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Resumo
Objetivo: A periodontite apical é uma inflamação crônica associada a infecções endodônticas 

e diretamente regulada pela resposta imune do hospedeiro. Os metais são essenciais para o 

metabolismo e desempenham um papel crucial nas funções biológicas. No entanto, o perfil 

metalográfico diferencial entre a periodontite apical e a condição óssea saudável ainda não foi 

explorado. Metodologia: Este estudo incluiu 76 primeiros molares inferiores (de 38 ratos 

Wistar), comparando lesões periapicais induzidas e controles (sham). A indução das lesões 

periapicais foi realizada por meio da exposição pulpar dos dentes, permitindo o 

desenvolvimento da infecção. Após 40 dias, os animais foram reponderados, eutanasiados e 

suas hemimandíbulas analisadas por radiografia periapical, análise histológica, 

microtomografia computadorizada (µ-CT), microscopia de fluorescência de raios X (μ-XRF), 

microscopia eletrônica de varredura com espectroscopia de energia dispersiva (SEM/EDS), 

espectrometria de emissão óptica com plasma indutivamente acoplado (ICP-OES) e 

espectrometria de massa com plasma indutivamente acoplado (ICP-MS). Foram analisados dez 

metais essenciais ao metabolismo (sódio, potássio, magnésio, cálcio, ferro, manganês, cobalto, 

cobre, zinco e molibdênio). O nível de significância adotado foi de 5%. Resultados: A análise 

radiográfica confirmou a indução das lesões periapicais, sem diferença no peso dos animais 

entre as condições (p > 0,05). Histologicamente, as lesões periapicais apresentaram infiltrado 

inflamatório intenso, células com grânulos citoplasmáticos azulados, reabsorção alveolar e 

escores variando de moderado a intenso. A análise por µ-CT da lesão induzida revelou uma 

diferença significativa no volume da região periapical (12,74 mm³, p = 0,0017). O SEM/EDS 

apresentou sensibilidade limitada para os elementos químicos investigados; entretanto, o μ-

XRF identificou intensidades reduzidas para cálcio e zinco e aumentadas para ferro. As análises 

por ICP-MS e ICP-OES identificaram concentrações aumentadas de sódio (p = 0,0137), 

potássio (p = 0,0005), cálcio (p = 0,0059), magnésio (p = 0,0004), ferro (p < 0,001), ferro-56 

(p = 0,0078), ferro-57 (p = 0,0315) e manganês (p < 0,001) na lesão periapical induzida, 

sugerindo um impacto direto na homeostase mineral decorrente dessa patologia. Conclusões: 

Este estudo demonstrou diferenças nos níveis de diversos elementos essenciais entre as 

condições com lesões periapicais e os controles saudáveis.

Palavras-chave: Endodontia, lesão periapical, metalômica, metal.



Abstract 
Aim: Apical periodontitis is a chronic inflammation associated with endodontic infections and 

directly regulated by the host immune response. Metals are essential to the metabolism, playing 

a crucial role in biological functions. However, the differential metallographic profile between 

apical periodontitis and its healthy bone condition has not yet been explored. Methodology:  
This study included 76 lower first molars (from 38 Wistar rats) where induced periapical lesions 

and controls (sham) were compared. Periapical lesion induction was performed by pulp 

exposure of these teeth, allowing spontaneous infection development. After 40 days, the 

animals were reweighed, euthanised, and their hemimandibles analysed by periapical 

radiography, histological analysis, micro-computed tomography (µ-CT), X-ray fluorescence 

microscopy (μ-XRF), scanning electron microscopy with energy dispersive spectroscopy 

(SEM/EDS), inductively coupled plasma optical emission spectrometry (ICP-OES), and 

inductively coupled plasma mass spectrometry (ICP-MS). Ten essential metals for metabolism 

were analysed (sodium, potassium, magnesium, calcium, iron, manganese, cobalt, copper, zinc, 

and molybdenum). The analyses observed a significance level of 5%. Results: Radiographic 

analysis confirmed the induction of periapical lesions, without difference in animal weight 

between the conditions (p > 0.05). Histologically, the periapical lesions showed intense 

inflammatory infiltrate, cells with bluish cytoplasmic granules, alveolar resorption, and scores 

ranging from moderate to intense. The µ-CT analysis of the induced lesion revealed a 

significant difference in the periapical region volume (12.74 mm³, p = 0.0017). SEM/EDS 

showed limited sensitivity for the investigated chemical elements; however, μ-XRF identified 

diminished intensities for calcium and zinc and increased intensities for iron. ICP-MS and ICP-

OES identified increased concentrations of sodium (p = 0.0137), potassium (p = 0.0005), 

calcium (0.0059), magnesium (p = 0.0004), iron (p < 0.001), 56iron (p = 0.0078), 57iron (p = 

0.0315), and manganese (p < 0.001) within the induced periapical lesion, suggesting a direct 

impact on mineral homeostasis following this pathology. Conclusions: These findings indicate, 

for the first time, changes in the mineral profile in periapical lesions compared with healthy 

periapices highlighting the importance to investigate therapeutic or diagnostic approaches 

aiming to restore the mineral homeostasis disrupted by this pathological condition. Future 

metallic-content smart technology for both endodontic materials and diagnostic tools are 

desirable. 

Keywords: Endodontics, periapical lesion, metallomics, metal
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INTRODUÇÃO

A periodontite periapical é uma doença inflamatória crônica, causada por infecção 

endodôntica, e o seu desenvolvimento é regulado pela resposta imune e inflamatória do 

hospedeiro (133). As comunidades microbianas endodônticas presentes na periodontite apical 

foram amplamente investigadas tanto em lesões primárias (4) quanto persistentes após o 

tratamento endodôntico (5). Assim, essas lesões são tratadas clinicamente através de um 

tratamento ou retratamento endodôntico que desinfecta, promove o selamento do canal 

radicular através da obturação e permite a reabilitação por promover o selamento da coroa 

dental (6). Os resultados a longo prazo do tratamento endodôntico são influenciados tanto pela 

natureza da interação hospedeiro/infecção (fatores inerentes ao paciente) quanto pela eficácia 

operatória do tratamento e manutenção da integridade do dente tratado para resistir à reversão 

da infecção (7).

Na tentativa de se descrever o mecanismo dessa condição patológica, estudos anteriores 

consideraram o papel da polarização dos macrófagos em lesões periapicais associada à infecção 

(8); o papel das endotoxinas bacterianas na etiologia da lesão periapical, incluindo mecanismos 

moleculares envolvidos no seu reconhecimento e na ativação celular  (9); a potencial ação 

supressora das citocinas com implicações na intensidade da reação inflamatória e na extensão 

da perda óssea alveolar que resulta em lesão periapical (10,11); e a potencial influência da dieta 

no desenvolvimento de lesões periapicais (12).

Diversos eventos histológicos e etiopatogênicos ocorrem para o reparo de lesões 

periapicais após a terapia endodôntica (13) que incluem mecanismos de remodelação óssea para 

o reparo de periodontite apical crônica após a terapia endodôntica (14) e o processo de reparo 

que ocorre paralelamente à presença de lesão periapical exercido por células indiferenciadas 

(stem cells) (15). No entanto, mesmo considerando os esforços dos relatos anteriores no intuito 

de se estabelecer o mecanismo dessa patologia, nenhum estudo anterior considerou potenciais 

diferenças entre o perfil metalográfico da periodontite apical comparativamente ao estado de 

saúde analisando os níveis de elementos químicos metálicos essenciais ao metabolismo.

