
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Luan de Oliveira Silveira

Statistical Analysis of Semi-supervised Algorithms for

Tabular Data

Análise Estatística de Algoritmos Semi-supervisionados

Para Dados Tabulares

CAMPINAS

2024

Luan de Oliveira Silveira

Statistical Analysis of Semi-supervised Algorithms for Tabular

Data

Análise Estatística de Algoritmos Semi-supervisionados Para

Dados Tabulares

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Jacques Wainer

Este exemplar corresponde à versão final da
Dissertação defendida por Luan de Oliveira
Silveira e orientada pelo Prof. Dr. Jacques
Wainer.

CAMPINAS

2024

Ficha catalográfica

Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica

Silvania Renata de Jesus Ribeiro - CRB 8/6592

 Silveira, Luan de Oliveira, 1996-

 Si39s SilStatistical analysis of semi-supervised algorithms for tabular data / Luan de

Oliveira Silveira. – Campinas, SP : [s.n.], 2024.

 SilOrientador: Jacques Wainer.

 SilDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Sil1. Aprendizado de máquina. 2. Aprendizagem semi-supervisionada. I.

Wainer, Jacques, 1958-. II. Universidade Estadual de Campinas. Instituto de

Computação. III. Título.

Informações Complementares

Título em outro idioma: Análise estatística de algoritmos semi-supervisionados para dados

tabulares

Palavras-chave em inglês:
Machine learning

Semi-supervised learning

Área de concentração: Ciência da Computação

Titulação: Mestre em Ciência da Computação

Banca examinadora:
Jacques Wainer [Orientador]

Marcelo da Silva Reis

Ronaldo Cristiano Prati

Data de defesa: 27-03-2024

Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0009-0000-2751-9759

- Currículo Lattes do autor: http://lattes.cnpq.br/3626185560647353

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Luan de Oliveira Silveira

Statistical Analysis of Semi-supervised Algorithms for Tabular

Data

Análise Estatística de Algoritmos Semi-supervisionados Para

Dados Tabulares

Banca Examinadora:

• Prof. Dr. Jacques Wainer
IC/UNICAMP

• Prof. Dr. Marcelo da Silva Reis
IC/UNICAMP

• Prof. Dr. Ronaldo Cristiano Prati
CMCC/UFABC

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 27 de março de 2024

Dedication

To the endless pursuit of knowledge and truth.

Veritas Propter Veritatem.

Acknowledgments

I want to thank my family for their continued support in my pursuit of education.
This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal

de Nível Superior – Brasil (CAPES) – Finance Code 001.

Resumo

Considerando os benefícios e limitações de cada paradigma de aprendizagem no campo de
Aprendizado de Máquina, a área de semi-supervisão vem ganhado destaque em sua tenta-
tiva de extrair informação de dados rotulados e não-rotulados simultaneamente. Em sua
essência, busca uma performance comparável à aprendizagem supervisionada, enquanto
se mantém fácil e barata de ser treinada. Dado o rico ecossistema de algoritmos nesta
área, nós propomos uma avaliação de 10 métodos em um grupo diverso de bancos de
dados, além de diferentes cenários de disponibilidade de dados. Ademais, propomos uma
análise estatística das acurácias global, positiva e negativa como métricas de performance,
seguida de testes estatísticos para a análise de diferenças significativas entre os métodos
como um grupo, além de diferenças par-a-par, sendo possível determinar algoritmos que
superam outros com consistência.

Abstract

Given the strengths and weaknesses of each learning paradigm in Machine Learning, the
semi-supervised setting have been gaining traction as an attempt to extract information
of both labeled and unlabeled data. Aiming at a performance akin to its supervised
counterpart, but being as easy and cheap to train as an unsupervised approach. Given
the rich ecosystem of algorithms in this field, we propose an evaluation of 10 methods
in a diverse group of datasets and different scenarios of data availability. We aim at
a statistical analysis of the global, positive and negative accuracies as the metrics of
performance, with following statistical tests to access differences among the methods as
a group, as well as pairwise similarities. Being also possible to determine methods that
consistently outperform others in a given training setting.

List of Figures

1.1 Semi-supervised learning taxonomy. 17

4.1 Distribution of datasets by instances and features. 72
4.2 Statistical learning algorithms in LAMDA-SSL. 72
4.3 Inductive Setup. 74
4.4 Transductive setup. 75

List of Tables

5.1 Average rank of algorithms per ratio (Inductive binary global accuracy). 77
5.2 Pairwise comparison p-values (25% Inductive binary global accuracy). 78
5.3 Pairwise comparison p-values (50% Inductive binary global accuracy). 78
5.4 Pairwise comparison p-values (75% Inductive binary global accuracy). 78
5.5 Pairwise comparison p-values (90% Inductive binary global accuracy). 79
5.6 Possible inferences (Inductive binary global accuracy). 80
5.7 Average training time (Inductive binary). 81
5.8 Average rank of algorithms per ratio (Inductive binary positive accuracy). 81
5.9 Possible inferences (Inductive binary positive accuracy). 82
5.10 Average rank of algorithms per ratio (Inductive binary negative accuracy). . . . 82
5.11 Possible inferences (Inductive binary negative accuracy). 83
5.12 Average training time (Inductive multi-class). 84
5.13 Average rank of algorithms per ratio (Transductive global accuracy). 85
5.14 Pairwise comparison p-values (25% Transductive binary global accuracy). 85
5.15 Pairwise comparison p-values (50% Transductive binary global accuracy). 85
5.16 Pairwise comparison p-values (75% Transductive binary global accuracy). 86
5.17 Pairwise comparison p-values (90% Transductive binary global accuracy). 86
5.18 Possible inferences (Transductive global accuracy). 87
5.19 Average training time (Transductive). 88
5.20 Average rank of algorithms per ratio (Transductive positive accuracy). 88
5.21 Possible inferences (Transductive positive accuracy). 89
5.22 Average rank of algorithms per ratio (Transductive negative accuracy). 90
5.23 Possible inferences (Transductive negative accuracy). 90

C.1 Pairwise comparison p-values (25% Inductive binary positive accuracy). 113
C.2 Pairwise comparison p-values (50% Inductive binary positive accuracy). 113
C.3 Pairwise comparison p-values (75% Inductive binary positive accuracy). 114
C.4 Pairwise comparison p-values (90% Inductive binary positive accuracy). 114
C.5 Pairwise comparison p-values (25% Inductive binary negative accuracy). 114
C.6 Pairwise comparison p-values (50% Inductive binary negative accuracy). 115
C.7 Pairwise comparison p-values (75% Inductive binary negative accuracy). 115
C.8 Pairwise comparison p-values (90% Inductive binary negative accuracy). 115
C.9 Average rank of algorithms per ratio (Inductive multi-class global accuracy). . . 116
C.10 Pairwise comparison p-values (25% Inductive multi-class global accuracy). . . . 116
C.11 Pairwise comparison p-values (50% Inductive multi-class global accuracy). . . . 116
C.12 Pairwise comparison p-values (75% Inductive multi-class global accuracy). . . . 117
C.13 Pairwise comparison p-values (90% Inductive multi-class global accuracy). . . . 117
C.14 Average rank of algorithms per ratio (Inductive multi-class positive accuracy). . 117
C.15 Pairwise comparison p-values (25% Inductive multi-class positive accuracy). . . . 118

C.16 Pairwise comparison p-values (50% Inductive multi-class positive accuracy). . . . 118
C.17 Pairwise comparison p-values (75% Inductive multi-class positive accuracy). . . . 118
C.18 Pairwise comparison p-values (90% Inductive multi-class positive accuracy). . . . 119
C.19 Average rank of algorithms per ratio (Inductive multi-class negative accuracy). . 119
C.20 Pairwise comparison p-values (25% Inductive multi-class negative accuracy). . . 119
C.21 Pairwise comparison p-values (50% Inductive multi-class negative accuracy). . . 120
C.22 Pairwise comparison p-values (75% Inductive multi-class negative accuracy). . . 120
C.23 Pairwise comparison p-values (90% Inductive multi-class negative accuracy). . . 120
C.24 Pairwise comparison p-values (25% Transductive binary positive accuracy). . . . 121
C.25 Pairwise comparison p-values (50% Transductive binary positive accuracy). . . . 121
C.26 Pairwise comparison p-values (75% Transductive binary positive accuracy). . . . 121
C.27 Pairwise comparison p-values (90% Transductive binary positive accuracy). . . . 122
C.28 Pairwise comparison p-values (25% Transductive binary negative accuracy). . . . 122
C.29 Pairwise comparison p-values (50% Transductive binary negative accuracy). . . . 122
C.30 Pairwise comparison p-values (75% Transductive binary negative accuracy). . . . 123
C.31 Pairwise comparison p-values (90% Transductive binary negative accuracy). . . . 123

List of Abbreviations and Acronyms

ML Machine Learning
Rbf Radial Basis Function
ASB Assemble algorithm
TSVM Transductive Support Vector Machine algorithm
LapSVM Laplacian Support Vector Machine algorithm
SSGMM Semi-Supervised Gaussian Mixture Model algorithm
LabelS Label Spreading algorithm
SemiB SemiBoost algorithm
LabelP Label Propagation algorithm
SelfT Self-Training algorithm
CoT Co-Training algorithm
TriT Tri-Training algorithm

List of Symbols

X Input space; set of all possible inputs x⃗
Y Output space; set of all possible outputs y; set of classes
L Labeled dataset composed of pairs (x⃗i, yi) of inputs x⃗i and their label yi
U Unlabeled dataset composed of points x⃗i

L Pseudo-labeled dataset; the goal of a transductive learning problem
ℓ Number of labeled examples, or |L|
u Number of unlabeled examples, or |U|
H Supervised algorithm classifier
Ä Confidence threshold for the self-training algorithm
W Similarity matrix
Ã Similarity coefficient of the rbf kernel
E Error function to be minimized
fi An individual classifier function in boosting methods at an iteration i
Fi An assemble of classifiers in boosting methods at an iteration i
C The classifier function; the goal function of an inductive learning problem
ïa, bð Inner product of a and b
» Point-wise product of two vectors; Hadamard product
À Slack variable in a SVM problem

