
Universidade Estadual de Campinas
Instituto de Computação

Eduardo de Souza Gama

An Architecture for Adaptive Video Streaming: QoE

Forecasting, Content Steering, and Scalable Resource

Management through Edge-Cloud Computing

Uma Arquitetura para Streaming de Vídeo Adaptável:

Previsão de QoE, Direcionamento de Conteúdo e

Gerenciamento de Recursos Escalável por meio da

Computação em Borda-Nuvem

CAMPINAS

2025

Eduardo de Souza Gama

An Architecture for Adaptive Video Streaming: QoE

Forecasting, Content Steering, and Scalable Resource

Management through Edge-Cloud Computing

Uma Arquitetura para Streaming de Vídeo Adaptável: Previsão

de QoE, Direcionamento de Conteúdo e Gerenciamento de

Recursos Escalável por meio da Computação em Borda-Nuvem

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Luiz Fernando Bittencourt
Co-supervisor/Coorientador: Prof. Dr. Roger Kreutz Immich

Este exemplar corresponde à versão final da
Tese defendida por Eduardo de Souza Gama
e orientada pelo Prof. Dr. Luiz Fernando
Bittencourt.

CAMPINAS

2025

Ficha catalográfica
Universidade Estadual de Campinas (UNICAMP)

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Gama, Eduardo de Souza, 1991-

G14a An architecture for adaptive video streaming : QoE forecasting, content

steering, and scalable resource management through edge-cloud computing
/ Eduardo de Souza Gama. – Campinas, SP : [s.n.], 2025.

 Orientador: Luiz Fernando Bittencourt.

Coorientador: Roger Kreutz Immich.

 Tese (doutorado) – Universidade Estadual de Campinas (UNICAMP),
Instituto de Computação.

1. Redes de computadores. 2. Streaming de vídeo adaptável. 3.
Computação de borda. 4. Computação em nuvem. 5. Qualidade de
experiência (Redes de computadores). 6. Continuum de borda-nuvem. I.
Bittencourt, Luiz Fernando, 1981-. II. Immich, Roger Kreutz. III.
Universidade Estadual de Campinas (UNICAMP). Instituto de Computação.
IV. Título.

Informações complementares

Título em outro idioma: Uma arquitetura para streaming de vídeo adaptável : previsão
de QoE, direcionamento de conteúdo e gerenciamento de recursos escalável por meio da
computação em borda-nuvem
Palavras-chave em inglês:
Computer networks
Adaptive video streaming
Edge computing
Cloud computing
Quality of experience (Computer networks)
Edge-cloud continuum
Área de concentração: Ciência da Computação
Titulação: Doutor em Ciência da Computação
Banca examinadora:
Luiz Fernando Bittencourt [Orientador]
Kelvin Lopes Dias
Denis Lima do Rosário
Juliana Freitag Borin
Rodolfo Jardim de Azevedo
Data de defesa: 30-04-2025
Programa de Pós-Graduação: Ciência da Computação

Objetivos de Desenvolvimento Sustentável (ODS)
ODS: 9. Inovação e infraestrutura

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-2932-3765
- Currículo Lattes do autor: https://lattes.cnpq.br/6712266903078953

• Prof. Dr. Luiz Fernando Bittencourt
Universidade Estadual de Campinas

• Prof. Dr. Kelvin Lopes Dias
Universidade Federal de Pernambuco

• Prof. Dr. Denis Lima do Rosário
Universidade Federal do Pará

• Profa. Dra. Juliana Freitag Borin
Universidade Estadual de Campinas

• Prof. Dr. Rodolfo Jardim de Azevedo
Universidade Estadual de Campinas

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Dedicatory

To my family and friends.

Internet traffic is like

Dark Matter – mysterious

in both complexion and

impact on network

resources and App QoE.

(Lyn Cantor)

Acknowledgments

To God, for without faith, I would not have made it this far.
To my parents, Eduardo and Cláudia, for their unwavering belief in my abilities and

unconditional love.
To my fiancee, Vitória Santos, for being a constant presence throughout this journey,

offering me patience and the calm I needed during challenging times. You contributed to
making this journey easier.

To my advisor and co-advisor, Prof. Dr. Luiz Fernando Bittencourt and Roger Kreutz
Immich, for their dedication, commitment, and invaluable guidance in shaping my aca-
demic journey. I was able to learn a lot from you throughout this period.

To my colleagues and friends, I made inside and outside the university, thank you
for the fun times I always had with you. The welcome I received from my first days in
Campinas was essential for me to feel comfortable even though I was so far from home.
Thank you very much.

To the faculty and staff of the UNICAMP Institute of Computing, who dedicated their
time to participate in this research and contributed to my research in various ways.

Thanks to Ericsson S.A., and by the São Paulo Research Foundation (FAPESP) grant
agreement no. 2021/00199-8, The Brazilian National Council for Scientific and Techno-
logical Development (CNPq) proc. 465446/2014-0, and National Education and Research
Network (RNP) grant agreement no. 688941 for their financial support, which was essen-
tial to the development of this doctoral research.

And to all those who, in one way or another, contributed to or supported the realization
of this goal—thank you.

Resumo

Os serviços de streaming de vídeo dominam uma boa parte do tráfego da Internet, im-
pulsionados pelo crescimento no uso de dispositivos conectados e pela diversificação dos
provedores de conteúdo. Esse cenário impõe desafios significativos aos operadores de rede,
especialmente na garantia da Qualidade de Experiência (QoE) dos usuários, que já são
complexas devido ao comportamento adaptativo dos mecanismos de Streaming Adap-
tativo Dinâmico sobre HTTP (DASH). Motivada por esse cenário, esta tese apresenta
uma arquitetura baseada em aprendizado para streaming de vídeo adaptativo na rede
Edge-Cloud, abordando desafios relacionados à QoE, escalabilidade e gerenciamento de
recursos por meio da integração do Streaming Adaptável HTTP (HAS) com os Serviços
de Redirecionamento de Conteúdo (CSS). O sistema proposto direciona dinamicamente
as solicitações dos usuários para otimizar a entrega de vídeo de forma transparente para
os clientes HAS.

Primeiramente, avaliamos uma arquitetura que aproveita ambientes multinível de
Edge-Cloud, alocando dinamicamente serviços de vídeo entre múltiplos nós de borda e
nuvem. Essa abordagem trata desafios como a seleção de nós de borda e a mobilidade
dinâmica dos usuários, fatores que impactam diretamente a eficiência da rede e a satisfa-
ção do usuário. As avaliações experimentais destacam a necessidade de uma arquitetura
capaz de se adaptar em tempo real às variações da demanda da rede, influenciando in-
terrupções, estabilidade de taxa de bits e QoE em diversos cenários, incluindo ambientes
com usuários móveis e condições de carga dinâmica.

Em seguida, um protótipo de uma arquitetura de streaming de vídeo adaptável que
integra computação de borda e nuvem, CSS e técnicas de aprendizado de máquina (ML)
para otimizar a entrega de vídeo foi desenvolvido. A arquitetura apresenta um Serviço
de Planejamento capaz de implantar contêineres em nós de ponta para mitigar violações
do Objetivo de Nível de Serviço (SLO). O uso de uma Rede Neural Recorrente (RNN)
para prever potenciais violações de SLO permite ajustes preventivos na escalabilidade do
serviço na ponta. O ambiente considera tecnologias de HAS por meio do player dash.js, di-
recionando dinamicamente as solicitações dos usuários para nós de ponta regionais. Assim,
a arquitetura reduz a latência ao direcionar dinamicamente as solicitações dos usuários,
já que essas solicitações são tratadas regionalmente, e garante uma QoE estável durante
a reprodução de vídeo. Os resultados mostram melhorias na eliminação da configuração
manual da rede, destacando o potencial da integração entre borda e nuvem para serviços
de streaming de vídeo, redução do uso de cache e QoE sustentada em condições de rede
dinâmicas. A arquitetura demonstra manutenção significativa da QoE, com redução de
até 48% nas violações de SLO em comparação com uma abordagem reativa, evitando o
provisionamento excessivo durante períodos de baixo tráfego.

Abstract

Video streaming services account for a significant portion of Internet traffic, driven by the
growing adoption of connected devices and the increasing diversity of content providers.
This landscape presents major challenges for network operators, particularly in ensuring
Quality of Experience (QoE) metrics, which are already complex due to the adaptive
behavior of Dynamic Adaptive Streaming over HTTP (DASH) mechanisms. Motivated
by this, this thesis introduces a learning-based architecture for adaptive video streaming
in the Edge-Cloud network, addressing challenges in QoE, scalability, and resource man-
agement by integrating HTTP Adaptive Streaming (HAS) with Content Steering Services
(CSS). The proposed system dynamically directs user requests to optimize video delivery
transparently for HAS clients.

Firstly, we evaluated an architecture that leverages multi-level Edge-Cloud environ-
ments, dynamically allocating video services across multiple edge and cloud nodes. This
discussion addresses challenges such as edge node selection and dynamic user mobility,
which directly impact network efficiency and user satisfaction. Experimental evaluations
highlight the necessity for such environments to have an architecture capable of adapting
to real-time variable network demands, affecting interruptions, bitrate stability, and QoE
in various scenarios, including mobile user environments and dynamic load conditions.

Next, we developed a prototype of an adaptive video streaming architecture that
integrates edge and cloud computing, CSS, and machine learning (ML) techniques to
optimize video delivery. The architecture features a Planner Service capable of deploying
containers at edge nodes to mitigate Service Level Objective (SLO) violations. Using a
Recurrent Neural Network (RNN) to forecast potential SLO violations enables preemptive
adjustments in the service scalability in the edge. The environment considers HTTP
Adaptive Streaming (HAS) technologies via the dash.js player, dynamically steering user
requests to regional edge nodes. Thus, the architecture reduces latency by dynamically
steering user requests, as these requests are handled regionally, and ensures a stable QoE
during video playback. The results show improvements in eliminating manual network
configuration, highlighting the potential of edge-cloud integration for video streaming
services, reduced cache usage, and sustained QoE under dynamic network conditions.
The architecture demonstrates significant QoE maintenance, with up to 48% reduction
in SLO violations compared to a reactive approach while avoiding over-provision during
low traffic periods.

List of Figures

1.1 The distribution of downstream internet traffic across various content cat-
egories in 2023 [1]. 19

2.1 Overview of MPD DASH Model. 26
2.2 Overview of an End-to-End HTTP Adaptive Video Streaming pipeline,

illustrating the process from multimedia source acquisition through encod-
ing, segmentation, and Content Distribution servers, culminating in client-
side playback. 27

2.3 A General Overview of the multi-tier network environment. 29
2.4 Overview of Content Steering Process Architecture: Directing user requests

to the content delivery systems. 31
2.5 Containers vs Virtualization based on Virtual Machines [2]. 34

4.1 A General Overview of the multi-tier network environment on the left side,
and the MIGRATE architecture on the right side (Adapted from [3]). . . . 45

4.2 Sequence Diagram of the video streaming communication. 47
4.3 Overview of the multi-tier network environment. 52
4.4 Bitrate switches, stalls, buffer size, the startup delay in seconds of a DASH

player was requesting a video with ten bitrate levels varying from 50 to
4,500Kbps and from nodes in different tiers. 53

4.5 Users’ Quality of Experience (QoE) average. Each bar group represents a
different Planner decision: Full-Edge, Reactive, and Proactive. 54

4.6 Average QoE for each user group. Each mark represents the final user QoE
for the following approaches: Cloud-only, Edge cache, and Mobility. 55

4.7 Average QoE for each user group. Each mark represents the final user QoE
for the following approaches: Cloud-only, Edge cache, and Mobility. 57

4.8 Number of segments provisioned per node. 58

5.1 Workflow Architecture of a Content Steering-Enabled Adaptive Video Sys-
tem. 61

5.2 Workflow of the Content Steering Service (CSS) in the AVENUE Architec-
ture, illustrating dynamic interactions between the user, edge cache, Cloud,
and CSS for the content delivery provisioning. 65

5.3 Scenario a Content Steering-Enabled Adaptive Video System. 67
5.4 QoE Performance with CA, RA, and RR (y-axis) and the total number of

users in the x-axis. 70
5.5 Cache Hit Performance with CA, RA, and RR (y-axis) and the total num-

ber of users in the x-axis. 71
5.6 Fairness Performance with CA, RA, and RR (y-axis) and the total number

of users in the x-axis. 72

6.1 An Overview of the Proposed Architecture. Domain-Specific Service Mon-
itoring is responsible for providing continuous monitoring resources. The
Planner is responsible for realizing decision-making deployments at the
edge. Then, Content Steering works as a load balancer. 76

6.2 The Domain-Specific Service Monitoring is responsible for providing con-
tinuous monitoring resources. 77

6.3 Users’ QoE difference (∆Qu) between consecutive video segments varying
user loads (20 to 60 users) and different Adaptive Bitrate (ABR) algorithms. 79

6.4 The Planner is responsible for realizing the decision-making deployments
at the edge. 82

6.5 Scenario Evaluation Testbed for Adaptive Video Streaming System in Edge-
Cloud Continuum. 85

6.6 Segment distribution across cloud and edge nodes for varying user counts
(20–60). Each bar group shows provisioning under different Planner strate-
gies: Full-Edge, Reactive, and Proactive. 89

6.7 Comparison of Service Level Objective (SLO) violations for different Plan-
ner algorithms: (a) Dynamic, (b) Throughput, and (c) Buffer, with varying
user counts. 90

List of Tables

2.1 Comparison of Content Delivery Network (CDN) Switching Methods Based
on Key Metrics . 32

3.1 Comparative Analysis of Related Works. 39
3.2 Comparative Analysis of Related Works. 41

4.1 Notation used in the proposed model . 46

5.1 Execution time with standard deviation for Selection Algorithms. 68
5.2 Review of the results considering the performance profiles: QoE, Cache

hits, and Fairness load. Two scenarios analyses with 10 and 50 users. . . . 73

6.1 Summary of resource categories and their associated metrics used for sys-
tem performance analysis. 78

6.2 Table of notations and description. 81
6.3 Average and Standard Deviation of Pull and Deploy Times 88

List of Acronyms

ABR : Adaptive Bitrate

AMust : Adaptive Multimedia Streaming

AP : Access Point

API : Application Programming Interface

AR : Augmented Reality

AVC : Advanced Video Coding

AV1 : AOMedia Video 1

CA : Content Aware

CAPEX : Capital Expenditures

CDN : Content Delivery Network

CSS : Content Steering Service

DASH : Dynamic Adaptive Streaming over HTTP

DinD : Docker-in-Docker

DNS : Domain Name System

DRM : Digital Rights Management

HAS : HTTP Adaptive Streaming

HD : High Definition

HDTV : High Definition Television

HTTP : Hypertext Transfer Protocol

HEVC : High-Efficiency Video Coding

HLS : HTTP Live Streaming

ILP : Integer Linear Programming

LLM : Large Language Models

LSTM : Long Short-Term Memory

LAC : Location Area Code

LRC : Laboratório de Redes de Computadores

LEO : Low Earth Orbit

LRU : Least Recently Used

MEC : Multi-access Edge Computing

ML : Machine Learning

MPEG : Moving Picture Experts Group

MPD : Media Presentation Description

NIST : National Institute of Standards and Technology

OCI : Open Container Initiative

OpenFog : OpenFog Consortium

OTT : Over-the-Top

PDMA : Planner Decision Maker Algorithm

QoE : Quality of Experience

QoS : Quality of Service

QUIC : Quick UDP Internet Protocol

RA : Region-Aware

RL : Reinforcement Learning

RNN : Recurrent Neural Networks

RR : Round Robin

RTMP : Real-Time Messaging Protocol

RTP : Real-Time Transport Protocol

SLA : Service Level Agreement

SLO : Service Level Objective

SD : Standard Definition

SSF : Strongest Signal First

TCP : Transmission Control Protocol

TTL : Time-To-Live

UDP : User Datagram Protocol

UHD : Ultra-High Definition

VoD : Video on Demand

VR : Virtual Reality

VVC : Versatile Video Coding

Contents

1 Introduction 18
1.1 Motivation . 18
1.2 Research Questions . 20
1.3 Main Contributions . 21
1.4 Thesis Structure . 22

2 Background 24
2.1 Basic Concepts of Adaptive Video Streaming 24
2.2 Cloud and Edge Computing . 28
2.3 Content Steering at the Edge-Cloud Network 30
2.4 Container management systems . 33
2.5 Quality of Experience . 34
2.6 Chapter Conclusions . 36

3 Related Work 37
3.1 Edge-Cloud Network-Based HAS Systems 37
3.2 Service Allocation Management . 39
3.3 Chapter Conclusions . 41

4 Adaptive Video Streaming in Multi-tier Edge-Cloud Environment 43
4.1 MIGRATE . 44

4.1.1 Network and System Model . 45
4.2 Monitoring Component . 47
4.3 Performance Evaluation . 51

4.3.1 Impact of a Multi-tier Approach . 52
4.3.2 Analysis in Multi-tier Edge-Cloud Networks 53
4.3.3 MIGRATE performance . 56

4.4 Chapter Conclusion . 59

5 An Architecture for Content Steering on Edge-Cloud Computing 60
5.1 Seamless Coordination in Content Steering Service 61
5.2 Performance Evaluation . 66

5.2.1 Experimental Setup and Parameters 66
5.2.2 Results and Discussion . 68

5.3 Chapter Conclusions . 72

6 Scalable Learning-Based Adaptive Video Streaming Architecture 74
6.1 Proposed Architecture Design Overview 75
6.2 Measurement Methodology in Monitoring Structure 77

6.3 Planner Service Implementation through Adaptive Video Streaming 80
6.3.1 Offline Component Operations . 81
6.3.2 Online Operations . 83

6.4 Performance Evaluation . 85
6.4.1 Experimental Setup and Parameters 85
6.4.2 Results and Discussion . 88

6.5 Chapter Conclusions . 91

7 Conclusions and Future Works 92
7.1 Conclusions . 92
7.2 Future Works . 93

7.2.1 Immersive Video Streaming . 93
7.2.2 Sustainable HAS System . 93
7.2.3 Learning HAS System . 94
7.2.4 Emerging Protocols . 94
7.2.5 Rights Management and Content Security 94
7.2.6 Satellites . 95

7.3 Scientific Production . 95

Bibliography 97

18

Chapter 1

Introduction

Section 1.1 presents the motivation behind this thesis and states the core contributions.

Section 1.2 outlines the fundamental research questions (RQ1–RQ3) essential for address-

ing the stated problem. Section 1.3 lists the contributions of this thesis and summarizes

its main outcomes. Afterward, Section 1.4 provides an overview of the following chapters

and their contents.

1.1 Motivation

Video streaming services account for the majority of Internet traffic [1,4]. The increasing

use of internet-connected devices and the emergence of content providers have fueled this

demand. According to a report by Sandvine, video streaming accounts for nearly 65% of

all Internet traffic, highlighting a significant and ongoing trend [1]. As shown in Figure 1.1,

the distribution of downstream volume per subscriber across different content categories

highlights the dominance of video streaming, with On-Demand streaming as the most

significant contributor to Internet traffic across regions (Americas, Europe, and APAC).

In the second position, live streaming stands out on Internet consumption, demonstrating

the increasing reliance on bandwidth-intensive multimedia content applications. As a

consequence, efficient delivery of adaptive video streaming has become an important area

of research and development [5–7], as it not only improves users’ QoE but also helps

manage network congestion and reduce operational costs for service providers.

To meet the stringent requirements of video streaming services - such as high-quality

communication channels and a constant, uninterrupted flow of information - major indus-

try players like Microsoft, Apple, Adobe, and Netflix have adopted the HTTP Adaptive

Streaming (HAS) paradigm [8, 9]. Given the similarities of the most HAS solutions, the

Moving Picture Experts Group (MPEG) proposed a standard called Dynamic Adaptive

Streaming over HTTP (DASH), and, similarly, Apple developed the HTTP Live Stream-

ing (HLS) protocol, a proprietary streaming solution widely adopted in the video industry.

Both DASH and HLS have become the backbone of video delivery, enabling more than

50% of video streams worldwide, making them the most utilized technologies by Over-

the-Top (OTT) providers [1].

The HAS technologies procedure involves chunk-based streaming over HTTP. The

19

On-Demand Live File Game BrowsingVideo Call Voice Messaging M2M AR/VR Other
Content Categories

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

G
ig

ab
yt

es
 p

er
 s

ub
sc

ri
be

r
Content Categories by Downstream Volume

Americas
Europe
APAC

Figure 1.1: The distribution of downstream internet traffic across various
content categories in 2023 [1].

video player can dynamically select the bitrate according to the perceived available band-

width. This solution employs dynamic adaptation to variations in network conditions

to provide a seamless (or at least smoother) streaming experience. The adoption of

such technology is expected to grow due to the increasing demand for high-quality and

high-resolution (e.g., 4K or 8K) video sequences, advancements in video codecs such as

High-Efficiency Video Coding (HEVC) and Versatile Video Coding (VVC), and the in-

creasing popularity of bandwidth-intensive immersive streaming experiences. As a result,

an Adaptive Video Streaming Architecture presented in this thesis is developed to provide

entirely transparent services to ensure that HAS clients realize their decision-making free

from any confusion or risk.

In such systems, the Content Provider (CP) encodes each video segment into multiple

formats and resolutions, such as Standard Definition (SD), High Definition (HD), and

Ultra-High Definition (UHD). All versions of the video segments are transported and

stored in the network core within CDNs. During playback, the user’s player requests

segments at a specific bitrate, as determined by the ABR algorithm. One or multiple in-

network components with a broader view of the network can provide video players with fair

network resources and assist them in making precise adaptation decisions. This will enable

video usage with extremely high bandwidth. Video streaming systems include a decision

point embedded within the CDN, responsible for managing CDN selection solutions [10–

14]. Modern HAS technologies like DASH and HLS have standardized a session-aware

Content Steering Service (CSS). During each session, users regularly communicate with

the CSS to receive updated instructions on which CDN to retrieve video segments. For

example, a user may initially fetch video segments at a given node A during a streaming

session. Suppose the cache in node A becomes congested or experiences delays. In that

case, the CSS can instruct the user to switch to cache B, which offers better playback

performance. The Adaptive Video Streaming system must be able to switch between

different CDNs seamlessly during a video session.

Moreover, Edge computing has become an architectural video delivery component,

20

allocating multimedia content closer to end users and handling requests geographically

near them rather than forwarding to distant servers. Each system component fulfills

a specialized role in adaptive video streaming. In session-aware scenarios, implement-

ing mechanisms that can dynamically direct users between the Edge and Cloud ensures

seamless connectivity, significantly reducing latency and minimizing playback errors [15].

To ensure service reliability and user satisfaction, adaptive video streaming architec-

tures must incorporate mechanisms that go beyond traditional performance metrics by ex-

plicitly considering QoE as a central Key Performance Indicator (KPI) in enforcing SLOs

[16–18]. Unlike conventional metrics such as throughput or latency, QoE reflects the end-

user’s perceived quality, encompassing factors like video resolution, playback smoothness,

startup delay, and rebuffering frequency. In this thesis, QoE is treated as a first-class

metric for decision-making across the Edge-Cloud continuum. The integration of QoE

into SLO ensures that adaptation logic, cache redirection, and scaling decisions prioritize

user-centric outcomes. This is particularly relevant in the proposed architecture, where

session-aware services like the CSS and Machine Learning (ML)-based forecasting mecha-

nisms continuously monitor and optimize system behavior. By aligning system responses

with QoE thresholds, an adequate architecture can maintain high user satisfaction even

under volatile network conditions or variable content demand.

This thesis proposes and analyzes a hierarchical video streaming approach and designs

an architecture using Edge-Cloud computing concepts. The thesis contribution introduces

the CSS mechanism into adaptive video streaming systems, in which the user is steered to a

node based on information received from the Controller and traffic demands. Furthermore,

the thesis presents a mechanism that employs ML for forecasting time-series data, enabling

advanced decision-making in the scaling of video streaming services onto edge nodes in

regional networks.

1.2 Research Questions

Although many research works address VoD streaming services combined with edge/cloud

computing, some aspects are rarely explored in current works [5, 19]. Typically, video

streaming architectures aim to reduce traffic load and improve video delivery’s Quality

of Experience (QoE). However, such solutions often overlook the behavior of the video

player used by the user, as well as aspects related to interoperability between the users,

CDNs, and the decision-making mechanisms within the Edge-Cloud environments.

• HAS systems face challenges in delivering high-quality video experiences in dynamic

Edge-Cloud environments, where resource availability and user demand fluctuate

significantly in a shorter time window. To address these challenges, CSS facilitates

the dynamic selection of the most suitable content sources considering the actual

network services state. Consequently, the player can quickly adapt to changing

environments and view seamless video playback while the architecture optimizes

the Edge resource utilization.

Research Question 1: How can HAS systems leverage CSS to improve their

adaptability across dynamic Edge-Cloud environments?

21

• Maintaining users’ QoE guarantees within the specified SLO is an important require-

ment for both Content Providers and Network Providers. However, the dynamic

nature of Edge-Cloud environments, characterized by network fluctuation and varia-

tions in resource allocation, makes it challenging. To address this, using time-series

data and ML techniques enables the system to take preemptive actions instead

of reacting to problems after they arise. By analyzing these patterns, the system

can autonomously scale up and down the services and redistribute workloads while

maintaining the system’s performance.

Research Question 2: Can ML techniques accurately forecast future SLO viola-

tions using historical time-series data?

• Adopting ML for forecasting QoE also introduces complexity, as it demands reli-

able data collection pipelines, additional resource consumption, and careful feature

selection. Addressing these requirements efficiently can ensure that the benefits

of predictive modeling outweigh the associated costs. In adaptive video stream-

ing systems, a proactive ML-driven strategy for anticipating QoE issues represents

a transformative approach. By forecasting performance problems before they oc-

cur, this strategy outperforms reactive methods, which only address post-occurrence

problems.

Research Question 3: What is the impact of the proactive strategy (ML model)

in the network performance compared to the reactive approach?

To address the abovementioned issues, this thesis designed a prototype video delivery

architecture focusing on DASH technology. The architecture integrates recent CSS stan-

dards to support real-time decision-making processes. Where CDN selection is automated

and continuously optimized to match network conditions and viewer demand.

