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Resumo

Embora a geração de código para modelos de Redes Neurais Convolucionais (CNNs) tenha
sido extensivamente estudada, a realização de divisão eficiente de dados e paralelização
para Unidades de Processamento Neural (NPUs) multicore e com memórias internas res-
tritas ainda é um problema desafiador. Dado o tamanho dos tensores de entrada/saída
das convoluções e o pequeno espaço das memórias internas das NPUs, minimizar as tran-
sações de memória ao mesmo tempo em que se maximiza o paralelismo e a utilização das
unidades de multiplicação e acumulação (MAC) são fundamentais para qualquer solução
eficaz. Esta tese propõe um passo de otimização no compilador TensorFlow XLA/LLVM
para NPUs multicore, chamado Otimização de Divisão de Tensores (TSO), que: (a) ma-
ximiza o paralelismo das convoluções e o reuso de memória entre os núcleos das NPUs,
(b) maximiza a reutilização de dados em cada núcleo NPU, selecionando a estratégia de
agendamento apropriada que minimiza as transferências de dados entre as memórias no
chip e a DRAM, e (c) reduz as transferências de dados entre a memória DRAM do hospe-
deiro (host) e as memórias internas da NPU ao empregar um modelo baseado em rajadas
(bursts) de memória DRAM ao avaliar cada solução no espaço de busca, resultando na
seleção daquela que oferece o melhor desempenho. Para avaliar a abordagem proposta,
foram realizados experimentos usando o Processador Neuromórfico (NMP), uma NPU
multicore contendo 32 núcleos RISC-V estendidos com novas instruções de CNN. Os re-
sultados experimentais mostram que o TSO é capaz de identificar a melhor divisão de
tensores que minimiza o tempo de execução para um conjunto de modelos de CNN. Ace-
lerações de até 21,7% são observadas ao comparar a técnica baseada em rajada do TSO
com uma abordagem de fatiamento de dados sem rajada. Entre as 236 convoluções ava-
liadas de 6 modelos CNN, o TSO com o modelo de rajadas supera a técnica sem rajadas
em 73% delas, alcançando acelerações de até 3,69x. Grande parte da melhoria provém
do fato de que o TSO com a técnica baseada em rajada habilitada otimiza o tempo de
carga em até 24% e o tempo de armazenamento em até 79% quando comparado à abor-
dagem sem rajadas na execução completa de todo o modelo CNN. Além disso, o TSO
com a técnica baseada em rajada foi também comparado a uma abordagem existente que
aplica um modelo de custo baseado em um modelo teórico chamado roofline [57], usado
para estimar o desempenho das convoluções. Como resultado, o TSO supera todos os
modelos CNN, com acelerações de até 29,2%. Para 84% das convoluções, o TSO alcança
acelerações de até 5,19x. O algoritmo também foi adaptado para o framework de Apren-
dizado de Máquina Glow para validar a generalidade da abordagem TSO. O desempenho
dos modelos foi medido tanto nos compiladores Glow quanto TensorFlow XLA/LLVM,
revelando resultados similares.



Abstract

Although code generation for Convolution Neural Network (CNN) models has been exten-
sively studied, performing efficient data slicing and parallelization for highly-constrained
Multicore Neural Processor Units (NPUs) is still a challenging problem. Given the size
of convolutions’ input/output tensors and the small footprint of NPU on-chip memories,
minimizing memory transactions while maximizing parallelism and MAC utilization are
central to any effective solution. This thesis proposes a TensorFlow XLA/LLVM com-
piler optimization pass for Multicore NPUs, called Tensor Slicing Optimization (TSO),
which: (a) maximizes convolution parallelism and memory usage across NPU cores, (b)
maximizes data reuse on each NPU core by selecting the appropriate scheduling strategy
that minimizes data transfers between the on-chip memories and DRAM, and (c) reduces
data transfers between the host DRAM memory and the NPU on-chip memories by em-
ploying a DRAM memory burst modeling when evaluating every solution in the search
space, which results in the selection of the one that provides the highest performance.
To evaluate the proposed approach, experiments were performed using the NeuroMorphic
Processor (NMP), a multicore NPU containing 32 RISC-V cores extended with novel
CNN instructions. Experimental results show that TSO is capable of identifying the best
tensor slicing that minimizes execution time for a set of CNN models. Speedups of up to
21.7% result when comparing the TSO burst-based technique to a no-burst data slicing
approach. Among the 236 evaluated convolutions from 6 different CNN models, TSO
with the burst-modeling outperforms the no-burst approach in 73% of them, achieving
speedups of up to 3.69x. Most of the improvement comes from the fact that TSO with
the burst-based technique enabled optimizes the load time by up to 24% and the store
time by up to 79% when compared to the no-burst approach in end-to-end execution of
a CNN model. Furthermore, TSO with the burst-based technique was compared against
an existing approach that applies a cost model based on a theoretical roofline model [57]
to estimate the convolution performance, which resulted in TSO outperforming all CNN
models with speedups of up to 29.2%. In this comparison, TSO shows improvements in
84% of the convolutions, achieving speedups of up to 5.19x. The TSO algorithm was also
ported to the Glow Machine Learning framework to validate the generality of the TSO
approach. The performance of the models was measured on both Glow and TensorFlow
XLA/LLVM compilers, revealing similar results.
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Chapter 1

Introduction

Deep Learning using Convolutional Neural Network (CNN) has become a significant Ma-

chine Learning (ML) architecture model that considerably increases the accuracy of many

modern AI applications. The steady increase in the adoption of CNNs is driven mostly

by applications in the Computer Vision domain, where it addresses problems like Ob-

ject Recognition [29, 75, 90], Object Detection [22, 72], and Video Classification [39, 73].

Other areas, like Speech Recognition and Natural Language Processing (NLP), have also

benefited from the application of CNN models [5, 43].

The size and complexity of state-of-the-art CNNs have grown significantly, followed

by its accuracy improvements. For instance, LeNet-5 [47], a model that recognizes hand-

written digits, has less than 1 million parameters, while more complex models, like In-

ceptionV3 [78], which classifies thousands of different object categories, has more than 23

million parameters. Such an increase in the model complexity and parameters size not

only demands more computational power but also produces a significant increase in the

data movement between host (off-chip) and the AI accelerator (on-chip) memories, thus

considerably impacting energy-consumption and memory traffic [80].

It is well-known that convolution is the most expensive operation of a CNN [53,55,83],

accounting for the largest share of a CNN execution. Given the size of its tensor inputs

and the wide variety of configuration parameters (e.g., kernel size, stride, etc.), selecting

the best data mapping which maximizes convolution parallelism while minimizing memory

transactions is a key factor in the performance of any AI accelerator. This is particularly

critical for multicore Neural Processing Units (NPUs), which have stringent (on-chip)

memory constraints and need to achieve large inference throughput.

Convolution input tensors and weights must be partitioned into small tiles that fit into

the NPU on-chip memories. This process is called tiling , and once the tiles are defined,

these tiles are brought from (slow) external DRAM to (fast) on-chip memories, one pair of

input and weight tiles at a time, to compute an output tile of the convolution operation.

Depending on how the tile shapes and sizes are selected and the order they are brought

to the on-chip memories, the convolution execution time can change drastically.

The tiling process is complex, involving a search space where millions to billions of

solutions can be explored. The work presented in this thesis focuses on determining

how to efficiently select a solution from this search space. In this sense, three research

questions arise: (Q1) What is the impact of tiling on DRAM burst usage; (Q2) What is
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the impact of tiling on scheduling; and (Q3) What is the impact of tiling on parallelism.

Regarding the first research question (Q1), this thesis explores techniques to efficiently

select tile shapes that maximize memory burst usage. Bringing more data from a single

memory access can considerably reduce data transfer time to DRAM. This concept is

widely explored in GPUs [20, 85] and can also be extended to work on multicore NPUs.

The next research question (Q2) addresses how to explore different scheduling strategies

to maximize data reuse in the on-chip memories and reduce reloads in DRAM. Various

scheduling strategies have been explored, especially for FPGAs and CPUs [52, 57, 61].

However, the tile sizes explored by these solutions are not always ideal, as fixed tile sizes

are used, and maximizing them up to the capacity of the on-chip memories may lead

to better performance. Finally, the last research question (Q3) explores how to enhance

data balance among multiple cores in an NPU to reduce the required memory footprint

for each core. Many efforts have been explored in this regard (e.g., [13, 89]), but some

may not effectively choose a proper solution due to the use of a unique slicing scheme

(e.g., only slicing the filters among the cores), which may consequently lead to more data

reload.

This thesis focuses on answering questions Q1 – Q3 above and uses these answers to

design an LLVM-based optimization for NPU architectures called Tensor Slicing Opti-

mization (TSO) that can achieve the following goals:

• To minimize data transfer between the host and NPU’s on-chip memory by properly

answering Q1. In Section 6.5 we explain how a specialized tiling selection algorithm

is used to leverage memory burst access. The goal is to choose tile sizes and shapes

that maximize memory burst reuse;

• To maximize the reuse of on-chip memory tiles by properly answering Q2. In Sec-

tion 6.4 we explain how a tiling scheduling algorithm is utilized to reuse as much

as possible on-chips memory tiles to reduce the number of times a tile needs to be

reloaded/stored from/to DRAM;

• To maximize the parallelization of convolution computations by properly answering

Q3. In Sections 6.2 – 6.3 we explain an approach to evenly distribute the convolution

data among the cores of an NPU, ensuring load balancing;

• By applying Q1 in TSO, a speedup of up to 21.7% is achieved. Regarding Q2 in

TSO, a speedup of up to 39.8% is observed. Finally, concerning Q3, TSO achieves

a speedup of up to 41.0%. Additionally, when compared to an existent solution

(roofline-based cost model [57]), TSO shows a speedup of up to 29.2%.

TSO should be capable of modeling, at compile-time, the memory utilization of the

various NPU cores in the search for the best input/output tensor slicing that minimizes

data transfers between the host and the NPU cores’ memories. To evaluate this approach,

experiments were performed using the LGE NeuroMorphic Processor (NMP), a multicore

NPU containing 32 cores, and the TensorFlow XLA LLVM compiling toolchain.

The work in this thesis resulted in the following scientific publications. The first two

publications are focused on NPU architectures and are the contributions of this thesis’s
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author. The other publications target CPU architectures and are joint work with other

authors that reused a variation of the Tensor Slicing Optimization (TSO) proposed herein

(Section 6.1).

• Sousa, R., Jung, B., Kwak, J., Frank, M. and Araujo, G. (2021, October). Efficient

tensor slicing for multicore NPUs using memory burst modeling. In 2021 IEEE

33rd International Symposium on Computer Architecture and High-Performance

Computing (SBAC-PAD) (pp. 84-93).

• Sousa, R., Pereira, M., Kwon, Y., Kim, T., Jung, N., Kim, C., Frank, M. and

Araujo, G. (2023, January). Tensor Slicing and Optimization for Multicore NPUs.

Journal of Parallel and Distributed Computing (JPDC), 175, 66-79.

• Ferrari, V., Sousa, R., Pereira, M., de Carvalho, J. P., Amaral, J. N. and Araujo, G.

(2022, October). Improving Convolution via Cache Hierarchy Tiling and Reduced

Packing. In Proceedings of the International Conference on Parallel Architectures

and Compilation Techniques (PACT), pp. 538-539.

• Ferrari, V., Sousa, R., Pereira, M., de Carvalho, Moreira, J., J. P., Amaral, J. N. and

Araujo, G. (2023, September). Advancing Direct Convolution using Convolution

Slicing Optimization and ISA Extensions. ACM Transactions on Architecture and

Code Optimization (TACO), 2023.

The TSO algorithm is well-suited for devices with small on-chip memories, as seen in

the case of NMP, where careful management of memory access to DRAM is essential for

achieving high performance. A variant of TSO can be applied for CPUs, as demonstrated

in SConv [21]. However, for GPUs, where large global memory is available, TSO may

not be as efficient as in scenarios like NMP. In the case of FPGAs, there is potential for

improvement by implementing TSO, although we have not explored its application on

those targets.

This thesis is organized as follows. In Chapter 2, the research questions explored in

this thesis are detailed. In Chapter 3, a concise review of Convolutional Neural Networks

(CNNs) and their main building blocks is provided. Additionally, an in-depth analysis

of convolutions is presented, with a focus on tiling techniques for efficient computation.

Moving on to Chapter 4, an overview of the NMP architecture is introduced, which serves

as the target device for this thesis. Chapter 5 discusses the integration of the TSO into

ML compilers, along with other necessary optimizations for adapting computation to the

NMP architecture. The subsequent chapter, Chapter 6, introduces the TSO algorithm,

the main contribution of this thesis. This includes slicing and partitioning techniques, and

the application of a cost model based on memory burst accesses to determine the most

suitable solution. In Chapter 7, the results of comparing the TSO algorithm with two

data-volume-based solutions are presented, and a thorough analysis of the three research

questions (Q1 – Q3) is provided. A more in-depth analysis to support the TSO effectiveness

is presented in Chapter 8. Moving forward to Chapter 9, the main distinctions between

TSO and previous research are highlighted. Finally, concluding the thesis in Chapter 10,

findings are summarized, and potential future research topics are proposed.
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Chapter 2

Thesis’ Research Questions

This chapter delves into the research questions initially introduced in Section 1, thoroughly

examining the advantages associated with the implementation of each one of them in the

context of executing convolutions on multicore NPUs. For a deeper clarification of the

research questions, refer to the three sections below, where a detailed discussion on the

impact of tiling on DRAM burst usage, scheduling, and parallelism on the convolution

execution time is presented. This thesis focuses on using the answers to these questions

to design an effective compiler-based convolution-slicing optimization algorithm.

2.1 Q1: What is the Impact of Tiling on DRAM Burst Usage

Consider Figure 2.1, which shows the time a Convolution takes when using tiles of different

shapes. In that example, the input tensor is a single channel with 128 × 128 16-bit

fixed-point elements (row-major) computed over a single kernel of size 1 × 1. In the

figure, tiles are represented as light/dark gray areas, and each red dot represents a (128B)

memory burst access to the DRAM. Accessing time in a DRAM can be divided into two

components: (a) CAS (Column Address Strobe) latency, which is the time taken to read

the first byte of a memory burst from the DRAM Row Buffer; and (b) Access latency,

which is the time taken to read the following bytes of the burst. For example, reading

the first byte from a 128B burst of a typical DDR3 memory takes ∼ 14ns, the same time

it takes to read all the remaining 127 bytes of that burst. Depending on how data is

tiled, memory bursts can enormously impact execution time. For example, in Figure 2.1

the Convolution can be divided into: (a) 8 128 × 32B tiles resulting in 1024 bursts (red

dots) and an execution time of 84us; (b) 4 128 × 64B tiles corresponding to 512 bursts

and a reduced 58us execution time; and (c) 4 64 × 128B tiles which require 256 bursts

and 46us execution time, a 45% reduction in the convolution time when comparing to the

tiling in (a). As shown in the graph of Figure 2.1, tiling (c) (4 64 × 128B tiles) has the

shortest memory access time at w = 128B. From that point on, as the width (w) of the

tile continues to increase, memory access time worsens and then improves again at the

next memory burst alignment (w = 256). In the area of code generation, the problem of

ordering memory accesses so as to maximize burst data usage is known as memory access

coalescing [31, 34, 65, 68]. Although memory access coalescing is a common problem in

GPU code generation [20,85], it has not been extensively explored in multicore NPUs.
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Figure 2.1: Memory access with different tile shapes.

2.2 Q2: What is the Impact of Tiling on Scheduling

The tile size selection and the scheduling order in which those tiles are executed at runtime

are critical factors in optimizing the convolution performance on multicore NPUs. Data

movements can be significantly reduced by maximizing the sizes of the input, weight,

and output tiles to match (or approximate) the maximum capacity of the NPU’s on-chip

memories. For instance, consider the execution flow presented in Figure 2.2, where, for

simplicity, only a single NPU core is used. Initially, the first input tile (INT #1) is loaded

from DRAM into the NPU’s on-chip memory 1 and remains stationary while being

computed with a set of weight tiles, one at a time, to generate an output tile. Once the

computation of the first weight tile (KST #1) 2 is finished, an output tile (OUTT #1) is

produced and then stored in the host memory (DRAM) 3 . After that, another weight

tile (KST #2), which needs to be loaded from the DRAM 4 , is placed in its corresponding

NPU on-chip memory and then computed with the stationary input tile to generate a new

output tile (OUTT #2), which is subsequently stored in the DRAM 5 . After finishing

the computation of the stationary input tile with all weight tiles, another input tile (INT

#2) 6 is loaded and kept stationary, and the same set of weight tiles is loaded again

from DRAM, one by one, to generate new output tiles. To minimize the need for multiple

reloads, maximizing the sizes of the tiles, particularly the one that remains stationary,

is essential. In the context of the execution flow illustrated in Figure 2.2, a reduction
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Figure 2.2: Scheduling of multiple tiles with the input tile kept stationary. In this example,
4 input tiles are computed with 2 weight tiles in order to generate 8 output tiles.

in the number of input tiles (e.g., from 4 to 2) would result in a proportional decrease

in the number of reloads required for the weight tiles from the DRAM. However, it is

important to consider that increasing the size of one tile may impact the sizes of the

others, as these are interdependent. Hence, given the range of possible solutions that can

be selected from a search space, the task of choosing the one that minimizes data transfer

while maintaining high utilization of the NPU’s cores becomes critical and challenging.

This task is essential to produce optimized code.

2.3 Q3: What is the Impact of Tiling on Parallelism

To accelerate the convolution computation on a multicore NPU, the partitioning of the

convolution data (input, weight, and output tensors) must consider workload balancing

for efficient mapping of the operation. Hence, it is essential to distribute the data evenly

among the NPU cores to ensure a balanced data workload across all of them. Further-

more, another crucial aspect to consider involves minimizing data transfers between the

DRAM and the NPU on-chip memories during this step, which can be achieved by prior-

itizing the partitioning of the largest tensor (in terms of size). To show how this can be

achieved, consider the example illustrated in Figure 2.3, where the input tensor represents

an RGB image with 3 channels of 224×224 16-bit fixed-point elements. This input tensor

undergoes computation with a weight tensor consisting of 16 filters, each with a size of

3 × 3 × 3 (C × H × W ). This computation results in an output tensor comprising 16

channels, all of the size 224× 224. Assume that all tensors have the same data type and

that the input tensor is zero-padded in order to generate an output tensor with matching

spatial dimensions. In this example, the partitioning of the convolution data distributes a
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Figure 2.3: The input, weight, and output tensors are partitioned to generate slices for
the NPU’s processors. Note that distinct slices from the input and output tensors are
assigned to the NPU’s processors. As for the weight tensor, a single slice is extracted and
shared among all NPU’s processors for computing.

slice of the input tensor and a slice of the weight tensor to each set of interconnected NPU

cores, referred to as processors (e.g., P1) in Figure 2.3. These slices are then distributed

internally between the NPU cores and then computed so that each NPU processor pro-

duces distinct slices of the output tensor. There are many configurations that can be

explored in this partitioning step, for instance, the input tensor could be partitioned into

four slices, and the weight tensor partitioned into only a single slice so as to have each

slice of the input tensor assigned to a distinct processor and the single slice of the weight

tensor assigned to all processors. Contrary to that, one could divide the weight tensor

into four slices, and the input tensor into just one slice. Lastly, both the input and weight

tensors could be divided, into two slices each. Note that at the end, each processor has

to basically generate a distinct slice of the output tensor. Depending on how the input

and weight tensors are sliced, either by prioritizing the division of the input or weight

tensor into slices (or in some cases dividing both in the same proportion), the number of

transactions from/to the DRAM can considerably decrease. For the example presented

in Figure 2.3, the chosen configuration is the one where the input tensor is divided into

one slice for each processor and only a single slice is extracted from the weight tensor and

shared among all processors. As a result, a workload of approximately 118KiB is assigned

to each processor. Alternatively, if the decision is made to divide the weight tensor in-

stead, the workload would be around 686KiB (5.8x bigger). Although this particular case

benefits from slicing the input tensor, it might not be the appropriate solution for other

scenarios where the sizes of the convolution tensors may vary. As a result, choosing the

correct slicing scheme becomes a crucial factor in minimizing data transfers.
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Chapter 3

Background

This chapter provides an overview of the main layers that constitute a Convolutional

Neural Network (CNN). Furthermore, it introduces the concept of tiling and explains its

application in enabling the execution of convolutions with large memory requirements on

devices with limited memory, such as NPUs.

3.1 Convolutional Neural Network

A Convolutional Neural Network (CNN) model can be visualized as a directed acyclic

dataflow graph, where nodes represent specific CNN operations and edges represent n-

dimensional arrays called tensors. This graph follows a sequential flow, with each node

taking one or more input tensors and producing an output tensor. This output tensor

becomes the input tensor for subsequent operations in the graph (as shown in Figure 3.1).

