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Resumo

Grandes modelos de linguagem (LLMs) tém sido amplamente empregados em diversas
tarefas de processamento de texto, incluindo a geracao de contetdo, tradugao ou corregao
textual. Na visao computacional, esses modelos possuem aplicagoes na geracao de legen-
das a partir de imagens e em sistemas de perguntas e respostas visuais (VQA). Na area
de imagens médicas, embora existam estudos propondo diagnoésticos automatizados de
diferentes modalidades (raios-X, ressonancia magnética, tomografia computadorizada),
poucos trabalhos exploram o potencial dos LLMs nesse contexto. Os estudos existen-
tes frequentemente priorizam a melhora de desempenho utilizando modelos com dezenas
de bilhoes de parametros, resultando em solugoes computacionalmente custosas. Dessa
forma, este trabalho avaliou a utilizacao de LLMs pré-treinados com um ntmero rela-
tivamente menor de parametros para gerar descricoes de imagens de raio-X torécico no
contexto médico. O principal objetivo deste trabalho foi desenvolver uma arquitetura
leve adotando LLM, buscando utilizar modelos pré-treinados para reduzir custos com-
putacionais sem comprometer significativamente a qualidade dos resultados. Avaliamos
miltiplas escolhas para a arquitetura, incluindo a sele¢ao de um modelo de visao compu-
tacional ideal (U-Net vs. PSPNet) e a inicializagdo do modulo Q-Former com pesos do
dominio (BiomedBERT'). Nossos experimentos foram conduzidos utilizando métricas de
eficacia clinica (CE) - precisao, revocacao e medida F1 - e métricas de geragao de lingua-
gem natural (NLG), como BLEU e ROUGE. A analise qualitativa das amostras de texto
geradas revelou que o modelo produz descrigoes detalhadas e clinicamente relevantes, fre-
quentemente superando a brevidade dos laudos de referéncia. No entanto, alucinacoes
ocasionais - frases sem sentido ou irrelevantes - foram observadas, particularmente em
casos onde os achados nao ficam claros. Comparagoes quantitativas com métodos estado
da arte mostraram que nossa arquitetura, com apenas 347 milhoes de parametros no ge-
rador de texto, alcangou desempenho competitivo, particularmente em precisao (0,5142)
e medida F1 (0,4564), mantendo um custo computacional significativamente menor em
comparagao com modelos como XRayGPT (7 bilhoes de parametros) e Med-PaLM (540
bilhdes de pardmetros). Os resultados obtidos demonstraram o potencial dessa aborda-
gem para beneficiar médicos emergencistas e estudantes de medicina durante o processo
de analise de raios-X toracicos, potencialmente fornecendo suporte através de pré-escrita,
pré-analise e auxilio na elaboracao de laudos. O sistema proposto permite a execucao em
computadores com configuragao padrao, tornando-o acessivel para ambientes com recur-
sos limitados. A implementacao desta tecnologia pode tornar as anélises mais rapidas e
precisas, aumentando a eficiéncia desses profissionais na pratica clinica.



Abstract

Large Language Models (LLMs) have been widely employed in various text processing
tasks, including content generation, translation, and textual correction. In computer vi-
sion, these models have applications in generating captions from images and in Visual
Question-Answering (VQA) systems. However, in the field of medical imaging, while
studies exist proposing automated diagnoses for different modalities (X-rays, magnetic
resonance imaging, computed tomography), few works explore the potential of LLMs
in this context. Existing studies frequently prioritize performance improvement using
models with tens of billions of parameters, resulting in computationally expensive so-
lutions. Addressing this gap, this work evaluates the use of pre-trained LLMs with a
relatively smaller number of parameters to generate descriptions of thoracic X-ray im-
ages in the medical context. The main objective of this work was to develop a LLM-
driven lightweight architecture, prioritizing pre-trained models to reduce computational
costs without significantly compromising result quality. We evaluated multiple design
choices, including the selection of an optimal image encoder (U-Net vs. PSPNet) and
the initialization of the Q-Former module with domain-specific weights (Biomed BERT).
Our experiments were conducted using both clinical efficacy (CE) metrics—precision, re-
call, and Fl-score—and natural language generation (NLG) metrics such as BLEU and
ROUGE scores. Qualitative analysis of generated text samples revealed that the model
produces detailed and clinically relevant descriptions, often surpassing the brevity of ref-
erence reports. However, occasional hallucinations — meaningless or irrelevant phrases —
were observed, particularly in cases of subtle findings. Quantitative comparisons against
state-of-the-art methods showed that our architecture, with only 347 million parameters
in its text decoder, achieved competitive performance, particularly in precision (0.5142)
and F-Score (0.4564) while maintaining significantly lower computational demands com-
pared to models such as XRayGPT (7 billion parameters) and Med-PaLLM (540 billion
parameters). The results obtained demonstrated the potential of this approach to benefit
emergency physicians and medical students during the process of analyzing chest X-rays,
potentially providing support through pre-writing, pre-analysis, and assistance in report
preparation. The proposed system can be run on standard-configured computers, making
it accessible to environments with limited resources. Its implementation enables faster
and more accurate analyses, enhancing the efficiency of professionals in clinical practice.
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Chapter 1

Introduction

This chapter outlines the problem to be investigated, presents the main motivations of
the research topic, describes the main objectives, the expected contributions of the work,
and the research questions. Additionally, it provides an overview of the text organization
and a publication carried out during the execution of the research.

1.1 Contextualization

Chest X-rays are a fundamental diagnostic tool in healthcare, containing valuable infor-
mation that can assist healthcare professionals in diagnosing various pulmonary, cardiac,
or traumatic conditions. This imaging modality provides a snapshot of a patient’s in-
ternal chest structure, revealing critical details that can guide medical practitioners in
their decision-making processes. Currently, X-rays are the cheapest and most widely used
imaging modality. For example in Brazil, more than half of the imaging equipment in the
public health system are X-ray machines [53].

Radiologists are the primary professionals responsible for interpreting chest X-rays,
extracting the most relevant information, and transcribing their findings into textual
reports. This manual process is not only labor-intensive but is also prone to variations in
interpretation and reporting. These professionals must write their reports in a thorough
manner, as they are the primary source of information for other healthcare professionals,
commonly following a structured format to describe the findings, the impression, and the
recommendations [39).

However, emergency physicians also need to interpret chest X-rays [58|, especially in
emergency situations where a radiologist is not available. In these cases, the physician
must quickly interpret the image, find the traumas and make a decision based on the find-
ings, in order to help the patient as fast as possible. In this context, an automated system
that generates descriptive captions for chest X-ray images can be a valuable tool, pro-
viding immediate support to healthcare professionals in their decision-making processes.
Complementary, this automated system could also help them write the reports, saving
time and reducing the workload. Hence, this was the primary focus of this research.

Furthermore, in critical conditions such as pneumothorax, which can be life-
threatening if missed, may present with subtle radiographic signs that could be overlooked
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during busy emergency shifts. An Al system that systematically evaluates chest X-rays
could serve as a "second set of eyes," helping physicians identify findings they might not
have initially considered, particularly when cognitive load is high or when dealing with
cases outside their immediate area of suspicion.

Right-sided internal jugular central
venous catheter with tip approximating
the right atrium. Postsurgical changes of

Generate the mediastinum including sternotomy.

descriptions [ eft base opacities again noted, stable.

There is no evidence of pneumothorax.
Low lung volumes. Degenerative changes
thoracic spine.

Figure 1.1: The Chest X-Ray captioning task involves extracting the findings from the
X-Ray image and transcribing them to a report. Source: elaborated by this author.

In recent years, the advancements in Artificial Intelligence (AI), and specially in the
Natural Language Processing (NLP) field, have revolutionized the way humans inter-
act with machines. Large Language Models (LLMs), such as those powering ChatGPT,
Claude, DeepSeek, and other emerging tools, have demonstrated exceptional text gener-
ation capabilities. These models, trained on vast textual datasets from the internet, can
produce text with impressive syntactic and semantic quality [15, 26, 54, 72].

An impressive characteristic of LLMs is their ability to perform tasks for which they
were not specifically trained, exhibiting properties of “few-shot” or “zero-shot learning”,
as demonstrated by their performance in medical exams and potential in clinical, ed-
ucational, and research contexts [71]. Furthermore, the landscape of LLMs is rapidly
evolving towards multimodal capabilities [6], with models such as GPT-4 now accepting
multimodal input, including text and image data [71]. This advancement indicates a step
towards Al systems that can process and understand diverse data formats, exemplified
by some Large Multimodal Models (LMMs) such as Gemini models and the medically
specialized Med-Gemini family [79], developed to leverage various medical data including
imaging. The increasing proficiency in handling multiple modalities underscores the po-
tential of these advanced models to address complex challenges across various domains,
including medicine.

Despite these promising capabilities, a critical barrier to widespread adoption of Al
in healthcare settings, particularly in emergency departments and resource-constrained
environments, is the substantial computational infrastructure required to run state-of-the-
art LLMs. Several studies have harnessed the developments in AI and NLP to automate
and streamline the process of transforming visual information from chest X-rays into
informative textual descriptions. Many of them rely on small language models [9, 10],
which are not well-suited for effective text generation.

Models such as BERT [20] (with only 110 million parameters in its largest variant) were
designed primarily for understanding rather than generating text, lacking the capacity for
complex, coherent text generation that larger models possess. In contrast, modern LLMs
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such as GPT-3 [8] (with 175 billion parameters, roughly 1,600 times larger than BERT)
excel at generating fluent, contextually appropriate text. Furthermore, to increase the
general capacity of these models, researchers are continually expanding their parameter
count, further intensifying computational requirements and widening the accessibility gap
for clinical implementation [6].

Few initiatives seek to apply and harness the potential of LLMs in medical text gen-
eration, and those that do use computationally expensive models with tens of billions
of parameters, demanding significant computational resources, energy consumption, and
specialized hardware that may be inaccessible to many healthcare facilities [62]. This
accessibility gap is particularly problematic in emergency medicine, where rapid analy-
sis and decision-making are essential [1], and in developing regions where technological
infrastructure is limited due to underfinancing, as in Brazil, for example [53].

Therefore, this research work aims to evaluate the use of more accessible LLMs with
fewer parameters for generating medical descriptions from chest X-ray images, with a focus
on the emergency scenario. This focus is particularly relevant because all currently avail-
able datasets originate from emergency departments. The study builds on the training
approach outlined in the BLIP-2 work [46], which uses a single module to align image fea-
tures extracted by a vision encoder (a Convolutional Neural Network) with the input text
features of the LLM. This single-module approach is computationally efficient, reducing
training costs. Smaller, more efficient models that maintain adequate performance while
requiring fewer resources represent a promising direction for practical implementation in
clinical settings.

The results of this research have the potential to benefit emergency physicians and
students during the X-ray analysis process and training, enabling automatic preliminary
diagnoses that can serve as additional support, or as a writing assistant for the reports.
Furthermore, this research was refined with the guidance of a medical professional re-
searcher with extensive experience in emergency departments in Brazil.

1.2 Problem Definition

In emergency departments, where quick decisions are crucial, physicians must frequently
interpret chest X-ray images to make immediate clinical decisions, often without readily
available radiologist support. This task requires careful analysis and precise documen-
tation, following a series of cognitive steps: observing the image features, identifying
potential abnormalities, mentally organizing the findings, and finally documenting them
in a structured report. This process is not only time-consuming but also challenging in
high-pressure emergency settings where physicians must manage multiple patients simul-
taneously.

The development of an automated system to assist emergency physicians in this process
must mirror these cognitive steps:

1. Chest X-ray Visual Feature Extraction: Initially, it extracts crucial image
features, mirroring the physician’s visual analysis. A computer vision model, also
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called vision encoder, is employed for systematically identifying relevant patterns
and structures in the image.

2. Feature Transformation and Alignment: These extracted visual features must
be transformed and aligned into a format that bridges the gap between image pat-
terns and medical terminology. This step parallels how physicians mentally connect
visual findings to their clinical descriptions.

3. Text Generation: Finally, an NLP model processes these aligned features to gen-
erate descriptive reports, similar to how physicians formulate their findings into
structured documentation. This text aims to serve as an initial draft or supportive
reference for the physician’s final report.

Recent approaches to this problem have explored various technical solutions, ranging
from simple neural networks to sophisticated LLMs. While LLM-based systems have
shown promising results in generating detailed and coherent medical reports, they often
require substantial computational resources due to their billions of parameters. This
resource intensity creates a practical barrier to deployment in many healthcare settings,
particularly in emergency departments where computing infrastructure may be limited.

Our research addresses this challenge by developing a lightweight chest X-ray descrip-
tion system that leverages smaller, more efficient LLMs while maintaining report quality.
The goal is to create a practical tool that can be readily deployed in emergency settings,
providing immediate support for physicians in their X-ray interpretation and documen-
tation tasks. This system aims to enhance workflow efficiency while remaining accessible
to healthcare facilities regardless of their computational resources.

1.3 Challenges

The development of an automated system for chest X-ray captioning, particularly one
that leverages smaller LLMs, involves significant challenges that need to be addressed:

e Model Architecture and Efficiency The right balance between model perfor-
mance and computational efficiency must be found. While LLMs with billions of
parameters may deliver excellent results, they are often impractical in resource-
limited environments. The challenge lies in developing an architecture that can
generate high-quality reports using smaller, more efficient models without signifi-
cantly compromising accuracy or clinical utility.

¢ Quality Assessment Evaluating the quality of generated reports presents a unique
challenge, as it requires metrics that align with clinical needs. Traditional natural
language metrics may not adequately capture medical accuracy or clinical relevance.
This requires:

— Development of evaluation methods that reflect clinical utility

— Metrics that can assess both linguistic quality and medical accuracy
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— Methods to compare performance with larger, more resource-intensive models

e Clinical Accuracy Maintaining high clinical accuracy while using smaller models
presents several challenges:

— Processing multiple X-ray views effectively
— Capturing subtle radiological findings
— Maintaining consistency in medical terminology

— Balancing between completeness and conciseness in reports

e Practical Implementation While our research focuses on developing a lightweight
system, ensuring its practical deployment presents additional challenges:

— Validating performance on diverse hardware configurations
— Maintaining rapid inference times for emergency use

— Possible integration with existing healthcare workflows and systems

Addressing these challenges is fundamental to the success of our research project. The
first two challenges — model architecture and quality assessment — are primary focuses
of this work. The clinical accuracy and practical implementation challenges represent
important considerations that guided our design decisions and evaluation methods.

1.4 Objectives

The primary objective of our work is to design a lightweight, efficient, and accessible
system for chest X-ray description that leverages smaller LLMs. This system aims to
automate the generation of accurate descriptions for chest X-ray images, assisting the
work of healthcare professionals and enhancing the interpretability and utility of medical
imaging data.

By addressing the challenges of model efficiency, evaluation metrics, and practical
implementation on standard computers, our research aims to democratize access to ad-
vanced chest X-ray analysis, promoting efficiency, accuracy, and widespread usability in
healthcare settings, regardless of the computational resources available.

To reach our primary objective, some specific goals were established:

e Investigate viability of smaller in-domain pretrained LLMs — pretrained on medical
text — on text generation.

e Propose and implement an architecture for chest X-ray captioning using lightweight
models in both vision encoder and text decoder stages.

e Compare the proposed architecture with other available approaches.

e Evaluate the results using standard metrics, as well as obtain feedbacks from health-
care professionals.
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1.5 Contributions

The primary contribution of this research is the study, design, and implementation of
a lightweight LLM-driven chest X-ray description system that is not resource intensive,
i.e., has fewer parameters than other techniques, in order to facilitate the application
of such technology in less powerful computers. Moreover, we discuss the current most
adopted metrics for medical generated text, examining whether they are a good proxy
for the quality of the system or not. Beyond these technical findings, we aspire to foster
discussions on accessible medical captioning systems in the research community.

