation vector, such that
Q(0(w)|0) = Q(6]0) —> QD(wy) = 0. The length of the vector w, m, depends on the
proposed perturbation scheme. It is considered a (m + 1)-dimensional surface called
Influence Graph, which is function of «,, = [wﬂ QD(w)]T when w € Q. Then, the local
influence method consists on evaluating how the surface «,, deviates from the tangent
plane in wy. Such analysis can be done by studying the curvatures of the normal surface

sections «, in wy. Verbeke and Molenberghs (2000) illustrated through Figure 22 the
normal curvature for a surface «,,.

The intersection between the normal section and the tangent plane 7 is
named projected line. Cook (1986) suggests to study the normal curvature (Bates and
Watts, 1980) of the projected line on the plot Q@ D(wq + ad) x a, where a € R and d is
an arbitrary direction of norm equals to one (||d|| = 1). It can be shown that the normal
curvature in the d direction is given by (Cook, 1986):

~ —1
Copa=2/d"Y) 10@06)! Y..d, (2.20)
QD, w0

0,w0

~ )1 ~
leading to —Q) = ;. {Q@)(ew)} Yoo, Where Yoo, = °Q(6,w|0)/000w’ =
(Yg e Xr s Y1, Th.) ' at @ = 6. According to Cook (1986) the information pro-

vided by —Q) is fundamental for detecting influential observations in QD(w). We can
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LD(w)

Ty

wi \

Figure 22 — Normal curvature for a surface a,, and unitary direction h.

WQ-I-h

Source: Verbeke and Molenberghs (2000).

analyze the direction of the dnax, the eigenvector corresponding to the projected line of
largest curvature Cpax associated with the highest eigenvalue of the matrix —ij}. The
most usual plot for local influence analysis is the index versus dpyax.

We developed local influence schemes for case-weight perturbation, the
response variable perturbation, the scale parameter perturbation, the skewness pa-
rameter perturbation and continuous covariate perturbation. In a general way, the
case-weight perturbation can be interpreted as a perturbation in the variance of each
experimental unit. The response variable disturbance can be seen as a tool for identify-
ing outliers (Schwarzmann, 1991a). The individual perturbation scheme of covariates
helps to evaluate the influence of each one of them on the estimation process. However,
this scheme makes sense only if the covariate is continuous. Disturbances in the scale
parameter and skewness are useful for checking the model sensitivity to the lacking of
the homogeneity of these parameters along the observations.

2.5.8.1 Case-weight perturbation

Let us consider the following the perturbation scheme:

Q0 wm sz |:cp’L 0|Y.)|Yobs, ] = szQl(g‘é) — ;KITAFL,

i=1
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where w = (wy,...,w,)" andwy = (1,...,1)". The elements of Y, of Equation (2.20)
are given by:
Q(0,wl0) 1 L0 A (0.5
r,, - QOwO) L ol aet0 _ Agosn
/87 0 aﬁawl %mz [(yl luCZ)gz Agz ]
’Q(o,w|0) _ 1 (10 o.
an_izf‘T ; — [l ) 5:1)
»Wo a’iawz 7/\_1-; |:(y1 ILLCZ)g Ag :|
*Q(0,w|0) 1 1 (1,0) 051 1, o2
Y., — i —_ A, 105D _ 2 4 g0
7o 0020w 202 2702 (i = ) 65 + Aalyi = i) 2A75’
PQO,wl0) A A 10 41 .
Y, — : _ 2o (1:0) hesy L o)
67 0 (3(56(,(},L 27_ + 2 2 (y CZ) gz + A5(y’b MCZ)EZ 2A651 Y
where
OA2/r A7 A A2
Ar = - =22
Oo? o6 ot

2.5.8.2 Scale perturbation

We assume that Y; ' SMCSN (u;,w; '0>,v,v), w; > 0fori=1,...,n. The
perturbed Q-function, under this scheme, is given by:

A | 7 w; . ‘ . A s
QO.lf) = Y, ~5ox (2 ) = 52| (= t0) e =2 (3 — ) 0™

=1
LA 0| LT a0
Ww; ‘
Sl T 1 L)\ 2 o(1:0) (0.5;1)
5 Lo () = L (5 ) 609 2 (5 ) v
2 20g<wi) 2%[00 yi — i ) & — D) Vi

where w = (wy,...,wn) ', Ay, = A/yJwi, T, = T/w; and wy = (1,...,1)". The elements
of Yy, in Equation (2.20) are given by:

Y50, = *Q a(ﬂa:zw _ 71A_ [ 5(10 B ; Agi(0.5;1)]
Y20, = W QA(y _ Mci)25i(1;0) 4 /;Q(yl _ Mci)gi(o‘sg)
Y = W ;(y _ Iuci)zgi(l;o) 4 f;t—’(yz _ Mci)gi(0'5;1).

2.5.8.3 Skewness perturbation

We assume that i, = §/w;, w; > 0fori = 1,... n. The perturbed Q-function,
under this scheme, is given by:
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&M =2 (4 - p) A, €07

N e L N o) | Be (LB e(051)
- ; 9 log(Twi) + [ 27A—wz (yz Hei > gz + 7A_wi <yz Hei >gz
27, 2 ’
where w = (wi,...,w,)" and wy = (1,...,1)". The elements of Yy, in Equation (2.20)
are given by:
2Q(0,w|6 5 A .
Tp = AT ] [A55§°-5’” - m&““]
*Q(0 w|é) T 051 A (1;0)
Y, = — 22 T A0 Dy ) EW
K,wo Ok Ow; 0 i l 58@ 2 (y H ) i
QO.w|0) A 20000 _ 5 40 0.5:1)
TUQ#-«'O = aggawi = 20272 (yl - :ucl) gz - 6A2 (yl - IU’CZ)EZ
62Q(07w|é) 0 ) 2 0 5.2 2 2 (1;0)
Yswo = b =53 (A4T - A4) + 5 (A4T — 2A47') (i — pei) ;7 —
: SAS .
SAY(ys — o) EY + 72651‘0’2,
where
0A, 1 52v?
Al = - _ V1_p22ae o
208 203(1 — 62)2 ( - V1- b252)
0A 202 b?
5 4 2 2¢2 272 2 2¢2
= = 1—=0%)(1—=0% 40°b°(1 —6°)| — (1 + b°0
A= T = T e [0 )0 ) a8 = )] - (4
0A odb? 1
5 _ 3 _ 1242 272
Ay = —5 = CEERLE {1+ T pgr 21— 0°0%) + 35 b]}
%A 1 b? .
——=0|- 26(1 — b%0%)%2 + 35 (1 — b%5°
267 [ 20— pea2) T =y )7+ 350 )
0A 1
Al = 755 == [7 (TA] — AA) — 2A5 (745 — AAY)]
Al = a;; — ig [T(2A427 + 2A7AS — A?A2) — 24,207 A5 — A%A,)].
pn

2.5.8.4 Continuous explanatory variable perturbation

Let w = (wy,...,w,) be the perturbation vector. We consider an additive
perturbation to the r-th covariate given by =, = = + w;S.el, i =1,....nand r =
1,...,p, where S, is the standard deviation of the rth covariate vector and e is a

p-vector with 1 in r-th position and 0’s elsewhere. In this scheme we have:
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Q(@,w\é) = ——logr 27-(k‘) [( B A*Ue)) 51.(1;0) i <y¢ _ ﬂzi(k)) Agi(o.s);l)

+ AQEi(0§2)] _1 o (k)TA’%(k)

[\)

where i = z. B + Z jk;. In this case the non perturbation vector is given by

wo = (0,...,0)". The elements of Yy, in Equation (2.20) are given by:
Q(0,w|0) 1 . .
Low = %igézm - {[Sre:(yi — 1) — ] Sye] B €N — Sre:AEZ.(Oﬁ’l)}
T&wo _ 626%(9;w|é) _ —Sre}—ﬁﬂ—rgi(l;o)
0K OwW; T
*Q(0,w|0 1
Yot = gfﬂ’ai.' - —35ve (i — pe) € — el Ang" !
Q(0,w|8) 1
T%WO = M —A4STe (y ,Mcz‘)g,-(lo IS eTA55 0.5;1)

0y0w; T2
2.5.8.5 Response variable perturbation

In this case we consider again an additive perturbation scheme given by
Yiw, = ¥i + Syw;, for i = 1,..., n. The perturbation and non-perturbation vectors are
given by w = (wy,...,w,)" and wy = (0,...,0)", respectively. The perturbed Q-function
is given by

A n 2 . )
Q(0,wl0) = —3 " log #® Zl(yw —pt ) gE0 o (ym _ ﬂg«>> AELFD

the elements of Yy, in Equation (2.20), are given by:

(92Q(0,w|é) _ &CETE(LO)

Y50, =
freo 0B0w;
meo _ 6262(07("’0) _ %Englo)
’ OKOw; 7
*Q(6,w|0) Sy (1;0) (0.5:1)
T02,w0 = W _W@ - :uCi>5i + A2Sygi
20(0, w|0 A
Ta,wOZaQ( vw|)__745< Mcz)510+A55051)

858%
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2.5.9 Simulation studies

Following, we will analyze the performance of the proposed models and the
estimators through two simulation studies: one for the parameters recovery and another
for the misspecification of the distribution of the response variable.