1.3 Main Contributions

The main contribution of this thesis is the proposal and deployment of an architecture

for HAS Systems, leveraging Edge-Cloud computing concepts to enhance efficiency, scal-

ability, and users’ QoE. The architecture adheres to DASH Industry Forum (DASH-IF)

Working Group specifications for creating an independent, self-managed adaptive video

streaming. This contribution consists of a shared database repository with relevant infor-

mation and three main components: 1) Domain-Specific Service Monitoring, 2) Planner

Service, and 3) CSS. Multimedia content services at CDN have been abstracted to main-

tain clarity and emphasize the core functional components. The CDN works in a stateless

manner, while the proposed architecture works together to scale cache services at the edge

in order to respect SLO guarantees.

The architecture integrates a methodology for supporting Recurrent Neural Networks

(RNN)-based ML models, particularly Long Short-Term Memory (LSTM), to enhance

adaptive video streaming. This methodology is divided into three key phases: data

gathering, model training, and real-time execution. The data-gathering phase employs

Domain-Specific Service Monitoring to collect diverse metrics from various sources across

22

the Edge-Cloud continuum, including QoE feedback, infrastructure performance, and

network statistics. The collected data undergoes preprocessing, such as feature selection,

normalization, and dimensionality reduction, to ensure that only relevant data is used for

training the models.

In the training phase, historical data is used to train LSTM models offline, allowing

them to learn temporal dependencies and patterns in network behavior. The trained mod-

els, preprocessing function, and data window size configuration are deployed in the online

phase. During the execution phase, the decision-maker algorithm leverages these mod-

els to predict QoE violations as SLO and proactively scale resources, such as deploying

cache containers at edge nodes. This proactive strategy minimizes SLO violations and en-

sures certain QoE levels under fluctuating network conditions. By integrating continuous

monitoring, predictive modeling, and resource management, the architecture effectively

balances Edge and Cloud utilization while dynamically adapting to user demands.

1.4 Thesis Structure

This document is organized as follows:

• Chapter 2 provides background definitions for concepts used throughout this the-

sis. It begins by exploring the principles of HAS paradigm, focusing on DASH

protocol, detailing their architectures, functionalities, and roles in modern video de-

livery systems. Highlight the Edge-Cloud Network and its significance in addressing

latency, scalability, and resource optimization challenges in video streaming. Addi-

tionally, it reviews key concepts such as CSS and QoE metrics, emphasizing their

relevance to the thesis objectives.

• Chapter 3 presents the literature review, covering the state-of-the-art in adaptive

video streaming over the Edge-Cloud. Moreover, These insights underpin the contri-

butions of the thesis, emphasizing the development of an architecture using CSS, an

orchestration framework tailored to enhance the QoE, and its adaptive scalability

in Edge-Cloud environments.

• Chapter 4 presents an analysis and evaluation of an adaptive video streaming

architecture in an Edge-Cloud environment. The chapter introduces MIGRATE, a

multi-tiered architecture designed to optimize video content delivery by leveraging

multi-layer resources at that edge to enhance user QoE. It outlines challenges like

edge node selection impacting network efficiency and user satisfaction.

• Chapter 5 delves into the design, implementation, and evaluation of the CSS within

adaptive video streaming systems. It emphasizes seamless coordination among users,

edge caches, cloud, and CSS to content delivery and improve different resource met-

rics. The chapter details the system’s workflow, illustrating how real-time metrics

and regional proximity guide the load balancing dynamic.

• Chapter 6 presents an Adaptive Video Streaming architecture designed for scaling

containers across the Edge-Cloud according to demand fluctuations. We highlight

23

three main contributions: i) The proposed architecture integrates the CSS to select

a suited endpoint during video sessions dynamically; ii) Through continuous real-

time monitoring, the system ensures seamless, up-to-date information about video

playback, network, and node changes. iii) A ML model is deployed capable of

forecasting users QoE.

• Chapter 7 concludes this thesis, shows an overview of the contributions, discusses

the research questions, describes directions for future work, and presents the publi-

cations produced as a result of this thesis.

24

Chapter 2

Background

This chapter presents the foundational concepts and definitions explored in this thesis.

Section 2.1 presents a vision that ranges from encoding video content into digital formats

to packing video in HAS content, specifically in DASH content, for continuous delivery.

Section 2.2 introduces the potentials of the Edge-Cloud Networks. Each component within

these architectures ensures a seamless viewing experience for end users. In Section 2.3,

we designed an architecture for Content Steering Services. Initially, a centralized steering

server orchestrates operations, followed by an Edge-Cloud Continuum approach. The

service’s main objective is to show users’ directness to a video streaming service in real

time, balancing the load and improving scalability. Section 2.4 highlights the advantages

of containerization for resource management and microservices deployment. Section 2.5

delves into the objective QoE metric used to evaluate and enhance user satisfaction.

Finally, Section 2.6 concludes the chapter by summarizing its key insights to the thesis.

2.1 Basic Concepts of Adaptive Video Streaming

Although traditional video delivery methods have their merits, they face certain limi-

tations when it comes to connection-oriented protocols like Real-Time Messaging Proto-

col (RTMP) [20] or Real-time Transport Protocol (RTP) [21] for connectionless protocols.

Typically, the media server pushes the media to the client in these protocols. However,

these methods require help scaling the infrastructure, depending on specific vendors, and

having high maintenance costs necessitating complex and expensive servers. Over time,

new technologies have emerged to overcome these limitations and enhance video streaming

[5]. One of the most popular solutions is HAS, which offers several benefits over tradi-

tional methods. Adaptive streaming is a dynamic video delivery technique that adjusts

the video playback quality in real time based on the user’s network conditions, with the

primary goal of providing seamless viewing playback by adapting to changes in available

bandwidth. DASH [22] and Apple’s HLS [23] are two of the most popular HAS solutions

in use today. These methods, which handle over half of all video streams, are particu-

larly prevalent in on-demand and live-streaming platforms. It is essential to understand

the mechanisms and technologies discussed in HAS paradigm with a focus on DASH to

understand the fundamental concepts related to adaptive video streaming. This section

25

introduces key terms and definitions that underpin adaptive video delivery systems.

Video Segmentation and Codecs

Video is a sequence of frames displayed at a specific frame rate to create the perception

of motion. In adaptive video streaming scenarios, videos are divided into segments or

chunks, smaller portions of the original video. Each segment typically represents a few

seconds of playback, commonly for 2–10 seconds.

Different coding formats can encode the video, such as Advanced Video Coding (AVC),

HEVC, VVC, VP9, and AOMedia Video 1 (AV1). AVC, a widely adopted standard, of-

fers broad compatibility but falls short in compression efficiency for high-quality content.

HEVC, its successor, addresses these limitations with advanced techniques like larger

block sizes and improved motion compensation, offering better efficiency for UHDTV and

streaming, though licensing issues slow its adoption. VP9 and AV1, as open and royalty-

free formats, provide comparable efficiency to HEVC, gaining traction in web browsers and

online platforms despite limited hardware support. VVC, the latest standard, delivers su-

perior compression for high-resolution and immersive content but challenges licensing and

hardware adoption. Together, these codecs cater to evolving demands in video streaming

and delivery.

These codecs generate multiple encoded representations of the video at different bi-

trates, attending the diverse network bandwidths. This process ensures a bitstream com-

patible with decoders on various client devices.

Media Presentation Description

The segments of each video are listed in a manifest file called Media Presentation Descrip-

tion (MPD), which further contains the available representations and provides details such

as video duration, content availability, media types (e.g., H.264, H.265, etc.), resolutions,

minimum and maximum bandwidths, alternative encoded multimedia components, loca-

tions of media segments, and other content characteristics.

In Figure 2.1, we illustrate a typical structure of a MPD file, it can give us an under-

standing of the DASH standard [24]. The MPD is organized into multiple Period elements,

each corresponding to a distinct media content segment, enabling temporal segmentation

for seamless playback. Within each Period, AdaptationSet elements group media streams

based on codec, resolution, or bitrate characteristics, facilitating adaptability to vary-

ing network conditions and device capabilities. Each AdaptationSet comprises several

Representation elements, which provide details of the available quality levels, defined by

attributes such as bitrate (e.g., 100 Kbit, 200 Kbit). Representations include essential

components such as the Init Segment for initialization and subsequent media Segment

URLs, ensuring efficient content delivery. The diagram also introduces SubSet elements

within a Period, which enable the grouping of specific AdaptationSets for advanced use

cases, such as tailored content delivery or targeted optimizations. This comprehensive

structure underscores the flexibility of DASH in supporting adaptive video streaming,

making it suitable for diverse application scenarios in adaptive multimedia systems.

26

MPD

Period

Period

Period

Period

AdaptationSet
id=as-1

AdaptationSet
id=as-2

AdaptationSet
id=as-n

...

SubSet
id=ss-1

SubSet
id=ss-2

Representation
100 Kbit

...

...

AdaptationSet

Representation
100 Kbit

Representation
200 Kbit

...

SubSet

Contains
id=as-1

...

Contains
id=as-4

Representation

Init Segment
url=http://cdn.bitmovin
.net/segment-1.mp4

...

Segment
url=http://cdn.bitmovin
.net/segment-2.mp4

Segment
url=http://cdn.bitmovin
.net/segment-3.mp4

Figure 2.1: Overview of MPD DASH Model.

Application-Network Interaction in Video Streaming

Regarding the HAS paradigm, video streaming applications are traditionally built upon

the Transmission Control Protocol (TCP) [25]. Within this paradigm, application-layer

ABR logic operates independently from the transport layer. While ABR logic dynamically

adjusts streaming quality based on available bandwidth, TCP congestion control regulates

data flow to avoid network congestion. However, the lack of coordination between these

mechanisms often results in inefficiencies and concerns about fairness. ABR logic, which

operates independently at the application layer, tends to adjust the streaming quality

too frequently without considering the network conditions monitored by TCP congestion

control. This can lead to unfair bandwidth allocation among different sessions and can

also cause instability in network utilization.

The emergence of the Quick UDP Internet Protocol (QUIC) transport protocol, as

presented in [26], has opened up new avenues for improving the interaction between video

streaming applications and transport functionalities. While certain studies advocate for

QUIC as a promising solution for video streaming, others engage in debates comparing it

to TCP [27]. Furthermore, concerted efforts have been made to enhance QUIC’s support

tailored to video streaming applications.

QUIC performs better than the TCP protocol, where low-throughput use cases are

necessary. However, in some cases, there are degradations compared to TCP and pre-

vious generations of HTTP, where the network bandwidth is poor or there is a vari-

ation in the bandwidth, as is typically experienced during mobility. The dynamics of

application-network interaction for video streaming, particularly concerning integrating

emerging transport protocols like QUIC, represent fertile ground for future investigation.

27

End-to-End HTTP Adaptive Video Streaming Pipeline

Figure 2.4 illustrates the end-to-end process of the HAS paradigm. The process begins

with the video source, which provides the raw video content. This source can be a live

stream, a camera feed, or a pre-recorded video. The raw video is first passed through

an encoder, compressing it into multiple bitrate versions. These versions enable adaptive

streaming, allowing the content to adjust dynamically to varying network conditions and

device capabilities, ensuring an optimal viewing experience for users.

Encoder
Video
Source HAS server

Vi
de
o

HAS Players

Vi
de
o

HTTP Request

HTTP Response

Internet

Ba
nd
w
id
th

Time

Time

Packager CDNs

Content contribu�on Content Distribu�on Content Consump�on

Figure 2.2: Overview of an End-to-End HTTP Adaptive Video Streaming
pipeline, illustrating the process from multimedia source acquisition through
encoding, segmentation, and Content Distribution servers, culminating in
client-side playback.

Next, the encoded video is processed by the packager, which segments it into small,

uniform chunks. These chunks are created at different quality levels. Concurrently, the

server generates a manifest file, known as the MPD, which provides essential metadata

to guide the playback process. The segmented and packaged content is then uploaded to

the HAS server, which serves as the central storage and delivery point. The server hosts

the video chunks and manifests, making them accessible to users through standard HTTP

protocols.

The video content is delivered over the Internet, bridging the server and the end users.

Finally, at the user’s end, HAS players on devices such as desktops, laptops, or mobile

phones dynamically request video chunks. Using ABR algorithms, the players select the

appropriate quality level for each chunk, depending on current network conditions and

device performance. These algorithms aim to ensure a high QoE for users, even in the

presence of bandwidth fluctuations caused by network congestion control, signal strength

variations, packet loss, and more. While such fluctuations are common in public Internet

environments, they can also occur in private networks, such as home or managed networks,

where admission control and various Quality of Service (QoS) tools are typically employed.

28

2.2 Cloud and Edge Computing

Cloud computing is a model that enables ubiquitous, convenient, and on-demand access to

a shared pool of configurable computing resources. This cloud model provides large-scale

computational resources with high latency in some ecosystems [28,29]. This model can be

servers, storage, applications, and services, which can be rapidly provisioned and released

with minimal management effort or service provider interaction. These cloud systems

typically utilize servers through which traffic flows via the network core. Additionally,

device connections are generally established by static users and stable Internet links [30].

In this way, creating these systems partially addresses the issues of scalability, availability,

and interoperability but simultaneously introduces new challenges (e.g., increased latency

and core network congestion).

Edge computing aims to bridge the gap between the cloud and end-user devices, ad-

dressing the need for processing, communication, and storage resources closer to where

the end-users are. This layered model provides ubiquitous access to a shared continuum

of scalable computing resources, ensuring high performance and adaptability [31]. By

enabling the deployment of latency-sensitive distributed applications and services, edge

computing leverages fog nodes—physical or virtual components that act as intermediaries

between intelligent end devices and centralized cloud infrastructure-enhancing responsive-

ness.

Edge nodes can be organized into multi-level architectures—vertically (to support iso-

lation), horizontally (to support federation), or based on the latency between edge nodes

and end-users. Edge computing minimizes the response time of supported applications

and provides local computing resources to end devices while offering network connectivity

to centralized services when needed.

Figure 2.3 depicts a multi-tier network architecture, which is composed of a hetero-

geneous set of devices and applications using distributed computing resources through

multi-access communication technology. Below the cloud layer, the network edge is di-

vided into three layers that are organized hierarchically [3]. Core Network Regional Edge

can manage coordination across the distributed infrastructure in this multi-tier ecosys-

tem, for example, in a smart city, followed by the Access Network Edge, which supports a

few dozen to maybe a few hundred local nodes at the middle layer of the edge computing

infrastructure. The Edge gateways can be distributed on local edge nodes, where the

node re-transmits video content employing wired or wireless communication.

Using the edge of the network helps to improve user satisfaction but can also bring

negative impacts. When many users request video segments at the edge nodes, these

surrogated nodes consider static users and just one edge node tier. These nodes are not

ready to deal with the constant changes in the number of users and switching between

different Access Point (AP) [32]. It can offer several merits in different types of video

streaming services, including:

• Video-on-Demand (VoD) Streaming: The implementation of techniques such

as most popular content caching or prefetching at the edge in advance enhances the

scalability and reliability of VoD services. By offloading demand from cloud-based

29

Moving Direction

Edge
Gateways

Access
Network Edge

Core Network
Regional Edge

Cloud Server
Internet

CDN Server

Figure 2.3: A General Overview of the multi-tier network environment.

infrastructure (e.g., origin servers), these strategies facilitate faster content delivery,

reduce latency, and enhance overall user QoE.

• Live Streaming: By leveraging techniques such as caching, transcoding, and pro-

cessing can be optimized to reduce latency and improve the video streaming quality.

Deploying these processes closer to the end user, where data is generated and con-

sumed.

• Immersive Video Streaming: Processing and rendering content close to the

user, immersive streaming can significantly reduce latency and improve applications’

performance. This is particularly critical for applications such as Augmented Reality

(AR) or Virtual Reality (VR), which demand real-time processing and rendering of

high-quality video content to ensure seamless user experiences.

Also, there are opportunities for resource management in multi-tier edge/cloud net-

works to provide video transmission [33,34]. The advantages of nodes closer to end-users

can improve the network’s functioning. Below, we discuss some insights that can be used

in favor of network and provider admin in the infrastructure for video transmission.

• Improving the User’s QoE: In a multi-tier environment with more than one-tier

resource availability, the resources can host the video content near the end-users.

This allows for reducing latency and mitigating the load on the network core. The

30

edge nodes combine specific resources to transmit and integrate video streaming ser-

vices in such communication environments. Within this context, integrating QoE

feedback models inside the player creates an opportunity to improve user satisfac-

tion. The results reported in [35] suggest improving the users’ satisfaction using the

edge multi-tier network is possible. Depending on the video service allocation level,

it is possible to provide smooth video playback even in an overloaded network.

• Potential Bandwidth Saving: Videos streamed in higher quality use more net-

work bandwidth. Consequently, provisioning from the Cloud will incur high com-

munication expenses in the core network. Delivering part of the video along the

network instead of sending the entire video to an edge server or lowering the en-

coding quality of uninteresting video portions can significantly save bandwidth.

Different delivery approaches can have different performances to reduce the uplink

bandwidth use. Because of that, it is possible to contemplate an end-to-end design

of video streaming, wherein the edge server adapts the video streams based on up-

link and downlink bandwidth capacities. Additionally, new forms of video content

are being generated today and may present opportunities for bandwidth saving and

video services orchestration in edge-cloud infrastructures.

• Cacheability: Nodes at the edge provide resources to VoD providers to allocate

their caches. The allocated caches make multi-hops within the edge to serve the end

user. With this characteristic, different possibilities in the multi-tier network still

have to be studied, such as cache allocation, placement, replacement, and selection

caches, which usually make decisions in real time. These problems can offer a

better video streaming service. In addition, an orchestrator has to consider the

user’s mobility and the possibility of predicting the direction of movement. As the

user changes their trajectory, new caching mechanisms can use this information to

optimize streaming video services.

In this thesis, we leverage Edge capabilities to improve user QoE and overall network

performance across all proposed contributions. Although the primary application focuses

on VoD, the solutions presented are designed with adaptability in mind and can be ex-

tended to support live streaming. By addressing key challenges in resource allocation

from the cloud to the last mile network [36], our approach aims to deliver seamless and

efficient video streaming experiences across diverse application domains.

2.3 Content Steering at the Edge-Cloud Network

Leveraging edge and cloud resources allows for greater scalability and flexibility in content

delivery infrastructure. Edge servers can handle localized spikes in demand and deliver

content closer to end-users, while cloud resources provide additional capacity and support

for global content distribution. Overall, CSS at the network offers speed, scalability,

reliability, and personalization, enabling organizations to deliver content more efficiently

and effectively to end users worldwide [37,38].

31

CDN-2

Content
Provider

CDN-1

Edge-1

HAS Players

Content
Steering

Figure 2.4: Overview of Content Steering Process Architecture: Directing
user requests to the content delivery systems.

Figure 2.4 illustrates the Content Steering implementation. The design consists of

architecture for video streaming, integrating CDNs, edge computing, and a CSS. The

system’s core is the CP, working as the origin server, hosting the multimedia content and

distributing it to CDN-1 and CDN-2. The architecture can also incorporate Edge Nodes

(e.g., Edge-1) as local caching layers, further reducing latency and enhancing delivery

efficiency. Content Steering employs its load-balancing strategy based on a list of available

servers, dynamically deciding which regional edge servers or CDNs should handle user

requests. Upon receiving a request, the CSS node sends the response based on the list

of servers by the appropriate Uniform Resource Locator (URL)s. The system’s solid

arrows represent the multimedia data flow, while the dashed arrows depict the steering

mechanism used for load balancing. This design shows great potential in addressing the

following limitations:

• Scalability: This implementation achieves scalability levels comparable to CDNs or

platforms responsible for executing edge functions. By distributing processing tasks

across multiple points, it can seamlessly accommodate growing demands without

compromising performance;

• Cost-Efficient Deployment: Deploying this implementation becomes significantly

more economical due to reduced bandwidth and per-request costs at CDNs or edge

platforms compared to the higher egress traffic costs associated with cloud platforms.

This cost-effectiveness makes it a more viable option for organizations seeking effi-

cient content delivery solutions;

• Enhanced Responsiveness: The two-phase implementation enhances responsive-

ness by enabling lower Time-To-Live (TTL) between clients and servers. This re-

duced latency facilitates quicker interactions between users and content servers,

leading to smoother content delivery experiences.

Reducing response times is paramount for unlocking additional functionalities within

the system. When TTL values become shorter than the size of the player’s buffer (e.g.,

32

1-30 seconds), it automatically enables QoS and QoE optimizations [39]. For instance,

it helps prevent buffering issues and allows clients to access higher-quality streams seam-

lessly. Moreover, shorter response times are essential for supporting mobile applications,

disaster recovery scenarios, and other use cases requiring swift and efficient content de-

livery.

Table 2.1: Comparison of CDN Switching Methods Based on Key Metrics

Method Ease of
Use

Switch
Speed

Accuracy Complexity Scalability Best For

DNS-
based

High Slow Low Low High Simple sys-
tems

Manifest
Rewrite

Medium Medium Medium Medium Medium Live
streaming

Server-
side

High Medium Low Low Medium Central
control

Client-
side

Low Fast High High Medium User expe-
rience

Content
Steering
Service

Medium Fast High Medium High Dynamic
CDN
switching

CDN switching methods vary significantly in complexity, speed, accuracy, and scalabil-

ity, each suited to specific use cases [40]. Table 2.1 lists the methods and approaches tried

in the past. As easily observed, none of these approaches is perfect. Domain Name Sys-

tem (DNS)-based switching is the simplest to implement, keeping source URLs constant,

but it suffers from significant delays—often several minutes—when updating routes. This

slow response severely impacts QoE during CDN failures or overloads, making it unsuit-

able for dynamic environments. Manifest rewrite, on the other hand, enables midstream

switching by modifying media manifests, reducing cascading failures, and offering more

adaptability. However, it introduces the risk of errors during rewrites and delays while

detecting and responding to CDN issues, which can disrupt playback.

Server-side switching simplifies operations with centralized control, where servers man-

age CDN selection based on collective client data. While easy to deploy, this approach

lacks real-time adaptability and fails to account for individual user conditions, limiting its

effectiveness in dynamic or heterogeneous networks. Client-side switching, in contrast, ex-

cels in accuracy and responsiveness by leveraging real-time metrics from individual clients,

allowing seamless midstream transitions. However, its complexity and high implementa-

tion costs make it challenging, especially for platforms with restricted or proprietary

players.

The CSS is an efficient solution for dynamic CDN switching, integrating speed, accu-

racy, and scalability. Dynamically selecting CDNs based on real-time client and network

data ensures better decision-making traffic distribution for QoE and reliability. It uses

standards like DASH and HLS to provide a future-proof mechanism for intelligent CDN

switching, optimizing video delivery in diverse network conditions.

33

2.4 Container management systems

Containerization is a lightweight virtualization technology encapsulating services and ap-

plications in small standard units. Unlike traditional machine virtualization, where a

virtual machine is instantiated with the entire operating system, libraries, and other de-

pendencies, the container encompasses only the application (or service) of interest and

the dependencies necessary for its execution. Scalability is enhanced using this approach,

as containers consume fewer resources and generate lower overheads when compared to

virtual machines. Each container is defined from an image and built on a stacked-layer

structure, where each change in the subsequent layer creates a new layer. Except for the

topmost layer, all the others are read-only and can be reused to compose other images.

Containers share the same kernel and isolate application processes from the rest of the

operating system.

In this context, Docker1, CoreOS, and other interested parties in the container in-

dustry established the Open Container Initiative (OCI) to define standard specifications

for container technologies. Currently, OCI proposes three standards: runtime, image,

and container distribution. Therefore, OCI allows compatibility among all artifacts pro-

duced in compliance with the proposed standards. Among the use cases related to OCI

compliance, we highlight the Internet of Things and Edge Computing.

The container technology offers distinguished characteristics from other virtualization

approaches: portability, volatility, and resource consumption. Portability is evident in

how containers are built, as the application is encapsulated with all the dependencies

necessary for its execution, and a container will have the same execution behavior in any

environment in which it is provisioned. Regarding volatility, due to the ephemeral nature

of the container, all possible data persistence is carried outside the container. Therefore,

in case of execution issues related to a failed container, it is not necessary to carry out

debugging to identify the fundamental problem affecting its functioning, but rather to

destroy it and create a new instance without the need to take care of application data,

which can be costly. Finally, as previously described, as it is an environment with a small

number of additional processes and services, as opposed to virtual machines, the container

consumes fewer resources, optimizing the physical resources available on the host system.

Fig.2.5 shows the main differences between containers about virtualization based on

virtual machines.

It is important to note that running containers also require a runtime, the most famous

of which is Docker. Container runtimes can be classified into two types: low-level and high-

level. Low-level runtimes adhere to OCI specifications. On the other hand, some runtimes

have an extra layer because they present more functionalities than the minimum required

for just running containers. Examples of these high-level runtimes are Docker, Podman,

and CRI-O. A container image should be passed to the runtime for a runtime to execute an

image of interest. In the context of containers, images are stored in repositories referenced

to the runtime at execution time. These repositories, or Registries, are well-structured

and can be public or private. In the first case, the stored images are open to the public.

In the second case, the images are made available to a specific audience, for example, one

1Docker is a container platform: https://www.docker.com/

34

Machine Virtualization

Hypervisor

Guest
OS

Guest
OS

Guest
OS

Infrastructure

Bins/Lib

App 1

Bins/Lib

App 2

Bins/Lib

App 3

Containers

Operating System

Infrastructure

Bins/Lib

App 1

Bins/Lib

App 2

Bins/Lib

App 3

Container Engine

Figure 2.5: Containers vs Virtualization based on Virtual Machines [2].

company employee; therefore, most of the time, they are available only through access

credentials. Container image repository implementations include Red Hat’s Harbor and

Quay.

Containers enable the creation of a new application development paradigm based on

microservices. This paradigm enables splitting application components into many rel-

atively small services that, unlike paradigms with monolithic approaches, address the

architecture and organization of applications by dividing the whole implementation into

small, well-defined, and concise units according to the functions they perform in the appli-

cation. The microservices communication is performed through well-defined Application

Programming Interface (API).