1.6 Research Questions

The central research questions guiding this investigation are as follows:
Viability of Smaller, In-Domain Pre-Trained LLMs

e Can smaller in-domain pre-trained LLMs effectively generate well-written captions
for chest X-ray images?

e Do these smaller LLMs demonstrate the linguistic proficiency and semantic quality
required for generating coherent and informative descriptions?

Caption Accuracy

e Are smaller, in-domain pre-trained LLMs capable of generating accurate captions
for chest X-ray images?

e To what extent can these models consistently capture the diagnostic content of the
images in their descriptions?

Evaluation Metrics

e Are the standard commonly-used metrics for text generation capable to capture the
quality of chest X-ray descriptions?

e How well do they correlate with radiologists’ assessments of report accuracy?

To answer these questions, a literature review is conducted concerning the use of deep
learning techniques for chest X-ray description generation. Subsequently, relevant models
are studied and evaluated to address the proposed research questions.

In general, we expect that the results of this research can help advance the study of
methods for chest X-ray description generation, contributing to advances in the field of
machine learning and assisting healthcare professionals in daily practice.

1.7 Publication

The following scientific paper was derived from this research work:

e T.V. Vargas, H. Pedrini, A. Santanche. LLM-Driven Chest X-Ray Report Genera-
tion with a Modular, Reduced-Size Architecture. Brazilian Conference on Intelligent
Systems (BRACIS), Belém-PA, Brazil, pp. 199-211, November 17-21, 2024.
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1.8 Text Organization

This document is organized as follows. Chapter 1 introduces the problem, describing the
challenges, objectives and research questions that will guide our research. Chapter 2 de-
scribes some fundamental concepts and related work within the context of this research.
Chapter 3 details the methodology, including the experimental setup, the base deep learn-
ing architecture, the datasets used for training, and the evaluation metrics. Chapter 4
presents the obtained results along with a detailed discussion. Finally, Chapter 5 con-
cludes the work by revisiting the proposed approach, summarizing the key findings, and
highlighting potential directions for future research.
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Chapter 2

Literature Review and Concepts

This chapter describes some relevant concepts and approaches related to the topics inves-
tigated in this work.

2.1 Fundamental Concepts

This section aims to elucidate important concepts that enhance the understanding of
this project. These concepts serve as building blocks for comprehending the subsequent
discussions about the related work.

2.1.1 Medical Imaging and Chest X-Rays

Medical imaging encompasses a range of non-invasive techniques for visualizing internal
anatomy without opening up the body [37]. The modalities include X-ray radiography,
computed tomography (CT), magnetic resonance imaging (MRI), ultrasonography, and
more. In the emergency department, radiographs serve as the first-line imaging tool that
can quickly reveal life-threatening conditions such as tension pneumothorax, allowing
medical teams to make rapid diagnostic decisions and begin appropriate interventions
when needed [1].

X-ray imaging, discovered by Wilhelm Rontgen in 1895, operates by passing high-
energy electromagnetic radiation through the body [37]. Tissues of varying densities
absorb radiation differently: dense structures such as bones appear white, while air-filled
spaces such as lungs appear dark [38]. More specifically, chest X-ray is the most commonly
performed imaging test, specially in emergency settings, given its widespread availability,
low cost and ability to be conducted at the patient’s bedside. It offers valuable insights
into lung parenchyma and associated pathologies, as well as cardiovascular and pleural
abnormalities [32].

A chest X-ray can be obtained in multiple positions depending on the clinical hypoth-
esis. The most common projections include Posterior-Anterior (PA), where the X-ray
beam passes from back to front with the patient facing the detector; Anterior-Posterior
(AP), where the beam travels from front to back, typically used for bedside examinations
in critically ill patients; and lateral views, which are valuable for localizing lesions and
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evaluating structures that may be obscured in frontal projections [38|. Figure 2.1 depicts
the possible positions for a chest X-ray.

Direction of

X-Ray beam Image Detector

(A) —Tp
AP

(Anterior-Posterior)

(B) e

PA
(Posterior-Anterior)

(C) e

Lateral

Figure 2.1: Chest X-ray imaging positions. (A) Anterior-Posterior (AP), (B) Posterior-
Anterior (PA), and (C) Lateral projections, illustrating beam direction (black arrow) and
image detector (gray rectangle). Each example demonstrates the resulting radiographic
appearances. AP and PA views differ in beam trajectory (AP: beam enters anteriorly,
exits posteriorly; PA: beam enters posteriorly, exits anteriorly), while the lateral view
provides a side perspective. Source: adapted from [38].

Chest radiographs represent one of the most frequently requested examinations in ra-
diology departments, generating substantial datasets that facilitate the development of
artificial intelligence (AI) algorithms to enhance healthcare imaging analysis. Several key
applications have emerged where chest X-ray Al algorithms demonstrate particular util-
ity: (a) patient triage optimization, where Al systems analyze images to prioritize cases
requiring urgent attention; (b) automated pneumothorax detection, enabling rapid iden-
tification of this potentially life-threatening condition characterized by air accumulation
in the pleural cavity; and (¢) COVID-19 diagnosis, where AT has shown promise in assist-
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ing radiologists to differentiate positive cases [32]. These applications share a common
foundation: the AI algorithm must effectively process chest X-ray images to perform the
intended task.

2.1.2 Vision Encoder

A Vision Encoder, also referred to as an Image Encoder in this work, is a computa-
tional component capable of transforming an image into a latent vector representation
in a different dimensional space, as illustrated in Figure 2.2. It performs the mathe-
matical operations necessary to convert a multi-dimensional image into a compact vector
representation that can be processed by machine learning architectures, conceptually sim-
ilar to how the human visual system converts visual stimuli into neural signals for brain
processing.

Inputs Vision Encoder Representations

Figure 2.2: Illustration of a vision encoder’s feature extraction process. The diagram
shows three chest X-ray images being transformed into corresponding representation vec-
tors. Source: elaborated by this author.

For similar X-rays, the vision encoder must produce feature vectors with similar color
patterns, indicating the encoder’s ability to map visual similarities to proximity in the
feature space. Each vector may encode anatomical structures and potential abnormalities
present in the respective X-ray, creating a valuable mathematical representation.

This transformation is crucial for extracting the most relevant features from the image,
enabling further processing for computer vision tasks, such as classifying or detecting
objects, and furthermore, enabling other domains applications, such as image caption
generation, or, in our case, chest X-ray description generation. The extracted features
must capture essential information about the image content while discarding redundant
or irrelevant details [5].

Currently, neural networks, particularly Convolutional Neural Networks (CNNs), are
the most common type of vision encoders in the literature. CNNs perform a sequence
of matrix transformations in the input image to extract latent feature vectors, which
are then used to solve specific tasks such as image classification, object detection, and
semantic segmentation [43]. The hierarchical structure of CNNs allows them to capture
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both low-level and high-level features, making them effective at representing complex
visual patterns.

The compressed latent features extracted by the vision encoder can be integrated
into more complex architectures, such as those used in multimodal contexts 28], that is,
architectures where the input lies in a vision domain (e.g., X-rays) and the output lies in
the text domain (e.g., X-ray description). In a typical setup, the latent features serve as
input to a language model, which generates text based on the visual information provided
by the encoder. This integration of vision and language modalities has been the focus
of numerous research efforts, including image captioning, visual question answering, and
cross-modal retrieval [3, 47].

As vision encoders continue to evolve, there is a growing interest in developing
lightweight and efficient models that can be deployed on resource-constrained devices,
which is particularly relevant for medical imaging applications in clinical settings with
limited computational resources. Techniques such as model compression, quantization,
and knowledge distillation are being explored to reduce the computational requirements
of vision encoders while maintaining their diagnostic performance [11].

In the context of this work, the vision encoder plays a vital role in extracting meaning-
ful representations from chest X-ray images. These representations serve as the founda-
tion for generating accurate and clinically relevant captions. We aim to capture the most
informative features from the images, further enabling the language model to generate
descriptions that accurately reflect the visual content.

2.1.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialized type of neural network designed
for image processing. They use convolutional layers to automatically learn and detect
features from the images and have been highly successful in a wide range of applications
in computer vision such as image recognition, object detection, and other vision tasks.

As illustrated in Figure 2.3, CNNs are composed of multiple layers, and the core
of a CNN is the convolutional layer. This layer is responsible for scanning the input
image with small filters (also called kernels) to detect patterns or features, such as edges,
corners, and textures. The result of this operation is called a feature map. Furthermore,
non-linear functions, such as ReLU (Rectified Linear Unit), are applied to the outputs
of the convolutional layers and fully connected layers, introducing non-linearity into the
network, allowing it to learn complex relationships in the data.

After each convolution layer, there are typically pooling layers responsible for reducing
the spatial dimensions of the feature maps, which helps to reduce the computational load
and makes the network more robust to variations in the position of the features.

Towards the end of the network, the feature maps begin to contain more and more
abstract and latent features, i.e., compressed information. Generally, at the very end of
the network, fully connected layers are used to make predictions based on the learned
features. These layers learn how to map the extracted features to the desired output,
such as class labels for image classification tasks, for example.

The training process of a CNN involves adjusting the weights of its layers to minimize
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Figure 2.3: Example of a Convolutional Neural Network on a classification task context.
The figure depicts the convolutional layers (also called kernels), the sequential features
maps extracted from the input image, and a fully connected layer with outputs the pre-
dictions. Source: elaborated by this author.

the difference between its output predictions and ground truth. Through this process, the
network gradually learns to recognize simple, abstract and complex features in images,
such as shapes, textures, colors, and objects.

In the literature, several landmark CNN architectures have made significant contribu-
tions to the field of computer vision:

e LeNet (1998) [42] was one of the first successful CNNs, used for handwritten digit
recognition.

e AlexNet (2012) [41] was a breakthrough model that significantly outperformed tra-
ditional computer vision techniques on the ImageNet challenge. It had a deeper
architecture compared to previous models.

e VGGNet (2014) [65] further increased the depth of CNNs, showing that network
depth is a critical component for good performance.

e GoogLeNet (2014) [68| introduced the Inception module, which performs convolu-
tions with multiple filter sizes in parallel and concatenates the results, allowing the
network to capture details at various scales.

e ResNet (2015) [29] introduced residual connections, allowing training of extremely
deep networks (hundreds of layers) without suffering from vanishing gradients. This
enabled even higher performance on various benchmarks.

These architectures form the foundation of modern CNNs and many state-of-the-
art models used today build upon these ideas. One of the primary uses of CNNs is as
image features extractor, working as a bridge between image domain and other domains.
These extracted features can be applied in diverse scenarios, ranging from tasks such as
autonomous driving to image captioning.

In our work, we leverage pretrained CNNs as feature extractors in our vision encoder.
By using models pretrained on large datasets such as ImageNet or even domain-specific
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medical imaging datasets, we can benefit from their learned feature hierarchies without
having to train from scratch. The CNN takes the chest X-ray as input and outputs a
compact feature representation that captures the salient information. This feature vector
is then passed to the next stages of our captioning pipeline, namely the alignment module
and language model, for further processing to generate the textual description. Employing
powerful CNN feature extractors allows our model to build upon state-of-the-art computer
vision techniques and focus on the captioning task.

2.1.4 Transformers

The Transformer architecture [74] is a deep learning model designed for sequence-to-
sequence tasks, i.e., tasks where the input is a sequence of data (such as a sentence
or a time series) and the output is also a sequence (such as a translated sentence or a
predicted series). Its core innovation lies in the self-attention mechanism that allows each
element in a sequence to focus on other elements. This enables the model to capture
complex dependencies, even among distant elements, making it exceptionally well-suited
for a wide range of tasks.

At the heart of the Transformer is the self-attention mechanism. In self-attention,
each element in the input sequence computes attention scores with respect to all other
elements. These scores determine how much each element should be addressed or focused
on every other element. This is achieved through a compatibility function that computes
the dot product between linearly projected versions of the elements. The attention scores
are then normalized using a softmax function, ensuring they sum to one, and used to
compute weighted averages of the value projections of the elements. This allows each
element to incorporate information from the entire sequence, weighted by relevance.

Multi-head attention extends this idea by performing multiple self-attention operations
in parallel, each with different linear projections. This allows the model to jointly attend
to information from different representation subspaces, enhancing its expressiveness.

The Transformer architecture typically consists of an encoder and a decoder, each
being a stack of self-attention and feed-forward layers. The encoder processes the input
sequence and generates a contextualized representation for each element. The decoder
then takes these representations, along with the output sequence generated so far, to
predict the next element in an autoregressive manner. Positional encodings are added to
the input embeddings to inject information about the relative or absolute position of the
elements in the sequence.

The initial breakthrough of the Transformer architecture occurred in natural language
processing (NLP). It has since become the foundation for various NLP applications, in-
cluding machine translation, text generation, question-answering, and text classification.
Pre-trained models such as BERT [20] and GPT-3 [8], have redefined the state of the
art (SOTA) in NLP. These models are often fine-tuned for specific tasks, making them
versatile and powerful tools for a wide array of NLP challenges.

In recent years, transformer-based architectures have emerged as state-of-the-art
(SOTA) models for various computer vision tasks [27]. Vision transformers, such as the Vi-
sion Transformer (ViT) [21] and the Swin Transformer [48], have demonstrated remarkable
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performance in image classification, object detection, and semantic segmentation. The
Transformer |74 architecture revolutionized the way visual information is processed by
shifting from convolutional operations to the introduced self-attention mechanism. The
self-attention mechanism enables models to weight the importance of input features re-
gardless of spatial distance, allowing for global feature relationships that were difficult to
capture with traditional convolutional approaches. Furthermore, this mechanism allows
for more efficient computation and scalability to large-scale datasets [21].

The Vision Transformer (ViT) framework, shown in Figure 2.4, considers an image as a
grid of patches, each functioning as an 'image-word’ token. The self-attention mechanism
is applied to these patches, allowing the model to capture intricate relationships between
different parts of an image. This adaptability has led to remarkable success in image
classification and object detection tasks.
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Beyond the initial Transformer model, numerous variants and extensions have been
proposed. For example, the Bidirectional Encoder Representations from Transformers
(BERT) model introduced a masked language modeling pretraining objective, allowing
the model to incorporate bidirectional context. The Generative Pre-trained Transformer
(GPT) models focused on language generation and demonstrated remarkable few-shot
learning capabilities. In the vision domain, the Swin Transformer introduced a hierarchical
architecture with shifted windows for more efficient image processing.

In our work, we explore the use of Transformers in both alignment and language model
components of our chest X-ray captioning pipeline. For the alignment component, the Q-
Former module uses cross-attention to determine which visual features are most relevant
for each word in the caption. This allows the model to ground the generated text in the
visual content of the image.

For the language model, we leverage pretrained Transformer-based models such as
GPT. These models, trained in vast amounts of text data, have the ability to generate
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coherent and fluent descriptions. By conditioning the language model on the features ex-
tracted by the vision encoder, we aim to generate clinically accurate and relevant captions
for the chest X-rays.

Overall, the Transformer architecture and its attention mechanisms have revolution-
ized both natural language processing and computer vision. By leveraging their power
in our chest X-ray captioning model, we aim to capture complex dependencies within
and between the visual and textual modalities, enabling the generation of high-quality,
clinically relevant captions.