Contents

1 Introduction 16
1.1 Context . 16
1.2 The Problem and Objectives . 18
1.3 Dissertation Structure . 18

2 Literature Review 19
2.1 Original Papers . 19

2.1.1 Self-Training . 19
2.1.2 Label Propagation . 19
2.1.3 Label Spreading . 20
2.1.4 Assemble . 20
2.1.5 SemiBoost . 20
2.1.6 Co-Training . 21
2.1.7 Tri-Training . 21
2.1.8 TSVM . 21
2.1.9 LapSVM . 21
2.1.10 SSGMM . 22

2.2 Related Work . 23

3 Theoretical Foundations 24
3.1 Self-training . 25
3.2 Label Propagation . 28
3.3 Label Spreading . 32
3.4 Assemble . 35
3.5 SemiBoost . 43
3.6 Co-Training . 49
3.7 Tri-Training . 53
3.8 TSVM . 59
3.9 LapSVM . 63
3.10 SSGMM . 68

4 Methodology 71
4.1 OpenML-CC18 . 71
4.2 LAMDA-SSL . 72
4.3 General Setup . 73
4.4 Inductive Setup . 73
4.5 Transductive Setup . 75
4.6 Result Analysis . 76

5 Results 77
5.1 Inductive . 77

5.1.1 Binary . 77
5.1.2 Multi-class . 84

5.2 Transductive . 85

6 Conclusion 92

Bibliography 94

A Proofs 98
A.1 Proposition 1.5.1 . 98
A.2 Proposition 1.5.2 . 100
A.3 Proposition 1.5.4 . 100
A.4 Proposition 1.5.5 . 102
A.5 Lemma 1.5.6 . 104
A.6 Proposition 1.7.1 . 105
A.7 Proposition 1.7.2 . 106
A.8 Proposition 1.8.1 . 107

B Auxiliary Algorithms 109
B.1 Select . 109
B.2 Select’ . 110
B.3 BootstrapSample . 111
B.4 Error . 111
B.5 Subsample . 112

C Results and Tables 113
C.1 Binary Positive Accuracy . 113
C.2 Binary Negative Accuracy . 114
C.3 Multi-class Global Accuracy . 116
C.4 Multi-class Positive Accuracy . 117
C.5 Multi-class Negative Accuracy . 119
C.6 Transductive Binary Positive Accuracy . 121
C.7 Transductive Binary Negative Accuracy . 122

16

Chapter 1

Introduction

1.1 Context

Since the boom of the Machine Learning, hundreds of areas have benefited from the poten-

tial aptitude of computers to perform certain tasks, not only faster, but more accurately

than humans. From self-driving vehicles to medical diagnosis, the plethora of applications

of this field of artificial intelligence signals another turning point in the quality of human

life.

Commonly, ML is separated into three distinct sub-fields: supervised, unsupervised

and reinforcement learning. The first two, who shall be mentioned extensively in this

work, groups the methods that are dependent (supervised) or independent (unsupervised)

on the desired output, usually serving distinct purposes. However, the acquisition of

labels stands a problem in comparison with simply obtaining the inputs, usually requiring

a great amount of resources such as time, money and expertise. In this scenario of

abundance of unlabeled data and the efficiency of supervised training, a new paradigm

called semi-supervised learning is gaining space with the aim to take advantage of labeled

and unlabeled data in the train of the same model.

The vast scope of the semi-supervised learning configuration and the shared similarities

between methods has given rise to numerous attempts of grouping such methods. The

proposed work is based on the novel semi-supervised taxonomy given by [33], shown in

Figure (1.1).

17

Semi-supervised Learning

Inductive Transductive

Wrapper Methods

Self-Training Co-Training Boosting

Unsupervised Pre-processing

Feature Extraction Cluster-then-label Pre-training

Intrinsically Semi-supervised

Maximum-margin Perturbation-based Manifolds Generative models

Graph-based

Figure 1.1. Semi-supervised learning taxonomy.
Source: Adapted from [33].

The first major distinction is between inductive and transductive methods. The former

represents algorithms whose objective is to find a function capable of handling unseen

data, while the latter is only concerned with the best modeling of the dataset used for

training, disregarding any extrapolation.

Inductive methods are further divided into 3 categories, namely wrapper methods,

unsupervised preprocessing and intrinsically semi-supervised. These groups are distin-

guished by how the handling of the unlabeled data is conducted. Wrapper methods

assembles the algorithms that rely on one or more supervised learners, training on the

labeled dataset and pseudo-labeling the rest along with a criteria of confidence to expand

the training set for the next iteration. Unsupervised preprocessing on the other hand,

sees the unlabeled dataset as a guide to the fine-tuning of hyper-parameters, usually ap-

plying known unsupervised learning algorithms to extract information on the set X of all

possible inputs. Finally, the intrinsically semi-supervised agglomerate are characterized

by methods that modify the objective function of known supervised algorithms, usually

with the goal of modeling the error of the unlabeled dataset.

Transductive methods usually defines a graph over the labeled and unlabeled data

points, and models the similarity between points by a weighted adjacency matrix [40].

An objective function is then designed to achieve two goals: the correct classification

of the labeled dataset and to classify similar data points with the same labels [33]. The

18

general framework for these methods involves three steps. First, the creation of a graph by

creating links through each data point (nodes) with a predetermined similarity measure.

Secondly, we weight the resulting similarity matrix, and thirdly the inference step, where

we use the obtained graph to predict the unlabeled dataset [21].

1.2 The Problem and Objectives

As the field expands, different approaches and algorithms are proposed to tackle differ-

ent learning problems. However, these methods are usually presented as top performers

on cherry-picked datasets, with very little discussion on their performance on a diverse

selection of datasets, as well as a comparison of different methods that might not share

similarities in their derivation. With this in mind, we propose an evaluation of the per-

formance of 10 different semi-supervised algorithms for a wide selection of datasets. We

accompany these experiments with a statistical analysis of the global, positive and nega-

tive accuracies of each method in each condition, and we evaluate their p-values through

different existing tests to establish a sensible conclusion to our experiments. This approach

allow us to compare the algorithms as a whole, pairwise differences between them, as well

as their average ranks on a given learning setting, showing algorithms that consistently

performs better than others. Our aim is to strengthen the knowledge of the field, and aid

further research and applications in the area, with our comparison of different methods in

a diverse setting serving as a guide for those interested in using semi-supervised learning

to solve a task, but unsure of the appropriate model, or what to expect.

1.3 Dissertation Structure

We begin the dissertation with a brief literature review of the benchmarks of semi-

supervised algorithms. We aim to show how these studies are carried, as well as to

offer a critique of their results, which usually suggests a deliberate selection of scenarios

where the main algorithm would best perform. We move on to Chapter 3, where we

lay the theoretical foundations of the algorithms of interest, offering derivations and the

algorithms themselves in pseudo-code, as well as a discussion of their convergence, hyper-

parameters and some variations. Chapter 4 contains the methodology of the study, with

the description of each experiment carried, the expected format of the results and their

intended analysis. We then present the results in Chapter 5 as well as their interpretation.

Finally, we end with a conclusion in Chapter 6.

19

Chapter 2

Literature Review

In this chapter we present the state of the literature regarding the performance of semi-

supervised algorithms. We divide it into two sections, one pertaining to the original

papers, responsible for proposing a new algorithm and testing its performance against

other know methods. And in the other, we present related works in the field that contains

similarities in methodology, or comparisons with one or more algorithms of interest to this

study.

2.1 Original Papers

2.1.1 Self-Training

In its original paper [37], David Yarowsky (1995) focuses on the specific problem of dis-

cerning different meanings of a word depending on the context. The study is conducted

for 12 words, with the data being extracted from a 460 million word corpus containing

news articles, scientific abstracts, spoken transcripts, and novels, consisting of one of the

biggest training and testing sets for the study of sense-disambiguation at the time [37].

The algorithm’s performance is compared to two others. The decision list supervised algo-

rithm, where it shows a comparable performance (less than 1% difference), and Schütze’s

algorithm [29], which was outperformed by the Self-Training.

2.1.2 Label Propagation

The Label Propagation algorithm, proposed by Zhu and Ghaharamani in 2002 [41], was

tested against two synthetic datasets, and a single real one. In the two synthetic sets the

algorithm was compared to the kNN algorithm, which was outperformed by the Label

Propagation. These datasets were highly symmetrical, and possessed an intrinsic geo-

metric aspect to them, likely being chosen for how well the algorithm performs on it.

For the real dataset, the algorithm is tested on the handwritten digits dataset originally

from the Cedar Buffalo binary digits database [15], and its performance is compared to

the 1NN (kNN for k=1), and the p1NN (propagating 1NN). The Label Propagation also

outperforms the others in this chosen dataset.

20

2.1.3 Label Spreading

The Label Spreading algorithm was proposed by Zhou et al. in 2004 [38], and in their

work, the algorithm is only tested on three datasets, two of them being real and the other

synthetic. The latter is a toy dataset composed of two crescent shaped patterns, or moons,

with each one of them representing a class. The performance of the Label Spreading is

compared with the SVM method with a RBF kernel, having a superior performance after

400 iterations. For the real datasets, first we have the USPS handwritten digits set [16] is

used with only the numbers 1, 2, 3 and 4 as the four classes. The proposed algorithm is

then compared with the 1NN, SVM with RBF kernel (one-vs-rest) and harmonic Gaussian

[42] methods. Secondly, they use the 20-newsgroups dataset for text classification choos-

ing the single topic rec. On both datasets, the proposed Label Spreading, or a slightly

variation of it, is the best performing method.

2.1.4 Assemble

The Assemble is an ensemble algorithm proposed by Bennett et al. in 2002 [5]. In their

work, the Assemble is tested with two different base classifiers, decision trees and neural

networks, on 3 datasets each, for 3 different unlabeled ratios for each dataset. The decision

tree experiments were run on 3 of the 13 Gunnar Rätch’s benchmark datasets [8] for 20,

40 and 60% unlabeled rate, being compared to the AdaBoost algorithm [11] and having a

better performance in 2 of the 3 datasets for all ratios. For the neural network as the base

classifier, the three datasets were selected from the UCI Machine Learning repository [24],

and run for 10, 25 and 50% unlabeled ratio for each. The comparison was also with the

AdaBoost, with the Assemble outperforming its competitor in every dataset and ratio.