2.5.9.1 Simulation study 1

This simulation study aims to investigate asymptotic properties of the pro-
posed model. We generate 100 Monte Carlo replicas from: Y; = xy;4+2x9;+cos(t;)+e€;, @ =
1,...,n, where z11, ..., 21, L U(0,1) and za1, . . ., 22, L U(0,2), considering n = 50, 100
and 300, t; € (0,3x), 300 iterations of the SAEM algorithm, £ = 1/3 and the following
scenarios, chosen in such a way that we have error distributions with high asymme-
try and heavy tails: ¢; *Y CSN(0,1,0.8), ¢ ¢ CST(0,1,-0.8,5), & ¥ €55(0,1,0.8,3),
e Y CSCN(0,1,-0.8,0.5,0.5), ¢ “¢ CSGT(0,1,0.8,15,5), ¢ ¢ CSBP(0,1,—0.8,3,3),
e ¢ CSBS(0,1,08,1,1) and ¢; 4 CSGG(0,1,-0.8,2,1,0.66), independent for i =

1,...,n.

We decided to set the smoothness parameter o at 0.01, since for certain
replicas under low sample size, the poor estimation of the scale parameter lead to
non-smooth non-parametric curves. Indeed, small values of « can lead to an overfit-
ting (Hastie and Tibshirani, 1990). However, since in the simulations we only want to
check how close the estimated and curves are, we can consider that value.

For the CSGGN distribution we noticed a bias in its estimates that increase
as the sample size increases. Maybe this is due to some identifiability problem, probably,
between the scale parameter and the shape parameters. As example, when v, = 1 the
mixing distribution generalized gamma reduces to the gamma distribution and in this
case the CSGGN distribution reduces to CSGT distribution that has this identifiability
problem. Therefore, we decided, also, for the CSGGN distribution assume that o2 = 1,
for simulations and in the rest of this work.

The results for all models can be found in Appendix E. It can be seen from
the boxplots that as the sample size increases, the bias and variability of 3,, 3, o>
and ¢ estimates, decrease, except for 3, in the CSGT model, where we can observe
an underestimation. For the CST and CSGT distributions, both bias and variability
for v estimates decrease as the sample size increase. For the other distributions v is
either overestimated or underestimated. However, the respective bias decreases as the
sample size increases, as shown by the m/y plots. For the non parametric curves,
the variability of the estimates over the replicas decreases as the sample size increases,
for all models.
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2.5.9.2 Simulation study 2

To evaluate the proposed model on the robustness of the estimates against
model misspecification, we generated only one Monte Carlo replica from: Y; = 2x; +
sin(t? —t; + 2) + ,i = 1,...,300, where z,; %4 U(0,1), t; € (0,3), 500 iterations of
the SAEM algorithm, £ = 2/3 and the following scenarios, chosen in such way that
we have situations of high asymmetry and high heavy tails: ¢; 4 C:ST(0,1,0.8,3) and
¢, Y CSS(0,1,-0.8,2). Then, we fitted all models of the SMCSN and CSN distributions,

for this simulated data.

From Figures 23 and 26, we can see that the nonparametric fitted curves
are close to the actual ones. For the data set generated from the CST model, the
regression parameters estimates are close to the actual ones, except for the CSN
and CSS distributions. Also, the variance is clearly overestimated for the CSS model.
For the model generated from the CSS we notice that the regression parameters and
the estimated variances are close to the real values. These results give us a strong
indication that a distribution within the SMCSN class may be better than the others in
certain situations. However, we strongly recommended to fit and compare all developed
models in this work, for a given data set.

Distribution
— CSBPN
--- CSBSN
--- CSCN
-- CSGGN
--- CSGT
.-+ CSN
—- CSS
-— CST
- True

Figure 23 — Fitted and actual curves by distribution for the simulation study 2 generated
by CST distribution.
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Figure 24 — /3 along the iterations of the SAEM algorithm for each fitted model - simula-
tion study 2 with the data set generated by CST distribution.
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— CSBPN
-~ CSBSN
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I --- CSN
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Var(Y)
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Figure 25 — Var(Y') along the iterations of the SAEM algorithm for each fitted model -
simulation study 2 with the data set generated by CST distribution.

101 Distribution
— CSBPN
0.5+ ---- CSBSN
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= -- CSGGN
= 00 - CSGT
-~ CSN
05 —- CSS
-— CST
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1.0+
0 i 2 3
t

Figure 26 — Fitted and actual curves by distribution and the actual curve for the simula-
tion study 2 generated by CSS distribution.
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Figure 27 — B along the iterations of the SAEM algorithm for each fitted model - simula-
tion study 2 with the data set generated by CSS distribution.

— CSBPN
- CSBSN
--- CSCN
-- CSGGN
- CSGT
=+ CSN
—- CSS
-— CST
=== TRUE

Var(Y)

0 100 200 300
Iteration

Figure 28 — Var(Y) along the iterations of the SAEM algorithm for each fitted model -
simulation study 2 with the data set generated by CSS distribution.
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2.5.10 Application to Ragweed data

The data description can be found in Section 1. We fitted several models
within the developed class, to explain the variability of the square root of the rag-
weed pollen concentration as a function of those mentioned environmental variables:
\Y; = Birain; + fatemperature, + Sswindspeed, + f(days;) + ¢, ¢ =1,...,n, where y;
denotes observed ragweed pollen concentration in the ith day and ¢; are independent
errors following some scale mixture of centered skew-normal distribution, including the
Centered skew-normal distribution, for comparative purposes. We use 67 knots equally
spaced which to be an adequate number to represent the non-parametric curves, in the
sense that the inclusion of one more knot would not positively impact the goodness-of-fit
measures. We used 500 iterations of the SAEM algorithm and k& = 1/2, leading to
the convergence of all parameters. Some inferential results and information criteria
are given in Table 2. All models lead to similar conclusions, with all the effects being
significant (at a significance level of 0.10) except for the CSBSN model, which indicates
no significance for the covariate rain. The information criteria indicate that the Centered
skew Birnbaum-Saunders Normal presents the best fit.

Figure 29 presents quantile-quantile plots with confidence bands of 95%
for the residuals presented in Equation (2.17). We can notice that the Centered skew-
normal and Centered skew generalized Gamma Normal presents many observations
outside of the confidence bands, whereas the others show a good fit, mainly the CST
and CSBPN models. From Figure 30, we have the confidence bands for each point
of the nonparametric fitted curve between days in season and pollen ragweed. We
may notice that the CSBSN model estimate a different shape in its curve in the end of
season. Given all the above results, we selected the CSBSN model.

Since under the CSBSN model the covariate rain was not significant, a re-
spective reduced model was fitted. The results are presented in Table 3. The information
criteria still indicate that the CSBSN model is the best when compared to the models in
the Table 2. Also, no significant changes are observed in the nonparametric fit as well
as the envelope plot (both still indicating a well model fit), as can bee seen in Figure 31.
In addition, in Table 2 we added confidence intervals for the parameters and a nullity
test for the skewness parameter, and the most interesting thing to note is that the final
model estimated a value for the skewness parameter very high and significantly different
from 0, this information and the v values reinforce the use of an asymmetric model of
heavy tails.

In Figure 32 we have the generalized Cook’s Distance and the Diagonal of
the generalized Leverage matrix for the selected model. They suggest the absence
of aberrant points. From Figure 33 we see no evidence of the presence of influential
observations. These two results stress the well model fit to the data. In Appendix E We
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Table 2 — Estimates, Standard errors (SE), p-values and results for the parameters of
ragweed levels model.

Model Parameter Est. SE p-value (Wald) Model Parameter Est. SE  p-value (Wald)
Bo 1.3660 0.5075 0.0071 Bo 1.4707  0.4454 0.0009
B 0.0773  0.0268 0.0039 B 0.0755  0.0199 0.0001
By 0.2226  0.0484 < 0.0001 P 0.1820  0.0406 < 0.0001
CSN 5 0.8768 0.0749 ; CST d 0.9901 0.0120 -
v 4.4098 - -
e 210.6303 - -
a 354.4412 - -
df (a) 10.7114 - - df (o ) )
If () 17.3291
AIC 11494403 - - AIC | 1502.844 - -
BIC | 1554328 - - BIC | 1591.824 - -
AlCc 1464.630 - - AlCc 1459.838 _ _
HQIC 1518.293 - - HQlC 1538.317 _ _
CAIC 1570.040 - - CAIC 1615.153 - -
SABIC 1504.490 - - SABIC | 1517.822 - -
Model Parameter Est. SE p-value (Wald) Model Parameter Est. SE p-value (Wald)
Bo 0.8186 0.4244 0.054 Bo 1.1465 0.4403 0.0092
B 0.0821  0.0210 < 0.0001 B 0.0842 0.0197 < 0.0001
B2 0.2235  0.0404 < 0.0001 B2 0.1840  0.0395 < 0.0001
a? 1.9789 0.0105 - CSGT ) 0.9915 0.0104 -
CSS 0 0.9174 0.0117 - 121 4.6615 - -
v 1.4696 - - v 15.0000 - -
« 806.2733 - - « 1682.355 - -
df (a) 23.3605 - - df (a) 39.4994 - -
AIC 1536.495 - - AIC 1597.428 - -
BIC 1648.480 - - BIC 1768.968 - -
AlCc 1483.626 - - AlCc 1519.096 - -
HQIC 1581.140 - - HQIC 1664.613 - -
CAIC 1677.841 - - CAIC 1814.468 - -
SABIC | 1555.346 - - SABIC | 1624.640 - -
Model Parameter Est. SE  p-value (Wald) Model  Parameter Est. SE  p-value (Wald)
Bo 1.3305 0.5570 0.0170 Bo 1.0777  0.3701 0.0036
5 0.0836  0.0288 0.0037 B 0.0777 0.0194 < 0.0001
B 0.2362 0.0515 < 0.0001 Do 0.1949  0.0401 < 0.0001
o’ 2.3866  0.0868 - o? 27412 0.0166 -
CSCN 0 0.9380 0.0274 - CSBPN 0 0.9889 0.0136
12 0.3877 B - 121 2.9095 .
2 0.2830 - 2 3.5315
« 556.6058 - @ 600.0000
df (@) 19.0927 - df () 13.7178
AIC 1519.58 - AIC 1505.157
BIC 1619.122 - BIC 1584.177
AlCc 1471.977 - AlCc 1466.594
HQIC 1559.264 - HQIC 1536.660
CAIC 1645.220 - CAIC 1604.895
SABIC 1536.335 - SABIC 1518.458 - -
Model  Parameter Est. SE p-value (Wald) Model Parameter Est. SE p-value (Wald)
Bo 0.3430 0.2379 0.15 Bo 1.0907 0.1760 < 0.0001
51 0.0586 0.0115 < 0.0001 51 0.0571  0.0079 < 0.0001
Ba 0.1543  0.0054 < 0.0001 B 0.1897 0.0169 < 0.0001
o? 21.5736 0.1202 - CSGGN 0 0.9976  0.0030 -
CSBSN 0 0.9930 0.0101 - ” 15 - -
v 2.0000 - vy 15 -
12 9.1914 - 2 15 -
el 70 - e 857.01 -
df (@) 1.5771 - df (@) 25.6044 -
AIC 1467.285 - AIC 1796.578 -
BIC 1499.999 - BIC 1924.749 -
AlCc 1450.635 - AlCc 1737111 -
HQIC 1480.327 - HQIC 1847.676 -
CAIC 1508.576 - CAIC 1958.354 -
SABIC 1472.791 - SABIC 1818.153 -