2.1.5 Large Language Models

Large Language Models (LLMs), are a class of deep learning models designed for pro-
cessing and generating human language text. They have gained immense prominence
due to their ability to understand and generate natural language text with remarkable
fluency and context-awareness. LLMs are being used mainly for chatbots as ChatGPT,
Claude [15] and DeepSeek [26].

The key innovation within LLMs is their massive scale, characterized by a substantial
number of model parameters. For instance, models such as GPT-3 8|, or PaLM [14],
consist of hundreds of billions of parameters, enabling them to capture intricate linguistic
patterns.

These models are pre-trained on large text corpora, such as books, articles, and web-
sites. During this phase, they learn to predict the next word in a sentence. Subsequently,
LLMs are fine-tuned on specific tasks or domains, allowing them to excel in a wide range
of applications.

LLMs possess both generative and discriminative capabilities. They can generate
human-like text, making them suitable for tasks such as text generation, dialogue systems,
and creative writing.

A remarkable feature of LLMs is their ability to perform zero-shot and few-shot learn-
ing [8, 40]. This means they can make predictions or generate text on tasks they were not
explicitly trained on, given a few examples as context. This adaptability broadens their
utility across various domains. LLMs have transformed numerous domains, from natural
language understanding and generation to code generation, summarization, translation,
and more.

In our work, we explore the integration of LLMs into our chest X-ray captioning
pipeline. Specifically, we investigate the use of BioGPT, a domain-specific LLM pretrained
on biomedical text. By leveraging the knowledge captured in BioGPT, we aim to generate
clinically relevant and accurate captions for chest X-rays.

The LLM serves as the language model component of our pipeline, taking the visual
features extracted by the vision encoder as input and generating a textual description of
the chest X-ray. The attention mechanism in the LLM allows it to dynamically focus on
different parts of the visual representation as it generates each word in the caption.

However, the integration of LLMs also presents challenges. The computational cost
of running LLMs, especially during inference, can be high. To mitigate this, we explore
techniques for efficient inference, such as using smaller LLMs (for instance, BioGPT) and
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optimizing the pipeline for faster execution. Additionally, ensuring the c

and relevance of the generated captions is crucial. We address this by

!
domain-specific pretraining and fine-tuning, as well as leveraging insightls

experts during the development and evaluation phases.

2.1.6 Pretraining and Transfer Learning
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Figure 2.5: Example of pretraining and transfer learning. Initially, the model is pre-
trained on a large medical corpora to learn general medical language representations.
Subsequently, transfer learning is applied, where the model is fine-tuned on a smaller,
domain-specific dataset of X-ray reports to optimize performance for the target task.

Source: elaborated by this author.

During pretraining, the model is typically trained on unsupervised or
tasks.

self-supervised

In the case of language models, common pretraining tasks include next word

prediction (predicting the next word given a sequence of words) and masked language

modeling (predicting missing words in a sentence) [20]. These tasks encourage the model

'https://pubmed.ncbi.nlm.nih.gov
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to learn robust representations of the language that can be used for various downstream
tasks.

Similarly, in computer vision, models can be pretrained on large-scale image datasets
such as ImageNet [19]. Pretraining tasks for vision models often involve classification,
where the model learns to predict the object categories present in the images. By training
on a diverse set of images, the model learns to extract meaningful visual features and
patterns that can be generalized to other vision tasks [29].

Once a model has been pretrained, it can be fine-tuned for specific tasks (for instance,
write X-ray reports) through transfer learning. Transfer learning involves taking a pre-
trained model and adapting it to a new task or domain by leveraging the knowledge it
has already acquired [61]. Instead of training a model from scratch, which can be time-
consuming and require large amounts of labeled data, transfer learning allows us to build
upon the existing knowledge and refine it for the specific task at hand.

In transfer learning, the pretrained model’s architecture might be modified by replacing
or adding task-specific layers. For example, in the case of fine-tuning a pretrained language
model for a text classification task, the final output layer is replaced with a new layer that
corresponds to the number of classes in the classification problem [30]. The pretrained
weights of the model are used as initialization, and the model is further trained on the
task-specific dataset.

Transfer learning offers several advantages. Firstly, it reduces the need for large
amounts of labeled data for the target task. Since the pretrained model has already
learned meaningful representations, it can generalize well to the new task with limited
training data. This is particularly beneficial in domains where labeled data is scarce or
expensive to obtain, such as in medical imaging. Secondly, transfer learning speeds up
the training process and reduces computational requirements by starting from informative
pretrained weights rather than random initializations. Thirdly, it can lead to improved
performance on the target task by capturing more robust and generalizable features.

In our work, we leverage these benefits by using pretrained models for both the vi-
sion encoder and language model components while keeping their weights frozen during
training. For the vision encoder, we explore two architectures: U-Net pretrained in a
chest X-ray segmentation dataset [63] and PSPNet pretrained in a different set [16]. We
specifically chose models pretrained in segmentation tasks because they develop a deep un-
derstanding of spatial and structural information in medical images, including the ability
to delineate different anatomical regions.

For the language component, we employ BioGPT, which has been pretrained on a
large corpus of biomedical text [50], enabling it to understand medical terminology, ab-
breviations, and common phrases used in clinical reports. By combining these specialized
pretrained models, our approach can effectively integrate visual and textual information
to generate informative chest X-ray reports without requiring extensive labeled training
data. It is important to note that this approach’s effectiveness depends on the similarity
between the pretraining tasks and our target task. In our case, the close relationship
between chest X-ray segmentation and report generation provides a strong foundation for
transfer learning.

In conclusion, pretraining and transfer learning are powerful techniques that enable
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the development of more efficient and effective Al models. By leveraging knowledge from
large-scale datasets and adapting it to specific tasks, these techniques have revolutionized
the field of deep learning and opened up new possibilities for solving complex problems
with limited labeled data. In our work, we mainly harness the power of pretrained models
to create a model capable of generating meaningful and clinically relevant chest X-ray
reports.

2.2 Related Work

Our research focused on developing a chest X-ray captioning model that incorporates
LLMs while emphasizing a lightweight architecture. Therefore, this literature review
focuses on three key areas: Image Captioning, Medical Captioning, and Large Language
Models. In the following sections, we will explore these areas to gain insights into the
state-of-the-art techniques and advancements.

We start by examining the landscape of Image Captioning, mainly focusing on different
approaches and architectures designed to solve the task. Next, we make a comprehensive
exploration of Medical Captioning, where we focus on finding specific techniques utilized
in the medical domain that may help us better grasp the problem, find benchmarks and
understand the most used metrics. Lastly, we investigate the Large Language Models,
trying to identify the state-of-the-art models, the number of parameters and hardware
needed to train, as well as to identify LLMs already pretrained in the medical domain.

2.2.1 Image Captioning

The image captioning task targets the automatic generation of description of natural
images. In the literature, we find many methods designed to achieve this goal [46, 47, 59,
75, 81, 82|. These works vary based on: their selection of vision encoder, language model,
and their approach to cross-domain alignment, which involves aligning features between
the image and text domains.

Vinyals et al. [75] and Rennie et al. [59] used CNN models to extract the features
from images and Long Short-Term Memory (LSTM) network to regressively generate the
desired text. The CNN features provide a simple and compact representation of an image,
but they can hinder further fine-grained description due to this compression. The LSTM
network, due to its sequential nature, can be very slow to output the text.

Zhou et al. [81] and Li et al. [47] leveraged the potential of the Transformer [74] along
region image features extracted by Fast-RCNN [22], an widely used CNN for feature ex-
traction. Zhou et al. [81], for example, used a shared multi-layer Transformer responsible
for both vision encoding and text decoding steps, hence this unique module is responsible
for aligning the image features and generating the caption.

Very recent works [46, 82| take advantage of the few shot potential of LLMs [8]. Zhu
et al. [82] introduced MiniGPT-4, which combines a Vision Transformer image encoder
with an open-source LLM based on Llama [72|, aligning both image and text domain
using solely a single projection layer. The authors named it MiniGPT-4 due to its similar
capability in description generation compared to GPT-4.
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Li et al. [46] presented the BLIP-2 training framework, which introduces a BERT-based
alignment module called Q-Former — Querying Transformer — responsible for aligning
the features between a pre-trained vision encoder and a pre-trained text decoder. The
Q-Former is called “querying” because it is designed around the concept of learnable
query embeddings (Learned Queries) that actively extract relevant information from image
features. A key aspect of its training involves splitting the process into two different
stages. In their work, both Image Encoder and Text Decoder models are frozen, i.e.,
have their parameters fixed, and the Q-Former is the only module requiring training.
Hence, this architecture allows adapting and pluging any vision encoder or text decoder
into the pipeline, as only the alignment module requires training. As the Q-Former is a
BERT-based model, it is able to process both image extracted features or caption text
embeddings due to the different attention layers composition: the cross-attention layers,
used to insert image features; and the self-attention layers, used to insert the ground-truth
caption embeddings, as can be observed in the processing paths in Figure 2.6.

Image-Text Image-Text Image-Grounded
Optimization Methods
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Q-Former ! !
/ i i L
1 1
Feed Forward
[ 4 1
1 1
_, Vision L ( 1 ) i (2 )
Encoder 1
a 1
Lo 1 i
1 1
Learned Queries ? ? Input Text
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Figure 2.6: BLIP-2 first training stage - Representation Learning: optimizes Q-Former
using three different optimization functions allowing the module to learn how to align
features from image and text domain. Within the Q-Former architecture, data processing
has 2 flows: (1) input image features path, and (2) the actual report. Each processing
path will generate a feature vector in the feed forward layer output that can be used to
compute the optimization methods. Source: adapted from [46].

The proposed training procedure is broken down into two stages:

1. Representation Learning - leveraging a frozen pre-trained Vision Encoder to extract
features from the images, the Q-Former outputs are optimized using three different
methods, as illustrated on Figure 2.6. Note that the same module is adopted for two
different purposes: (1) process image features and Learned Queries; and (2) process
the related text. The applied optimization methods are:
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(a) Image-Text Contrastive Learning: the images and their corresponding text
descriptions are processed in parallel, creating feature vectors that represent
each modality (vision and text) in a shared embedding space. A contrastive loss
function is then applied, which pulls related image-text pairs closer together
while pushing unrelated pairs farther apart in this embedding space. This
approach is intended to align visual and textual information in a common
dimensional representation, enabling the model to understand relationships
between images and language, and supporting multimodal applications.

(b) Image-Text Matching: it is a binary classification task to determine whether
an image-text pair represents a match (positive) or a non-match (negative).
Data batches are dynamically augmented to create negative pairs alongside the
genuine positive pairs. This process guides the Q-Former to develop effective
representations that link related visual and textual information.

(¢) Image-grounded Text Generation: a BERT Language Model Head is attached
to Q-Former in order to generate captions based on the input image features.
A loss is computed between the generated text and the actual ground-truth
caption. This process encourages the model to identify and focus on the most
salient visual features that contribute to accurate and relevant caption gener-
ation.

2. Generative Learning: the prior trained Q-Former is attached to a frozen pre-trained
LLM using a fully connected layer, then the whole pipeline (Figure 2.7) is trained
optimizing the outputs of the LLM decoder. The fully connected layer projects the
Q-Former outputs to the LLM text embedding dimension. The idea is that these
projected features will serve as soft prompts to the LLM, conditioning and guiding
the caption generation process.

Generated Text
EOODE .
r'y
S
g Fully &
VD Q-Former Y LLM Decoder
Encoder Connected

H
EOORD--O |—; OECOCD - B

Learned Queries

Figure 2.7: BLIP-2 second training stage - Generative Learning: optimizes Q-former and
fully connected layer using the output of the LLM decoder. In this training step, the
Q-Former will only process the input image features and further provide a feature vector
that the LLM will use as if it was a prompt. Source: adapted from [46].

The aforementioned works have succeeded in the task of generating captions for images,
however, the most recent ones adopting LLMs as text decoders, were not concerned about
using lightweight models in their architecture. They have used models with billions of
parameters (65 billion for MiniGPT; starting from 2.7 billion for BLIP-2) on both vision
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encoder and text decoder. These models, particularly the 65-billion-parameter one, are
not suitable for deployment on standard hardware due to their resource-intensive nature.

2.2.2 Medical Captioning

Medical captioning involves the automatic generation of descriptive and informative cap-
tions for medical images, such as X-rays, MRI scans, CT scans, and more. The goal
is to provide accurate textual descriptions that convey relevant medical information,
possibly helping medical professionals make faster and more accurate diagnoses, fa-
cilitating research and training, and ultimately improving patient care. Considerable
progress has been made in this field, with numerous proposed architectures and ap-
proaches [9, 10, 17, 24, 45, 70, 77, 78].

Early research in chest X-ray captioning, including several derivative works, primarily
utilized CNNs as vision encoders and Transformers as text decoders [9, 10, 24].

Chen et al. [9] introduced the use of the novel relational memory (RM) and memory-
driven conditional layer normalization (MCLN) modules alongside the Transformer to
enhance caption its generation power, addressing the challenge of maintaining contex-
tual coherence across long report sequences. Building on this framework, Chen et al.
[10] focused on the alignment between image and text domains, proposing a cross-modal
memory network (CMN) to facilitate the interactions across these modalities. This ap-
proach barely increased the overall performance of their previous network. Furthermore,
once again, these works were using Transformers as the text generator, a language model
generally applied to text analysis and not text generation, as explained in Subsection 2.1.4.

Another work [24], based on the approach developed by Chen et al. [10], integrates
pixel-level organ masks (e.g., bones, lungs, heart, mediastinum) extracted via the pre-
trained CXAS segmentation model to enhance disease-specific region attention. The
proposed Complex Organ Mask Guided (COMG) framework leverages these anatomi-
cal priors to align visual features with textual reports, addressing the common limitation
of generic descriptions in radiology report generation by focusing on clinically relevant
regions.

On the other hand, a more recent study |77] shifted from CNNs to Vision Transformer
(ViT) as image encoders, introducing Expert Tokens designed to interact with the ex-
tracted images patches. This allowed each token to focus on different image regions for
image representations and, therefore, process each patch independently to generate the
output.

Recent research has pivoted toward LLMs for medical caption generation [17, 45, 70,
78], seeking to leverage their powerful text generation capabilities. These approaches can
be categorized based on their architectural choices and training methodologies: general
purpose LLMs with fine-tuning and specialized architectures.

In the general purpose LLMs with fine-tuning category, Yang et al. [78] adapted
the BLIP-2 architecture with a large vision encoder (EVA-ViT-g) and LLM decoder
(ChatGLM-6B), fine-tuning the Q-Former and LLM components for the ImageClef task.
While they achieved competitive rankings, their evaluation lacked comprehensive compar-
ison with established benchmarks, and the computational requirements of their approach
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limit its accessibility for broader research and clinical applications, due to adopted models
sizes. Their reliance on a general-purpose LLM, which was previously trained in Chinese
and English, also raises questions about the model’s ability to accurately capture medical
terminology and relationships without domain-specific pretraining.

Thawkar et al. [70] combined MedCLIP’s Vision Transformer [76] with Vicuna [12], a
Llama-based chatbot, connecting them through a simple linear transformation layer. This
approach leverages MedCLIP’s medical image understanding capabilities, but employs
a computationally expensive LLM without domain-specific knowledge. Furthermore, it
utilizes a general-purpose chatbot rather than a model specifically designed for medical
caption generation. The absence of comparative evaluations also makes it difficult to
assess the method’s actual contribution to the field.