2.5 Quality of Experience

Multimedia content delivery over best-effort networks faces numerous challenges due to

fluctuating network conditions. In non-adaptive streaming, videos are typically streamed

at a single bitrate from the server. As network conditions degrade, the download rate

may fall below the playback rate, leading to buffer depletion and playback interruptions.

In contrast, HAS mitigates these issues by encoding video segments into multiple bitrate

levels and dynamically selecting the appropriate segment based on current network con-

ditions and the playout buffer level. This approach not only reduces buffering but also

optimizes bandwidth utilization, which can play a key role in determining the viewer QoE.

QoE reflects key metrics for assessing the user’s overall satisfaction with the delivered

content. Unlike purely network-centric metrics, QoE considers the end-user’s experience,

bridging technical performance indicators with perceptual outcomes. It is shaped by mul-

tiple factors such as bitrate adaptation schemes (also known as ABR) and the interaction

between application-level control loops and lower-layer mechanisms. Various factors can

influence the viewer’s perception [41], and we discuss some of these influencing factors.

• Perceptual Quality: A higher video bitrate typically provides better video quality.

35

In HAS, users dynamically adjust video quality during a session, introducing an

additional factor influencing the user’s QoE.

• Switching Quality: As noted in [42], the time spent on each video representation

significantly impacts perceived quality. The switching amplitude and frequency

between bitrates determines the variation in perceptual quality during a session.

Switching amplitude reflects the magnitude of changes in video quality while switch-

ing frequency represents the number of bitrate variations throughout the session.

• Initial Delay: Every video transmission requires initial data before decoding and

playback. This data transfer before video playback is called the initial delay, also

known as initial buffering. During this phase, the client does not necessarily need

to fill its buffer with a large amount of data, as doing so could result in a prolonged

initial delay. However, maintaining a higher buffer level can help the client efficiently

avoid buffer underflows during playback.

• Interruptions: These are playback freezes caused by the depletion of the buffer.

Specifically, a buffer underflow is followed by a buffering period, during which the

client must quickly replenish a sufficient amount of video data to resume playback.

In some streaming services, rebuffering events may be handled similarly to initial

buffering. However, the impact of these two delays differs significantly for users.

Unlike initial delay, which occurs before the service begins and is generally antici-

pated, interruptions happen unexpectedly during playback, making their perception

far more negative for users.

QoE assessment models have been proposed in both industry and academia, leveraging

objective metrics such as Peak Signal-to-Noise Ratio (PSNR) [43], Structural SIMilarity

(SSIM) [44], Video Multimethod Assessment Fusion (VMAF) [45], Mean Opinion Score

(MOS) [46], among others [47]. In addition, video quality is also frequently evaluated

indirectly through bitrate levels [48, 49]. While these metrics provide valuable insights,

they often emphasize different aspects of video quality. For the sake of simplicity, we

use logarithmic law over bitrates levels for segment quality measurement, where a video

quality model for DASH is proposed as shown in Equations 2.1-2.2. This approach em-

phasizes a multi-dimensional QoE optimization strategy that balances short-term (e.g.,

per-segment QoE) and long-term (e.g., session-level QoE trends) objectives.

The short-term model (Equation 2.1) calculates a video quality chunk based on video

resolution quality. Each video has N segments and is encoded with L bitrate levels. ri
represents a specific bitrate level. At each step i, the quality of segment i is defined as:

q(ri) = a1 ∗ log(a2 ∗ (ri/r|L|)) (2.1)

The long-term model considers Equation 2.2 from [48], which consists of four metrics:

(a) the average chunk perceptual quality, (b) the average number of quality oscillations,

(c) the average number of stall events and their duration, and (d) the startup delay. K

36

represents the total segments of the video, Si is the stall duration, and STi is the startup

delay of user i.

QoEi =
1

K

K∑

k=1

q(rk)−
1

K − 1

K−1∑

k=1

|q(rk+1)− q(rk)| −
1

K

K∑

k=1

Sk − STi (2.2)

The QoEi for each user i can range from 1 to 5, where 1 = bad, 2 = poor, 3 = fair, 4

= good, and 5 = excellent.

2.6 Chapter Conclusions

This chapter examined the mechanisms and technologies that enable adaptive video trans-

mission across network infrastructures. By exploring Cloud and Edge computing, HAS,

and CSS, it addressed critical challenges such as latency, scalability, and user mobility.

Cloud computing provides centralized scalability, while Edge computing reduces latency

by processing data closer to users, enabling responsive, high-quality video delivery. These

complementary paradigms create a robust foundation for supporting diverse applications,

from VoD to live streaming and immersive media.

The discussion highlighted the importance of HAS, particularly solutions like DASH

and HLS, which dynamically adjust video quality based on real-time network conditions.

Using ABR algorithms, HAS ensures seamless playback, enhancing QoE by minimizing

interruptions, reducing delays, and stabilizing video quality. Additionally, CSS demon-

strated how intelligent routing between Edge and Cloud nodes can optimize scalability,

responsiveness, and cost efficiency. This approach is crucial for handling dynamic user

demands and delivering content reliably under fluctuating network conditions.

Containerization emerged as a key technology for efficient resource management, of-

fering flexibility and scalability through lightweight, modular microservices architectures.

The concepts discussed in this chapter—spanning adaptive video streaming, Edge-Cloud

integration, and QoE optimization—form a solid foundation for developing innovative

solutions. Subsequent chapters will build on these insights, focusing on intelligent re-

source allocation and real-world implementations to address the challenges of modern

video streaming environments.

37

Chapter 3

Related Work

This chapter introduces the main related works in the scope of the present thesis. We focus

on more closely related studies with similar goals. Section 3.1 discusses how Edge-Cloud

Networks are organized hierarchically through HAS video streaming systems. Section 3.2

details the work using microservices that address aspects commonly used to create the

video streaming architecture. At last, Section 3.3 concludes the chapter.

Tables 3.1 and 3.2, located in Sections 3.1 and 3.2, respectively, summarize the key

characteristics of the studies reviewed in this chapter. The column “Proactive” informs

whether the proposal takes proactive measures to handle resource management allocation.

The “Method” specifies whether the focus is on server-side or client-side solutions, and

the “Architecture” highlights the system design, such as hierarchical edge-cloud, cloud-

centric, or edge-centric frameworks. Additionally, the “Scaling” column evaluates whether

dynamic adjustments to container deployments are considered, and the “QoE” column

indicates the use of QoE to optimize the resource allocation. The “Switching” column

assesses if the studies explore the impact of switching between video sources or protocols

inside the user session. The “Adaptation” refers to the system’s ability to dynamically

adjust its operations, resources, or configurations in response to changing conditions such

as network fluctuations, user behavior, or resource availability. If a container reaches its

load capacity, new instances of that service can rapidly be deployed to the accompanying

cluster to help relieve pressure. The services are multi-tenant and stateless with end-users

spread across multiple regions. Finally, the “Evaluation” column outlines the methods

used to validate the solutions, such as simulations, emulated or testbed trials.

3.1 Edge-Cloud Network-Based HAS Systems

In this section, we examine previous research in video streaming at the hierarchical archi-

tecture, specifically focusing on the models of orchestrators capable of effectively manag-

ing resources. However, we analyzed these works from the perspective of adaptive video

streaming scenarios. Serving content from the edge offers higher application-perceived

throughput when the latency savings in receiving the first byte are significant when the

CDN transfer is limited by the throughput from higher levels of the CDN hierarchy (or

origin) to the edge [30,50,51]. Further, for higher bitrate video, the differences in through-

38

put may be significant enough to impact the video streaming experience. In general, the

network hierarchy in video streaming is at the edge, specifically focusing on the models

of orchestrators capable of managing services.

For instance, Farahani et al. [51] propose the use of an optimization model that employs

a service approach with auxiliary caches in their study. The client’s requests are served

by reverse proxy services placed at the edge and considered the shortest fetch time to

attend to the users. Large-scale trials verify the accuracy of the proposed method, and

the framework’s performance is compared to client-server approaches. It aims to minimize

the number of requests forwarded to the origin server. However, the work lacks support

for QoE and does not address the potential impacts on service deployment strategies.

The distribution of multimedia services in a hierarchical edge/cloud network also poses

significant challenges. Santos et al. [52] solve this problem by formulating the service

allocation problem as an Integer Linear Programming (ILP), to reduce the number of

network nodes while keeping latency in mind. The proposed approach strategically selects

the node closest to the user to meet their demands and enhance the overall user experience.

Santos et al. [53] present an orchestration mechanism called Fog4Video designed to select

the edge nodes for downloading video content. The mechanism utilizes user feedback to

evaluate video streaming from edge nodes. The work divides the edge into three layers

to ensure storage capacity, which improves the average bit rate and significantly reduces

monetary costs. Dealing with resource management is an essential requirement in a well-

built orchestration. However, the solutions do not account for the operational impacts

of deployment scenarios, nor do they address the redirection mechanisms used in their

frameworks.

Guan et al. [54] demonstrate the performance of the tree-structure model and propose

an algorithm with a hit rate improvement in the multimedia content and considerable

memory consumption save. The algorithm redirects a user’s request for a video to the

nearest cache. If the cache node does not receive the video, the edge node forwards

it to the upper tier, which forwards the request to the upper tier until it reaches the

source. However, suppose any node in the cache network stores the requested video. In

that case, it returns the video immediately without forwarding the request to the upper

tiers, ensuring an efficient and fast video delivery system. While the work demonstrates

effectiveness in static or controlled environments, the work lacks a thorough discussion of

its applicability and performance in more dynamic and unpredictable edge scenarios.

In the context of Adaptive Video Streamings and with a focus on edge network,

Armijo et al. [55] introduced SPACE, a system anticipating the segments requested using

Prefetching strategies and Caching at the Edge. Leveraging ML techniques for segment

prefetching, SPACE demonstrated improvements in average bitrate and stall reduction

compared to baseline strategies. However, real-world testing and evaluation are still nec-

essary to validate the proposed policies and their performance metrics. Additionally, the

orchestration between services and users remains unexplored.

Guowaei et al. [13] explore the use of multiple CDNs in video distribution and pro-

poses a data-driven user mapping strategy for IPTV services. While the results show a

significant QoE improvement in multi-CDN environments, the assumption that all video

content is replicated across CDNs is impractical for edge computing scenarios with limited

39

storage. Furthermore, the study does not account for the dynamic nature of edge nodes

needed in the Edge-Cloud Continuum.

Taha et al. [14] introduce hybrid protocols tailored for adaptive video streaming over

edge networks. Their method emphasizes the selection of protocols based on network

topology and performance metrics, offering performance improvements in edge environ-

ments. However, the protocol selection process is inherently complex, posing significant

challenges for real-time implementation in distributed edge scenarios, particularly under

dynamic and variable network conditions.

Table 3.1: Comparative Analysis of Related Works.

Work Arch Cont Scaling Proact QoE Switch Adapt Eval

[51] H 7 : : : 7 7 Testbed

[53] H : : : 7 : : Simulation

[52,56] H : : 7 : : : Simulation

[54] E 7 : 7 : : : Simulation

[55] H : : 7 7 : : Testbed

[13] E 7 : : 7 7 : Testbed

[14] E 7 7 : 7 : 7 Simulation

This
thesis

H 7 7 7 7 7 7
Testbed /
Emulated

Column abbreviations: Arch = Architecture, Cont = Container, Proact = Proactive,

QoE = Quality of Experience, Switch = Switching, Adapt = Adaptation, Eval = Evaluation.

H = Hierarchical; E = Edge; 7 = Implemented; : = Not implemented; ● = Partially implemented.

In synthesizing the findings from the surveyed literature, it becomes clear that, al-

though progress has been made in executing video streaming services across the edge–cloud

continuum, existing solutions still exhibit fundamental flaws in operating video platforms

during streaming sessions without suitable node switching. In addition, while some sys-

tems have developed QoE-aware scenarios, few go further to enable support for services

scaling within the environment. Runtime adaptability is often limited by monolithic de-

sign, lack of session-awareness, or lack of a complete orchestration layer that can monitor

use, make predictions, and execute decisions in a feedback loop.

3.2 Service Allocation Management

Based on management insights of this domain’s current state of knowledge, Carvalho et al.

[18] and Jeon et al. [57] explore ML techniques for container-based strategies to enhance

resource utilization in multi-cloud environments. Carvalho’s approach introduces a QoE-

driven container scheduling mechanism, using ML to infer containers’ overall QoE based

on their metrics. On the other hand, Jeon’s solution focuses on workload forecasting

for generic services, enabling proactive container scheduling based on predicted demand.

While both solutions improve resource management in cloud environments, they do not

40

consider the dynamics of edge-network interactions and the impact of edge nodes on the

end-to-end video delivery experience.

Bentaleb et al. [58] proposed a method based on a deep neural network to make

predictions about the media that will be used. This method allows the edge server to

anticipate demand for cloud-based video segments and make requests in advance. The

experimental findings demonstrate a superior performance of the proposed solution over

the baseline models within a millisecond time frame. However, their evaluation is based on

trace-driven streaming data, which may not account for all possible real-world conditions,

such as varying network conditions, user behaviors, and content types.

Shi et al. [59] discuss the problem of edge node selection. In order to solve this prob-

lem, a proposed edge node selection strategy considers the edge cache’s status. Further,

the authors proposed a QoE-aware method to optimize QoE directly. Thus, the proposed

policies are executed based on users’ QoE to effectively utilize the cached content on the

server Base Station (BS) as much as possible. Nguyen et al. [60] proposed an HTTP-

based relay mechanism where the throughput perceived by users is computed while the

user receives the segments. This allows the server segment re-transmission during network

fluctuations as long as better-quality segments are received. Additionally, the authors uti-

lize the push property of HTTP/2 to retrieve multiple segments sending a single request.

The mechanism has reduced the low-quality video time while also slightly improving QoE.

However, both works rely on specific, tailored solutions, which introduce complexity when

integrating them into other video streaming systems.

Yinxin et al. [61] proposed an edge caching scheme that caches the most popular

representations and the metadata of less popular segments. This scheme can dynamically

determine whether to cache the video chunk with its representations or metadata. Ex-

perimental results show the scheme’s effectiveness in utilizing idle computing resources

at the edge to respond to the most video requests of the most the users. However, the

work does not address resource management aspects between edge and cloud servers or

the integration of CDN provisioning strategies.

Chen et al. [62] presented a three-layer mobile edge network architecture, introducing

an edge caching strategy based on user mobility speed and content popularity. The

experimental results showcased the superior performance of the caching strategy in terms

of average delay and cache hit ratio compared to other classic methods. However, the

mechanism for information acquisition is not thoroughly addressed, which could hinder the

system’s ability to adapt dynamically to changing user demands and network conditions.

Furthermore, This limitation suggests that the solution is not tailored to the edge in CDN

environments.

Chen et al. [63] investigate the multiple bitrate video caching, considering the in-

terplay between processing delay and backhaul transmission. A dynamic programming

algorithm and a multiple-bitrate caching algorithm were proposed to select the most ap-

propriate bitrate versions within constrained cache sizes. The numerical results show the

effectiveness of the proposed algorithm on content placement. However, the scenarios’

deployment operations and redirection mechanisms are not addressed, which are essential

for seamless integration and practical implementation in real-world systems.

In the work by Xu et al. [64], a joint optimization approach was proposed, along

41

with its decomposition and consideration of system limitations. The selection of the first

Closest server as a steering algorithm to attend to users was a notable feature. Meanwhile,

Liu et al. [65] tackled challenges in minimizing latency for request assignment and resource

allocation. Both proposals consider the request load assignment and resource allocation

for CDN nodes, showcasing improved performance in total latency and request loads.

However, the redirection mechanisms in these works lack real-time adaptability and do

not adequately consider users’ QoE conditions.

Table 3.2: Comparative Analysis of Related Works.

Work Arch Cont Scaling Proact QoE Switch Adapt Eval

[66] C : : : : 7 : Testbed

[67] H 7 : : : : : Simulation

[59] E : : : 7 : : Simulation

[60] C : : : 7 : : Testbed

[55] H : : 7 7 : : Simulation

[61] E 7 : 7 : : 7 Testbed

[62] H : : 7 : 7 ● Testbed

[63] H : 7 : : 7 : Simulation

[64] C : : : : 7 : Simulation

[65] E 7 : 7 : : : Simulation

[18] C 7 7 : 7 : 7 Testbed

[57] C 7 7 7 : : ● Simulation

This
thesis

H 7 7 7 7 7 7
Testbed /
Emulated

Column abbreviations: Arch = Architecture; Cont = Container; Proact = Proactive;

QoE = Quality of Experience; Switch = Switching; Adapt = Adaptation; Eval = Evaluation;

H = Hierarchical; E = Edge; 7 = Implemented; : = Not implemented; ● = Partially implemented.

The main characteristics of reviewed studies in Table 3.2 indicate some common ele-

ments in video streaming systems for service allocation. Among the limitations in existing

approaches are, for example, insufficient QoE awareness and a lack of real-time adapt-

ability. While the works explore containerization, edge caching, and proactive scheduling,

none combine these elements effectively within a unified framework. Only a subset of

essential features is considered, whereas the thesis aims to integrate these key aspects.

3.3 Chapter Conclusions

This chapter described the literature solutions for adaptive video streaming within edge-

cloud networks. The studies reviewed highlight different methodologies used to optimize

video streaming architectures, ranging from orchestration mechanisms and steering strate-

gies to machine learning-driven resource management. Based on the state-of-the-art anal-

ysis, some conclusions are taken: (i) dealing with a multi-level architecture brings aspects

42

that can help or worsen network performance if not managed correctly. In summary, the

previous approaches’ efforts to improve users’ QoE have focused on reducing traffic load

or optimizing multimedia streaming. Thus, these challenges require the composition and

development of new service orchestration models; (ii) Most of these studies consider re-

source allocation and latency improvements; they overlook the communication protocol in

provisioning Adaptive Video Streaming within the Edge-Cloud Continuum, while others

consider static scenarios without the impact of the real-time redirection operations. Our

study focuses on implementing an Adaptive Video System to assess the viability of CSS

in an Edge-Cloud Continuum setting; (iii) Most existing studies overlook the impacts

of provisioning adaptive video streaming along the Edge-Cloud Continuum. In contrast,

others consider scenarios without accounting for the effects of accurate time redirection

in the communication protocol. This thesis addresses this challenge by introducing CSS

in the proposed architecture and its impacts on the redirection mechanisms. (iv) Another

key aspect is the architecture’s adaptability to different scenarios within the Edge-Cloud

Continuum. Most of the works propose solutions that are optimized for specific conditions

but do not generalize for real-world technologies such as HAS communication, observabil-

ity frameworks and microservices-based deployment strategies. Meeting all the above

requirements leverages a dynamic resource allocation, real-time monitoring, and session-

aware CSS, ensuring seamless performance across different deployment environments for

adaptive video streaming services.

43

Chapter 4

Adaptive Video Streaming in Multi-tier

Edge-Cloud Environment

Adaptive video streaming services are done through the HTTP Servers using the HTTP

protocol requests/responses. Original videos are partitioned into segments of equivalent

playback time on the server side, and each of these segments has multiple versions that

vary in bitrate/resolution/quality [6, 48, 68]. On the user side, the player can request

video segments sequentially and adjust the bitrate resolution dynamically to network

conditions. The users’ QoE is significantly affected by the video quality level segment

that the player selects. Considering video streaming platforms working over the network,

the final mile of access networks is when QoE deterioration and resource limitations

occur for consumers. Nonetheless, edge computing is a hierarchy of neighborhoods in

the geographical region where the video content becomes accessible near the end-users.

Existing solutions are designed to deliver content so that edge and cloud networks can

work together. It alleviates the traffic load from backbone networks to the cloud and,

consequently, helps improve users’ QoE [30,32].

Edge computing can accommodate the new demands of video traffic. However, some

level of planning is required to leverage edge resources’ capabilities. Firstly, the edge

node selection problem involves determining the most suitable edge node to host video

streaming services for a given user or group of users. For instance, the handover process

ensures that users communicate with the nearest AP. However, this process does not

inherently ensure the connection is established with the optimal edge node hosting the

required video streaming service, potentially resulting in degraded performance. Another

important aspect is the need for dynamic scalability in content delivery. CPs must adapt

to fluctuations in user demand. When the number of users increases in a specific region,

additional edge nodes may need to be provisioned to accommodate the growing load

and maintain QoE guarantees. Conversely, when multimedia consumption decreases,

the system should consolidate users onto fewer edge nodes, shutting down underutilized

nodes to save energy and resources. This scalability demonstrates the importance of a

hierarchical and flexible approach to multimedia content delivery [32,69].

Therefore, content providers or network operators must identify an appropriate edge

node to meet users’ requirements. This necessity highlights the importance of a decision-

making process for edge node selection. Such decisions must be made in real-time to

44

maintain a good QoE and minimize the resource wastage across edge nodes. Moreover,

aggregating active users in a minimum number of edge nodes can help balance traffic

load [5, 19]. To address these challenges, we introduce the MultI-tiered edGe/cloud

oRchestrator Architecture for video sTrEaming (MIGRATE). The proposed architecture

dynamically orchestrates services in response to real-time video streaming demands. In

addition, we formulate an ILP model that considers the multi-tier edge network. The

model aims to maximize infrastructure use without affecting the user’s QoE. The main

contributions of this chapter are presented below.

1. Introduce MIGRATE orchestrator for video streaming across multiple edge/cloud

levels, which takes in consideration the hierarchy of multimedia content transmis-

sion. MIGRATE aims to carry out the decision-making of the video streaming

service in real time;

2. Proposal of an ILP model and Greedy solution to decide the distribution of connec-

tions between users and services;

3. Analysis of the results shows that depending on the optimization strategy used,

there is a trade-off between resources and users’ QoE.

This chapter is organized as follows: The proposed architecture, MIGRATE, is intro-

duced in Section 4.1, detailing its multi-tier framework, including communication, mon-

itoring, tracking, and optimization components. Section 4.3 presents the experimental

evaluation, comparing MIGRATE’s performance against baseline approaches in various

scenarios. Lastly, chapter 4.4 discusses the insights gained, highlighting the opportuni-

ties and challenges of deploying multi-tier Edge-Cloud architectures for adaptive video

streaming.

4.1 MIGRATE

The infrastructure supporting edge computing is multi-tiered, as presented in Figure 4.1,

consisting of nodes accessible through different levels of network connectivity. These

nodes range from specialized servers in the core network to micro-data centers in the

radio-access network. The MIGRATE architecture is designed to operate seamlessly in

such a multi-tier edge environment, managing multiple video streaming connections across

the hierarchy network.

MIGRATE takes advantage of the interactivity between nodes at different tiers to

make the best decision within the network. As depicted in Figure 4.1, on the left-hand

side, the edge can be divided into various tiers. At the top of this hierarchy are cloud

servers, which can be located in either the public or private sector. These clouds can be

any video streaming provider or even a local user. The three tiers of the edge network

illustrate the hierarchical structure of the edge network. This study examines three edge

nodes that provide storage and computation services in order of their communication

coverage area. Tier 2 corresponds to the Core Network Regional Edge in this upper

multi-level edge, which coordinates throughout the city. The Access Network Edge in

45

Control Channel Module

Communication channel

Optimizer Module

Bandwidth
Estimator

Monitoring

Logical Network
Topology

Tracking records

Optimizer component

Database

Tier 2: Regional Fog

Tier 3: Neighborhood

Tier 4: Local Fog

Edge Server

Edge Server

Edge ServerEdge Server

Heterogeneous HAS Players

Tier 1: Cloud

Figure 4.1: A General Overview of the multi-tier network environment on the
left side, and the MIGRATE architecture on the right side (Adapted from
[3]).

Tier 3 supports a few dozen to a few hundred local nodes on the edge. Tier 4 deploys

Edge Gateways on locally hosted edge nodes with limited storage capacity, where the

node transmits video data across wired or wireless connections.

Designing a cache hierarchy on edge nodes with an arbitrary number of tiers can

present improvements in users’ QoE [70]. The architecture mentioned above works to-

ward such advantages by serving the requested content close to the end-user, efficiently

forwarding requests between parent edge nodes within the hierarchy, and balancing the

video traffic considering hop counts and users attended. In addition, the network core

congestion is reduced since it represents an operational overhead for the content provider.

4.1.1 Network and System Model

This section presents an overview of the MIGRATE architecture. The detailed architec-

ture components are then defined, including each component’s different functionalities

and responsibilities. The orchestrator can monitor the network conditions and allocate

resources to ensure video services are deployed on the most appropriate edge nodes. This

hierarchical structure enables MIGRATE to make decisions tailored to each level’s needs,

ensuring efficient resource management and better end-user video streaming quality. The

right-hand side of Figure 4.1 shows the MIGRATE software architecture and the neces-

sary interactions for the video streaming components. For the sake of readability, the

notations used in this work are summarized in Table 4.1.

Communication Component

The main Communication Component feature works as a control channel for communi-

cation between network entities. All inter-entity communication is handled through a

channel created by the main class. In this work, the communication functions are offered

to redirect the user to an edge cache. Afterward, the optimization component is executed,

which involves sending messages through the communication protocol to the users. After

receiving a server change notice, users can only communicate with a server that actively

46

Table 4.1: Notation used in the proposed model

Notation Description

G = (V , E) Non-directed graph representing the network topology

V Set of vertices (nodes) in the network

Vn Subset of nodes capable of provisioning and serving content
(backhaul infrastructure)

Vu Set of end-user locations (viewers)

E Set of edges (links) in the network

e = (vx, vy) Edge between nodes vx and vy

ωe Bandwidth capacity of link e

ψ Network state

t Time

ωe(ψ, t) Estimated link transfer rate at time t under network state ψ

ωT
e (ψ, t) Total available bandwidth capacity of link e at time t under

network state ψ

uk User k

G Set of user groups

gi User group i

λ : U 7→ {LAC, id} Function mapping a user to their real-time location (LAC and
cell ID)

LAC Location Area Code

id Cell identifier

JAF(uk, λ(uk)) = gi Joint aggregation function mapping user uk to group gi based
on location

F1 Subset of nodes below a congested link

F2 Subset of user groups connected to nodes in F1

NUM(vj) Number of users traversing node vj

pj Importance degree of node vj to be chosen

χ(ψ, vj) Function quantifying the node vj under network state ψ

Rij Optimal route between user group gi and server vj

DEM(gi, e) Bandwidth demand for user group gi on link e

si Arbitrary multimedia content created by a video server

St
i Video streaming si starting at time ti (ST

i = {st1i , s
t2
i , ..., s

tn
i })

CAP(ST
i , vj) Cache required for video stream ST

i on server vj

Mvj Cache capacity of edge server vj

xij Binary variable indicating if user group gi is assigned to server
vj

accepts them. In doing that, this switch server message must be sent so users can initiate

requests on an already available server.