The CNN model takes an initial input tensor, such as a 3-dimensional image, and applies

a series of operations to generate a final output tensor representing the inference result.

Typically, this output tensor contains a probability distribution that classifies the input

image into predefined classes, such as "dog" or "cat".

The most common operations found in CNN models are illustrated in Figure 3.1.

These operations include Convolution, AddBias, ReLU, MaxPooling, Flatten, Linear,

and Softmax. Each of these operations plays a crucial role in a CNN model’s overall

functioning and structure.

The main objective of a convolution operation is to extract features from the input

tensor by applying a set of pre-trained filters, also known as kernels. Convolution in-

volves computing a dot product between the filters and local patches of the input tensor.

Additionally, a bias term, represented as a 1-dimensional array, is added to the resulting

tensor. The bias helps shift the output tensor’s elements towards positive or negative

values, ensuring that the network does not produce tensors with only zero elements. An

activation function is normally applied to the tensor after the convolution and bias addi-

tion. The Rectified Linear Unit (ReLU) is commonly used as the activation function in

CNN models, which sets all negative elements to zero, effectively deeming them dead or

inactive for subsequent operations. Other activation functions, such as ReLU6, which sets

a threshold between 0 and 6, can also be employed. By combining these three operations
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Figure 3.1: Illustration of a Convolutional Neural Network (CNN) model comprising
Convolution, AddBias, ReLU, MaxPooling, Flatten, Linear, and Softmax operations. The
model processes an input image through a sequence of operations to classify it into a
predefined set of classes.

- convolution, bias addition, and ReLU activation - a Convolutional Layer (referred to as

Conv-Layer throughout this thesis) is formed, serving as a fundamental building block in

a CNN model.

The Pooling Layer, as depicted by the MaxPool function in Figure 3.1, is responsible

for reducing the spatial dimensions (height and width) of the input tensor through a

process called sub-sampling. In this layer, a sliding window of a specified size (e.g.,

2 × 2) moves over the input tensor, and the maximum element within each window is

selected and written to the output tensor. This operation effectively reduces the size of

the tensor while preserving the most significant features. A stride value determines the

step size for shifting the window over the input tensor. In the case of the example in

Figure 3.1, the stride is also 2 × 2, indicating that each window does not overlap with

neighboring windows and skips a certain number of elements in between. By applying non-

overlapping windows, the pooling layer achieves dimension reduction without redundancy.

In addition to MaxPooling, another commonly used pooling operation in CNN models is

AVGPooling. Unlike MaxPooling, AVGPooling calculates the average of the elements

within each window, providing a different way to downsample the input tensor. Both

MaxPooling and AVGPooling contribute to the overall feature extraction and spatial

dimension reduction process within CNN models.

Before performing the computation of a Fully Connected Layer, represented by the

Linear operation in Figure 3.1, the input tensor needs to be flattened from a 3-dimensional

array to a 1-dimensional array. This flattening operation, also known as the Flatten

Layer, reshapes the tensor without modifying the data layout in memory, where only
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Figure 3.2: A Convolution operation where the gray area in the input tensor is computed
with a filter to generate the element highlighted in gray in the output tensor. The dashed
boxes represent the computation performed by the same filter afterward.

the view of the data is changed, and this is done at zero cost. Once the input tensor

is flattened, the Linear operation multiplies the resulting 1-dimensional array by a pre-

trained 2-dimensional weight array. This multiplication process, along with an optional

bias addition and activation function (e.g., ReLU), forms the fully connected layer (FC-

Layer).

Finally, the Softmax operator is employed for image classification models to compute

the probabilistic distribution for each neuron (element) in the output tensor. This distri-

bution assigns a probability to each class label that the network is trained to classify. The

neuron with the highest probability is typically considered the Top-1 classification. How-

ever, other Top-k values, such as Top-5, can also be extracted to better understand the

network’s predictions. For instance, in the InceptionV3 model, the resulting output tensor

contains 1000 elements, with each element corresponding to the classification probability

of a distinct class label.

3.2 Convolutional Layer (Conv-Layer)

Among all possible layers composing a CNN, the Conv-Layer usually accounts for more

than 90% of the execution time [17] of a model and generates a large amount of data

movements. This is especially critical on architectures with small on-chip memories, such

as NPUs. Due to the burden imposed by this layer, this work aims to design specialized

data tiling/scheduling algorithms for Conv-Layers, focusing on reducing memory trans-

action overhead. Moreover, since NPUs are used to perform Inference on mobile and

embedded devices, this work is restricted to optimizing inference on pre-trained models.

As shown in Figure 3.2, a Conv-Layer is composed of an input (IN) tensor with N input
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feature maps of size H (height) × L (width) each and a set of pre-trained weights. The

weight set (KS) is a set of M multidimensional 3-D array kernels/filters of size N×K1×K2.

Each filter slides over the IN tensor performing a 3-D convolution with a stride factor of

S. Note in the IN tensor of Figure 3.2 the presence of red, blue, yellow, and green dashed

blocks. They represent the order in which the filter is passed over the IN tensor during

the computation. Additionally, note that the dashed blocks are shifted only by a factor

of 1, which indicates the stride of the convolution. After sliding a single filter over the

entire input image (IN tensor), an R × C output feature map is generated in the output

(OUT) tensor. In the OUT tensor, it is possible to see the corresponding output to each

dashed block of the IN tensor, represented with the same color. A set of M output feature

maps results after applying all M filters in KS to the input (IN) tensor. The sequence

of operations performed by the Conv-Layer, including the bias addition and activation

function (ReLU), is shown in Equation 3.1.

OUT[m][r][c] = ReLU(Bias[m] +
N−1
∑

k=0

K1−1
∑

i=0

K2−1
∑

j=0

IN[k][S × r + i][S × c+ j]× KS[m][k][i][j]),

where,



































0 ≤ m < M,

0 ≤ r < R,

0 ≤ c < C,

R = (H −K1 + S)/S,

C = (L−K2 + S)/S

(3.1)

The number of operations required to compute a single element in the OUT tensor is

2 × N × K1 × K2, where 2 indicates both multiplication and accumulation. Note that

the number of operations is proportional to the size of the filters in KS, which can grow

considerably depending on the kernel size, impacting as well as the number of memory

transactions required to read both the IN and KS tensors from DRAM. In order to compute

the entire convolution, including all elements in the OUT tensor, a total of 2 ×M × R ×

C × N × K1 × K2 operations are required. The computation of each element in the

OUT tensor can be performed independently of the others, i.e., in parallel. Thus, in

principle, one can schedule the computation of each filter in KS to be processed in parallel

with respect to the others. The schedule can be done in various ways, but selecting the

appropriate one can lead to better data reuse and better use of the computational resources

available on the target device. The computation of the OUT tensor can be formulated using

the Equation 3.1. The bias addition (Bias) and activation (ReLU) operations shown in

Equation 3.1 are not as computationally expensive as the computation of the convolution

itself. Both the bias addition and the activation function (ReLU) perform M × R × C

operations. As for the bias addition, it involves element-wise additions, whereas the ReLU

entails computing the maximum between zero and the resulting output tensor from the

bias addition.

Two other concepts commonly used to define a convolution are batch and padding .
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The batch determines the number of input images that are fed to a CNN model to be

executed at once. A batch B results in an input tensor of size B ×N ×H × L, which in

turn produces an output tensor of size B×M ×R×C. In this work, the batch is defined

as 1 for all tested CNN models. The other concept is padding, which is necessary when

the spatial dimensions (R and C) of the OUT tensor are intended to have the same sizes

as the spatial dimensions of the IN tensor (H and L). Padding is used in those cases to

increase the H and L dimensions of each input feature map so that new rows and columns

filled with zeros are appended to their borders. A special case where the filters have size

N × 1 × 1 and stride equal to 1 does not require padding, as the OUT tensor is already

produced with the same spatial dimensions as the IN tensor. Padding is applicable for

the other cases when either K1 or K2 values are bigger than 1. Consider, for example,

a filter with a size of N × 3 × 3. In this case, each input feature map (H and L) in

the IN tensor is expanded by adding 2 additional rows (one at the top and one at the

bottom) and 2 additional columns (one at the left and one at the right). By employing

this expansion, sliding the filters over the padded IN tensor results in an OUT tensor with

the same feature map dimensions as the original IN tensor. Although zero-padding is the

most common case when padding the input (IN) tensor, padding with other constants

may also be applied.

3.3 Tiled Convolution

Convolutions in a CNN model typically have different kernel sizes and different numbers

of input (M) and output (N) feature maps with distinct sizes and variable strides. For

instance, the first convolution from the Inception-V3 model [78] has 3×299×299 elements

in its IN tensor. Considering that this tensor’s data type is a 16-bit fixed-point, the total

size required to allocate it in memory becomes 524KiB, which is impractical when working

with NPUs with constrained on-chip memories. Note that this 524KiB includes only the

IN tensor. Hence, if we consider the OUT tensor and the filters in KS, this size would increase

considerably more. To circumvent this problem, data tiling becomes a mandatory task

when computing convolution.

Data tiling of a convolution operation consists in partitioning its IN and OUT tensors

into small tiles and dividing the filters in KS so that each IN
T , OUT

T and KS
T tiles fit

together at the same time in the NPU on-chip memories. Figure 3.3 shows how the

IN and OUT tensors data are respectively divided into IN
T = (TN , TH , TL) tiles, and

OUT
T = (TM , TR, TC) tiles. Notice that the dimensions TH and TL of the IN

T can be

computed using the dimensions TR and TC of the OUT
T tensor through Equation 3.2.

TH = (TR − 1)× S +K1

TL = (TC − 1)× S +K2
(3.2)

, where K1, K2, and S are the kernel sizes and stride, respectively. Moreover, if the

filters/kernels in KS do not fit in their respective NPU on-chip memories, KS is also par-

titioned into KS
T = (TM , TN , K1, K2) tiles, where TM is the number of filters and TN

the number of channels to be loaded from each filter. In this work, the full values of K1
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Figure 3.3: A Convolution operation with tiling applied to it to allow its data to fit in
memory-constrained devices. The tiles are formed as follows: (a) IN

T = (TN , TH , TL),
(b) KST = (TM , TN , K1, K2), and (c) OUTT = (TM , TR, TC).

and K2 are used when defining the KS
T tile, but tiling could also be applied to these two

terms.

As shown in Figure 3.3, data tiling extends beyond a single convolution component,

such as the KS tensor, and encompasses all involved components, including the IN, KS,

and OUT tensors. Hence, when applying tiling to one component (e.g., the KS tensor), it

becomes crucial to consider the memory requirements of the other two components (IN and

OUT tensors) as well. This ensures that all three (INT , KST , and OUT
T ) tiles can fit within

their respective on-chip memories on the accelerator at the same time when computing

an IN
T tile with a KS

T tile to generate an OUT
T . Therefore, a coordinated approach is

essential for data tiling, considering the memory constraints of all convolution components

and the NPU’s memory limitations, in order to optimize their storage and computation

on the device (more details in Section 6.3).

When partitioning a convolution for execution on an NPU, it is possible to explore

different tile shapes. However, it is essential to consider certain constraints. Firstly,

increasing the number of filters (TM) in KS
T will also increase the number of output

feature maps in TM , by the same amount, as TM is also defined in OUT
T tile. Secondly,

increasing the number of filter channels (TN) in KS
T will result in a corresponding increase

in the number of channels in the IN
T tile, as both the IN

T and KS
T tiles are determined

based on TN . Finally, increasing the spatial dimensions (TR and TC) of the output feature

maps in the OUT
T tile will lead to an increase in TH and TL in the IN

T tile, as they are

derived through a linear function of TR and TC (as depicted in Equation 3.2).

Each tile shape leads to different memory accesses and usage of the resources available

on the NPU. Besides that, different scheduling strategies can be explored, each one with

a specific memory access pattern that leads to different data reuse. The way computation
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is mapped can considerably affect the data movement between host and NPU memories

leading to poor data re-use. Moreover, if not properly done, tiling can also result in poor

utilization of the NPU’s Multiplier Accumulator (MAC) units, which can become idle

during the computation (more details in Section 6.4).
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Chapter 4

Hardware Architecture

Although CPUs have been proposed to accelerate CNNs by relying on multicore paral-

lelism and SIMD instructions [48,82], the number and complexity of the layers in modern

CNN models make it very difficult to run the entire network on CPUs. To improve in-

ference throughput, (fast) GPU solutions have been proposed to process a large amount

of data [16, 76]. Field Programmable Gate Arrays (FPGAs), on the other hand, have

been extensively used as an alternative to this problem as they offer good performance

and reconfigurability [10, 14, 23, 64, 71]. Nevertheless, these architectures are not efficient

power-performance solutions for critical edge applications, like surveillance cameras and

cellphone face recognition, etc., which have stringent execution and power consumption

constraints. Several types of accelerators have been proposed to accelerate CNNs in a

power-efficient way. Specialized ASICs [9], Neural Processing Units (NPUs) [41, 54], and

Tensor Processing Units (TPUs) [36] are some examples.

This thesis uses the NeuroMorphic Processor (NMP) by LG Electronics (LGE) as a

compiling target. The NMP is an AI accelerator designed primarily for integration into

embedded systems, such as televisions and refrigerators. Its architecture was specifically

tailored for the execution of CNN models, including tasks like image classification and

object detection, thanks to its well-suited computing units and on-chip memories. The

key idea behind the NMP architecture is to use RISC-V ISA Extensions to design relevant

CNN instructions like Conv-Layers, fully connected layers, pooling layers, element-wise

operations, etc.

4.1 The NMP Architecture

The NMP architecture (Figure 4.1) is a multicore NPU that contains an ARM57 processor

that works as a host for a set of multiple Tile (TLE) processors, containing each a set

of Tilelet (TLT) cores. Each TLT has one RISC-V core and three on-chip (scratchpad)

memories, namely MB0, MB1, and MB2, which respectively store the INT , KST , and OUT
T

tiles from the IN, KS, and OUT tensors. Besides that, each TLT is also equipped with a

MAC acceleration unit to execute CNN operations. The MAC unit execution is triggered

by the RISC-V core and is capable of executing 8- and 16-bit fixed-point operations with

the memory layout organized in NCHW format. The datapath between the MAC unit
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Figure 4.1: NMP Architecture.

and TLT on-chip memories (MBLOBs - MB0, MB1, and MB2) is 128-bit wide, which

means that for 8-bit fixed-point, up to 16 MAC operations are executed per cycle, while

for 16-bit fixed-point, up to 8 MAC operations per cycle may be executed.

The data transfers between NMP and host happen through a Data Movement Engine

(DME) module, as shown in Figure 4.1, with one DME module for each TLE. The DME

module slices the memory requests into transactions of up to 128 bytes. The host commu-

nicates with the NMP through an AXI interface, and data can be shared between TLTs of

different TLEs by using a Global Ringbus. The TLTs of a TLE also have their own Ring-

bus to communicate data between them. The instructions executed by the RISC-V cores

are fetched from the host memory and stored into a cache instruction shared between the

TLTs of the same TLE.

To execute computations on the NeuroMorphic Processor (NMP), a CNN model needs

to be compiled using an ML compiler like TF-XLA [3]. The compilation process generates

two binary files: (1) a binary file containing RISC-V instructions and (2) a binary file

containing the weights for both convolutional and fully connected layers (more details

in Chapter 5). These files need to be loaded into specific memory addresses using the

NMP device descriptor. Once the loading is complete, a system call is invoked to initiate

the computation on NMP. The execution of the compiled model starts on the RISC-V

cores of each TLT, with each TLT operating independently. Similar to GPUs, each TLT

is identified by a unique ID, allowing them to determine the portion of data they are

responsible for computing.

TLTs primarily use primitive RISC-V instructions for control flow, such as looping over

tiled data. In addition to these instructions, the NMP architecture includes an extended
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Type of Instruction Instructions

Data Movement
nmp_load[3d]
nmp_store[3d]

Layers

nmp_activation
nmp_conv2d
nmp_percept
nmp_pool
nmp_veop

Synchronization
nmp_wait
nmp_signal

Table 4.1: Extended instructions supported by NMP.

set of RISC-V instructions for (refer to Table 4.1): (a) Data movement: these instructions,

such as nmp_load and nmp_load3d , are executed by the RISC-V core to load data from

the DRAM to the TLT’s on-chip memory. The Data Movement Engine (DME) handles the

data transfer. To bring data back from each TLT’s on-chip memory to the host DRAM,

the RISC-V core executes the extended nmp_store and nmp_store3d instructions; (b)

Layer computation: to perform computations on the Multiply-Accumulate (MAC) units,

the RISC-V core invokes one of the following extended instructions: nmp_activation,

nmp_conv2d , nmp_percept , nmp_pool , and nmp_veop; and (c) Synchronization: two

instructions, nmp_wait and nmp_signal , are used for synchronization. nmp_wait rep-

resents a barrier that waits until a specific task is completed, such as a data load from

the host memory. When the barrier is resolved, a signal is emitted from one RISC-V

core to inform other participating RISC-V cores that the task has been completed. Over-

all, the extended RISC-V instructions in the NMP architecture enable data movement,

layer computation, and synchronization to facilitate the execution of CNN computations

efficiently.

Despite the independent execution of computations by each TLT within a single TLE,

NMP introduces a special instruction called the multicast load. This instruction operates

on a single TLT but enables all TLTs within the same TLE to load the same data from

the DRAM simultaneously. To illustrate this, consider a scenario where all TLTs within

a particular TLE process the same IN
T tile but compute with different KST tiles. Instead

of loading the identical INT tile multiple times, one for each TLT in the TLE, a multicast

load can be employed. This capability allows for concurrent processing of the IN
T tile

by different filters in parallel, maximizing performance and throughput. It is important

to note that TLTs from distinct TLEs cannot utilize the same multicast load to load the

same data. In such cases, multiple multicast loads are required, with each TLE executing

its own multicast load to ensure that the same data is loaded into all of its TLTs.

NMP provides three levels of hardware-based semaphores to facilitate synchronization

among TLEs and TLTs. These semaphores support various synchronization operations,

including: (a) Synchronizing computation within a TLT – after invoking the MAC unit

to perform an operation (e.g., nmp_conv2d instruction), the RISC-V execution can be

blocked until the MAC unit completes its task. This enables precise coordination between

the RISC-V core and the MAC unit; (b) Synchronizing computation between TLTs of the
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Figure 4.2: The NMP workflow where a step-by-step execution is shown for a CNN
operation.

same TLE – during a multicast load, where all TLTs within a specific TLE load the

same data from the DRAM, synchronization plays a crucial role. The semaphores ensure

that all TLTs are blocked until their respective on-chip memories receive the data. This

guarantees synchronized access to shared data within the TLE; and (c) Synchronizing

computation between TLTs of different TLEs – in a multi-layer CNN model, performing

proper synchronization among TLTs (of different TLEs) is required before initiating the

computation of the next layer. This is because a TLT within a TLE may depend on

the data generated by a TLT from a different TLE. To ensure correct sequencing, if a

TLT completes its computation before other TLTs working on the same layer, it must

be blocked from proceeding to the subsequent layer. This blocking mechanism ensures

that the TLT waits until all relevant computations across TLEs are finished, maintaining

the integrity of the computation flow within the model. Therefore, the availability of

hardware-based semaphores in the NMP architecture enables efficient and reliable syn-

chronization at different levels, ensuring correct execution order and data consistency

within and across TLEs and TLTs.

As stated before, the NMP workflow is similar to that of a GPU. To illustrate the

NMP workflow, see Figure 4.2, which shows each step in a simplified NMP architecture

with 1 TLE containing 2 TLTs (for simplicity). Initially, the host application loads both

the RISC-V binary 1 and the Weight binary 2 files into the host memory (DRAM).

The data in the Weight binary file constitutes multiple KS tensors of different operations

besides the bias vector that are consumed by the Conv- and FC-Layers. In the sequence,

the host application pre-processes the input image according to the range expected by

the CNN model 3 . As an example of pre-processing, there are models that expect the

RGB channels to be within the range of [-1,1], while others expect them to be within the
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Figure 4.3: Development board with an NMP DQ1-A0 chip integrated on it.

range of [0,1]. The pre-processed image is copied to the DRAM to be later consumed by

NMP 4 as an IN tensor. After that, the host application issues a signal 5 to first copy

the RISC-V instructions (which includes the extended instructions) from DRAM into the

TLE’s instruction cache via a dedicated AXI 6 and then wake up the RISC-V cores 7 to

start computing those instructions. Before starting the computation of the layer itself on

NMP, it is necessary to transfer the input data (INT and KS
T tiles) from the host memory

(DRAM) to the accelerator on-chip memory. The TLT0’s RISC-V core begins by issuing

a multicast load instruction to the DME unit 8 to bring the first IN
T tile (referred to

as 1) from DRAM into MB0 of each TLT. After this instruction is issued, TLT0 enters a

barrier and waits until the DME finishes the load. Meanwhile, TLT1 also runs into the

same barrier. Once both TLTs are notified by the DME on the completion of the multicast

load instruction, the RISC-V core of each TLT proceeds to the next RISC-V instructions.