2.1.5 SemiBoost

The SemiBoost algorithm was proposed by Kumar et al. in 2009 [22] as a boosting

algorithm for semi-supervised learning. In their work, the SemiBoost was evaluated on

16 datasets and against 6 other methods. Three of them are supervised algorithms that

were also used as the base classifiers, they are Decision Stump, Decision Tree and SVM.

The remaining three algorithms are other semi-supervised methods, being the TSVM,

LapSVM and ILDS (Inductive LDS). The results for the supervised comparison show that

the SemiBoost with a given supervised base classifier provides a considerable increase over

simple using the base classifier. Furthermore, comparing the best SemiBoost version (best

performing base classifier) with the other semi-supervised algorithms, the SemiBoost was

the best performing method in 8 of the 16 datasets, while also being second in another

5. Another experiment was run in the same setup but with 10 datasets adapted from the

20-newsgroup [1]. In this case, the SemiBoost was the best performer in 7 of the 10 sets,

and the second best in 3 where it lost for the TSVM.

21

2.1.6 Co-Training

For the Co-Training algorithm, proposed by Blum and Mitchell [7] in 2000, the method

was only tested for a single dataset, consisting in 1051 web pages collected from the

department of Computer Science in four universities [2], and compared against a single

supervised algorithm, the Naive Bayes classifier. Two Bayes classifiers are trained, one for

each view of the dataset, and a third is created using the combined probability of them.

These classifiers are compared to each respective classifier of the Co-Training for each

view as well as the combined classifier. The Co-Training outperforms the Naive Bayes in

both classifiers as well as the combined one.

2.1.7 Tri-Training

The Tri-Training algorithm was proposed by Zhou and Li in 2005 [39] as an attempt to

improve the Co-Training approach. In their paper, three sets of experiments are carried,

one for each different base classifier (J4.8 decision tree, BP neural network and Naive

Bayes), and each is done for 40, 60 and 80% unlabeled rates. The algorithm is then tested

on 12 datasets and against the Co-Training method with a random partition of the set

into two for the different views, and the Self-Training. The results show that for each base

classifier, the Tri-Training presents the best average improvement of performance when

compared to the Co-Training and Self-Training, for all three unlabeled ratios. However,

the best performing method for a dataset alternates between the algorithms.

2.1.8 TSVM

The TSVM was proposed by Joachims in 1999 [19], and was thought as an algorithm well

suited for text classification. As such, in his paper, Joachims focus the experiments on

3 datasets for text classification and the performance of the TSVM is compared to the

supervised algorithms Naive Bayes and SVM. In all 3 cases, the TSVM displayed the best

performance (averaged for each word of interest in the dataset), with the SVM second

and the Naive Bayes last.

2.1.9 LapSVM

The LapSVM algorithm, proposed by Belkin et al. in 2006 [4], was originally tested on 4

datasets, one synthetic and 3 real ones, while being compared to the SVM and TSVM. For

the synthetic dataset, the two moons set is used with only one example from each class.

The LapSVM is shown to better model the geometry of the dataset, when compared to

the SVM and TSVM. For the 3 real datasets, it was used one for visual recognition, one

for speech recognition and one for text categorization. The visual and speech datasets

yield a clear winning performance of the LapSVM against the SVM and TSVM. For the

text recognition, the LapSVM is superior to the SVM but having an error slightly higher

(∼ 3.5%) than the TSVM.

22

2.1.10 SSGMM

The SSGMM algorithm was proposed by Shahshahani and Landgrebe in 1994 [30]. In

their work, the SSGMM is tested on a portion of the AVIRIS dataset for a four-class

experiment. Other experiments are carried to evaluate the Hughes phenomenon (loss of

classification potential when the dimension of the data is increased), and the impact of the

unlabeled ratio in the accuracy of the model. It was shown, that with a higher unlabeled

rate and the appropriate dimensionality of the data, the SSGMM can achieve accuracies

higher than 95% in this dataset.

23

2.2 Related Work

Different attempts on benchmarking semi-supervised algorithms were performed over the

years. A few noteworthy works are presented here, either by shared algorithms, or a

similar approach to our methodology.

On their work, published in 2022, Wang et al. [36] offers a benchmark attempt for

classification tasks of 14 deep semi-supervised learning algorithms on 15 datasets, 5 for

computer vision, 5 for NLP and 5 for audio. Furthermore, the experiments are carried for

3 seeds, and the average rank of the algorithms are offered, similar to our methodology;

however, no intersecting algorithms exists with the present work. Similarly, Oliver et al.

[26] presents a smaller comparison of 5 deep semi-supervised algorithms on two datasets,

the CIFAR-10 and SVNH. In their work, a focus on a high quality supervised base line,

consideration of class distributions, and variations of unlabeled ratio is given, serving as

a reference in the field for a quality comparison of semi-supervised methods.

In fact, a great focus has been given to deep semi-supervised learning [14, 32, 10,

31, 20]. As complex Computer Vision, Large Language Models and speech recognition

tasks gained notoriety over the last few years, the research on semi-supervision applied on

classification of tabular data has lagged behind. Reference works in this area, as presented

in the previous section, consists in theorizing a new method or an improvement upon an

existing approach, followed by a test of concept with too few datasets and competing

methods for a relevant conclusion to be drawn. Moreover, not only these studies but

also the more popular work on deep semi-supervision, often fails to report the statistical

significance of their results.

24

Chapter 3

Theoretical Foundations

In this chapter we lay the theoretical foundations of each individual algorithm, including

the initial motivations, the mathematics, the algorithm itself, a discussion of the hyper-

parameters necessary, the conditions of convergence and possible variations if they exist.

Each algorithm is presented in a unique pseudo-code notation. This notation is design to

be intuitive and as close to standard mathematical notation as possible.

A few variables are common among the algorithms and can be understood as global

variables. We denote the input space, that is, the set of all possible inputs x⃗, as X . The

set of all possible outputs or classes as Y . The set of labeled examples ((x⃗, y) pairs) as L,

and the set of unlabeled examples as U .

The description of an algorithm begins by listing the inputs and outputs. Each dec-

laration is followed by the variable’s type given in set notation. For example, declaring

U ¢ X tells us that U has the same type of X , and similarly Ä ∈ R shows that the variable

Ä has the same type as the elements in R, in this case Ä is a real number. Lastly, we also

declare functions using standard mathematical notation, for example H : X → Y tells us

that H is a function mapping from X to Y . This can also be done as H ∈ YX since in

set-theoretical notation YX represents the set of all functions from X to Y .

After the declaration of inputs and outputs the algorithm is described in a sequence of

numbered steps with a few standard keywords. We use let to declare variables, and while,

if, for, return works analogously as most programming languages. The assignment

operator is the "←", and assignment of vectors or matrices are done by describing it’s

value at a certain position. To access the i-th value in a vector v⃗ we write v⃗i. Similarly,

to access the i-th row and j-th column in a matrix A we write Aij.

25

3.1 Self-training

The Self-training algorithm is the most intuitive and straight-forward method in the semi-

supervised class. It was initially proposed by David Yarowsky (1995) [37] in one of the first

attempts to use both labeled and unlabeled data to a learning task, even classifying it as

an unsupervised algorithm since semi-supervised learning was not yet recognized. In his

work, Yarowsky attempts to disambiguate senses of a word in different phrases, starting

with only a few phrases with tagged senses (called seeds), and the majority remaining

untagged (85-98%). The algorithm consists of repeatedly training a supervised classifier

and using it to predict the labels of the unlabeled dataset, so these points can be absorbed

in future iterations.

Algorithm: 1 Self-training (Transductive)

Input:
H : X → Y :: Supervised Algorithm Classifier
Ä ∈ R :: Confidence Threshold

Output:
L ¢ X × Y :: Examples with Labels and Pseudo-labels

1. let L ¢ X × Y , L
′
¢ X × Y , y⃗ ∈ R

|Y|, c ∈ N

2. L ← L, L
′
← ∅

3. while L ≠ L
′
do:

4. let C : X → R
|Y| ← Train(H,L)

5. L
′
← L, L ← L

6. for x⃗ ∈ U do:

7. y⃗ ← C(x⃗)

8. c← argmax
j

yj

9. if yc g Ä do:

10. L ← L ∪ {(x⃗, c)}

11. return L

The algorithm receives the labeled and unlabeled datasets, along with a confidence

threshold Ä ∈ R, and a probabilistic supervised classification algorithm H.

We begin in line 1 by setting the altered labeled dataset L as the original labeled

set L for the first iteration. We then start the main loop of the algorithm that should

26

run until convergence. The chosen supervised algorithm H is trained in the enhanced

labeled dataset L (T (H,L)) and the probabilistic classifier C is obtained. This classifier

is used in the unlabeled data set (C(U)) to obtain the classification matrix Y ∈ R
u×c,

where Yij is the probability of the i-th unlabeled example having the label j. Now we

construct the new altered labeled set for the next iteration, starting it as the original set L.

For every unlabeled point xi in U , represented in Y by the i-th row, we select the label

ci as the column with the highest probability (argmax
j

Yij). If this value, now known to

be at position Yici , is greater or equal to the confidence threshold Ä , we insert the point

(xi, ci) in the enhanced labeled dataset L for the next iteration.

After convergence the prediction matrix Y , now stable, is returned as the final result.

The effective labeling of the original unlabeled dataset is given by the mapping

{(xi, ci) : xi ∈ U , ci = argmax
j

Yij}.

Convergence

The convergence of the method is not guaranteed and is highly dependent on the chosen

supervised classifier H.

Hyperparameters

The model accepts two hyperparameters. The supervised classifier H is only required to

be probabilistic, that is, given a point it must return the probability distribution for that

point labels. This enables the adaptation of the classifier to the semi-supervised setting.