In the specialized architectures category, Danu et al. [17] proposed a two-stage ap-
proach for medical caption generation. Their method first detects diseases with bounding
boxes in X-rays before feeding these features to an LLM as a textual prompt. This ap-
proach introduces interpretability through localization and decouples cross-modality by
separating visual detection from text generation. Additionally, it leverages an in-domain
LLM, RadBloomz [36], to translate the list of abnormalities into coherent captions. How-
ever, this method relies on a very large LLM and provides limited evaluation metrics,
focusing primarily on ROUGE-L scores while omitting the CE metrics commonly used in
comparative studies.

Additionally, Li et al. [45] generated anatomically structured reports by decomposing
the task into region-specific descriptions (e.g., heart, lungs) guided by anatomical and
clinical prompts. This mimics radiologists’ systematic reasoning while allowing physi-
cian input for customization. The method outperforms predecessors in clinical metrics
(CE metrics) and interpretability by grounding generated text in detected regions. How-
ever, its reliance on GPT-4 [54] — a proprietary, extremely large LLM — raises concerns
about computational accessibility and reproducibility. These limitations mirror those of
other LLM-based approaches (e.g., [70, 78]), highlighting an ongoing trade-off between
performance and practicality in medical captioning.

It is important to note that, to the best of our knowledge, no existing architectures have
leveraged the power of LLMs pre-trained on medical text for medical caption generation.
Current approaches either rely on computationally intensive large-scale general LLMs
or traditional encoder-decoder architectures, leaving a gap in the literature regarding
efficient, domain-specific solutions.

Our work aims to address this gap by investigating the potential of domain-specific,
smaller LLMs such as BioGPT [50] that have been pretrained specifically on medical
literature. By combining such a model with pretrained vision encoders, we seek to develop
a more computationally efficient approach that still maintains strong performance through
domain relevance and effective knowledge transfer. Table 2.1 summarizes the approaches
evaluated in this subsection.
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Table 2.1: Systematic comparison of state-of-the-art approaches for medical captioning,
highlighting the evolutionary trajectory from early transformer-based models to recent
adaptations of large language models (LLMs). Prior work has predominantly focused on
either using complex vision encoders or leveraging large parameter models. Our approach
adopts a lightweight (0.35B parameters) LLM and utilizes available pretrained in-domain
weights for both vision and text models. This strategic balance between model complexity
and domain adaptation addresses a critical research gap and offers a more resource-efficient
solution for clinical deployment in resource-constrained healthcare environments. * Text
decoder based on Transformer |74] with some adaptations, hence we assume the number
of parameters of the BERT base Transformer model.

Work Year Text Number of In-Domain
Decoder Parameters Weights

Chen et al. [9] 2020 Transformer* - Encoder-Decoder 0.07 B No

Chen et al. [10] 2022 Transformer* - Encoder-Decoder 0.07 B No

Gu et al. [24] 2024 Transformer* - Encoder-Decoder 0.07 B Vision

Wang et al. [77] 2023 Transformer® - Encoder-Decoder 0.07 B No

Yang et al. 78] 2023 LLM - Decoder-only 6B No

Thawkar et al. [70] 2023 LLM - Decoder-only 7B Vision

Danu et al. [17] 2023 LLM - Decoder-only 7B1 Text

Li et al. [45] 2024 LLM - Decoder-only 7B No

Ours LLM - Decoder-only 0.35 B Vision + Text
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Chapter 3

Materials and Methods

This chapter is intended to describe (i) the adopted datasets on training and evaluation
steps, (ii) the proposed architecture for generating chest X-ray descriptions along with its
training steps, (iii) the neural networks subject to evaluation on vision encoder and text
decoder stages, and (iv) the metrics for analysis of the generated texts.

3.1 Datasets

This work adopts two widely-used datasets for the chest X-ray description generation
task: the MIMIC-CXR-JPG [35] and the IU-RAY dataset [18].

3.1.1 MIMIC-CXR-JPG

The MIMIC-CXR-JPG dataset [35] is currently the largest chest X-ray dataset, compris-
ing 377,100 radiographs and 227,835 associated free-text radiology reports collected from
the emergency department of the Beth Israel Deaconess Medical Center (Boston, MA,
USA) between 2011 and 2016. The dataset is hosted on PhysioNet!, a repository for
biomedical data, ensuring accessibility and standardization for research use. Each study
in the dataset may include multiple radiographic views (e.g., anteroposterior (AP), pos-
teroanterior (PA), and lateral projections), accompanied by a single report. The dataset
provides an official split of studies into training, validation, and test subsets, facilitating
reproducible benchmarking of model performance against the existing literature.

Unlike structured radiology reports, which follow a standardized format (e.g., from
external to internal findings [39]), the reports in MIMIC-CXR-JPG were generated by
emergency department physicians and exhibit greater variability in style and detail. A
data sample is illustrated in Figure 3.1 containing a free-text report associated with a
frontal and lateral X-ray. Although they are free-text emergency reports, they generally
present common text sections as the Findings and Impressions. The former is intended
to be a descriptive assessment of radiographic observations, and the later is a concise
summary or diagnostic interpretation. In this work, we focus on automatically generating
the Findings section, as it provides the most comprehensive clinical details.

'MIMIC-CXR-JPG webpage: https://physionet.org/
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FINAL REPORT
EXAMINATION: CHEST (PAAND LAT)

INDICATION: ___ year old woman s/p RUL // check interval change
TECHNIQUE: Chest PA and lateral

COMPARISON: ____

FINDINGS:

Cardiomediastinal contours are midline. Postoperative changes in the right
hilum are noted. There has been interval improvement in aeration/opacities
in the right perihilar region suggesting better aeration of the remaining right
middle lobe. The left lung is clear. Patient has known emphysema. There is
no pneumothorax or left pleural effusion. Right pleural effusion is a small.
Elevation of the right hemidiaphragm is stable. Right chest wall
subcutaneous gas collection has almost completely resolved .

IMPRESSION:

Improved aeration of the right middle lobe. Small right effusion

Figure 3.1: Example from the MIMIC-CXR-JPG dataset: A study comprising two chest
X-ray views (AP and lateral) and the associated free-text radiology report. Emergency
department reports typically include Findings (detailed observations) and Impressions
(diagnostic summary). Note the presence of de-identification artifacts (e.g., “ 7),
which do not affect the clinical relevance of the text.

Complementary to the image data, the dataset includes two metadata files: the
DICOM metadata (“mimic-cxr-2.0.0-metadata.csv.gz”) and split metadata (“mimic-cxr-
2.0.0-split.csv.gz”). The first contains essential metadata for each image, including view
position, patient orientation, image dimensions, and identification information, while the
second provides the official dataset partitioning into training, validation, and test subsets.

In this work, we conducted a comparative analysis of model performance using single-
view imaging (frontal images: AP or PA) versus multi-view imaging (combining lateral
and frontal views) to determine whether the inclusion of multiple perspectives enhances
report generation accuracy and provides more comprehensive details in the resulting ra-
diology reports.

3.1.2 TU X-Ray

The Indiana University Chest X-Ray Collection (IU X-Ray) [18] is a publicly accessible
dataset developed for medical chest X-ray report generation research. Hosted by the
National Library of Medicine?, this collection comprises 3,996 radiology reports associated
with 8,121 images, capturing both frontal and lateral radiological views. Each report is
provided in a structured XML format containing metadata, associated image identifiers,
and clinical text that may include findings, impressions, or both sections (as illustrated
in Figure 3.2)

Since this dataset lacks an official dataset split, we implemented a random split using a
7:1:2 ratio for training, validation, and testing respectively, following established protocols
in the literature [9, 10].

2 Available at http://openi.nlm.nih.gov/
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Bl <’xml version="1.0" encoding="utf-8"?>
<eCitation>

<docSource>CXR</docSource>
<IUXRId id="1000"/>

<MedlineCitation Owner="Indiana University" Status="supplied by publisher">
<Article PubModel="Electronic">

<Journal> ... </Journal>

<ArticleTitle>Indiana University Chest X-ray Collection<[ArticleTitle> .

<Abstracr> Associated Report

<AbstractText Label="COMPARISON">XXXX PA and lateral chest radiographs</AbstractText> Metadata

<AbstractText Label="INDICATION">XXXX-year-old male, XXXX.</AbstractText>

<AbstractText Label="FINDINGS">There is XXXX increased opacity within the right upper lobe with possible mass and associated area of

is or focal idation. The cardiac sil is within normal limits. XXXX opacity in the left midlung overlying the posterior

left 5th rib may represent focal airspace disease. No pleural effusion or No acute bone
</AbstractText>

<AbstractText Label="IMPRESSION">1. Increased opacity in the right upper lobe with XXXX associated atelectasis may represent focal
consolidation or mass lesion with atelectasis. Recommend chest CT for further evaluation. 2. XXXX opacity overlying the left 5th
rib may represent focal airspace disease.

<lAbstractText>

</Abstract>

<.>

</Article>

</MedlineCitation>

<parentImage id="CXR1000_IM-0003-1001"> Associated X—rays
<figureld>FI<[figureld>
<caption>PA and lateral chest x-XXXX XXXX. </caption> Images Metadata

<panel type="single">
<url>lhadooplstoragelradiologylextract/ CXR1000_IM-0003-1001.jpg</url>

<Ipanel>

<IparentImage>
<parentimage id="CXRI000_IM-0003-2001"> ... </parentlmage>

<parentImage id="CXR1000_IM-0003-3001"> ... </parentimage>

<leCitation>

Figure 3.2: Example from the IU X-Ray dataset demonstrating data structure. The im-
age shows three X-ray views (two frontal, one lateral) alongside their associated XML file.
The XML structure reveals both metadata for the linked images and distinct sections of
the actual radiological report. Note the privacy protection mechanism where confidential
patient information has been systematically de-identified using 'X’ characters as place-
holders. Source: elaborated by this author.

Despite its relatively modest size, this dataset proved valuable during our initial devel-
opment phase, allowing us to efficiently validate the architectural implementation, verify
functionality, and confirm that our training methods were correctly executed before scal-
ing to larger datasets.

3.2 Data Preprocessing

Data preprocessing plays a critical role in machine learning applications [51]. For our chest
X-ray analysis system, we implemented a preprocessing pipeline to ensure data quality
and consistency across both textual reports and chest X-ray images. This section details
our methodical approach to preparing the data, which addresses challenges specific to
medical text and imaging data while optimizing for computational efficiency during model
training. Figure 3.3 provides a visual overview of our complete preprocessing workflow.
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Figure 3.3: Illustration of the data preprocessing pipeline for chest X-ray datasets. The
workflow shows parallel processing streams for textual reports (upper path) and radiolog-
ical images (lower path). Source: elaborated by this author.

3.2.1 Text Reports Processing

Following other works in the area, we focused on the Findings section of the radiology
reports, as this section contains the most detailed descriptions of the chest X-rays. When
the Findings section was unavailable, we used the Impressions section as an alternative.
Our approach is focused on text generation, therefore, unlike traditional NLP
tasks [69], instead of standard NLP preprocessing techniques, we implemented a cus-
tomized pipeline to clean the free-text reports as much as possible, while preserving the
core content of the text. The text preprocessing pipeline consisted of the following steps:

e 1. Section Extraction: We extracted the Findings section (or Impressions sec-
tion when Findings was unavailable) using regular expression pattern matching to
identify section headers. For the IU X-Ray dataset, we performed a search inside
the XML structured file, in order to determine and extract the right sections.

e 2. Text Cleaning

Removed line breaks to create continuous text.

— Eliminated numbers and special characters not relevant to clinical descriptions.
— Removed multiple white spaces and standardized spacing.

— Converted all text to lowercase to ensure consistency.

e 3. Data Caching: The processed text was saved to local files to eliminate redun-
dant preprocessing during training iterations.

3.2.2 Chest X-Ray Processing

For the chest X-ray images, we applied a standardized preprocessing approach:

e 1. Resizing: All images were resized to 512x512 pixels, striking a balance between
preserving clinical details and computational efficiency.



42

e 2. Data Caching: Processed images were stored in cached local files to mitigate
runtime overhead during repeated access operations.

3.2.3 Dataset Partition

After completing all preprocessing stages, we divided our dataset into two subsets to
enable targeted analysis:

Single-view Subset: This subset of the MIMIC-CXR-JPG consists of only frontal
chest X-rays (either AP or PA projections) selected from the MIMIC-CXR-JPG dataset.
We created this subset to evaluate our model’s performance when limited to a single view-
point, which represents the most common clinical scenario in many healthcare settings.
This process yielded 218,139 images and associated reports, representing approximately
96% of the original dataset studies.

Dual-view Subset: This subset consists of paired images for each patient, always
including one frontal view (AP or PA) and one lateral view. This configuration allows
us to assess how the additional perspective from the lateral view affects the quality and
comprehensiveness of the generated descriptions.

These subsets were properly created using the DICOM metadata by filtering the
dataset based on the "ViewPosition’ field in the metadata, filtering the images labeled
as "AP’, 'PA’ or 'Lateral’.

3.2.4 Benefits of Preprocessing

This preprocessing pipeline ensures that the input data is clean, consistent, and ready
for training. By focusing on the Findings or Impressions sections, we prioritize the most
informative parts of the reports that contain detailed descriptions of the chest X-rays. The
text cleaning steps remove unnecessary characters and formatting, allowing the model to
focus on the relevant content.

Resizing the images to a fixed size of 512x512 pixels standardizes the input dimen-
sions, which is crucial for training deep learning models. This size provides a good balance
between preserving important details and keeping computational requirements manage-
able.

Caching the preprocessed data on local files offers several benefits. It eliminates the
need to perform preprocessing steps during each training iteration, reducing the overall
training time. Additionally, it ensures that the data remains consistent across different
runs and allows for easier data versioning and reproducibility.

By implementing this preprocessing pipeline, we streamline the data preparation pro-
cess, enhance training efficiency, and ensure that our model receives high-quality input
data. This lays a solid foundation for the subsequent steps in our methodology, enabling us
to focus on developing and refining our architecture for generating accurate and clinically
relevant chest X-ray descriptions.
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3.3 Evaluation and Metrics

Metrics are quantitative measures used to assess the performance of a model or system.
In the context of artificial intelligence (AI) and machine learning, well-designed metrics
serve as proxies to evaluate how effectively a model achieves its intended task. The choice
of metrics is crucial as they guide the development, optimization, and comparison of
different models.

In order to assess the quality of the generated reports and to compare the performance
of our model against other techniques, we employed two categories of metrics: Natural
Language Generation (NLG) metrics and Clinical Efficacy (CE) metrics. This approach
allowed us to assess both the linguistic quality of generated reports and their clinical
accuracy.

3.3.1 Natural Language Generation Metrics

In the field of NLP, some of the most widely used metrics include:

e BLEU (Bilingual Evaluation Understudy): Measures overlap between machine-
generated translation and reference translations by calculating precision of n-grams.
Scores range from 0 to 1, with higher scores indicating better translations. BLEU
has limitations, including favoring shorter translations and not accounting for se-
mantic equivalence [55].

e ROUGE (Recall-Oriented Understudy for Gisting Evaluation): Evaluates automatic
summarization by measuring overlap between generated and reference summaries.
ROUGE calculates recall—the percentage of n-grams from reference summaries
present in the generated summary. Variants consider different n-gram types and
factors such as word order and longest common subsequences [13].

e METEOR (Metric for Evaluation of Translation with Explicit ORdering): Addresses
BLEU’s limitations by evaluating translation quality through exact word matching,
stemming, synonym matching, and paraphrase recognition. It calculates both pre-
cision and recall, emphasizing recall, and includes penalties for poor word ordering.
This incorporation of linguistic features helps identify semantic equivalences that
other metrics might miss [4].

We utilized standardized implementations from an established codebase® to ensure
reproducibility of our results.