As ciências 8ômicas9 são de fundamental importância considerando uma abordagem 

holística na definição de um modelo de doença (16). A metalômica compreende a análise da 

composição inorgânica de células, tecidos ou fluidos biológicos e determina possíveis 

alterações nos níveis de elementos químicos devido ao aparecimento de uma doença (17,18). O 

corpo humano precisa de cerca de vinte elementos essenciais para um correto metabolismo e, 
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dentre eles, dez (sódio, potássio, magnésio, cálcio, ferro, manganês, cobalto, cobre, zinco e 

molibdênio) são elementos químicos metálicos (19,20). O comportamento catalítico de metais 

no metabolismo quando resulta na formação de radicais hidroxila reativos e estresse oxidativo 

pode causar danos ao DNA, proteínas e membranas (21). Dessa forma, o estabelecimento do 

perfil metalográfico da periodontite apical potencialmente contribuiria para um entendimento 

mais amplo das variações relacionadas aos elementos químicos essenciais para essa condição 

patológica endodôntica. Além disso, a compreensão do perfil metalográfico dessa patologia 

poderia alicerçar a futura investigação de marcadores e etapas operatórias que contribuiriam 

para um desfecho mais previsível do tratamento endodôntico.

O metaloma está envolvido em uma variedade de processos vitais, incluindo equilíbrio 

de carga e atividade elétrica, estrutura e conformação, sinalização, equilíbrio ácido-base, 

transferência de elétrons, armazenamento de energia e catalisação redox, além de contribuir 

para a biomineralização (22). Quando se realiza a combinação da investigação do metaloma 

com outros fenômenos biológicos, como o metaboloma e proteoma, é possível identificar redes 

de interações específicas nos órgãos em diferentes campos e estudos. Estudos têm demonstrado, 

que a concentração de ferro e a composição de isótopos de cobre estão relacionadas a 

indicadores de saúde metabólica, como percentual de gordura corporal e capacidade máxima 

de corrida, bem como processos bioquímicos como a adipogênese (22). 

Além disso, em um estudo envolvendo a caracterização metalômica de amostras de 

plasma de crianças e adolescentes com obesidade e resistência à insulina, observou-se uma 

correlação significativa entre essas alterações multi-elementares e as complicações metabólicas 

comumente associadas à obesidade infantil. Especificamente, constatou-se que a presença de 

desequilíbrios nos elementos metálicos estava intimamente ligada ao comprometimento do 

metabolismo de carboidratos e lipídios, que é mediado pela insulina (23). Vale ressaltar também 

que o potássio é um elemento que ao ocorrer um distúrbio na sua homeostase pode provocar o 

desenvolvimento de várias doenças crônicas, incluindo hipertensão, doenças cardiovasculares, 

diabetes, condições neurodegenerativas e de saúde óssea. Nesse contexto, a composição 

isotópica do potássio tem se mostrado um biomarcador promissor para avaliar a saúde e o estado 

metabólico dos indivíduos (24).

Estudos anteriores (25327) justificam a validade de adoção do modelo animal (Wistar 

rat) aqui proposto para a caracterização metalômica de lesões periapicais induzidas. É 

fundamental estabelecer a caracterização metalográfica inicial (sem outros fatores associados) 

comparativa entre as condições com e sem lesão periapical para servir de alicerce para futuras 

análises. Vale ressaltar a importância do presente estudo no sentido de esclarecer futuras 
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correlações com estudos microbiológicos, especialmente considerando a questão de o porquê 

alguns indivíduos apresentam lesão periapical e outros não, mesmo com tratamentos 

endodônticos similarmente insatisfatórios (28). Além disso, estudos anteriores em periodontia 

buscaram estabelecer correlações tanto entre marcadores locais e sistêmicos quanto 

demonstrando alterações metalômicas em comparação entre as condições de saúde e doença 

(29332) o que demonstra a preocupação dessa especialidade em investigar esse tipo de 

correlação.
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2.  ARTIGO: CARACTERIZAÇÃO METALÔMICA DE LESÕES PERIAPICAIS 
INDUZIDAS – ESTUDO IN VIVO

A presente dissertação foi formatada seguindo as normas do método alternativo de apresentação 

(Elaboração e Normalização de Teses e Dissertações da FOP/Unicamp, 2015 e atualização de 

2023) incluindo um artigo. 

Artigo foi submetido ao periódico International Endodontic Journal com título Caracterização 

metalômica de lesões periapicais induzidas: estudo in vivo (Anexo 2). 
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Introduction

Apical periodontitis is a chronic inflammatory disease caused by endodontic infection, 

and its development is regulated by the host's immune and inflammatory response (Gomes and 

Herrera 2018; Nair 2004; Sasaki et al. 2016). The initial phase of this pathology is characterised 

by an inflammatory response mediated by pro-inflammatory macrophages, whereas in its 

resolution phase, macrophages and regulatory T cells aim to promote tissue repair. Moreover, 

symptomatic periapical lesions are associated with elevated levels of pro-inflammatory 

cytokines and factors such as RANK-L, which induce bone resorption, and matrix 

metalloproteinases (MMPs), which contribute to tissue destruction. Host immune regulation 

and the production of reactive oxygen species (ROS) also appear to play a crucial role in the 

progression and exacerbation of periapical lesions (Hussein and Kishen 2022).

Endodontic microbial communities present in apical periodontitis have been extensively 

investigated in both primary lesions (Buonavoglia et al. 2023) and those persisting after 

endodontic treatment (Gomes et al. 2021). Clinically, these lesions are managed by endodontic 

treatment or retreatment, aiming to disinfect the root canal, achieve proper sealing through 

obturation, and allowing the rehabilitation of the dental structure (Karamifar 2020). Long-term 

outcomes of endodontic treatment are influenced by the nature of the host-infection interaction, 

the procedural effectiveness of the treatment, and the maintenance of the treated tooth9s 

integrity to support the reversal of the pathological process (Gulabivala and Ng 2023).

The success rate of primary endodontic treatment in teeth with pulp necrosis and 

asymptomatic apical periodontitis is 81.1% (Da Silva et al. 2023). Non-surgical primary 

endodontic treatments have a success rate of 85394% . In the case of 

retreatments, non-surgical approaches show a success rate of 74382% (Sundqvist et al. 1998; 

De Chevigny et al. 2008), while endodontic microsurgery achieves a 94% success rate 

(Serefoglu et al. 2021) Retreatment of symptomatic mandibular first molars with periapical 

lesions has shown an 88% success rate (Serefoglu et al. 2021).  This suggests that the 

predictability of periapical lesion treatment has not yet been fully achieved and that factors 

beyond anatomical and microbiological aspects need further investigation. Moreover, although 

significant advancements have been made in incorporating innovative technologies into 

endodontic armamentarium, challenges still remain to be fully overcome.

Mechanisms of apical periodontitis have been described, considering: the role of 

macrophage polarization in infection-associated periapical lesions (Song et al. 2022); the 
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involvement of bacterial endotoxins in the aetiology of periapical lesions, including molecular 

mechanisms involved in their recognition and cellular activation (Lucisano et al. 2014); the 

potential suppressive action of cytokines, which impacts the intensity of the inflammatory 

response and the extent of alveolar bone loss leading to periapical lesions (Braz-Silva et al. 

2019; Menezes et al. 2008); and the possible influence of diet on the development of periapical 

lesions . Additionally, various histological and pathogenic 

events related to the repair of periapical lesions following endodontic therapy have been 

described , including bone remodelling mechanisms involved in the repair 

of chronic apical periodontitis after endodontic treatment (Luo et al. 2022) and the concurrent 

processes influenced by undifferentiated cells (stem cells) in the presence of periapical lesions 

(Lyu et al. 2022).

Despite previous advances in elucidating the mechanisms of apical periodontitis, no prior 

research has analysed the metallographic differences between healthy and apical periodontitis-

affected tissues. Evidences that the incorporation of metals into endodontic materials may 

modulate inflammation, stimulate bone repair, and improve treatment predictability (Wu et al. 

2020; Huang et al. 2021; Silingardi et al. 2024) are available. However, opening new therapeutic 

possibilities, such as the development of medications or endodontic materials enriched with 

essential metals could contribute to maintaining and/or influencing the homeostasis, creating a 

favourable environment for tissue regeneration and repair.

(Roverso et al. 2023; Yasuda et al. 2020). 