have the line plots showing the convergence of all parameters.
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Table 3 — Estimates, Standard errors (SE), p-values and results for the parameters of
ragweed levels CSBSN model without rain.

Parameter Est. SE  p-value (Wald) Cl (95%)

s 0.065 0.011 <0.001 (0.0434,0.0866)
s 0.164 0.025 <0.001 (0.115,0.213)
o? 23.075 0.039 - (22.9986, 23.1514)
) 0.998 0.003 <0.001 (0.9921,1.0000)
v (2.000, 9.644) - -

o 70 - -

df (o) 1.924 - -

AIC 1468.176 - -

BIC 1498.400 - -

AlCc 1452.761 - -

HQIC 1480.225 - -

CAIC 1506.324 - -

SABIC 1473.263 - -
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Figure 29 — Quantile-Quantile envelopes for fitted models to Ragweed data.
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Figure 30 — 95% pointwise confidence bands for f(Days in season) of fitted models.
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Figure 31 — 95% pointwise confidence bands for f(Days in season) and pointwise
Quantile-Quantile envelope of CSBSN model.
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Chapter 3

Longitudinal data modeling using
semi-parametric SMCSN model

3.1 Introduction

In many situations of fields of research it is common to carry out experiment
where several observations of the outcome(s) of interest are made on the same experi-
mental units, over the so-called conditions of evaluation. These situations are named
repeated measurements. The respective data sets/methods of analysis are named
repeated measurement data/analysis. When these evaluation conditions can not be
mutually randomized, for example, when they correspond to time-points, we have the
so-called longitudinal data. Longitudinal data studies are a powerful research strategy,
since it is possible to characterize and evaluate global and individual changes over time,
relating them to a set of covariates of interest (besides the time-points). Due to the
longitudinal structure of the data it is expected to observe within-subject dependence.
When we do not take into account such feature in a proper way, misleading inference
can be obtained, as to underestimate or overestimate, for example. For more details
on longitudinal studies, among others, see: Ware (1985), Diggle et al. (1994), Vonesh
and Chinchilli (1996), Singer and Andrade (2000), Demidenko (2013) and Singer et al.
(2017).

There are many challenges in the analysis of longitudinal data, as to handle
with multivariate response and complex correlation structures. Therefore, it is important
to consider appropriate techniques to handle all these features, properly. Indeed, there
are a wide variety of techniques, many of them based on the so-called mixed models,
as: Normal Linear Mixed Models (Henderson, 1953; Henderson et al., 1959), nonlinear
Mixed Models (Lindstrom and Bates, 1990), generalized Linear Mixed Models (Breslow
and Clayton, 1993), Semi-parametric Linear Mixed Models (Diggle and Zeger, 1994),
skew Linear Mixed Models (Arellano-Vale et al., 2005) and Elliptical Linear Mixed



Chapter 3. Longitudinal data modeling using semi-parametric SMCSN model 77

Models (Savalli et al., 2006). They are very important when there is an interesting in
measuring the between-subjects heterogeneity and/or to account for extra (unknown)
sources of variability.

Another approach is based on the so-called estimation functions (Godambe,
1991). They are particularly important when the interest is more focused on the popu-
lation variations (than the individual ones) and/or in modeling the marginal response
distributions. An estimation function depend on the data and the parameters (of interest).
Also, under some regularity conditions they have good properties such as consistency
and known asymptotic distribution. Liang and Zeger (1986), based on estimating func-
tions, proposed the analysis of repeated measurement data using generalized Linear
Models (GLM), introducing the Generalized Estimation Equations (GEE) estimation
method. Based on some properties of the estimation functions and under some regular-
ity conditions, these authors obtain consistent estimators for the regression parameters,
provided that the marginal distributions are correctly specified.

The GEE methodology is easy to implement and very flexible, since it is
only necessary to specify the regression structure, the correlation matrix and some
characteristics of the marginal distributions (it is not required to specify the whole
multivariate distribution). Under some regularity conditions (Sen and Singer, 1993),
consistent estimators can be derived to the regression coefficients and its covariance
matrix, even if that the response correlation matrix does not match the true underlying
one. In addition, GEE may be preferred to the mixed models, when the interest lies
on the marginal (population) characteristics. Besides the work of Liang and Zeger
(1986), that focus on the exponential family of distributions, we can cite the GEE-based
models for rates and proportions (Song et al., 2004; Freitas et al., 2021b), for positive
data (Tsuyuguchi et al., 2020; Freitas et al., 2021a) and for count data (Kong et al.,
2015; Sarvi et al., 2019), among others.

Recently, Manghi et al. (2019) proposed the use of generalized Additive
Partially Linear Models with GEE, for modeling correlated data under linear and/or
nonlinear relations of covariates with the response variable. There are few works
related to this approach in the literature. Most of them under rely on the assumption of
exponential family for the marginal distributions. To the best of our knowledge, there are
no works considering SMCSN distributions (including the skew normal distribution).

The second part of this dissertation deals with the following contributions:

1. We developed a family of generalized additive partially linear models based on
the scale mixtures of centered skew-normal distributions using GEE.

2. We developed appropriate estimation methods, information criteria for model
comparison, residual analysis, global and local influence tools.
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3. We performed simulation studies and real data set analysis. We show that our
proposal is more flexible in relation to its competitors in exponential family.

3.2 Estimating functions

We say that a function 4 is an estimation function associated with the random
vector Y and parameters of interest 6, if, for each 8 € ©, ¥(0;Y) = (¢1,...,,) " is a
random variable, where © < R? is the parameter space. In this work we will consider
the regular cases, that is, © is compact with finite dimension (p), and the true parameter
6o is an interior point of ©.

Assuming a random sample of n independent random vectors Y; = (Y4, ...,
Yi,)',i=1,...,n and that each sample vector is related to an estimation function, say
1, then a sample estimating function ¥,,(0) is given by ¥,(Y; 0) = Z ;(Y;;0), where

i=1
Y = (Y,',...,Y,))". We also restrict our attention to estimation functions whose roots

are estimators of the parameters of interest, i.e., ¥,,(Y; ) = 0.

Let Yi,...,Y,, be a random sample with E(Y;|0) = 1,(6), where p; doubly
differentiable regarding 6 and Var(y;) = . Then

@, y:0) = 3, P81y (o)) = 0 8.1

is an estimating equation.

On the other hand, ¥,,(0) is an unbiased function if Eq[¥,(8)] = 0, VO € O.
If all estimating functions 1), are unbiased, then ¥,, will be also unbiased. Furthermore,
let ¥,, be an unbiased estimating function then, the related variability and sensibility
matrices (both p x p and square), are given, respectively, by:

0

Ve (0) = Eo[¥,(0)%(0)], Su(0) =Eg {wan(e)] . (3.2)

Let (2,.4,P) be a probability space, {2 c R a sample space P = {P : 0 €
© < RP}, for some p € N. An estimating function ¥,(0) : 2 x © — RP” is said to be
regularifvOe © andi,j =1,....p,

1. ¥,(0) is an unbiased estimating function;
2. The derivative 0¥,,(0)/06; 3 and is almost sure continuous Yy € Q;
3. ltis possible to exchange the integration and derivation operators as follows:

0

’ 0
00; JQ U (6, y)dPy = JQ 00, [¥,.(0.y)] dPs.
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The fact of ¢(0) be integrable as a function of y for each 6;, the propriety 2, and
supposing that 0 (0, y)/06; is dominated by an integrable function, guarantees
this propriety;

4. Eo[¥;(0)¥,(0)] € R and Vy(0) is positive definite;

5. Eg [aqli(e);qu<0>] e R, where [,k =1,...,pand Sg(0) is non singular.
k
On the other hand, The Godambe Information Matrix of 8, associated to a
regular estimating function ¥, is given by: Jg(8) = S, (0)V41(0)Sw(0).

The Godambe information matrix plays a similar role to the Fisher information
matrix, i.e., the former is related to the information about the variability of the estimators.
Notice that if Sy (0) = —V4(0), then the Godambe Information Matrix coincides with the
Fisher Information Matrix.

Let Q:(0),i = 1,...,n be non stochastic matrices and u; = u;(y;; @) zero mean
vectors mutually independents. Then an estimating function class is said to be additive
or linear if (Crowder, 1987): W,,(8) = > Qi(0)u;(y;; 0).