47

Cache Server 1End-user Server Cache Server 2

Start video Request MPD

Redirect user

Redirect user

Request Segments

Request Segments

Congestion detected

Figure 4.2: Sequence Diagram of the video streaming communication.

A communication flowchart is depicted in Figure 4.2. The client initiates the process by

requesting content from a centralized node. The server, in turn, provides the client with an

MPD. Using the manifest file, the client begins requesting video segments. Initially, these

requests are directed to a primary server. The system actively monitors user feedback and

network conditions as the communication progresses. For example, congestion detected in

the current communication path can trigger a redirection of the service to an edge cache.

Once redirected, the client requests and receives video segments from the newly as-

signed edge cache. Further feedback from the client, such as degraded QoE or network

performance, may lead to subsequent redirections, either to another edge cache within

the same tier or back to a cloud-based server, depending on the system’s assessment of

resource availability and network conditions. This dynamic and adaptive communication

ensures efficient video delivery across different network tiers.

4.2 Monitoring Component

The monitoring component is central to the overall system, continuously observing prede-

fined network metrics that are essential for the MIGRATE orchestration. This component

enables real-time awareness of network conditions, ensuring that orchestration decisions,

such as the deployment of new edge nodes, are made. In this study, bandwidth consump-

tion is considered a key metric [66]. The network topology is modeled as a non-directed

graph G = (V , E), where the set of vertices is defined as V = Vn ∪ Vu. The subset Vn

consists of nodes capable of provisioning and serving content within the backhaul infras-

tructure of a mobile network operator. In contrast, Vu represents the set of end-user

locations (viewers). The connectivity between nodes is determined by the set of edges E ,

where exists a link between nodes vx, vy ∈ Vn such that x ̸= y if an edge e = (vx, vy) ∈ E .

Each network link e ∈ E is associated with a bandwidth capacity ωe. The bandwidth

estimation process is based on the volume of packets transmitted and received through

48

network interfaces over a specific time period t and under a given network state ψ. The

estimated link transfer rate at any time t is denoted as:

ωe(ψ, t).

The total available bandwidth capacity of link e is represented as:

ωT
e (ψ, t).

To ensure network stability and efficiency, the estimated bandwidth consumption must

not exceed the total capacity of the link at any given instant t. This constraint is formal-

ized as:

ωe(ψ, t) f ωT
e (ψ, t), ∀e ∈ E , ∀t. (4.1)

Maintaining this constraint is critical for preventing network congestion and ensur-

ing a good QoE for end-users. The system can dynamically adjust resource allocation

strategies by enforcing an upper bound on bandwidth utilization, mitigating performance

degradation and optimizing traffic distribution across the edge-cloud continuum.

Tracking Component

Most individuals frequently carry their mobile phones with them in daily life. Mobile

communication data includes all users’ locations. Radio access and application-level data

collected from the base stations may be utilized for tracking purposes and supporting the

video streaming infrastructure.

The tracking component registers the user’s location, generating information on which

the system can identify the best network management decision. When a streaming session

starts, the Control Channel component first classifies the user into one of the groups

based on characteristics extracted from their manifest and associated AP information.

These operations can be done with the help of radio access-level data, retrieved from

base stations and application-level information. Providing finer-grained insights into user

mobility within the streaming ecosystem.

Formally, each user uk ∈ Vu is associated with a designated user group. The set of

user groups where each gi ∈ G represents a distinct group. A user’s real-time location can

be determined using the Location Area Code (LAC) and cell identifier (id). The function

λ maps each user to their real-time location:

λ : U 7→ {LAC, id}

When a new user joins the video streaming system, the insertion algorithm adds

the user to a group. We assume that the network data, which includes each user’s cell

ID connection, can be used to detect an association between an AP and a user, where

λ(uk) = {LACuk
, iduk

} represents the exact network point of connection for user uk.

This work employs a primary joint aggregation function, which is defined as a func-

tion that combines multiple users from the same group into a single service node. The

49

aggregation process considers LAC and cell id as shared characteristics among users, to

simplify the system’s optimization and decision-making processes. The joint aggregation

function of users to groups is governed by the function JAF , which dynamically maps a

user uk to a group gj ∈ G based on their current network position:

JAF(uk, λ(uk)) = gi

Each set of users belonging to the same group is then aggregated into a single node

service. In this way, when a user requests video content, the multimedia server is able to

route the user to a particular video provider rapidly. If the viewer is currently watching

the video, a redirect message updates the server instead. Thus, the joint aggregation

function aids in simplifying the optimization component’s computing process.

Optimization Component

The Optimization Component, responsible for making decisions regarding service place-

ment and scalability, is a crucial part of the proposed architecture. This component em-

ploys optimization algorithms that consider factors such as the network’s current state,

the available resources, and the current services’ workloads. The system must respond

promptly as demand fluctuates to ensure the network remains balanced and efficient.

An ILP model for the optimization component is introduced to demonstrate the flexi-

bility of the proposed architecture. Here, the model decides the number of servers capable

of attending to the video demand and distributing users’ connections among the edge

server points. This model aims to maximize the use of the existing server in order to

satisfy the users’ QoE following an objective function.

Edge Node Selection and Service Placement

When the Monitoring Component detects a congested link, the Optimization Component

is triggered. The edge node selection process begins by extracting relevant data from the

Monitoring. The first entry is a subset of nodes defined as F1 ¢ V1, where each node

vi ∈ F1 below the congested link e ∈ E . In doing so, a subset of user groups connected to

these nodes is also selected, represented as F2 ¢ G. Each selected group gi is associated

with an AP vj ∈ F1 of the network topology.

In a hierarchical model, the upper tiers within the network edge tend to serve more

users. To maximize the number of users served by the same node, we used the function

defined in Eq. (4.2) that quantifies the importance of selecting each node to deploy

the video streaming service, prioritizing nodes that serve the highest number of users.

NUM(.) is a function that returns the total number of users who traverse node vj, and

pj is defined as:

pj =
NUM(vj)

∑

vx∈F1
NUM(vx)

,where vj ∈ F1

Using this formulation, the best candidate nodes for service deployment are identified

based on the importance pj, ensuring that services are allocated to nodes with higher user

50

densities. The same node will serve the maximum number of users by deploying services

on nodes with a higher pj value. The Eq. 4.2 also seeks to limit the number of users

through an upper limit. Thus, we can manage the limited resources available at the edge:

χ(ψ, vj) = NUM(vj) ∗ pj (4.2)

Bandwidth and Capacity Constraints

To ensure that the allocated services remain within feasible bandwidth constraints, the

following condition must be satisfied for any selected node vj:

∑

gi∈F1

DEM(gi, e) f ωT
e (ψ, t), ∀e ∈ Rij. (4.3)

To support the video services demanded by users, an optimal route Rij must be chosen

between user group gi and server vj. DEM(.) represents the bandwidth demand for gi,

with the indicator function, to effectively make the demand zero when gi does not pass

through link e. While ωT
e (ψ, t) denotes the total available bandwidth for link e.

With users accessing the video segments sequentially, the demand for the video content

segments in the next time window can be approximately estimated, given the current

viewers. This allows efficient management in allocating cache resources to ensure that

edge nodes are guaranteed continuous storage. Let si be arbitrary multimedia content

created by a video server. The video streaming si starting at ti as St
i (that is, ST

i =

{st1i , s
t2
i , ..., s

tn
i }, where (t1, t2, ..., tn) are timestamps of videos (s1, s2, ..., sn) stored from

ti. The function CAP(.) calculates the cache of a given video stream, and the cache

capacity of the edge server vj, denoted by Mvj , is given by Eq.(4.4).

∑

gi∈F2

xij · CAP(ST
i , vj) f Mvj , ∀vj ∈ F1. (4.4)

The binary variable xij determines whether a user group gi is assigned to server vj:

xij =

{

1, if gi is assigned to server vj,

0, otherwise.
(4.5)

Optimization Formulation

It is necessary to select candidates with the highest pj and who comply with the limits.

The proposed problem can be formulated as follows: To find the optimal set of candi-

dates that maximizes the pj value while satisfying the necessary constraints. This can be

achieved by maximizing the objective function in Eq 4.6.

max
∑

gi∈F2

∑

vj∈F1

χ(ψ, vj) ∗ xij

Subject to (4.1), (4.3), and (4.4).

(4.6)

51

The proposed strategy considers the dynamic nature of network resources and ad-

justs in real-time to changing network circumstances, making it a resilient solution for

managing multimedia services in edge-based networks. Once the ILP problem is solved,

we receive the nodes on which the video streaming service should be deployed, as well

as the connections between nodes F1 and F2. Then, the following two procedures are

carried out: First, the streaming service is deployed on the available node, and then the

communication component updates the active user-service connections.

4.3 Performance Evaluation

Designing a cache hierarchy with an arbitrary number of tiers can present improvements

in users’ QoE [70]. The architecture mentioned above works toward such advantages by

serving the requested content close to the end-user, efficiently forwarding requests between

parent edge nodes within the hierarchy, and balancing the video traffic considering hop

counts and users attended. In addition, the network core congestion is reduced since it

represents an operational overhead for the content provider. First, Section 4.3.1 presents

a preliminary outcome achieved by a multi-tier network experiment, assessing the impact

of a video streaming service from the player’s perspective. After that, Section 4.3.2

analyzes some scenarios without the MIGRATE, where the edge utilization yields similar

QoE performance to cloud-based streaming. Finally, Section 4.3.3 shows MIGRATE’s

performance and insights on the opportunities for caching multimedia content in edge

nodes of multi-tier networks.

Experimental Setup and Parameters

We use Adaptive Multimedia Streaming (AMuSt) [71] to implement a video streaming

server, and the server is implemented through DASH, with users that allow adaptive

video streaming. The AMuSt framework provides a set of applications for producing

and consuming adaptable videos based on the DASH standard. DASH functionality is

provided by the libdash library [72], an open-source library that provides an interface to

the DASH standard. Currently, libdash is the official reference software for the DASH

standard. We consider that users are interested in an available video with ten different bit

rate representations {235kbps, 375kbps, 560kbps, 560kbps, 750kbps, 1050kbps, 1750kbps,

2350kbps, 3000kbps, 4300kbps, 5800kbps}, which are used by Netflix subsets [73]. Each

representation is divided into 2-second segments. All the experiments are executed once

with a video of 1600 seconds (800 segments). For simplicity, the multimedia content used

in the simulation is deployed beforehand in the edge peering nodes. The Zipf distribution

gives the video selection and quality with α equal to 0.7, which ensures that the preference

for content is better distributed.

Figure 4.3 illustrates the scenario discussed in this work. We consider a cache hierarchy

organized as a binary tree topology with seven nodes and a Cloud Provider connected to

the root node. The last four nodes are APs, and the others are edge nodes. The AP nodes

are implemented in wireless devices that communicate via IEEE 802.11g at 2.4 GHz. The

APs have wired connections to the edge nodes, while end users are connected wirelessly.

52

CDN Server

L2 Cache

L3 Router

L1 Cache

End-users

43 6

1 2

0

5

Figure 4.3: Overview of the multi-tier network environment.

Each user connected to the AP is located precisely 8 meters away from the AP. To force

the use of edge nodes, the available bandwidth is 20Mbs on links 0-1 and 0-2 and 30Mbs

on links 1-3, 1-4, 2-5, and 2-6. This configuration allows us to verify the spread of video

streaming services at the edge. The bandwidth in e0,1 and e0,2 are smaller than in the

lower links. In this way, the evaluated solutions can be used to allocate services more

efficiently in different conditions.

4.3.1 Impact of a Multi-tier Approach

To illustrate the differences in users’ performance requesting a video from cache nodes in

different tiers, consider two users requesting the same multimedia content from different

layers. Then, an analysis of the impacts over the network is performed on the application

context in terms of player metrics. Figure 4.4 illustrates a two-tier network model. The

graphs show the results of bitrate, interruptions (stalls), video buffers, and representations

switch, respectively, from left to right.

Although a user requests a cache edge node video, it can be located in layers L1 or L2.

Each layer level has different network factors, e.g., load, latency, etc. In Figure 4.1, an

L1 layer can be interpreted as a personal computer, AP, or Base Station, and this layer

transmits the video content through wired or wireless communication channels, whereas

in the L2 layer, a specific Edge gateway can be distributed on local edge nodes.

Apart from the initial interruption before the start of the video, neither user experi-

enced the same issue again during the video execution. However, the user who received

the video from the nearest edge layer had a higher bit rate than the user receiving the

video from the upmost layer. Note that the user receiving the video from the closest layer

filled the buffer faster, allowing him/her to keep the video playing at the best possible

resolution. On the other hand, the user who received the video from a more distant layer

53

Layer 2:
Access
Network Edge

Layer 1:
Edge
Gateways

Cyber Physical
Layer

Figure 4.4: Bitrate switches, stalls, buffer size, the startup delay in seconds
of a DASH player was requesting a video with ten bitrate levels varying from
50 to 4,500Kbps and from nodes in different tiers.

worked with the buffer at the limit and constantly switched resolutions to prevent inter-

ruption during the video execution. Despite interruptions in both video playbacks, the

transmission from different tiers directly impacts the users’ QoE.

4.3.2 Analysis in Multi-tier Edge-Cloud Networks

This section analyzes the evaluation of the multi-tier video delivery environment. Three

approaches address the impacts identified in the edge/cloud multi-tier network: cloud-

only, edge cache, and mobile-based scenarios. The cloud-only scenario uses only the Cloud

Provider node to deliver the video content. On the other hand, the edge cache approach

uses nodes 1 and 2 as auxiliary nodes to deliver the video. The simulation starts with

the users requesting the video from the cloud. When a congested link is detected, the

edge cache below the link is turned on. Thereafter, the users receiving the video over the

congested link are redirected to the edge nodes 1 and 2.

The number of end-user devices communicating through each wireless AP may change

over time due to the mobility of the end-user devices. In practice, the number of end-user

devices connecting to the wireless AP changes frequently. To show the problems that

can arise in such dynamic load scenarios, a connection change between the APs occurs.

We then reran the second experiment, maintaining connections between users and edge

nodes 1 and 2, but changing the connection between users and APs, emulating users’

mobility. Half the users from each AP move in this mobility scenario. Let i the AP index

(3 f i f 6) such that i < 5, users from APi go directly to APi+2, otherwise they go to

APi−2.

The experiments illustrated in Figures 4.5(a), 4.5(b), and 4.5(c) show the average QoE

calculated by Equation 2.2 when there are 15, 20, and 25 users per AP requesting videos

in the simulated infrastructure. Each boxplot represents the Cloud-only, Edge cache, and

Mobility scenarios. The overall average performance of the Edge cache is better than

the Cloud-only and Mobility scenarios, mainly due to the choices of nodes at the edge

peering nodes for serving user requests. For instance, in the Edge cache experiment, when

congestion occurs in intermediate links e0,1 e e0,2, the edge peering nodes are activated to

serve the end-users below those nodes. This way, the traffic passing through the upward

link will be smoothed out, so the users can improve their QoE to an excellent level. Since

54

the users request segments from the closer nodes and with no congestion link in scenarios

with Edge cache, as expected, we observe a QoE increase. The performance difference

from the Cloud-only and mobility scenarios to the Edge cache experiment is near one level

of satisfaction for 15 and 20 users and approximately two satisfaction levels for 25 users.

Cloud-only Edge cache Mobility
0

1

2

3

4

5

Av
er
ag

e
Qo

E

(a) Average QoE results (15 users per AP).

Cloud-only Edge cache Mobility
0

1

2

3

4

5

Av
er
ag

e
Qo

E
(b) Average QoE results (20 users per AP).

Cloud-only Edge cache Mobility
0

1

2

3

4

5

Av
er
ag

e
Qo

E

(c) Average QoE results (25 users per AP).

Figure 4.5: Users’ QoE average. Each bar group represents a different Planner
decision: Full-Edge, Reactive, and Proactive.

Figures 4.6(a), 4.6(b), and 4.6(c) show the final QoE of each user per start time (time

to start the segment requests). Each blue tick represents a user, and the y-axis QoE

means the final user satisfaction for a fully watched video. Here, we can see the final

QoE degradation for each user’s entrance during the simulation execution. The red plot

represents the number of active users simultaneously. As users reach this experiment’s

final QoE, it tends to be slightly lower than the previous one. When looking at the final

QoE delta between users ui and ui+1, this seems to be irrelevant, but as we increase the

delta, the QoE starts to become considerably different. We can also confirm this behavior

by showing that as the number of users increases, the average QoE decreases, and the

variation between users increases. Also, note that in the simulation with 25 users per AP,

the system already shows a degradation in the quality, which is negatively perceived by

the end-user.

An interesting discussion occurs when the QoE per user is analyzed separately. Ac-

cording to the numerical results, the final QoE worsens as active users increase. However,

it is not entirely true for the Edge cache scenario, where the final QoE for each user

55

0 50 100 150 200 250 300 350
User start time

0

1

2

3

4

5
Qu

al
ity
 o
f E

xp
er
ie
nc
e

Cloud-only: 3.833±0.311
Edge cache: 4.680±0.037
Mobility: 3.744±0.327 0

20

40

60

80

100

Ac
tiv
e
Us
er
s

(a) Average QoE for each user (15 users per AP).

0 100 200 300 400 500
User start time

0

1

2

3

4

5

Qu
al
ity

 o
f E

xp
er
ie
nc
e

Cloud-only: 3.146±0.539
Edge cache: 4.306±0.162
Mobility: 2.973±0.483 0

20

40

60

80

100

Ac
tiv

e
Us

er
s

(b) Average QoE for each user (20 users per AP).

0 100 200 300 400 500 600
User start time

0

1

2

3

4

5

Qu
al
ity
 o
f E

xp
er
ie
nc
e

Cloud-only: 2.647±0.647
Edge cache: 3.871±0.273
Mobility: 2.526±0.567 0

20

40

60

80

100

Ac
tiv
e
Us
er
s

(c) Average QoE for each user (25 users per AP).

Figure 4.6: Average QoE for each user group. Each mark represents the final
user QoE for the following approaches: Cloud-only, Edge cache, and Mobility.

remains close. The standard deviation of 0.037, 0.162, and 0.273 for scenarios with 15,

20, and 25 users per AP indicates a closer QoE between the users. Only in the scenario

for 25 users per AP, the average QoE dropped with a satisfaction close to regular. This

contrasts the other two scenarios, presenting a user’s good to excellent satisfaction. The

network operates with a high standard deviation for cloud-only and mobility scenarios.

As the number of users increases, some outliers start to appear with the worst level of

satisfaction, being between poor and inadequate.

Based on these observations, moving the video to the edge can significantly improve

the user’s QoE. This way, the video transmission system can satisfy users and keep them

watching the video until the end. However, suppose there is no correct management of

connections in real-time and a dynamic mechanism to tackle a varying load coming, for

example, from the mobility of users. In that case, we can conclude that the impact intro-

duced by the AP changes can significantly decrease their QoE. The user experience can

get worse even when using the network’s edge. Proper multimedia content management

can be done by the VoD, which focuses on providing a better QoE for user connection

changes. A content migration mechanism at the edge and upper tiers can mitigate the

problem. Also, rerouting between the active users’ connections and the server nodes may

help improve and balance the user’s QoE.

56

4.3.3 MIGRATE performance

This section presents the performance evaluation of the MIGRATE orchestrator. The

evaluation will be conducted by comparing the results obtained from the ILP model to

the other two models in the field. The potential results of applying the orchestrator to

the mobile operator’s network are addressed. Now, three different scenarios: a Cloud-

Only scenario without MIGRATE and two scenarios using different strategies to use the

available resources in the MIGRATE orchestrator, called QoS-Greedy and ILP Solution.

The Only-Cloud scenario only uses the Cloud Provider node to deliver the video con-

tent. On the other hand, the QoS-Greedy approach uses the edge network nodes; when-

ever link congestion is detected, QoS-Greedy is activated to choose which edge node to

assist in delivering the video. The simulation’s initial scenario starts with users requesting

video content from the cloud. However, as soon as a congested link is detected, the edge

caching mechanism below the link is enabled, and the users receiving the video through

the congested link are redirected to the activated edge nodes. This approach aims to

alleviate the congestion on the network by reducing the amount of data that needs to be

transferred over the congested link and, instead, serving the video content from the edge

nodes located closer to the users. The third scenario, ILP Solution, uses the proposed

architecture to implement the video streaming service, maximizing usage while respecting

the user’s QoE needs.

Figures 4.7(a), 4.7(b), and 4.7(c) show the final QoE of each user per start time (time

to start the segment requests). Each blue tick represents a user, and the y-axis QoE

means the final user satisfaction for a fully watched video. Here, we can see the final

QoE degradation for each user’s entrance during the simulation execution. The red plot

represents the number of active users simultaneously. As users reach this experiment’s

final QoE, it tends to be slightly lower than the previous one. When looking at the final

QoE delta between users ui and ui+1, this seems to be irrelevant, but as we increase the

delta, the QoE starts to become considerably different. We can also confirm this behavior

by showing that as the number of users increases, the average QoE decreases, and the

variation between users increases. Also, note that in the simulation with 25 users per AP,

the system already shows a degradation in the quality, which is negatively perceived by

the end-user.

An interesting discussion takes place when the QoE per user is analyzed separately.

According to the numerical results, the final QoE worsens as active users increase. How-

ever, it is not entirely true for the Edge cache scenario, where the final QoE for each user

remains close. The standard deviation of 0.037, 0.162, and 0.273 for scenarios with 15, 20,

and 25 users per AP indicates a closer QoE between the users. Only in the scenario for

25 users per AP did the average QoE drop with a satisfaction close to regular, in contrast

to the other two scenarios presenting a user’s satisfaction from good to excellent. The

network operates with a high standard deviation for cloud-only and mobility scenarios.

As the number of users increases, some outliers start to appear, with the worst level of

satisfaction between poor and inadequate.

Based on these observations, moving the video to the edge can significantly improve

the user’s QoE. This way, the video transmission system can satisfy users and keep them

57

0 50 100 150 200 250 300 350
User start time

0

1

2

3

4

5
Qu

al
ity
 o
f E

xp
er
ie
nc
e

Cloud-only: 3.833±0.311
ILP-Solution: 4.211±0.299
QoS-Greedy: 4.742±0.016 0

20

40

60

80

100

Ac
tiv
e
Us
er
s

(a) Average QoE for each user (15 users per AP).

0 100 200 300 400 500
User start time

0

1

2

3

4

5

Qu
al
ity

 o
f E

xp
er
ie
nc
e

Cloud-only: 3.146±0.539
ILP-Solution: 4.211±0.299
QoS-Greedy: 4.466±0.112 0

20

40

60

80

100

Ac
tiv

e
Us

er
s

(b) Average QoE for each user (20 users per AP).

0 100 200 300 400 500 600
User start time

0

1

2

3

4

5

Qu
al
ity
 o
f E

xp
er
ie
nc
e

Cloud-only: 2.647±0.647
ILP-Solution: 3.185±0.797
QoS-Greedy: 4.070±0.256 0

20

40

60

80

100

Ac
tiv
e
Us
er
s

(c) Average QoE for each user (25 users per AP).

Figure 4.7: Average QoE for each user group. Each mark represents the final
user QoE for the following approaches: Cloud-only, Edge cache, and Mobility.

watching the video until the end. However, suppose there is no correct management of

connections in real-time and a dynamic mechanism to tackle a varying load coming, for

example, from the mobility of users. In that case, we can conclude that the impact intro-

duced by the AP changes can significantly decrease their QoE. The user experience can

get worse even when using the network’s edge. Proper multimedia content management

can be done by the VoD, focusing on providing a better QoE for user connection changes.

A content migration mechanism at the edge and upper tiers can mitigate the problem.

Also, performing a rerouting between the active users’ connections and the server nodes

may help improve and balance the user’s QoE.

Figure 4.8 (a), (b), and (c) illustrates the distribution of requests between edge servers.

For the ILP solution, as the number of hops decreases, the number of requests between

layers decreases for the 15 and 20-user scenarios. This can be understood by examining the

formal model of the ILP, which only allocates new nodes for video streaming if the current

edge servers do not meet the required demand. On the other hand, the QoS-Greedy

approach always looks for the closest edge server possible to provide video streaming,

resulting in higher consumption of resources. As observed, more video streaming services

are activated in the QoS-Greedy strategy compared to the ILP Solution. This difference

in resource usage is reflected in the request distribution between layers and servers, with

58

#0 #1 #2 #3 #4 #5 #6 Cloud
0.0

0.2

0.4

0.6

0.8

1.0

of
 se

gm
en
ts
 (%

)
Segments provisioned per Node

QoS-Greedy
ILP Solution

(a) 15 users

#0 #1 #2 #3 #4 #5 #6 Cloud
0.0

0.2

0.4

0.6

0.8

1.0

of
 se

gm
en
ts
 (%

)

of segments provisioned per Node
QoS-Greedy
ILP Solution

(b) 20 users

#0 #1 #2 #3 #4 #5 #6 Cloud
0.0

0.2

0.4

0.6

0.8

1.0

of
 se

gm
en
ts
 (%

)

of segments provisioned per Node
QoS-Greedy
ILP Solution

(c) 25 users

Figure 4.8: Number of segments provisioned per node.

the QoS-Greedy approach utilizing more resources to ensure a consistent and high level

of QoE.

Based on these observations, the simulation results demonstrate the effectiveness of

the proposed QoS-Greedy approach in providing high-quality video streaming services

to users. The QoS-Greedy algorithm’s selection of the closest edge nodes to the user

helps to improve the QoE for users, and the standard deviation of QoE values is lower

than for the other algorithms. On the other hand, the results of our analysis show that

the ILP solution is more efficient regarding resource usage when compared to the QoS-

Greedy approach. As the number of hops decreases, the number of requests between layers

decreases for the 15 and 20-user scenarios. This is due to the formal model of the ILP,

which only allocates new nodes for video streaming if the current edge servers do not meet

the required demand. In contrast, the QoS-Greedy approach always looks for the closest

edge server possible to provide video streaming, resulting in higher resource consumption.