(Jomova et al. 2022; Zoroddu et al. 2019). 

(Pizzino et al. 2017). 

Changes in essential elements within biological tissues have been identified in 

pathological conditions (Bjorklund et al. 2018; Doroszkiewicz et al. 2023; Takeda 2003; 

Andrews 2002), but evidence of this phenomenon in apical periodontitis is still lacking.  Recent 

studies have shown that trace metal analysis in tissues can provide accurate information, 

allowing the identification of specific patterns associated with disease etiology (Stelling et al. 

2019). For example, studies on thyroid tissues have shown that each thyroid disease exhibits a 

unique profile of metals, such as arsenic, lead, cadmium, copper, zinc, and selenium, in both 
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healthy and pathologically altered tissues (Stojsavljević et al. 2019). Altered intracellular zinc 

levels impair antioxidant and stress responses, promoting endothelial damage and inflammation, 

which may worsen cardiovascular diseases like ischemia/reperfusion by disrupting metal 

homeostasis (Smith et al. 2023).  Preeclampsia, a placental disorder with uteroplacental 

hypoperfusion, is linked to lower magnesium, calcium, iron, copper, zinc, and selenium levels. 

Increased selenium may reduce risk, suggesting a link between metal imbalances and the 

disease (Hao et al. 2024). 

This study aims to establish, for the first time, the differential metallomic profile between 

healthy and lesion-affected periapical tissues. Identifying specific metal patterns could improve 

the understanding of disease pathogenesis and unlock new perspectives for advancements in 

diagnosis, prognosis, and more effective therapeutic strategies. The null hypothesis posits that 

there are no elemental differences between healthy and lesioned periapical bone.

Material and methods

This in vivo study was performed in accordance with the Preferred Reporting Items for 

Animal Studies (PRIASE) 2021 guidelines (Nagendrababu et al. 2020) (Figure 1), and 

following ethical guidelines approved by the Animal Use Ethics Committee (Protocol CEUA: 

6219-1/2023).

Sample size calculation

The sample size was determined using G*Power 3.0 software (Kavoli et al. 2017), 

considering a statistical power of 0.80, a 5% significance level, and a medium effect size. The 

calculation resulted in 40 male Rattus norvegicus, Albinus lineage, Wistar strain 

(Supplementary table 1) of which two first mandibular molars, totalling 80 experimental units 

(n = 80), were desired.

Figure S1 (Supplementary material) shows the experimental design here further 

described.

Animals
The animals were housed in an animal facility throughout the experimental period under 

a controlled room temperature of 22±1°C and a 12-hour light-dark cycle (lights on from 7:00 

am to 7:00 pm). From birth until day 56 of life, the animals were kept in collective cages, having 

ad libitum access to water and food throughout the study. 
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Figure 1: PRIASE 2021 flowchart illustrating the steps involved in conducting the present study.

Induction of periapical lesion in lower molars

At 56 days of age, animals were weighed and anaesthetised using a combination of 

Ketamine (90 mg/kg) (Vet Brands Int, Miramar, Fl, USA) and Xylazine (10 mg/kg) (AnaSed®, 

Akorn Animal Health, United States) via intramuscular injection. After anaesthesia, the animals 

were carefully positioned on an operating table to allow for containment and mouth opening, 

providing access to the occlusal surface of the lower molars (Chicarelli et al. 2021; Kavoli et 

al. 2017). The mesial sulcus of the first lower molar was determined as the drilling point, as the 

root with a larger canal volume is anatomically located just beneath this structure.

In sequence, pulp exposure was performed bilaterally (Metzger et al. 2002) using a 1/2 

spherical bur (EARC4, Dentsply Tulsa Dental Specialities, Oklahoma, United States), mounted 

on a high-speed turbine. The bur was introduced to a depth of approximately 1 mm, avoiding 

furcation damage, with confirmation of pulp exposure by light probing and visual inspection of 

pulpal bleeding. To induce bacterial contamination, potentially leading to periapical lesion 

formation, teeth were left without sealing for a period of 40 days.  

For analgesia, subcutaneous administration of metamizole sodium (100 mg/kg) (Neo-

Melubrina®, Sanofi, México) was performed immediately after the procedure, and it was also 

diluted in drinking water at a ratio of 200 ml of water to 0.2 ml of metamizole sodium. For the 

sham controls, a simulated intervention was performed, which included immobilization, 

anesthesia and administration of metamizole sodium, but without pulp exposure procedure.

In the immediate postoperative period, one animal from each methodological condition 

did not survive the anaesthesia application, leading to its exclusion from the study. 

Euthanasia of animals and sample preparation

After 40 days, all animals (92 days-old) were reweighed using an electronic scale with 

an accuracy of 102 g. Following this, the animals were administered a triple overdose of 

anaesthetic, and ventral access up to the heart was performed to ensure euthanasia and samples 

collection containing the induced periapical lesions (n = 38) and control shams (n = 38).

For analyses, the mandibles were carefully removed, dissected, and divided into 

hemimandibles using blunt-end scissors and a #15 scalpel blade (Bard-Parker, Dickinson & Co., 

Franklin Lakes, USA). Samples were stored according to the specific methodological 

requirements. The experimental protocol for sampling and storage is shown in Figure S2 

(Supplementary material).
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Analysis of periapical lesion area

Digital periapical radiographs were taken of all the hemimandibles (n = 76) using a 

radiology device (Dexis® Titanium, Dexis, United States). The hemimandibles were positioned 

perpendicular along the long axis of the tooth, with a focal-film distance of 6 cm, 70 kVp and 

7 mA parameters, and an exposure time of 0.3 seconds. The ImageJ software (version 1.54, 

National Institutes of Health, Washington, DC, USA) was used to measure the area suggestive 

of the induced periapical lesion.

For each image, the image calibration tool (set scale) was initially applied by entering 

the dimensions of the radiographic sensor (43 mm x 31 mm). Then, using the freehand 

selections tool, the radiolucent area at the apices of the first lower molar roots was manually 

outlined. The same operator took the measurement, and the area was obtained. When the image 

of the induced periapical lesion displayed fusion between the roots, a single area measurement 

was calculated, and when the lesions were separate, the area was measured individually for 

each root and these measurements were summed.

Histological analysis
Histological analysis was conducted (n = 9 per group) in bone tissue blocks cut into a 

quadrangular shape, with the strategic removal of the condyles and incisor tooth to optimize 

processing. The specimens were placed in labelled cassettes and washed for two hours under 

running water.

Over 80 days, the samples were immersed in 17% ethylenediaminetetraacetic acid 

(EDTA) with daily solution changes aiming for decalcification. Afterward, these were 

embedded in paraffin and sectioned at 5 µm thickness using a Leica RM 2155 microtome 

(Nussloch, Germany). The sections were then mounted on glass slides and stained with 

haematoxylin and eosin (H&E). Representative digital images of the periapical region, 

including bone tissue, dental root, and soft tissue, were obtained using a Zeiss Axioskop II 

microscope (Switzerland), equipped with a Sony CCD IRIS RGB DXC-151A camera (Tokyo, 

Japan) and Kontron KS300® software (München, Germany). Images were captured at 4x, 10x, 

and 40x magnification for each histological section.

The intensity of periapical inflammation was evaluated using a scoring system. Manual 

counting of inflammatory cells was performed in six quadrants around the root apex, by a single 

calibrated operator. The intensity of the inflammatory infiltrate was classified based on the 

mean cell count as follows (Liu et al. 2012; Aranha et al. 2013):
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• Absent (0 to few cells) 3 Score 1;

• Mild (<25 cells) 3 Score 2;

• Moderate (253125 cells) 3 Score 3;

• Severe (>125 cells) 3 Score 4;  

Micro-computed tomography (µ-CT) analysis of lesion volume

The hemimandibles (n = 9 per group) were dissected and stored at -20°C before analysis 

by µ-CT. Scanning was performed using the SkyScan 1174 (Bruker, Kontich, Belgium) with a 

0.5 mm aluminium filter, a pixel size of 6.46 μm, 360° rotation, and a 1.0° step, with a total 

scanning time of 26 minutes, adjusted to a voltage of 55 kV and a current of 800 μA. Raw 

images were reconstructed using the NRecon software (Bruker, Kontich, Belgium) with a 

smoothing filter of 1%, beam hardening correction of 0%, ring artifact reduction of 1%, and a 

grayscale dataset of 0.00030.091. Subsequently, using the Data Viewer software (SkyScan, 

Version 1.4.4, 64-bit), images were oriented and standardised in the three anatomical planes: 

transverse, longitudinal, and sagittal.