In our specific application of chest X-ray report generation, NLG metrics present sev-
eral notable limitations. First, chest X-ray findings can be expressed in multiple valid
ways (e.g., “cardiac enlargement” vs. ‘“cardiomegaly”), causing NLG metrics to under-
value semantically equivalent alternatives. Second, these metrics fail to account for the
clinical importance of different findings — missing a critical pathology such as pneumoth-
orax is weighted the same as omitting a minor observation. Finally, reference reports

Shttps://github.com/tylin/coco-caption
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themselves may contain inconsistencies or variations in reporting style, further complicat-
ing metric interpretation. Despite these problems, we include NLG metrics to maintain
comparability with previous works in the field.

3.3.2 Clinical Efficacy Metrics

The Clinical Efficacy (CE) [33] metrics aim to assess the clinical accuracy and relevance
of the generated text. To calculate such metrics, an external sentence labeler is adopted
to categorize sentences into predefined clinical finding categories. For example, in the
context of chest X-ray reports, the CheXpert [33] labeler categorizes sentences into 14
findings, such as “Cardiomegaly”, “Pleural Effusion”, “Consolidation”, and others. The
CheXpert labeler is based on a set of rules and regular expressions that match specific
phrases and patterns associated with each finding.

Building upon the CheXpert labeler, the CheXbert|67] model was developed.
CheXbert is a BERT-based model trained on the same dataset as CheXpert, using the
outputs of its predecessor. It serves the same purpose of categorizing sentences into the
14 clinical findings but offers several advantages over the rule-based approach. CheXbert
can handle variations in language, such as typos or synonyms, and can capture more
complex linguistic patterns. It provides a more robust and efficient way to label sentences
compared to the rule-based CheXpert labeler. The findings categories and the labeling
process are illustrated in Figure 3.4.

Finding Result

Cardiac silhouette is mildly enlarged. Lung volumes are low with Enlarged Cardiomediastinum

worsening left greater than right|bibasilar atelectasis |with mild Cardiomegaly 1

pulmonary interstitial edema. Lung Opacity

There is a probable small left pleural effusion. A right peripheral

Lung Lesion

venous catheter terminates in the subclavian vein. Fdomn 1

There is no pneumothorax. | Consolidation

Pneumonia
Atelectasis 1

w407 : Negative Mention s 0

“ “1”: Positive Mention " Pleural Effusion -1

CheXbert
e “_1” - Uncertain Mention = Pleural Other
labeler
. Fract
rrinee “empty” - Not Mentioned s racture
Support Devices 1
No Finding

Figure 3.4: Demonstration of the CheXbert labeler’s classification process. The model
analyzes radiology text and outputs a 14-position vector corresponding to different clinical
findings. FEach position is coded as: 1 for positive mentions (Edema, highlighted in
green), 0 for negative mentions (Pneumothorax, highlighted in red), -1 for uncertain
mentions (Pleural Effusion), and null for findings not mentioned in the text. This example
illustrates how CheXbert converts natural language descriptions into structured, machine-
readable annotations, allowing further comparison between different sentences by checking
accuracy, precision, recall on the labeled findings. Source: elaborated by this author.
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As depicted in Figure 3.5, to assess clinical relevance and accuracy using CE metrics,
we took the following steps:

1. Process both generated and reference reports through CheXbert, classifying each
finding as positive (1), negative (0), uncertain (-1), or unmentioned (null)

2. Transform every null or uncertain classification into negative, in order to have strict
binary vector for comparison.

3. Compute precision, recall, and F1-score by comparing these classifications

Generated S 1 [ [Tl T Jafofef T ] 3)
Report H®) ..
* CheXbert [0 oot fo[o[o[o]1]o] | Precision
labeler call
R _LIOI 1JoJoJo]1 |0‘!(>|0|0|0|o|1|0| Fl-Score
Ground-Truth O T Jolt] Flol TTT1T]

Report

Figure 3.5: Steps to calculate CE metrics: Precision, Recall and F1-Score. (1) Classify
texts into 14 findings; (2) Clean up the findings vector; (3) Calculate metrics.Source:
elaborated by this author.

These CE metrics provide a more clinically relevant evaluation, as they focus on
whether the model correctly identifies and reports the same findings as the reference,
regardless of the specific phrasing used.

We calculated both macro-averaged metrics (equal weighting for all finding categories)
and micro-averaged metrics (weighted by category frequency) to account for class imbal-
ance in the dataset.

Despite their clinical relevance, CE metrics also have significant limitations for com-
prehensive evaluation. Most critically, they reduce the content of the reports to categorical
classifications, losing subtle information about severity, location, and progression of find-
ings. They cannot assess the logical flow, coherence, or professional writing quality of the
generated reports, aspects that practicing radiologists value. Additionally, CE metrics
depend on the quality and comprehensiveness of the CheXbert labeler itself, which may
not capture emerging or rare conditions outside its 14 predefined categories.

These limitations highlight the need to develop more sophisticated evaluation frame-
works that can better capture the multifaceted requirements of clinical report generation,
potentially incorporating expert human evaluation to complement automated metrics. A
further discussion about medical text generation metrics will be presented in Chapter 4.

3.4 Model Architecture

Our method [73] builds on the architecture and training pipeline of BLIP-2 [46], a cap-
tioning model for natural images that utilizes pretrained vision and language foundation
models. BLIP-2 introduces a key innovation: the Q-Former (Querying Transformer), a
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BERT-based alignment module that effectively bridges the vision encoder and the text
decoder by optimizing feature representation transfer.

One of the advantages of this architecture is its modularity, allowing the integration
of different vision encoders and text decoders, with only the Q-Former module requir-
ing training. This flexibility enabled us to adapt and experiment with different vision
encoders and text decoders. Complementary, as only the Q-Former must be optimized
during training stages, this architecture presents fewer parameters to be fitted, making
the training less computational expensive.

3.4.1 Image Encoder Stage

The architecture of our model, as illustrated in Figure 3.6, starts with the image encoder,
the component responsible for extracting pertinent features from chest X-ray images.
The effectiveness of this image encoder is essential to guide our architecture in generating
accurate and informative captions.

&

Image o LM
-Former — e ungs ..
Encoder Decoder #
. PSPNet « BERT base
. UNet « BioClinical BERT « BioGPT

« BiomedBERT

Figure 3.6: Simplified illustration of our architecture. The figure shows the three main
components: the image encoder, responsible for extracting visual features from chest
X-ray images; the Q-Former, responsible for transforming these visual features into a
format compatible with natural language processing; and the LLM decoder, responsible for
generating accurate and clinically relevant textual descriptions of the radiological findings.
Each component was systematically evaluated with various neural network architectures,
as indicated below their respective modules in the figure. Source: elaborated by this
author.

In the original BLIP-2 study, a Vision Transformer (ViT-g/14) [57|] was adopted as
their vision encoder, a model containing 1.8 billion parameters. To address our objective
of identifying lightweight alternatives that balance computational efficiency and perfor-
mance, we deliberately selected and evaluated two significantly smaller, domain-specific
pretrained vision models: (i) a PSPNet from the TorchXRayVision library [16] (66 million
parameters, approximately 27 times smaller than the original ViT) and (ii) a U-Net [63]
(approximately 68 million parameters, about 26 times smaller than the original ViT),
implemented using code made publicly available by the authors?.

These vision models were specifically chosen because they were previously trained on
chest X-ray segmentation tasks, as illustrated in Figure 3.7, where they developed exper-

4https://github.com/ConstantinSeibold /Chest X Ray AnatomySegmentation
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tise in segmenting anatomical structures including the heart, lungs, and rib silhouettes.
By adopting these pretrained vision encoders developed by other researchers, we aimed to
leverage their specialized feature extraction capabilities for chest X-ray images, thereby
enhancing our architecture’s performance while maintaining computational efficiency.

Projection Lungs Mediastinum Bones Abdominal

Figure 3.7: Example of a chest X-ray segmentation task for which the UNet model was pre-
viously trained. In our architecture, rather than using the segmentation output directly,
we leverage the latent representations from earlier in the network to extract meaningful
features for the captioning task. Source: adapted from [63].

Both vision encoder models required significant adaptations to align with our study
requirements and the BLIP-2 architecture. In their original configuration, these models
produce segmentation maps with dimensions matching the input image, where each pixel
corresponds to a specific anatomical structure (such as lungs, ribs, heart, or other tissues).
This output format is incompatible with the Q-Former module, which requires condensed
feature representations. Therefore, we modified both models to extract intermediate
feature maps from deeper in their architectures — before their final segmentation layers.
These latent representations contain more abstract and comprehensive information about
radiographic structures encoded across multiple channels, making them suitable inputs
for the Q-Former attention mechanism.

For PSPNet, we utilized only the first layers up to the pyramid pooling layer, extract-
ing a latent vector with dimensions of 128 x4 x4. In the case of CXAS U-Net, we extracted
a feature map of dimensions 64 x4 x4 from the bottleneck layer just before the upsampling
paths begin. These feature maps were then transformed using a 1x1 convolutional pro-
jection layer to achieve the dimensions required by the Q-Former attention mechanism.
Figure 3.8 illustrates, using a U-Net architecture as an example, how latent features are
typically extracted from the backbone of vision networks. While determining the optimal
extraction point from a vision network’s backbone would require further evaluation in
future work, our current choices were guided by the principle of extracting latent vectors
at points where information is most compressed, offering a balance between rich semantic
representation and computational efficiency.

To compare both vision models and select the optimal one, we conducted a systematic
evaluation. We trained the complete architecture with each vision encoder variant and
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Figure 3.8: Example of re-using a vision segmentation network to extract latent feature
maps. The figure demonstrates how the U-Net architecture, typically designed for image
segmentation, can be repurposed to extract latent feature maps from the bottleneck of its
encoder-decoder structure. The input image is processed through the encoder (contracting
path), which reduces spatial dimensions while capturing increasingly abstract features.
At the network’s bottleneck, before the decoder begins, latent feature maps are obtained,
representing a condensed yet informative embedding of the input image. These feature
maps can be utilized for downstream tasks, serving as input to other models such as the
Q-Former attention mechanism described in our work. The highlighted region indicates
the portion of the U-Net architecture that is reused. Source: adapted from [60].

assessed their performance using standard text generation and clinical efficacy metrics.
For the initial comparative experiments, we simplified our approach by using only frontal
chest X-ray images as input. This choice enabled us to efficiently determine which vision
encoder would be most suitable for the subsequent and more comprehensive experiments.
Following this preliminary study and after selecting the pretrained vision encoder, we
progressed to experiments incorporating multiple images.

For cases where two chest X-ray images were available, we adapted our feature ex-
traction process. First, we extracted features independently from each image. Then,
we aggregated these features by averaging their feature maps before feeding them to the
Q-Former stage. This approach enabled us to leverage information from multiple views,
resulting in more comprehensive and accurate captions. Similar strategies have proven
effective in previous research [9, 10].

To assess the impact of using one versus two input images, we conducted experiments
comparing the model’s performance in both scenarios. By evaluating the quality of the
generated captions and the model’s ability to capture relevant information from single
and paired chest X-rays, we aimed to determine the optimal input configuration for our
architecture.

In summary, our methodology involved adapting available pretrained vision models,
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more specifically a PSPNet, from TorchXRayVision Python library [16]; and a U-Net
from an work [63], to serve as lightweight and efficient image encoders. By extracting
latent features from these models and aggregating information from multiple views when
available, we aimed to provide the Q-Former module with rich visual representations for
generating accurate and informative chest X-ray captions.

3.4.2 Q-Former Alignment Module

The Q-Former module constitutes the cornerstone of our architecture, responsible for
aligning extracted image features with the text decoder input. This module incorporates
a BERT-based neural network and Learned Queries—trainable input parameters that
guide the cross-attention mechanism over the input image features. Before the extracted
image features can be processed by the Q-Former’s cross-attention mechanism, they un-
dergo dimensional alignment through a linear projection layer, responsible for performing
the necessary matrix transformation to rotate the image feature representations into the
appropriate dimensional space required by the transformer architecture. Figure 2.6, previ-
ously introduced in the Related Works section, illustrates the Q-Former architecture with
its Learned Queries and depicts aspects of the training process that will be elaborated in
a subsequent section.

Since the Q-Former is fundamentally a BERT-based model, we hypothesized that
initializing it with weights from models already optimized for medical text would enhance
performance. This approach has demonstrated efficacy in various medical tasks [44].
Consequently, we explored several publicly available, domain-specific pretrained weights
for initializing the Q-Former:

e BERT-base® [20]: A English general-domain model trained on BookCorpus and
Wikipedia.

e BioClinicalBERT® [2|: Derived from BioBERT [44] and fine-tuned on MIMIC III
clinical notes [34].

e BiomedBERT [25]: Pretrained from scratch on PubMed® abstracts and PubMed-
Central® full-text articles.

To systematically evaluate the impact of different initializations, we trained multiple
instances of our complete architecture, varying only the Q-Former initialization (BERT
base, BioClinical BERT, and Biomed BERT') while maintaining identical configurations for
all other architectural components, including the image encoder and text decoder. This
controlled experimental design ensured that any observed performance differences could
be attributed solely to the Q-Former initialization strategy:.

Shttps://huggingface.co/google-bert/bert-base-uncased
Shttps://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
"https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract-fulltext
8https://pubmed.ncbi.nlm.nih.gov/

9https://www.ncbi.nlm.nih.gov/pmc/
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We evaluated each architectural variant using our established text generation and
clinical efficacy metrics on the test set. Our results show that using Biomed BERT weights
for initialization performed slightly better. However, these improvements were small and
might need more investigation with more training iterations to determine if the results
are statistically meaningful.

3.4.3 Text Decoder Module

Just as the image encoder is a critical component for feature extraction, the text decoder
is the module responsible for generating the chest X-ray descriptions given the aligned
features coming from the Q-Former.

Following the BLIP-2 architecture, we utilized a Large Language Model as our text
decoder, due to its text generation capability. Generally, an LLM receives text prompts
on its input which work as a start point, from where the model generates the text output.
However, in this project, as the LLM inputs come from the Q-Former aligned features,
these inputs can be considered as soft prompts, i.e., they are not explicit text embeddings,
but a feature vector that help and guide the LLM decoder on its text generation task.

We adopted a model called BioGPT [50], an LLM based on GPT-2-Medium [56]
architecture, since it was specifically pretrained on biomedical domain using PubMed
abstracts. It is a lightweight model compared to the LLM from the original BLIP-2,
containing 345 million parameters instead of 2.7 billion. This model is available at the
HuggingFace website!?, allowing us to get its in-domain pretrained weights.

During the development of this work, only the BioGPT was evaluated as text decoder
due to the availability of the pretrained weights.

3.5 Training Stages

The training process is divided into two distinct stages, each serving a specific purpose
in enhancing the capabilities of a portion of our architecture. We conducted all model
training using only the MIMIC-CXR-JPG dataset [35]. This dataset was selected for its
large volume of chest X-ray images with corresponding radiological reports, and estab-
lished status as a benchmark in the chest X-ray imaging studies, which enables meaningful
comparisons with existing approaches.

3.5.1 Representation Learning

In this initial training stage, we focus exclusively on training the Q-Former module while
utilizing features extracted from a frozen image encoder, as depicted in Figure 3.9. The
primary objective of this training step is to enable the Q-Former to serve as an effective
bridge between image and text domains. It prepares the module to align, understand,
and generate meaningful captions, thereby enhancing the performance of the architecture
as a whole.

Ohttps:/ /huggingface.co/microsoft /biogpt
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Figure 3.9: Representation Learning stage: The image encoder (orange) remains frozen
while only the Q-Former (green) is trained to bridge visual and textual domains through
multiple optimization objectives (cost functions). Source: elaborated by this author.