Furthermore, since the algorithm must fulfill this single requirement, and given the di-

versity of probabilistic models, the self-training setting allows for plentiful variations by

simple choosing different classifiers.

The second hyperparameter is the confidence threshold Ä , representing the confidence

necessary in the labeling to assimilate a point in the next iteration. The correct approach

is to perform a hyperparameter search to determine Ä , with no accepted heuristic to guess

its value. However, it’s important to point out that high values can cause the model to

not absorb any new points in the new iteration, causing the classifier to converge quickly

to a poor solution. Also, low values can be equally troublesome, causing the model to

degenerate and assimilate all points and converge to a bad solution.

Variations

As discussed, each choice of a probabilistic supervised classifier is a valid variation of

the method, making the self-training algorithm more of a framework to adapt supervised

27

learning to benefit from unlabeled data. This sparks another kind of variation, as we move

away from the motivation of finding labels to the original unlabeled data (transductive

setting), to instead using the model to classify unseen unlabeled data (inductive setting).

This way, the original set U is no longer seen as the main classifying goal, and instead

takes the role of supplementary learning information. This is done simply altering the

line 10 of the algorithm to "return C", returning the supervised classifier instead of the

set U labels.

28

3.2 Label Propagation

The Label Propagation algorithm, originally proposed in 2002 by Zhu [41], is the simplest

of the graph based methods for semi-supervised learning. It relies on a probabilistic

interpretation of the labels, where the label of a point is more likely to propagate or

influence another, based on the distance between them. Label propagation is not a hard

label method, and it keeps at all stages a list containing the probability of a given point

having a given label. At convergence, different methods for choosing the final label can

be applied, most notably, the assignment of the label with the highest probability.

The method starts by transforming the dataset into a graph. We interpret an arbitrary

d-dimensional point xi as the node i, and construct the weighted edges between two nodes

i and j (wij) using the radial basis function (rbf):

wij = exp

(

−
d2ij
2Ã2

)

= exp

(

−
∥xi − xj∥

2

2Ã2

)

. (3.1)

Once the weight matrix W is constructed, we define the matrix T as the column-

normalized W . In this case, a column in T can be interpreted as a probability distribution.

More specifically, the entry Tij is viewed as the probability P (j → i) of node j propagating

its label to node i. The objective is to determine the probability of any node having a

given label, so we define the matrix Y ∈ R
n×c, where the entry Yik is the probability that

node i has the label k.

We start with an initial label distribution Y (0) and let they propagate their labels

such that each entry Yik in the label distribution matrix will be updated to the sum of

the probabilities of each node propagating the label k to the node i.

Yik ←
l+u
∑

j=1

P (j → i)P (label of j = k) =
l+u
∑

j=1

= TijYjk. (3.2)

The process can be easily written in matrix notation as Y ← TY . The rows in

the new matrix Y doesn’t necessarily add to 1, so we row-normalize it to maintain the

probability interpretation of the matrix. Next, we replace the label distribution of the

labeled examples in Y to their true labels to maintain consistency. We then repeat this

process until Y converges.

29

Algorithm: 2 Label Propagation

Input:

Ã ∈ R :: Similarity Coefficient

Output:

L ¢ X × Y :: Examples with Labels and Pseudo-labels

1. let Y ∈ R
(ℓ+u)×|Y| ← Yij =







1, if (x⃗i, j) ∈ L

0, otherwise

2. let Y ′ ∈ R
(ℓ+u)×|Y| ← Y ′

ij = 0

3. let W ∈ R
(l+u)×(l+u) ← Wij = exp

(

−
∥x⃗i − x⃗j∥

2

2Ã2

)

4. let T ∈ R
(l+u)×(l+u) ← Tij = Wij/

l+u
∑

k=1

Wkj

5. let T ∈ R
(l+u)×(l+u) ← T ij = Tij/

l+u
∑

k=1

Tik

6. while Y ̸= Y ′ do:

7. Y ′ ← Y

8. Y ← TY

9. Y ← Yi =







Y ′
i , if 1 f i f ℓ

Yi, if ℓ+ 1 f i f u

10. let L ¢ X × Y ← {(x⃗i, c) : 1 f i f ℓ+ u, c = argmax Yij
j

}

11. return L

Convergence

To prove the convergence of Y we observe that the first l rows are the labeled examples,

while the last u rows are the unlabeled entries. Since the labels are clamped for the

labeled examples, the first l rows remain unchanged. Let YL be the l× c matrix made by

the first l entries of Y and YU by the last u entries. Let T be divided in the 4 sub-matrices

T =

[

T ll T lu

T ul T uu

]

. (3.3)

30

We need only to prove that the sub-matrix YU of Y converges, since the other entries

remain fixed. A simple algebraic manipulation shows that

Y
(i+1)
U ← T uuY

(i)
U + T ulYL. (3.4)

Taking the limit with the number of iterations

YU = lim
n→∞

T
n

uuY
(0) +

(

n
∑

i=1

T
(i−1)

uu

)

T ulYL. (3.5)

Since T is row-normalized and a row in T uu have less elements than a row in T we

know that the row sums of T uu must be smaller than 1, that is

∃µ < 1,
u
∑

j=1

T uuij
f µ. (3.6)

Hence

u
∑

j=1

T
n

uuij
=

u
∑

j=1

u
∑

k=1

T
n−1

uuik
T uukj

(3.7a)

u
∑

j=1

T
n

uuij
=

u
∑

k=1

T
n−1

uuik

u
∑

j=1

T uukj
(3.7b)

u
∑

j=1

T
n

uuij
<

u
∑

k=1

T
n−1

uuik
· µ (3.7c)

u
∑

j=1

T
n

uuij
< µn. (3.7d)

Since the row summations of T
n

uu tends to zero, the first term of equation 5 also

converges to zero, making the initial choice of Y (0) irrelevant. The second term will

converge to

(I − T uu)
−1T ulYL (3.8)

which is clearly a fixed value, thus proving that the method will converge.

Hyperparameters

The only hyperparameter involved in the label propagation algorithm is the Ã in the rbf

function. This value regulates the probability of a node propagating its label to distant

points, with higher values resulting in points influencing a wider area with their labels. In

their original description of the method, Zhu [41] also proposes an heuristic for the value

31

of Ã. It consists of performing Kruskal’s algorithm for finding the minimum spanning tree

over the data points until the smallest edge between two nodes with different labels is

found. The value of Ã is then set to be 3 times the Euclidean distance between these two

points, thus following the 3Ã rule. This way the influence of a point towards a different

labeled one is considered insignificant.

Variations

The most traditional way of assigning the final labels is by picking the most likely class,

that is, the row with the highest value in YU . However, when class proportions are fixed,

the most likely method doesn’t guarantee that the correct ratio will be preserved. In these

situations, two methods are proposed to maintain consistency, Class Mass Normalization

and Label Bidding. The first consists of scaling the column sums of the matrix YU to be

the proportion of labels from that class, and picking the most likely value after scaling.

The second considers that there are upc c labels to be distributed, and each point will

bid proportional to YUic
, and if there are c labels still available one will be given to the

point bidding, at which point it will quit the process. However, if no more labels c are

available, the second highest bid is evaluated, and so on.

32

3.3 Label Spreading

The Label Spreading algorithm is closely related to the Label Propagation. Their main

differences are in the construction of the similarity matrix and the clamping of the labeled

data. The algorithm was first proposed by [38] who claims to be inspired by previous

works on spreading activation networks and diffusion kernels, and is another example of

graph-based methods.

The algorithm can be seen as spreading the label information of each point to its

neighbors. This information is in the form of a c-dimensional vector, where c is the

number of possible labels, for each point and contains the amount of label i information

at entry i. However, differently from the Label Propagation algorithm, there is no concern

with a probabilistic interpretation of this information, but the final labeling decision is

still made towards the label with the highest value.

33

Algorithm: 3 Label Spreading

Input:
Ã ∈ R :: Similarity Coefficient
³ ∈ R :: Weight of Propagation Information

Output:
L ¢ X × Y :: Examples with Labels and Pseudo-labels

1. let Y ∈ R
(ℓ+u)×|Y| ← Yij =

{

1, if (x⃗i, j) ∈ L

0, otherwise

2. let Y ′ ∈ R
(ℓ+u)×|Y| ← Y ′

ij = 0

3. let Y (0) ← Y

4. let W ∈ R
(l+u)×(l+u) ← Wij = exp

(

−
∥x⃗i − x⃗j∥

2

2Ã2

)

5. let D ∈ R
(l+u)×(l+u) ← Dij =







l+u
∑

k=1

Wik, if i = j

0, if i ̸= j

6. let T ∈ R
(l+u)×(l+u) ← D−1/2WD−1/2

7. while Y ̸= Y ′ do:

8. Y ′ ← Y

9. Y ← ³TY + (1− ³)Y (0)

10. let L ¢ X × Y ← {(x⃗i, c) : 1 f i f ℓ+ u, c = argmax Yij
j

}

11. return L

Convergence

To show that the algorithm converges take the iterative equation

Y (i) = ³TY (i−1) + (1− ³)Y (0). (3.9)

Substituting the right hand-side repeatedly, we get

Y (i) = (³T)iY (0) + (1− ³)
i−1
∑

k=0

(³T)kY (0). (3.10)

Let the converging matrix be Y , we need to find

34

Y = lim
i→∞

Y (i) = lim
i→∞

(³T)iY (0) + lim
i→∞

(1− ³)
i−1
∑

k=0

(³T)kY (0). (3.11)

Since 0 < ³ < 1 and |¼j| f 1, where ¼j is any eigenvalue of T , we have

lim
i→∞

(³T)iY (0) = 0 (3.12)

for the first term, and for the second we have

(1− ³) lim
i→∞

i−1
∑

k=0

(³T)kY (0) = (1− ³)(I − ³T)−1Y (0). (3.13)

Yielding

Y = (1− ³)(I − ³T)−1Y (0). (3.14)

This shows that the algorithm converges to the given matrix Y .