=1

A regular estimating function is said to be optimal if its associated estima-

tors have minimal asymptotic variance. The element within class of linear estimating

functions, according to Crowder (1987), is given by: ¥} (0) = Z Q7 (0)u;(y; 0), where
=1

5ui

Qr6) ~E (W)T Cov(u,) ",

and Cov(u;) = diag{Var(u;)"?} R’ (u;)diag{Var(u,)*/?}, being R’ (u;) the correlation ma-
trix of u;, fori =1,... n.

In the following we show the conditions that guarantee the asymptotic nor-
mality of the estimators obtained from the regular estimating functions.

Following Jorgensen and Labouriau (1994), let U : Q2 x © — R” be a regular
estimating function and {én}@l a sequence of estimators of an estimating equations,
and suppose that 3 6 € © such that §,, = 6, where 8, is asymptotically Normal, i.e.,
V(0 —0) 2 N(0, J51(8)), where

Ju(8) = lim ~{5](0)V5(8)5u(6)}.

n—w n,

D"
—

here the symbol " stands for the convergence in distribution (related to F,) and "5"
the convergence. The conditions that guarantee the above propriety are:

1. y;,i = 1,...,n are independent ¢;-random vectors;
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2. ¥i(0) = (Yi, ..., ¥ip) ", i = 1,...,n, are regular estimating functions;
=1

4. Ford > 0:

0 0
Eg {h:fﬂl;lﬁ)@ W¢i(0 +h) - aeT‘bz(g)H} L g5,

according to n — o, ¢5 — oo when § — o and ¢;s — 0 when § — 0;

5. Asn — o
10w,

n oot

(0) - Sy(0);

6. We have that .
i 3" Cov(;) — V(6) positive definite;
=1

7. As n — oo:

8. 0, is the solution of ¥,,(w) = 0, w € O;

In addition under conditions that guarantee the existence of a sequence
of roots of ¥, (w) that are limited in probability, or restricted to a compact set almost
certainly when n — oo, it comes that 8, = 6 and /n(6 — 0) 2 N(0,J,'(6)). A proof
for this theorem can be seen in Joergensen and Labouriau (1994), for example.

In practice, the correlation matrix R" is unknown. Liang and Zeger (1986)
proposed to use a so-called working correlation matrix R;(p), which depends on p. We
will use this approach with work correlation matrices.

3.3 GEE for Additive Partially Linear scale mixture of cen-
tered skew-normal regression models

LetY; = (Yi,...,Yy,)" be the individual profile of the ith experimental unit,
i =1,...,n. Let us assume that the marginal density of Y;; follows a SMCSN distribution,
i.e., Y nd SMCSN(u;j, 0%, v, v), where o2, v, v are assumed to be constant over the
N observations, where N = Zti' For modeling the marginal means (u;;) we assume

q q
that f(,uzj) = MNij = wgﬁ + Z gk(ﬂjk) = 11;;,3 + Z I{kb(ﬂjk), where ,8 = (ﬁl, ... ,Bp)—l—
k=1 k=1
ki

is a vector of regression parameters (p < n), g;(Tix) = Zm,kb,(xijkl), b, is a cubic
=1
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B-spline, I = 1,... ki, k = 1,...,q, f(-) is called link function, which is assumed to
be monotonous and at least doubly differentiable, x;; = (vij1,...,7,) and T}, =
(Ty1k, - - -, Tvy) are fixed and known covariate vectors related to the jth observation of
the ith experimental unit.

For developing the GEE approach of interest, let us u; = w;(y;,8) =
(winy - - ,um)T,z’ = 1,...,n a zero mean vector mutually independent, within the context
of Additive Partially Linear SMCSN regression models for repeated measurement we
propose to use:
(1 —b%5?)

m(yi — Mei), (3.3)

1
u; = ;(yz — Pei) =

with ¢ = 1,...,n. Due to the good results obtained from the developed approach
for the independent data, we considered the Score Vector related to the developed
EM algorithm, properly transformed, as propose for u;. Also, we have that E(u) =
(1/7)(E(Y;) — pei) = 0 and Var(ug;;) = (1/7%)Var(Y;).

The idea, based on Liang and Zeger (1986), is to consider a suitable working
correlation matrix, say R(p), in Var(Uj;), for modeling the within-subject dependency, i.e.,
Cov(u;) = X; = Var(u;)/?R(p)Var(u;)"/? where p is a vector of correlation parameters
of u,. Therefore, we can define a penalized GEE (Manghi et al., 2019) for ¢ = (8", "),
as we did for log-likelihood in independent case, given by:

‘I’(E) = i [—E (22?) ] E;lui — P(a) = iMiTAiEilu‘I’i — P(a)

= Y M WA uy; — P(a),

where Mz = (CL‘Z‘,Nil, R 7Niq)s “/z = A:EZ_IA“ AAZ = E(é’uz/é’m) = diag(aﬂ, S ,am),
Qi = (1/7’)(9;113/877% 1=1,...,n, and P(a) = (O;—,Oélh'lirgl, R ,Oéq,l‘-',:]rﬂq>.

The estimators € of £ are obtained by solving (&) = 0, for this we need
to calculate the related sensibility and variability matrices, which are also useful for
obtaining the related standard errors. Indeed, the sensibility matrix for U(Z) is given by

a n
Sc- 8 (57 0(@)) - -3 MIWM M)

where M () = diag(0,,, 1€y, . .., o,£2,). On the other hand, the variability matrix for
U(Z) is given by Vg = Cov{¥(£)T (")} = >° MW, A; ' Cov(u,)A; ' W, M,
=1
We have that the asymptotic distribution of £ is given by (Jorgensen and
Knudsen, 2004; Godambe, 1991): € ~ N (€, S;'VeS; "), where (.)~ " stands for the
inverse of the transpose of a given matrix. Furthermore, this result is valid when
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t; — a0, Vi, n — oo or both. The sandwich variance covariance matrix estimator of & (this
is referred to as "robust estimator" in the literature) is given (Liang and Zeger, 1986) by:
Var(€) = (Z M WA w] wA; 1WTM> Sqt.
=1
Using the Gauss-Seidel method (see Hastie and Tibshirani (1990) and
Manghi et al. (2019)), a current estimate of £ at (k + 1)-th iteration is updated, given
(6°,50,01), by:

-1
k+1 o x; zTVVz(k) z(k)_ Nis gk’-i-l)
(Z ) S {z > N }
-1
R = (S TTWIT, + mam) iffm"“{ = D Nk — Iﬂ},
= (S st ) Srw (40 5 v S

=1 s#EMm

m=1,...,q, where z; = n; + A; 'u;. On the other hand, we can update (62", 4®*+1),

o * D) by maximizing the log-likelihood, given 1**1 associated to a SMCSN distribu-
tion. Also, in order to have a faster algorithm, we estimate ¢ = 1/v instead v, since
that ¢ € (0, 1) the respective algorithm is speeded up due to its parametric space being
reduced. Thus, we have:

~Ao(k+1) A N - ~(k+1
(627, 4% g¢) = argmax 2., ) {Zlog [fsmsw(%\ﬂf» 2,7, w)]}, (3.4)

=1

D) — 1/ s (3.5)

For the correlation parameters (p) we can use consistent estimators based on
the method of the moments using the Cov(u;) which can be /n-consistently estimated
by Z u;u,; /n. In the following, we present the specific estimators for some structured

(2
working correlation matrices commonly considered.

Unstructured

In this case we have t(t — 1)/2 parameters to be estimated. Let p,;; be the
(7,7") element of €2, for j # j’, which may be estimated by

Zn
i=1 WigUig

Pjj =
\/Zz 1 Zj\/Zz 1 2]

Exchangeable

Here the diagonal elements of 2 are 1 and the others are p, i.e., it is assumed
that the correlation between any two observations of the same individual is always the
same. Thus p can be estimated by

b= i1 Zj>j’ WijUij! N
- t; (1) °
Yiiul o X, Hi
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First-order autoregressive (AR-1)

In this case the diagonal elements of Q are 1 and for the jth line and j'th
column are p"~7'l for j # 4. That is, we assume that the within-subject correlation
decreases as the distance between the time-points increases. In this case p can be
estimated by

n i_l
5o iy 2wt
\/Zz 12; 1“ e 123 2 zJ

3.3.1 Effective degrees of freedom related to the nonparametric compo-
nents

In context of GEE and generalized Additive Partially Linear models, following
the idea of Manghi et al. (2019), the degrees of freedom can be derived from the solution
of linear predictors given by

H=ME=28,2=MM WM + M(a))M"W32, (3.6)

where S, may be interpreted as a projection matrix or smoother matrix (Manghi et al.,
2019) and the effective degrees of freedom are given by df (o) = tr(S.) and M =
diag(M;, ..., M, ), W =diag(Wy,...,W,,).

Therefore, we can consider information criteria for model selection based on
some of the quasi-likelihood measure for goodness of fit. For the SMCSN family, the
quasi-likelihoods is given by

Q " J Yij — a _ yw :“z]
vis Var(Y 2Var(Y

zlj

Then, we can define the quasi Akaike Information Criterium (QAIC) and quasi
Bayesian Information Criterium (QBIC) given by:

QAIC =2(p + df (a) + q) — 2Q(n, y)
QBIC = log(N)(p + df (o) + q) — 2Q(1, y),

These measures can be used to select the best model and the smoothness
parameter «, since the lower the value the better is the model fit.