After reconstruction, the region of interest was defined using the CTAn software (v1.6.6.0, 

Bruker, Belgium) to include the bone resorption cavities of the entire sample under the first 

lower molars. The roots of the lower molars and the mandibular canals were excluded from the 

region of interest. This analysis was performed to quantify the periapical lesion volume (in 

mm³). The grayscale threshold was determined using a density histogram, generating a binary 

image with black and white pixels. For segmentation, a density histogram ranging from 21 to 

255 was used to select bone tissue. Manual selection of the region of interest was performed in 

all image-sets in the axial view, starting from the first image where all root apices of the left 

mandibular first molar were visible and ending twenty slices after the lesion disappeared 

(Figure S3 - Supplementary material). For the calculation of 2D areas and 3D volumes, the 

original grayscale images were processed with a Gaussian filter for noise reduction and an 

automatic segmentation threshold (Bouxsein et al. 2010).

Fluorescence microscopy analysis (μ-XRF)

For μ-XRF and SEM/EDS (n = 10 per group), accesses to the periapical region were 

achieved through controlled wear using a Zekrya bur, ensuring uniform tissue exposure. In the 

periapical lesions, the wear was extended until the complete exposure of the lesion. A benchtop 

μ-XRF system (Orbis PC EDAX, USA) equipped with a Rh anode operating at 45 kV and 200 

μA was used. The equipment was configured to operate with a capillary optic of 30 μm. 
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Detection was performed using a 30 mm² silicon drift detector (140 eV FWHM at the 5.9 keV 

Mn-Kα line). The pixels produced by the Orbis Vision software were linearly interpolated and 

mapped using Origin Lab 2016 software (Origin, Northampton, MA, USA).

Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM/EDS)
To perform a confirmatory analysis of the metallic content present in the periapical region, 

the same prepared samples were analysed using SEM/EDS. These were mounted on metal stubs 

and carbon coated. Photomicrographs were obtained in secondary electron mode using a 

scanning electron microscope (JEOL, JSM-IT300, Akishima, Tokyo, Japan). Elemental 

mapping was conducted using the EDS line scan tool to determine the distribution of the 

elements of interest along the tooth3periapical region interface.

Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled 
plasma optical emission spectroscopy (ICP-OES)

Elemental quantification was performed using two spectrometry methods adapted to 

sensitivity requirements, including ICP-OES (n=8) and ICP-MS (n=9). Bone samples 

containing both the first mandibular molar and the periapical region with a weight between 15 

and 22 mg, were analysed. The samples were individually digested in Teflon rotors using an 

acid digestion process with 6 mL of 20% P.A. nitric acid (HNO₃), redistilled by sub-boiling, 

and 2 mL of 30% hydrogen peroxide (Sigma Aldrich - Merck, Germany). The containers were 

secured in the microwave rotor, and digestion was performed (Milestone, Shelton, CT, USA) 

under heating conditions: 1000 W power, 20 bar pressure, with a time/temperature cycle of 5 

minutes at 160 ºC, 2 minutes at 160 ºC, 5 minutes at 170 ºC, and 15 minutes at 170 ºC. After 

cooling to 60 °C, the fully digested content was transferred to 15 mL Falcon™ tubes (Sigma-

Aldrich, Thermo Fisher, USA). Reagent blanks (without samples) were processed in each cycle 

for quality control.

For analysis, the samples were further transferred to new Falcon tubes (Sigma-Aldrich, 

Thermo Fisher, USA) and diluted 1:10 (v/v) with ultrapure water (18 MΩ·cm resistivity) from 

a Milli-Q purification system (Millipore Sigma, Bedford, MA, USA). To ensure efficient 

removal of suspended solid particles, the samples were filtered using a 0.22 µm hydrophobic 

polyvinylidene fluoride syringe filter (Biocentrix, USA). Given the analysed elements, different 

isotopes were selected to achieve low detection limits. Quantification was performed using an 

ICP-MS spectrometer (PlasmaQuant MS Elite, Analytik Jena, Jena, Germany) with an internal 

standard solution containing indium (In) (ICP-grade, Merck, Darmstadt, Germany), antimony 
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(Sb) (ICP-grade, Merck, Darmstadt, Germany), and tin (Sn) (ICP-grade, Chem Lab NV, 

Zedelgem, Belgium). Internal standards ranging from 0 to 50 ppb for molybdenum, cobalt, 

copper, and manganese, and from 0 to 300 ppb for zinc and iron, were analysed alongside the 

samples.

Operational conditions for the elemental analysis performed using both spectrometers are 

presented in Supplementary Table 2 and 3. Calibration curves were constructed using multi-

element standards (1000 ± 3 µg/mL) diluted in 1% nitric acid (HPS, High Purity Standards, 

North Charleston, SC, USA). Additionally, standard laboratory rodent chow and wood shavings 

(bedding material) were collected and analysed via ICP-OES for all the studied metals.

Statistical analysis
Data were analysed using GraphPad 10.1.1 (323). Normality was assessed using the 

Shapiro-Wilk test. Depending on normality, comparisons between conditions were performed 

using either the t-test or the Mann-Whitney test. A significance level of p < 0.05 was considered 

statistically significant. Graphical representations of statistical differences followed a specific 

convention: a bilaterally closed bar indicated a normal data distribution; a unilaterally closed 

bar signified that one dataset was normal (closed bar) while the other was non-normal (open 

bar); and a bilaterally open bar denoted that both datasets were non-normal.

Results

Body weight assessment
Comparative analysis between animal conditions showed a normal distribution both 

initially (p = 0.4556) and after periapical lesion induction (p = 0.1904) (Figure S4 -

Supplementary material).

Radiographic analysis

The digital periapical radiographs (Figure S5 - Supplementary material) demonstrate the 

presence of induced periapical lesions. These lesions are notably characterised by well-defined 

radiolucent areas surrounding the dental roots. In contrast, the sham control radiographs exhibit 

a continuous trabecular bone, and no evidence of bone rarefaction around the roots of the first 

mandibular molars.
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Histological analysis

The histological sections of the molars from the sham controls showed no pulp or 

periapical tissue alterations (Figure 2).

In molars with induced periapical lesions, the histological sections revealed an intense 

inflammatory infiltrate with neutrophils. Additionally, disorganisation of the periodontal 

support structures was observed, in the mesial roots. A dense accumulation of 

polymorphonuclear leukocytes was also noted, with cells containing bluish cytoplasmic 

granules, areas of bone resorption, and the presence of blood vessels. The observed 

characteristics are consistent with chronic periapical abscess formation. In the distal roots, 

inflammatory cells were sparsely distributed and restricted to the vicinity of the periapical 

foramen (Figure 3).

Teeth with induced periapical lesions did not have any samples classified with a score 

of 0. Three samples had a score of 1 (mild reaction), none had a score of 2 (moderate reaction), 

and six samples received a score of 3 (intense reaction), with a median score of 1.5. In the sham 

controls, the inflammatory infiltrate was classified as absent or with few inflammatory cells 

(score 0), with all nine samples receiving a score of 0. Statistical analysis showed a significant 

difference between conditions (p = 0.0001), highlighting the association between induced 

periapical lesions and a more intense inflammatory infiltrate.
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Figure 2: Histological image of bone tissue and dental structure under microscopic analysis, stained with 

hematoxylin and eosin (HE). The left image (scale: 1 mm) provides an overview of the tissue, highlighting the 

region of interest with a rectangle and marked by an asterisk (*). The intermediate magnification in the center 

(scale: 400 µm) allows for a more detailed view of the cellular and structural characteristics of the delimited area, 

indicated by an 'x'. The right image (scale: 200 µm) shows a higher magnification of the marked region, revealing 

specific details of the bone matrix and cellularity, indicated by the '+' symbol. Scale bars are located at the bottom 

right of each image.