Therefore, a trade-off between quality and cost should be evaluated according to the

expected demand and resource availability.

59

4.4 Chapter Conclusion

This chapter introduced MIGRATE and use this architecture to investigate the charac-

teristics of a multi-tiered Edge-Cloud scenario for video streaming services. MIGRATE

leverages the strengths of edge computing to enhance resource utilization, optimize con-

tent delivery, and improve the QoE for end-users. MIGRATE effectively balances the

trade-offs between network efficiency and user satisfaction by enabling real-time decision-

making for video content distribution.

The experimental results highlight the significant benefits of multi-tier architectures

in reducing latency and improving video playback quality. Users receiving content from

lower-tier nodes experience higher bitrates, faster buffer filling, and fewer playback inter-

ruptions than those connected to higher-tier nodes. This demonstrates the critical role of

localized caching and service delivery in improving QoE. However, the results also reveal a

trade-off between resource utilization and QoE. While optimization strategies prioritizing

user experience can achieve higher QoE, they require more aggressive resource allocation,

potentially leading to increased operational costs. Conversely, resource-efficient strategies

may struggle to maintain consistent user satisfaction during peak demand.

Mobility presents a key challenge, as dynamic user movement disrupts resource al-

location and reduces QoE due to the lack of real-time rerouting mechanisms. Address-

ing this issue will require integrating predictive mobility models and real-time resource

management techniques into the MIGRATE framework. Despite these challenges, the

architecture demonstrates scalability and adaptability, dynamically adjusting to changes

in user density and network conditions.

In conclusion, MIGRATE represents a significant step forward in the evolution of

adaptive video streaming architectures. Bridging the gap between resource efficiency and

user experience offers a scalable solution for meeting the demands of next-generation

multimedia services. As edge computing continues to evolve, MIGRATE and similar

architectures will play a pivotal role in shaping the future of digital content delivery.

However, the continued refinement of algorithms, deeper integration of AI technologies,

and adaptation to emerging trends will be essential to fully realizing its potential.

60

Chapter 5

An Architecture for Content Steering

on Edge-Cloud Computing

Adaptive video streaming applications utilize multiple CDNs to efficiently deliver end

users’ content. These CDNs can duplicate their content catalog across various locations

or, more commonly, deploy distributed servers to retrieve content from a centralized

shared source. Consequently, distinct URLs are generated for each location, directing end

users to the same content source. Apple and DASH-IF have recently made significant

progress in standardizing Content Steering Service, introducing this as a new technology

to simplify the design of multi-CDN [74, 75]. This service enables content providers to

seamlessly transition the user’s player between different content sources at startup and

midstream. This steering service operates independently of content manifests but requires

including the steering server address in the manifest file [39,76].

This chapter presents the Adaptive Video Ecosystem Network Unifying Edge-Cloud

Continuum (AVENUE), an architecture designed to manage request load across the Edge-

Cloud Continuum. Additionally, it introduces an additional layer in video streaming

management through Content Steering. AVENUE does not require custom client plugins,

DNS redirects, or Content Management System integration, making it a cost-effective

alternative to existing video service switching solutions. The Content Steering Service

within AVENUE consists of two fundamental modules: monitoring and selector. The

monitoring module gathers real-time context metrics, while the selector module utilizes

the Select Server Algorithm to choose an appropriate edge server. This approach ensures

a better utilization of Edge-Cloud Continuum resources to provide a high-quality user

experience. With proper network integration, this content steering service can address

challenges associated with managing video streams, especially in mobile devices where

connection quality is susceptible to fluctuations.

The contributions of this chapter are as follows:

• Introducing AVENUE, an architecture designed to facilitate real time decision-

making by directing services;

• An experimental testbed to validate the Content Steering Service in an Edge-Cloud

Continuum environment. The open-source code is available at https://github.

com/eduardogama/AVENUE.git;

61

• Analysis and evaluation of the Content Steering Service: How to adapt the service

to the edge necessities and assess features related to the network context.

The remainder of the chapter follows this organization: Section 5.1 presents the system

model with the steering mechanism used in the evaluation. Section 5.2 details the testbed

scenario employed in our experiments, simulation-based tests, and experimental results,

and finally, Section 5.3 concludes the paper.

5.1 Seamless Coordination in Content Steering Service

CSS is an important feature in network management that helps to guide users toward

the best video edge servers that can provide multimedia content. In AVENUE, the CSS

is an additional layer that works with the monitoring and selector modules, giving a

comprehensive system overview. In this section, we discuss in detail the monitoring and

selector modules and how they work together to ensure the complete functioning of the

service.

System Model

The Deployed Adaptive Video Streaming workflow is illustrated in Figure 5.1. The Video

Edge Service strategically situates itself in proximity to user demands, capturing video

content from CDN sources upon cache misses. This strategic delivery optimizes traffic

consumption through the core network and minimizes latency by efficiently storing content

at the edge [35,77]. Here, we refer to Adaptive Video Service or Video Edge Service as the

interchangeable microservice for the same purpose. CSS is an application-layer solution

that empowers Adaptive Video Systems with software-defined adaptability, considering

key edge factors like user location, edge capabilities, video content information, and net-

work resource quality. We trace the journey of adaptive video content from the source to

the user’s player, showcasing how Content Steering dynamically optimizes delivery and

the features of the Video Edge Service.

CDN 1

Pl
ay

er
In

te
rf

ac
e

Steer user

...

R1,1

R1,2

R1,M

Video 1

RF,1

RF,2

RF,M

Video F

Cache miss requests

User requests

CDN N

...

Video Edge Service

Cache Policy

En
dp

oi
nt

In
te

rf
ac

e

Content Steering Service

MonitoringSelector

Video 1 Video 2 Video 3 Video F

CDN 1

CDN 2

F video files,
Each has M different representations

Figure 5.1: Workflow Architecture of a Content Steering-Enabled Adaptive
Video System.

62

Video content provisioning begins with the source from the content provider. This

source undergoes encoding into multiple quality levels, defined by their respective bitrate

ranges. The content is then segmented into discrete chunks of predetermined duration for

independent decoding, enhancing streaming adaptability and efficiency. Static CDNs store

these segments in the cloud. The content provider also generates a manifest containing

base URLs to video segments and the address for clients to access the content steering

server.

When a user requests the manifest from the CDN and receives a directive to contact

the Content Steering Service, the user’s device starts the communication following a

standard protocol. Content Steering may leverage a comprehensive global network topol-

ogy and operate with persistent user sessions in real-time as a key network management

component. This stateful approach provides real-time insights into user connections across

the Edge-Cloud Continuum and enables the Video Edge Service to operate in an agnostic

way. These insights empower the service to optimize video streaming management and

make informed decisions with minimal administrative intervention towards a zero-touch

network management service. Our deployment involves two modules — monitoring and

selector — working together to operate the steering mechanism. The following section

describes each module in detail.

An edge node hosts the Video Edge Service, with its online status reported to the

monitoring module. This service possesses two key communication interfaces: The Player

Interface, a one-hop connection for players, and the Endpoint Interface, which points to

one or multiple remote video servers to recover the video segments based on requests

from the user’s players. The Video Edge Service is a Python-based code that works with

Cache-control lib and is adapted to implement different Cache policies. This work initially

employs a Least Recently Used (LRU) policy when the cache reaches capacity. In Fig. 5.1,

when receiving a request for a video chunk from a user, the Player Interface searches for

the chunk and, if found in the cache, is delivered directly to the user. Otherwise, a cache

miss is generated and the Endpoint Interface fetches the chunk from the remote CDN,

caches it for future requests, and then the Player Interface delivers it to the user.

Mobile users are based on the DASH paradigm, where each client independently

executes its own ABR scheme. Based on Equation 2.2, a dedicated module computes the

QoE to enable real-time monitoring. This equation incorporates four key metrics: aver-

age perceptual quality, quality oscillation frequency, stall event statistics, and perceived

throughput. Section 6.2 describes the details of this QoE model. We stored the logs for

the last analysis during the simulations.

Our system model design initially adheres to DASH-IF Working Group specifications.

Meanwhile, HLS follows identical protocol specifications involving the Content Steering

Service. Our design system choice ensures the deployed system’s versatility, enabling

seamless operation in diverse environments for Adaptive Video Streaming across the Edge-

Cloud Continuum.

63

Monitoring Module

The monitoring module is responsible for capturing real-time context metrics. The metrics

are collected periodically, casting requests to a previously informed endpoint. Alterna-

tively, the monitoring module can receive metrics from a predefined entry point port. In

this work, our focus is on observing the video content ID and user location. Concerning

user location, when a new user joins the platform, the monitoring receives the network

details, such as the location area code and cell ID, which accurately identify their current

location or stopping point. As for video content ID, the monitoring module handles this

as the user requests come with the video content ID. This monitoring data optimizes the

content provisioning in two ways:

• Reduced network hops: The system minimizes data travel distance by directing users

to geographically closer video providers, reducing latency and network congestion.

• Targeted content caching: Knowing the application contexts allows the routing

based on user or server preferences to improve the playback experience or resource

allocation.

The monitoring module is central to the overall system. It observes predefined network

metrics, which provides crucial feedback to ensure efficient network resource use and

improve the end-user experience.

Selector Module

The selector module chooses a video edge node to attend the user requests, achieving a

positive impact based on the monitored contexts (e.g., user location, network conditions,

video content). This method must achieve a shorter execution time and not cause over-

head, which aligns with the vision of the computing continuum, seamless integration of

edge computing and cloud. Content targeting capability facilitates efficient and responsive

execution. We detail the Selector Module’s implementation in Algorithm 1.

Algorithm 1 Content Steering Selector

Require: User request req, List of active sessions sessions
Ensure: Edge Server server
1: session ← session.getSession(req) ▷ Retrieve session from req

2: if session is not null and session.is_alive() then
3: return session.getEdgeServer()

4: else
5: session ← createSession()

6: server ← SelectServerProblem(req) ▷ Select edge server for request req
7: session.setEdgeServer(server)

8: session.setSession(session) ▷ Insert session in list of active sessions
9: return session.getEdgeServer()

10: end if

The algorithm shown in the pseudocode initiates by fetching the user session from

the session list (line 1). If the user session is present and currently active (lines 2-3),

64

the algorithm returns the server that remains active within the specified time threshold

until the session expires. The time threshold is the call to the steering server again.

In cases where the user session is not found or is inactive, a new session is established

(line 4). Subsequently, the algorithm addresses the Selection Server Problem, obtaining

the optimal solution servers (line 5). Then, the algorithm updates the user session with

the selected servers and provides them as the output for the user’s request (line 6). The

default time interval threshold between the user and content steering is 10 seconds. When

the time threshold is reached, a call to the steering server is made again. This method

ensures efficient edge server selection, prioritizing them in the highest order, followed by

the subsequent inclusion of CDN servers. Below, we provide an example of a response the

server can generate.

1 {

2 "VERSION": 1,

3 "TTL": 10,

4 "RELOAD -URI": "https:// steeringserver.com?session=abc",

5 "PATHWAY -PRIORITY": ["EdgeCache -1", "EdgeCache -2", "CDN"],

6 "PATHWAY -CLONES": [

7 {

8 "BASE -ID": "CDN",

9 "ID": "EdgeCache -1",

10 "URI -REPLACEMENT": {

11 "HOST": "https:// edgecacheserver -1.com",

12 }

13 },

14 {

15 "BASE -ID": "CDN",

16 "ID": "EdgeCache -2",

17 "URI -REPLACEMENT": {

18 "HOST": "https:// edgecacheserver -2.com",

19 }

20 }

21]

22 }

Listing 5.1: JSON Response for Content Steering Service. This JSON

response provides versioning, TTL, URI, pathway priorities, and pathway

clones for dynamic edge and CDN-based adaptive video streaming.

In this example, the response contains two servers identified by the PATHWAY-

PRIORITY array. These servers are capable of providing the requested video segments.

It prioritizes the EdgeCache server, selected using Algorithm ??, while the CDN server

has a lower priority. The specifications of the EdgeCache are detailed in the PATHWAY-

CLONES with an original CDN base, and the edge node address rules are given by the

URI-REPLACEMENT, with the host replaced by a URL in HOST. The client receives

these instructions with a TTL of 10 seconds, indicating the response interval for requesting

the next update. This callback mechanism ensures timely adjustments to the streaming

pathways based on network conditions or node availability, enabling its reuse in different

parts of the system.

This syntax for steering server responses and client-server interactions remains consis-

65

tent for both HLS and DASH systems. Consequently, a single server can manage content

steering operations for both protocols. For detailed specifications regarding the response

format within the Steering response, refer to the guidelines outlined in [74].

Workflow Communication

Figure 5.2 illustrates the workflow of a CSS in the AVENUE architecture, highlighting

the interactions between the Cloud, Edge Cache, CSS (comprising Monitor and Selector

modules), and the User. The process begins in Figure 5.2-I, where the user initiates video

playback. The video playback starts with a request to the Cloud, which responds by

providing the manifest file.

Monitoring Seletor

Content Steering Service
UserEdge

cacheCloud

Request
Response

RequestRequest
Request

Response
Requests

Responses
Requests

Responses

Requests
Responses1

N

...

Request
Request

Response

Request

Start
video

N+1...

K

Recover datas from
Database Repository

Recover datas from
Database Repository

(I)

(II)

(III)

(IV)

(V)

Figure 5.2: Workflow of the CSS in the AVENUE Architecture, illustrating
dynamic interactions between the user, edge cache, Cloud, and CSS for the
content delivery provisioning.

In Figure 5.2-II, the user contacts the CSS endpoint and requests the video. The CSS

retrieves metadata and performance metrics from the Repository to evaluate the optimal

content delivery source, either the Cloud or an Edge Cache. Using this information, the

CSS executes the Selector algorithm and responds to the user with a JSON message,

formatted similarly to the example shown in Figure 5.1. At this stage, these interac-

tions involve control messages rather than video content transmission, focusing solely on

determining the most suitable server for handling the user’s video requests.

In Figure 5.2-III, the user begins requesting video segments, ranging from segment 1

66

to segment N . After the TTL expires, as shown in Figure 5.2-IV, the user sends another

control request to the CSS. Based on updated metrics, the CSS instructs the video

requests to a different node, such as an Edge Cache. Finally, in Figure 5.2-V, the user

continues streaming the video, starting from segment N + 1, now served by the newly

assigned node.

The system dynamically adapts as video segments are delivered, represented by succes-

sive requests and responses. Metadata retrieval occurs periodically to reassess and adjust

the delivery strategy based on real-time conditions, ensuring continuous optimization.

The process seamlessly balances content distribution across the cloud and edge resources,

enhancing the user’s QoE through efficient decision-making and resource utilization.

5.2 Performance Evaluation

This Section presents the numerical results, considering key performance aspects of the

proposed CSS and focusing on QoE, cache hit rate, and load fairness. The evaluation

aims to assess different performance metrics of the system, and how the CSS adapts to

varying network conditions across the Edge-Cloud Continuum.

5.2.1 Experimental Setup and Parameters

To deploy our cloud nodes, we utilized OpenStack as the orchestrator and employed

Kubernetes and Docker to manage the services container. We deployed two CDN nodes

and one node for steering and dash.js services, each equipped with a 25G disk, 8G RAM,

and four vCPUs at 2.1 GHz, running on CentOS-7. To emulate the Cloud connections,

we configured the connection between each node in the Cloud and the root router with

175Mbps bandwidth and 50ms latency using the Linux Traffic Control tool, tc. A total

of ten video content types were stored, including animation, documentary, and games,

five in each CDN node. We use the reference test videos from the open-source dataset

in [78]. The codec chosen was Advanced Video Coding (AVC), which is the most used.

Since users are interested in a video with twelve different representations, the resolutions

range from 144p to 4K, with the representations divided into 4-second segments, and the

maximum media duration is 322 seconds.

Our experimental setup in the Mininet-WiFi emulator initiates the establishment of

a root router, providing connectivity between the Cloud and the environment. We de-

ploy three video edge servers, each directly connected to the root router with 100 Mbps

bandwidth and 10 ms latency. Further, each edge server links the four lowermost nodes

representing the Access Points (AP). These links do not incorporate any specific capacity

constraints. The AP nodes are realized as wireless devices, employing communication via

IEEE 802.11g at 2.4 GHz. The log-distance propagation calculated the signal levels using

a Loss Exponent of 2.8, indicative of an Urban Area Cellular Radio environment [79]. All

the simulations ran on a local computer Dell G15 5520 12th Gen Intel® Core™ i5-12500H

processor with 16GB RAM.

In our scenario, each AP group covers a specific region. These regions have the same

popularity video tendency with user preferences for video content denoted by a Zipfian

67

distribution. The Zipfian distribution gives the video selection with ³ equal to 2.0. It

ensures the popularity distribution of video content by the literature. The users’ arrivals

follow a Poisson distribution arrival rate, and a uniform distribution determines their

spatial distribution in 2.0x2.0 kilometers, in which the APs cover the entire region. The

users decide their handover based on the Strongest Signal First criterion, wherein they

select the AP with the strongest signal. Upon connecting to a specific region, the user’s

video access frequency adheres to the Zipfian distribution, favoring the request for popular

videos from that region.

Mobile users use the dash.js player in the Google Chrome browser (version 117.0.5938.88),

enabling headless mode. The Selenium library (version 4.11.2) in Python (version 3.11)

implements user behavior. These clients employed the default dynamic-based ABR scheme

(abrDynamic.js). A dedicated API was developed following Equation 2.2 to facilitate QoE

monitoring. This equation incorporates four key metrics: average perceptual quality, qual-

ity oscillation frequency, stall event statistics, and perceived throughput.

Content Steering

Video Edge Service
Video Edge Service

Video Edge Service

1
2

3

{ 50ms, 175 MBps }
{ 10ms, 100 MBps }

Links capacity

{ none, none }CDN 1

CDN 2

Figure 5.3: Scenario a Content Steering-Enabled Adaptive Video System.

68

Server Selection Approach

This work investigates three known heuristics tailored for dynamic video delivery sce-

narios, addressing impact specific features: video content (Content Aware), user location

(Region Aware), and load balancing (Round Robin).

• Content-Aware (CA) is designed to mitigate redundant requests for identical videos.

Upon the initial request for a video, the system redirects subsequent users seeking

the same video to a common edge server. This strategic redirection mechanism opti-

mizes resource utilization, minimizing unnecessary duplication of content in retrieval

requests.

• Region-Aware (RA) aims to direct users to the nearest node along the path between

the server edge and the user. This methodology dynamically redirects users to the

closest server, reducing latency and improving the network’s efficiency.

• Round Robin (RR) algorithm assigns each video request to an edge server in a

circular manner, ensuring a fair distribution of load among all active edge servers.

It prevents overloading individual edge servers for extended periods.

These algorithms must have low execution times to achieve real-time response. Table

5.1 demonstrates that we measure the execution time in microseconds (µ). Hence, the

mechanism can operate in real-time with minimal impact and a rapid response time,

making it ideal for attending to various user requests.

Table 5.1: Execution time with standard deviation for Selection Algorithms.

Algorithm RA CA RR

Time (µs) 11.67± 3.45 7.81± 1.11 6.53± 1.01

5.2.2 Results and Discussion

This section evaluates the proposed system across key metrics: Perceptual QoE, Fairness,

and Network Scenarios. The QoE Evaluation employs a logarithmic model to assess user

satisfaction based on segment bitrates. Fairness Evaluation uses Jain’s Index to measure

request distribution among servers. Finally, Network Scenarios analyzes the impact of

increasing user loads on QoE, cache hits, and fairness, highlighting trade-offs among CA,

RA, and RR algorithms for content delivery.

Perceptual QoE Evaluation

The QoE metric scores the perceived user satisfaction. To begin, the dash.js API cal-

culates the video quality of each segment based on its bitrate using a logarithmic law

[48]. Equation 2.1 shows the numerical transformation for each received video segment

vk
l
. The video dataset considers the representation bitrate range from 100 Kbps (144p)

to 17000 Kbps (4K) in this work. Constants a1 and a2 are defined based on the bitrate

69

representations range. The function qu(.) ranges from 1 to 5. In this way, a1 ≈ 0.779

and a2 ≈ 613.848. It provides a more accurate and precise measurement of the user’s

satisfaction with the video quality. The logarithmic law is commonly used in the litera-

ture to model the relationship between the video quality and the bitrate, as it captures

the human perception of video quality more accurately than a linear relationship. By

considering these different values, we can more comprehensively and accurately measure

the user’s satisfaction.

Fairness Evaluation

To evaluate aspects related to the Load Balance between the Video Edge Services, we

compute the fairness for each server considering the total requests received in Equation

5.1. To quantify this fairness, we employ Jain’s Fairness Index, which measures the

similarity in Load Balance experienced by individual servers throughout the simulations.

The Fairness Index (J) calculates the distribution of total requests (R) received by each

server (s = 1, 2, ..., S), offering an understanding of the requests equity within the system.

J =
(
∑

S

s=1
Rs)

2

S ∗
∑

S

s=1
R2

s

(5.1)

Network Scenarios Evaluation

The experiments depicted in Figure 5.4 showcase the average QoE on the y-axis with

a confidence interval of 95%, calculated using Equation 2.2, against varying numbers of

total users (x-axis) ranging from 10 to 50. Each data point represents the average QoE

observed in scenarios employing Content-Aware (CA), Region-Aware (RA), and Round

Robin (RR) algorithms, with legends providing information on standard deviation and

mean values.

The overall QoE remains comparable among the three algorithms for fewer users (from

10 to approximately 30) scenarios. However, as the number of users increases, the RA

algorithm performs better than its counterparts. The strategic selection of the closest

edge node to serve users contributes to this improvement. In contrast, RR bases its

choices on load distribution between edge servers, and CA considers content in its decision-

making process, resulting in both algorithms maintaining similar QoE performance. The

distinctions in performance become more pronounced with an escalating number of users,

highlighting the efficacy of the RA algorithm in QoE performance under increasing user

loads.

70

10 20 30 40 50
Total Users

0

1

2

3

4

5

Qu
al
ity
 o
f E
xp
er
ie
nc
e

Content Aware (CA)
Region Aware (RA)
Round Robin (RR)

Figure 5.4: QoE Performance with CA, RA, and RR (y-axis) and the total
number of users in the x-axis.

Figure 5.5 shows the impact of each algorithm on the cache hit rate. As expected, the

CA algorithm exhibits superior performance, achieving a 16% and 34% higher hit rate

compared to RA and RR, respectively. This advantage occurs from CA’s strategic server

selection. CA chooses servers with users requesting the same video content or having

made a recent request. This approach optimizes the cache hit rate, minimizing content

duplication.

Meanwhile, RA indicates mid-performance, and the RR algorithm demonstrates the

least favorable performance with its indiscriminate balancing of requests. This observation

aligns with expectations, as the RR approach lacks the contextual awareness of the CA

algorithm. Consequently, its cache utilization fails to capitalize on user-specific preferences

and content popularity patterns, leading to a comparatively lower cache hit rate.

71

10 20 30 40 50
Total Users

0.0

0.2

0.4

0.6

0.8

1.0

Ca
ch
e
hi
ts
 (%

)

Content Aware (CA)
Region Aware (RA)
Round Robin (RR)

Figure 5.5: Cache Hit Performance with CA, RA, and RR (y-axis) and the
total number of users in the x-axis.

Figure 5.6 illustrates the Fairness in distributing video requests across edge servers.

RR exhibits the most balanced workload, ensuring equitable distribution and preventing

server overload. Conversely, CA can lead to a concentration of requests on specific servers

storing popular content, potentially impacting Fairness as the number of users increases.

RR outperforms CA and RA by 21% in the 10-user scenario, but this gap narrows to 6%

for 50 users due to RA’s improved workload distribution. Particularly, CA maintains a

steady 20% difference with RR due to its inherent content-driven steering, highlighting

the trade-offs between different fairness guarantees and content delivery efficiency.

72

10 20 30 40 50
Total Users

0.0

0.2

0.4

0.6

0.8

1.0

Fa
irn
es
s (
%
)

Content Aware (CA)
Region Aware (RA)
Round Robin (RR)

Figure 5.6: Fairness Performance with CA, RA, and RR (y-axis) and the total
number of users in the x-axis.

Impact on Planning the Adaptive Video Streaming System

An interesting discussion arises when the impact of the server selector algorithms on

network performance is analyzed. Planning Content Steering Service presents different

performances depending on the scenario metrics evaluated. Suppose that the Content

Provider is interested in ensuring, for the network clients, an average QoE of 3.0 as the

minimum acceptable value. For a network with ten users, Table 5.2 shows the network

traffic to achieve a QoE of 4.0 for different Server Selector algorithms. However, if we

optimize the network to minimize the core network traffic, the CA algorithm becomes the

best choice (see lines 4-6 of Table 5.2). In case of the best load distribution among the

servers, the RR is the best choice (see lines 7-9 of Table 5.2). For scenarios with high

demand, The best one is the RA algorithm. Thus, the content provider can choose the

one that best fits the deployment needs.

In summary, each algorithm contributes to network performance in distinct ways. RR

ensures the best Fairness and prevents monopolization, RA leverages geographic proximity

to return the best users’ QoE performance, and CA strategically minimizes the traffic

to the core network and increases the number of cache hits. Overall, each algorithm

offers distinct advantages and trade-offs, highlighting the importance of choosing the

appropriate strategy for specific network scenarios and content distribution patterns.

5.3 Chapter Conclusions

This research focuses on exploring the CSS. Through the exploration and exposition of

the CSS Algorithm, we have elucidated the core functionality of the Steering, focusing on

73

Table 5.2: Review of the results considering the performance profiles: QoE,
Cache hits, and Fairness load. Two scenarios analyses with 10 and 50 users.