3.4 Simulation study

In this section we present a simulation study to analyze some asymptotic
proprieties of the proposed estimators. We generate 100 Monte Carlo replicas based
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on a given distribution of scale mixtures of centered skew-normal distribution (error
distribution, see below) considering p;; = 2x;; + cos(tt;;), i = 1,...,n,5 = 1,...,1t,
where z;; ¥ U(0,1) and tt;; € (0,37),i = 1,...,n, j = 1,...,t and a suitable working
correlation matrix. Due to the within-experimental unity dependence structure, the
simulated responses were obtained via Student-t copulas (Demarta and McNeil, 2005).
The covariate values were kept constant during along the replicas. We also considered
n = 10,50, ¢t = 3,10 and p = 0.3,0.8. Also, we set o = 1, = 10 and considered:
CSN(y = 0.8), CSGT(y = —0.8,v; = 15,1, = 5), CST(y = 0.8,v = 5), CSCN(y =
—0.8,11 = 0.5, = 0.5), CSS(y = 0.8,v = 3), CSBPN(y = —0.8,1; = 3,1 = 3),
CSBSN(y = 0.8,14 = 1,15 = 1) and CSGGN(y = —0.8,14 = 2,15 = 1,1, = 0.66), as the
error distribution. For each case the SMCSN GEE models were fitted using different
correlation matrices (AR(1), exchangeable and unstructured) including the true working
correlation matrix one.

The results for all scenarios can be found in Appendix E. In general we can
notice that the results were similar to those presented for the independent data (see
subsection 2.5.9). The “sample sizes” are presented as: (n,t). For the sample size
(10,10), the 3 and o2 estimates under the unstructured correlation matrix present a high
variability that impaired the visualization of the boxplots, so we decided to remove the
(10,10) case from some plots.

It can be seen from boxplots and MSE plots that as the sample size increases,
the bias and variability of /3y, 81, 0%, § and v estimates decrease, except for the CSBSN
distribution, where we can observe a bias in the estimates of o2, v and v,. For the non
parametric curves plots, the variability over the replicas decreases as the sample size
increases along the subjects over the replicas, for all models. The only caveat is for
the case under (10,10) where we can notice that for some replicas the shape of the
estimated and actual nonparametric curves presented do not match, indicating that, for a
low number of experimental units, regardless of the number of repeated measurements,
we may have unreliable inferences and estimates for non-parametric curves.

3.5 Diagnostic analysis

Additionally to all issues mentioned for the diagnostic analysis for models for
independent data, here we have the needing of checking the suitableness of the working
correlation matrix too. Venezuela et al. (2007), based on developed tools for generalized
Linear Models, developed some concepts of leverage analysis for the GEE setup, as
well as case deletion (Cook’s Distance) and residual analysis based on the proposals
of Preisser and Qagqish (1996) and Tan et al. (1997). Venezuela et al. (2011) extended
the idea of local influence (Cook, 1986) using the generalized local influence (Cadigan
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and Farrell, 2002b). Later Manghi et al. (2019) presented diagnostic measures for GEE
Additive Partially Linear Models.

Here, we adapt the measures developed by Manghi et al. (2019), for our
approach.

3.5.1 Leverage analysis

From Equation (3.6) we have that the S,, can be used to construct a leverage
measure considering that:

tr(S,) = tr (M(M'WM + M(c)) "M W)
=tr (WM(M WM + M(a)) " MTW'?)
= tr(H(a)).

Then H(«) plays a role of an orthogonal projection matrix of vectors in
R in the subspace generated by the columns of the matrix WM. Then, a given
observation is said to be leverage if it is an influential point with respect to the values
of WY2M. The index plot of the values of the diagonal of H(«) provide an easy
identification of candidates to be influential observations.

3.5.2 Residual analysis

The ordinary residuals are given by (Venezuela et al., 2007; Manghi et al.,
2019): é = WY%(2 —#) = [I — H(a)]WY22, which have zero mean with e =
(ef,...,el) and e; = (e;1,...,ey)". Next, we will talk about their variance and stan-
dardization.

3.5.2.1 Naive residual

Given that i = p + O(1) then é = e + O(1) = [I — H(a)]W"2z + O(1),
and it follows that Cov(é) = Cov(e) + O(1) = [I — H(a)]W2A"1Cov(u)A*W2[I —
H(a)] +0(1).

If we assume that R;(p) is the true correlation matrix of Y;,Vi = 1,... ,n, we

have that:
Cov(é) = [I — H(a)]W"?A ' [Var(u)2R(p)Var(u) 2JA'W'2[I — H(a)]

[I - H(a)][I - H(a)].

Therefore, the naive residuals are given by ffJV = é;/(1 — i}m), i=1,....n
andj =1,...,t;.
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3.5.2.2 Robust residuals

In this case if the true covariance matrix of u; is unknown we can use a robust
estimator for this and we have that Cov(é)” = [I — H(a)]W2A'aaT A" WV[T —
H (o)]. Then, the robust residual is given by 7/ = él-j/(fo\v(é)g, fori = 1,...,n and
j=1,... . t.

Another usual approach is the quantile residual given, under the SMCSN
distributions, by r’, = @' (Fsncsn (yij, 1ij, 0%, 7, v)), Where Fsycsn denotes the related
cdf of a distribution of SMCSN family of distributions. We performed simulations to
evaluate the mean, standard deviation, skewness and excess of kurtosis of naive, robust
and quantile residuals. We shall only outline the main conclusions . As expected, the
quantile residuals distribution is very well approximated by the standard normal one: the
mean, skewness and excess of kurtosis are closer to 0 and the standard deviation to 1.
The mean and the standard deviation of the naive and robust residuals are close to zero
and one, respectively, but they displays considerable skewness and excess of kurtosis.
Therefore, we can analyze the quantile residuals in the usual way, that is, through
histograms, box-plots, index plots, and fitted values plot. Also, QQplot with envelopes
can be made quickly, since the respective confidence bands can be simulated from the
standard normal distributions

3.5.3 Local influence

Venezuela et al. (2011) proposed a generalized displacement measure to
any, which is given, in our case, by FD(w) = 2 {f(é) — f(gi,)}, where F is a function,
doubly differentiable, such that the estimator of &£, denoted by é is the solution of

0F(§)

o€
where £ and £, are the estimated value for the original and perturbed model, respectively,
with FD(w) = 0. Also w = (wy,...,w,)' is a perturbation vector, where m depends on
the proposed perturbation scheme. Based on Cook (1986), the idea is to study the local

behavior of FD(w) for any value of w in a neighborhood of wy, which represents the null
perturbation vector, such that F(£,,) = F(€) = FD(w,) = 0.

-0,

Essentially, Venezuela et al. (2011) generalized the proposal of Cadigan
and Farrell (2002b) to the GEE framework, replacing the likelihood equations by the
estimation functions, such that, for a given perturbed estimating equation \Il(éw\w) =
0, there is a null perturbation vector such that ¥ (¢, |wy) = ¥(§). Venezuela et al.
(2011) also proposed a local influence measure for the GEE approach given by the
eigenvector dmax, corresponding to the largest eigenvalue of the matrix Bs = -AS'A,
where A = 0U,(¢lw)/dw’, S8 = 0, (£)/0¢" = M (A 'u — AS"YM — M(a),
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A = diag(ai;) = diag(day;/dny;), aiy = (1/7)0%us;/n?, which all are evaluated at & = 3
and w = wyg. In this work we calculate the matrix A for six different perturbation
schemes based on the proposals of Venezuela et al. (2011) and Manghi et al. (2019),
namely: case-weight perturbation, response perturbation, single-covariate perturbation,
scale parameter perturbation, skewness parameter perturbation, shape parameters
perturbation and working correlation matrix perturbation.

In general, flagged observations under the case-weight perturbation scheme
can be interpreted as a perturbation in variance of each experimental unit (Venezuela
et al., 2011). Perturbations in the response variable can be seen as an alternative way
of identifying outliers (Schwarzmann, 1991b). The single-covariate perturbation scheme
helps to evaluate the influence of each continous covariate in the estimating process.
Perturbations in the scale, shape and skewness parameters are useful for checking
the model sensitivity to the lacking of the homogeneity of these parameters, along the
observations. Working correlation matrix perturbations could indicate, for example, the
misspecification of such structure.

3.5.3.1 Case-weight perturbation

Let us consider the following perturbation scheme (Manghi et al., 2019):
U (¢|lw) = M"WA 'diag(w)u — P(a), where w = (w/,...,w )7, w; = (Wi, ..., wi,) ",

n

i=1,...,nandw is a vector of 1’s. Therefore A = MW A 'u.

3.5.3.2 Response perturbation

Let us consider an additive perturbation scheme for the response variable Y;;
(Venezuelaetal.,, 2011),i=1,...,nand j = 1,...,t; given by y.;; = yij + wijr/ Var(yi;),
where the non-perturbation vector is w;; = 0, i.e., wy = 0. Thus, the perturbed es-
timating function is given by ¥(¢|lw) = MTWA_lj_(yw — p) — P(a). In this case

A= 1\4-1—“/“/'_[&71 Var(yzj)/T

3.5.3.3 Explanatory variable perturbation

Based on Thomas and Cook (1989), we propose an additive perturbation
scheme on the k-th column of the design matrix X, that is, x; = (x11x, 12k, - - - ,-TNk)T,
where each component of the perturbed vector . is given by: z.ijx = Zijk + wijSa,
where s,, is the standard deviation of «;, where i = 1,... ., nand j = 1,...,t,. Here, the
non-perturbation vector is wy = 0.