It is important to note that during this phase, the vision encoder remains completely
frozen and undergoes no parameter updates. This design choice leverages the rich vi-
sual representations already captured in the pre-trained weights of the vision encoder
(as detailed in Subsection 3.4.1). Only the Q-Former parameters are updated through
backpropagation.

During this representation learning phase, the {Q-Former outputs are optimized using
three distinct cost functions, as in the BLIP-2 framework [46], that collectively enable —
effective cross-modal alignment:

Image-Text Contrastive Learning (ITC)

The contrastive learning objective aligns image and text representations in a shared em-

bedding space. Given image features qf € RV*KX? from query tokens and text features

t € RV*? we compute similarities by aggregating across query tokens:

I
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where K is the number of query tokens, 7 = 0.07 is the temperature parameter, and the
max operation aggregates across all query tokens. The bidirectional contrastive loss with
label smoothing is:

1 . .
Lirc = 3 [Lop(simig,y, a0 =0.1) + Lop(simyy, y, o = 0.1)],
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where Lop denotes cross-entropy loss with label smoothing factor «, and y contains the
correct positive pair indices.

Image-Text Matching (ITM)

The ITM loss activates the image-grounded text encoder and learns fine-grained multi-
modal alignment. Hard negative pairs are selected using similarity-weighted sampling
from the contrastive similarities (with diagonal masking to exclude positive pairs):

Preg(711) = exp(simig[i, j] — liz; - 10%)
"l Zk# exp(sim o|i, k)

The Q-Former processes three types of pairs: (positive image, positive text), (nega-
tive image, positive text), and (positive image, negative text). An ITM head computes
matching logits from the averaged query token representations:

K
: 1 K
lOg’ltS = ITMHead (E kz; hquery) '

The binary classification loss is:
Litm = Lop(logits, labels),

where labels = [1,1,...,1,0,0, ..., 0] with the first N entries as positive and the remaining
2N as negative pairs.

Image-Grounded Text Generation (ITG)

The I'TG loss activates the image-grounded text decoder for autoregressive caption gener-
ation. Using teacher forcing with the Q-Former’s past key values from the representation

learning stage:
|T|

Lirg =— Zlog P<wt’w1:t717 QvI)a

t=1

where Q represents the query token embeddings, I denotes image features, and the prob-
ability is computed through the Q-Former’s language modeling head. Labels are masked
where input tokens equal the padding token ID.

Combined Loss Function

The total loss combines all three objectives with equal weighting:

Lossiotar = Lire + Liram + Lire.

The validation of this step focuses solely on verifying that the architecture is being
optimized correctly via the defined cost functions. We monitor the learning curves, par-
ticularly checking if validation loss is decreasing appropriately, and halt training when



93

the validation loss plateaus or begins to increase, indicating potential overfitting.

3.5.2 Generative Learning

In the second training stage, we leverage the entire architecture, as illustrated in Fig-
ure 3.10. The previously trained Q-Former is attached to the pretrained BioGPT LLM,
and then trained to optimize the outputs of the LLM decoder. This phase aims to utilize
the trained Q-Former’s knowledge and apply it to guide the LLM in generating accurate
and coherent descriptions of input chest X-ray images.

Training Stage 2
] w5/l I
Image LLM
Encoder —» Q-Former ——  poooder __l
Cost
Function

Ground
Truth

Reports

Figure 3.10: Generative Learning stage: The previously trained Q-Former is now con-
nected to the LLM decoder. We experiment with various combinations of frozen/unfrozen
components (both unfrozen, only Q-Former frozen, only LLM frozen) and optimize the
trainable parameters using the LLM decoder’s language modeling cost function. Source:
elaborated by this author.

Our evaluation in this stage serves several purposes. Firstly, we investigate the capacity
of the specialized, smaller LLM to generate precise and well-articulated descriptions based
on the soft prompts provided by the Q-Former. We rely on a combination of manual
qualitative analysis and established text generation metrics, which will be detailed in the
metrics section. This assessment is critical in understanding the LLM’s suitability for the
specific domain.

To optimize performance, we systematically explored different training configurations.
Specifically, we examined three distinct approaches: (1) unfreezing both the Q-Former and
the LLM during training, (2) freezing the Q-Former while training only the LLM, and (3)
training only the Q-Former while keeping the LLM frozen, which is the default BLIP-2
proposal. Our experimental results revealed that the second approach — freezing the Q-
Former and training only the LLM—consistently yielded the best performance across our
evaluation metrics. Based on these findings, all subsequent experiments presented in this
thesis employ this optimal configuration in the second training stage (frozen Q-Former,
trainable LLM).
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3.5.3 Training Hyperparameters

To ensure reproducibility and optimize model performance, we implemented specific hy-
perparameter configurations for each training stage. These configurations were carefully
selected based on both established practices in the literature and empirical testing in our
experimental setup.

Representation Learning Hyperparameters

For the representation learning stage, where only the Q-Former module undergoes param-
eter updates, we employed the AdamW optimizer [49] with a learning rate of 1 x 10~%, beta
parameters of [0.9,0.98], and weight decay of 0.05. The AdamW optimizer was selected
due to its effectiveness in handling the complex optimization landscape of transformer-
based architectures while mitigating overfitting through weight decay regularization.

We implemented a cosine annealing learning rate scheduler to gradually reduce the
learning rate throughout training, starting at 1 x 10~ and ending at 1 x 107°. And also,
we adopted a linear warmup phase starting from 1 x 107% in the first epoch, in order to
maintain training stability by establishing stable gradients before accelerating the learning
process [23].

Generative Learning Hyperparameters

For the generative learning stage, where the Q-Former is connected to the BioGPT LLM,
we maintained the AdamW optimizer but adjusted several hyperparameters for the lan-
guage model fine-tuning. Specifically, we reduced the learning rate to 1 x 107 and
modified the beta parameters to [0.9,0.99], while keeping the weight decay constant at
0.05.

The learning rate scheduler for this stage followed a similar cosine annealing pattern
but with appropriately scaled parameters: an initial learning rate of 1 x 107°, a minimum
learning rate of 1 x 107%, and a warmup learning rate of 1 x 10~% is the first epoch.

Both training stages were executed on CUDA-compatible GPU hardware, with vali-
dation performed after each epoch to monitor convergence and prevent overfitting. Early
stopping was implemented based on validation loss plateaus, with model checkpoints saved
at regular intervals to preserve the best-performing model states for subsequent evaluation
and testing.

3.6 Computation Resources

This research utilized two distinct computational environments to support the experi-
mental work: Amazon Web Services (AWS) SageMaker and an institutional computa-
tion server. For cloud-based computation, we leveraged AWS SageMaker service with
an ml.gddn.xlarge instance equipped with 16GiB RAM, a 125 GiB NVMe SSD, and an
NVIDIA T4 GPU with 16GiB VRAM. The AWS environment operated on a PyTorch 2.10
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Python 3.10 GPU Optimized container image, which included PyTorch 2.1.0, Python 3.10,
and CUDA 12.1.

For on-premises computation, we utilized the Institute of Computation Server, a
Docker-based environment configured for student research. This server featured an In-
tel(R) Xeon(R) Silver 4210R CPU running at 2.40GHz with 40 vCPUs, 126GiB RAM,
and an NVIDIA RTX A5500 GPU with 24GiB VRAM. The system ran Ubuntu 22.04.4
LTS with CUDA version 12.4.

The software environment remained consistent across both platforms, employing Py-
Torch 2.1.2, Transformers 4.33.2, NumPy 1.26.3, Pandas 2.2.0, and OpenCV-Python-
Headless 4.5.5.64. This consistent software stack ensured reproducibility of results re-
gardless of the computational platform used for different stages of the investigation.
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Chapter 4

Results and Discussion

In this chapter, we present the analysis of our proposed architecture for chest X-ray
description generation. For internal evaluation of our design choices, we used CE metrics
— precision, recall and F1-score. However, when comparing our approach against state-of-
the-art methods, we relied on both Clinical Efficacy (CE) metrics and Natural Language
Generation (NLG) metrics such as BLEU, METEOR and ROUGE scores, which are
commonly used in the field.

Our experiments focused on three aspects: (1) selecting the optimal image encoder
for the full architecture, (2) evaluating different Q-Former initialization weights, and (3)
benchmarking our approach against existing methods using these NLG metrics. We also
provided qualitative and visual examples of generated reports to demonstrate the clinical
relevance and accuracy of our system. Throughout our analysis, we highlight the balance
between computational efficiency and performance, showing how our approach achieved
competitive results with significantly fewer parameters than current LLM-based solutions.

4.1 Qualitative Analysis

In this section, we examine the characteristics and quality of the generated chest X-ray
descriptions through multiple points of view: a comparative analysis between generated
reports and ground-truth references, an expert evaluation conducted by an emergency
medicine specialist, and an exploration of targeted prompt strategies. This evaluation
approach allowed us to better understand the clinical relevance, coherence, and potential
applications of our proposed architecture.

4.1.1 Generated Text Samples

To qualitatively assess the performance of our architecture, we visually compared our
system’s predictions against the actual X-ray reports. This comparison allows us to
better understand the quality and relevance of the generated text.

For this analysis, we utilized samples from the publicly available IU X-Ray dataset,
as it provides a diverse set of chest X-ray images paired with corresponding reports. The
results are presented in Figures 4.1, 4.2, and 4.3.

The main observations from the generated text samples are as follows:



Ground Truth

“heart size is normal and lungs are clear. no evidence of
tuberculosis”

Our Prediction

“heart size is normal. the mediastinal and hilar contours
are normal. the pulmonary vasculature is normal. lungs
are clear. no pleural effusion or pneumothorax is seen.
there are no acute osseous abnormalities.”
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Figure 4.1: Example of a chest X-ray with no abnormal findings. The model’s predictions
tend to be more descriptive than the actual ground-truth report, highlighting its ability
to provide detailed interpretations even in cases of normal imaging. Source: elaborated

by this author.

Ground Truth

“bilateral patchy pulmonary opacities noted. interval
improvement in left base consolidative opacity.
[pulmonary vascular congestion jagain noted. stable
enlarged cardiomediastinal silhouette. stable left. no
evidence of pneumothorax.|no large pleural effusions.”

Our Prediction

“in comparison with the study of, there is little overall
change. again there areith
enlargement of the cardiac silhouette| pulmonary]
[vascular congestion,|and [bilateral pleural effusions|with
compressive atelectasis at the bases. in the appropriate
clinical setting,[supervening pneumonialwould have to
be considered., md =, phd =, cta of the chest., md =
telephone., paged at: a.m., one minute after the time of
discovery.,”

Figure 4.2: Example of a chest X-ray with multiple abnormal findings. Once again, our
model demonstrates its descriptive capabilities by identifying and detailing all relevant
findings present in the X-ray. The red boxes are predictions that are not found in the
ground-truth report. The other colors highlight the matching findings. Source: elaborated

by this author.

1. Descriptive Nature of Generated Text: Since our model was trained on the
MIMIC-CXR-JPG dataset, which contains highly descriptive radiology reports, it
tends to generate similarly detailed text. This is evident when compared to the

actual reports in the IU X-Ray dataset, as shown in Figure 4.1. The model often

provides more comprehensive descriptions, even for cases where the actual report

is concise or lacks detail. While our model generates comprehensive descriptions,

the emergency specialist review highlighted important nuances: terminology pre-

cision matters (e.g., ’cardiomediastinal’ vs ’cardiac’ represent different anatomical



o8

Ground Truth

“there are postoperative changes of sternotomy and
cabg. there is stable mild cardiomegaly. there are
scattered of subsegmental atelectasis, decreased from
the prior chest radiograph. no focal airspace
consolidation. no pleural effusion or pneumothorax.
there are minimal degenerative changes of the spine.”

Our Prediction

“in comparison with the study of, thel left chest tube has |
|been removed|and there is no evidence of

pneumothorax. atelectatic changes are again seen ht the

bases, especially on the left. no vascular congestion or

acute focal pneumonia., md =, md =, phd =., md =

telephone., paged., minutes after the discovery of the

findings., md = telephone., minutes after discovery of
the findings., md ="

Figure 4.3: Example of a chest X-ray with some abnormal findings. While the model
generates clinically relevant text, it occasionally produces nonsensical phrases, indicating
areas for further refinement. Source: elaborated by this author.

concepts), and some findings require larger images for accurate assessment (such as
confirming bilateral pleural efusion conditions).

2. Accuracy and Relevance of Findings: The system demonstrates the ability to
generate text that not only uses clinically appropriate terminology but also iden-
tifies and elaborates on findings that may be only briefly mentioned or implied in
the actual report. For instance, in Figure 4.2, the model accurately identifies and
describes multiple abnormalities in the X-ray, providing a more detailed account
than the reference report.

3. Occasional Hallucinations: Despite its strengths, the model occasionally gener-
ates nonsensical or irrelevant phrases, particularly in cases where the input image
is ambiguous or contains subtle findings. This phenomenon, often referred to as
“hallucination”, is a known challenge in text generation models and is observed in
some of our predictions, as noted in Figure 4.3. These instances highlight areas
for future improvement, particularly in enhancing the model’s ability to generalize
across diverse datasets and imaging conditions.

These samples collectively demonstrate the architecture’s ability to generate coherent
and clinically relevant descriptions of chest X-ray images. While the model excels in
providing detailed and accurate interpretations, the occasional generation of irrelevant or
nonsensical text underscores the need for continued development to improve robustness
and reliability. Future work could focus on fine-tuning the model on a more diverse
dataset, incorporating additional context, or employing post-processing techniques to
mitigate hallucinations and enhance overall performance.
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4.1.2 Emergency Specialist Analysis

To evaluate the clinical relevance of our model beyond computational metrics, we con-
ducted a qualitative analysis with an emergency medicine specialist who assessed a random
sample of 10 generated reports. The specialist independently evaluated both text qual-
ity and clinical accuracy, providing detailed feedback on each report using a structured
assessment table that included the chest X-ray images alongside columns for text and
clinical quality ratings (very good, good, bad, very bad) and observations.

Despite achieving competitive CE metrics on this sample (P: 0.4167, R: 0.3704, F1:
0.3922), the initial specialist assessment revealed apparent discrepancies between compu-
tational evaluation and clinical judgment. Most reports (7 out of 10) were rated as “Poor”
or “Very Poor” in terms of clinical quality, highlighting several consistent issues:

1. Technical Quality Assessment: The specialist noted that few reports adequately
addressed the technical quality of the X-rays, which is a critical first step in radi-
ological interpretation. Factors such as patient positioning, inspiration depth, and
radiation penetration significantly impact interpretation accuracy but were rarely
mentioned in generated reports.

2. Organizational Structure: The specialist observed that ideal radiological reports
follow an organized structure (from outer to inner structures: subcutaneous tissue,
bones, lungs, mediastinum), which was not consistently implemented in the gener-
ated texts.

3. Contradictory Information: Some reports contained internally inconsistent in-
formation, such as simultaneously asserting and questioning the presence of pleural
effusion. As highlighted in orange in Figure 4.4.

4. Omission of Visible Findings: In multiple cases, significant visible abnormalities
were entirely omitted from the reports, such as unmentioned aortic calcifications or
nodules. As highlighted in blue in Figure 4.4.

During our follow-up discussion with the specialist, an important contextual factor
emerged—she had evaluated the reports against radiologist-level standards rather than
emergency physician documentation standards. This distinction is significant because our
model was trained on the MIMIC-CXR-JPG dataset, which contains reports generated
by emergency department physicians rather than specialized radiologists.