Line Metrics Algorithms
Users

10 50

1

QoE

CA 4.11 ± 0.25 2.48 ± 0.12

2 RA 4.47 ± 0.13 2.97 ± 0.19

3 RR 4.14 ± 0.15 2.53 ± 0.09

4

Hits (%)

CA 0.40 ± 0.13 0.67 ± 0.04

5 RA 0.29 ± 0.11 0.58 ± 0.03

6 RR 0.17 ± 0.11 0.51 ± 0.03

7

Load (%)

CA 0.81 ± 0.12 0.81 ± 0.02

8 RA 0.81 ± 0.16 0.92 ± 0.06

9 RR 0.97 ± 0.02 0.99 ± 0.01

building a new layer for network management. In the practical implementation, the

algorithm can construct a solution based on the Server Select Problem in real time,

facilitating seamless communication between servers and clients. It ensures that user

requests are not only efficiently processed but also delivered in a deterministic way.

Our study assesses three steering algorithms in dynamic network environments. The

evaluated CA, RA, and RR algorithms reveal distinct performance profiles. CA, excelling

with strategic server selections based on cached content, consistently outperforms its coun-

terparts, showcasing its efficacy in maximizing cache hit rates and user satisfaction. RA

demonstrates scalability, correlating positively with cache hit rates as the user population

expands, emphasizing its adaptability to evolving network scenarios.

74

Chapter 6

Scalable Learning-Based Adaptive

Video Streaming Architecture

As discussed and exemplified in previous chapters, the increased demand for adaptive

video content affects maintaining QoE guarantees across dynamic network conditions.

Traditionally, cloud computing needs to guarantee their customers’ performance level,

which is pre-established in the SLO specified in the Service Level Agreement (SLA).

These agreements often consider QoS metrics, as different applications require distinct

types of resource [80, 81]. However, for video streaming services, QoS metrics alone do

not completely represent the QoE. For this reason, a QoE-centric approach is desirable

to assess video delivery performance accurately [82,83].

Secondly, this work addresses a real-time allocation of cache services, enhanced by

location awareness within an Edge-Cloud network that spans multiple regions. When the

cloud can no longer guarantee the required SLO, the architecture addresses the challenges

of scaling containers into the Edge. The primary use case includes QoE prediction algo-

rithms, considering QoE as SLO, the architecture anticipates the guarantee violations by

a data observation window and uses the Edge to bring the video provisioning closer to

the user.

Third, network imperfections along the Edge-Cloud, such as congestion, packet loss,

poor wireless signals, and issues at various network layers, can significantly impact video

playback. As the overall QoE constantly evolves throughout a streaming session, network

variations can cause sudden shifts through the video playback. Consequently, this ongoing

QoE fluctuation necessitates real-time monitoring, with an understanding of how these

network variations influence the playback.

Our contributions to adaptive video streaming are highlighted below.

• Our main contribution is defining an architecture that leverages existing HAS stan-

dards. This architecture tackles the inherent challenges of scaling video services at

the Edge, which considers the location-aware coverage of the Edge in multiple re-

gions. This architecture scales video delivery to the Edge during traffic spikes while

relying on cloud resources during lower demand periods.

• An ML methodology is defined to deploy models within the architecture. This

methodology demonstrates its effectiveness in an emulated scenario. The research

75

employs a LSTM predictive model to forecast QoE.

• The architecture integrates continuous monitoring in real-time. This adaptability

is crucial for maintaining the Architecture component’s performance in dynamic

network environments, ensuring seamless video playback.

• Lastly, this chapter presents a performance evaluation and analysis deployed at an

emulated test of this architecture. The results highlight the potential of edge-cloud

integration for video streaming services.

The remainder of the chapter follows this organization: Section 6.1 presents an overview

of the proposed architecture. Section 6.2 introduces the monitoring used in the environ-

ment used in the network. Section 6.3 introduces the planner Service used in the evalua-

tion. Section 6.4 details the testbed scenario employed in our experiments and the metrics

evaluated in our results, and finally, Section 6.5 concludes the chapter.

6.1 Proposed Architecture Design Overview

This section gives a general overview of the proposed architecture’s components. The ar-

chitecture adheres to DASH-IF Working Group specifications for creating an independent

self-managed adaptive video streaming. Figure 6.1 comprises a shared Database Repos-

itory with relevant information and three main components: 1) Domain-Specific Service

Monitoring, 2) Planner Service, and 3) Content Steering Service. Multimedia content ser-

vices at CDN have been abstracted to maintain clarity and emphasize the core functional

components. The CDN works in a stateless manner, while the proposed architecture

works together to scale cache services at the edge in order to respect SLOs guarantees.

Domain-Specific Service Monitoring

The Monitoring component continuously gathers status updates across various infras-

tructure layers, from the network plane to the user’s media player. This collaboration

between different monitoring contexts is crucial for handling potential faults and im-

proving overall service. Indeed, it is mandatory to predict SLO violations and react to

such events promptly. The scope of monitored data is diverse in terms of location and

type. Monitoring data encompass service-level metrics collected from Monitoring Agents,

infrastructure-level information such as computational load, storage usage, and network

performance, or user-centric data, such as QoE feedback from end users. All these met-

rics are transmitted to the Monitoring service through predefined, secure communication

channels.

Planner Service

The Planner Service must consider the distribution of workloads between cloud and edge

to meet SLO requirements. Here, the component keeps the SLO guarantees. Through

monitoring, the planning service acquires relevant insights for scaling video services up or

76

Planner Service

Offline
Operation-Agent

Online Service
Scheduler

Database
Repository

Domain-Specific
Service Monitoring

Monitoring Agents

Content Steering
ServiceComponents in

Deployment Plane

Figure 6.1: An Overview of the Proposed Architecture. Domain-Specific Ser-
vice Monitoring is responsible for providing continuous monitoring resources.
The Planner is responsible for realizing decision-making deployments at the
edge. Then, Content Steering works as a load balancer.

down at the network’s edge. The proposed Planner component is divided into two phases:

offline and online. The online module functions as an oracle, capable of predicting a

specific SLO and making the necessary decisions to auto-scale caching services at the

edge when required. In this work, we use ML techniques for forecasting specific metrics

that have shown promising results in ensuring SLO requirements. Meanwhile, the offline

phase is responsible for training the model. Further details of these phases are discussed

in Section 6.3. It dynamically auto-scale up and down the number of containers within

the infrastructure in response to changes in demand.

Content Steering Service

The CSS dynamically directs the user’s player to the most appropriate video source,

whether in the cloud or at the edge. Using the edge of the network with cache capabilities

helps improve user satisfaction but can also bring negative impacts. When multiple users

request video segments at the edge nodes, these surrogated nodes are considered reliable

services, overlooking edge environments’ inherent flexibility and dynamic nature. Current

video streaming systems are not ready-equipped to handle the variability in the number of

deployed edge nodes, leading to potential service degradation under fluctuating conditions.

The CSS’s ability to access the geographical proximity of the user enhances its decision-

making capabilities. This service ensures seamless transitions between different nodes

during video playback.

77

Database Repository

The Database Repository stores the data reported by the Monitor service according to

each profile configured at the instances. The information is stored after the Monitoring

Service has made a well-defined pre-provisioning.

6.2 Measurement Methodology in Monitoring Struc-

ture

This section introduces the methodology for extracting relevant features used to accurately

forecast perceptual QoE in the environment in real time. Here, the subsections present a

detailed resource metrics collection process, including the approaches for data acquisition

and the metrics recorded from the monitor agents. Furthermore, an analysis of the QoE

used in the learning dataset is discussed, highlighting both the insights gained and the

methodologies applied to ensure the reliability of the dataset.

Mapping
Collector

Mapping
Collector

Domain-Specific Service Monitoring

Input
(type, data)

Registry and Discovery
Environment

In
pu

ts
 fr

om
M

on
ito

rin
g

Ag
en

ts

Mapping
Collector

Filter
Value

End-user

Network

Container
Estimator

Figure 6.2: The Domain-Specific Service Monitoring is responsible for provid-
ing continuous monitoring resources.

Data Collected in the Monitoring Structure

Figure 6.2 details our domain-specific service monitoring in the architecture. Monitoring

agents gather data from various sources, including end-users, network, and container com-

ponents. The end-users are video players that send QoE feedback, network sources with

user location and throughput data, and resource usage metrics from containers deployed.

Each component sends data independently to the monitoring system.

The received data structures the input data into two fields: type and data. The

appropriate insertion method is called based on the type (player, container, network, or

network). Player statistics (QoE metrics) follow one format, while container statistics

adhere to another. For example, player metrics, such as QoE, are processed and stored

in the player database, with additional logic to associate the player’s QoE with the node

78

responsible for serving the video stream. This additional logic is defined in the Mapping

Collector’s specific instructions for each metric received. The data passes through this

phase if a metric does not have a Collector.

Regarding container monitoring, when the metrics are inserted in the Database, the

service calculates each node’s average QoE based on the cumulative QoE values of con-

nected players. Additionally, it records the load on each node, represented by the number

of players connected to that node. This information is essential for the Planner Service

to dynamically adjust resources in real-time, ensuring that load is balanced across edge

and cloud nodes to avoid degradation performance in user experience.

The monitoring also collects and processes network-level metrics, such as bandwidth

and latency, which are critical in determining overall network health and its impact on

video delivery. The network metrics are classified between the different regions and stored

in the network database, helping the system make informed decisions regarding server

selection, load balancing, and QoE optimization.

In addition, the registry and discovery environment component maintains a service

directory and node geolocation mapping with static data of the infrastructure topology.

Resources Measurement Setup

As previously mentioned, continuous monitoring of resource usage is needed. For our

purposes, we used Docker Stats to monitor container resources. Tools such as Nagios

and Prometheus can also be readily adapted to collect metrics similar to those from

Docker Stats. A Docker API captures node-specific metrics. Table 6.1 provides a detailed

breakdown of the collected metrics, categorized into CPU, Disk, Memory, Filesystem,

and Network. Seventy-two metrics are gathered for each cache service, reflecting resource

utilization.

Table 6.1: Summary of resource categories and their associated metrics used
for system performance analysis.

Category Metrics Description

CPU Data CPU usage, CPU user, and CPU system, in terms of
CPU time consumed per CPU in nanoseconds.

Disk I/O Data Number of bytes read and written, async and sync op-
erations, and total (sum of reads and writes) from I/O
service and daemon.

Memory Data Memory usage, max usage, cache, and virtual memory
data. All values are in bytes.

Filesystem Data Filesystem capacity, filesystem usage, base usage, and
filesystem inodes. All values except inodes are in bytes.

Network Data Transmit (tx) bytes, receive (rx) bytes, transmit (tx)
packets, and receive (rx) packets for each network inter-
face, including eth0 for containers, and cni, flannel, and
node interfaces for edge nodes.

79

Perceptual QoE Estimation

QoE is defined as the degree of satisfaction or annoyance a user experiences with a service,

influenced by their expectations and the service’s utility. In video streaming, QoE is

affected by various factors, including system attributes (like video quality and network

conditions) and contextual elements (such as video resolution and stalls). In this work,

the video quality of the overall QoE defined as Qu is in Eq. 2.2. During our empirical

evaluation, we observed a consistent pattern in users’ QoE variance throughout video

playback, as described by Equation 2.2. Figure 6.3 presents a comparative analysis of

the difference in QoE values, denoted as ∆Qu (= |Qu
i+1 −Qu

i |), across the video segment

indices. This analysis covers scenarios ranging from 20 to 60 users, using different ABR

algorithms. The plot illustrates the fluctuation of ∆Qu as the segment index i increases,

highlighting how the difference between consecutive QoE measurements stabilizes over

time.

0 20 400.0

0.2

0.4

0.6

0.8

1.0 20 total users

0 20 400.0

0.2

0.4

0.6

0.8

1.0 30 total users

0 20 400.0

0.2

0.4

0.6

0.8

1.0 40 total users

0 20 400.0

0.2

0.4

0.6

0.8

1.0 50 total users

0 20 400.0

0.2

0.4

0.6

0.8

1.0 60 total users

Segment Index i

Di
ffe

re
nc

e
in

 Q
oE

Dynamic Throughput x=5Buffer

Figure 6.3: Users’ QoE difference (∆Qu) between consecutive video segments
varying user loads (20 to 60 users) and different ABR algorithms.

At the beginning of the video, there is a fluctuation in ∆Q values across all scenarios,

with sharp variations evident in the initial segments. These early fluctuations can be

attributed to the ABR algorithm in the network’s adaptation process and streaming

quality adjustments during the session’s initial phases. However, as the video progresses,

the ∆Q values steadily approach zero, indicating that the differences between consecutive

QoE measurements diminish, converging in a more stable QoE.

This behavior suggests that initial stages in user feedback might not accurately reflect

the overall performance of the video streaming services, as early-stage fluctuations can

give a misleading impression of QoE stability. The user’s experience stabilizes as the video

session continues, offering a clearer picture of the actual QoE performance over time.

Input Models for QoE Measurement

For further analysis, the mapping collectors organize the input data collected, given its

specificities by the monitoring agents, which is then stored in the Database Repository.

For a detailed analysis of each node of the QoE provisioned, we need to collect the QoE

with the corresponding data from the video-serving node. This association allows us to

understand the resource consumption attributed to the server. Moreover, these insights

can be further leveraged for ML models in predictive analysis. Our approach involves

collecting node samples at every interval i = 1, 2, We receive a variable number of

80

QoE values during each sampling interval from different nodes, reflecting the dynamic

allocation and switching between different available nodes.

In an Edge-Cloud environment, the set of vertices is V = V1 ∪V2, where V1 represents

the cloud nodes for provisioning or serving within a mobile operator’s backhaul, and V2
is the edge nodes capable of hosting at least one container. The set of active edge nodes

varies depending on the containers deployed across the network and the network demand.

Each time an i-th sample is collected from n-th node vn ∈ V with a cache service deployed

into vn. , where content is dynamically available by multiple nodes vn.

Let Mvn,i be the number of QoE values received from the n-th node during the i-th

sampling interval. Qj
vn,i

represents the j-th QoE value for node vn during the i-th sample,

where j = 1, 2, ...,Mvn,i. It is important to note that the monitoring process is user-

agnostic, meaning that the received QoE values are independent of the particular user

player states.

Each sample contains a variable number of QoE values, reflecting the number of users

served by vn during the interval i. The average QoE for each node during a sampling

interval is computed as follows:

AvgQoE(vn, i) =
1

Mvn,i

Mvn,i
∑

j=1

Qj
vn,i

Once the samples are computed, they are aggregated and stored in the Database

Repository for long-term analysis and system performance optimization. For each sam-

pling interval i, the following data is stored in the database:

Di = {ti, Stats(vn),AvgQoE(vn, i)}

In this expression, Stats(n) refers to the container status of the n-th node based on the

setup of the measurement node. In our case, this dataset comprises 72 metrics collected

through docker stats. Each Di represents one instance, Contributing to the training of

our models. The dataset in the Database Repository supports in-depth data analysis,

enabling the identification of long-term trends in QoE and system performance. This, in

turn, guides planner strategies within the Edge-Cloud environment, thereby improving

the system’s efficiency and reliability over time.

6.3 Planner Service Implementation through Adaptive

Video Streaming

This section describes the process of deploying cache services within edge nodes coor-

dinated by the Planner Service. Acting as a control mechanism, the Planner interfaces

with the edge nodes and the Database Repository, enabling scale cache containers up

and down while maintaining SLO guarantees. Therefore, adjusting container deployment

based on SLO threshold avoids over-provisioning while guaranteeing performance during

peak loads, a critical aspect of edge-cloud resource management.

The Planner component in Figure 6.4 operates through two phases: Online and Of-

81

Table 6.2: Table of notations and description.

Notation Description

V Set of all nodes.

Vc Set of active Cloud nodes.

Ve Set of edge nodes currently active.

vn A specific node from V

ve an edge node from Ve.

vc A specific cloud node from Vc

w Window of metrics collected for system analysis.

slo Predicted SLO value.

slo_threshold Threshold value for the SLO used to trigger actions.

r A region r of all regions, R.

thrcur Current throughput value of a resource ri.

thrmax Maximum throughput value among available resources.

rmax Resource with the highest throughput value.

E Set of resources already in use (exclusion set).

Di Data stored in the centralized database for interval i

Qu The QoE value from user u

Qj
n,i The j-th QoE value received in node n during interval i

T Future time step for prediction

W Window size of samples used as input in input ML model

X Input sequence containing W previous samples

AvgQoE(vn, i) Average QoE for the n-th CDN node during interval i

Stats(vn) Statistics of the n-th CDN node (e.g., throughput, la-
tency)

g(Di) Data cleaning function given the raw instance Di

fline. The Offline phase initiates with a systematic feature extraction and preprocessing

methodology. Our optimization function maximizes overall QoE as our SLO. Upon com-

pleting these preparatory steps, the dataset is primed for the training phase of the Machine

Learning model. On the other hand, the Online phase is responsible for real-time opera-

tions, where the decision-making process scales container service within regional edges in

response to users’ QoE. The components within the Planner service are detailed in the

following sections.

6.3.1 Offline Component Operations

We focus on predicting future overall QoE by leveraging data collected from the monitor-

ing service. The offline operations follow the sequence outlined below.

82

Planner Service

Offline Operation-Agent

Trainning

Feature
extraction

Feature
pre-process Deployment

Planner Decision
Maker Algorithm

Time window,
preprocessing
function and
LSTM model

D1

D2

Dn

...

Online Service
Scheduler

LSTM Model

Di

Di+2-w

Dn-w

...

g()Database
Repository

Figure 6.4: The Planner is responsible for realizing the decision-making de-
ployments at the edge.

Dataset Analysis and Features Preprocessing

The Database Repository contains the dataset D. First, we use feature selection tech-

niques to clean the dataset. This stage focuses on reducing dimensionality by eliminating

irrelevant or redundant features rather than decreasing the number of data instances. The

features with constant values and lower correlations have been removed. After feature

selection, the data normalization is applied. Data normalization handles unstructured

datasets where values span different ranges. We employ Min-Max scaling to normalize

the data into the range {−1, 1}, defined by g(Di) = D̃i ∈ R, where g(·) represent the data

cleaning and preprocessing function that operates on each instance Di. Data normaliza-

tion is essential for mitigating the impact of feature scaling disparities, thereby ensuring

equitable feature contributions to the model’s learning process.

Model Definition

ML techniques, particularly those based on RNN type, have demonstrated competitive

performance compared to other methods when applied to time-series forecasts derived

from historical data resource usage [84]. It is a well-documented phenomenon in cloud

computing and QoE prediction, suitable for capturing such temporal dependencies. In

this way, we opted for an LSTM-based predictive model designed to continuously forecast

future aggregated QoE looking at the instances D from Database Repository.

In our approach, the LSTM model is employed to predict future QoE values based on

sequences of historical data collected from cloud nodes. The model is trained on input

sequences of length w, where each sequence consists of past QoE values and corresponding

83

node statistics collected over w intervals. The raw input data, denoted as X, undergoes

a data cleaning and preprocessing stage, X
g
−→ X̃, which refines the raw data into a form

suitable for model training. This setup enables the model to learn patterns and temporal

correlations within the data, as outlined in Equation 6.1:

X =



















Di−w

Di−w+1

...

Di



















g
−→ X̃ =



















D̃i−w

D̃i−w+1

...

D̃i



















(6.1)

In Equation 6.2, the model outputs a predicted QoE value for a future time step i+T ,

where T represents the prediction horizon:

f(X̃) 7→ QoE(i+ T) ∈ R (6.2)

Following training and validation, a threefold ïw, g, fð is transmitted to the Online

phase, which operates within the network. This threefold bundle ensures the Planner has

all the necessary elements, allowing it to execute the model in a real-time environment.

6.3.2 Online Operations

This phase ingests the threefold bundle, which the decision-making module processes.

This process is tightly integrated with the Database Repository, ensuring an up-to-date

view of the monitored environment.

The Planner Decision Maker Algorithm (PDMA), highlighted in 3, is embedded within

the decision-making component and is responsible for dynamically scaling adaptive video

streaming caches at the edge. Its primary goal is to uphold the SLO, defined in terms of

QoE guarantees. Operating within an iterative loop, the PDMA continuously monitors

container performance, predicts potential QoE issues in the cloud, and makes informed

resource allocation decisions to preempt or mitigate performance degradation at the edge.

The algorithm operates in a continuous loop (line 2), iterating over the state of each

CDN node (line 3). At each iteration, it retrieves a window of metrics, denoted as X, from

vc using getWindowMetrics function (line 4). These metrics are then processed via

the transformation function g(), resulting as X
g
−→ X̃ (line 5). The transformed metrics

are subsequently passed into a predictive model, accessed through the getPredictor

function, to estimate the QoE of an SLO violation (line 6). If the prediction indicates

that the SLO is below the defined threshold, the algorithm triggers the set of actions to

maintain the desired QoE (lines 7-8).

The algorithm employs SelectBestResource procedure (line 8) to determine the

suitable edge node for cache container deployment. This function assesses the throughput

(getThroughput) of the regions R, where the end users (players) are consuming the

multimedia content from the cloud vc. Among the available regions, the region ri with

the highest throughput, which has not yet been allocated, is selected to host the cache

84

Algorithm 2 Planner Decision Making Algorithm

1: procedure PDA

2: while True do
3: for vc ∈ Vc do
4: X← getWindowMetrics()

5: X
g
−→ X̃

6: slo← getPredictor(X̃)
7: if slo f slo_threshold then
8: ve ← SelectBestResource()
9: DeployCacheContainer(ve)

10: end if
11: end for
12: Ve ← getContainers()
13: for vc ∈ Ve do
14: vc ← getParent(ve)
15: if VerifyQoE(vc, ve) ⩾ slo_threshold then
16: SchedDeleteContainer(ve)
17: end if
18: end for
19: sleep(t)
20: end while
21: end procedure

container. Afterward, the algorithm proceeds (lines 30-31) to identify and return the edge

node within that region. This node, denoted as ve, is then used to deploy a new cache

container (line 9).

After addressing the allocation procedure across the edge nodes, the Planner initiates

the deallocation process by retrieving a list of all active containers on the edge nodes (line

12). Then, it iterates over each container (line 13), using the verifyQoE function to

assess whether the container’s QoE meets the predefined acceptable SLO threshold (line

15). The cache service will be deleted if the container’s QoE remains within an acceptable

range (line 16). The CSS no longer redirects users to this node, and once all active users

Algorithm 3 Select Best Resource

procedure SelectBestResource

2: rmax, thrmax ← ∅, 0
for ri ∈ R do

4: thrcur ← getThroghput(ri)
if thrcur g thrmax and ri /∈ E then

6: thrmax, thrmax ← ri, thrcur
end if

8: end for
ve ← getEdgeFromRegion(rmax)

10: return ve ▷ Return the best resource
end procedure

85

have finished consuming the video content from this node, the container is deleted.

6.4 Performance Evaluation

This section describes the experimental evaluation of the proposed multi-tier video de-

livery architecture, including initial evaluation scenarios, metrics, methodology, and out-

comes.

{ 35ms }
{ 5ms }

{ none }

\

'

Access Point

Edge node

Cloud node

End-user

Switches
Container

Agent
Network
Agent

End-User
Agent

Database
Repository

Domain-Specific
Service MonitoringOffline agent

Online

Planner Service

Content Steering
Service

Wireless

Control messages

Machine 1

Machine 2

Figure 6.5: Scenario Evaluation Testbed for Adaptive Video Streaming System
in Edge-Cloud Continuum.

6.4.1 Experimental Setup and Parameters

Figure 6.5 provides an overview of the emulated scenario engineered to evaluate an Adap-

tive Video Streaming following HAS standards. At the top, the core components —

comprising the DASH FrontEnd, CDN, and the proposed architecture, including the

Monitoring, Planner, and CSS — are deployed on a dedicated machine to isolate cloud

performance. These components are containerized using Docker, each running indepen-

dently on an Ubuntu 22.04 LTS environment hosted on a Local machine Intel® Core™

i7-7700 processor with 32 GB of RAM.

The CDN and FrontEnd servers run on an Apache HTTP server [85]. The FrontEnd

host dash.js v4.7.4 [86]. The architecture deployment uses a microservices approach,

86

enabling modularity. The architecture’s core components, namely Monitoring, the CSS,

and the Planner Service, use Python (version 3.11) for implementation. The Planner

Service, in particular, leverages TensorFlow and Keras Deep Learning libraries [87, 88],

leveraging their deep learning capabilities to execute ML models for adaptive decision-

making processes. Using Linux’s Traffic Control (tc) tool, we configure a backhaul link

with a 40 ms latency for outgoing traffic [89].

The CDN stored a video dataset consisting of ten video types, including animation,

documentaries, and games. The dataset, sourced from [78], adopted AVC standard, with

video files available in twelve different resolutions ranging from 144p to 4K. The videos are

segmented into 4-second chunks, with the longest duration totaling 322 seconds. Different

resolution choices introduce significant bandwidth demands, mainly for HD and UHD

content, pushing the system’s capacity to the limit.

Machine 2 represents the edge network environment. We utilized the Containernet-

WiFi emulator [90], enabling the accurate simulation of an edge topology, wireless network

conditions, and user bandwidth competition. The edge simulation setup was executed on

a Dell G15 5520 machine 12th Gen Intel® Core™ i5-12500H processor with 16 GB of

RAM.

The system contains the monitoring agents (Container, Network, and End-User Agent).

The scenario includes APs providing wireless connectivity to End-Users, who access video

content using the dash.js video player. The network components’ location, including edge

servers, switches, and APs proximity, is mapped into a configuration file with environment

information. The monitoring registry stores the components in the database repository.

The edge servers were deployed utilizing Docker-in-Docker (DinD) containers [91],

which allow the execution of one Docker container inside another, enabling nested con-

tainerization. Based on the latency in [89], each node connects to a central switch with

5ms latency. Each edge node contains four APs, simulated as wireless devices using the

IEEE 802.11g standard operating at 2.4 GHz. Wmediumd has been adopted to model

wireless medium, including bandwidth, latency, and frame loss [92]. The signal propaga-

tion followed a log-distance model with a loss exponent 2.8, simulating an urban cellular

radio environment [79]. The cache services deployed at the edge operate independently of

the overarching architectural components and remain compatible with any caching strat-

egy. However, for the sake of simplicity, all edge caches in this deployment employ the

Least Recently Used (LRU) policy for cache replacement.

Comparison Methodology

To evaluate the proposed architecture’s performance, we designed a comparison against

two approaches: Full-Edge Approach and a Reactive Approach.