The next load instruction is requested, this time, each TLT requests to the DME unit

9 a distinct KST tile to be loaded from DRAM (refereed as 1 and 2, respectively). Each

load instruction is then attended at a different moment, and a semaphore is employed
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individually on each TLT to ensure the data arrives at the destination (MB1). With

the IN
T and KS

T tiles available at both TLTs in their MB0 and MB1 on-chip memories,

respectively, the RISC-V core of each TLT emits a special instruction that sends a signal

to its MAC Unit 10 to run the CNN layer instruction (e.g., nmp_conv2d) over the loaded

data. The TLTs wait for the completion of the computation ( 11 ). Once finished, they

receive notifications from their respective MAC Units indicating the completion of the

computation and the availability of the resulting OUT
T in their corresponding MB3 on-

chip memories. Finally, each TLT’s RISC-V core issues a signal to the DME unit to write

their OUTT tile into DRAM 12 . The same process explained herein is repeated as many

times as the number of remaining IN
T and KS

T tiles that are left to be computed on the

DRAM. After the completion of the entire CNN layer, control is passed back to the CPU

to consume the output data or, in the presence of a subsequent layer in the CNN model,

the same steps are repeated.

The NMP architecture used in this work, namely DQ1-A0 (see Figure 4.3), is composed

of 4 TLEs, each containing 8 TLTs (RISC-V + MAC unit). Each TLT has three on-chip

memories of size 8KiB each. With an operating frequency of @1GHz, the NMP (i.e., all the

32 TLTs together) has a theoretical peak performance of either 512- or 256-GMACs/sec

when executing 8- or 16-bit fixed-point data, respectively. The DRAM memory is a DDR3

that operates at a 1066MHz clock rate (DDR3-2133 – 17GiB/s). For this edition of the

architecture, NMP does not enable MAC/LOAD overlap as it is single-ported. For future

NMP architectures, we anticipate the addition of extra on-chip (dual-port) memories that

will allow the compiler to software-pipeline MAC/LOADs.

Although the NMP architecture shows to be very efficient at tasks like image clas-

sification and object detection, a limitation imposed by its architecture, in addition to

the constraint posed by the size of its on-chip memories, is the limited mapped DRAM

memory space, restricted to 256MB. This limitation presents challenges for the execution

of numerous models due to their extensive memory requirements for weight allocation.
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Chapter 5

The Software Framework

This chapter discusses essential compiler techniques necessary for code transformation and

optimization when targeting NPUs in general, and the NeuroMorphic Processor (NMP) in

particular. These techniques are applicable to all compilers that have implemented Tensor

Slicing Optimization (TSO). Furthermore, a concise overview of each compiler utilized in

this study is presented, along with an explanation of how NMP integrates within their

frameworks.

5.1 Code Generation for NMP

When targeting compilation for NMP, the initial input for the compiler is a CNN model,

as illustrated in Figure 5.1. The compilation process consists of several steps aimed at

generating the required files for executing computations on NMP. These files include: (1) a

binary file containing RISC-V instructions; and (2) a binary file containing the pre-trained

weights/filters and bias. The compiler performs a series of analyses and optimization

passes using a Pass Manager (PM) to generate the RISC-V instruction file. The PM

plays an important role in producing highly optimized code that is specifically tailored

for efficient execution on NMP.

After reading the CNN model, the compiler proceeds to convert it into an interme-

diate representation (IR), referred to as Compiler IR in Figure 5.1, utilizing a compiler

pass called Model converter. The Compiler IR then undergoes a series of graph-level

transformations, analyses, and optimizations. These operations are performed through

a sequence of OPT passes defined within the Pass Manager (PM). Each optimization

pass generates a new Compiler IR, although it is not explicitly shown in Figure 5.1 for

simplicity. The series of OPT passes work iteratively to refine and improve the Compiler

IR, leading to a highly optimized representation of the CNN model for efficient execution

on NMP.

5.1.1 Fusion

The OPT passes primarily focus on loop fusion [51] as the main optimization technique,

which involves combining multiple CNN operations into a single operation. Depending on

the ML compiler, operations like convolution, bias summation, and activation functions
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(e.g., ReLU) may be treated as separate operations. Fusing these operations together

can significantly reduce the amount of data movement required between DRAM and the

NMP’s on-chip memories at runtime. As previously mentioned, when NMP computes an

OUT
T tile, it is written back to the host memory (DRAM) due to the limited capacity

of the on-chip memory (MB3) to store all the assigned OUT
T tiles for a TLT at once.

Consequently, when computing the next layer, the OUT
T tile of the current layer needs

to be loaded back from DRAM as the IN
T tile for the next layer’s computation. This

process of storing data from the NPU’s on-chip memory to DRAM and then retrieving it

incurs significant overhead. To address this issue, loop fusion is applied. By sequentially

computing the fused operations, the data is stored back to DRAM only after all the fused

operations have been computed. This eliminates unnecessary data transfers between

DRAM and on-chip memory, improving efficiency and reducing overhead. By minimizing

the frequency of data movement, loop fusion enhances the overall performance when

running CNN models on the NMP architecture. For a detailed discussion of the impact

of loop fusion on the execution time of NMP, refer to Section 8.1.

The main fusion patterns used in this work are (1) convolution+bias+ReLU , and (2)

linear + bias + ReLU . Merging the bias summation and activation function is straight-

forward since these operations have a one-to-one relationship, meaning that each output
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element depends on a single input element. While fusing other operations like MaxPool

with its predecessor is possible, it introduces complexity. MaxPool operates on windows

of elements to produce a single output element. However, not all input elements required

for this operation to compute a window may be available during computation. This can

happen either because these elements are computed by another TLT or because they are

part of the next IN
T tile. In such cases, it is necessary to load the required data from

DRAM or from the on-chip memories of other TLTs through inter-core communication.

Due to the complexity involved and the limited gain achieved (due to the trade-off of inter-

core communications), fusion with MaxPool and other operations has not been explored

in this work.

To demonstrate the impact of fusion on NPU multicore systems such as NMP, refer to

Figure 5.2. Before the operations are fused, it is important to understand the sequence:

the output tensor produced from the convolution operation serves as the input tensor

for the AddBias operation, which generates another output tensor. This resulting out-

put tensor, in turn, becomes the input for the activation function (ReLU), producing a

subsequent output tensor. The challenge with this approach, as previously noted, arises

from the limited size of the NMP’s on-chip memories. This limitation requires storing the

OUT
T tiles in DRAM between every two operations as they are computed on NMP. This

is required so as to release space for the computation of the next OUT
T tile of the same

operation. As a result, this requires on NMP to place the output produced by the first

operation into the DRAM memory and subsequently load the same data again (but as

IN
T tiles) from DRAM back into the NMP’s on-chip memory to compute the next oper-

ation. Thus, in the example depicted in Figure 5.2, after the output tensor produced by

the convolution operation is written into DRAM, that tensor has to be loaded again from

DRAM to compute the AddBias and later again to compute the ReLU operations (the

same number of stores from the on-chip memories to DRAM applies). For the illustrated

example, this effectively requires additional load/store operations of 6.125MiB between

the DRAM and the NMP’s on-chip memories. In contrast, for the fused version, where

the AddBias and ReLU are executed on top of the convolution’s output before storing it
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in DRAM, these additional memory transactions can be completely avoided.

In addition to loop fusion, the PM applies two other important optimizations within

the OPT passes: (1) fused batch normalization into a convolution, and (2) concatenate

resolver. The first optimization involves removing the batch normalization operation

entirely if it follows a convolution operation. Fusing these operations together eliminates

the need for separate batch normalization computations. This optimization reduces the

computational overhead and memory requirements associated with batch normalization,

resulting in improved performance. The second optimization, known as the concatenate

resolver, aims to eliminate the concatenate operation by reorganizing the addresses where

each input tensor to the concatenate operation is written. This optimization reduces the

need for explicit concatenation operations and minimizes data movement between the

host memory (DRAM) and the NPU’s on-chip memories.

5.1.2 Quantization

The Quantization pass in Figure 5.1 converts the weights from 32-bit floating-point to

either 8-bit or 16-bit fixed-point representation and quantizes the CNN operations to the

same precision. It uses the symmetric with power of 2 scale scheme [58], where the zero-

point is always set to 0. For each input, output, and weight tensor, this pass determines a

Q-point , which represents the number of bits assigned to the integer and fractional parts

of the tensor data through a radix point. The goal is to ensure that the integer part

has enough bits to represent the minimum and maximum output values produced by the

operation or constant. The Q-point is represented as Q i.f , where i represents the number
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of bits for the integer part and f for the fractional part. To show the quantization flow,

refer to Figure 5.3. Starting from an initial CNN model (a), to capture the ranges of the

tensors, a calibration step is required (b). This step involves augmenting the CNN model

by adding logging nodes after some selected CNN operations. The augmented graph is

then executed over hundreds or thousands of images on a CPU, allowing the capture of

the minimum and maximum values produced by each logged operation. Finally, these

values are used to determine the Q-point for each CNN operation (c).

Since the calibration step is computationally expensive, optimizing the process involves

restricting the logging nodes to specific layers (e.g., Convolution and Linear layers). Thus,

in order to calculate the Q-points for the other layers (e.g., Pooling layer), it is used a

dataflow analysis that consists of two traversals over the dataflow graph (refer to step (c)

in Figure 5.3). The first traversal propagates the Q-points from the input tensor to the

output tensor of the CNN model for the non-augmented nodes. The second traversal is

performed in reverse order, from the output tensor to the input tensor of the CNN model,

and works by adjusting the Q-points to ensure that the input tensors to the Concatenate

and Add operations have the same Q-points. Quantizing the weights/filters and bias is

straightforward since they are constant, making it easy to determine the Q-point for them,

which can then be used to convert the data from 32-bit floating-point to either an 8-bit

or 16-bit fixed-point representation.

5.1.3 Synchronization

The next compiler pass in Figure 5.1 is called Synchronization and is implemented using

the insertion of a global barriers . This pass inserts global barrier nodes after each CNN

operation. The purpose of this pass is to ensure that the TLTs do not start computing the

next layer while the current layer is still being computed by other TLTs. This is necessary

since the data produced by one TLT may be used by other TLTs during the computation

of the next layer. By inserting global barrier nodes, synchronization is enforced among

the TLTs, allowing data dependencies to be respected. After the Synchronization pass, a

slightly optimized Compiler IR is generated. This optimized IR represents the modified

dataflow graph with the inserted barrier nodes. It serves as an intermediate representation

for further compilation steps and code generation.

5.1.4 Tiling and Scheduling

The following three passes run on top of the optimized Compiler IR (refer to Figure 5.1).

They are: (1) Node scheduler pass is executed to extract a topological order of the CNN

operations in the dataflow graph. It determines the order in which those operations run at

runtime. The (2) Partitioning and Slicing (TSO) pass initially performs the slicing of

the convolution data among the TLEs (Section 6.2). It then runs the following sequence

of tasks: (a) it divides the convolution data at each TLE among their corresponding

TLTs; (b) computes how the workload of an individual TLT is tiled into multiple IN
T ,

KS
T and OUT

T tiles (Section 6.3); and (c) determines how these tiles are scheduled to be

executed at runtime (Section 6.4). TSO tasks (a)-(c) use a cost model that selects the
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appropriate solution for each convolution from a complex tiling/scheduling solution space

(Section 6.5).

Although the other CNN operations are also sliced and then partitioned among the

TLTs of each TLE, they are not discussed in this thesis either due to their simplicity or

to the fact that their tiling does not significantly impact the model’s final performance.

5.1.5 RISC-V and Weight Binary Files Generation

The (3) Parameter placement pass generates the weight binary file, which contains

the weight/filters and bias utilized at runtime by the Conv-Layers and FC-Layers. Addi-

tionally, this compiler pass determines the base address for each filter and bias within this

file. These addresses are later used by the code generation pass to instruct the TLTs on

from where to load the required constants (e.g., filters). Besides determining the base ad-

dress within the weight file, this compiler pass also determines the addresses from which

to load input tensors and where to write the output tensors for each CNN operation.

Finally, the Lowering pass lowers the Compiler IR using the analysis data produced by

the last three steps (refer to the other 2 steps in Subsection 5.1.4 for details) along with

an optimized library, the libnmp, that implement the layers’ computation to generate the

RISC-V binary file.

5.2 Compilers for Machine Learning

In recent years, the increased attention to machine learning models has led to the de-

velopment of several compilers to address the growing demand. Notable among these

compilers are Tensorflow XLA [4], ONNX-MLIR [35], and Glow [69]. In the subsequent

subsections, we will briefly describe how each of these compilers can be extended to work

with NMP.

5.2.1 TF-XLA

TensorFlow [4] is a widely-used open-source machine learning library that supports both

research and production applications. It provides APIs for developing machine learning

models across various platforms, including desktop, mobile, web, and cloud. When work-

ing with TensorFlow, one of the key challenges is achieving high inference throughput on

mobile and embedded devices, considering constraints such as performance, low latency,

small model size, and portability. To address these constraints, Google has developed

TensorFlow XLA [3], or simply TF-XLA, a specialized compiler.

TF-XLA is designed to optimize linear algebra operations in the TensorFlow Compu-

tational Graphs (TCGs), which represent computations as a dataflow graph with nodes

as operations and edges as tensors. Instead of focusing solely on individual operations,

TF-XLA takes a group of operations into consideration when optimizing the TCG. These

optimizations include operation fusion, algebraic simplification, dead code elimination

(DCE), and common subexpression elimination (CSE). By applying these optimizations,

TF-XLA aims to maximize the efficiency and performance of the compiled executable.
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Figure 5.4: Tensorflow XLA flow for NMP.

TF-XLA offers two types of flows to the user: (a) just-in-time (JIT) compilation

and (b) ahead-of-time (AOT) compilation. The JIT compilation is the simpler option,

allowing the user to select a group of operations in the Python code to be compiled at

runtime. However, it relies on the Tensorflow runtime, which can be a bottleneck for

execution. On the other hand, AOT compilation requires some additional effort from the

user but has the advantage of not depending on the Tensorflow runtime. For NMP, the

AOT compilation flow was chosen due to the characteristics of NMP, as supporting the

Tensorflow runtime would have been impractical due to its hardware requirements.

The TF-XLA compiler takes a protobuf file as input (refer to Figure 5.4), which is

a serialized data structure file containing the network’s definition, where the operations

and their connections are listed, as well as the associated weights. Prior to lowering the

protobuf file into an intermediate representation, the TF Graph Transform tool is utilized

to perform various transformations, such as fold batch normalization into convolutions,

hence simplifying the network for subsequent compilation steps. This process generates

a new protobuf file, which serves as input for creating the XLA HLO (High Level Oper-

ations) intermediate representation within the compiler using the tf2xla tool. Beginning

with the initial XLA HLO representation, target-independent optimizations, such as Dead

Code Elimination (DCE) and Common Subexpression Elimination (CSE), are applied to

produce an optimized HLO representation. Following this, target-dependent optimiza-
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tions, including quantization, are executed, along with other optimizations defined in the

PM (e.g., global barrier insertion, parameter placement, etc). The TSO pass is also in-

cluded in this step, being executed just before the lowering from the XLA HLO to the

LLVM IR. During this lowering pass, the HLO instructions map to intrinsics within an

optimized NMP library (libnmp), which encompasses a range of typical CNN operations.

As part of code generation, the compiler produces a RISC-V executable (RISCV.bin) that

is utilized by the TLTs, along with the quantized weight file (Weight.bin).

5.2.2 ONNX-MLIR

ONNX-MLIR [35] is an open-source MLIR-based compiler that focuses on accelerating

the execution of machine learning models represented in the ONNX format [8]. Built on

top of the MLIR framework [46], it leverages the benefits of a variety of dialects that

aim to enhance performance in many ways. ONNX, like the protobuf format, utilizes a

serialized object to represent the operations and the tensors within the CNN model. Its

wide adoption among frameworks like PyTorch [62] and MXNet [12], as well as runtimes

like ONNX-runtime [19], demonstrates its versatility and popularity within the machine

learning community.

The MLIR framework offers a varied range of dialects, each serving specific purposes

to fulfill various optimization and transformation requirements. For instance, the affine
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dialect allows users to generate and manipulate loops using a powerful dependence analysis

that enables a wide range of affine transformations. The arith dialect provides support for

integer and floating-point mathematical operations. The linalg dialect, on the other hand,

offers high-level optimizations for linear algebra operations. Within the context of ONNX-

MLIR, established dialects like affine and arith are employed alongside two internally

defined dialects called ONNX and Krnl . Tailored specifically for the project, the ONNX

dialect aims to represent each ONNX operation internally as a map of one-to-one, while

the Krnl dialect facilitates functionalities such as loop creation, loop permutation, and

code generation for highly optimized matrix multiplication.

To fully exploit the advantages offered by specific dialects, the MLIR framework intro-

duces an essential concept: dialect conversion. This process is employed in ONNX-MLIR

as follows: (1) The initial dialect created in ONNX-MLIR is ONNX, which faithfully

represents each operation within the ONNX model. Several high-level optimizations are

applied to this dialect. (2) The ONNX dialect is subsequently transformed into the Krnl

dialect, along with other dialects like arith. (3) Further optimizations are applied to the

Krnl dialect before lowering it to the affine dialect. This conversion to the affine dialect

enables a new set of optimizations. (4) The affine dialect is lowered to the LLVM dialect,

which serves as the last step before generating the LLVM IR. (5) Finally, the LLVM IR

is generated and further optimized to later generate a shared library that contains the

optimized code generated for the entire machine-learning model.

For NMP, the ONNX-MLIR compiler works as follows (refer to Figure 5.5): Run

calibration, where the CNN model represented in ONNX format is augmented with Re-

duceMin and ReduceMax nodes after each operation to capture the minimum and max-

imum values produced by each layer. The calibrated model is then executed over a set

of pre-selected images using the ONNX runtime; Generate a new ONNX file from this

step, preserving the original network structure but integrating the logs (minimum and

maximum values) produced in the previous step into the header of the ONNX file to later

use them in the compiler to quantize the network; Read the new ONNX file using the

compiler’s front-end, which is responsible for generating the first intermediate represen-

tation. In this first representation, all operations in the ONNX model are represented

in the ONNX dialect; Perform a quantization pass using the minimum and maximum

values obtained during the calibration step; Convert each operation to a new dialect

called ONNX_quant; Run TSO (Tiling and Scheduling Optimization) to determine the

tiling and scheduling configurations; Lower the ONNX_quant dialect to the NMP dialect,

which includes operations supported by NMP. This step encompasses all the necessary

optimizations and transformations to adapt the code for NMP, including the extraction

of the Weight binary; Finally, lower the NMP dialect to the LLVM dialect, generate

the LLVM IR, create a shared library that links with the NMP library, and extract the

RISC-V binary containing the model code for execution.

5.2.3 Glow

The Glow compiler [69] is a machine learning compiler designed to generate highly op-

timized code for heterogeneous hardware architectures. It accomplishes this by trans-



46

ONNX
model

model-profiler

profile.YAML

Glow
(Front-end)

HIR

LIR

Graph-level optimizations (e.g. 
quantization) & Lowering to LIR

Low-level optimizations (static 
memory allocation) & NMP-specific 
optimizations and transformations

Weight 
binary

RISC-V 
binary

LIR

IR Emitter
(Lowering)libnmp
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forming traditional ONNX models into a two-phase intermediate representation. Firstly,

the High-level Intermediate Representation (HIR) applies graph-level optimizations such

as loop fusion to reduce memory transactions. Subsequently, the Lower-level Interme-

diate Representation (LIR) employs memory-related optimizations like copy elimination,

further enhancing performance. Once this set of optimizations is complete, the LIR repre-

sentation is translated to LLVM IR, where additional optimizations are applied. Finally,

the compiler generates an object containing the optimized model code, ready for execution

on the target hardware.

The Glow compiler provides a flexible interface for retargeting to various architectures

by facilitating the integration of new backends. This enables users to define custom op-

erators and specify their lowering to LLVM, while also implementing architecture-specific

transformations and optimizations. Through this process, users can guide high-level op-

timizations, including operator fusion as well as the supported operations. As part of

this versatile approach, the NMP architecture has been successfully incorporated into the

Glow compiler as a new backend.

The Glow compiler takes an ONNX model as input (refer to Figure 5.6), which un-

dergoes a profile-guided quantization process. This process, along with a set of images,

assesses the numeric ranges (minimum and maximum) for each layer through a tool called

model-profiler using the symmetric with power of 2 scale scheme. The quantization tool
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generates an output file in YAML format, which the compiler utilizes for network quan-

tization. The quantization and other optimizations like layer fusion, occur at the HIR

level. The HIR is subsequently lowered to the LIR format, where additional transfor-

mations and optimizations are applied, including operation scheduling, tensor memory

allocations, and other NMP-related optimizations. Finally, the LIR is lowered to LLVM

IR, which generates the RISC-V code for NMP.