The perturbed estimating functions is given by: ¥ (¢|w) = M A S u, —
P(a), where M,, = M + By, By, is @ matrix with ws,, in the k-th column and zeros
elsewhere, A, = diag(aw), aijw = (1/7)0pijw/0nije and u, = (1/7)(y — ). Noticing
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q
that p.,,, = g_l(%ij) and 7, = B1z1; + - + Br(Thij + wijsk) + BpTpij + ng(Tz’jz), we
=1

have that A;; = M;jAwijE‘luwij + MJ] [Awijz—lu% + AwijE‘luwij], where Mwij -
A,
awij
ﬁksx . -
—delag{o, ey Oty /Oy - - -, 0}

Seo (M o M )T AL =

Wi4j? Wnij

- Bk:mkdiag{o,...,&2;1%./8773”,...,O}, 4~

3.5.3.4 Scale parameter perturbation

Let us consider a multiplicative perturbation scheme for the scale parameter
o” given by: 02, = 0®/w;;, where i = 1,...,nand j = 1,....t. In this case, w, = 1,
the perturbed estimating function is given by: ¥(¢|w) = M A, X 'u, — P(a), the A
matrix is given by:

0N, 0¥t ou,,..
A= 0N+ A |, + 2
ow &uij &uij
where:
oA, . o2 or—1 1—462 0¥t o0,
wij _ % 0 y ) » * _ _ wij _ _2_1 wij 2_1
ooy R OnalOm) T = e = T A, dwy
0%,  oVar(u;)Y? oVar(ug;)"/?
L = 9. R(p)Var(u;;)"? + —="97__ R(p)Var(u;;)"/?
o = SR R o) Var(u) - S R V()
avar(uij)l/g . Ufiij E(U_1> 1—¢° auwi]’ _ o *( )
é’wij N ng 1-— b252’ wi]’ B UJ%T y” MU .

3.5.3.5 Skewness parameter perturbation

To make the related calculations easier, we consider the following parameter-
ization of the skewness parameter:

A 571/3

_ P .
V1+ 22 \/%+32,y2/3(%_1)

J

Also, a multiplicative perturbation scheme is given by d,,;; = 6 /w;;, wherei = 1,....n
and j =1,...,t; and wy = 1. The perturbed estimating function is given by: ¥ (¢|w) =
M'"A, X, 'u, — P(a), where

A oyt ou,, .
A= aﬁ 23w + Ay L, + 2‘17;"’ ”] :
ow Wij OWs;
and
A, o ., or! o20(1 —b?
= = _TTT(auij/aﬁij), T = = —2 ( )

O, 2 a0 (1— 0262)2
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827‘;; — _2*1%271
Jwi; Ow;j ’
0%,  oVar(u;)t? oVar(u;;)V?
i T V. y 1/2 GNVai\®ii) V. . 1/2
Ow;; Ow;; Rlp)Var(uy) ™ + Ow;; R(p)Var(u;) ",
OVar(uy)'? _ 20°°(1— %P1 —*)/E(U ) dua, 6,
dwig W2 (1= b262)7 g~ T ),

which all quantities are evaluated at w = w, and 6 = 6.

3.5.3.6 Shape parameter perturbation

Let us consider a multiplicative perturbation scheme for the kth shape pa-
rameter v, given by: vy.i; = ﬁ, wherei=1,...,n,7=1,...,t, k=1 forthe CST and
Wi 4
CSS distributions, £ = 1, 2 for t]he CSGT, CSCN, CSBPN and CSBSN distributions, and
k = 1,2, 3 for the CSGGN distribution. In this case, w, = 1 and the perturbed estimating
function is given by: ¥(¢|w) = MTAX_'u — P(a), and

02,
A=-MTAS ' iy,
OWsj
where
0%,  oVar(u;)'? oVar(ug;)?
iy Y R(p)Var(u;;)"* + ——=—2—R(p)Var(u;)"?
Tt = g R Var(u) ' + S R(p)Var(u)
8Var(uij)1/2 __Vk,'wl‘j 1 OjaE(Uil)wij
Ow; w2 NVar(Y) T OV,

which all quantities are evaluated at w = wy and 0 = 0.

The derivatives 0E(U 1) /v, are presented in Table 4, remembering that:

o0
= J t" e log(t)dt, R(z) >0,

0

_ T(x)

I'(z) -

where R(z) is the real part of x.
3.5.3.7 Working correlation matrix perturbation

Let R(p) be a working correlation matrix indexed by a <2> dimensional

.
vector p = <p12, e ,p(tg)> . Since each experimental unit may have a specific working

correlation matrix, Venezuela et al. (2011) proposed a related perturbation scheme given
by puigry = pji/wigry, wherei =1,....n, 5 <landj, [l =1,... . For this perturbation
sCheme w = (Wi(12)s -« - s Wi((ti—1)t)s « - - s Wn(12)s - - - » W(t—1)t;)) | 1S @ perturbation vector
and wy = 1. The perturbation estimating equation is given by: ¥(¢|w) = M "AS'u —
P(a).
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Table 4 — Derivatives of 0E(U; ') /dv,, for each distribution of the SMCSN family.

Distribution OE(U ) ov, OE(U Y ovy, 0BE(U ) /ovs
2
CST —W (Vl = I/) - -
1
CSS —m (Vl = 7/) - -
120 1
CSGT T’l o — i
— Uy 151
CSCN ” _{22 )
Vo
CSBPN T -
CSBSN “ _u+?2 :
‘ Vo ' ‘ 202
F(l/l — 1/V2)F(V1) — F(l/l — 1/1/2)F(V1) F(l/l — 1/V2) _F(l/l — l/VQ)
CSGGN v3l'(vy)? v3v3T(vy) V3l (vy)

Each column of the matrix A can be expressed by:

al:[’<£|w) _ _MTAzfl aEw Eil'u,
0w wy; ’

where the ith diagonal block of X, is ¥,; = +/Var(u;)\R(p.:)\/Var(u;), with p,,; =

(Pwi(12)s - - - Pui(ti—1)ts)) @nd i = 1,...,n. Furthermore, we have:
§EM- aR Wi
= /Var(u;) (p )«/Var(ui),
0wt Owi(jty

where 0R(p.,)/0w;;; is a symmetric matrix with null diagonal and ;I and [ elements
equalto —qj;, i =1,...,nand j,l =1,...,¢,.

3.6 Framingham cholesterol data analysis

This data set is related to an unbalanced longitudinal experiment with respect
to the number of repeated measurements involving 200 randomly selected subjects. The
main goal is to examine the role of serum cholesterol as a risk factor for the evolution of
cardiovascular diseases (Zhang and Davidian, 2001). The response variable is defined
as the cholesterol level for each patient, and the covariates are: age in years (age),
sex (O=female, 1=male) and years elapsed since the start of the study (year). Due
to repeated measurement over the subjects, it is expected to observe within-subject
dependence. This data set has been analyzed under different models, as: Zhang and
Davidian (2001) that used linear mixed models with a flexible density for the random
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effects, Lachos et al. (2010b) which used a linear mixed model with skew-normal
random effects and Galarza et al. (2017) that proposed a quantile mixed model. This
data set can be obtained through the package qrLMM (Galarza and Lachos, 2020) of the
R software (R Core Team, 2020).

Figure 34 shows the relationship between years and cholesterol level by sex.
We can see a difference on the response distribution between the males and females.
Also, we can observe a higher variability among the individuals profiles, mainly for the
females.

From Figure 35, we can observer a serial pattern with high values for the
within-subject correlations. Then, among the correlation matrices presented in this work,
the AR-1 seems the be the best option, even though we will compare the results under
all structures. Based on Figure 36 we can not see a clear relationship between age
and cholesterol level, suggesting that a non-parametric regression structure could be
suitable to relate them.

Female Male

6.0+

54+ &

Cholesterol level

0.0 2.5 5.0 7.5 10.0 0.0 2.5 5.0 75 10.0
Year

Figure 34 — Individual and average profiles for cholesterol level by sex.

— spline

==+ Variance

Sample Variogram

Lag

Figure 35 — Sample variogram for cholesterol level by year.
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Figure 36 — Scatter plot between the cholesterol level and age, fitted by LOESS

We fitted several models, comparing our approach with some usual sugges-
tions found in the literature, more specifically, we fitted a model for cholesterol level
based on GEE and gamma, inverse gaussian (IG), CSN and SMCSN distributions using,
exchangeable, AR-1 and unstructured working correlation matrices and considering:

Yij ~ gamma(p, ¢),

i ~ 1G(ij, ),

ij ~ CSN (i, 0%,),

Yij ~ SMCSN (pi5,0%,7,v),

pij = Pisex + Poyear;; + f(ageij),

where Y;; is the cholesterol level divided by 100 at the jth time point for the ith sub-
ject (Zhang and Davidian, 2001), year;; = (year;; — 5)/10, and SMCSN is a member of
that family presented in this work.

From Table 5 the best working correlation matrices for each model is: ex-
changeable for Gamma, IG and CSBPN, unstructured for CSN, CST, CSCN, CSGT and
CSBSN, and AR-1 for CSS and CSGGN.

Under the selected working correlation matrices, the results of Normal prob-
ability plots with 95% confidence simulated envelope for the quantile residuals are given
in Figure 37. We have that the GEE CST, CSS, CSCN, CSGT and CSBPN models
present a good fit, since there are no points outside the envelopes. On the other hand,
for the Gamma, IG, CSN, CSBSN and CSGGN, we can see some points outside the
envelope, indicating a poor fit. In Figure 38 we have the estimated nonparametric curves
for the selected models, according to the QQ-plots. The dotted and dashed lines refer to
95% confidence bands built under the naive and robust variances, respectively. We can
noticed similar behavior among all models, even though for the CST, CSCN and CSBPN
models present bands with larger width, compared to the CSS and CSGT models. The
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Table 5 — QAIC and QBIC of the fitted models for cholesterol level data.