Hyperparameters

Two hyperparameters play a role in the Label Spreading algorithm. The Ã value controls

how fast the affinity between two points decreases with the distance, as already seen

when presenting the rbf function. Secondly, the ³ parameter regulates the trade-off

between retaining the initial information and absorbing the information propagated from

neighboring points. In their work [38] fixed ³ = 0.99 for better results, suggesting a low

retention of the initial information is beneficial.

Variations

Two types of variations of the algorithm are proposed by the authors. The simplest

variation is to repeat the algorithm after convergence and take Y (0) as the previous con-

verged matrix. Repeating this process n times would yield Y = (1 − ³)(I − ³S)−nY (0).

The second type arises from choosing another normalization for the affinity matrix, mainly

P = D−1W = D−1/2TD1/2, or its transpose, what would yield Y = (1−³)(I−³P T)−1Y =

(1− ³)(D − ³W)−1Y .

35

3.4 Assemble

Boosting algorithms relies on the minimization of an error function. This poses an obstacle

in adapting them to the semi-supervised setting, once it’s not obvious how we can quantify

the error of an unlabeled point since we don’t have access to its correct label. To see how

this can be solved, lets first consider a simple binary classification task, and later generalize

it for a multi-class configuration.

Since our initial goal is to classify between two classes, we can define them to be 1

and −1. This simplifies the interpretation of the output to the class 1 if it is positive or

−1 if negative (once the decision boundary is at 0). Furthermore, we allow the classifying

ensemble to take any real value, so even though we can obtain the class by taking the sign

of the output (positive or negative), we can interpret the absolute value as how certain

the classifier is in its prediction. This is necessary for modeling an error function.

Consider a base classifier as a function f : X → Y mapping the input space X ¦ R
n

into the output space Y (in the binary case we have Y = {−1, 1}). We want to construct

the final classifier FT as an ensemble of T of these base classifiers by linearly combining

them, that is, FT (x⃗) =
∑T

t=1 wtft(x⃗), where wt is a positive real number representing the

weight given to the classifier t.

Finally, we attempt to construct the error function E : X Y → R that maps the function

space into the real numbers, allowing us to search for a function that will minimize this

error. The standard approach is to define the error of a single point and sum it over all

the points. For this we need to quantify the error of labeled and unlabeled examples.

Here we assume that the classifier correctly classified an unlabeled point x⃗i with the

absolute value |F (x⃗i)| representing how certain the classifier F is in the label of this point.

We can then take the negative of this value to represent uncertainty in the prediction.

Using the fact that the labels are 1 and −1, we can get rid of the absolute function

by representing the uncertainty as −yiF (x⃗i). Observe that a correct classification, that

is sign(yi) = sign(F (x⃗i)) with sign(a) = 1 if a g 0 or sign(a) = −1 if a < 0, will

give a negative value and a misclassification (sign(yi) ̸= sign(F (x⃗i)) will yield a positive

one. Assuming that the error is proportional to this uncertainty, we wrap its value in

a differentiable and monotonically increasing function M : R → R, so the higher the

uncertainty the higher the error. We leave M unspecified for now, requiring only that

it satisfies the given properties, so specific choices will yield different variations of the

algorithm. This strategy works for both labeled and unlabeled data, with yi being the

correct class for labeled examples and equal to sign(F (x⃗i)) for unlabeled ones. This treats

the predicted class of an unlabeled example as always correct, and is equivalent to the

assumption that the error of these unlabeled examples doesn’t come from its predicted

label, but instead by how sure the classifier is in its prediction.

36

We now define the total error function E(F) : X Y → R as

E(F) =
l+u
∑

i=1

³iM(−yiF (x⃗i)) (3.15)

so each individual error M(−yiF (x⃗i)) is weighted by ³i and summed to obtain the total

error associated with using the function F as a classifier. We now present the generic

semi-supervised boosting algorithm [5] upon which the Assemble method is constructed

from minor adjustments.

Algorithm: 4 Semi-Supervised Boosting (Binary)

Input:
H : X → Y :: Supervised Algorithm Classifier
T ∈ Z

+ :: Positive Integer
³⃗ ∈ R

l+u :: Example Weight Vector
w⃗ ∈ R

T :: Classifier Weight Vector
E : YX → R :: Error Function

Output:
C : X → Y :: Classifier

1. let F0(x⃗) : X → R← 0

2. let C : X → Y

3. let L ← L

4. for t← 0 to T − 1 do:

5. let (ft+1 : X → R)← Train(H,L)

6. let F⃗t ∈ R
ℓ+u ← Ft,i = Ft(x⃗i)

7. let f⃗t+1 ∈ R
ℓ+u ← ft+1,i = ft+1(x⃗i)

8. if ï∇E(F⃗t), f⃗t+1ð > 0 do:

9. C ← sign(Ft)

10. return C(x⃗)

11. let Ft+1 ← Ft + wt+1ft+1

12. C ← sign(Ft+1)

13. L ← L ∪ {(x⃗, C(x⃗)) : x⃗ ∈ U}

14. return C

The algorithm starts the ensemble F with the zero function and sets the training set

37

L as the labeled dataset. We then begin the main loop that iterates T times. The loop

begins by training a new classifier ft+1 with a supervised algorithm H over the training

set.

Before we add the newly obtained classifier to the ensemble, we have to determine if

this addition will lower the cost function, otherwise it doesn’t make mathematical sense

and the algorithm should halt. Essentially, we want to know if ∆E = E(Ft+1)−E(Ft) f 0.

There are two ways to obtain this information. The first and more computationally

expensive is to fully calculate ∆E by Eq. (3.15) and determine its sign. The second is

more ingenious and can determine the sign of the difference easier. Instead of seeing E as

a function of F , lets shift the domain to R
l+u as below

E(F) = E(F (x⃗1), . . . , F (x⃗l+u)) =
l+u
∑

i=1

³iM(−yiF (x⃗i)). (3.16)

The function remains exactly the same. However, since each new variable F (x⃗i) can

take any real value, we can treat E as a continuous function, and as such, we can use

calculus to estimate ∆E . For simplicity, define the vector (g(x⃗1), . . . , g(x⃗l+u)) as g⃗ for any

function g. The linear approximation of E at its current position F⃗t in space yields

E(x⃗)− E(F⃗t) ≈ ∇E(F⃗t) · (x⃗− F⃗t). (3.17)

Taking x⃗ = F⃗t+1,

E(F⃗t+1)− E(F⃗t) ≈ ∇E(F⃗t) · (F⃗t+1 − F⃗t) (3.18)

∆E ≈ ∇E(F⃗t) · (F⃗t+1 − F⃗t). (3.19)

We can simplify F⃗t+1 − F⃗t to

F⃗t+1 − F⃗t = (Ft+1(x⃗1), . . . , Ft+1(x⃗l+u))− (Ft(x⃗1), . . . , Ft(x⃗l+u)) (3.20a)

F⃗t+1 − F⃗t = (Ft(x⃗1) + wt+1ft+1(x⃗1), . . . , Ft(x⃗l+u) + wt+1ft+1(x⃗l+u))− (Ft(x⃗1), . . . , Ft(x⃗l+u))

(3.20b)

F⃗t+1 − F⃗t = (wt+1ft+1(x⃗1), . . . , wt+1ft+1(x⃗l+u)) (3.20c)

F⃗t+1 − F⃗t = wt+1f⃗t+1. (3.20d)

Combining Eq. (3.19) and Eq. (3.20d) we have

∆E ≈ wt+1∇E(F⃗t) · f⃗t+1. (3.21)

Since wt+1 is positive, the sign of ∆E only depends on the vector product, that is

38

∆E f 0 ⇐⇒ ï∇E(F⃗t), f⃗t+1ð f 0 (3.22)

where the inner product is rewritten in standard ï·, ·ð notation. In summary, if this

condition fails to be satisfied, adding the classifier ft+1(x⃗) to the ensemble cannot decrease

the error function, and the algorithm stops early. Otherwise, we continue by creating the

new ensemble by adding ft+1 to the previous one, and update the classifier to be the sign

function of this ensemble. Finally, we restart the training set L as the labeled dataset

and start adding the pseudo-labeled points from U to it. After T iterations, the algorithm

terminates and returns the classifier C(x⃗) = sign(FT (x⃗)).

Observe that another way to view the problem is to find the base classifier that mini-

mizes the difference ∆E in the error function at every iteration, and from Eq. (3.21) this

is equivalent to minimizing the inner product ï∇E(F⃗t), f⃗t+1ð. Expanding the product as

ï∇E(F⃗t), f⃗t+1ð =
l+u
∑

i=1

³iyift+1(x⃗i)M
′(yiFt(x⃗i)) (3.23)

and observing that yi = ft+1(x⃗i) =⇒ yift+1(x⃗i) = 1 and yi ̸= ft+1(x⃗i) =⇒ yift+1(x⃗i) =

−1, since they can take only the values 1 and −1, we rewrite the inner product as

ï∇E(F⃗t), f⃗t+1ð =
∑

yi=ft+1(x⃗i)

³iM
′(yiFt(x⃗i))−

∑

yi ̸=ft+1(x⃗i)

³iM
′(yiFt(x⃗i)). (3.24)

The value ³iM
′(yiFt(x⃗i)) can be interpreted as a misclassification cost of the point

x⃗i, with it being negative for a correct classification, represented by the first summation,

and positive for a misclassification, represented by the second summation (remember that

M ′(a) f 0 for all a). Now, we construct a normalized cost vector D⃗. Let

z =|
l+u
∑

i=1

³iM
′(yiFt(x⃗i)) |= −

l+u
∑

i=1

³iM
′(yiFt(x⃗i)) (3.25)

then

Di =
³iM

′(yiFt(x⃗i))

z
(3.26)

is the ith entry of vector D⃗ and represents the cost of misclassifying the point x⃗i.

Finally, we can refactor the supervised training step of the method as finding ft+1 that

minimizes the total cost of incorrect classifications, or

∑

i:yi ̸=ft+1(x⃗i)

Di. (3.27)

The resulting algorithm is the Adaptive Semi-Supervised ensEMBLE.