5.2.4 Extending AI Compilers for NMP

The TSO algorithm has been deployed on the three presented compilers (TF-XLA, Glow,

and ONNX-MLIR). To achieve this, we implemented an NMP backend on all three com-

pilers, integrating the lowering part where the IR is lowered to RISC-V assembly and

incorporating the optimizations explained in this chapter. One of these optimizations is

the fusion of operations, which involves matching sequences of operations and merging

them into a single operation. For each merged operation, a corresponding implementa-

tion in libnmp is required. Regarding the quantization pass, we have implemented it from

scratch on TF-XLA and ONNX-MLIR, while on Glow, we have used the one already

available in the compiler. All the other optimizations and required passes, such as weight

binary file generation, TSO algorithm, global synchronization, etc., have been developed

on all compilers. Regarding the libnmp library, we added operations to support certain

layers and used others that had been added by LG before we started working on NMP.

Concerning the runtime libraries – those used to load the model, preprocess the input,

communicate with the board, and validate the outputs, among other tasks – we imple-

mented support for all CNN models. Finally, with respect to debugging, since NMP does

not provide users with any tools for debugging, we achieved this by dumping the memory,

as we know where data should be written to and read from. By doing that, we could

analyze the output produced by each layer for correctness, etc.
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Chapter 6

NMP Mapping Strategies

During the execution of a Conv-Layer, various mapping strategies exist for transferring

data from the host memory (DRAM) to the NPU on-chip memory. However, improper ex-

ecution of these data movements can result in significant increases in performance degra-

dation and energy consumption [80]. To tackle this problem specifically for multicore

NPUs, this thesis introduces an optimization algorithm called Tensor Slicing Optimiza-

tion (TSO), which explores a search space to identify the most efficient TLE/TLT data

partitioning/scheduling strategy, primarily aiming to minimize the number of memory

transfers needed during the execution of Conv-Layers. Additionally, TSO aims to maxi-

mize parallelism across the multiple cores that comprise the NPU.

6.1 TSO Algorithm

When mapping a convolution to NMP, a vast range of potential mapping solutions ex-

ists within the tiling/scheduling search space. Each mapping solution leads to distinct

memory access patterns, parallelism across the TLEs (and consequently across the TLTs),

and varying memory footprints. The choice of a mapping solution significantly impacts

the performance, efficiency, and resource utilization to compute a convolution on NMP.

Therefore, careful consideration and analysis are crucial to select an efficient mapping

solution that aligns with the specific requirements and constraints of the target device

(NMP). For this purpose, the TSO algorithm plays an important role in determining the

mapping solution for each convolution, and this is done at compile-time as a compiler

pass in the ML compiler, thus ensuring efficient decision-making for the mapping process.

TSO works by exhaustively exploring the solution space in the search for the best

convolution tiling/scheduling strategy that minimizes execution time. It first slices the

input tensor of the convolution (IN) and its corresponding filters (KS) among the TLE

processors of the NMP so that each TLE computes a different slice of the convolution’s

output (OUT). After that, each TLE slice is further partitioned into multiple tiles so as

to distribute the computation among the TLT cores of the corresponding TLE processor.

These two steps of the TSO algorithm are detailed below. Before moving further, please

consider that every mention to slice refers to a TLE data partitioning and every mention

to tile refers to a TLT partitioning.
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Algorithm 1 Select best TLE/TLT mapping

1: function TSO(CONVS, #TLE, #TLT)

2: #pragma omp parallel

3: #pragma omp single

4: for each conv ∈ CONV S do

5: #pragma omp task

6: ▷ Let conv = (IN, KS, OUT)
7: map[conv].bestT ile.time←∞

8: ▷ Let PARTTLE = {KS,KS&OUT,OUT}
9: for each p ∈ PARTTLE do

10: ▷ Let slice = (TLER, TLEW )
11: slice← TLESlicing(p, conv,#TLE)
12: ▷ Let PARTTLT = {IS,OS,WS}
13: for each q ∈ PARTTLT do

14: ▷ Let tile = (INT , KST , OUTT , time, schedule)
15: tile← TLTTiling(q, conv, slice,#TLT )
16: if tile.time < map[conv].bestT ile.time then

17: map[conv].bestSlice← slice
18: map[conv].bestT ile← tile

19: return map

Initially (refer to Algorithm 1), TSO takes as input the set of convolutions of the model

(CONV S) and the number of TLEs (#TLE) and TLTs (#TLT ) of the architecture (line

1). It then iterates over all convolutions (line 4) and initializes a map which stores the

best TLE slice and TLT tile for that specific convolution (lines 7). Then for all possible

TLE slicing schemes p available in PARTTLE (line 9, see Section 6.2 for details), the

algorithm uses a call to function TLESlicing to divide the convolution IN and KS tensors

data across the TLEs. TLESlicing returns tuple slice = (TLER, TLEW ), where TLER

refers to the part of the OUT (rows) that is generated from the slice of the IN designated

to the TLE processor, and TLEW a subset of the KS filters that will run on that TLE

processor.

Remember that each TLE processor in NMP has a set of TLT cores, and thus for each

TLE slice produced in line 11, the slice data needs to be divided among its corresponding

TLT cores. Hence, for each TLT scheduling strategy q (line 13, see Section 6.3 for details),

TSO computes the best TLT tile for the current TLE data slice using a call to TLTTiling

(line 15). This function takes as input the TLT scheduling strategy q, the convolution

data (conv), the current TLE slice, and the number of TLTs (#TLT ). It then determines

the best tiling of the TLE data among the TLT cores. The TLTTiling function returns

tuple tile = (INT , KST , OUT T , time, schedule), where IN
T , OUTT are the tiles of the IN

and OUT tensors assigned to the TLTs of that TLE, and KS
T is a tile that contains a subset
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of the filter in KS.

The tuple also returns an estimate of the time taken to compute the convolution us-

ing that specific combination of TLE slice and TLT tile for the best possible scheduling

(schedule) strategy (see Section 6.5 for details). To achieve that, it takes into considera-

tion the cost to load the IN
T and KS

T tiles from DRAM into the (on-chip) TLT memories

MB0 (IN) and MB1 (KS), respectively, and the time to store the OUT
T from the MB2

TLT (OUT) memory back to the host DRAM. Moreover, time also includes the time

each evaluated partitioning takes to run on the MAC Unit using the various scheduling

alternatives (see Section 6.4 for details).

After returning from TLTTiling, TSO compares (line 16) the estimated time for the

evaluated partitioning with the best time (map[conv].bestT ile.time) found so far for that

specific convolution. It then stores it into the appropriate map entry (i.e., map[conv]),

the corresponding TLE slice (line 17), and TLT tile (line 18). Finally, the map containing

the best slices/tiles for each convolution is then returned (line 19), so it can be used later

by the code generator to synthesize and schedule the code for the TLT cores.

TSO is an algorithm that exhaustively explores the solution space of all possible tensor-

slicing solutions for each Convolution of a model. As such, it may take a long time to

execute, particularly when the CNN model has many Convolutions. Given that estimating

the execution time of a Convolution is independent of the others, the process of exploring

the solution space is highly parallel. In this work, we use OpenMP task parallelism to

accelerate this exploration by running the simulation of the execution time of all Convo-

lutions in parallel. The parallel execution starts at line 2 with the creation of a thread

pool. At this point of the execution, a unique thread is selected from the thread pool

(line 3) to create a task for each Convolution (line 5). The tasks are then distributed

across the threads within the thread pool to compute the Convolutions’ TLE/TLT data

partitioning and scheduling in parallel.

6.2 TLE Slicing

The first step in the TSO optimization involves dividing the filters in the KS tensor among

the TLEs and determining the corresponding portion of the OUT tensor (rows) that the

selected filters will produce at runtime. It is also determined which part of the IN tensor

is required to generate this output. Since the slicing process is the first division performed

over the IN, KS, and OUT tensors, improper division can significantly affect performance.

For instance, assigning more data to the slices may increase communication, as more

LOAD/STORE operations from/to DRAM, respectively, may be required. Hence, care-

fully optimizing the selection of proper slices for each TLE is essential to achieve load

balance and minimize the data transfer time. In this work, we explore three TLE slicing

schemes, as defined in Algorithm 1: PARTTLE = KS,KS&OUT,OUT (line 8). Even

though the TLE slicing schemes used in this work may assign the same slices either from

the IN or KS tensors to two or more TLE processors, the OUT slices produced by them do

not overlap in any way. The Algorithm 2 shows how the division is performed in each of

these TLE slicing schemes, and further details are provided below.
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Algorithm 2 TLE Slicing

1: function TLESlicing(p, conv, #TLE)

2: ▷ Get the number of rows of the OUT tensor

3: rows← conv.R

4: ▷ Get the number of filters of the KS tensor

5: filters← conv.M

6: if p = KS then

7: TLEW = +filters/#TLE,
8: TLER = rows

9: if p = KS&OUT then

10: TLEW = +filters/(#TLE/2),
11: TLER = +rows/(#TLE/2),

12: if p = OUT then

13: TLEW = filters

14: TLER = +rows/#TLE,

15: return (TLER, TLEW )
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Figure 6.1: The TLE KS slicing scheme divides the filters in the KS tensor into slices, one
for each TLE processor. A single IN slice is created and used by all TLE processors.

KS slicing scheme – In the first slicing scheme (line 6), only the convolution filters

in KS are divided into slices among the TLEs (line 7), as illustrated in Figure 6.1. The

number of slices generated from the KS tensor corresponds to the number of TLEs in

the NMP accelerator. Figure 6.1 illustrates the division of the KS tensor into slices 1
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Figure 6.2: The TLE KS&OUT slicing scheme divides both the IN tensor and the filters
in the KS tensor into slices. These slices are then combined to generate one OUT slice for
each TLE processor.

and their corresponding TLE assignments (see in 2 the assigned KS slice to TLE #2).

Additionally, it also indicates the portion of the OUT tensor that each TLE is responsible

for generating. For instance, in 3 , it is shown the OUT slice that is produced by TLE #0.

Regarding the IN tensor, only a single slice is produced, which is also the one consumed

by all TLE processors 4 . In terms of data replication, the entire output feature map,

which includes the R×C elements of the OUT tensor, needs to be computed by the TLE,

requiring the complete IN tensor to be loaded at runtime on each TLE processor. This

slicing scheme usually works well in the last Conv-Layers of a CNN model due to the

increased number of filters, their channel’s depth, and the reduced spatial dimension of

the IN tensors, which become less representative in terms of size. Thus, dividing the

filters may reduce data transfers between the host memory (DRAM) and NMP on-chip

memories.

KS and OUT (KS&OUT) slicing scheme – The second slicing scheme (line 9)

involves dividing both the filters in KS and the rows of the OUT tensor among the TLEs.

In our study, which utilizes an NMP with 4 TLEs, both the IN and KS tensors are divided

into two sets. These divided portions (IN and KS slices) are then combined to generate

4 OUT slices, one for each TLE processor. In cases where an even distribution is not

possible, the TLEs with lower IDs may handle a slightly larger workload. Figure 6.2

illustrates this process, featuring the created slices from the KS tensor (as illustrated in

1 with the first #0 KS slice) and the IN tensor (highlighted in 2 with the first #0 IN

slice). It also depicts the portion of the OUT tensor (labeled as 3 ) that is generated by

TLE processor #0 when computing the combined IN and KS slices #0. The two created

slices from the IN tensor may have overlapping elements because their corresponding OUT
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slices may require the same input elements from the IN tensor to compute certain OUT

elements. The overlap only occurs at the borders and is limited to L× (K1−1) elements.

This overlap specifically arises when K1 > 1. This TLE slicing scheme reduces the data

transfer over the IN tensor compared to the KS slicing scheme. However, it increases the

load on the filters in KS since more filters are assigned to the slices. This scheme typically

performs well when the KS and IN tensors have similar sizes, which is often the case for

Conv-Layers positioned in the middle of a CNN model.

OUT slicing scheme – Finally, in the third slicing scheme (line 12), only the rows

of the OUT tensor are divided among the TLEs (line 14). Figure 6.3 illustrates the slicing

process of the OUT tensor 1 into four distinct slices, each containing a different collection

of elements from the OUT tensor. For each OUT slice, a corresponding IN slice is required

(refer to the IN and OUT slices annotated with 2 for an example). These IN slices may

have overlapping elements depending on the filter size. For instance, in scenarios where

K1 > 1, the first element of the last row in the first OUT slice (produced by TLE #0 – see

3 ) requires input elements that are also needed to compute the first element of the first

row in the second OUT slice (produced by TLE #1 – see 4 ). This results in overlapping

elements in the IN slices of both TLEs, where certain elements from the IN tensor are

demanded by both TLEs at runtime. The number of overlapping elements in the first and

last IN slices is L × (K1 − 1). Moreover, the second and third IN slices have an overlap

of 2× L× (K1− 1) input elements with their neighboring slices. On the other hand, for

K1 = 1, no overlapping elements are applied. For this scheme, all the filters in the KS

tensor are incorporated into a single KS slice, which is required by each TLE 5 . This

leads to a scenario where the filters are loaded multiple times from the DRAM, as many

times as the number of TLE processors. As a result, this slicing scheme is typically more
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Algorithm 3 TLT Tiling

1: function TLTTIling(q,conv,slice,#TLT)

2: ▷ Let tile = (INT , KST , OUT T , time, schedule)
3: bestT ile.time←∞

4: for TR ← 1 to slice.TLER do

5: for TC ← 1 to conv.C do

6: for TN ← 1 to conv.N do

7: TM ← GetFilters(TR, TC , q, slice.TLEW ,#TLT )

8: KS
T ← GenTILEKS(TM , TN , conv, q)

9: OUT
T ← GenTILEOUT (TM , TR, TC , q)

10: IN
T ← GenTILEIN (TN , TR, TC , q)

11: (time, schedule)← CalcTime(INT , KST , OUTT , q)
12: if time < bestT ile.time then

13: bestT ile← (INT , KST , OUTT , time, schedule)

14: return bestT ile

effective for the first Conv-Layers, where the IN tensors are significantly larger compared

to the filters in the KS tensors.

Since the NMP board used to collect the experiments for this thesis does not have

a global shared buffer (shared among the TLEs), we have not considered this feature in

designing TSO. However, TSO can be easily extended to consider a global shared buffer

since different slices of the IN/KS from different TLEs may be the same.

6.3 TLT Partitioning

After choosing a TLE slicing scheme, the workload of each TLE is divided among their

corresponding TLTs by means of a call to function TLTTiling in line 15 of Algorithm 1.

TLTTiling takes as input the TLT scheduling strategy (q), the convolution data (conv),

the TLE slice (slice) resulting in line 11 of Algorithm 1 and the number of TLTs at each

TLE (#TLT ). It then produces as output the tuple (INT , KST , OUT T , time, schedule),

which will be used to generate code for the TLTs.

Initially (refer to Algorithm 3), TLTTiling initializes variable bestT ile.time with in-

finity as it will store the shortest (estimated) execution time of all possible tiles visited by

the function. To achieve that, a sequence of three nested loops (lines 4-6) generates the

values TR, TC , and TN that are used to explore all possible INT , KST and OUT
T tiles shapes

that can be formed from a TLE slice. But before computing the IN
T and OUT

T tiles for

that TLE slice, the convolution filters in TLEW need to be divided among the various

TLTs. This is done in line 7, which also determines the maximum number of filters (TM)

that can fit into the MB1 (KS) memory of a TLT, and in line 8, which generates the

corresponding KS
T tile. In the case of an unbalanced filter partitioning, the remaining

filters are spread among the TLTs, which have the lowest IDs. This is followed by calling
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Figure 6.4: The TLT Partitioning involves distributing the filters in a TLE slice across
the TLTs of the TLE. Additionally, a single input slice is formed and is necessary for all
TLTs. To reduce load time, multicast loads are employed when loading the input.

functions to generate the OUT
T tile (GenTILEOUT in line 9) and IN

T tile (GenTILEIN

in line 10). These two functions also check if the tiles OUT
T and IN

T respectively fit into

memories MB2 (OUT) and MB0 (IN) of a TLT, as shown in Equation 6.1, where type

stands for either 8- or 16-bit fixed-point. The functions between lines 8-10 (GenTILEKS,

GenTILEOUT and GenTILEIN) also calculate the number of times the IN
T , OUTT and

KS
T tiles have to be loaded/stored from/to the DRAM to cover all the workload of a

TLE slice, and this is done based on the selected scheduling technique, denoted as q in

Algorithm 3 (more details in Section 6.4).
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|INT | = TN × TH × TL × type f |MB0|

|KST | = TM × TN ×K1×K2× type f |MB1|

|OUT T | = TM × TR × TC × type f |MB2|

(6.1)

To illustrate how the IN, KS, and OUT slices of a given TLE are divided across its

TLTs, please refer to Figure 6.4. For simplicity, assume that the number of filters in

the KS tensor is a multiple of #TLT . During the partitioning process, the filters in the

KS slice of a TLE are evenly distributed across its TLT cores, resulting in a total of

TLEW/#TLT filters and (TLEW/#TLT ) × N × K1 × K2 elements assigned to each

TLT core individually 1 . Consequently, the OUT slice is also partitioned across the TLT

cores, resulting in a total of (TLEW/#TLT ) × TLER × C elements for each TLT core

2 . On the other hand, the IN slice is not partitioned. Instead, each TLT loads the entire
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N × ((TLER− 1)×S +K1)×L elements from the IN slice 3 . However, multicast loads

are used during runtime to optimize the loading of the IN
T tiles from DRAM, where only

a single TLT loads the data and distributes it to the other TLTs within the same TLE.

Although the TLTs work independently of each other, in order to use multicast loads,

they need to be synchronized during the load operations to ensure that they all receive

the same IN
T tile data. After slicing the convolution data into the TLEs and partitioning

it across the TLTs, it is not always guaranteed that the workload for each TLT will fit

within their on-chip memories (MBs). To address this, tiling is employed to ensure that

a single IN
T , KST , and OUT

T tiles can fit simultaneously in their respective MBLOBs. By

tiling the workload assigned to a TLT, multiple IN
T , KST , and OUT

T tiles may be created,

posing a challenge in scheduling these tiles for execution at runtime (refer to Section 6.4

for more details). Additionally, the selection of tile sizes plays a crucial role in optimizing

performance, given that choosing larger tiles can significantly increase reuse and reduce

data transfers.

The IN
T , KS

T , OUT
T tiles and the tiling strategy q, are then passed to function

CalcT ime (line 11), so it can estimate the best schedule and time to compute the TLE

slices using the generated tiles (more details in Section 6.5). Finally, the algorithm tests

if the time computed for the current tiling is smaller than the bestT ile.time seen so far,

and if so, it updates the bestT ile.

The NMP architecture enables other partitioning strategies beyond the ones used in

this thesis, which leverages a MULTICAST instruction to load IN slices into 8 TLTs/TLE

in parallel. For example, one could consider an approach that divides the IN tensor

(channels) among the TLEs so that they compute partial sums of the same OUT
T tile,

which are later reduced to the final OUTT tile result. Unfortunately, in NMP, the process

of reducing partial sums would require many ring-network messages between the TLEs,

thus impacting performance and making some TLTs idle while others use a tree-reduction

algorithm to accumulate the OUT
T tile result. Moreover, besides leveraging MULTICAST

loads to reduce data transfers, the partitioning strategies proposed herein also guarantee

load-balancing between the TLEs/TLT.

6.4 Scheduling

With the data divided among the TLEs/TLTs, the next step of the TSO algorithm is to

find the best order in which input/filter tiles are read from DRAM onto on-chip memory

to perform tiled convolution. Depending on the memory access pattern that tiles are read

from memory (schedule), more or less DRAM reload operations can occur, thus impact-

ing the final convolution performance. There are basically three different tile scheduling

strategies that TLT cores can use, which depend on the shape and size of the convolu-

tion input data – Input Stationary (IS), Output Stationary (OS), and Weight Stationary

(WS). Given that the data transfers of the scheduling strategies presented herein can be

determined at compile-time, TSO computes the number of accesses to the DRAM required

by each one of them according to their data-flow patterns so as to determine the one that

can result in the best data reuse. The scheduling strategies are described in detail below.
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Figure 6.5: Input Stationary.

Input Stationary (IS) – is a scheduling strategy that focuses on reusing the IN
T

tiles. Figure 6.5 shows the execution flow of IS. The first step ( 1 in Figure 6.5) is to

load the IN
T tile from the DRAM into the NMP MB0 on-chip memory; then, the KS

T

tile is also loaded 2 from the DRAM into MB1. To make full reuse of the IN
T tile, the

KS
T tile has to include all the filters designated to the TLT – even if just a small part of

each one of them. With the INT and KS
T tiles already loaded, the MAC Unit executes the

convolution on them. The result is stored into the MB2 (OUT) memory, which, at this

point, only contains a partial sum of the Convolution – the final result of the OUT
T tile is

only generated after computing all elements through the depth of the IN tensor. To do

that, multiple IN
T 3 and KS

T tiles 4 may be required to be loaded while going through

the channel (depth) direction. After computing and accumulating the results, the OUT
T

tile is ready to be stored into the DRAM 5 . After that, a new IN
T tile is loaded, going

first on the width 6 and then on the height 7 directions of the IN tensor – for each one

of them, the same KS
T tiles are reloaded again and again from DRAM.