Figure 3 3 Light photomicrographs of the mesial root of the first mandibular molar with an induced periapical 

lesion. Images were obtained using 2×, 5×, and 20× objectives, with scale bars of 500 µm, 200 µm, and 100 µm 

in the left, middle, and right panels, respectively. (*) Pulp necrosis. (X) Presence of a large abscess area, 

accompanied by resorption of bone, cementum, and dentin. (+) Extensive periapical inflammatory infiltrate. The 

images highlight the morphological alterations resulting from inflammation and tissue destruction, emphasizing 

cellular organization and the interaction between the inflammatory infiltrate and mineralized tissues. Slides were 

stained with hematoxylin and eosin (H&E).

Micro-computed tomography (µ-CT)
This analysis indicated a statistically significant difference in the mean volume of the 

induced periapical region, measuring 12.74 mm³ (p = 0.0017). Figure 4 presents comparative 

images between conditions in sagittal, coronal, and axial sections.
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Figure 4. Micro-computed tomography (µ-CT) images of rat molars with induced periapical lesions (periapical 

lesion) and controls (sham). (A-B) Sagittal sections highlighting dental and bone morphology. In the induced 

periapical lesions, the extent and location of the lesion are observed, identified by a hypodense image in the apical 

region. In contrast, in the sham controls, the bone structure remains preserved. (C-D) Coronal sections focusing 

on the mesial region of the first mandibular molar, which was accessed for periapical lesion induction. In the 

induced periapical lesions, a hypodense shadow is noted in the furcation region, suggesting bone resorption. (E-F) 

Axial sections demonstrating, in the induced periapical lesions, a widening of the periodontal ligament space, 

accompanied by a hypodense image corresponding to the periapical lesion. In the sham controls, no loss of 

continuity is observed along the periodontal ligament space. Scale bars represent 100 µm.
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Scanning electron microscopy / energy dispersive spectroscopy (SEM/EDS)
This analysis demonstrated morphological differences and variations in elemental 

composition (Figure 5). In the induced periapical lesions (A), areas of bone resorption, 

irregularities, and lacunae were observed, suggesting structural loss. In contrast, the sham 

controls (B) exhibited a preserved surface without pathological defects.

Elemental analysis (C and D) revealed a reduction in calcium and phosphorus 

concentrations in the periapical lesion, indicating demineralisation. Conversely, in the sham 

controls, the homogeneous distribution of these elements suggests the preservation of the bone 

mineral matrix. Additionally, variations in magnesium and sodium levels may reflect changes 

in the mineralisation of the affected tissue.

However, this analysis provided limited results for a comprehensive characterisation of 

the elements of interest, due to the lower sensitivity of the method. For this reason, it was 

essential to complement the findings with more robust techniques, such as µ-XRF and ICP-

OES/ICP-MS-based methods, which offered greater accuracy and coverage in the identification 

and quantification of the investigated chemical elements.

Fluorescence microscopy (µ-XRF)
In the elemental mapping analysis using µ-XRF, the elements sodium, potassium, 

magnesium, calcium, iron, manganese, cobalt, copper, zinc, and molybdenum were investigated. 

However, only three metallic elements (calcium, iron and zinc) were consistently detected in 

all samples, along with phosphorus, a non-metallic element included in this analysis 

(highlighted in Figure 6 and Figure 7). 

Phosphorus, an essential component of calcium phosphate, is associated with calcium 

and plays a crucial role in mineral homeostasis. Its analysis 3 not initially aimed 3 was relevant 

for understanding alterations in elements related to bone health and mineralization, as well as 

evaluating interactions between metallic and non-metallic elements in the context of lesions 

such as apical periodontitis.

Calcium exhibited low intensity in regions near the mesial root and the periapical lesion, 

whereas in the sham controls, it showed higher intensity and homogeneous distribution 

throughout the analysed region. Iron had lower intensity in the sham controls but showed 

variable intensity in the induced periapical lesions. Zinc was detected with higher intensity in 

the sham controls, while showing lower intensity in the lesion regions. Phosphorus also 

exhibited significant variations, with higher intensity in the sham controls and reduced levels 

in periapical lesion regions.
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Figure 5: SEM/EDS analysis comparing periapical bone tissue between the periapical lesion and sham controls. 

(A-B) SEM images highlighting the microstructure of the bone tissue in a tooth with an induced periapical lesion, 

where the arrow indicates the periodontal ligament, the white dot indicates the periapical lesion, and the white "X" 

indicates the periapical root (A). In contrast, the sham controls (B) show preserved tissue, while areas of 

decalcification are evident in the induced periapical lesions. The scale bar represents 500 µm. (C-D) EDS elemental 

distribution maps, illustrating the distribution of calcium (Ca, red), phosphorus (P, green), and carbon (C, white) 

in teeth with periapical lesions (C) and sham controls (D). This analysis confirms the absence of calcium in specific 

areas within the periapical lesions. (E-F) EDS spectra highlighting the elemental composition of the samples, 

indicating the presence of oxygen (O), carbon (C), calcium (Ca), phosphorus (P), magnesium (Mg), and sodium 

(Na) in both conditions.
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Figure 6: Highlight of the microscopic images ROI of hemimandibles from animals with induced periapical 

lesions and controls (Sham), analysed by µ-XRF. In the upper image, the induced periapical lesion (a) and the 

control (Sham) (b) highlight the periapical region where the linear scan was performed, indicated by a blue line 

(1.3 mm) with markings at the starting point (1) and the endpoint (2). 

Inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled 

plasma optical emission spectrometry (ICP-OES)

The concentrations of sodium, potassium, calcium and magnesium were measured using 

ICP-OES (Figure 8), while iron, manganese, cobalt, copper, zinc, and molybdenum were 

measured by ICP-MS (Figure 9) after acid digestion.

The elemental concentration analysis by ICP-OES revealed statistically significant 

differences between the periapical lesion and sham controls for sodium, potassium, calcium and 

magnesium. Sodium showed significantly higher concentrations in the periapical lesions 

(approximately 7,500,000 ng/g) compared to the sham controls (approximately 6,000,000 ng/g) 

with p = 0.0137. Similarly, potassium levels were higher in the periapical lesions (1,000,000 

ng/g) compared to the sham controls (600,000 ng/g) with p = 0.0005. Calcium also exhibited 

higher concentrations in the periapical lesions (300,000 ng/g) compared to the sham controls 

(250,000 ng/g) with p = 0.0059. Finally, magnesium showed a significant increase in the 

periapical lesions (6,000,000 ng/g) compared to the sham controls (4,500,000 ng/g) with p = 

0.0004.

The elemental concentration analysis by ICP-MS revealed statistically significant 

differences (p < 0.05) in the iron isotopes between the sham controls and induced periapical 

lesions, with higher concentrations in the latter. Similarly, manganese and copper levels were 

significantly higher in the periapical lesions (p < 0.0001). However, no significant differences 

were observed for the zinc, cobalt, and molybdenum isotopes (p > 0.05). In general, a higher 
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metallic content was observed within periapical lesions when compared with sham controls, 

regardless the metal analysed. 

.