39

Algorithm: 5 Assemble

Input:
H : X → Y :: Supervised Algorithm Classifier
T ∈ Z

+ :: Positive Integer
³⃗ ∈ R

l+u :: Example Weight Vector
w⃗ ∈ R

T :: Classifier Weight Vector
E : YX → R :: Total Error Function
M : R→ R :: Individual Error Function
D⃗ ∈ R

l+u :: Initial Misclassification Vector

Output:
C : X → Y :: Classifier

1. let F0(x⃗) : X → R← 0

2. let C : X → Y

3. let L ← L

4. for t← 0 to T − 1 do:

5. let ft+1 ← Train(H,L, D⃗)

6. if
l+u
∑

i=1

Diyift+1(x⃗i) f 0 do:

7. C ← sign(Ft)

8. return C

9. let Ft+1 ← Ft + wt+1ft+1

10. C ← sign(Ft+1)

11. L ← L ∪ {(x⃗, C(x⃗)) : x⃗ ∈ U}

12. D⃗ ← Di =
³iM

′(yiFt+1(x⃗i))
l+u
∑

j=1

³jM ′(yjFt+1(x⃗j))

13. return C

The assemble works almost identically to the first algorithm presented, except for the

use of misclassification cost vector D⃗ in the training of a new classifier. The early halting

condition in line 5 is also rewritten in terms of D⃗ and at the end of each iteration the

misclassification vector is updated.

40

Convergence

Since the algorithm loops at most T +1 times, and the condition at line 5 guarantees that

every new classifier added will improve the performance of the ensemble, the algorithm is

improving at every iteration and will eventually stop and return a classifier.

A potential shortcoming of the method is falling in a bad region of the function space

in early iterations, and consequently halting the algorithm too soon with a poor classifier.

In such scenario, a new selection of hyperparameters like the supervised algorithm H, or

the weight of each classifier wi, can improve the performance.

Hyperparameters

The Assemble algorithm is a wrapper method and relies on a supervised algorithm H to

train a new classifier. This algorithm can be any method that relies on minimization of a

cost function.

Two weight vectors are required, w⃗ = ïw1, w2, . . . , wT ð representing the weight that

each classifier will have in the final ensemble, and ³⃗ being the weight of a particular exam-

ple for the training (this allows the algorithm to attribute different levels of importance

to labeled and unlabeled examples). For the example weights, it is common to have a

constant value for labeled examples (³l) and another for unlabeled ones (³u), however,

it’s possible to have non-constant values with minor modifications required [5]. The clas-

sifiers weights can also be determined from inside the algorithm instead of being passed

as hyperparameters. It can be shown that choosing wt+1 to minimize

l+u
∑

i=1

³iM(yi(Ft(x⃗i) + wt+1ft+1(x⃗i))) (3.28)

will always lead to a decrease in the cost function whenever such a decrease is possible

[5].

Lastly, we don’t have the misclassification cost vector D⃗ for the first iteration, and it

must be provided a priori to the start of algorithm.

Variations

The most notorious variation of the Assemble is the Assemble-AdaBoost algorithm. It’s

an award-winning method from the NIPS’2001 workshop, Competition: Unlabeled Data

for Supervised Learning, where it outperformed 34 algorithms [5].

41

Algorithm: 6 Assemble-AdaBoost

Input:
L ¢ X × Y :: Labeled Dataset With Pseudo-Labeled Dataset
H : X → Y :: Supervised Algorithm Classifier
T ∈ Z

+ :: Positive Integer
³ ∈ R :: Example Weight
´ ∈ R :: Misclassification Cost Constant
E : X Y → R :: Error Function

Output:
C : X → Y :: Classifier

1. let F0(x⃗) : X → R← 0

2. let D⃗ ∈ R
ℓ+u ← Di =

{

´/l, if 1 f i f l

(1− ´)/u, if l + 1 f i f l + u

3. for t← 0 to T − 1 do:

4. let ft+1 ← Train(H,L, D⃗)

5. let ϵ ∈ R←
∑

yi ̸=ft+1(x⃗i)

Di

6. if ϵ > 0.5 do return Ft

7. let wt+1 ← 0.5 log

(

1− ϵ

ϵ

)

8. let Ft+1 ← wt+1ft+1

9. let y⃗ ← yi =

{

yi, if 1 f i f ℓ

Ft+1(x⃗i), if ℓ+ 1 f i f ℓ+ u

10. let D⃗ ← Di = ³e−yiFt+1(x⃗i)/
l+u
∑

j=1

³e−yjFt+1(x⃗j)

11. let L ← L ∪ {(x⃗i, yi) : x⃗i ∈ U}

12. L ← Sample(L, ℓ, D⃗)

13. return FT

In the Assemble-AdaBoost we have two new inputs, namely L and ´. The first is the

union between the labeled dataset L and the set of points {(x⃗i, yi)} where x⃗i ∈ U and yi

is the class of the closest labeled data to the point x⃗i. This set is necessary to train the

first classifier for the ensemble. The second is the hyperparameter ´ and is used to skew

the importance of the labeled data for the first iteration, represented by the vector D⃗.

The algorithm begins by starting the ensemble with the zero function and creating

42

the vector D⃗. The main loop then starts by training a new classifier and using it to

predict new classes for all the points. These new labels are compared to the labels given

by the ensemble Ft on the previous iterations or from the input L if it’s the first loop,

summing the misclassification costs of all the labels that doesn’t match. If this error ϵ

is greater than 0.5 it means that the new classifier is no better than a random guesser

and the algorithm stops early returning the current ensemble. Otherwise, we add the

classifier to the ensemble with the weight given by the function 0.5 log ((1− ϵ)/ϵ). This

function rapidly decreases as the error increases, resulting in a heavy penalization of a

bad classifier in the final ensemble.

The new ensemble is used to update the pseudo-labels of the points in U and the vector

D⃗ is also updated as the original Assemble but with ³ being constant and M(x) = ex.

Finally, we sample l points from the union of the labeled dataset with the now pseudo-

labeled dataset with weights D⃗. This is done to keep the size of the training set equal to

the size of the labeled set, that way the algorithm has similar complexity with the original

AdaBoost.

43

3.5 SemiBoost

SemiBoost is another boosting algorithm, like Assemble, whose objective is to improve the

performance of a supervised algorithm H through an ensemble of these weaker classifiers,

while also extracting information from the unlabeled examples. SemiBoost is exclusively

used for binary classification tasks, and is unique in its approach to incorporate the

unlabeled data, drawing inspiration from graph-based methods with its modeling of the

similarity between points by a matrix S. The algorithm, like many others, works by

minimizing an error function, and as such, requires a way to measure the error of wrong

classifications. According to [22], the assignment of the pseudo-labels must follow two

criteria:

1. Unlabeled examples highly similar to one another must share a label

2. Unlabeled examples highly similar to a labeled point must share its label

The error associated with each of these criteria is encapsulated in an individual

cost function, with the total error being the sum of these terms. Let y⃗ = (y1, y2,

. . . , yl, yl+1, . . . , yl+u) represent the vector of labels, with yi being the label of point x⃗i.

The inconsistency between unlabeled examples is quantified by the function:

Eu(y⃗, S) =
l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
yi−yj . (3.29)

Considering that the problem is binary, a pair of labels (yi, yj) for two unlabeled points

can take on 4 values, namely (1, 1), (−1,−1), (1,−1), (−1, 1). Since the double summation

will pass over each pair twice, and considering S a symmetric matrix, for each possible

pair their, term in the summation will be:































(yi, yj) = (1, 1) → Sije
0 + Sjie

0 = 2Sij

(yi, yj) = (−1,−1)→ Sije
0 + Sjie

0 = 2Sij

(yi, yj) = (1,−1) → Sije
1+1 + Sjie

−1−1 = Sij(e
2 + e−2) ≈ 7.5Sij

(yi, yj) = (−1, 1) → Sije
−1−1 + Sjie

1+1 = Sij(e
2 + e−2) ≈ 7.5Sij

(3.30)

We can see that for two highly similar unlabeled points (high Sij) the cost of misclas-

sification (7.5Sij) is around 3.75 times higher than if they were correctly labeled (2Sij).

The function Eu(y⃗, S) then sums the costs over all possible pairs of unlabeled points.

The inconsistency between the labeled and unlabeled points are given by:

Elu(y⃗, S) =
l
∑

i=1

l+u
∑

j=l+1

Sije
−2yiyj . (3.31)

44

Evaluating the cost of a pair (yi, yj) between a labeled (x⃗i) and unlabeled (x⃗j) point

we would get Sije
−2 ≈ 0.14Sij for a shared label, and Sije

2 ≈ 7.4Sij otherwise. Both Eu

and Elu heavily punishes wrong classifications of similar points, contributing to the goals

given in criteria 1 and 2.

The final error function is

E(y⃗, S) = Elu(y⃗, S) + µEu(y⃗, S) (3.32a)

E(y⃗, S) =
l
∑

i=1

l+u
∑

j=l+1

Sije
−2yiyj + µ

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
yi−yj (3.32b)

where µ represents the weight given to the unlabeled errors.

We are now ready to formulate the optimization loop for this problem. Consider the

ensemble Ft(x⃗) with t classifiers, entering the loop t + 1 we want to find the function

ft+1(x⃗) and the weight wt+1 that will minimize the function E . Considering yi = Ft(x⃗i) +

wt+1ft+1(x⃗i) for x⃗i ∈ U , we refactor the optimization problem according to Proposition 1.

Proposition 1.5.1 : Minimizing Eq. (3.32b) is equivalent to minimizing the function

E ′(y⃗, S) =
l+u
∑

i=l+1

e−2wt+1ft+1(x⃗i)pi + e2wt+1ft+1(x⃗i)qi (3.33)

where

pi =
l
∑

j=1

Sije
−2Ft(x⃗i)¶(yj, 1) +

µ

2

l+u
∑

j=l+1

Sije
Ft(x⃗j)−Ft(x⃗i) (3.34)

qi =
l
∑

j=1

Sije
2Ft(x⃗i)¶(yj,−1) +

µ

2

l+u
∑

j=l+1

Sije
Ft(x⃗i)−Ft(x⃗j) (3.35)

¶(a, b) =







1 if a = b

0 if a ̸= b
(3.36)

Proof: (see Appendix A.1)

Since ft+1 and wt+1 occur together in the expression, the optimization is difficult.