Given the access pattern performed by IS when loading/storing data from/to the

DRAM, one can use Equation 6.2 to determine, for each tile (INT , KST and OUT
T tile),

the number of times it is required to load/store to cover the entire computation of a

Conv-layer over the TLEs/TLTs. The ³in and ³ks symbols denote the number of times

the TLEs/TLTs have to load the IN
T and KS

T tiles from the DRAM to compute an entire

Conv-layer. The ³out stands for the number of times the OUTT tiles are stored into DRAM.
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(6.2)

Output Stationary (OS) – is a scheduling strategy that prioritizes the generation

of the OUT
T tiles, no matter if the same IN

T and KS
T tiles have to be loaded multiple
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Figure 6.6: Output Stationary.

times from the DRAM into their respective on-chip memories. Figure 6.6 shows the

execution flow of OS. First, based on the OUT
T tile 1 dimensions, the corresponding IN

T

2 and KS
T 3 tiles are loaded from the DRAM into their respective on-chip memories to

compute their convolution using the TLT’s MAC Unit. Given that typically, the on-chip

memories have not enough space to accommodate all the required input data, multiple

IN
T 4 and KS

T 5 tiles have to be loaded using the channel (depth) direction. After

finishing the computation of an OUT
T tile, it is stored into the DRAM, and a new OUT

T

tile starts to be computed using the channels’ (depth) direction 6 . After that, the other

OUT
T tiles are computed by following first the OUT width dimension (C) 7 and then its

height dimension (R) 8 . The number of times the IN
T , KST , and OUT

T tile have to be

loaded/stored from/to the DRAM is defined by Equation 6.3.
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(6.3)

Weight Stationary (WS) – is a scheduling strategy that focuses on loading the

filters from the DRAM only once and reusing them as the convolution tiles are computed.

Figure 6.7 shows the execution flow of WS. First, the TM filters in KS
T tile are loaded from

the DRAM into the MB1 on-chip memory 1 . In this strategy, each loaded filter includes

all its N channels. The loaded filters are then reused until the resulting output feature

maps in OUT tensor are computed 2 . Prior to executing the nmp_conv2d instruction, an

IN
T tile is loaded from the DRAM 3 . Multiples loads of an IN

T tile along the channels’

depth may be required 4 , each computing and storing partial results that will later be

accumulated to form the final OUTT tile 5 , so it can be stored back to the DRAM. This

is followed by loading other IN
T tiles in sequence over the width 6 and then over the

height 7 . This proceeds until all the output feature maps (dimension M in OUT tensor)
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Figure 6.7: Weight Stationary.

of the respective filters in KS
T tile are computed. After that, a new KS

T tile with other

filters may be required to be loaded 8 to compute their corresponding output feature

maps – at this point, for each iteration, the same IN
T tiles are again loaded. Equation

6.4 defines the number of required data transfers to/from the DRAM to cover the entire

Conv-layer.
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(6.4)

Note that increasing the dimensions of tiling (TR, TC , and TN) improves data reuse,

thus reducing the need to load the same tiles from DRAM repeatedly. The TLT parti-

tioning (Algorithm 3) generates multiple tile shapes, which are combined with scheduling

strategies (IS, WS, and OS) and TLE slicing (KS, KS&OUT, and OUT). The combination

that minimizes ³in, ³ks, and ³out is considered a potential solution. It is also important

to mention that the IS and WS strategies prioritize the computation of the OUT
T tiles,

thus preventing the need for reloading them. Consequently, the next OUT
T computation

begins only after the previous one is fully computed, which includes the calculation of all

partial sums.

6.5 Estimating Time

In order to decide, for each convolution, which slicing scheme is the best among those

discussed in the sections above, TSO combines multiple solutions from the search space

<PARTTLE,PARTTLT ,TM ,TN ,TR,TC>, and estimates the time taken by each valid com-

bination to select the one which provides the best performance. This estimate has the
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following components, listed in increasing order of their contribution to the total con-

volution execution time: (a) the time required to run the RISC-V instructions at each

TLT; (b) the time needed to perform the MAC unit operations on the slices; and (c) the

time required to load/store data between the DRAM and the NPU on-chip memories. An

estimate for the convolution execution time is calculated by the function CalcTime (de-

fined in Algorithm 3 – line 11), which sums the time of each component of the execution

according to Equation 6.5.

TCONV = TMAC + TDRAM + TSW (6.5)

where TMAC , TDRAM and TSW stands for the time taken by the MAC Unit, the time taken

to transfer data between the NPU’s on-chip memories and DRAM, and the time taken to

execute the RISC-V instructions, respectively. Since TSW is not significant (usually less

than 5% of the total execution), we will not cover it in detail in this thesis. However, a

brief discussion on this topic is available in Section 7.1.

The time the convolution spends computing the MAC operation (TMAC) is calculated

according to the number of Multiply-accumulate operations (MAC operations) of a Conv-

layer. The first step to estimate it (see Equation 6.6) is to determine the number of MAC

operations required to compute a single channel of the IN tile. This is then divided

by the number of MAC operations that a MAC unit can execute at each cycle. After

that, the other input feature maps (TN) and the output feature maps (TM) are then

considered to compose the estimated time of the entire tile (T ileMAC). Once the time

taken by a single tile is determined, it is then possible to estimate the total time required

to compute the entire Conv-layer’s workload, which is distributed over all the TLTs cores

(#TLEs×#TLTs) in NMP (see Equation 6.7).

T ileMAC = TN × TM ×

(⌈

TR × TC ×K1×K2
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×
1
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(6.6)
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TSO uses two approaches to estimate the time taken to load/store the IN
T , KS

T ,

and OUT
T tiles between the on-chip memories and DRAM. They are: (a) TSO-burst , a

burst-based model that estimates the tile’s transfer time based on the number of memory

bursts, which is used to estimate the DRAM CAS (Column Address Strobe) latency.

Additionally, the burst-based model also estimates the DRAM transfer time; and (b)

TSO-noburst , a data volume-based estimate, which determines the DRAM transfer time

solely based on the size of the tile’s data and the memory bandwidth. Algorithm 4

describes how the DRAM transfer time is computed using both approaches. For the

sake of explanation of Algorithm 4 assume a DDR3 memory with CAS latency (us),

BW bandwidth (Bytes/sec), and BURST size in bytes (e.g., 128B). For simplicity, TSO

assumes that each transaction (i.e. LOAD/STORE) from/to DRAM is processed one at

a time. In addition, another data volume-based approach, TSO-roof , which estimates



61

the solutions in the TSO’s search space using a cost model based on the Roofline model

and prioritizes solutions that enhance data reuse, was adapted from [57] to work with

TSO. This approach, in particular, selects the solutions for each convolution based on

the Operational Intensity (OI) and an estimate of the Attainable Performance using the

estimated TMAC timing.

To estimate the time taken by data transfers (TDRAM) in the TSO-burst and TSO-

noburst approaches, TSO needs to consider the number of memory accesses (i.e., reloads)

required by each tile. These memory accesses include the IN
T tile (³in), the KS

T tile

(³ks), and the OUT
T tile (³out). Then, TSO calculates the data transfer time for each

tile using the function CalcDataTransfer, which is defined in Algorithm 4. This function

takes as input the tile, which can be an IN
T , KST , or OUT

T tile, and holds information

about the tile shape, which is used to determine factors such as tile size and, in the case of

TSO-burst, the number of bursts. Additionally, the function includes information about

the convolution (conv), which encompasses the shapes of the IN, KS, and OUT tensors,

which are used to calculate the number of bursts for TSO-burst. Lastly, it also contains

architectural details (arch), such as memory bandwidth and latency, which are essential

for estimating the time required for data transfers, along with the data type in use. Once

the data transfer times for all tiles are calculated, they are accumulated into TDRAM (see

Equation 6.8), which represents the total data transfer time for the chosen solution within

the search space.

TDRAM = ³in ∗ CalcDataTransfer(INT , conv, arch)+

³ks ∗ CalcDataTransfer(KST , conv, arch)+

³out ∗ CalcDataTransfer(OUT T , conv, arch)

(6.8)

Burst-based data transfer (TSO-burst) – The key idea behind TSO-burst is to

use the number of bursts taken by each access to a tile row so as to compute an estimate

for the DRAM access time of the tile. For instance, consider an IN
T tile containing TN

(channels) × TH (rows) × TL (columns) where each entry has 16-bit (2B) elements. Given

that the channel is laid out in row-major, loading the first element of a row takes time

CAS, while loading the remaining elements takes ∼ (2× (TL−1))/BW . Thus, an IN row

takes CAS+ ∼ (2 × (TL − 1))/BW to load. This is true if the size of the row (2 × TL)

is smaller than BURST bytes. Otherwise, other memory bursts may occur when loading

the row, and additional CAS penalties will impact the time.

Algorithm 4 is used to estimate the execution time when convolution conv is divided

into tiles tile on architecture arch. Initially, the tile data size type (e.g., 16-bit fixed-

point) (line 2), the DRAM memory bandwidth BW (line 3), the CAS latency CAS (e.g.,

14ns) (line 4), and the BURST size (e.g. 128B) (line 5) are extracted from the arch data

structure. Next (line 6), the algorithm selects the memory transfer model (e.g., TSO-

burst) and uses a call to function CalBurstCount (line 7) to determine the number of

bursts (nburts) required to load all the TH rows of an (INT ) tile. Then, the impact of the

CAS (Column Address Strobe) latency is computed into cas_latency (line 8), and the

size of the tile (tile_size) is determined in line 9 by calling function GetTileSize. The
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Algorithm 4 Estimate the time taken by Data Transfer

1: function CalcDataTransfer(tile, conv, arch)

2: type← arch.type
3: BW ← arch.BW

4: CAS ← arch.CAS
5: BURST ← arch.BURST

6: if model = TSO-burst then

7: nbursts← CalBurstCount(tile, conv, type, BURST )

8: cas_latency ← nbursts ∗ CAS
9: tile_size← GetTileSize(tile, type)

10: transfer_time← tile_size/BW
11: total_time← transfer_time+ cas_latency
12: else

13: ▷ TSO-noburst

14: tile_size← GetTileSize(tile, type)
15: total_time← tile_size/BW

16: return total_time

time to transfer all the data in a tile (transfer_time) is then determined (line 10), and

finally, the total time to load the tile is computed (line 11) and returned (line 16).

For an illustrative example of how the burst count is calculated in the CalBurstCount

function in Algorithm 4, refer to Figure 6.8 (a) – (c) and Equations 6.9 – 6.11. For the

sake of simplicity, the burst count is only presented for the input tile (INT ). However,

the same process is also applicable to the other two tiles (KST and OUT
T ). In summary,

three scenarios exist when calculating the number of bursts, and these scenarios depend

on the tile shape. For the first scenario, as depicted in Figure 6.8 (a) and Equation 6.9, for

every two consecutive rows (TH) within the INT tile, there exists a memory access stride of

L−TL elements that separates them, where L−TL > 1. Due to this memory access stride,

it becomes necessary to individually load each row (TH) from DRAM into the NPU’s on-

chip memory (MB0) through separate memory transactions. The number of memory

transactions required to load each row (TH) can be determined by dividing the sequential

tile dimension (TL) in memory by BURST , which specifies the number of consecutive

elements that can be loaded from DRAM in a single memory access operation, and then

multiplying the result by the other two dimensions (TH and TN). For the second scenario,

as shown in Figure 6.8 (b) and Equation 6.10, the elements of all rows (TH) within a

single channel (TN) are sequential in memory, since TL = L. On the other hand, for every

two channels (TN) in the IN
T tile, there exists a stride of (H − TH) × L elements that

separates them, where (H−TH)×L > 1. For this scenario, the two sequential dimensions

are aggregated (TL and TH) prior to counting the number of memory transactions. Finally,

for the third scenario, presented in Figure 6.8 (c) and Equation 6.11, all the TN ×TH×TL

elements in IN
T are laid out sequentially in memory (i.e., there is no memory access
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Figure 6.8: The three presented scenarios (a) - (c) demonstrate how the input tiles (INT )
are represented in memory within the input tensor (IN), and the memory access stride
applied to each of them (dashed red arrow). Note that the third scenario (c) has the
elements of the IN

T tile sequentially represented in memory.

stride). Therefore, all three dimensions are composed prior to counting the number of

memory transactions. As a matter of comparison, the third scenario tends to outperform

the other two scenarios. However, it is possible to achieve equivalence in the first two

scenarios scenario (a) - (b) with respect to the third (c), in terms of performance, if

the modulus of the sequential dimensions with the BURST size is zero or close to zero.

Conversely, if the modulo is high, the memory bursts are underutilized, which may lead

to more memory transactions, leading to performance degradation.

nbursts =























































⌈

2× TL

BURST

⌉

× TH × TN , if TL ̸= L (6.9)

⌈

2× TL × TH

BURST

⌉

× TN , if TL = L and TH ̸= H (6.10)

⌈

2× TL × TH × TN

BURST

⌉

, if TL = L and TH = H (6.11)

TSO-burst does not make any assumptions about the external DRAM or memory-

controller designs besides the existence of burst-based accesses typically found in these

memories. The memory controller found in the NMP board follows the ARM-bus pro-

tocol. Besides CAS latency, other DRAM parameters (e.g., Trcd/Trp/Tras) could also

be included to improve the precision of data transfer modeling. Nevertheless, since CAS-

latency is one of the most relevant of these DRAM parameters, Algorithm 4 focused only

on it.

Volume-based data transfer (TSO-noburst) – This approach is typically used

by all previous works which address this problem [30,57,81,87]. As shown in lines 13-15
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of Algorithm 4, it estimates the tile time by considering only the time to transfer the tile

data (line 15) and not the impact of the CAS latency of the tile’s memory bursts.

To compare TSO with an existing solution, we adapted the approach proposed in [57]

to make it compatible with our ML compiler, TF-XLA, and also with the TSO’s search

space. See below for an extended description of how the adaption was done to our ML

compiler.

Volume-based data transfer (TSO-roof) – Although the Roofline model [84]

serves as a means to understand the balance between available hardware performance

and the computational requirements of a specific application, allowing the user to identify

bottlenecks and optimize them for peak performance. The Roofline model is employed

in [57] as an analytical model to investigate a search space of tiling applied to FPGAs.

This model estimates two metrics: (1) Attained Performance and (2) Operational Inten-

sity for each solution in the search space, and then selects the one that maximizes both

metrics, by first prioritizing (1) and then (2). To demonstrate how this compares to TSO,

these two metrics were integrated into TSO’s search space. The same TLE schemes, TLT

partitioning, scheduling techniques, and the search space for tiling were embedded into

the integrated solution, which is referred to as TSO-roof in this thesis. The integration

process involved the adaption of the equations used to rank different solutions in the ana-

lytical model in [57] to work with TSO. First, in Equation 6.12, the number of operations

performed by the convolution is calculated (note that the constant 2 indicates a multi-

plication followed by an accumulation). Comparatively, the same number of operations

is used for both approaches (i.e., TSO and [57]). After that, the number of operations is

used to estimate the Attained Performance (see Equation 6.13), which serves as a per-

formance metric to evaluate the capacity of a solution for delivering high performance

in OPS/s (operations per second). The estimated MAC timing used in [57] is equivalent

to the one defined in this thesis in Equation 6.7 (TMAC). Finally, the adaption of the

Operational Intensity from [57] to TSO is shown in Equation 6.14. This metric plays

a crucial role in measuring the number of operations executed per byte retrieved from

the DRAM memory. Both the estimate of the Attained Performance and Operational

Intensity are indicators of solution performance. Thus, a higher value in either of these

metrics indicates a more optimal and efficient solution.

Number of Operations = 2×R× C ×M ×N ×K1×K2 (6.12)

Attained Performance =
Number of Operations

TMAC

(6.13)

Operational Intensity =
Number of Operations

αin × |INT |+ αks × |KST |+ αout × |OUT T |
(6.14)
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Chapter 7

Main Experimental Results

This chapter presents the experimental results designed to address the three research

questions (Q1 – Q3) outlined in Chapter 2. The results are provided, and the benefits of

applying the TSO optimization are analytically demonstrated.

It begins (Section 7.1) by describing the testing environment, evaluating the impact

of TSO on the ML models’ accuracy, and providing a brief discussion of the percentage of

the execution time taken to run the RISC-V instructions on NMP. This is followed (Sec-

tion 7.2) by showing and analyzing the results of applying TSO to a set of representative

convolutions, where it is detailed how the IN, KS, and OUT tensors are sliced among the

TLEs, how these slices are partitioned among the TLTs, and finally, how these partitions

are further tiled into small tiles (INT , KST , and OUT
T ).

It then compares (Section 7.3) the performance of tiling when using the two TSO

heuristics that estimate the time spent on DRAM access (i.e., cost): (1) TSO-burst,

which incorporates the search space described in Section 6.5 along with a cost model based

on burst analysis; and (2) TSO-noburst, which uses the same search space but applies

a different cost model based on data-volume. The application of TSO-burst addresses

the first research question (Q1) presented in this thesis. A breakdown analysis, along

with an end-to-end CNN model execution that compares both cases, is presented, as well

as a convolution speedup analysis that shows the difference for each of the evaluated

convolutions. In Section 7.4, two experiments are conducted: (1) an experiment that

addresses the second research question (Q2), where the different TLT scheduling strategies

are optimally selected depending on the convolution operation and compared against

fixed TLT scheduling strategies; and (2) an experiment that addresses the third research

question (Q3), where TSO selects the best TLE slicing scheme depending the convolution,

and this is compared against a solution that fixes the same solution for all convolutions.

Unfortunately, not many NPUs are available in the literature for performance compari-

son, mainly due to intellectual property restrictions. Even when such NPUs are accessible,

their architectural configurations differ in a way that makes it impossible to compare them

against TSO on NMP (e.g. [40]). Given such restrictions, and in order to evaluate TSO ef-

fectiveness, an experiment was designed (Section 7.5) to compare TSO-burst performance

against a solution adapted from [57], referred to as TSO-roof, which has an analytical

model based on estimates derived from a Roofline model.
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Model
Accuracy (TF-XLA)

NMP (%) CPU FP (%)
Top-1 Top-5 Top-1 Top-5

InceptionV3 75.1 92 76.9 93.4
LeNet 99.9 100 99.9 100
MobileNetV2 70.2 89.6 70.5 89.8
ResNet-50 70.6 89.9 70.7 89.9
SqueezeNet 47.1 71 47.1 71
YOLO - - - -

Table 7.1: Model accuracy on CPU (FP32) and NMP (16-bit fixed point). YOLO uses a
different metric for accuracy; it measures the precision of the detection, which is 93.53%
on NMP while on CPU is 93.03%.

7.1 Experimental Setup and Accuracy Analysis

In order to validate the TSO approach, a set of experiments was executed on an NMP

board equipped with 4 TLEs, each having 8 TLTs. Each TLT contains three 8KiB

MB on-chip memories (MB0–MB2). Five CNN image classification models were used

in the experiments: InceptionV3 [78], LeNet [47], MobileNetV2 [70], ResNet-50 [29], and

SqueezeNet [32]. TSO was also evaluated on a real-world object detection application -

a YOLO-based model [74] used to recognize car license plates. The selected models have

a varied number of convolutions with different shapes of IN (input), KS (weight), and

OUT (output) tensors. When measuring performance, the number of runs of each tested

configuration was 5, with less than 0.5% observed standard deviation in all experiments.

Beyond the mentioned CNN models, we have also attempted the VGG16 model [75].

However, due to the number of parameters exceeding 256MB even after quantization and

surpassing the available DRAM memory space for the NMP, mapping this network for

execution on NMP was not possible.

All models were compiled with a TSO-modified TF-XLA compiler using a quantization

pass set to 16-bit fixed-point. The accuracy achieved by each image classification model

on NMP is shown in Table 7.1. The Top-1 and Top-5 accuracies were measured by running

all images from the validation datasets, MNIST [2] and ImageNet (ILSVRC2012) [1], for

LeNet and the other image classification models, respectively. The same datasets were

also used to measure the CPU’s original floating-point models (FP 32-bit). The difference

in terms of accuracy drop ranges from 0.1 up to 1.8%. For the YOLO-based model, NMP

reaches a precision of detection of 93.53% on a car plate dataset [24] executed on 16-bit

quantized data. The same model on CPU results in 93.03%.