Figure 7: Comparative analysis between the periapical lesion and control (sham) conditions using µ-XRF 

elemental distribution maps. Optical image of the analysed area in both conditions (1 - Periapical Lesion, 2 - Sham). 
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The calcium (Ca Kα) map demonstrates a reduction in calcium intensity in the induced periapical lesions, 

indicating mineral loss, in contrast to the more homogeneous distribution in the sham controls. The phosphorus (P 

Kα) map corroborates this lower concentration in the periapical lesion, reflecting demineralization, while the 

concentration is maintained in the sham controls. The zinc (Zn Kα) map shows a more irregular distribution in the 

periapical lesion, while the sham controls exhibit a more uniform distribution. Finally, the iron (Fe Kα) map 

displays higher signal intensity in the induced periapical lesions, while in the sham controls, its levels are less 

intense.

Analysis of feed and wood shavings
The feed showed detectable concentrations of sodium (34,730 ng/g), magnesium 

(54,086.67 ng/g), potassium (170,033.33 ng/g), calcium (82,103.33 ng/g), iron (3,061.33 ng/g), 

copper (20 ng/g), and zinc (673 ng/g). In contrast, the wood shavings showed no detectable 

concentrations of these elements, except for sodium (7 ng/g). 

It is noteworthy that all animals were kept under the same housekeeping conditions.

Figure 8: Graphical representation of the ICP-OES analysis, showing the concentrations of essential elements (in 

ng/g) in tissues with periapical lesions compared to the control (sham). For these elements, significant higher 

concentrations were observed within the periapical lesions.
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Figure 9: Graphical representation of the ICP-MS analysis showing the concentrations (ng/g) of different elements 

in tissues with periapical lesions compared to the control (sham). No differences were observed between the 

isotopes in terms of statistical significance. 
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Discussion
This study aimed to determine the metallographic profile of induced periapical lesions in 

an animal model, comparing it to healthy periapical bone tissue. 

significant 

he initial null hypothesis could be fully rejected. In 

general, a higher metallic content was observed within periapical lesions when compared with 

sham controls, regardless the metal analysed. Mineral homeostasis is essential for maintaining 

bone tissue integrity, and changes here observed in the concentrations of its elements may be 

linked to chronic inflammatory processes, such as apical periodontitis. 

The experimental induction of periapical lesions can be performed using various methods, 

including pulp exposure (Brilhante Wolle et al. 2012; Liu et al. 2012) or stimulation with 

lipopolysaccharides and other endodontic pathogens (Aranha et al. 2013; Fukada et al. 2008). 

In this study, pulp exposure to the oral environment during the experimental period was chosen, 

aiming to simulate a clinical condition of microbial contamination. This methodology was able 

to promote periapical lesions, inducing an inflammatory reaction similar to that observed in 

other studies (Almeida et al. 2024; Anan et al. 1993; Silva et al. 2011; Zhang and Peng 2005). 

For the induction of apical periodontitis lesions, the first lower molar was selected due to its 

anatomical similarity to human teeth (Dammaschke 2010) and the biological progression of the 

inflammatory response in rats (Moretton et al. 2000) within the experimental timeline here 

proposed.

The analysis of body weight showed that bilateral pulp necrosis and periapical lesion did 

not significantly affect this criterion (p > 0.05). This suggests that the local inflammation did 

not cause a significant systemic impact on the animals' weight. A possible recommendation of 

unilateral induction to avoid influencing animal weight could be refuted by the present study 

since a bilateral induction was here performed. A previous study (_ehirli et al. 2024) indicated 

apical bone resorption following induction solely on pulp chambers of the right mandibular first 

molar also with an increase in periapical radiolucency, as here observed bilaterally.

Periapical bone resorption was here analysed using different methods, such as histological 

evaluation, digital radiography, and µ-CT, following methodological approach as previous 

studies (Rittling et al. 2010; Sun et al. 2017; Teixeira et al. 2011). Additionally, the present study 

conducted observations under SEM, which revealed the periapical lesion and allowed for 

sample mapping through EDS. This methodological addition was important to validate the 

expected calcium deficiency in the periapical lesion area and, along with phosphorus, 

demonstrated the absence of bone tissue observed in periapical lesions. However, the further 
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addition of μ

The area analysis allowed for the identification of visible differences between the left and 

right sides of the periapical lesions. However, conventional radiographs often underestimate the 

actual size of periapical lesions (Ferreira et al. 2006), as they do not allow for an accurate 

assessment of the lesion's extent. Periapical lesions only become evident when there is 

involvement of the cortical plate or junctional trabeculae. This finding is consistent with 

previous studies (Attaelmanan et al. 2000; Hamachi et al. 1995; Yoo et al. 2023). 

The µ-CT analysis allowed for the identification of the average lesion volume of 12.74 ± 

3.02 mm³ (standard deviation), aligning with previous reports that observed volumes of 12.15 

mm³ after 4 weeks. This expansion occurs more rapidly during the first 15 days (active phase) 

and slows down thereafter (chronic phase) (Stashenko and Yu 1989; Okiji et al. 1994; Wang 

and Stashenko 1991; Wang et al. 2009; Yoneda et al. 2017). The decrease in periapical lesion 

volume after 4 weeks reinforces the hypothesis of a modulation of the host immune response 

against bacterial infection during this period (Yoneda et al. 2017). 

The experimental period of 40 days was here chosen to ensure that the induced periapical 

lesions reached a sufficiently advanced stage, allowing for a clearer detection of pathological 

alterations. This period was ideal for observing changes in the periapical structure here observed 

and ensure that the lesions were well-developed for analysis, consistently with previous 

findings (Brasil et al. 2017; Armada-Dias et al. 2006; Brasil et al. 2021).

 (Yamasaki et al. 

2008). In this study, dense accumulations of polymorphonuclear leukocytes containing bluish 

cytoplasmic granules associated with blood vessels were identified. These findings align with 

previous reports describing the formation of periapical abscesses three weeks after pulp 

exposure (Matsui et al. 2011). 
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In this area of bone tissue resorption, the further analyses (SEM/EDS, µ-XRF, ICP-OES, 

and ICP-MS) were performed, revealing significant differences in the metallographic profile 

when comparing healthy bone tissue with that affected by apical periodontitis. This indicates 

that the changes were not limited to decalcification altering the calcium metallographic profile. 

Therefore, the null hypothesis was rejected, indicating significant differences in the levels of 

other chemical elements between bone conditions with and without periapical lesions.

Previous studies emphasizes the fundamental role of essential metals in regulating 

physiological processes, ensuring the balance of vital functions in the body (Costa et al. 2024; 

Baj et al. 2023). Imbalances in the homeostasis of these elements can induce cellular stress and 

promote disease development 

and Masaki 2020; Kamińska et al. 2021; Xu et al. 2023) However, as this is the first study to 

comparatively investigate, with an endodontic focus, the composition and distribution of these 

metals, no comparisons with other studies are available.

Given the complexity of identifying and quantifying these elements, this study utilised 

ICP-MS and ICP-OES techniques to determine their concentrations between conditions. 

Among the analysed metallic elements, seven of them (sodium, potassium, magnesium, calcium, 

iron, manganese, and copper) showed significant differences between conditions, all with 

higher concentrations in the periapical lesions. The homeostasis of healthy bone tissue is 

maintained essentially by osteoblasts, osteoclasts, and osteocytes, as well as by an organic 

matrix (mainly type I collagen) and inorganic minerals (apatites), primarily hydroxyapatite 

(Boivin and Meunier 2003; Henmi et al. 2017). This complex composition grants bone tissue 

its dynamic properties, allowing constant metabolic interactions between the chemical elements 

within the extracellular fluid and the apatite crystals that form the mineral matrix (Boivin and 

Meunier 2003). Not surprisingly, elemental exchanges involving magnesium, zinc, and 

strontium for calcium, as well as carbonate for phosphate, have been associated with normal 

bone metabolism (Maciejewska et al. 2014).

Intuitively, a reduction in calcium concentration in the periapical lesion is expected, as 

bone resorption associated with the inflammatory process tends to result in mineral loss. 