However, we can minimize it by attempting to minimize an upper bound as stated in the

next proposition.

Proposition 1.5.2 : The function E ′(y⃗, S) in Eq. (3.33) has the following upper bound:

E ′(y⃗, S) f
l+u
∑

i=l+1

(pi + qi)(e
2wt+1 + e−2wt+1 − 1)−

l+u
∑

i=l+1

2wt+1ft+1(x⃗i)(pi − qi). (3.37)

45

Proof : (see Appendix A.2)

Let the right hand-side of Eq. (3.37) be E ′′(y⃗, S).

Corollary 1.5.3 : To minimize E ′′(y⃗, S) the predicted label of a point x⃗i should be

zi = sign(pi − qi), and the sampled points should be the ones that give a high value of

|pi − qi|.

Proof : From Eq. (3.37) we see that only the second term contains ft+1, and since

wt+1 is positive, the smallest possible term for a point x⃗i is when ft+1(x⃗i)(pi − qi) > 0, or

equivalently ft+1(x⃗) = sign(pi − qi), since ft+1 can only take the values 1 and −1. Also,

the higher the value of |pi− qi| the higher the decrease in the function E ′′. Therefore, the

points with high |pi − qi| are more desirable to be used in the next training iteration. ■

Lastly, we calculate the value of wt+1 according to the following proposition.

Proposition 1.5.4 : The value of wt+1 that minimizes E ′ is

wt+1 =
1

4
ln











l+u
∑

i=l+1

pi¶(ft+1(x⃗i), 1) + qi¶(ft+1(x⃗i),−1)

l+u
∑

i=l+1

pi¶(ft+1(x⃗i),−1) + qi¶(ft+1(x⃗i), 1)











. (3.38)

Proof : (see Appendix A.3)

So far, we devised a way to calculate wt+1 and we know which label yi is optimal for

a point x⃗i to have so the error is minimized. Now we only need to find the classifier ft+1

that will best predict these desired labels. To do this we construct the training set for the

algorithm H as the union between the labeled dataset and sampling a fraction ¼ from the

set of pseudo-labeled points U = {(x⃗l+1, zl+1), . . . , (x⃗l+u, zl+u)}, with each example having

a weight |pi − qi| as discussed in Corollary 1.

Before determining ft+1, we check if it’s worth to add it to the ensemble by checking

if wt+1 > 0, in which case the new classifier will improve the ensemble. Otherwise, we

stop the algorithm and return the current ensemble. This finalizes the loop t + 1. The

algorithm then continues for a total of T iterations or until the condition wt+1 f 0 is met.

46

Algorithm: 7 SemiBoost

Input:
H : X → Y :: Supervised Algorithm Classifier
S ∈ R

(l+u)×(l+u) :: Similarity Matrix
T ∈ Z

+ :: Number of Classifiers
µ ∈ R :: Unlabeled Inconsistency Weight
¼ ∈ R :: Proportion of examples to sample

Output:
C : X → Y :: Classifier

1. let F0(x⃗) : X → R← 0

2. let p⃗, q⃗, z⃗, D⃗ ∈ R
l+u

3. let ¶(a, b) : Y2 → {0, 1} ←

{

1, if a = b

0, if a ̸= b

4. for t← 0 to T − 1 do:

5. p⃗← pi =
l
∑

j=1

Sije
−2Ft(x⃗i)¶(yj, 1) +

µ

2

l+u
∑

j=l+1

Sije
Ft(x⃗j)−Ft(x⃗i)

6. q⃗ ← qi =
l
∑

j=1

Sije
2Ft(x⃗i)¶(yj,−1) +

µ

2

l+u
∑

j=l+1

Sije
Ft(x⃗i)−Ft(x⃗j)

7. z⃗ ← zi = sign(pi − qi)

8. D⃗ ← Di = |pi − qi|

9. let U ′ ← Sample({(x⃗i, zi) : ℓ+ 1 f i f ℓ+ u}, ¼, D⃗)

10. let L ← L ∪ U ′

11. let wt+1 ←
1

4
ln











l+u
∑

i=l+1

(pi¶(zi, 1) + qi¶(zi,−1))

l+u
∑

i=l+1

(pi¶(zi,−1) + qi¶(zi, 1))











12. if wt+1 f 0 do return Ft

13. let ft+1 ← Train(H,L)

14. let Ft+1 ← Ft + wt+1ft+1

15. return FT

The algorithm starts by setting the ensemble to the zero function and declaring the

utility function ¶. Next, we start the main loop of T iterations and calculate the entries

of the utility vectors p⃗, q⃗, the pseudo-label vector z⃗, and the sampling weight vector D⃗,

47

for each point.

We then sample with weights D⃗ a fraction ¼ from the unlabeled dataset and their

pseudo-labels z⃗, constructing the training set T as the union from it and the original

labeled set.

The optimal weight wt+1 is calculated and checked to see if a new classifier is disad-

vantageous to the ensemble, in which case the algorithm stops and returns the current

ensemble. Otherwise, the new classifier is trained and added to the ensemble with the

calculated weight. If the early stop condition is never met, the algorithm continues and

returns the ensemble FT .

Convergence

To determine the convergence of the algorithm we rely on the following proposition

Proposition 1.5.5 : Let E ′t+1(y⃗, S) be the upper error function at iteration t+ 1, then

E ′t+1(y⃗, S) f E
′
0(y⃗, S)e

−
t+1∑

i=1

2wi

, (3.39)

where

E ′0(y⃗, S) =
l+u
∑

i=l+1

[

l
∑

j=1

Sij + µ

l+u
∑

j=l+1

Sij

]

. (3.40)

Proof : (see Appendix A.4).

This shows that the upper bound error function follows a exponential decay from its

initial value, decreasing with each iteration and consequent addition of a new classifier k

with its positive weight wk.

Hyperparameters

As an ensemble method, the first hyperparameter to be considered is the number of

classifiers T . It has been shown that a T of around 20 provides a good performance [12].

The similarity matrix conveys the necessary information to satisfy the two criteria

upon which the algorithm is based. The standard approach is to define S with the rbf

kernel, similar to the graph based methods [22], that is

Sij = exp

(

−
||x⃗i − x⃗j||

2

Ã2

)

. (3.41)

This introduces a new hyperparameter to be determined. The value Ã regulates how

quickly the similarity diminishes with the Euclidean distance between points, with high

values limiting the similarity to only the closest points, and low values allowing the influ-

ence of points to spawn further across the input space.

48

The hyperparameter µ dictates the importance of the unlabeled-unlabeled error for

the error function. Once the number of unlabeled examples can overwhelm the labeled

ones, it is important to scale down this term of the error function to maintain the labeled-

unlabeled inconsistency relevant to the minimization problem. A valid heuristic is setting

µ = l/u [22].

The selection of which unlabeled points to pick for the next iteration is a delicate step.

Allowing too few points won’t allow the method to learn from them. On the other hand,

as they are pseudo-labeled by decreasingly weaker classifiers, some labels are prone to

error and will harm the learning process. This is solved by sampling a fraction ¼ of these

points by their weight |pi − qi|, as it was shown in Corollary 1. The empirical value of

¼ = 0.1 provides good results [22].

Variations

The main variations of the SemiBoost algorithm are given by different choices of base

classifiers. The Decision Stump, Decision Tree and SVMs are among the base classifiers

that were shown to significantly have their performances improved by the SemiBoost

method [22].

49

3.6 Co-Training

The Co-Training algorithm was first proposed by Blum and Mitchel [7] in an attempt to

classify the contents of web-pages from the information contained within the page itself,

as well as the text on pages with a hyperlink pointing to it. Later renaming these types

of information as different "views" of the input space, in their proposed framework for a

learning algorithm that can take advantage of such a naturally split input space.

Suppose that the input space can be written as the Cartesian product of two subspaces

XA and XB, that is X = XA×XB. In this case, any point in X has the form x⃗ = (x⃗A, x⃗B),

with x⃗A ∈ XA and x⃗B ∈ XB. The idea behind the Co-Training algorithm is to train a

classifier in each of these subspaces iteratively, and create a final classifier composed of

these two weaker classifiers, now specialized in a single view of the input space. This is

only possible if we assume a conditional independence between the labeling from classifier

A and B. For this training approach to be effective, both XA and XB have to be enough

on their own to predict the labels by themselves, while also not being so tightly correlated

that the information in one subspace is redundant and unhelpful [7].

To construct the combined classifier we take advantage of the conditional independence

assumption. The probability of a point having the label m then becomes

P (Label(x⃗A, x⃗B) = m) = P (Label(x⃗A) = m)P (Label(x⃗B) = m). (3.42)

However, the values P (Label(x⃗A) = m) and P (Label(x⃗B) = m) are given by the m-th

entry on fA(x⃗) and fB(x⃗), respectively.

P (Label(x⃗A) = m) = (fA(x⃗))m (3.43)

P (Label(x⃗B) = m) = (fB(x⃗))m. (3.44)

Since the left hand-side of Eq. (3.42) is the m-th entry of the desired classifier C, for

the binary classification task we have

C(x⃗) = ((fA(x⃗))1(fB(x⃗))1, (fA(x⃗))2(fB(x⃗))2) (3.45)

C(x⃗) = fA(x⃗)» fB(x⃗) (3.46)

where » represents the element-wise or Hadamard product. To maintain the probabilistic

interpretation, we re-normalize the vector to obtain the final classifier

C(x⃗) = fA(x⃗)» fB(x⃗)/||fA(x⃗)» fB(x⃗)|| (3.47)

50

Algorithm: 8 Co-Training (Binary)

Input:
H : X → Y :: Supervised Algorithm Classifier
T ∈ Z

+ :: Number of Iterations
p ∈ Z

+ :: Number of Positively Labeled Examples to Select
n ∈ Z

+ :: Number of Negatively Labeled Examples to Select
u′ ∈ Z :: Unlabeled Examples Buffer

Output:
C : X → R

|Y| :: Probabilistic Classifier

1. let U ← Sample(U , u′)

2. let L ← L

3. let k ∈ N← 1

4. while k f T and U ̸= ∅ do:

5. let fA(x⃗) : X → R
|Y| ← Train(H,L,XA)

6. let fB(x⃗) : X → R
|Y| ← Train(H,L,XB)

7. let PA ← Select(fA, p, n,U)

8. let PB ← Select(fB, p, n,U)

9. L ← L ∪ {(x⃗i, fA(x⃗i)) : x⃗i ∈ PA} ∪ {(x⃗i, fB(x⃗i)) : x⃗i ∈ PB}

10. U ← U ∪ Sample(U , 2p+ 2n)

11. k ← k + 1

12. let C ← fA(x⃗)» fB(x⃗)/||fA(x⃗)» fB(x⃗)||

13. return C

The algorithm begins creating a buffer unlabeled set U by sampling u′ examples from

the original unlabeled dataset, and also creates the training set as the labeled dataset for

the first iteration.