The quantization scheme utilized in this thesis focuses on 16-bit fixed-point quanti-

zation for convolution data. However, when considering smaller precisions, such as 8-bit

fixed-point, TSO may choose a different solution than that selected for the same convo-

lution quantized to 16-bit fixed-point. For instance, if a given convolution is quantized

to 8-bit and one of its components (e.g., KST ) becomes smaller than its corresponding

MBLOB, maintaining this component stationary would result in a single load of it and

the other components’ tiles (INT and OUT
T ) for the convolution computation. Conse-
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quently, this would considerably reduce data transfer between DRAM and NMP. Hence,

TSO would favor this solution due to its ability to reduce data transfer compared to other

options significantly.

Regarding the time taken by RISC-V instructions (TSW ), a profile-guided analysis

conducted for the TSO-burst heuristic, using the actual execution time on NMP, reveals

that an average of 9.29% of the total execution time is dedicated solely to the execution

of RISC-V instructions. For the LeNet model, the time taken to run the RISC-V instruc-

tions consumes 33.49% of the total time. This can be attributed to the small workload

distributed to the TLTs for this CNN model, thus resulting in more time being spent on

running RISC-V instructions. These instructions include loops iterating over the small

tiles, handling semaphores, and executing branches to evaluate specific attributes for the

given CNN operation, such as padding and stride presence. In the case of MobileNetV2,

10.52% of the total time is taken to run the RISC-V instructions. This high percentage

is due to the fact that the convolutions in this model mainly consist of depthwise con-

volutions, which are simpler computationally compared to traditional convolutions. The

RISC-V timings for the other CNN models are 4.61%, 3.23%, 2.36%, and 1.52% for the

SqueezeNet, ResNet-50, InceptionV3, and YOLO models, respectively. It is important

to highlight that these models require less time to execute the RISC-V instructions be-

cause the operations (e.g. convolution) in these CNN models are more computationally

intensive, causing the NMP runtime execution to spend more time on other tasks such as

LOAD/STORE and MAC operations.

Regarding the accuracy of the execution time estimates of the TSO-burst cost model

compared to the actual execution time, we have compared the average percentage error of

the most computationally intensive models. We observed errors of 13.3% for SqueezeNet,

13.8% for YOLO, 18.3% for InceptionV3, and 21.1% for ResNet50. These errors can be

attributed to the fact that TSO does not account for many architectural features, such as

the sequentialization of memory accesses in the DME unit, as a more precise cost model

would be computationally much more expensive.

7.2 TSO Tiling Analysis and Results

To evaluate the effectiveness of the solutions chosen by TSO (with the burst heuristic

activated), Table 7.2 shows the results of 11 different convolutions, each exhibiting dis-

tinct characteristics. The table illustrates the evolution of the IN, KS, and OUT tensors

after undergoing several division steps between the TLEs and further between their cor-

responding TLTs. The table also includes information on TLE slicing, TLT partitioning,

and scheduling, as well as INT , KST , and OUT
T tiles, along with their corresponding shapes

and sizes after each transformation.

For the TLE slicing selection, TSO chooses the TLE OUT slicing scheme for five of

the convolutions, indicating that the combined size of the IN and OUT tensors of those

convolutions is significantly bigger than that of the KS tensor. In the case of YOLO_C6,

the combined size of the IN and OUT tensors is 5x bigger than the KS tensor, whereas, for

YOLO_C1, these two tensors are 8027x larger than the KS tensor. Conversely, there are
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instances where the KS tensor is considerably bigger than the IN and OUT tensors, leading

TSO to choose the TLE KS scheme. For example, in ResNet-50_C53, the KS tensor is

5x bigger than the other two tensors together (IN and OUT), while in InceptionV3_C91,

it is 29x bigger. In addition, TSO may also select another TLE scheme called KS&OUT,

which applies to cases where both IN and OUT tensors have similar sizes compared to

the KS tensor. This scheme applies to three of the convolutions, with the size difference

between the tensors ranging from 1.17x (ResNet-50_C23) to 1.88x (InceptionV3_C39).

By selecting the appropriate TLE scheme, the sizes of the IN, KS, and OUT tensors are

optimally reduced into smaller chunks in the TLE slices, leading to reduced data transfers

at runtime. As an example, consider YOLO_C6, which employs the TLE scheme KS. In

this case, the KS tensor is optimally reduced from 18432KiB to slices of 4608KiB.

When it comes to scheduling selection, TSO tends to favor WS scheduling when the size

of the KS slice becomes smaller than its corresponding MBLOB after passing through the

TLT partitioning. As an example, consider ResNet-50_C1, which produces partitions of

8x3x7x7 (2.3 KiB) from a slice of 64x3x7x7 (18.4KiB). In general, among the convolutions

presented in Table 7.2, TSO selects four of them to run with WS scheduling due to the

reduced size of the partitioned KS slice, which ranges from 2x3x3x3 (0.1KiB) to 8x3x7x7

(2.3KiB). One of the benefits of selecting WS scheduling for those cases is that TSO can

incorporate the partitioned KS slice into a single KS
T tile, which, when kept stationary,

allows for a unique load of the KS
T tile along with the IN

T tiles from DRAM. Besides the

WS scheduling, TSO selects the IS strategy for four convolutions and the OS strategy

for three other convolutions. The IS strategy is typically preferred for convolutions with

a small number of filters and compact spatial dimensions (after the TLT partitioning).

For instance, in the case of InceptionV3_C39, the IN
T tile has a shape of 64x3x17, and

both KS
T and OUT

T tiles have all the filters assigned to the TLT (12 in total). For this

convolution, in particular, since the INT tile does not comprise the entire IN slice assigned

to the TLT, other three INT tiles are formed, which requires, at runtime, three full reloads

of all KST tiles. Since reloading is unavoidable, keeping the larger-sized tiles stationary

effectively reduces data transfer. Conversely, in the case of YOLO_C6, the partitioned

IN slice forms a single IN
T tile, thus resulting in a single corresponding OUT

T tile, thus

enabling the execution with just one load of the IN
T and KS

T tiles. Finally, for the

selected OS scheduling strategies, note that the number of filters increases up to 20 in

the KS
T and OUT

T tiles for ResNet-50_C53. In contrast, for YOLO_C5, only 6 filters

are selected to compose the KS
T tile, but there is a significant increase in the spatial

dimensions of the IN
T and OUT

T tiles, which accommodates 15x15 and 13x13 elements,

respectively. Comparatively, this convolution does not perform well in the IS strategy,

since the partitioned KS slice has 32 filters. Likewise, it also does not perform well on the

WS strategy, since the partition of the KS slice assigned to the TLT is excessively large,

with a size of 576KiB. Comparing the IS and OS scheduling strategies, there are cases in

which both schedulings lead to theoretically equivalent reuse factors. Nevertheless, TSO

often favors the IS strategy in such scenarios, as its implementation results in reduced

RISC-V execution time due to the fewer number of loops it runs at runtime.

The tile selection in TSO aims to optimize data reuse by maximizing the tile size,

whenever possible, up to the capacity of the MBLOB. To illustrate this, consider Incep-
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tionV3_C4 as an example. This convolution’s KS
T tile includes the entire tensor after

the TLT partition. For the IN
T tile, TSO selects a shape of 32x1x73, occupying 4.5KiB.

Attempting to increase the number of rows (TH) in this tile by one would result in a

IN
T tile with a shape of 32x2x73, which would exceed the MBLOB capacity (9.1KiB).

Another possibility to increase the IN
T tile size is by increasing the number of channels

(TN) to up to 56x1x73. However, this would introduce edge cases, as it would require an

additional uneven IN
T tile of size 8x1x73 to compute the final output of the OUT

T tile. It

is worth noting that the OUT
T tile cannot be increased further, as it already contains all

the filters assigned to the TLT (after the partition). Moreover, NMP has a particularity

that when computing a OUT
T tile that requires multiple INT and KS

T tiles to be computed,

the hardware enters a stacked/accumulation mode, which reduces the MBLOB (MB2) by

1/4th as it computes the accumulations in quad-precision. When analyzing various tile

shapes within the search space, TSO considers this constraint and excludes tiles that do

not meet the hardware requirements. On the other hand, YOLO_C1 exhibits a larger

OUT
T tile compared to the other convolutions (4.22KiB). This is possible because this

convolution only requires a single IN
T and KS

T tile to compute the corresponding OUT
T

tile, which enables the MB2 (OUT) on-chip memory to have its original size. Finally,

in the case of InceptionV3_C4, TSO is already selecting an efficient solution for the tile

sizes. It maximizes data reuse within the NMP constraints.

In order to improve access to memory, TSO tends to favor tiles with an increased width

to enhance burst accesses. Among the convolutions presented in Table 7.2, nine of them

(82%) maximize the width dimension of the IN
T (TL) and also of the OUT

T (TC) to their

maximum achievable values. Conversely, for the two other convolutions (ResNet-50_C1

and YOLO_C1), TSO also increases the width of the tiles but not to the maximum size,

as doing so would result in small tiles, making it impossible to add channels and rows to

them as they would exceed the MBLOB capacity.

7.3 TSO-burst vs TSO-noburst Tiling

This section compares the models’ performance when TSO uses the two heuristics that

estimate the time convolutions spend on DRAM access: (1) TSO-burst, based on burst

modeling, proposed in this thesis (Section 6.5); and (2) TSO-noburst, that relies on data-

volume without burst modeling, a common approach found in most previous works. The

speedup of TSO-burst over TSO-noburst ranges from 7.4%, for YOLO, up to 21.7%, for

InceptionV3, as shown in Figure 7.1. The main improvements from using TSO-burst come

when the IN are divided into IN
T tiles. This happens because TSO tends to select larger

tiles in the width (row-major) direction. By selecting larger tiles, TSO minimizes the

number of required bursts, thus reducing the impact of the CAS latency on the memory

access time. By prioritizing bursts on the width direction, TSO maximizes the usage of

the bursts, as it improves memory access coalescing. For the case of TSO-noburst, the tiles

are selected so as to reduce the number of bytes loaded from the DRAM to NMP. Contrary

to those, the TSO-burst technique proposed in this thesis takes into consideration DRAM

access coalescing to estimate the time taken to LOAD/STORE data from memory, thus
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Figure 7.1: TSO-burst speedup over TSO-noburst on end-to-end model execution time.
The baseline used in this experiment is the TSO-noburst.

Model
Model

TSO (us)

TLE
slicing

fixed (us)

TLT
scheduling
fixed (us)

Burst
No

Burst
KS

KS&
OUT

OUT IS OS WS

InceptionV3 72686 88478 82370 81367 91408 73706 93731 101641
LeNet 199 231 202 224 231 199 233 228
MobileNetV2 14030 15470 17765 16696 17571 14084 17387 15155
ResNet-50 55927 62375 62077 63118 78844 59714 71905 77535
SqueezeNet 12504 13713 16579 14134 12993 12908 15840 13452
YOLO 53271 57225 56591 55713 63550 68530 58592 55375

Table 7.3: Model execution time of TSO-burst, TSO-noburst, fixed TLE slicing, and fixed
TLT scheduling.

resulting in better partitioning and improved performance. The resulting execution time

for the various models is shown in Table 7.3. Notice in the table that TSO-burst always

produces the shortest execution time.

As an example, consider the 5th Conv-layer of InceptionV3, which has 80 input feature

maps (i.e., channels) of size 73x73 each, and 192 filters of size 80x3x3. The shape of the

IN
T tile selected by TSO-burst has a size 14x4x73 (TN × TH × TL). Since the IN

T tile

of the TSO-burst takes the whole width L (73) of a channel, it results in a sequence of

584 bytes aligned sequentially on the DRAM (4 × 73 × 2B), which requires 5 memory

bursts for each tile’s channel. When considering all the 14 channels of that tile, the 5th
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Figure 7.2: Convolution execution breakdown with TSO-burst as a relative proportion of
TSO-noburst. The time taken to run the RISC-V instructions is not included; instead, it
is distributed into the LOAD, STORE, and MAC timings.

Model
LOAD Time (us) STORE Time (us) MAC Time (us)

Burst
No

Burst
Speed

up
Burst

No
Burst

Speed
up

Burst
No

Burst
Speed

up
InceptionV3 30679 38155 1.24 4303 7701 1.79 37703 42623 1.13
LeNet 142 169 1.19 21 25 1.19 36 37 1.03
MobileNetV2 6273 6707 1.07 4059 5037 1.24 3697 3725 1.01
ResNet-50 26521 32641 1.23 5775 6278 1.09 23632 23456 0.99
SqueezeNet 4050 4885 1.21 1858 2544 1.37 6597 6284 0.95
YOLO 21783 22849 1.05 9676 11006 1.14 21813 23370 1.07

Table 7.4: Breakdown of how the execution time is distributed for LOAD, STORE, and
MAC operations on NMP. In this experiment, the time taken to execute RISC-V instruc-
tions is assigned to the operation (e.g., LOAD) that requires those instructions.

Conv-layer requires a total of 70 memory bursts. On the other hand, TSO-noburst selects

a tile of size 16x11x20, which corresponds to only 20 bytes aligned on the DRAM, thus

resulting in one memory burst for each row. Given that the INT tile has 16 channels, each

with 11 rows, it requires a total of 176 memory bursts, which is more than double what is

needed to load the TSO-burst tile. For that specific 5th Conv-layer, TSO-burst reduces

the convolution execution time by 28%.

7.3.1 Execution Breakdown Analysis

The solution provided by TSO-burst aims to reduce the total time taken for data trans-

fer operations. To illustrate that, refer to Figure 7.2, which shows for each model two

bars representing the breakdown of the percentage of computation time spent in LOAD,

STORE, and MAC operations with respect to the total execution time of TSO-noburst.
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Model
Convolution
TSO (us)

Convolution
Time
Share

Burst
No

Burst
Speed

up
Burst

No
Burst

InceptionV3 66943 82727 1,24 0,92 0,94
LeNet 64 89 1,39 0,32 0,39
MobileNetV2 10015 11433 1,14 0,71 0,74
ResNet-50 46187 52359 1,13 0,83 0,84
SqueezeNet 11444 12658 1,11 0,92 0,92
YOLO 35711 39471 1,11 0,67 0,69

Table 7.5: Convolution execution time on each CNN model, along with the respective
percentage of time allocated to running these convolutions (time share) for TSO-burst
and TSO-noburst.

Note that for the TSO-burst bars, the percentage of execution time is calculated with

respect to the total time of TSO-noburst. As shown in Figure 7.2, when TSO-noburst is

used, the percentage of the LOAD+STORE transfer time ranges from 51.83%, for Incep-

tionV3, up to 83.80% for LeNet. On the other hand (refer to Table 7.4), when TSO-burst

is used, the time taken by LOAD+STORE operations decreases from 7.08% to 23.71%

for YOLO and InceptionV3, respectively.

Another observation that can be derived from Figure 7.2 and Table 7.4 is a comparison

of time taken by MAC operations between TSO-burst and TSO-noburst. These two ap-

proaches may select different tile shapes for the convolutions due to distinct cost models,

leading to varying MAC utilization. For instance, TSO-burst outperforms TSO-noburst

in specific models, showing speedups ranging from 1% in MobileNetV2 to 13% in Incep-

tionV3. Conversely, TSO-noburst exhibits superior performance compared to TSO-burst

in ResNet-50 and SqueezeNet, causing slowdowns ranging from 1% to 5%. It is important

to highlight that, even though TSO-noburst surpasses TSO-burst in MAC operations for

ResNet-50 and SqueezeNet, it incurs penalties in loading time (LOAD+STORE), where

TSO-burst demonstrates significant improvement.

7.3.2 Convolution Time Analysis

Table 7.5 shows the convolution-only speedup, comparing TSO-burst with TSO-noburst.

TSO-burst outperforms TSO-noburst in every model on NMP, with convolution speedups

ranging from 11% to 39% for YOLO and LeNet, respectively. Additionally, it also presents

the fraction of time spent on convolutions for the evaluated CNN models, which varies

from 32% (TSO-burst) for LeNet to 94% (TSO-noburst) for InceptionV3.

A more in-depth performance analysis is necessary to examine the performance changes

in individual convolutions. Figure 7.3 presents the results for all individual convolutions,

sorted by speedup. TSO-burst outperforms TSO-noburst in 73% of the convolutions (174

out of 238), achieving a maximum speedup of 3.69x. Among the 27% of convolutions

that experience a slowdown, representing 64 out of 238 convolutions, 34 of them (i.e.,
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Figure 7.3: TSO-burst performance speedup against TSO-noburst for each of the 238
individual convolutions from the evaluated CNN models. The x-axis is sorted by speedup
(y-axis). TSO-noburst performance is normalized to 1. The graphs also indicate the
percentage of convolutions in which TSO-burst outperforms TSO-noburst.

53%) exhibit a slowdown of less than 3%. This slowdown can be attributed to certain

limitations in TSO-burst: (a) in cases (8 out of 34) where the spatial dimensions are small,

and the convolution involves padding, more memory transactions may be required because

NMP loads one row at a time to organize the data internally in the on-chip memories

(e.g. MB0), and this process is not accurately estimated by TSO; (b) in some cases (8 out

of 34), TSO-noburst, which is a data-volume based cost model, may select more channels

for some tiles compared to TSO-burst, which does not find this addition beneficial (e.g.,

due to introduction of edge cases); (c) in some other cases (4 out of 34), the select TLT

schedule in TSO-burst is not the most suitable for the convolution; (d) in the remaining

14 convolutions (out of 34), both TSO-burst and TSO-noburst choose the same solution

from the search space. However, due to a very slight difference (∼ 0.05%), they are

categorized as exhibiting a slowdown. For the 30 convolutions with a slowdown exceeding

3% (representing 30 out of 64), other limitations in TSO-burst are responsible for the

performance degradation, as follows: (a) the TSO-burst heuristic tends to select more

rows in a channel (e.g. TH in a INT tile) before proceeding with the channel direction, and

this issue applies to 22 out of 30 convolutions. This choice aims to enhance memory burst

accesses by creating more sequential data within a tile and, consequently, maximizing the

burst usage (refer to Equations 6.9–6.11 in Section 6.5). However, due to this greedy
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selection, the number of channels available for constructing the tiles is constrained by the

on-chip memory sizes. In this same scenario, TSO-noburst opts for fewer rows (e.g. TH)

and more channels across the tensor’s depth when constructing the tiles. This results in

larger tiles and, consequently, more data reuse; and (b) for the other convolutions (8 out

30), the TLT scheduling selected by TSO-burst is not the most suitable, leading to more

memory access due to the selected scheduling.

7.4 TLT Scheduling and TLE Slicing Analysis

This section aims to evaluate the sensitivity of models’ performance to TLT Scheduling

and TLE Slicing. It shows the impact of consistently selecting a fixedTLT scheduling

strategy (IS, OS, and WS) and TLE slicing (KS, KS&OUT, and OUT) when mapping

the convolutions. It is important to note that TSO explores all possible solutions within its

search space, which encompasses different combinations of TLT scheduling strategies and

TLE slicing schemes, and aims to identify the solution with the best-estimated timing for

better performance. In this experiment, the search space is limited at compile-time either

by restricting the TLT schedule to a single solution (Subsection 7.4.1) or by constraining

the TLE slicing to a single solution (Subsection 7.4.2). The other solutions in the TSO’s

search space are preserved, and the candidate solutions are evaluated through TSO with

the burst modeling activated (TSO-burst). Refer to Table 7.3 for the timings.

7.4.1 Fixed TLT Scheduling

In this experiment, the compiler is set to generate code that fixes one of the three TLT

scheduling strategies (IS, OS, and WS) for all the model’s Conv-layers. The compiler

applies the fixed scheduling strategy to all possible TLE slicing options (KS, KS&OUT,

and OUT) and TLT tiling (INT , KST , and OUTT ) to search for the solution that improves

performance over the others. Figure 7.4 shows the speedup of TSO when compared to the

best fixed TLT strategy. By fixing IS during TF-XLA Code Generation, TSO speedup

reaches 28,6% on YOLO. For the YOLO network, IS does not perform well since this

network has a varied number of Conv-layers with IN tensors varying from 102 × 102

(H × L) to 416 × 416, which results in multiple loads of the filters in the KST tiles since

multiple INT tiles are created. TSO speedup with respect to fixed OS reaches up to 28.6%

on ResNet-50. When compared to fixed WS, TSO speedup is 39.8% on InceptionV3. In

the case of InceptionV3, when WS is used, multiples KST tiles are required to cover the

TLT assigned data, and thus multiple loads of the INT tiles become necessary for each

KST tile, leading to an increase in data transfers. Here again, TSO outperforms the best

fixed TLT scheduling strategy on every CNN model.

7.4.2 Fixed TLE Slicing

In this experiment, the compiler was set to generate code that fixes each TLE slicing

scheme described in Section 6.2 for all Conv-layers of a model. The experiment works as

follows. The compiler identifies, for the fixed TLE slicing, a solution that encompasses
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Figure 7.4: The three TLT schedulings (IS, OS, and WS) remain fixed during code gen-
eration. Although the TLT scheduling itself is fixed, TSO attempts to find the best TLE
scheme and optimal tiling for that fixed TLT scheduling.
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Figure 7.6: TSO-burst speedup over TSO-roof (an adaption from [57]) on end-to-end
model execution time.

the best TLT scheduling strategy (IS, OS, and WS) and TLT tiling (INT , KST , and OUTT ).