Calcium depletion in the cellular environment has been associated with a significant reduction 

in the mineralization rate (Bellows et al. 1991). The µ-XRF analysis corroborated this 

expectation, demonstrating a lower calcium signal intensity in the affected periapical region 

compared to the healthy condition, where the signal was significantly stronger. The same 

pattern was observed for phosphorus, which showed a reduced or nearly absent signal in the 

lesion, while remaining elevated in the healthy condition. However, the results obtained by ICP-
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OES indicated a significantly higher total calcium concentration in the induced periapical 

lesions compared to the healthy condition. This apparent contradiction can be partially 

explained by the differences in the measurement principles of the techniques. ICP-OES 

quantifies the total concentration of dissolved calcium in the sample without distinguishing its 

spatial distribution (bone matrix, extracellular phase, or protein-associated fraction) 

(Szymczycha-Madeja et al. 2021), whereas µ-XRF provides a surface mapping of up to 20 μm 

of the element's location (Maciejewska et al. 2014). Therefore, it is not possible to obtain the 

depth distribution of these elements using these techniques alone.

Further discussion on the calcium content can be stablished based on suggestions that 

bone regeneration is a complex process involving inflammation, induction, and remodelling, 

intrinsically regulated by the substantial interaction between innate immune cells and bone cells 

(Jeong et al. 2025). Calcium is recruited to the bone defect site through a process in which 

osteoblasts are attracted to the lesion area by chemical signals, leading them to migrate and 

deposit minerals, effectively initiating bone regeneration. While inflammation is an essential 

part of the bone regeneration process, a chronic or persistently dysregulated inflammatory 

response in inflammatory alveolar disease is detrimental to the surrounding tissues (Hussein 

and Kishen 2022). This process can be further enhanced by the use of biomaterials such as 

calcium phosphate ceramics, which serve as a scaffold for calcium deposition and cell adhesion, 

essentially mimicking the natural bone matrix (Amini et al. 2012).

Additionally, the relationship between calcium and phosphorus must be considered. 

Phosphorus, in the form of phosphate, is known to inhibit both active cellular resorption and 

bone mineral dissolution (Raisz 1969). However, in this study, its concentration was found to 

be reduced in the periapical lesion, which may suggest that, under certain pathological 

conditions, this inhibition of bone resorption does not occur effectively. This decrease in 

phosphate availability may be associated with an imbalance in local bone metabolism 

(Tenenbaum et al. 1989), favouring disorganised calcium deposition or serving as a response to 

the inflammatory process (Sigel et al. 2013). Thus, the findings of this study indicate that, 

despite the characteristic bone resorption of periapical lesions, the higher calcium concentration 

detected by ICP-OES may reflect the presence of reactive calcification, remnants of mineralised 

matrix, or even an initial bone repair process, representing an attempt by the body to prevent 

the progression of the periapical lesion.

Although iron concentration was significantly higher in the induced periapical lesion 

conditions compared to the sham control, its distribution, as observed in the µ-XRF mapping, 

was limited to the apex of the periapical region and the adjacent bone tissue. This localised 
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distribution was not observed in the healthy bones. In the ICP-MS analysis, the concentrations 

of the isotopes 56iron e 57iron were investigated, as they are the most abundant, while 54iron is 

considered potentially radioactive (Dauphas and Rouxel 2006). The results revealed statistically 

significant differences between the experimental conditions, and may be related to the essential 

role of iron in collagen biosynthesis (Beattie and Avenell 1992), in the formation of the bone 

matrix (Maciejewska et al. 2014), and its significant influence on bone mineral density 

(Medeiros et al. 2002).

Both manganese and copper were elements that showed an increased concentration in the 

induced periapical lesions. Copper has two predominant and stable isotopes (Lauwens et al. 

2018), while manganese has only one stable isotope (Moreira et al. 2024). Both metals possess 

antioxidant properties, which may be associated with an increased need for these metals to 

neutralize free radicals and protect cells (Chellan and Sadler 2015; Lowe et al. 2002). Copper's 

effects are closely related to iron homeostasis and the regulation of reactive oxygen species  (Yu 

et al. 2024). Manganese, on the other hand, plays a crucial role in the synthesis of 

mucopolysaccharides (Saltman and Strause 1993), and its deficiency is associated with 

impairments that delay the osteogenesis process (Cashman and Flynn 1998). This element also 

appears to play a role in the regulation of bone remodelling, as its absence has been previously 

correlated with elevated extracellular concentrations of calcium, phosphate, and alkaline 

phosphatase (Bergstrom 1954; Friedman et al. 1987).

Both sodium and potassium showed increased concentrations with significant differences 

between conditions, highlighting the potential impact of local inflammatory lesions on the 

concentration of these elements in bone tissue. This finding supports a previous study (Starke 

et al. 2012) that describes how potassium and sodium play a crucial role in bone health, 

modulating the activity of osteoblasts and osteoclasts through potassium and sodium channels 

present in the cell membranes of these cells. The presence and proper functioning of these 

channels are essential for the homeostasis of the bone microenvironment, as they regulate the 

intracellular chemical balance, which is crucial for bone formation and resorption processes 

(Singh and Kushwaha 2024). Thus, potassium and sodium not only act as essential electrolytes 

for systemic functions (Sigel et al. 2013),  but also play a specific role in bone health (Bergstrom 

1954).

Magnesium is an essential cofactor in many biochemical reactions that occur in bone (De 

Baaij et al. 2015), especially in the formation and maintenance of hydroxyapatite (the main 

mineral form of bone), as it helps stabilise hydroxyapatite crystals and, therefore, is important 

for the structural integrity of bone (Salimi et al. 1985). The results showed a statistically 



39

significant difference with an increase in magnesium concentration when comparing animals 

with induced periapical lesions to the control (sham). This alteration may be related to the 

magnesium regulatory role in inflammation, as altered levels of this mineral influence the 

release of pro-inflammatory cytokines and modulate macrophage activity, which are essential 

cells in the immune response to the infectious process (Maier et al. 2021).

Although zinc did not show a statistically significant difference between the healthy and 

diseased states, it has been reported that this metal plays a role in the growth, development, and 

maintenance of healthy bones by promoting osteoblast activity, inhibiting osteoclast function, 

and stimulating the synthesis of bone proteins, which results in increased bone mass and growth 

. The µ-XRF analysis (by 

mappings) revealed that the distribution of zinc is not homogeneous in both conditions, health 

and disease. A greater number of areas with reddish coloration, indicative of elevated zinc 

concentrations, were observed in the sham control compared to the induced periapical lesions. 

However, the ICP-MS analysis did not reveal statistically significant differences in zinc 

concentrations, even when considering the different isotopes of this element (Cloquet et al. 

2008). This pattern suggests that, in the absence of lesions, zinc may be more evenly distributed 

and present in higher concentrations in specific regions, reflecting its role in balancing bone 

metabolism and maintaining the integrity of healthy tissue (Yamaguchi 2010). On the other 

hand, in the induced periapical lesions, the reduction in areas of high concentration may be 

associated with increased osteoclastic activity or the redistribution of the metal in response to 

the inflammatory and infectious process (Ceylan et al. 2021).

The potential advancements provided by the incorporation of strontium, cobalt, and 

manganese into the composition of calcium phosphate bone cements are already established 

(Bernhardt et al. 2017; Cummings et al. 2017; Wu et al. 2020). Zinc-releasing ceramics have 

been investigated due to the combination of their osteoinductive and immunomodulatory 

properties, which act synergistically (Huang et al. 2021). These strategies can enrich these 

materials with the biological properties specific to the elements, while modulating their 

physicochemical characteristics, a modification that could promote greater viability and activity 

of human mesenchymal stem cells and stimulate angiogenesis, highlighting the biological 

benefits associated with ionic modification (Montesi et al. 2017; Tadier et al. 2012; Thormann 

et al. 2013).