QAIC QBIC
o Correlation Exchangeable Unstructured AR-1 Exchangeable Unstructured AR-1
Distribution

Gamma 1348.668 1353.073 1353.947 1394.079 1398.638 1401.068
Inverse Gaussian 1524.998 1568.22 1563.14 1570.422 1593.086 1615.362
CSN 1078.371 1077.681 1079.68 1127.987 1126.916 1131.419

CST 1072.220 1072.081 1072.176 1126.739 1126.588 1128.806

CSS 1034.767 1034.311 1032.835 1090.345 1089.941 1089.724

CSCN 1024.716 1029.911 1034.544 1085.168 1090.451 1096.382

CSGT 1015.315 1018.762 1024.203 1070.769 1074.293 1081.035
CSBPN 1029.329 1031.264 1030.945 1089.810 1091.813 1092.759

CSBSN 854.3898 856.124 857.945 913.6731 915.473 918.525
CSGGN 1390.302 15731.770 12240.310 1452.812 15815.210 12323.150

results of the respective fitted models are given in Table 6. From the naive and robust
standard errors and the p-values for the individual test for nullity (within parentheses),
we have that all coefficients were significant under for all models.

All models well fitted to the data, according to the QQ-plots, also present a
well fit for the perturbation measures, then we select the model that showed the lowest
QAIC and QBIC values. Even though these criterias based on the quasi-likelihood are
not suitable for model selection concerning the error distribution (see Wang (2014), for
example), we consider such results as an indicative. In this case, the CSGT model is
the best one. Through the Figure 39 we can notice that for all perturbation schemes
there are no influential points, showing the good fit of the selected model to the data.

Analyzing the respective estimates we can notice that men have, on average,
higher cholesterol levels than women. Also, there is an increasing in cholesterol levels
over time. From the inspection of the non-parametric curves, we can see that patients
around 55 years old tend to have a higher cholesterol level (in average), whereas
patients over 60 and around 30 years old, tend to have low cholesterol levels.
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Table 6 — Estimates, Standard errors (SE), p-values of Wald test and results for the
parameters of gee models.

Model Parameter Est. SE naive SE robust
B1 -0.0053 0.0079(0.57) 0.0003(< 0.01)
B2 0.1205 0.0021(< 0.01) < 0.0001(< 0.01)
Gamma o2 0.0252 -
df (o) 6.1726 - -
B1 -0.0222 0.0051(< 0.01)  0.0003(< 0.01)
B2 0.1212 0.0013(< 0.01) < 0.0001(< 0.01)
IG o? 0.0096 - -
df (o) 6.1750 - -
B1 0.0126 0.0013(< 0.01) _ 0.0004(< 0.01)
B2 0.1197 0.0006(< 0.01) < 0.0001(< 0.01)
CSN o? 0.1803 - -
v 0.5486 - -
df (@) 6.0201 - -
B1 0.0126 0.0229(0.58) 0.0004(< 0.01)
B2 0.1197 0.0101(< 0.01) < 0.0001(< 0.01)
CST o? 0.1673 - -
v 0.6018 - -
v 25.1381 - -
df (o) 6.0098 - -
B1 0.0054 0.0190(0.78) < 0.0001(< 0.01)
B2 0.1230 0.0134(< 0.01) < 0.0001(< 0.01)
CSS o? 0.1478 - -
v 0.6164 - -
v 45119 - -
df (o) 6.4908 - -
B1 0.0330 0.0273(0.12) 0.0002(< 0.01)
B2 0.1209 0.0055(< 0.01) < 0.0001(< 0.01)
CSGT v 0.6626 - -
v (20.0000, 3.5396) - -
df (o) 6.2009 - -
B1 0.0330 0.0212(0.12) 0.0002(< 0.01)
B2 0.1209 0.0055(< 0.01) < 0.0001(< 0.01)
CSCN o2 0.1 - -
y 0.6540 - -
v (0.7762, 0.4492) - -
df (o) 6.2105 - -
B1 0.0330 0.0211(0.12) 0.0002(< 0.01)
B2 0.1209 0.0055(< 0.01) < 0.0001(< 0.01)
CSBPN o? 0.1884 - -
v 0.6358 - -
v (33.3333,33.3333) - -
df (@) 6.2164 - -
B1 0.0204 0.0005(< 0.01) _ 0.0003(< 0.01)
B2 0.1214 0.0002(< 0.01) < 0.0001(< 0.01)
CSBSN o? 0.3220 - -
¥ 0.9 - -
v (1.0000,2.0753) - -
df (o) 5.9877 - -
B1 0.0340 0.0014(< 0.01)  0.0072(< 0.01)
B2 0.1208 0.0004(< 0.01)  0.0001(< 0.01)
CSGGN o2 0.2111 - -
v 0.6113 - -
v (5.577702, 1.000000, 19.304003) - -

10.9715
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Normal quantiles Normal quantiles

(a) Quantile-Quantile envelope for quantile resid{b) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear gamma model  uals of Additive partially linear IG model

Normal quantiles Normal quantiles

(c) Quantile-Quantile envelope for quantile resid{d) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CSN model uals of Additive partially linear CST model

b 3 5 13
Normal quantiles Normal quantiles

(e) Quantile-Quantile envelope for quantile resid{f) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CSS model uals of Additive partially linear CSCN model

b )
Normal quantiles Normal quantiles

(g9) Quantile-Quantile envelope for quantile resid{h) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CSGT model  uals of Additive partially linear CSBPN model

b 3 3 3
Normal quantiles Normal quantiles

(i) Quantile-Quantile envelope for quantile resid{j) Quantile-Quantile envelope for quantile resid-
uals of Additive partially linear CSBSN model uals of Additive partially linear CSGGN model

Figure 37 — Quantile-Quantile envelopes for fitted models to cholesterol data
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flage)

age

(a) 95% confidence bands for f(age) of Additive(b) 95% confidence bands for f(age) of Additive
partially linear CST model. partially linear CSS model.

f(age)

age

(c) 95% confidence bands for f(age) of Additive(d) 95% confidence bands for f(age) of Additive

partially linear CSCN model. partially linear CSGT model.

(e) 95% confidence bands for f(age) of Additive
partially linear CSBPN model.

Figure 38 — 95% pointwise confidence bands for f(age) of fitted models.
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Chapter 4

Conclusions

Throughout this work we developed a class of regression models based on
the scale mixtures of centred skew-normal distributions, as a natural extension of the
normal regression model and as a more properly approach than the non-centred pa-
rameterization, skewed and/or heavy tailed data. Additionally we consider cases where
we have independent and correlated response. In this sense, we propose regression
models where the response distribution is a mixture between a skew-normal distribution
and a mixing measure. We consider usual mixture distributions such as the beta, gamma
and binary as well as never used models, namely beta prime, Birnbaum-Saunders and
generalized gamma. We also propose a regression structure for the response mean
through semi-parametric linear predictors.

We developed estimation methods under the frequentist approach for inde-
pendent data using the SAEM algorithm, and for correlated data using generalized
Estimation Equations. Through simulation studies, we find that the estimates approach
the true values as the sample size increase, even though, the estimates for the shape
parameters still need to be improved.

For model fit assessment, for independent data, we develop tools for global
and local influence diagnostic analysis. We propose a residual based on the SMCSN
family of distributions and we also present AIC and BIC criteria. Generalized leverage
and Cook distance measures were obtained. In addition, local influence perturbation
schemes were developed for: case-weight perturbation, scale parameter perturbation,
skewness parameter perturbation, continuous covariate perturbation and response
variable perturbation.

On the other hand, for correlated data, we also develop tools for global
and local influence diagnostic analysis. We propose the use of quantile residuals and
present AlC and BIC criteria based on the the respective quasi-likelihood. Local influence
perturbation schemes were developed for: case-weight perturbation, scale parameter
perturbation, skewness parameter perturbation, continuous covariate perturbation,
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response variable perturbation and working correlation matrix perturbation.

Besides the advantages in terms of parameter interpretation, likelihood
behavior and maximum likelihood estimator performance, in the real data analysis it
was shown that our proposal overcomes the usual ones.

4.1 Future works

As future work we suggest the following research topics:

1. To improve the estimators for the shape parameters, proposing new estimation
method such as the method of moments.

2. To propose models for independent and correlated data considering regression
structures for the scale and skewness parameters.

3. To developed Bayesian analysis, including model fit assessment, model compari-
son and influence diagnostics, for the developed class of regression models.
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APPENDIX A

Details to obtain the Scale Mixture of
Normal distributions

A.1 Distribution 2

Has noted by Desmond (1986) the BS can be represented by Inverse Gaus-
sian Distribution (IG). Consider two random variables X; ~ IG(ur, A7) and X' ~
IG(u;t, M\u3), then the p.d.f. of U is given by

1 1
hulvr, ve) = 5 fxa (ulper, Ar) + 5 fxa (ulir, Ar),

with

As 1/2 As )
fxy (ulpr, Ar) = <2M3> €xp {—m%u(u — pr) },

and fx,(ulpr, A1) = wfx, (u|pr, Ar)/pr, where vy = A/pur /A and vy = py, that implies
\r = /v, That said, we have that the distribution 2, denoted by D2(y, o, v1,1»), and
p.d.f:
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where K, (z) is the modified Bessel function given in (1.6).
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A.2 Distribution 3
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APPENDIX B

| 2]’
Matrix form of | g, (w)| dw
X

Let b = (by,...,b.)" be a vector of know k basis functions. Consider a
function ¢ that can be approximated as a linear combination of these bases, that is,
g(t) = k"b(t), where k = (ki,..., 1) . Since g(t)® is a constant, obtaining the matrix

form of the penalty term to the non-smoothness of the curve is given by:

J @] o= | (w7 )]

X

= f k' b@ (w)b? (w)krdw
X
=K' [J b(Q)(w)b(Q)(w)dw] K
X
— k' QK,

b (w)b'? (w)dw. Considering

)

where Q is a square matrix (k x k) with elements: Q;; = J
X

the observed values (z1,...,z,), we have to: Q;; = > 0 ()b (x).
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APPENDIX C

Additive Partial Linear Model
Identifiability

Consider the additive partial linear model given by

q q
Y=XB+) fite=XB+)> Ti0;+e=XB+TO+e

Jj=1 j=1

This model may be unidentifiable, for this we need to impose a restriction
on the parameters 6. As seen in Wood (2017) and Vanegas and Paula (2016) an
appropriate constraint would be 1 f; = 1/ T30, = 0, where 1. is a n-vector of ones.