The Full-Edge Approach serves as a benchmark for assessing SLO violations, par-

ticularly due to users’ proximity to edge nodes, which typically results in the highest QoE

performance with fewer SLO violations. Our objective is to achieve a performance level

comparable to this benchmark. Adopting this predictive strategy allows us to anticipate

future demand patterns and optimize resource utilization. Specifically, this approach al-

lows us to access edge resources dynamically, only when necessary, reducing unnecessary

87

over-provisioning.

On the other hand, the Reactive Approach adjusts resource allocation at the edge

only after network SLO violations. This approach is inherently responsive, adjusting re-

source distribution in reaction to issues. It reacts to the problem after the degradation

has already impacted the streaming service, degrading user experience conditions. Conse-

quently, users may experience temporary reductions in video quality or increased buffering

while the system recalibrates resource allocation. However, one of its key advantages is

that it avoids unnecessary resource allocation, activating additional resources only when

performance degrades. This advantage allows us to add this approach as a benchmark to

compare network usage performance metrics.

End-users ABR Algorithms

We chose three ABR algorithms—Dynamic, Throughput, and Buffer-based—to represent

different strategies in bitrate selection. The Dynamic algorithm is more adaptive and

adjusts bitrates based on real-time network conditions, whereas the Throughput algorithm

selects bitrates based on the available throughput. The Buffer-based algorithm prioritizes

maintaining buffer stability by selecting lower bitrates to avoid playback stalls. These

algorithms were chosen for their widespread use in modern streaming applications and

their varying optimization goals, allowing us to test the robustness of our architecture

under diverse conditions.

Experimental Scenarios

In Figure 6.5, to reflect realistic operating conditions, we tested the system in five load

scenarios: Low Load (20-30 users), Moderate Load (30-40 users), and High Load (50-60

users). These scenarios introduced typical network network congestion to our emulated

environments. AP groups cover specific regions where video content preferences follow

a Zipfian distribution (with ³ = 2.0), ensuring that content popularity distribution ad-

heres to standard models. User requests follow a Poisson arrival process, with spatial

distributions modeled uniformly over a 2.0x2.0 km area, which the APs fully cover. The

scenario applied the Strongest Signal First (SSF) criterion for handover decisions, where

users connect to the AP with the highest signal strength. To ensure the reliability of our

results, each experiment is repeated 10 times.

Based on the methodology outlined for measuring server deployment latency in [93],

Table 6.3 shows the latency results, calculated as the average of 100 repetitions. The

table does not include the times to propagate and setup the snapshot updates, while

5.347±0.585s and 0.204±0.047s are the times for pull and deploy operations, respectively.

Load Forecasting

We performed experiments using the controlled environment to generate the datasets. We

varied the latency between the cloud and the users as well. The initial dataset consists of

78 metrics. After applying the operations discussed in 6.3.1, the metrics were reduced to

33. The time series describing the generated metrics was obtained based on the availability

88

Table 6.3: Average and Standard Deviation of Pull and Deploy Times

Metric Mean (s) Standard Deviation (s)

Image Pull Time 5.347 0.585

Deploy Container Time 0.204 0.047

of container metrics, with sampling intervals of 10 seconds. Approximately a total of

120,000 samples were collected. The actual and predicted data of the services request

load are available at https://github.com/eduardogama/QoE-Forecasting-Dataset.

The dataset was divided into training (70%), validation (20%), and test (10%) subsets.

The model was trained using the training set, fine-tuned using the validation set, and

evaluated on the test set. To determine the prediction time horizon T , we accounted for

four key time delays: t1, representing the TTL associated with the CSS; t2, corresponding

to the image pull operation; t3, related to the image deployment process; and t4, reflecting

monitoring updates in the Database Repository. The cumulative delay, defined as t1 +

t2 + t3 + t4 < 27 seconds, ensures maximum communication overhead among monitoring,

planning, and user-facing entities. Exceeding this threshold introduces latency penalties

in coordination. Consequently, we set the time window to 10 intervals and the prediction

horizon to 30 seconds.

6.4.2 Results and Discussion

Figure 6.6 presents the distribution of video segments delivered by different nodes. In

the network, across multiple nodes (mn.cloud-1, mn.edge1, mn.edge2, and mn.edge3)

for different resource allocation approaches (Full-Edge, Proactive, and Reactive). The

scenarios scale from 20 to 60 total users. Notice that the evaluation of the network

load performance for these three possibilities will answer the main question: what is the

impact of the proactive strategy (ML model) in the network performance compared to

the reactive approach?

Figures 6.6(a), 6.6(b) and 6.6(c) show the segment distributions and different per-

formance levels are observed when comparing the ABR algorithm results. The Buffer

algorithm presents the worst results, while Dynamic and Throughput algorithms perform

similarly for 60 users. For the throughput algorithm in the reactive approach, interme-

diate results indicate an efficient use of edge resources. However, proactive and reactive

approaches exhibit similar performances for the Dynamic algorithm.

In the Proactive strategy, when the load reaches 30 users, it starts utilizing the edge

nodes, handling approximately 10% of the total segments. As the load increases, the

edge nodes are used more extensively, thereby offloading a substantial portion of the

traffic from the cloud. With an increasing user count, the proactive approach maintains a

balanced utilization, with about 30−40% of segments handled by the edge nodes even for

higher user numbers (e.g., 50− 60 users). This highlights how proactive provisioning can

effectively leverage edge capabilities, ensuring minimized latency and optimal allocation

of network resources.

This analysis shows that the Proactive approach balances edge node utilization and

89

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

20 total users

0.0

0.2

0.4

0.6

0.8

1.0

Se
gm

en
ts
 p
ro
vi
sio

ni
ng

 p
er
 n
od

e

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

30 total users

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

40 total users

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

50 total users

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

60 total users

mn.cloud-1 mn.edge1 mn.edge2 mn.edge3

(a) Dynamic Algorithm

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

20 total users

0.0

0.2

0.4

0.6

0.8

1.0

Se
gm

en
ts
 p
ro
vi
sio

ni
ng

 p
er
 n
od

e

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

30 total users

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

40 total users

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

50 total users

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

60 total users

mn.cloud-1 mn.edge1 mn.edge2 mn.edge3

(b) Throughput algorithm

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

20 total users

0.0

0.2

0.4

0.6

0.8

1.0

Se
gm

en
ts
 p
ro
vi
sio

ni
ng

 p
er
 n
od

e

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

30 total users

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

40 total users

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

50 total users

Fu
ll-E

dg
e

Pro
ac
tiv
e

Re
ac
tiv
e

60 total users

mn.cloud-1 mn.edge1 mn.edge2 mn.edge3

(c) Buffer algorithm

Figure 6.6: Segment distribution across cloud and edge nodes for varying user
counts (20–60). Each bar group shows provisioning under different Planner
strategies: Full-Edge, Reactive, and Proactive.

90

anticipates workload shifts, even compared to the Reactive approach, which only shifts the

traffic after the SLO violation occurrences. In the Reactive, only when the SLO threshold

is triggered are the edge nodes playing a more significant role in segment delivery. This

approach serves as a baseline for comparative analyses, where edge nodes are activated

to ensure users receive the video from the closest possible node. The proactive strat-

egy matches the edge node utilization with the Baseline, indicating comparable traffic

distribution between the strategies.

20 total users
0

10

20

30

40

50

SL
O
 V
io
la
ti
on

s
(P
la
ye

r
Pe

rs
pe

ct
iv
e)

0.1 0.6 0.2
30 total users

0.7 1.1 1.9

40 total users

2.7
5.8

9.7

50 total users

6.0

10.4

17.1

60 total users

12.413.27

30.1

Full-Edge Proactive Reactive

(a) Dynamic Algorithm

20 total users
0

10

20

30

40

50

SL
O
 V
io
la
ti
on

s
(P
la
ye

r
Pe

rs
pe

ct
iv
e)

0.11 0.33 0.11
30 total users

1.11 0.22
2.33

40 total users

1.44 2.56

7.0

50 total users

4.11

8.11

15.78

60 total users

8.44

12.96

30.0

Full-Edge Proactive Reactive

(b) Throughput algorithm

20 total users
0

10

20

30

40

50

SL
O
 V
io
la
ti
on

s
(P
la
ye

r
Pe

rs
pe

ct
iv
e)

0.12 0.12 1.12

30 total users

1.0
2.38 2.5

40 total users

2.5

10.12

16.88

50 total users

8.88
11.5

16.88

60 total users

14.38

19.0

33.62

Full-Edge Proactive Reactive

(c) Buffer algorithm

Figure 6.7: Comparison of SLO violations for different Planner algorithms:
(a) Dynamic, (b) Throughput, and (c) Buffer, with varying user counts.

The experiments in Figure 6.7 demonstrate the architecture performance in managing

SLO violations from a player perspective varying user loads. As the number of users

increases, the architecture’s ability to maintain SLOs becomes more challenging and the

differences between the strategies become apparent. In this case, our goal is to answer the

following questions: Can ML techniques effectively forecast future SLO violations using

previous system data features?

Starting with the 20- and 30-user scenarios, all three approaches demonstrate very

minimal SLO violations, with values close to zero, indicating that the cloud can effectively

91

manage a low number of users. Overall, the Full-Edge approach consistently performs

best (Baseline), providing the cache service as close to the users as possible. With up to

40 users, it maintains minimal SLO violations, indicating its strong capacity to handle

increasing demand. Even as the user count grows to 60, the violations increase only

moderately, with approximately 12. This stability shows how the behavior from the

emulated scenario considers all available edge resources to distribute the load, preventing

significant QoE degradation even as the system scales.

The Proactive approach performs nearly as well as Full-Edge in scenarios with 40 or

fewer users when the confidence interval is considered. SLO violations remain low. Still,

as the user load reaches 50 and 60, there is a notable rise in violations, with 6.3 at 50 and

13.6 at 60 while still competitive compared to Full-Edge, likely due to its ability to predict

and scale resources quickly enough to prevent violations. The Reactive approach shows

weaker performance, particularly as the number of users grows. The reactive nature of

this approach makes it less effective in large-scale adaptive video streaming scenarios, as

it cannot preemptively allocate resources to avoid QoE drops.

The Proactive approach shows significant advantages over the Reactive strategy, par-

ticularly in scenarios with moderate to high user loads. Anticipating demand and scaling

resources before QoE degradation occurs reduces SLO violations by up to 48% compared

to a Reactive method. Although the Full-Edge approach performs slightly better un-

der extreme loads, Proactive offers a highly efficient alternative that balances resource

optimization and QoE maintenance, making it a compelling choice for adaptive video

streaming, especially in dynamic and growing user environments.

6.5 Chapter Conclusions

The proposed adaptive video streaming architecture effectively balances cloud and edge

resource utilization across the Edge-Cloud Continuum, optimizing QoE under dynamic

network conditions. By proactively anticipating demand shifts and scaling resources, the

ML-driven Proactive approach reduced SLO violations by up to 48%. The results highlight

that leveraging edge nodes under the proactive strategy offloaded around 40% of traffic

from the cloud during peak loads, providing a balanced and efficient resource utilization

compared to the reactive approach, which relied heavily on centralized resources. More-

over, while showing consistently high performance, the Full-Edge approach demonstrated

that a more adaptive, proactive approach could achieve similar QoE benefits without

needing constant resource over-provisioning.

The architecture’s adaptability also enables seamless customization for different SLOs

and QoE metrics, making it suitable for diverse deployment scenarios within the Edge-

Cloud Continuum. This flexibility ensures that the system can dynamically adjust to a

wide range of deployment scenarios within the Edge-Cloud Continuum. By incorporating

different QoE-driven constraints, the architecture can be fine-tuned to meet the specific

requirements of diverse applications, including live streaming, video-on-demand, and real-

time interactive media services.

92

Chapter 7

Conclusions and Future Works

This chapter summarizes this thesis and discusses directions for future research. The

objective is to highlight our main contributions and point out some possible directions

to proceed with the research to address the drawbacks of the proposed solutions. In this

context, we first present the thesis conclusions in Section 7.1. Then, in Section 7.2, we

present future directions of this work. Finally, in Section 7.3, we present the publications

related to this thesis.

7.1 Conclusions

• Research Question 1: How can HAS systems leverage CSS to optimize resource

allocation across dynamic Edge-Cloud environments?

Adaptive video streaming systems can optimize QoE, cache hit rates, and resource

allocation in dynamic Edge-Cloud environments by leveraging CSS through mod-

ular architectures like AVENUE. These systems integrate a Monitoring Module to

capture real-time metrics, such as user location and network conditions, and a Se-

lector Module to assign edge servers using tailored algorithms dynamically. Each

algorithm offers trade-offs, with CA excelling in cache optimization, RA prioritizing

user satisfaction through proximity, and RR maintaining system scalability by bal-

ancing workloads. CSS dynamically optimizes resource utilization and video delivery

performance by enabling real-time adaptability and low-latency decision-making.

• Research Question 2: Can ML techniques effectively forecast future SLO viola-

tions using previous system data features?

The study uses an LSTM-based predictive model to forecast future aggregated QoE,

which serves as the SLO in this context. The model is trained on a dataset compris-

ing 78 metrics, which are reduced to 33 after preprocessing, covering aspects like

CPU usage, memory consumption, and network performance. This data is collected

from the cloud nodes at 10-second intervals. The LSTM model analyzes these his-

torical data point sequences to learn patterns and correlations, enabling it to predict

future QoE values. The effectiveness of this predictive capability is demonstrated

in the proactive strategy’s performance. By anticipating potential SLO violations

based on historical data, the proactive approach allocates resources preemptively,

93

resulting in a 48% reduction in SLO violations compared to a reactive approach

that only responds after violations occur. This result indicates the power of ML

techniques in forecasting future issues and enabling proactive mitigation strategies.

• Research Question 3: What is the impact of the proactive strategy (ML model)

in the network performance compared to the reactive approach?

Using a ML model, the proactive strategy significantly reduces strain on the network

compared to the reactive approach. The proactive strategy shifts around 40% of

the traffic from the cloud to edge nodes during peak periods, balancing resource

utilization more effectively than the reactive approach. The reactive approach only

diverts traffic after an SLO violation, leading to greater reliance on centralized cloud

resources. While the proactive and reactive approaches experience minimal SLO

violations with low user counts (20-30), the proactive strategy strengthens as the

user load increases. It anticipates demand shifts and scales resources accordingly,

resulting in fewer SLO violations than the reactive approach. Notably, the proactive

approach achieves a 48% reduction in SLO violations compared to the reactive

method, highlighting its effectiveness in maintaining the QoE for users, especially

in dynamic environments.

7.2 Future Works

Throughout this Ph.D. thesis, a study and an architecture were developed to enhance

the users’ QoE in adaptive streaming services. Despite these efforts, the video streaming

domain continues to face emerging challenges that demand greater focus from network

and service management viewpoints. This section highlights these challenges and explores

the potential opportunities they present.

7.2.1 Immersive Video Streaming

Immersive streaming technologies like VR and AR are transforming how we consume

media, with content like point clouds and 360° video offering interactive and engaging

experiences. High-quality QoE for VR streaming requires high-resolution content, fast

data transfer, and ultra-low latency. However, VR streaming struggles with bandwidth

demands, limiting QoE. Viewport-dependent techniques address this by focusing on the

part of the content the user views, dynamically adjusting resolution and bitrate. This

reduces bandwidth use while maintaining quality. For example, lower resolution can be

applied to peripheral areas without affecting the user experience.

7.2.2 Sustainable HAS System

Video streaming is widely used and energy-demanding, contributing to carbon emissions

and environmental issues. In this way, sustainable HAS systems focus on delivering high-

quality video experiences while reducing resource consumption and environmental impact.

With video streaming accounting for a significant portion of global internet traffic, tradi-

tional video streaming services are widely used and high-demanding at the cost of energy

94

consumption, straining data centers, CDN nodes, and edge infrastructure. Sustainable

solutions address this by integrating intelligent resource allocation, energy-efficient prac-

tices, and adaptive scaling to optimize video delivery and reduce carbon footprints [94,95].

Sustainable HAS systems also embrace renewable energy for powering infrastructure

and employ session-aware strategies to prioritize active streams. These systems align video

streaming with environmental goals by recycling inactive sessions and optimizing CDNs

to minimize redundant data replication. This approach ensures that streaming services

can scale to meet user demand while contributing to a more sustainable and eco-friendly

digital future.

7.2.3 Learning HAS System

Learning-based HAS systems leverage advanced techniques such as Reinforcement Learn-

ing (RL) and Large Language Models (LLM) to optimize video streaming dynamically

[96]. Traditional HAS relies on predefined algorithms for bitrate adaptation and resource

allocation, which can struggle to adapt to complex, real-time changes in network condi-

tions and user behavior. RL-based systems, however, learn optimal strategies through

trial and error, continuously improving their decisions to maximize QoE while efficiently

utilizing resources.

7.2.4 Emerging Protocols

QUIC, a cutting-edge transport protocol, offers significant advantages over traditional

TCP. By operating over User Datagram Protocol (UDP), QUIC excels in high-latency

and lossy network conditions, which is crucial for modern internet applications. Its user-

space implementation simplifies deployment and updates, while 0-RTT connection es-

tablishment reduces latency. True multiplexing further enhances performance by avoid-

ing head-of-line blocking. Despite these benefits, integrating QUIC into Adaptive Video

Streaming solutions remains an under-explored area [26, 27]. In addition, the WebRTC

technology stack empowers direct, plugin-free audio and video communication between

browsers [97]. Its low latency and high-quality streaming capabilities make it well-suited

for real-time applications like video conferencing and live streaming. However, the poten-

tial of combining WebRTC with HAS-based methodologies to optimize video streaming

performance over the Internet is yet to be fully realized.

7.2.5 Rights Management and Content Security

Integrating Digital Rights Management (DRM) and blockchain technologies enhances

security, transparency, and trust in adaptive video streaming systems. DRM ensures con-

trolled access to copyrighted content, but its effectiveness could be amplified by leveraging

blockchain for decentralized and tamper-proof rights management [98, 99]. Blockchain

could provide a secure and transparent ledger for tracking content ownership, distribu-

tion, and usage, ensuring that rights holders are fairly compensated while preventing

unauthorized access. Smart contracts could automate licensing and payment processes,

95

reducing administrative overhead and streamlining stakeholder transactions. Addition-

ally, blockchain could be used to verify the integrity of video streams, ensuring that users

receive authentic and unaltered content. Combining DRM with blockchain presents op-

portunities for creating robust, scalable, and fair content delivery ecosystems that address

challenges related to piracy, accountability, and user trust in video streaming services.

7.2.6 Satellites

Incorporating Low Earth Orbit (LEO) satellites into Adaptive Video Streaming systems,

leveraging their global coverage and high-bandwidth capabilities to address challenges in

remote or underserved regions. Satellites could enhance content delivery by acting as

supplementary nodes in hybrid Edge-Cloud architectures, enabling seamless streaming

even in areas with limited terrestrial infrastructure. Research could focus on optimizing

latency, bandwidth allocation, and handover mechanisms between satellite and ground

networks to maintain high QoE. Additionally, incorporating ML models to predict satel-

lite link performance and adapt streaming parameters dynamically could further improve

reliability and efficiency. By investigating these aspects, the use of satellites could open

new opportunities for scalable and resilient video streaming solutions in diverse and chal-

lenging environments [100–102].

7.3 Scientific Production

1. E. S. Gama, R. Rodrigues-Filho, E. M. Madeira, R. Immich, and L. F. Bittencourt.

Learning-Based Adaptive Video Streaming Architecture for QoE Forecasting on the

Edge-Cloud Continuum. IEEE Transactions on Cloud Computing, 2025. Under

review.

2. Williams, A.; Yadhav, S. V.; Rodrigues-Filho, R.; Gama, E. S.; Madeira, E. R. M.;

Bittencourt, L. F.. Handling a Quality of Experience Model. 2023, Brasil. Patente:

Privilégio de Inovação. Número do registro: 12564588, título: "Handling a Quality

of Experience Model" , Instituição de registro: WIPO - World Intellectual Property

Organization.

3. [2] Roberto Rodrigues-Filho, Eduardo S Gama, Marcio Miranda Assis, Roger Im-

mich, and Edmundo Madeira. Content steering: Leveraging the computing contin-

uum to support adaptive video streaming. pages 1–39, 2024.

4. [103] E. S. Gama, R. Rodrigues-Filho, E. M. Madeira, R. Immich, and L. F. Bit-

tencourt. Enabling adaptive video streaming via content steering on the edge-cloud

continuum. In 2024 IEEE 8th International Conference on Fog and Edge Comput-

ing (ICFEC), pages 35–42, Los Alamitos, CA, USA, may 2024. IEEE Computer

Society.

5. [35] Eduardo S. Gama, Natesha B V, Roger Immich, and Luiz F. Bittencourt. An

orchestrator architecture for multi-tier edge/cloud video streaming services. In 2023

96

IEEE International Conference on Edge Computing and Communications (EDGE),

pages 190–196, 2023

6. [32] Eduardo S. Gama, Lucas Otávio N. De Araújo, Roger Immich, and Luiz F.

Bittencourt. Video streaming analysis in multi-tier edge-cloud networks. In 2021

8th International Conference on Future Internet of Things and Cloud (FiCloud),

pages 19–25, 2021.

7. [104]Pedro F. do Prado, Maycon L. M. Peixoto, Marcelo C. Araújo, Eduardo S.

Gama, Diogo M. Gonçalves, Matteus V. S. Silva, Roger Immich, Edmundo R. M.

Madeira, and Luiz F. Bittencourt. Mobile Edge Computing for Content Distribu-

tion and Mobility Support in Smart Cities, pages 473–500. Springer International

Publishing, Cham, 2021.

8. [105] F. Pisani, F. de Oliveira, E. S. Gama, R. Immich, L. F. Bittencourt, and E.

Borin. Fog computing on constrained devices: Paving the way for the future iot.

Advances in Edge Computing: Massive Parallel Processing and Applications, 35:22,

2020.

9. [69] E. S. Gama, R. Immich, and L. F. Bittencourt. Towards a multi-tier fog/cloud

architecture for video streaming. In 2018 IEEE/ACM International Conference on

Utility and Cloud Computing Companion (UCC Companion), pages 13–14, Dec

2018

10. [106] Carlos A. Astudillo, Tiago P.C. de Andrade, Eduardo S. Gama, Luiz F. Bit-

tencourt, Leandro A. Villas, Edmundo R.M. Madeira, and Nelson L.S. da Fonseca.

Internet of things for environmental monitoring based on radio over fiber. In 2018

IEEE 4th International Forum on Research and Technology for Society and Industry

(RTSI), pages 1–6, 2018.

11. [107] Paulo Marques, Alexandre P. do Carmo, Valerio Frascolla, Carlos Silva, Emanuel

D. R. Sena, Raphael Braga, João Pinheiro, Carlos A. Astudillo, Tiago P. C. de

An- drade, Eduardo S. Gama, Luiz F. Bittencourt, Leandro A. Villas, Edmundo

R. M. Madeira, Nelson L. S. da Fonseca, Cristiano Both, Gabriel Lando, Matias

Schimu- neck, Juliano Wickboldt, Ana P. V. Trevisan, Rafael de Jesus Martins,

Raquel F. Vassallo, Felippe M. de Queiroz, Rodolfo Picoreti, Roberta L. Gomes,

Cristina K. Dominicini, Víctor García, Rafael S. Guimarães, Rodolfo Villaca, Mag-

nos Martinello, Moises R.N. Ribeiro, Daniel F. Macedo, Vinicius F. Silva, Julio C. T.

Guimarães, Carlos Colman-Meixner, Reza Nejabati, Dimitra Simeonidou, Yi Zhang,

Frank Slyne, Pedro Alvarez, Diarmuid Collins, Marco Ruffini, Luiz A. DaSilva, and

Johann M. Marquez-Barja. Optical and wireless network convergence in 5g sys-

tems – an exper- imental approach. In 2018 IEEE 23rd International Workshop

on Computer Aided Modeling and Design of Communication Links and Networks

(CAMAD), pages 1–5, 2018.

97

Bibliography

[1] The global internet phenomena report. White Paper, 2024. Accessed 08-abr-2024.

[2] Roberto Rodrigues-Filho, Eduardo S Gama, Marcio Miranda Assis, Roger Immich,

and Edmundo Madeira. Content steering: Leveraging the computing continuum to

support adaptive video streaming. pages 1–39, 2024.

[3] Denis Rosário, Matias Schimuneck, João Camargo, Jéferson Nobre, Cristiano Both,

Juergen Rochol, and Mario Gerla. Service migration from cloud to multi-tier fog

nodes for multimedia dissemination with qoe support. Sensors, 18(2), 2018.

[4] Xiangbo Li, Mahmoud Darwich, Mohsen Amini Salehi, and Magdy Bayoumi. Chap-

ter four - a survey on cloud-based video streaming services. volume 123 of Advances

in Computers, pages 193–244. Elsevier, 2021.

[5] Abdelhak Bentaleb, Bayan Taani, Ali C. Begen, Christian Timmerer, and Roger

Zimmermann. A survey on bitrate adaptation schemes for streaming media over

http. IEEE Communications Surveys & Tutorials, 21(1):562–585, 2019.

[6] Reza Kalan and Ismail Dulger. A survey on qoe management schemes for http

adaptive video streaming: Challenges, solutions, and opportunities. IEEE Access,

12:170803–170839, 2024.

[7] Alcardo Alex Barakabitze, Nabajeet Barman, Arslan Ahmad, Saman Zadtootaghaj,

Lingfen Sun, Maria G. Martini, and Luigi Atzori. Qoe management of multimedia

streaming services in future networks: A tutorial and survey. IEEE Communications

Surveys Tutorials, 22(1):526–565, 2020.

[8] Roger Immich, Eduardo Cerqueira, and Marilia Curado. Efficient high-resolution

video delivery over vanets. Wireless Networks, Feb 2018.

[9] Mpeg-dash vs. apple hls vs. microsoft smooth streaming vs. adobe hds, 2015. Ac-

cessed on December 17, 2024.