Although this study has limitations due to the use of an animal model to translate its 

results to humans, it provides novel preliminary data that can be deepened in clinical studies. A 

more detailed understanding of these element interactions in health and disease conditions may 
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open new perspectives for the development of therapeutic strategies based on the role of the 

metallic elements investigated here in bone formation and repair processes. Among the potential 

approaches, mineral replacement or chelation targeting the periapical microenvironment and/or 

local interventions that regulate the levels of these metals to control or modulate inflammation 

and oxidative stress would be highly desired. After a thorough establishment of the 

metallographic profile, and with further studies, it could be possible to develop enriched 

endodontic sealers and/or materials with the ability to benefit periapical repairing processes.   

Conclusion
This study demonstrated differences in the levels of various essential elements between 

conditions with periapical lesions and healthy controls. Significant changes were observed in 

calcium, iron, manganese, copper, sodium, potassium, and magnesium levels, indicating that 

periapical lesions can directly affect the mineral homeostasis of periapical bone tissue. These 

findings emphasize the importance of investigating the mineral profile in bone lesions to gain 

a deeper understanding of the mechanisms involved in their pathophysiology and potentially 

aid in developing targeted therapeutic strategies.
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CONCLUSÃO

Os achados deste estudo evidenciam alterações marcantes nos níveis de cálcio, ferro, manganês, 

cobre, sódio, potássio e magnésio, indicando um impacto direto da lesão periapical na 

homeostase mineral do osso alveolar. A caracterização metalográfica e estrutural, por meio de 

múltiplas metodologias, permitiu uma compreensão mais aprofundada da fisiopatologia da 

doença, contribuindo para o avanço do conhecimento e o desenvolvimento de estratégias 

terapêuticas para a preservação da integridade óssea periapical.
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Todos os documentos a seguir são referentes ao Apêndice da dissertação e material 
suplementar do artigo submetido à revista.

Apêndices

Apêndice 1: Supplementary material 1 – Sample size calculation

Supplementary table 1 3 Description of the reference methodologies used for sample size calculation, unit, 

estimated standard deviation, estimated minimum difference to be detected and estimated number of animals.

Reference method Unit
Estimated 
standard 
deviation

Estimated 
minimum 
detectable 
difference

N estimated / 
Observations

Histological Analysis 

(Marciano et al., 2016)

Inflammatory 

score (0 to 3)
0.5 average score 1 10

ICP-MS of relevant 

chemical elements adapted 

from literature studies 

(Grassin-Delyle et al., 

2019; Marciano et al., 

2023)

Mass fractions 

(ng/g)
10 ng/g 20 ng/g 10

Weight variation of 

animals (Marciano et al., 

2023)

Grams (g)

31.8 g (obtained 

from all animals 

before the 

procedure)

18 g

118 animals in total; 

however, reducible 

(3Rs) if normally 

distributed at baseline 

since this is not the 

main outcome of the 

study.
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Apêndice 2: Supplementary material 2 – Experimental study design

Figure S1: Experimental Scheme: Half of the animals underwent periapical lesion induction for 40 days, following 

previously proposed methodologies (Metzger et al., 2002; Gomes et al., 2019). For the sham control, identical 

procedures were performed, except for the lesion induction cavity in the first lower molars. During the immediate 

postoperative period, one animal designated for each experimental condition did not survive anaesthesia 

administration, leading to their exclusion from the study. As a result, the initial sample of 40 animals was reduced 

to 38, with 19 animals per group. After the 40-day induction period, all animals were euthanised, and different 

methodologies, including periapical radiography, X-ray Fluorescence Microscopy, histology, µ-CT, scanning 

electron microscopy with energy dispersive spectroscopy, ICP-MS, and ICP-OES, were conducted to establish the 

metallographic profile, focusing on the ten chemical elements considered essential for metabolism: sodium, 

potassium, magnesium, calcium, iron, manganese, cobalt, copper, zinc, and molybdenum, comparing the 

conditions with and without lesion in the region-of-interest (ROI).
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Apêndice 3: Supplementary material 3 - Experimental sampling and storage scheme

Figure S2: Experimental sampling and storage scheme: (A, B) Tissue that was removed from the animal's 

mandible (C) using blunt-ended scissors. Each sample was stored individually in 15 mL containers, following the 

specific methodology employed. The samples intended for analysis by µ-XRF, ICP-MS, and µ-CT were frozen at 

-20°C until processing. For histological analysis, the specimens were immersed in 8 mL of 10% formalin and 

stored protected from light at controlled room temperature. Before performing any method, all hemimandibles 

were subjected to digital radiographs. The preparation for µ-XRF involved exposing the lesion region, keeping it 

attached to the dental element, fixation, and dehydration in an increasing ethanol gradient, followed by mounting 

on stubs. For SEM/EDS analysis, carbon coating was applied for lesion analysis. For ICP-MS and ICP-OES 

analysis, the bone sample was separated from the dental element and digested in nitric acid under a microwave-

activated pressure system to allow for the reading of the chemical elements of interest. For µ-CT analysis, no 

additional sectioning was performed, and the specimens were scanned, reconstructed, and analysed using specific 

software. For histological analysis, decalcification, paraffin embedding was performed to enable the use of a 

microtome (slices of 0.5 µm), which were then mounted and stained with H&E for analysis under an optical 

microscope.
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Apêndice 4: Supplementary material 4 – µ-CT analysis

Figure S3: (A) µ-CT image of the region of the first lower molar, axial view, with white arrow indicating the 
periapical lesion site adjacent to the mesial root. (B) Delimitation of the region of interest containing the induced 
periapical lesion (red circle). (C) Selected region of interest for analysis of the volume of the induced periapical 
lesion.
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Apêndice 5: Supplementary material 5 - Operational conditions for ICPs analysis

Supplementary table 2: Settings and flow parameters for ICP-MS analysis

Category Parameter Value

Flows (L/min)

Plasma Flow 9.0

Auxiliary Flow 1.5

Protection Gas Flow 0.0

Nebulizer Flow 1.03

Torch Configuration Sampling Depth (mm) 5.0

Operation

RF Power (kW) 1.35

Pump Rate (rpm) 25

Stabilization Time (s) 15

Skimmer and Gases

Skimmer Gas Source He

Skimmer Flow (mL/min) 80

Nitrox - Flow (mL/min) 0

Skimmer - Polarization 0.5

Supplementary table 3. Operational conditions of ICP-OES

Parameter Valor

Power 1.450 W

Plasma Gas Flow Not applicable

Auxiliary Gas Flow 0.5 L/min

Nebulizer Gas Flow 0.75 L/min

Nebulization Chamber Cyclonic
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Apêndice 6: Supplementary material 6 – Weight assessment

Figure S4: During the immediate postoperative period, one animal designated for each experimental condition did 

not survive anaesthesia administration, leading to their exclusion from the study. As a result, the initial sample of 

40 animals was reduced to 38, with 19 animals per condition. The initial body weight of these 38 animals, recorded 

on the day of lesion induction (or its sham), followed a normal distribution, as indicated in the Normal QQ plot 

representation (p = 0.4556). After the 40-day experimental period, similar (p = 0.1904) body weight was observed 

between the two experimental conditions.
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Apêndice 7: Supplementary material 7 – Radiographic images from all molars’ 
periapical region 

Figure S5:  Periapical radiographs of Wistar rat (n = 38) hemimandibles (n = 76) obtained for the evaluation of 

bone structure within the two experimental conditions. The periapical lesions (left) underwent pulp exposure of 
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the first lower molar for 40 days, leading to the induction of periapical lesions as suggested by the images; while 

sham controls (right) received no pulp exposure. Images were acquired using a high-resolution digital radiographic 

(SPECTRO 70X model and SOPRO 3 FIT Digital Sensor Software, Brazil) system with standardised exposure 

parameters to ensure comparability. Differences in radiopacity and bone continuity between conditions can be 

observed, allowing the identification of bone resorption areas associated with the periapical inflammatory process.
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Anexos

Anexo 1 – Comitê de ética 
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Anexo 2 - Comprovante de submissão artigo - International Endodontic Journal



66

Anexo 3 - Relatório final de similaridade
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