Note that this is a restriction of type C@ = 0. To use this constraint we can
apply the QR decomposition:
C"=Qx(R,0)7

where Q is an orthogonal matrix (k x k) and R is an upper triangular matrix (¢ x q),
with & =1+ k; + - - + k,. The matrix Q can be partitioned as Q = [D : Z], where Z is
a matrix k£ x (k — q).

In this way, 8 = Z0, will satisfy the constraints for any vector 6, of dimension

k — p, because:

CO=(R",0)x (D",Z"" xZ6.=(R",0) x (0,I_,)0. = 0.

That said, we obtain the QR decomposition to C and defines Z as being
the & — ¢ last columns of the orthogonal array Q. We estimate the parameters of interest
usingT = TZ and Q = Z'QZ and obtain § = Z4..
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APPENDIX D

Convergence plots

D.1 Convergence plots for ragweed pollen Centered Skew
Distribution 2 model
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Figure 40 — Convergence plots for ragweed pollen Centered Skew Birnbaum-Saunders

Normal model parameters.
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APPENDIX E

Simulation study results

E.1 Chapter 2: simulation study 1
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Figure 41 — Box-plots of the bias for Centered Skew Normal model.
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Figure 42 — Box-plots of the bias for Centered Skew-t model.
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Figure 43 — Box-plots of the bias for Centered Skew Generalized t model.
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Figure 44 — Box-plots of the bias for Centered Skew Slash model.
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Figure 48 — Box-plots of the bias for Centered Skew Generalized Gamma Normal model.
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Figure 49 — fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Normal model.
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Figure 50 — fitted curves (gray lines) and actual curves (black lines) for Centered Skew-t
model.

Figure 51 —fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Generalized t model.
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Figure 52 — fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Slash model.
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Figure 53 — fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Contamined Normal model.



APPENDIX E. Simulation study results 125

f(t)

f(t)

Figure 54 — fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Beta Prime Normal model.
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Figure 55 — fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Birnbaum-Saunders Normal model.



APPENDIX E. Simulation study results 126

Figure 56 — fitted curves (gray lines) and actual curves (black lines) for Centered Skew
Generalized Gamma Normal model.
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E.2 Chapter 3
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Figure 57 — Simulation study: estimated parameters for GEE-based CSN model with
p = 0.3 (exchangeable) by working correlation matrices.
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Figure 58 — Simulation study: relative mean square error of the parameters for GEE-
based CSN model with p = 0.3 (exchangeable) by working correlation
matrices.
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Figure 59 — Simulation study: nonparametric curves for GEE-based CSN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.3 (exchangeable)
by working correlation matrices.
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Figure 60 — Simulation study: estimated parameters for GEE-based CSN model with
p = 0.8 (exchangeable) by working correlation matrices.
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Figure 61 — Simulation study: relative mean square error of the parameters for GEE-
based CSN model with p = 0.8 (exchangeable) by working correlation
matrices.
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Figure 62 — Simulation study: nonparametric curves for GEE-based CSN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.8 (exchangeable)
by working correlation matrices.
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Figure 63 — Simulation study: estimated parameters for GEE-based CST model with
p = 0.3 (exchangeable) by working correlation matrices.
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Figure 64 — Simulation study: relative mean square error of the parameters for GEE-
based CST model with p = 0.3 (exchangeable) by working correlation
matrices.
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Figure 65 — Simulation study: nonparametric curves for GEE-based CST model for

(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.8 (exchangeable)
by working correlation matrices.
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Figure 66 — Simulation study: estimated parameters for GEE-based CST model with
p = 0.8 (exchangeable) by working correlation matrices.
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Figure 67 — Simulation study: relative mean square error of the parameters for GEE-
based CST model with p = 0.8 (exchangeable) by working correlation

matrices.
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Figure 68 — Simulation study: nonparametric curves for GEE-based CST model for
(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.8 (exchangeable)
by working correlation matrices.
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Figure 69 — Simulation study: estimated parameters for GEE-based CSS model with
p = 0.3 (exchangeable) by working correlation matrices.
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Figure 70 — Simulation study: relative mean square error of the parameters for GEE-
based CSS model with p = 0.3 (exchangeable) by working correlation

matrices.
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Figure 71 — Simulation study: nonparametric curves for GEE-based CSS model for

(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.3 (exchangeable)
by working correlation matrices.
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Figure 72 — Simulation study: estimated parameters for GEE-based CSS model with
p = 0.8 (exchangeable) by working correlation matrices.
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Figure 73 — Simulation study: relative mean square error of the parameters for GEE-
based CSS model with p = 0.8 (exchangeable) by working correlation

matrices.
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Figure 74 — Simulation study: nonparametric curves for GEE-based CSS model for

(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.8 (exchangeable)
by working correlation matrices.
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Figure 75 — Simulation study: estimated parameters for GEE-based CSCN model with
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Figure 76 — Simulation study: relative mean square error of the parameters for GEE-
0.3 (exchangeable) by working correlation
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Figure 77 — Simulation study: nonparametric curves for GEE-based CSCN model for

(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.3 (exchangeable)
by working correlation matrices.
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Figure 78 — Simulation study: estimated parameters for GEE-based CSCN model with
p = 0.8 (exchangeable) by working correlation matrices.
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Figure 79 — Simulation study: relative mean square error of the parameters for GEE-
based CSCN model with p = 0.8 (exchangeable) by working correlation

matrices.
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Figure 80 — Simulation study: nonparametric curves for GEE-based CSCN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.8 (exchangeable)
by working correlation matrices.
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Figure 81 — Simulation study: estimated parameters for GEE-based CSGT model with
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p = 0.3 (exchangeable) by working correlation matrices.
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Figure 82 — Simulation study: relative mean square error of the parameters for GEE-
based CSGT model with p = 0.3 (exchangeable) by working correlation
matrices.
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Figure 83 — Simulation study: nonparametric curves for GEE-based CSGT model for

(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.3 (exchangeable)
by working correlation matrices.
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Figure 84 — Simulation study: estimated parameters for GEE-based CSGT model with

Sample size

p = 0.8 (exchangeable) by working correlation matrices.
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Figure 85 — Simulation study: relative mean square error of the parameters for GEE-
based CSGT model with p = 0.8 (exchangeable) by working correlation
matrices.
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Figure 86 — Simulation study: nonparametric curves for GEE-based CSGT model for
(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.8 (exchangeable)
by working correlation matrices.
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Figure 88 — Simulation study: relative mean square error of the parameters for GEE-
based CSBPN model with p = 0.3 (exchangeable) by working correlation

matrices.
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Figure 89 — Simulation study: nonparametric curves for GEE-based CSBPN model for

(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.3 (exchangeable)
by working correlation matrices.
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Figure 90 — Simulation study: estimated parameters for GEE-based CSBPN model with
p = 0.8 (exchangeable) by working correlation matrices.
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Figure 91 — Simulation study: relative mean square error of the parameters for GEE-
based CSBPN model with p = 0.8 (exchangeable) by working correlation
matrices.
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Figure 92 — Simulation study: nonparametric curves for GEE-based CSBPN model for

(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.8 (exchangeable)
by working correlation matrices.
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Figure 93 — Simulation study: estimated parameters for GEE-based CSBSN model with
p = 0.3 (exchangeable) by working correlation matrices.
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Figure 94 — Simulation study: relative mean square error of the parameters for GEE-
based CSBSN model with p = 0.3 (exchangeable) by working correlation
matrices.
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Figure 95 — Simulation study: nonparametric curves for GEE-based CSBSN model for

(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.3 (exchangeable)
by working correlation matrices.
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Figure 96 — Simulation study: estimated parameters for GEE-based CSBSN model with
p = 0.8 (exchangeable) by working correlation matrices.
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Figure 97 — Simulation study: relative mean square error of the parameters for GEE-
based CSBSN model with p = 0.8 (exchangeable) by working correlation
matrices.
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Figure 98 — Simulation study: nonparametric curves for GEE-based CSBSN model for

(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.8 (exchangeable)
by working correlation matrices.
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Figure 99 — Simulation study: estimated parameters for GEE-based CSGGN model with
p = 0.3 (exchangeable) by working correlation matrices.
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Figure 100 — Simulation study: relative mean square error of the parameters for GEE-
based CSGGN model with p = 0.3 (exchangeable) by working correlation
matrices.
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Figure 101 — Simulation study: nonparametric curves for GEE-based CSGGN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.3 (exchange-
able) by working correlation matrices.
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Figure 102 — Simulation study: estimated parameters for GEE-based CSGGN model
with p = 0.8 (exchangeable) by working correlation matrices.
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Figure 103 — Simulation study: relative mean square error of the parameters for GEE-
based CSGGN model with p = 0.8 (exchangeable) by working correlation

matrices.
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Figure 104 — Simulation study: nonparametric curves for GEE-based CSGGN model for
(10,3), (10,10), (50,3) and (50,10), respectively, with p = 0.8 (exchange-
able) by working correlation matrices.
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