[10] T. X. Tran, P. Pandey, A. Hajisami, and D. Pompili. Collaborative multi-bitrate

video caching and processing in mobile-edge computing networks. In 2017 13th An-

nual Conference on Wireless On-demand Network Systems and Services (WONS),

pages 165–172, Feb 2017.

98

[11] Z. Ye, F. D. Pellegrini, R. El-Azouzi, L. Maggi, and T. Jimenez. Quality-aware

dash video caching schemes at mobile edge. In 2017 29th International Teletraffic

Congress (ITC 29), volume 1, pages 205–213, Sept 2017.

[12] I. Benkacem, T. Taleb, M. Bagaa, and H. Flinck. Optimal vnfs placement in cdn

slicing over multi-cloud environment. IEEE Journal on Selected Areas in Commu-

nications, 36(3):616–627, March 2018.

[13] Guowei Zhu and Weixi Gu. User mapping strategy in multi-cdn streaming: A

data-driven approach. IEEE Internet of Things Journal, 9(9):6638–6649, 2022.

[14] Miran Taha and Aree Ali. Redirection and protocol mechanisms in content delivery

network-edge servers for adaptive video streaming. Applied Sciences, 13(9), 2023.

[15] Ehab Ghabashneh and Sanjay Rao. Exploring the interplay between cdn caching

and video streaming performance. In IEEE INFOCOM 2020 - IEEE Conference on

Computer Communications, pages 516–525, 2020.

[16] Tomasz Lyko, Matthew Broadbent, Nicholas Race, Mike Nilsson, Paul Farrow, and

Steve Appleby. Improving quality of experience in adaptive low latency live stream-

ing. Multimedia Tools and Applications, 83(6):15957–15983, Feb 2024.

[17] Xiaoxi Zhang, Haoran Xu, Longhao Zou, Jingpu Duan, Chuan Wu, Yali Xue,

Zuozhou Chen, and Xu Chen. Rosevin: Employing resource- and rate-adaptive

edge super-resolution for video streaming. In IEEE INFOCOM 2024 - IEEE Con-

ference on Computer Communications, pages 491–500, 2024.

[18] Marcos Carvalho and Daniel Fernandes Macedo. Container scheduling in co-located

environments using qoe awareness. IEEE Transactions on Network and Service

Management, 20(3):3247–3260, 2023.

[19] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and P. A.

Polakos. A comprehensive survey on fog computing: State-of-the-art and research

challenges. IEEE Communications Surveys Tutorials, 20(1):416–464, Firstquarter

2018.

[20] Michael C. Thornburgh. Adobe’s RTMFP Profile for Flash Communication. RFC

7425, December 2014.

[21] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson. RTP:

A Transport Protocol for Real-Time Applications. RFC 3550, July 2003.

[22] Iraj Sodagar. The mpeg-dash standard for multimedia streaming over the internet.

IEEE MultiMedia, 18(4):62–67, 2011.

[23] Roger Pantos and William May. HTTP Live Streaming. RFC 8216, August 2017.

[24] Mpeg-dash (dynamic adaptive streaming over http), 2022. Accessed 08-abr-2024.

[25] Wesley Eddy. Transmission Control Protocol (TCP). RFC 9293, August 2022.

99

[26] Jana Iyengar and Martin Thomson. QUIC: A UDP-Based Multiplexed and Secure

Transport. RFC 9000, May 2021.

[27] Michael Seufert, Raimund Schatz, Nikolas Wehner, and Pedro Casas. Quicker or

not? an empirical analysis of quic vs tcp for video streaming qoe provisioning. In

2019 22nd Conference on Innovation in Clouds, Internet and Networks and Work-

shops (ICIN), pages 7–12, 2019.

[28] Michaela Iorga, Larry Feldman, Robert Barton, Michael J. Martin, Nedim Goren,

and Charif Mahmoudi. Fog Computing Conceptual Model - Recommendations of

the National Institute of Standards and Technology. Technical report, National

Institute of Standards and Technology, March 2018.

[29] Luiz Bittencourt, Roger Immich, Rizos Sakellariou, Nelson Fonseca, Edmundo

Madeira, Marilia Curado, Leandro Villas, Luiz DaSilva, Craig Lee, and Omer Rana.

The internet of things, fog and cloud continuum: Integration and challenges. Inter-

net of Things, 3-4:134 – 155, 2018.

[30] Mukaddim Pathan, Ramesh K. Sitaraman, and Dom Robinson. Advanced Content

Delivery, Streaming, and Cloud Services. Wiley Publishing, 1st edition, 2014.

[31] Charif Mahmoudi, Fabrice Mourlin, and Abdella Battou. Formal definition of edge

computing: An emphasis on mobile cloud and iot composition. In 2018 Third

International Conference on Fog and Mobile Edge Computing (FMEC), pages 34–

42, 2018.

[32] Eduardo S. Gama, Lucas Otávio N. De Araújo, Roger Immich, and Luiz F. Bit-

tencourt. Video streaming analysis in multi-tier edge-cloud networks. In 2021 8th

International Conference on Future Internet of Things and Cloud (FiCloud), pages

19–25, 2021.

[33] Reza Farahani, Mohammad Shojafar, Christian Timmerer, Farzad Tashtarian, Mo-

hammad Ghanbari, and Hermann Hellwagner. Ararat: A collaborative edge-assisted

framework for http adaptive video streaming. IEEE Transactions on Network and

Service Management, 20(1):625–643, 2023.

[34] Jun Du, Chunxiao Jiang, Abderrahim Benslimane, Song Guo, and Yong Ren. Sdn-

based resource allocation in edge and cloud computing systems: An evolutionary

stackelberg differential game approach. IEEE/ACM Transactions on Networking,

30(4):1613–1628, 2022.

[35] Eduardo S. Gama, Natesha B V, Roger Immich, and Luiz F. Bittencourt. An

orchestrator architecture for multi-tier edge/cloud video streaming services. In 2023

IEEE International Conference on Edge Computing and Communications (EDGE),

pages 190–196, 2023.

[36] Farzad Tashtarian and Christian Timmerer. Revision: A roadmap on adaptive video

streaming optimization, 2024.

100

[37] Yuriy Reznik, Guillem Cabrera, Daniel Silhavy, Stefan Pham, Alex Giladi, Alex

Balk, Ali C. Begen, and Will Law. Content steering: a standard for multi-cdn

streaming. In Proceedings of the 3rd Mile-High Video Conference, MHV ’24, page

128, New York, NY, USA, 2024. Association for Computing Machinery.

[38] Burak Kara and Gwendal Simon. Dynamic content steering services: How to make

everyone happy in a multi-cdn world. In Proceedings of the 3rd Mile-High Video

Conference, MHV ’24, page 95, New York, NY, USA, 2024. Association for Com-

puting Machinery.

[39] Ron Zekarias Bo Zhang Biswa Panigrahi Nabajeet Barman Stuart Hicks Ted Krofs-

sik Andrew Sinclair Adam Waldron Yuriy Reznik, Guillem Cabrera. IMPLEMENT-

ING HLS/DASH CONTENT STEERING AT SCALE. Technical paper, IBC 2023,

2023.

[40] D. Silhavy S Pham A. Giladi A. Balk A. Begen Y. Reznik, G. Cabrera and W. Law.

CONTENT STEERING: A STANDARD FOR MULTI-CDN STREAMING. Tech-

nical paper, IBC 2024, 2024.

[41] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hoßfeld,

and Phuoc Tran-Gia. A survey on quality of experience of http adaptive streaming.

IEEE Communications Surveys Tutorials, 17(1):469–492, 2015.

[42] T. Hoßfeld, M. Seufert, C. Sieber, and T. Zinner. Assessing effect sizes of influence

factors towards a qoe model for http adaptive streaming. In 2014 Sixth Interna-

tional Workshop on Quality of Multimedia Experience (QoMEX), pages 111–116,

Sep. 2014.

[43] Alain Horé and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th

International Conference on Pattern Recognition, pages 2366–2369, 2010.

[44] Zhengfang Duanmu, Kai Zeng, Kede Ma, Abdul Rehman, and Zhou Wang. A

quality-of-experience index for streaming video. IEEE Journal of Selected Topics

in Signal Processing, 11(1):154–166, 2017.

[45] Reza Rassool. Vmaf reproducibility: Validating a perceptual practical video quality

metric. In 2017 IEEE International Symposium on Broadband Multimedia Systems

and Broadcasting (BMSB), pages 1–2, 2017.

[46] Robert C. Streijl, Stefan Winkler, and David S. Hands. Mean opinion score (mos)

revisited: methods and applications, limitations and alternatives. Multimedia Sys-

tems, 22(2):213–227, 2016.

[47] Xiongkuo Min, Huiyu Duan, Wei Sun, Yucheng Zhu, and Guangtao Zhai. Perceptual

video quality assessment: A survey, 2024.

[48] Weiwen Zhang, Yonggang Wen, Zhenzhong Chen, and Ashish Khisti. Qoe-driven

cache management for http adaptive bit rate streaming over wireless networks. IEEE

Transactions on Multimedia, 15(6):1431–1445, 2013.

101

[49] Peter Reichl, Bruno Tuffin, and Raimund Schatz. Logarithmic laws in service quality

perception: Where microeconomics meets psychophysics and quality of experience.

Telecommun. Syst., 52(2):587–600, February 2013.

[50] Ehab Ghabashneh and Sanjay Rao. Exploring the interplay between cdn caching

and video streaming performance. In IEEE INFOCOM 2020 - IEEE Conference on

Computer Communications, pages 516–525, 2020.

[51] Reza Farahani, Farzad Tashtarian, Alireza Erfanian, Christian Timmerer, Moham-

mad Ghanbari, and Hermann Hellwagner. Es-has: An edge- and sdn-assisted frame-

work for http adaptive video streaming. In Proceedings of the 31st ACM Workshop

on Network and Operating Systems Support for Digital Audio and Video, NOSSDAV

’21, page 50–57, New York, NY, USA, 2021. Association for Computing Machinery.

[52] Fillipe Santos, Roger Immich, and Edmundo Madeira. Multimedia microservice

placement in hierarchical multi-tier cloud-to-fog networks. In 2021 IFIP/IEEE

International Symposium on Integrated Network Management (IM), pages 1044–

1049, 2021.

[53] Hugo Santos, Derian Alencar, Rodolfo Meneguette, Denis Rosário, Jéferson Nobre,

Cristiano Both, Eduardo Cerqueira, and Torsten Braun. A multi-tier fog content

orchestrator mechanism with quality of experience support. Computer Networks,

177:107288, 2020.

[54] Yu Guan, Xinggong Zhang, and Zongming Guo. Caca: Learning-based content-

aware cache admission for video content in edge caching. In Proceedings of the 27th

ACM International Conference on Multimedia, MM ’19, pages 456–464, New York,

NY, USA, 2019. ACM.

[55] Jesús Aguilar-Armijo, Christian Timmerer, and Hermann Hellwagner. Space: Seg-

ment prefetching and caching at the edge for adaptive video streaming. IEEE Access,

11:21783–21798, 2023.

[56] Fillipe Santos, Roger Immich, and Edmundo R.M. Madeira. Multimedia services

placement algorithm for cloud–fog hierarchical environments. Computer Communi-

cations, 191:78–91, 2022.

[57] Jueun Jeon, Sihyun Park, Byeonghui Jeong, and Young-Sik Jeong. Efficient con-

tainer scheduling with hybrid deep learning model for improved service reliability

in cloud computing. IEEE Access, 12:65166–65177, 2024.

[58] Muhammad Jalal Khan, Abdelhak Bentaleb, and Saad Harous. Can accurate future

bandwidth prediction improve volumetric video streaming experience? In 2021

International Wireless Communications and Mobile Computing (IWCMC), pages

1041–1047, 2021.

102

[59] Wanxin Shi, Qing Li, Ruishan Zhang, Gengbiao Shen, Yong Jiang, Zhenhui Yuan,

and Gabriel-Miro Muntean. QoE Ready to Respond: A QoE-Aware MEC Selec-

tion Scheme for DASH-Based Adaptive Video Streaming to Mobile Users, page

4016–4024. Association for Computing Machinery, New York, NY, USA, 2021.

[60] Minh Nguyen, Christian Timmerer, and Hermann Hellwagner. H2br: An http/2-

based retransmission technique to improve the qoe of adaptive video streaming. In

Proceedings of the 25th ACM Workshop on Packet Video, PV ’20, page 1–7, New

York, NY, USA, 2020. Association for Computing Machinery.

[61] Yinxin Li, Haiyan Tu, Guorong Zhou, Ting Li, Yunfeng Wang, Kai Liang, Zhi-

gang Wang, and Liqiang Zhao. Design and implementation of adaptive-bitrate-

streaming-based edge caching. In 2022 IEEE 95th Vehicular Technology Conference:

(VTC2022-Spring), pages 1–5, 2022.

[62] Yingwen Chen, Hujie Yu, Bowen Hu, Zhimin Duan, and Guangtao Xue. An edge

caching strategy based on user speed and content popularity for mobile video stream-

ing. Electronics, 10(18), 2021.

[63] Ninghao Chen, Weiwei Xing, Di Zhang, Min Guo, and Limin Gao. Multi-bitrate

video caching and processing in edge computing: A stackelberg game approach. In

ICC 2020 - 2020 IEEE International Conference on Communications (ICC), pages

1–6, 2020.

[64] Kai Xu, Xiang Li, Sanjay Kumar Bose, and Gangxiang Shen. Joint replica server

placement, content caching, and request load assignment in content delivery net-

works. IEEE Access, 6:17968–17981, 2018.

[65] Haolin Liu, Xiaoling Long, Zhetao Li, Saiqin Long, Rong Ran, and Hui-Ming

Wang. Joint optimization of request assignment and computing resource alloca-

tion in multi-access edge computing. IEEE Transactions on Services Computing,

16(2):1254–1267, 2023.

[66] Abdelhak Bentaleb, Ali C. Begen, Roger Zimmermann, and Saad Harous. Sdnhas:

An sdn-enabled architecture to optimize qoe in http adaptive streaming. Trans.

Multi., 19(10):2136–2151, October 2017.

[67] Zhilong Zhang, Danpu Liu, and Yaxiong Yuan. Layered hierarchical caching for svc-

based http adaptive streaming over c-ran. In 2017 IEEE Wireless Communications

and Networking Conference (WCNC), pages 1–6, 2017.

[68] Helle Sjøvaag, Ragnhild Kr. Olsen, and Raul Ferrer-Conill. Delivering content: Mod-

ular broadcasting technology and the role of content delivery networks. Telecommun.

Policy, 48(4), July 2024.

[69] E. S. Gama, R. Immich, and L. F. Bittencourt. Towards a multi-tier fog/cloud

architecture for video streaming. In 2018 IEEE/ACM International Conference

on Utility and Cloud Computing Companion (UCC Companion), pages 13–14, Dec

2018.

103

[70] Omer Rana, Manjerhussain Shaikh, Muhammad Ali, Ashiq Anjum, and Luiz Bit-

tencourt. Vertical workflows: Service orchestration across cloud & edge resources.

In 2018 IEEE 6th International Conference on Future Internet of Things and Cloud

(FiCloud), pages 355–362. IEEE, 2018.

[71] Christian Kreuzberger, Daniel Posch, and Hermann Hellwagner. Amust framework

- adaptive multimedia streaming simulation framework for ns-3 and ndnsim, 2016.

[72] C. Mueller, S. Lederer, J. Poecher, and C. Timmerer. Demo paper: Libdash - an

open source software library for the mpeg-dash standard. In 2013 IEEE Interna-

tional Conference on Multimedia and Expo Workshops (ICMEW), pages 1–2, July

2013.

[73] Per-title encode optimization, 2015. ; accessed 20-novembro-2019.

[74] Content steering for dash, 2022. Accessed 28-oct-2023.

[75] Roger Pantos. HTTP Live Streaming 2nd Edition. Internet-Draft draft-pantos-hls-

rfc8216bis-14, Internet Engineering Task Force, November 2023. Work in Progress.

[76] Daniel Silhavy, Will Law, Stefan Pham, Ali C. Begen, Alex Giladi, and Alex Balk.

Dynamic cdn switching - dash-if content steering in dash.js. In Proceedings of the

2nd Mile-High Video Conference, MHV ’23, page 130–131, New York, NY, USA,

2023. Association for Computing Machinery.

[77] Bruce M. Maggs and Ramesh K. Sitaraman. Algorithmic nuggets in content delivery.

SIGCOMM Comput. Commun. Rev., 45(3):52–66, jul 2015.

[78] Babak Taraghi, Hadi Amirpour, and Christian Timmerer. Multi-codec ultra high

definition 8k mpeg-dash dataset. In Proceedings of the 13th ACM Multimedia Sys-

tems Conference, MMSys ’22, page 216–220, New York, NY, USA, 2022. Association

for Computing Machinery.

[79] Log distance path loss or log-normal shadow-

ing model. https://www.gaussianwaves.com/2013/09/

log-distance-path-loss-or-log-normal-shadowing-model/. Accessed on

December 17, 2023.

[80] Afzal Badshah, Anwar Ghani, Shahaboddin Shamshirband, Giuseppe Aceto, and

Antonio Pescapè. Performance-based service-level agreement in cloud computing

to optimise penalties and revenue. IET Communications, 14(7):1102–1112, April

2020.

[81] Sehrish Nadeem, Noor ul Amin, Sardar Khaliq uz Zaman, Muhammad Amir Khan,

Zulfiqar Ahmad, Jawaid Iqbal, Ajab Khan, Abeer D. Algarni, and Hela Elman-

nai. Runtime management of service level agreements through proactive resource

provisioning for a cloud environment. Electronics, 12(2), 2023.

104

[82] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano. Qoe-driven resource al-

location for massive video distribution. Ad Hoc Networks, 89:170–176, 2019.

[83] Jesus Arellano-Uson, Eduardo Magaña, Daniel Morato, and Mikel Izal. Survey on

quality of experience evaluation for cloud-based interactive applications. Applied

Sciences, 14(5), 2024.

[84] Leo Feng, Frederick Tung, Mohamed Osama Ahmed, Yoshua Bengio, and Hossein

Hajimirsadegh. Were rnns all we needed?, 2024.

[85] Apache http server project. https://httpd.apache.org/. Accessed on October

15, 2024.

[86] Dash javascript player v4.7.4. https://reference.dashif.org/dash.js/v4.7.4/

samples/dash-if-reference-player/index.html. Accessed on October 15, 2024.

[87] Tensorflow. https://www.tensorflow.org/. Accessed on October 15, 2024.

[88] Keras: Deep learning for humans. https://keras.io/. Accessed on October 15,

2024.

[89] Batyr Charyyev, Engin Arslan, and Mehmet Hadi Gunes. Latency comparison of

cloud datacenters and edge servers. In GLOBECOM 2020 - 2020 IEEE Global

Communications Conference, pages 1–6, 2020.

[90] Containernet: Mininet fork that allows to use docker containers as hosts in emu-

lated networks. https://github.com/ramonfontes/containernet/. Accessed on

October 15, 2024.

[91] Docker inside docker. https://medium.com/@shivam77kushwah/

docker-inside-docker-e0483c51cc2c. Accessed on October 15, 2024.

[92] Wireless network emulation with mininet-wifi. https://mininet-wifi.github.

io/. Accessed on October 15, 2024.

[93] Lorenzo Giorgi, Carlo Puliafito, Antonio Virdis, and Enzo Mingozzi. Service conti-

nuity in edge computing through edge proxies and http alternative services. IEEE

Open Journal of the Communications Society, pages 1–1, 2024.

[94] Burak Kara, Gwendal Simon, Bruno Tuffin, Jerome Vieron, and Ali C. Begen.

Studying green video distribution as a whole. In Proceedings of the First Interna-

tional Workshop on Green Multimedia Systems, GMSys ’23, page 7–9, New York,

NY, USA, 2023. Association for Computing Machinery.

[95] Robert Seeliger, Stefan Pham, and Stefan Arbanowski. End-to-end optimizations

for green streaming. In Proceedings of the First International Workshop on Green

Multimedia Systems, GMSys ’23, page 10–12, New York, NY, USA, 2023. Associa-

tion for Computing Machinery.

105

[96] Zhiyuan He, Aashish Gottipati, Lili Qiu, Xufang Luo, Kenuo Xu, Yuqing Yang, and

Francis Y. Yan. Designing network algorithms via large language models, 2024.

[97] Yueheng Li, Hao Chen, Bowei Xu, Zicheng Zhang, and Zhan Ma. Improving adap-

tive real-time video communication via cross-layer optimization. IEEE Transactions

on Multimedia, 26:5369–5382, 2024.

[98] Yan Li and Zheng Wan. Blockchain-enabled intelligent video caching and

transcoding in clustered mec networks. Security and Communication Networks,

2021(1):7443260, 2021.

[99] Noor Adil Abdel Moneim and Methaq Talib Gaata. Video data authentication using

a smart contract published on the blockchain. In 2022 Fifth College of Science

International Conference of Recent Trends in Information Technology (CSCTIT),

pages 93–99, 2022.

[100] Rohan Bose, Saeed Fadaei, Nitinder Mohan, Mohamed Kassem, Nishanth Sastry,

and Jörg Ott. It’s a bird? it’s a plane? it’s cdn!: Investigating content delivery

networks in the leo satellite networks era. In Proceedings of the 23rd ACM Workshop

on Hot Topics in Networks, HotNets ’24, page 1–9, New York, NY, USA, 2024.

Association for Computing Machinery.

[101] Chao Wang, Yiran Zhang, Qing Li, Ao Zhou, and Shangguang Wang. Satellite com-

puting: A case study of cloud-native satellites. In 2023 IEEE International Con-

ference on Edge Computing and Communications (EDGE), pages 262–270, 2023.

[102] Matthieu Petrou, David Pradas, Mickaël Royer, and Emmanuel Lochin. Unveiling

youtube qoe over satcom using deep-learning. IEEE Access, 12:39978–39994, 2024.

[103] E. S. Gama, R. Rodrigues-Filho, E. M. Madeira, R. Immich, and L. F. Bitten-

court. Enabling adaptive video streaming via content steering on the edge-cloud

continuum. In 2024 IEEE 8th International Conference on Fog and Edge Comput-

ing (ICFEC), pages 35–42, Los Alamitos, CA, USA, may 2024. IEEE Computer

Society.

[104] Pedro F. do Prado, Maycon L. M. Peixoto, Marcelo C. Araújo, Eduardo S. Gama,

Diogo M. Gonçalves, Matteus V. S. Silva, Roger Immich, Edmundo R. M. Madeira,

and Luiz F. Bittencourt. Mobile Edge Computing for Content Distribution and

Mobility Support in Smart Cities, pages 473–500. Springer International Publishing,

Cham, 2021.

[105] Flavia Pisani, Fabiola de Oliveira, Eduardo S Gama, Roger Immich, Luiz F Bitten-

court, and Edson Borin. Fog computing on constrained devices: Paving the way

for the future iot. Advances in Edge Computing: Massive Parallel Processing and

Applications, 35:22, 2020.

[106] Carlos A. Astudillo, Tiago P.C. de Andrade, Eduardo S. Gama, Luiz F. Bittencourt,

Leandro A. Villas, Edmundo R.M. Madeira, and Nelson L.S. da Fonseca. Internet

106

of things for environmental monitoring based on radio over fiber. In 2018 IEEE 4th

International Forum on Research and Technology for Society and Industry (RTSI),

pages 1–6, 2018.

[107] Paulo Marques, Alexandre P. do Carmo, Valerio Frascolla, Carlos Silva, Emanuel

D. R. Sena, Raphael Braga, João Pinheiro, Carlos A. Astudillo, Tiago P. C. de An-

drade, Eduardo S. Gama, Luiz F. Bittencourt, Leandro A. Villas, Edmundo R. M.

Madeira, Nelson L. S. da Fonseca, Cristiano Both, Gabriel Lando, Matias Schimu-

neck, Juliano Wickboldt, Ana P. V. Trevisan, Rafael de Jesus Martins, Raquel F.

Vassallo, Felippe M. de Queiroz, Rodolfo Picoreti, Roberta L. Gomes, Cristina K.

Dominicini, Víctor García, Rafael S. Guimarães, Rodolfo Villaca, Magnos Mar-

tinello, Moises R.N. Ribeiro, Daniel F. Macedo, Vinicius F. Silva, Julio C. T.

Guimarães, Carlos Colman-Meixner, Reza Nejabati, Dimitra Simeonidou, Yi Zhang,

Frank Slyne, Pedro Alvarez, Diarmuid Collins, Marco Ruffini, Luiz A. DaSilva, and

Johann M. Marquez-Barja. Optical and wireless network convergence in 5g sys-

tems – an experimental approach. In 2018 IEEE 23rd International Workshop on

Computer Aided Modeling and Design of Communication Links and Networks (CA-

MAD), pages 1–5, 2018.

	Introduction
	Motivation
	Research Questions
	Main Contributions
	Thesis Structure

	Background
	Basic Concepts of Adaptive Video Streaming
	Cloud and Edge Computing
	Content Steering at the Edge-Cloud Network
	Container management systems
	Quality of Experience
	Chapter Conclusions

	Related Work
	Edge-Cloud Network-Based HAS Systems
	Service Allocation Management
	Chapter Conclusions

	Adaptive Video Streaming in Multi-tier Edge-Cloud Environment
	MIGRATE
	Network and System Model

	Monitoring Component
	Performance Evaluation
	Impact of a Multi-tier Approach
	Analysis in Multi-tier Edge-Cloud Networks
	MIGRATE performance

	Chapter Conclusion

	An Architecture for Content Steering on Edge-Cloud Computing
	Seamless Coordination in Content Steering Service
	Performance Evaluation
	Experimental Setup and Parameters
	Results and Discussion

	Chapter Conclusions

	Scalable Learning-Based Adaptive Video Streaming Architecture
	Proposed Architecture Design Overview
	Measurement Methodology in Monitoring Structure
	Planner Service Implementation through Adaptive Video Streaming
	Offline Component Operations
	Online Operations

	Performance Evaluation
	Experimental Setup and Parameters
	Results and Discussion

	Chapter Conclusions

	Conclusions and Future Works
	Conclusions
	Future Works
	Immersive Video Streaming
	Sustainable HAS System
	Learning HAS System
	Emerging Protocols
	Rights Management and Content Security
	Satellites

	Scientific Production

	Bibliography