Emergency department reports typically prioritize clinically urgent findings and may
not follow the comprehensive, structured format of formal radiological reports. When
informed of this training context, the specialist acknowledged that her evaluation criteria
would have been adjusted to reflect emergency documentation standards rather than
formal radiological reporting conventions.

This specialist analysis reveals important limitations in our current evaluation ap-
proach and metrics. While computational metrics suggest competitive performance, the
assessment of clinical utility indicates significant room for improvement. This discrepancy
underscores the need for evaluation frameworks that better align with clinical expertise
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Prediction
frontal and lateral views of the chest were obtained. the heart is of normal size with normal
cardiomediastinal contours. the lungs are hyperinflated, with flattening of the diaphragms,
suggesting chronic obstructive pulmonary disease. there is a small right pleural effusion |with
overlying atelectasis. no focal consolidation is seen. there is no pneumothorax. blunting of the right
costophrenic angle may be due to a trace pleural effusion! no left pleural effusion.

Actual Report

the patient is status post esophagectomy and gastric pull through. the lungs are hyperinflated. there
are new patchy airspace opacities in the bilateral lung bases, concerning for aspiration. chronic
medial right apex pleural thickening and triangular peripheral interstital opacities in the right mid
lung field are again seen. a|hazy opacity consistent| with chronic scarring related to radiation

treatment is again seen in the medial right upper lobe. an mm |nodular opacity is again seen| within
the right lower lobe, unchanged from prior exam. there is |atelectasis at the left lung base| a chronic
right pleural effusion is again noted. there is no left pleural effusion. cardiomediastinal silhouette is
stable. there is no pneumothorax. visualized osseous structures are unremarkable.

Figure 4.4: Generated report and actual report illustrating contradictory information
(orange) and omission of visible findings (blue). Source: elaborated by this author.

and highlights the importance of incorporating domain experts in both the development
and assessment of medical Al systems.

4.1.3 Initial Prompts

We explored the potential of using initial prompts to guide the generation of focused and
structured captions. By providing prompts direct related to findings, such as “atelectasis”
or “cardiomegaly”, and also, prompts related to organs, such as “the heart” or “the lungs”
we aimed to steer the language model towards generating descriptions that follow a specific
pattern or cover certain anatomical regions of interest, as can be seen in Figure 4.5.

The implementation of targeted prompts demonstrates clear influence over output
direction. By providing condition-specific prompts or anatomical region prompts, we ob-
serve the model generating completions that address these specific elements with appro-
priate radiological terminology. This directed approach has both advantages and potential
risks—while it ensures comprehensive coverage of key anatomical structures and potential
pathologies, it may inadvertently suggest findings not present in the original image and
associated ground-truth report, as we can see in the example.

These prompt-guided generations could significantly enhance emergency workflows by
providing customizable reporting templates, ensuring systematic coverage of anatomi-
cal regions, standardizing reporting language, and offering preliminary assessments that
physicians can rapidly verify. However, implementation would require careful balancing of
guidance and potential bias introduction, with particular attention to validation against
expert interpretations to prevent diagnostic errors stemming from prompt-induced sug-
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Ground Truth
“the lungs are clear without infiltrate. there is no effusion or pneumothorax.”

No Prompt (60 words max)

“pa and lateral chest views were obtained with patient in upright position.
analysis is performed in direct comparison with the next preceding similar study
of. the heart size remains normal. no configurational abnormality is present.
unremarkable appearance of thoracic aorta and mediastinal structures. the
pulmonary vasculature is not conge”

Prompts with max 10 words

Prompt: cardiomegaly ... is mild. the lungs are clear.

Prompt: pleural effusion ... on the right is minimal. there is

Prompt: atelectasis ... at the left base is mild. there is

Prompt: edema ... has resolved since. lungs are clear

Prompt: lung opacity ... in the right lower lobe is concerning for pneumon
Prompt: pneumonia ... in the right lower lobe.|-mm right

Prompt: the heart ... size is normal. the hilar and mediastinal contours
Prompt: the lungs ... are clear. the cardiomedias

Prompt: the mediastinum ... is normal. the heart is not enlarged

Figure 4.5: Example of initial prompt strategies. The visualization compares differ-

YRR

ent prompting approaches—including condition-specific prompts (e.g., “atelectasis”, “car-
diomegaly”) and anatomical region prompts (e.g., “the heart”, “the lungs”’) — demonstrating
how each prompt type influences the content, structure, and focus of the resulting cap-
tions. We observe suggested findings (orange) which are not in the actual chest X-ray
report. The initial prompt is in bold text and the prediction comes after the ellipsis
(...). We constrained the system to generate only 10 words when given an initial word
or phrase, simulating a writing assistant for emergency specialist. Source: elaborated by
this author.

gestions.

Future research directions should focus on optimizing prompt design to minimize con-
firmation bias while maintaining comprehensive coverage, developing adaptive prompting
systems responsive to initial image analysis, and establishing rigorous clinical validation
protocols to ensure reliability in medical decision-making contexts.

4.2 Quantitative Analysis

After performing a qualitative analysis, seeking to understand the real clinical relevance of
the generated descriptions, we now turn to quantitatively comparing our models against
other studies and proposed architectures. The following experiments were designed to
assess both the clinical accuracy and computational efficiency of our approach, providing
evidence for the viability of lightweight language models in generating meaningful chest
X-ray descriptions. All experiments were conducted using the MIMIC-CXR-JPG dataset
with the evaluation protocols described in Chapter 3.

4.2.1 Radiological Findings Analysis

Table 4.1 presents the system performance across different radiological findings. The
model demonstrates high efficacy for some findings, such as Support Devices (0.751 F1),
Cardiomegaly (0.602 F1), and Pleural Effusion (0.595 F1).
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Table 4.1: Clinical Efficacy (CE) metrics for each finding within the MIMIC-CXR-JPG
test set. The Positive Cases and Negative Cases columns indicate the distribution of
positive and negative labels in the ground truth data, allowing for verification of class
imbalance.

Positive Negative

Observation Precision Recall F1
Cases Cases

Support Devices 1046 1599 0.713 0.793 0.751
Cardiomegaly 937 1708 0.591 0.614 0.602
Pleural Effusion 917 1728 0.703 0.516 0.595
Atelectasis 703 1942 0.395 0.333 0.361
Edema 507 2138 0.465 0.258 0.332
Lung Opacity 931 1714 0.425 0.161 0.234
No Finding 184 2461 0.148 0.495 0.228
Pneumothorax 73 2572 0.474 0.123 0.196
Consolidation 145 2500 0.242 0.103 0.145
Pneumonia 153 2492 0.137 0.065 0.088
Enlarged Cardiomediastinum 194 2451 0.079 0.026 0.039
Fracture 118 2527 0.050 0.008 0.014
Lung Lesion 154 2491 0.000 0.000 0.000
Pleural Other 88 2557 0.000 0.000 0.000
Macro-Average - - 0.3159 0.2497  0.2561
Micro-Average - - 0.5142 0.4102  0.4564

There is a strong correlation (r 0.873) between the number of positive cases and F1
scores, indicating that class imbalance significantly impacts model performance, with the
system favoring majority classes during training due to their overrepresentation in the
dataset. This imbalance creates a bias where the model optimizes overall accuracy at the
expense of correctly identifying minority classes, leading to poor detection of rare findings.
This pattern has interesting exceptions; Lung Opacity presents with high prevalence (931
positive cases) but relatively poor performance (0.234 F1), this could suggest that beyond
class imbalance, the model struggles with the visual complexity or subtlety of certain
radiographic features, which could be further studied in a future work.

Most findings with fewer than 200 positive examples show F'1 scores below 0.1, high-
lighting how data unbalance limits the model’s ability to learn rare conditions effectively.
Furthermore, the difference between macro-average (0.2561) and micro-average (0.4564)
F1 scores further confirms the influence of class imbalance on overall performance metrics.

These performance characteristics have important clinical implications, suggesting the
model could serve as an effective assistive tool for common findings while requiring expert
supervision for critical but rare conditions. Future work should focus on addressing the
class imbalance through targeted data augmentation strategies and developing specialized
architectures that can better capture the subtle visual features associated with challenging
conditions such as Pneumothorax (0.196 F1) and Fracture (0.014 F1).

These results demonstrate the potential of our proposed method for generating clini-
cally relevant and accurate text reports. The high precision ensures a low false positive
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rate, while further investigation is needed to improve recall, particularly for less frequent
findings.

Our architecture demonstrates competitive performance while maintaining a relatively
lightweight size compared to other approaches. This highlights the effectiveness of our
design choices and the benefits of leveraging pretrained models and domain-specific knowl-
edge.

4.2.2 Choosing the Image Encoder

To determine the most suitable pretrained image encoder for our architecture, we con-
ducted experiments with two public available models: U-Net, from the work [63], and
PSPNet, from TorchXRayVision [16]. Both models were pretrained on chest X-ray seg-
mentation tasks and adapted to fit into our proposed system, as detailed in Subsec-
tion 3.4.1

We trained the whole architecture using the same Q-Former initialization weights, Bio-
Clinical BERT, and same LLM decoder, BioGPT, and same hyperparatemeters, detailed
in previous sections.

For the training Stage 1 (Representation Learning), the whole process adopting U-Net
took approximately 27 hours, while PSPNet required significantly longer at around 102
hours.

In Stage 2 (Generation Learning), training the architecture with U-Net as the image
encoder took about 10 hours, compared to approximately 30 hours for PSPNet. This rep-
resents a substantial difference in computational requirements between the two encoders.

After both training stages, we evaluated the performance of both architectures using
clinical efficacy (CE) metrics — precision (P), recall (R), and F1 — to check if the choice
of image encoder significantly impacts the quality of generated reports. The metrics were
calculated by comparing the generated reports with the ground truth reports from the
test set.

Our experimental results, presented in Table 4.2, show that the U-Net encoder achieved
better performance across all CE metrics. Specifically, U-Net obtained higher precision
(0.5196 vs. 0.5039), recall (0.3707 vs. 0.3595), and F1 score (0.4327 vs. 0.4196) compared
to PSPNet. Furthermore, the U-Net-based architecture required substantially less training
time: only 37 hours compared to 132 hours for PSPNet (a reduction of approximately
72%).

Table 4.2: CE metrics comparison of the performance of full architecture adopting differ-
ent vision encoder pretrained models.

Vision Encoder Precision Recall F1 Total Training Time (h)

U-Net 0.5196 0.3707  0.4327 37
PSPNet 0.5039 0.3595 0.4196 132

The results suggest that U-Net model, with the available in-domain pretrained weights,
originally designed for chest X-ray image segmentation, provides more effective feature
extraction for chest X-ray interpretation in our multimodal framework.
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Based on these findings, we selected U-Net as our image encoder for subsequent ex-
periments, as it provided superior performance with significantly reduced computational
demands for training.

4.2.3 Choosing the Q-Former Initialization

We investigated the impact of initializing the Q-Former module with different pretrained
weights. Specifically, we compared the performance of the architecture when initialized
with vanilla BERT-base weights and domain-specific weights from BioClinical BERT and
BiomedBERT. The CE metrics can be found in Table 4.3.

To make a fair comparison, we used the same U-Net model as vision encoder, BioGPT
as LLM decoder, and identical hyperparameters during each training stage for each Q-
Former initialization weight under study.

Table 4.3: CE metrics comparison of the performance of full architecture adopting differ-
ent Q-Former initialization weights.

Q-Former Weights Precision Recall F1

BERT-base 0.5154 0.3636 0.4264
BioClinical BERT 0.5196 0.3707 0.4327
BiomedBERT 0.5142 0.4102 0.4564

The results demonstrated that initializing the Q-Former with BiomedBERT weights
led to a slightly better performance in terms of CE metrics, with an improvement of 0.03
in F1 score compared to the baseline BERT-base initialization. Therefore, we selected
BiomedBERT weights as the default Q-Former initialization weights for all subsequent
experiments.

While these improvements were modest, they suggest that domain-specific pretraining
can provide benefits for medical report generation tasks. To establish the statistical
significance of these differences, we would need to conduct additional experiments with
multiple random seeds and perform rigorous statistical testing.

4.3 Comparison Against Other Techniques

This section evaluates the effectiveness of our proposed method for generating text reports
from chest X-rays. Our architecture demonstrates a notable efficiency-to-performance ra-
tio, combining strong clinical accuracy with a significantly smaller parameter footprint
compared to competing approaches. We assessed performance using both Natural Lan-
guage Generation (NLG) metrics and more clinically relevant Clinical Efficacy (CE) met-
rics over the MIMIC-CXR-JPG test split.

4.3.1 Model Size

In order to have a fair comparison between our architecture and other techniques in terms
of number of parameters, in this subsection, we have chosen studies that also utilized LLMs
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as their text generator, as presented in Table 4.4.

Table 4.4: Comparison of the number of parameters of the text decoder in other studies
that also adopted an LLM to generate chest X-ray descriptions.

Method Parameters
XRayGPT 7B
ChatGLM-6B 6 B
Med-PaLM 540 B
CvT21-2DistilGPT2 82 M
Ours 347 M

Our architecture consists of approximately 515 million parameters, where 347 million
parameters are from the BioGPT, our text generator. Compared to other techniques, there
is considerable variation in model sizes. XRayGPT [70] has around 7 billion parameters
solely in its LLM model [12]. Similarly, Yang et al. [78] employed the ChatGLM-6B LLM
model [80], which comprises approximately 6 billion parameters. Med-PalLLM [66], on the
other hand, incorporates 540 billion parameters in its PaLM LLM. At the other end of the
spectrum, CvT21-2DistilGPT2 utilizes only about 82 million parameters. Unfortunately,
the works with larger models (XRayGPT, ChatGLM-6B, and Med-PaLLM) did not perform
a thorough evaluation using common datasets such as MIMIC-CXR-JPG or IU X-Ray.
However, they serve as works that also tried to adopt LLMs, so we can compare the size
of our models with theirs.

While CvT21-2DistilGPT2 utilizes a significantly smaller parameter count than our
approach, our architecture leverages BioGPT’s domain-specific knowledge and achieved
superior performance on CE metrics as demonstrated in Section 4.3.2. This illustrates
an important trade-off in the model design space: extremely large models such as Med-
PaLM (540B) may be impractical for many real-world deployments, while very small
models might sacrifice critical performance. Our 347M parameter model represents a
practical middle ground that balances computational efficiency with robust performance
for clinical applications.

4.3.2 Text Generation Metrics

In order to quantitatively compare our approach with other studies in the area, even with
the ones that do not utilize large language models, we evaluated the clinical efficacy of
the reports using CheXbert labels. Precision, recall, and F1l-score were calculated for
each CheXbert finding. Table 4.5 summarizes the overall CE performance compared to
existing methods.

Our method achieved the highest precision (0.5196) and F1 (0.4564) scores among
the evaluated methods, indicating a low rate of false positive findings. While CvT21-
2DistilGPT?2 [52] still maintains the highest recall (0.497), our model demonstrates com-
petitive recall (0.4102).

Table 4.6 presents a comparison of NLG metrics between other techniques and our
model. Our model has low scores if compared to other techniques. This could be explained
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Table 4.5: Performance comparison of medical image report generation methods using
CE metrics. Our proposed approach achieves state-of-the-art precision and competitive
F1 scores with only 102M trainable parameters in the Q-Former alignment model.

Method Precision Recall F1 Trainable Parameters
R2Gen [9] 0.333 0.273 0.276 65M
CMN [10] 0.334 0.275 0.278 64M
METransformer [77] 0.364 0.309 0.311 152M
COMG [24] 0.424 0.291 0.345 65M
CvT21-2DistilGPT2 [52] 0.398 0.497 0.442 82M
Ours 0.5142 0.4102 0.4564 102M

due to the fact the those NLG metrics were developed to mainly evaluate machine trans-
lation, which is clearly not the task here. Since our core model is a pre-trained GPT-2
model, our predictions may not align as closely with the ground truth. Consequently, this
misalignment could account for the observed low scores in our proposed model’s metrics.