The result of this experiment is shown in Figure 7.5, which reports the speedup of the

model compiled with TSO (burst mode) when compared to the model compiled with the

fixed TLE slicing. For the KS slicing case, TSO achieves a speedup of up to 32.6%, for

SqueezeNet. SqueezeNet does not perform well with the TLE KS slicing fixed since most

of its Conv-layers have the IN tensors larger than the size of the filter set (KS). For the

KS&OUT slicing, TSO speedup reaches up to 19%, for MobileNetV2. This TLE scheme

usually works better for Conv-layers with similar sizes for both IN and weights (KS). For

the OUT slicing, TSO speedup is 41.0%, for ResNet-50. For most of ResNet-50’s Conv-

layers, the size of the weight set (KS) is larger than the size of the IN data tensor. As a

result, TSO outperforms the best fixed TLE slicing scheme in every CNN model.

7.5 TSO-burst vs TSO-roof Tiling

The analytical model in [57] was adapted to work with the TSO’s search space and then

encapsulated into a solution called TSO-roof, as described in Section 6.5. TSO-roof is a

cost model that estimates the Attainable Performance and Operational Intensity of every

solution generated by the TSO’s search space and selects the optimal solution from this

solution space. For every evaluated solution, TSO-roof prioritizes those with the highest

Attainable Performance, and then, from these selected solutions, it selects the one with

the highest Operational Intensity. In other words, TSO-roof first prioritizes solutions that

increase the number of operations performed per second (OPS/s), which results in a set of

solutions, and then chooses the one that maximizes the number of operations performed
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for each byte retrieved from DRAM.

When comparing TSO-burst against TSO-roof in Figure 7.6, it is notable that TSO-

burst outperforms every CNN model in the comparison, achieving performance improve-

ments ranging from 6.7% for YOLO up to 29.2% for ResNet-50. This enhancement can

be attributed to the fact that TSO-burst prioritizes tiling layouts that maximize burst

memory access, thereby reducing the impact of LOAD and STORE operations due to

optimized data access patterns. On the other hand, TSO-roof exclusively focuses on data

reuse and does not take into account the potential benefits of an efficient tiling layout,

which is where burst access optimization is explored.

When analyzing each convolution individually, TSO-burst outperforms 198 convolu-

tions, accounting for 84% of the total 236 convolutions. The maximum speedup achieved

is 5.19x, while the convolution with the slowest slowdown is only 30%. The 38 convolu-

tions out of the total 236 that experienced slowdowns exhibit similar behavior to those

described in Subsection 7.3.2, where the same limitations in TSO-burst were noted.
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Chapter 8

Additional Experimental Results

This chapter explores additional analysis and experimental results of TSO to show its

effectiveness. In Section 8.1, an analysis of the impact of applying loop fusion optimization

in TF-XLA is presented. This optimization involves combining multiple CNN operations

into a single operation to reduce DRAM accesses. Next, Section 8.2 compares how NPUs

fare with respect to CPUs for the same models. Section 8.3 demonstrates how multi-

threading can be used to reduce the time TSO spends exploring the tiling/scheduling

solution space. Section 8.4 presents a discussion on the impact of a decision tree applied

to TSO. Section 8.5 shows in a Roofline model the actual execution time extracted from

TSO-burst and indicates how close it is to the peak performance and bandwidth. This

enables one to evaluate how far TSO with burst modeling enabled is from exploiting all

the potential speedup available in the NMP hardware. Finally, Section 8.6 shows that

TSO can also be incorporated into other compilers, such as Glow and ONNX-MLIR,

without any major impact on models’ performance and accuracy.

8.1 Impact of Loop Fusion on NMP

In addition to the TSO optimization, another optimization technique with strong potential

for reducing execution time when running CNN models on Multicore NPU accelerators,

as in the case of NMP, is loop fusion. Loop fusion involves combining one or more

operations into a single operation. This eliminates the need to save intermediate tensors

into DRAM for subsequent loading to compute the next operation. Instead, the data

undergoes multiple operations while residing in the NPU’s on-chip memory, and only

after completing all of them, the result is stored in DRAM (for more details, refer to

Subsection 5.1.1).

The impact of fusing multiple operations is significant in optimizing performance.

Figure 8.1 shows a speedup analysis where TSO-burst is compiled through the TF-XLA

compiler with the loop fusion optimization enabled in the Pass Manager (PM) and is com-

pared against another compilation flow where the loop fusion optimization is disabled in

the PM. All CNN models running with loop fusion enabled in the compiler are faster than

the other flow without that optimization, with speedup ranging from 1% for MobileNetV2

up to 48% for LeNet. In MobileNetV2, most of the convolutions, including depthwise con-
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Figure 8.1: TSO-burst with loop fusion enabled compared to TSO-burst without loop
fusion enabled.

volutions, are followed by ReLU6. Due to the complexity of computing this operation on

NMP, it is not fused into the convolutions but is computed separately as an indepen-

dent operation. However, a few convolutions, which do not significantly contribute to the

overall execution time, are followed by bias summation and ReLU, where the speedup

is achieved. In the case of YOLO, a similar scenario applies, where LeakyReLU could

be fused, but it is not, even when loop fusion is enabled in the Pass Manager (PM) in

TF-XLA. However, for most of the evaluated CNN models, the convolutions are followed

by bias addition and ReLU, and not fusing them has a significant impact on performance.

For instance, in SqueezeNet, only for the first convolution, when bias addition and ReLU

are not fused, an additional 9.2MiB of data movement is required to/from DRAM. If one

considers all convolutions in SqueezeNet, an additional 34 MiB of data transfer is needed.

8.2 NMP-TSO vs CPU-Eigen

In this section, a comparison is made between the performance of TSO-optimized mod-

els running on NMP, with Eigen-optimized models running on a CPU. Eigen [26] is an

optimization library for linear algebra operations like GEMM, that is extensively used

in the design of convolution operations. The CPU experiment relies on TF-XLA to par-

allelize convolutions using a multi-threaded Eigen-based parallelization approach on a

Xeon-CPU-E5-265L @1.8GHz with 16 physical cores (32 threads with hyper-threading

activated). In order to be fair, during the CPU experiment, the first execution of the

model was ignored since the whole CPU cache hierarchy misses to load the model input

and weight data from the disk to DRAM and then to the caches (in some cases, the model
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Figure 8.2: NMP-TSO-burst vs CPU-Eigen performance speedup, where NMP was ex-
perimented with 16 and 32 TLTs, and the CPU with 16 and 32 threads.

weights reside in L3 cache between two consecutive inferences). This does not occur dur-

ing the NMP execution, which is the reason why that time was discharged in the CPU

case.

Figure 8.2 shows the performance speedups of NMP-TSO with respect to CPU-Eigen

for each one of the models discussed so far (refer to Table 8.1 for the execution time

of each experiment). For the CPU experiment, TF-XLA was compiled to use a thread

pool composed of 16- (Eigen-16Threads) and 32-threads (Eigen-32Threads). For NMP,

NMP-code was generated for the same number of TLTs as the number of CPU cores, i.e.,

16- (TSO-Burst-16TLT) and 32-RISCV (TSO-Burst-32TLT) cores each running @1GHz.

The results of each execution were then compared by considering the CPU-Eigen with

16 threads (Eigen-16Threads) as the baseline. The reader should notice that the clock of

each TLT RISCV core (1GHz) is almost half of the clock of the powerful Xeon CPU cores

(1.8GHz).

As shown in Figure 8.2, it is possible to see that the CPU does not scale very well

as the number of threads doubles for the Eigen-32Threads experiments (green bars). For

example, in LeNet, a slowdown can be observed given that the model and its computa-

tional intensity are very small, and an increase in the number of threads directly impacts

the communication cost. For the other models, Eigen-32Threads shows a slight speedup

that ranges from 8.3% up to 23.1% for SqueezeNet and ResNet-50, respectively.

Now consider a comparison of two architectures with the same number of physical

cores, i.e., TSO-Burst-16TLT (blue bars) and the (Eigen-16Threads) baseline. As shown

in Figure 8.2, a slowdown of 4.12%, 19.54%, and 36.36% occurs for InceptionV3, ResNet-

50 and YOLO, respectively. The slowdown that is observed in TSO-Burst-16TLT when
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Model
TSO-burst

(us)
CPU Eigen

(us)
16

TLTs
32

TLTs
16

threads
32

threads
InceptionV3 139150 72686 133416 119657
LeNet 231 199 642 776
MobileNetV2 23243 14030 120852 102216
ResNet-50 101239 55927 81455 66169
SqueezeNet 22698 12504 28875 26572
YOLO 90013 53271 57285 46695

Table 8.1: Execution time of TSO with 16- and 32-TLTs, and CPU Eigen with 16- and
32-threads.

compared to the Eigen-16Threads baseline comes from the high pressure imposed on the

TLE DMA engines due to the large amount of data required by these models and also due

to the fact that more work is assigned to the 16 TLTs. This does not occur with CPUs

due to the larger caches and faster memory controllers. For the remaining models, a

speedup from 1.27x up to 5.2x is achieved for SqueezeNet and MobilenetV2, respectively.

In this case, the TLEs DMA engines can accommodate the data transfer workloads of the

models.

Finally, consider now the case when the number of TLTs is 32 (TSO-Burst-32TLT),

represented by the red bar in the graph. In this case, all the models perform better when

compared to Eigen-16Threads, with speedups ranging from 1.075x up to 8.61x, for YOLO

and MobileNetV2, respectively. Besides that, an average speedup of 83.72% is achieved

when comparing TSO with 16- and 32-RISCV cores.

8.3 Speeding-up TSO Search Space Exploration

As discussed before, TSO explores a large solution space that combines all possible vari-

ations of TLE Slicing, TLT Partitioning, and Scheduling. This results in a large solution

space to explore, and finding a small-cost (execution time) solution takes a long time.

Given that estimating the cost of each solution can be performed in parallel, TSO uses

OpenMP task parallelism to speed up its execution. This experiment aims to evaluate the

impact of the OpenMP task-parallelism annotations in Algorithm 1 (lines 2, 3, and 5) on

the overall time of the TSO space exploration. The experiment was performed on an Intel

Xeon E5-2620 with 16-physical cores and 64GiB of memory. The results are shown in

Figure 8.3 where each line corresponds to one model, the y-axis is speedup with respect to

the TSO sequential execution as the number of threads used by OpenMP grows (x-axis).

Note that the multi-threading execution has almost a linear improvement when compared

to the serial execution for most of the models. For InceptionV3, which has 94 Convolu-

tions, the multi-threading execution is almost linear. On the other hand, for LeNet, which

has only 2 Convolutions, 2 threads are enough to accelerate the execution, and thus a

slowdown shows up if the number of threads increases from that point on. In terms of
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Figure 8.3: Evaluating OpenMP parallelization of TSO solution space exploration.

time, the serial execution of TSO varies from 28 ms, for the LeNet network, to 6 min for

the InceptionV3 network, while with the multi-threading execution, this time is reduced to

17 ms and 59 sec, respectively. The total time spent by the compiler, from the beginning

to the generation of the binaries, varies from 20 seconds to 7 minutes for the same mod-

els, respectively, whereas most of the time is consumed by the calibration/quantization

step. TSO typically completes its computations within a couple of minutes, whereas other

frameworks, such as TVM [13], may require several hours to accomplish the same task.

For instance, compiling the InceptionV3 model with the TVM’s auto-tuning feature takes

approximately 8 hours, using the same CPU.

8.4 Using a Decision Tree in the TSO Algorithm

The TSO algorithm exhaustively explores the search space by combining the TLE slicings

(KS, KS&OUT, OUT) with the TLT schedulings (IS, WS, OS) and subsequently running

the tiling process for each combination. Since most of the TSO solutions are predictable,

it is possible to construct a decision tree to simplify the search space.

Figure 8.4 shows the TSO algorithm using a decision tree. The node in the column

marked with 1 identifies whether the KS tensor is twice the size of the IN tensor; if

true, the TLE KS slicing is selected. If the IN tensor is twice the size, then the TLE

OUT slicing is chosen (see 2 ). If neither condition holds, indicating similar sizes for

IN and KS tensors, the TLE KS&OUT slicing is selected. For each combination of TLE

KS, KS&OUT, and OUT, the same TLT schedulings apply. The column marked with 3

presents the condition to determine if WS should be selected. The decision is based on

whether the KS slice (after being partitioned among the TLEs/TLTs) fits in MB1. If not,
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Figure 8.4: Using a Decision Tree in TSO for TLE slicing and TLT scheduling.

the conditions in the column denoted with 4 check if IS should be selected. This is done

by validating if a single channel of the IN slice fits in MB0 and if the entire OUT slice,

after being partitioned among the TLEs/TLTs, can be integrated into a single OUTT tile

that fits in MB2. If both conditions are valid, the TLT IS is selected; otherwise, the TLT

OUT is chosen.

The TLE slicing and TLT scheduling selected from the decision tree solution for the

238 convolutions exhibit an 80% correspondence with the exhaustive TSO algorithm.

While TSO with the decision tree runs 9 times faster, the CNN models compiled with

the exhaustive solution run, on average, 8% faster. The decision tree could be enhanced

with additional nodes to make decisions (e.g., by taking hardware details into account),

but we will leave this as future work.

8.5 Plotting Actual NMP Run time on a Roofline Model

To evaluate the performance of the code resulting from using TSO on the Conv-layers

of each model executed on NMP (TSO-burst), we used the Roofline Model, shown in

Figure 8.5, with the actual execution times obtained from running the CNN models on

NMP. The graph’s y-axis represents the Multiply-and-accumulate (MAC) throughput (in

GMACs/sec) achieved by the architecture and the convolution execution. In the x-axis is

the Operational Intensity, which represents the number of MAC operations executed for

each byte loaded from the DRAM. The blue lines in the graph represent the theoretical

roofs for both the MAC throughput (horizontal line) and DRAM bandwidth (sloped line)

that can be respectively achieved by the NMP engine and the memory system. To better

evaluate the system’s real performance, two additional experiments were undertaken to

measure these parameters. This is required, given that other architecture components
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Figure 8.5: Roofline model for NMP architecture (TSO-burst) with actual execution time
collected from running the CNN models on NMP.

can impact their values. The black lines in the graph represent these measurements. As

shown, the measured MAC throughput reaches a roof of 192 GMACs/sec, represented by

the horizontal black line. A number of issues can explain this reduction. For example,

the NMP device used in this work has single-ported on-chip memories, and thus TLTs

that are waiting for data get idle without using their MAC Unit. As for the memory

bandwidth (the sloped black line), the measured value is also reduced. This can be

explained by the fact that the DRAM bandwidth is constrained by a single DME engine

per TLE, which has to serve all 8 TLT cores simultaneously. In order to evaluate the

performance resulting from TSO, we plotted one point in Figure 8.5 for all convolutions

in the models. As shown, most of the convolutions reach either the roof limited by the

(measured) memory bandwidth (sloped black line) or approach the roof defined by the

MAC throughput (horizontal black line). This makes it clear that TSO produces code

that approaches the maximum performance of the architecture.

8.6 Evaluating TSO on Glow Compiler & ONNX-MLIR

A set of experiments was also performed to evaluate the portability of TSO to other Ma-

chine Learning compilers. The Glow compiler from Facebook was selected for this evalu-
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Model Arch. Top-1 Top-5

MNIST
CPU (FP) 98.9% 100%

NMP 99.2% 99.8%

LeNet
CPU (FP) 94.8% 99.9%

NMP 95.2% 99.9%

ResNet-18
CPU (FP) 69.9% 89.3%

NMP 66.4% 87.3%

SqueezeNet
CPU (FP) 47.1% 71%

NMP 47.1% 71%

MobileNetV2
CPU (FP) 70.2% 89.6%

NMP 70.9% 89.4%

Table 8.2: Model accuracy on CPU (FP32) and NMP (16-bit fixed point) from Glow.

ation. Although an analysis of inference accuracy has been performed with respect to the

selected CNN models, a comprehensive performance comparison with TensorFlow/XLA

was not conducted, as Glow utilizes, in some cases, a slightly different set of CNN models

from the ONNX Model Zoo.

In the accuracy analysis conducted using Glow, several CNN models were either con-

verted from the Google TFLite Hub to the ONNX format (e.g., LeNet, SqueezeNet,

and MobileNetV2) or obtained directly from the ONNX Model Zoo (e.g., MNIST and

ResNet-18). Accuracies were compared to those achieved on a CPU with 32-bit FP,

as listed in their respective repositories (reference numbers for Top-1 and Top-5). On

the NMP architecture, inferences for each model were executed using the ImageNet and

MNIST validation datasets, depending on the model, and Top-1 and Top-5 accuracies

were measured. As depicted in Table 8.2, the accuracies of the code generated by Glow

on NMP closely approach those produced by the TensorFlow/XLA compiler (see Table

7.1) for models like SqueezeNet and MobileNetV2, as both are the same CNN models

in both compilers. A slight difference in accuracy may occur in both cases as the com-

pilers do not employ the same quantization tool, potentially leading to different Q-point

selections. Furthermore, in terms of performance analysis, both compilers exhibit similar

performance characteristics since they generate identical code using the same tiling factors

(via TSO-burst).

For the ONNX-MLIR compiler, we have only integrated the LeNet model for compi-

lation as a proof of concept of the TSO algorithm. The LeNet used is the same as the

one used in TF-XLA but converted into the ONNX model. One difference applied to this

compiler was the addition of 8-bit quantization support, which, when enabled for LeNet,

reduced the overall execution time from 199 to 130 us (53% faster).
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Chapter 9

Related Works

This chapter provides an overview of the related works and compares them with the TSO

algorithm. These works are classified into multiple sections, including those focusing on

specific target devices (FPGAs, NPUs, CPUs, and GPUs), compiler-based solutions, and,

finally, other commonly used techniques such as sparsity and quantization.

9.1 Improving Memory Access and Data Reuse

9.1.1 On FPGAs

Maestro [44] and Timeloop [60] uses analytical modeling that evaluates different mapping

configurations – dataflow strategy, data reuse, tile size, etc.; to estimate the run time for

different configurations. While Maestro designs some annotations to classify the loops

either as temporal or spatial, Timeloop analyzes the nested loops to apply the transfor-

mations to them. Given a DNN layer (e.g., a Convolution and its information), hardware

configuration (number of PEs, on-chip memory size, etc), and the dataflow strategy, these

approaches estimate the runtime performance, energy, and power. Given the easy use of

Maestro, different solutions have adopted its annotations to estimate computation [11,38].

As an example, Marvel [11] uses the Maestro notations and has for its main goal the re-

duction of the search space by decoupling the analysis of the cost model of the accesses to

the on-chip/off-chip sub-spaces. Timeloop and Maestro model Spatial DNN Accelerators,

i.e., FPGA-based architectures, in which the inner-loops of a Convolution are unrolled

and then synthesized into PE array (MAC units) which run in a synchronized fashion

to leverage on data-sharing between them through inter-PE communication. Similar to

Marvel and Timeloop, TSO also performs cost modeling and design space exploration, but

contrary to them, the target architectures are multicore NPUs and not FPGA designs.

To choose a mapping solution from a search space that encompasses millions to bil-

lions of possible solutions, cost models based on the theoretical roofline model have been

employed for this purpose, as demonstrated in previous works [57, 61]. In the context

of [57], a roofline-based cost model is utilized during compile-time to classify candidate

solutions based on two key performance metrics: (1) Operational Intensity, which is a

metric that determines how data is reused during runtime by analyzing how many oper-

ations are performed on each byte retrieved from DRAM, and (2) Attained Performance,
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which is a metric that estimates convolution performance in operations per second, based

on both convolution complexity and hardware capabilities. The primary objective of the

cost model is to select the solution that maximizes both of these metrics among all the

verified solutions. In contrast to TSO, the roofline model used in [57] focuses exclusively

on the number of memory accesses, without considering memory bursts. This approach

aligns with another volume-based solution used in this work, referred to as TSO-noburst.

Furthermore, the roofline model presented in [57] was integrated into TSO’s search space

in a solution called TSO-roof to enable a comparison with TSO-burst.

Tu et al. [81] and Hu et al. [30] proposed an FPGA-based accelerator capable of recon-

figuring its resources to increase data reuse. They used the concepts of Input Stationary

(IS), Weight Stationary (WS), and Output Stationary (OS). Besides that, they propose a

novel approach called Hybrid Stationary (HS) that leverages on these concepts to find an

optimal configuration for each Conv-layer. Although their work has some similarities to

TSO, instead of mapping the operations to an array of PEs, TSO considers an architecture

with multiple cores (NMP) where each core has an accelerator that runs independently of

the others. Besides that, the TSO search space exploration algorithm considers different

tile shapes based on memory bursts, not just square shapes that fit into the hardware

topology.

Chen et al. [14, 15] discusses different ways to map convolutional and fully-connected

layers on spatial architectures, which is a class of accelerators that exploit high compute

parallelism while allowing direct communication between processing engines (PE). They

created a novel approach called Row Stationary (RS) that minimizes data movement and

consequently energy consumption by exploiting data reuse (weights and input feature

map) through inter-PE communication. It is achieved by respectively sharing each filter

row and input feature map row horizontally and diagonally on an array of PEs. Even

being a solution tightly connected to spatial architecture, their solution is more energy-

efficient (up to 2.5x on Conv-layers) than other strategies of mapping (Weight Stationary

(WS), Output Stationary (OS), and No Local Reuse). Their solution shows to be tightly

connected to their accelerator.

Peemen et al. [64] developed a template accelerator that varies the number of PEs,

buffer size, etc., for each layer. Their solution applies optimizations such as tiling and

interchange loop transformations to maximize data reuse. The results they achieve are

notable: a 13x reduction in memory size while maintaining the same performance and an

11x improvement in execution time. In comparison to their solution, TSO also focuses on

improving data reuse. However, instead of generating a different FPGA configuration for

each layer, it generates an optimized mapping for each layer.

9.1.2 On NPUs

To improve data reuse, Zhang et al. use polyhedral-based optimization techniques [87] for

tiling and other related loop transformations. Ma et al. [56] describe a performance model

that depends solely on the Output Stationary (OS) scheduling to run the convolutions.

Stoutchinin et al. [77], on the other hand, use a technique called reuse distance, which aims

to identify the memory footprint required to accommodate the Convolution’s data into
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the on-chip memory, which varies up to 512KiB. Through the reuse distance technique,

it is possible to identify the amount of data required to keep in the on-chip memories

between two accesses to the same data (e.g., tile). They only consider data reuse over the

on-chip memories, without taking into consideration DRAM accesses.

King et al. [40] introduced an algorithm designed to evaluate the scheduling of multiple

Conv-layers, covering from the initiation of a branch to its merge within a CNN model.

This approach aims to optimize on-chip memory usage by preserving the input/output

data of each layer as much as possible, eliminating the need to store them in DRAM

and retrieve them when required later. In their work [40], the authors employed an NPU

equipped with 1 MiB of on-chip memory. While this capacity is suitable for numerous

applications, it may pose cost challenges for edge inference AI accelerators.

Jung et al. [37] developed a mapping solution aimed at reducing synchronization among

the multicore NPUs. Their solution also takes into account the TLE slicings explained

in this thesis (TLE KS and OUT). However, instead of storing the data in DRAM, it

attempts to keep the data in the local memory of the three NPU cores and employs two

techniques: (a) halo-exchange, which minimizes accesses to external memory (DRAM) by

retaining the required data to compute the next layer in the local on-chip memory and

sharing the halo data (boundary data) necessary for the other cores, (b) stratum con-

struction, which computes redundantly to minimize synchronization, working similarly

to a pyramid of computation. Their work also considers the construction of a chain of

stratum, selected based on a heuristic. They also apply tiling, but for double buffering to

overlap external memory access with computation. Additionally, the halo-exchange ap-

proach applies overlapping since, while the data is being exchanged between the processing

cores, the weight data is loaded from external memory.

The work proposed by Kwon et al. [45] shows how to enhance the throughput of

CNN models by integrating an NPU into a system-on-chip (SoC) to work together with a

CPU and GPU, where the computation on these devices is deployed using linear algebra

libraries, such as OpenBLAS. To optimize the training process using multicore NPUs, Kim

et. al. [42] shows that the backward pass requires a significant amount of communication

with the DRAM, and in order to resolve the issue, a new data reuse pattern is proposed,

where the on-chip memories are used for this purpose.

9.1.3 On CPUs

Patabandi et al. [63] describes an analytical model that aims to identify from a search

space a solution that minimizes data movement overheads for convolutions. Their solution

is composed of a cost model that quantifies the number of accesses to the convolution data,

starting from the innermost loop and going all the way to the outermost loop. TSO also

works by quantifying the memory accesses to the convolution data to decide on a solution

through a cost model. But instead of analyzing each loop individually, TSO estimates

costs from a tile perspective, where the number of accesses to each tile is calculated based

on the scheduling strategy, and the solution that is prioritized is the one that maximizes

both data reuse and memory bursts.

Li et al. [52] propose a tiling algorithm for CPU that initially assesses how different
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permutations (loop orders) of the nested tiling loops may affect data movement. This

analysis results in eight different permutations that are evaluated through a cost model

that uses a non-linear optimization problem (min-max) to produce tile sizes and tries to

reduce the data movement between each cache level. TSO goes in the same direction

for NPU, but it works by reducing data movement between the NPU and DRAM, which

involves a different architecture when modeling the cost model and data partitioning.

Tollenaere et al. [79] designed a solution for CPUs that mitigates edge cases during

tiling by employing two distinct micro-kernels, which are referred to as scheduling in this

work. While the solution proposed in [79] randomly selects which convolution data (e.g.,

the IN tensor) is tiled at each memory hierarchy level, it minimizes the memory transfer

overhead for computing edge cases. In contrast, TSO uses a single scheduling approach

when tiling the data but identifies, within its search space, which convolution data is

more suitable to remain stationary and how to efficiently distribute the data across the

TLE/TLTs. Regarding edge cases, TSO aims to minimize their occurrence when running

the cost model, classifying solutions with edge cases as inefficient.

Goto and de Gejin [25] proposed an optimized algorithm for General Matrix Multipli-

cation (GEMM) for CPU. The authors introduced the concept of exploiting an optimized

micro-kernel (referred to as the inner-kernel) by tiling the problem in an external macro-

kernel, which comprises a set of loops that iterate over the tiles. These tiles are then

packed into a layout suitable for the micro-kernel, which results in the data being laid out

in memory for proper loading using SIMD instructions. Tiling is employed to maximize

data reuse in L1, L2, and L3 caches. The TSO algorithm employs a similar strategy, but

it applies it to convolution instead of GEMM. Additionally, it tiles the convolution data to

fit and maximize reuse in the on-chip memories of the NPU multicore accelerator. Unlike

GEMM, TSO does not require data packing since it accesses the data without modifying

the data layout, which is also known as direct convolution.

9.1.4 On GPUs

Li et al. [49] proposed a study for GPUs that explores different data layouts (e.g., NHWC),

with the aim of improving memory access. They demonstrated that selecting the proper

data layout for GPUs has the potential to improve memory access performed by a warp

(i.e., a collection of 32 threads that run simultaneously the same instruction). The authors

described the existence of up to 24 data layouts and showed how some of them (e.g.,

CHWN) can improve memory access by coalescing the accesses within a warp. In the

case of NMP, the data layout is NCHW, since the custom RISC-V instructions expect the

data to be in this format.

9.2 Compiler-based Solutions

To select different tile sizes, loop order, unroll factor, etc., TVM [13] uses a machine-

learning cost model, which does not require hardware information, and periodically learns

from previous predictions to search for an improved data tiling and code generation. TVM
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depends on Halide [67] for performing loop transformations and other optimizations. In-

ternally, it optimizes the runtime execution for FPGAs by applying optimizations that

hide communication within computation. The cost model, which is based on a machine

learning model, explores candidate solutions for running measurements, and the results

are used to update the model. If the model has not been trained yet, it explores random

candidates for measurement; otherwise, the cost model provides solutions for measure-

ment. To the best of our knowledge and from the available public literature, TVM has

not shown any results for multicore NPUs like NMP, generating code only for FPGAs,

embedded CPUs and server CPUs.

Hummingbird [59] presents a method for mapping operators—both algebraic and al-

gorithmic—onto tensor computations. The execution flow works as follows: (a) a pipeline

parser identifies the operators (e.g., LogisticRegression, SVC, etc.) and creates a DAG.

Next comes a (b) optimizer, with a list of optimizations for each operator, and also counts

with runtime-independent optimizations. Finally, in the last phase, the (c) tensor DAG

compiler takes place, and the DAG is traversed in topological order to generate PyTorch’s

neural network module, which can be subsequently exported to the target format. For

the GEMM operator, Hummingbird supports three different strategies, each with different

memory and runtime requirements.

9.3 Other Optimization Techniques

The work proposed by Alwani et al. [7] and Xiao et al. [86] focuses on data-flow across

multiple Conv-layers. Instead of processing a layer at a time, as usual, they focus on

processing multiple layers at once without generating intermediate data between them.

Their solution works by fusing multiple layers resulting in a computation pyramid across

those layers. They use some complex data structures to keep the intermediate data of

each pyramid. In general, even reducing the memory transfers between the FPGA and

host as they do, their accelerator still requires a huge amount of memory to store all the

intermediate data from different pyramids. From the perspective of an NPU accelerator

with limited on-chip memory, this optimization is not applicable.

Caffeine [88] is a library that can convert Fully Connected Layers (FC-Layers) into

Conv-Layer. The conversion considers modifications in the data-layout to reduce the

number of accesses to the DRAM to increase the burst length. Qiu et al. [66] also modifies

the data layout and applies quantization to improve memory access. Putra et al. [65] maps

the data in the DRAM to reduce row buffer conflicts. TSO uses a similar idea to increase

the burst length, but does not rearrange the data layout. The process of modifying the

layout proposed in [88] creates a certain complexity when writing a layer’s output, given

that the layer’s output data has to be rearranged again to be accommodated to the next

layer’s input configuration (e.g., tile size).

It is also possible to reduce data transfers by applying data compression. NullHop [6]

does this in hardware, and Han et al. [28] does it by applying Huffman Coding. Sparsity

is another technique used to avoid computing zero elements and therefore reducing data

transfer of unnecessary data besides avoiding unnecessary computation. Such technique
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Paper Q1 (Tiling) Q2 (Scheduling) Q3 (Parallelism) Cost model Target
[MOTAMEDI
et. al., 2016]

Only Tm and Tn
are explored

OS
Divides the OFMs

over the PEs
Roofline model FPGA

[TU
et. al., 2017]

Square tiling
(up to 16x16)

IS, OS
and WS

Divides the OFMs
over the PEs

to avoid idle PEs
(POOM strategy)

Dual-objective
optimization

problem
FPGA

[HU
et. al., 2019]

Square tiling
(up to 14x14)

IS, OS
and WS

Divides the OFMs
over the PEs

to avoid idle PEs
(POOM strategy)

Roofline model FPGA

[KIM
et. al., 2019]

Entire convolution
data, (NPU has
enough on-chip

memory)

OS
Divide the OFMs over

16 processing units
N/A Multicore NPU

[CHEN
et. al., 2019]

Uses Halide Uses Halide Uses Halide

Auto-tuning
based on

ML model
(XGBoost)

CPU, GPU
and FPGA

[KWON
et. al., 2020]

N/A
WS and OS
(based on

annotations)

Uses annotations to
define the loops as
either spatial or

temporal

MAESTRO
(latency,

energy, buffer
requirement, etc)

FPGA

[SOUSA
et. al., 2021]

Burst-based
selection

IS, OS
and WS

For TLE
(input and output

parallelism) and TLT
(output parallelism)

A burst-based
cost model

Multicore NPU

Table 9.1: The TSO algorithm compared to similar works that also seek to minimize
DRAM memory access.

is used by several works [27, 28, 50]. Additionally, there are other ways to reduce data

transfer. For instance, one can significantly reduce bandwidth and storage by applying

quantization (e.g., 8-bit Integer) to the neural network data. Jacob et al. [33] present a

technique that converts the network data from floating-point to integer format, demon-

strating that this enables computing the entire network using only integers (8-bit) with

a negligible loss of accuracy. All these techniques could also be used to improve the

approach proposed in this thesis, although they are not the focus herein.

9.4 Comparative Analysis of Relevant Works

Among the works presented in this section, those that are closest to the TSO algorithm

are summarized in Table 9.1 and compared with respect to the research questions (Q1-Q3)

presented in Chapter 2.
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Chapter 10

Future Works and Conclusion

This chapter discusses the conclusions of the TSO algorithm, an additional contribution

inspired by TSO, and finally, provides a brief discussion on future works.

10.1 TSO Algorithm Conclusions

Given the limited on-chip memory capacity in NPU architectures, efficient data partition-

ing and scheduling techniques are crucial to minimize the cost of accessing DRAM. This

thesis introduces TSO, an optimization pass applied during compile-time that identifies

the best combination of data tiling, scheduling, parallelism, and MAC operations, which,

when combined, minimizes the convolution execution time of CNN models. To achieve

this, TSO first focuses on addressing Q1 (refer to Chapter 2) and implements an efficient

cost model based on memory bursts, resulting in a speedup of up to 21.7% for typical

CNN models compared to non-burst modeling. Concerning Q2, TSO identifies the best

TLT scheduling strategy (out of 3) that leads to a speedup of up to 39.8% compared to

a fixed TLT scheduling strategy. Finally, regarding Q3, compared to a fixed TLE slicing

scheme, TSO searches for the best scheme (out of 3) that improves performance, resulting

in a speedup of up to 41.0%. When comparing individual convolutions (238 in total),

TSO with burst modeling shows speed improvements in 73% of the cases compared to

non-burst modeling, with the highest achieved speedup of 3.69x. Furthermore, when com-

pared to an existing solution adapted from an analytical model based on Roofline [57],

TSO with the burst modeling optimization outperforms all CNN models with speedups

of up to 29.2%, where 84% of the convolutions perform faster, with the highest speedup

achieved being 5.19x. Although TSO was initially deployed in the TF-XLA compiler, its

generality was also evaluated by porting and running it on the Glow and ONNX-MLIR

compilers.

10.2 SConv: Inspired by TSO

The TSO algorithm served as an inspiration for a CPU-based solution known as SConv

[21]. The SConv algorithm introduces a series of optimizations, starting with the Convo-

lution Slicing Analysis (CSA). CSA is a tiling algorithm that initially determines the tiles,
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along with their sizes, and subsequently identifies the optimal distribution of the input,

weight, and output tiles within a memory hierarchy consisting of three levels of cache

and a DRAM, all aimed at enhancing data reuse. Instead of retrieving data from a more

distant cache, CSA prioritizes data reuse within the L1 cache. When this is not feasible,

it seeks to optimize data reuse within the L2 cache. CSA also considers the L3 cache and

DRAM in its modeling. Additionally, SConv introduces Convolution Slicing Optimization

(CSO), which defines the macro-kernel, which stands for a set of loops designed to iterate

over the tiles that are distributed across the memory hierarchy, as determined by CSA.

Additionally, SConv defines various data packing strategies that aim to improve memory

access by reorganizing the data layout before running the micro-kernel. The micro-kernel

is a highly optimized routine designed for the target architecture, leveraging all available

architectural capabilities, such as SIMD AVX512, for x86, and MMA, for POWER10.

SConv was evaluated on x86 and POWER10 systems, achieving a speedup of up to 34%

when compared to the well-known im2col+GEMM solution, and a speedup of up to 25%

when compared to highly optimized libraries, such as oneDNN and oneMKL.

10.3 Future Works with Potential to Improve TSO

Several potential factors that can enhance TSO performance when running CNN models

on NMP are listed below:

1. Extended TLT Partitioning – The TLT partitioning involves distributing small

partitions formed from a TLE slice among the TLT cores associated with that TLE,

and this is done by dividing the filters in the weight (KS) slice evenly among the

TLT cores (for detailed information, refer to Section 6.3). This approach is generally

efficient for most convolutions, as after the TLT partitioning, the number of filters

assigned to the cores becomes small, and in some cases, small enough to fit in a

single tile (KST ) that fits in the TLT’s MB1 on-chip memory. Thus, even having

every TLT core loading their KST tiles independently of the others, the loading time

is not significantly impacted due to the size of the tiles. As for the TLE slice of

the input (IN) tensor, the loads from DRAM to bring the INT tiles onto the on-chip

memory use multicast loads, thus reducing the impact of the loading time. On the

other hand, there are cases where even after the TLT partition, the weight tiles

(KST ) distributed to the cores remain significantly larger than that of the input tiles

(INT ) so that applying multicast loads to load the weight tiles (rather than the input

tiles) would considerably improve performance. Therefore, extending TSO’s search

space to include the division of the input slice in the TLT partitioning step, allowing

for multicast loads from the weight tiles, would substantially enhance performance.

Achieving this would require an extension of TSO, along with the addition of other

kernel implementations designed for convolution on NMP.

2. Overlap Communication with Computation – The kernels responsible for ex-

ecuting the CNN operations on NMP follow a pipeline approach. Initially, the input

tile (INT ) is loaded into the on-chip memory, followed by the loading of the weight
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tile (KST ). Subsequently, the operation computation takes place, resulting in the

generation of an output tile (OUTT ), which is then stored in DRAM. This process

repeats for each remaining tile of the input and weight tensors. Although the NMP

board used in this work is single-ported, one potential optimization to reduce a

few cycles of the overall execution time involves initiating the loading of the next

tile (the non-stationary one) while the current tile is being computed by the MAC

unit. To implement this, the on-chip memory serving the non-stationary tile could

be divided into two parts. The first part would be used for the current tile, while

the other would be used to load the next tile. However, it is important to note

that while this approach could offer some benefits, it may not significantly improve

performance due to the pressure imposed on the internal data bus within NMP.

Additionally, adapting such a solution to TSO would require changes to the internal

kernels responsible for implementing the operations.

3. A More Precise Cost Model – The cost model used in TSO-burst estimates the

transfer time for loading/storing data from/to DRAM, respectively, and also esti-

mates CAS (Column Address Strobe) latency by counting the number of memory

bursts (refer to Section 6.5 for more details). This estimation could be significantly

improved by incorporating other critical DRAM latencies, such as Trcd (Row Ad-

dress to Column Address Delay), Trp (Row Precharge Time), and Tras (Row Active

Time). Additionally, TSO does not make any assumption of any data alignment

in DRAM, potentially leading to underutilized memory bursts, as the DRAM’s row

buffer might not be filled as expected. To implement these changes, one could

modify the TSO-burst’s cost model to incorporate these additional DRAM timings,

taking into account the alignment of tensors in memory. Furthermore, one could

optimize the allocation of weight tensors in memory (determined at compile-time)

to fully leverage these improvements.

4. Heuristics to Improve the Tiling Selection – The TSO optimization involves

an exhaustive search through every single solution within its search space. TSO

evaluates these solutions using its cost model while obeying the restrictions imposed

by NMP (e.g., for stacked convolution, only 1/4th of the on-chip memory MB2

for the output (OUTT ) tile is made available for use). However, within this vast

search space, some solutions may be highly inefficient and, therefore, unnecessary

to test. For example, selecting tiles with spatial dimensions of 1x1 is a solution that

TSO evaluates, despite its known inefficiency. Moreover, evaluating these inefficient

solutions, especially in cases where TSO’s search space is extended to combine more

solutions, such as the ones described above, may result in more combinations, and

consequently in an inefficient exploration. To enhance the exploration of solutions

within the TSO’s search space, heuristics can be applied to exclude solutions that

would never be selected, thus resulting in a more streamlined optimization process.

An example of a heuristic that could be applied is Simulated Annealing [18], which

could reduce the exploration of candidates in the search space with small tiles.
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5. Full Code Generation for NMP in MLIR – The most costly operations in

NMP are the data transfers between on-chip memories and DRAM. However, RISC-

V instructions, responsible for tasks such as iterating over the tiles through a set

of loops, managing semaphores, and making critical runtime decisions – such as

determining padding or stride – also consume a significant portion of the execution

time (refer to Section 7.1 for more detail). To mitigate the time spent on RISC-

V instructions, a potential approach is to implement the kernels that execute the

CNN operations in MLIR/LLVM. This would enable all decisions to be made at

compile-time, which would allow, for example, the elimination of unnecessary loops.

In order to have this implemented, it is essential to define the NMP Backend in the

LLVM compiler. The NMP library used in this work was previously compiled with

a compatible gcc compiler before running the ML compiler with the TSO algorithm

enabled.

6. Towards a future version of NMP – The NMP architecture used in this thesis

contains only three MBLOB on-chip memories (MB0, MB1 and MB2). Expanding

the architecture with additional on-chip memory (e.g., MB4) on each TLT would

enable the overlap of communication with computation. This means that it would

be possible to load the next non-stationary tile (such as the next INT tile in the WS

scheduling) while the current one is being computed. Once the computation of the

current tile is complete, NMP could switch the computation to the next tile, which

is already loaded and available in the extended MBLOB (e.g., MB4), and then the

same process could repeat in a ping-pong manner with the other MBLOB that was

previously being used to place the non-stationary tile. Implementing this approach

would significantly reduce loading time, but it would also require the addition of a

new port to enable double buffering. Another possible approach involves incorpo-

rating shared memory between the TLEs, as there are TLEs that require at runtime

either the same IN or KS slices as the others, and employing shared memory would

allow a similar behavior as the multicast loads between the TLTs of a single TLE.

Finally, another extension could involve adding a DME on each TLT. The current

DME on NMP, which is available on each TLE, serializes the loads of the TLTs

within that TLE through a queue.
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