Table 4.6: Comparison of the NLG metrics between our model and other techniques.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
R2Gen |9 0.353 0.218 0.145 0.103 0.142 0.277
CMN [10] 0.353 0.218 0.148 0.106 0.142 0.278
METransformer [77] 0.386 0.250 0.169 0.124 0.152 0.291
COMG (24| 0.346 0.216 0.145 0.104 0.137 0.279
CvT21-2DistilGPT2 [52] 0.462 0.295 0.214 0.165 0.192 0.370
Ours 0.284 0.165 0.106 0.074 0.120 0.201

4.4 Additional Analyses

This section provides additional discussion on some results obtained with the proposed
method.

4.4.1 Single Image vs. Multiple Images

We investigated the impact of using a single image versus multiple images as input to our
architecture. Contrary to our initial expectations, the results demonstrated that utilizing
multiple images did not lead to improved performance, as presented in Table 4.7. We
hypothesized that lateral images provided less diagnostic information compared to frontal
images, potentially introducing noise into the training process rather than contributing
meaningful features.

For the subset containing both lateral and frontal images, we processed each image
individually through the vision encoder, and then aggregated the vector representations
by averaging them, an approach adopted in previous multi-view medical imaging studies,
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Table 4.7: Performance comparison between multi-view and single-view approaches using
CE metrics.

Approach Precision Recall F1
Frontal and Lateral Views 0.5037 0.3456  0.4099
Frontal View Only 0.5142 0.4102  0.4564

as illustrated in Figure 4.6. However, this simple averaging strategy may have diluted the
discriminative features present in frontal images.

Representations

.
— Averaged
Image ==—cd Tl HE BER Representations
Average  —» | | | | |
Encoder

h}‘_. —HTETEITT]

Figure 4.6: Hlustration of our multi-view X-ray encoding apjpproach. The ajchitecture pro-
cesses frontal and lateral X-ray images independently, followed by averaging the resulting

vectors. Source: elaborated by this author.
| |

Therefore, future work should explore more sophisticat¢d methods off feature aggre-

gation in multi-view imaging systems, such as attention mechanisms, learned weighting
schemes that could better capture complementary information across different perspec-
tives, or even simply concatenating the feature vectors instead of averaging them.

4.4.2 CE and NLG Metrics

Further analysis revealed an interesting nuance between clinical efficacy (CE) metrics and
Natural Language Generation (NLG) metrics in the context of chest X-ray report gener-
ation. Specifically, within a subset of high-performing predictions based on CE metrics
— where predictions perfectly conveyed observations from the X-rays (i.e., a manually se-
lected sample with perfect Precision and Recall) — the corresponding NLG metrics once

again exhibited low scores (seeCTable 28— This findihg reinforces that NLG metrics

alone may not reliably indicate model quality for this task, as other studies have also
suggested |[7].

Table 4.8: NLG metric scores (e.g., BLEU, ROUGE-L) for a subset of model predictions
that achieved perfect Precision, Recall, and F1-score in the clinical efficacy (CE) evalua-
tion.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
0.275 0.171 0.117 0.086 0.138 0.222

Even predictions which are clinically accurate by CE metrics might not receive high
NLG scores. This highlights the limitations of NLG metrics in capturing the full spectrum
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of factors that contribute to good clinical reports, such as factual accuracy or nuanced
phrasing.

4.4.3 Grad-CAM Analysis

We explored the application of Gradient-weighted Class Activation Mapping (Grad-
CAM) [64] to visualize the attention patterns of the vision component during word gen-
eration. This technique analyzes neural network activations during input processing—in
our case, chest X-rays—and enables gradient backpropagation to identify which image
regions contribute to specific outputs in the generated report.

We attempted to guide the vision model’s attention by inserting specific prompts
into the LLM component, but this approach proved ineffective. As noted earlier, LLM
prompts are textual instructions that influence the language model’s processing and out-
put generation — in our case, serving as the initial text from which the LLM generates its
response.

However, our initial analysis did not yield significant insights. In shallow layers of the
vision encoder, we observed that attention was predominantly directed toward extraneous
elements such as alphanumeric markers indicating the left /right sides of the radiogram or
AP /PA positioning information, rather than clinically relevant findings, as can be seen in
Figures 4.7 and 4.8. Even in deeper layers of the vision encoder, the attention patterns
remained difficult to interpret meaningfully.

Due to time constraints, we were unable to pursue a more comprehensive refinement
of our Grad-CAM methodology. Further exploration of visualization techniques remains
an important direction for future work to better understand the model’s attention mech-
anisms and improve its interpretability in clinical contexts.
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Figure 4.7: Grad-CAM visualization of vision encoder attention across three network
depths (A - early, B - middle, C - late layers) when identifying cardiomegaly in chest
radiograph. The given prompt was “the heart”, and the generated text was “the heart is
moderately enlarged”.
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Figure 4.8: Grad-CAM visualization of vision encoder attention across three network
depths (A - early, B - late layers) when identifying cardiomegaly in chest radiograph. The
given prompt was “the heart”, and the generated text was “the heart size is normal”.
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Chapter 5

Conclusions

In this study, we proposed a lightweight architecture for chest X-ray captioning that lever-
ages pretrained models and domain-specific knowledge. Through extensive experiments,
we demonstrated the effectiveness of our design choices, including the selection of U-Net
as the image encoder and the initialization of the Q-Former module with BiomedBERT
weights.

Our architecture achieved competitive performance while maintaining a compact size
- with only 347 million parameters in its text decoder component (compared to 7 billion
in competing approaches), attaining the highest precision (0.5142) and Fl-score (0.4564)
among evaluated methods while maintaining competitive recall (0.4102). This confirms
that effective medical image captioning is possible without relying on computationally
expensive models with billions of parameters.

The experimental results showed that our model, with only 347 million parameters
in its text decoder component (compared to 6-540 billion in competing approaches), at-
tained the highest precision (0.5142) and Fl-score (0.4564) among evaluated methods
while maintaining competitive recall (0.4102) score. This confirms that effective medical
image captioning is possible without relying on computationally expensive models with
billions of parameters.

Our qualitative analysis with an emergency medicine specialist provided critical in-
sights beyond what computational metrics alone could reveal. Despite achieving com-
petitive CE metrics, the specialist identified important areas for improvement in report
content and structure. Importantly, this evaluation highlighted the contextual nature of
report assessment; when informed that our model was trained on emergency department
reports rather than formal radiological reports, the specialist acknowledged that evalua-
tion criteria would differ. This recognition underscores the importance of aligning evalu-
ation frameworks with the specific clinical context and intended use case of Al-generated
reports.

Our work also makes an important methodological contribution through critical exam-
ination of current evaluation metrics. We demonstrated a concerning disconnect between
standard metrics and clinical utility, observing that reports with perfect CE scores still
received poor NLG scores. This observation questions the validity of current metrics for
medical text evaluation and highlights how CE metrics reduce rich reports to categor-
ical classifications, losing subtle information about severity or location. These findings
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highlight limitations in conventional text generation evaluation methods when applied to
medical reports and suggest the need for more clinically aligned evaluation frameworks.

Finally, additional analyses provided valuable insights into various aspects of the ar-
chitecture. Notably, we discovered that using only frontal chest X-ray views yielded better
results than incorporating multiple views, suggesting that simple image feature averaging
may not be the optimal approach for aggregating information from different radiological
projections.

5.1 Addressing the Research Questions

Regarding the first question of whether smaller in-domain pre-trained LLMs can effec-
tively generate well-written captions for chest X-ray images, our findings provide a clear
affirmative answer. The architecture using BioGPT (345 million parameters) as the text
decoder successfully generated clinically relevant and coherent descriptions of chest X-
rays. Despite being significantly smaller than competing models with 7 billion parameters,
the model produced detailed and structured reports that accurately captured radiological
findings. The qualitative analysis of generated reports confirms that the smaller LLM
demonstrates adequate linguistic proficiency for the task, generating structurally sound
reports with appropriate medical terminology and logical organization. As shown in the
text samples (Figures 4.1, 4.2 and 4.3), the generated captions were often more descriptive
than the original reports, providing comprehensive details about normal and abnormal
findings. The model successfully maintained coherence across sentences and appropri-
ately used domain-specific vocabulary, though occasional “hallucinations” (irrelevant or
nonsensical phrases) were observed in some complex cases.

On the question of caption accuracy, the results suggest that smaller in-domain pre-
trained LLMs can generate relatively accurate captions for chest X-ray images when com-
pared to existing methods. The model achieved the highest precision (0.5142) and F1-
score (0.4564) among compared methods, indicating a lower rate of false positive findings
among the compared methods. While its recall (0.4102) was somewhat lower than the
best-performing method, it was competitive, approaching the state-of-the-art. However,
it’s important to note that these metrics represent relative improvements rather than
absolute measures of clinical adequacy. Furthermore, the limitations of current evalu-
ation frameworks make it difficult to develop a comprehensive understanding of model
performance in real emergency settings.

Analysis of performance across different findings categories (Table 4.1) reveals varying
consistency in capturing diagnostic content. The model performed relatively well on
common findings such as Support Devices (0.751 F1), Cardiomegaly (0.602 F1), and
Pleural Effusion (0.595 F1), but struggled with less prevalent conditions such as Lung
Lesion, Pneumothorax, and Fracture. This suggests that while the model can capture
major diagnostic content in many cases, its reliability decreases significantly for rarer
conditions or more subtle abnormalities. These performance disparities highlight not
only room for improvement in capturing the full range of diagnostic content but also
underscore the need for more nuanced evaluation metrics that better reflect clinical utility
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across diverse radiological findings.

Furthermore, we demonstrated a concerning disconnect between standard metrics and
clinical utility, observing that reports with perfect CE scores still received poor NLG
scores. This observation questions the validity of current metrics for medical text evalua-
tion and highlights how CE metrics may reduce rich reports to categorical classifications,
losing nuanced information about severity, location, and progression.

Regarding the evaluation metrics, the research identified significant limitations in stan-
dard text generation metrics (BLEU, ROUGE, METEOR) for evaluating chest X-ray
descriptions. Despite generating some clinically accurate reports (as measured by CE
metrics), the model received relatively low NLG scores compared to other studies. Even
in a manually selected generation subset with perfect CE scores, i.e., texts correctly de-
scribing what findings are present in the associated chest X-rays, the NLG metrics were
poor because the generated text was written differently from what was expected. There-
fore, the common metrics currently being utilized for analyzing medical generated text
fail to capture clinical relevance and accuracy. The CE metrics (precision, recall, F1)
based on the CheXbert labeler better reflect clinical relevance since they focus on the
presence or absence of specific findings regardless of exact phrasing, which is more aligned
with how specialists would assess report accuracy, even though these metrics still have
limitations in capturing the nuanced linguistic aspects of medical reporting. Therefore,
we still highlight the need for specialized evaluation frameworks that better correlate with
expert medical knowledge and clinical judgment.

5.2 Limitations

Despite the promising results, this research faced several limitations that should be ac-
knowledged. A significant challenge was the model’s performance on the minority classes
of findings, as Lung Lesion, Pneumothorax, and Fracture, for example. The model strug-
gled to accurately identify such findings, achieving very low scores. This indicates a
limitation in handling less prevalent chest X-ray conditions, which can be particularly
problematic in emergency settings where accurately identifying critical findings can be
essential for patient care.

A fundamental limitation of this work relates to dataset imbalance. The MIMIC-CXR
dataset, as well as many medical datasets, exhibits significant class imbalance with certain
findings being substantially more prevalent than others. For instance, common findings
such as cardiomegaly and pleural effusion are well-represented, while rarer conditions
such as pneumothorax and fractures appear in only a small fraction of the dataset. This
imbalance directly impacted our model’s performance, leading to biased predictions that
favor common conditions while struggling with underrepresented ones. Therefore, in the
future, techniques to address this would be essential, such as implementing advanced data
augmentation method or designing different cost function what handle class imbalance.

Also, our studied approach to incorporate multiple X-rays views in the text generation
process presented limitations. The simple approach to average the image features was
not effective and potentially introduced noise to the diagnostic information rather than
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enhancing it. This suggest that more sophisticated methods for multi-view integration
should be analyzed and developed in order to leverage all complimentary information
that different radiological projections could bring, which is a capability that physicians
routinely employ in their diagnostic process.

Finally, the model behavior also showed limitations in consistency and reliability. The
occasional generation of irrelevant or incorrect information, particularly for complex cases,
indicates limitations in the model’s ability to fully understand and interpret all radiological
scenarios. These “hallucinations” represent a significant concern for clinical applications
where factual accuracy is paramount. While our smaller model architecture demonstrated
impressive capabilities overall, these instances of unreliable output highlight the ongoing
challenges in developing trustworthy AI systems for healthcare.

5.3 Future Work

Our research lays the groundwork for several promising avenues of future exploration.
Building upon our lightweight architecture for chest X-ray captioning, we envision a com-
prehensive research agenda focused on both technical advancement and clinical applica-
tion.

A critical next step involves conducting comprehensive hardware cost analyses com-
paring our lightweight approach against off-the-shelf models like GPT-4 or available larger
medical LLMs. This economic analysis would provide concrete evidence for the practical
advantages of lightweight architectures in resource-constrained environments and inform
deployment decisions for healthcare institutions with varying computational budgets.

The enhancement of the model’s efficiency remains a priority, with opportunities to ap-
ply neural network optimization techniques such as distillation and quantization while pre-
serving performance quality. Moreover, we see significant potential in leveraging domain-
specific knowledge by pretraining both language and vision components on specialized
medical datasets. By utilizing medical literature, radiology reports, and chest X-ray col-
lections, we could develop models with deeper understanding of radiological findings and
medical terminology.

Perhaps most significantly, our long-term vision extends beyond technical improve-
ments to practical clinical applications. The system could be evolved into an assistive tool
that can support emergency physicians in their reporting workflow. Beyond serving as a
chest X-ray writing copilot to standardize reporting language and reduce documentation
burden, the system could provide differential diagnosis support by suggesting findings that
emergency physicians might not have considered based on the patient’s presenting symp-
toms, potentially expanding the diagnostic workup when subtle or unexpected pathology
is present.

Additionally, such a system holds significant promise as a training and educational
tool for medical students and residents, highlighting subtle findings and demonstrating
systematic radiological evaluation approaches that are fundamental to developing clinical
expertise. This educational application could help bridge the gap between theoretical
knowledge and practical pattern recognition skills that are essential in emergency radiol-
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ogy interpretation. Such a comprehensive system would always position human experts at
the center of the diagnostic process, with our technology serving in a supportive capacity
to augment rather than replace clinical expertise, while providing cognitive support for
both experienced physicians facing time pressure and trainees developing their diagnostic
skills.

A critical area for advancement relates to evaluation methodologies for medical text
generation. As discussed previously, current metrics such as BLEU, ROUGE, and even
domain-specific measures such as Clinical Efficacy have significant limitations in capturing
the nuances of medical language and clinical relevance. It would be beneficial to develop
more sophisticated evaluation frameworks that better integrate expert medical knowledge
and align with clinical judgment. This could involve creating hybrid metrics that assess
not only the presence of findings but also their accurate description, location, severity, and
clinical significance. Such improved metrics would provide more meaningful evaluation
of model performance and better guide the development of systems that generate truly
clinically useful text.
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