The main loop starts for T iterations or until there are no more unlabeled examples to

be classified. Two new probabilistic classifiers are trained from the training set L, taking

into account only their respective view. We then call the function Select1 that will apply

a classifier to the buffer set U and select the p most confident positive predictions and

its n most confident negative ones, returning a set containing the inputs that generated

these confident predictions. We consider that the function removes these examples from

the set U , and after two calls the buffer set now has size u′ − (2p+ 2n). The training set

1A function Select that works as intended is proposed in Appendix B.1

51

is then updated to contain these confident examples and their predicted labels, and the

buffer unlabeled set is refilled with 2p+ 2n sampled without reposition from U .

After the main loop is finished we have the final probabilistic classifiers for each view.

We then construct the combined classifier as the re-normalized Hadamard product be-

tween fA and fB.

Convergence

As a wrapper method, the convergence of the Co-Training algorithm is dependent on the

base classifiers. Blum and Mitchel [7] showed that if fA and fB are learnable even with

classification noise, and the conditional independence assumption is satisfied, then C is

also learnable.

Hyperparameters

The first hyperparameter T dictates the maximum number of iterations the main loop

should perform. It serves as an early stopping criteria in case we don’t want to use all of

the unlabeled dataset.

The values of p and n are passed as a measure to even the number of positive and

negative examples drawn in the selection process, with its values usually following the

ratio of the positive-negative in the underlying distribution [7].

Lastly, u dictates the size of the buffer dataset, regulating the number of examples to

be evaluated by the single view classifiers in each iteration.

Proposition 1.6.1: If higher predictions from the single view classifiers lead to better

results, then higher values of u can only improve the performance.

Proof: All a higher value of u can do is allow for extra unlabeled examples to be

drawn. In case these extra examples result in a less confident prediction, they will simple

be ignored. Otherwise, they will be picked, and as higher confident examples they will

lead to better results. ■

However, higher values of u can impact the speed of the algorithm. Considering

that each call to Select has to order the examples in U twice, one for the positive and

one for the negative selection, the cost impact of u′ over T iterations is O(Tu′ log u′).

Therefore, the trade-off between performance and training time needs to be considered,

with a hyperparameter search being recommended.

Variations

A noteworthy variation is proposed by Nigam and Ghani [25], where a few adjustments

are performed to adapt the Co-Training algorithm to a multi-class scenario.

52

Algorithm: 9 Co-Training

Input:
H : X → Y :: Supervised Algorithm Classifier
T ∈ Z

+ :: Number of Iterations
v⃗ ∈ Z

|Y| :: Number of Examples To Select For Each Class
u′ ∈ Z :: Unlabeled Examples Buffer

Output:
C : X → R

|Y| :: Probabilistic Classifier

1. let U ← Sample(U , u′)

2. let L ← L

3. let k ∈ N← 1

4. while k f T and U ̸= ∅ do:

5. let fA(x⃗) : X → R
|Y| ← Train(H,L,XA)

6. let fB(x⃗) : X → R
|Y| ← Train(H,L,XB)

7. let PA ← Select(fA, v⃗,U)

8. let PB ← Select(fB, v⃗,U)

9. L ← L ∪ {(x⃗i, fA(x⃗i)) : x⃗i ∈ PA} ∪ {(x⃗i, fB(x⃗i)) : x⃗i ∈ PB}

10. U ← U ∪ Sample(U , 2
|Y|
∑

i=1

vi)

11. k ← k + 1

12. let C : X → R
|Y| ← fA(x⃗)» fB(x⃗)/||fA(x⃗)» fB(x⃗)||

13. return C

The only difference in the algorithm is the necessity to pass the number of examples

from each class to select. This is done using the vector v⃗, whose ith entry represents the

number of examples to be drawn for class i. A new function Select’2 is used to perform

this new task. Lastly, the sampling to refill the buffer set U needs to restore a total of

2
|Y|
∑

i=1

vi examples.

2A function Select’ is proposed in Appendix B.2

53

3.7 Tri-Training

The Tri-Training algorithm was proposed by Zhou [39], inspired by the Co-Training and

Self-Training methods. The algorithm functions by training three base-classifiers at each

iteration, while selecting new examples to be pseudo-labeled for a classifier as the points

where the other two classifiers agree on a labeling. This allows Tri-Training to be less

restrictive on the type of base-classifiers used, since it lifts the requirement of it being

probabilistic. Furthermore, the agreement-base pseudo-labeling is less computationally

expensive than the Co-Training approach, once it doesn’t require the computation of

probabilities for each example and their ordering so the most confident points can be

selected.

Let fi,t be the classifier i at iteration t. The training set Ti,t of classifier i at iteration

t is constructed as the union of the original labeled set L and the set of pseudo-labeled

examples from U , where the other two classifiers agree on a label. Let this second set be

denoted by Li,t, we have

Li,t = {(x⃗, y) : x⃗ ∈ U , y = fj,t(x⃗) = fk,t(x⃗), i ̸= j ̸= k}. (3.48)

Yielding the final training set for classifier i as

Ti,t = L ∪ Li,t. (3.49)

Now with a training set, we need to check if this training process will yield a better

classifier. If the pseudo-labeling by the other classifiers is correct, then we have a valid

example for the next training loop. Otherwise, we will get a noisy and unhelpful label.

According to Angluin and Laird [3], even accounting for wrongfully labeled examples in

the training set, the learning process can be achieved if enough new examples are used.

Inspired by their work, Zhou [39] shows that the number of examples ℓi needed by classifier

i is

ℓi =
c

ϵ2i (1− 2¸i)2
, (3.50)

where ϵi is the upper-bound fraction of wrongfully labeled examples by the classifier i,

¸i is the upper-bound fraction of wrongfully labeled examples in the training set for i, and

c is a positive constant. In other words, if the training set of classifier i has ℓi examples,

then the error rate will not exceed ϵi.

We then compare the upper-bound of the error between iterations, with the desired

result being ϵi,t < ϵi,t−1.

Isolating the classifier error in Eq. (3.50), we obtain:

54

ϵi,t =

√

c/|L ∪ Li,t|

(1− 2¸i,t)
. (3.51)

First, we need a way to estimate the fraction ¸i,t of wrongfully classified examples in

the training set. Let ¸L be this fraction for the set L, and let ei,t be the wrongfully labeled

examples in Li,t, that is, misclassifications that j and k agreed on. With this we have

the total number of misclassified examples in Ti,t, namely ¸L|L+ ei,t|Li,t|. Therefore, the

desired fraction becomes

¸i,t =
¸L|L|+ ei,t|Li,t|

|L ∪ Li,t|
. (3.52)

Substituting Eq. (3.52) into Eq. (3.51)

ϵi,t =

√

c/|L ∪ Li,t|
(

1− 2
¸L|L|+ ei,t|Li,t|

|L ∪ Li,t|

) . (3.53)

Finally, the inequality that we want to satisfy is

√

c/|L ∪ Li,t|
(

1− 2
¸L|L|+ ei,t|Li,t|

|L ∪ Li,t|

) <

√

c/|L ∪ Li,t−1|
(

1− 2
¸L|L|+ ei,t−1|Li,t−1|

|L ∪ Li,t−1|

) . (3.54)

To solve this inequality we rely on the following proposition:

Proposition 1.7.1: if |Li,t−1| < |Li,t| and ei,t|Li,t| < ei,t−1|Li,t−1|, then inequality (3.54)

is satisfied.

Proof: (see Appendix A.6).

Let |Li,t−1| < |Li,t| be condition 1 and ei,t|Li,t| < ei,t−1|Li,t−1| be condition 2. It is

possible that |Li,t| is big enough to satisfy condition 1 and violate condition 2, depending

on the values of ei,t and ei,t−1. In such cases, we can randomly subsample Li,t to decrease

its size until it satisfies condition 2 while being careful so it remains bigger than Li,t−1.

Reorganizing condition 2 we have:

|Li,t| <
ei,t−1|Li,t−1|

ei,t
(3.55)

We choose the new size ℓ′i,t of Li,t as the biggest integer that still satisfies (3.55).

ℓ′i,t = ∗
ei,t−1|Li,t−1|

ei,t
− 1 (3.56)

Proposition 1.7.2: If |L1,t−1| >
e1,t

e1,t−1 − e1,t
then the new size ℓ′i,t of Li,t will also satisfy

condition 1.

Proof: (see Appendix A.7)

55

With this, we have a way to construct the training set for each classifier and can

guarantee that its error decreases with each iteration.

When dealing with multiple classifier, it is important to guarantee that the classi-

fiers are different enough, otherwise the algorithm will degenerate into the Self-Training

method. In the Co-Training approach, the diversity in the classifiers is achieved from the

two different training sets, or views, used. To achieve this diversity in Tri-Training, we

create the first training set for the classifiers by a bootstrap sampling of the labeled set

L. The classifiers trained on these sets will be sufficiently different, and will be improved

at every iteration by the proposed algorithm.

56

Algorithm: 10 Tri-Training

Input:
H : X → Y :: Supervised Algorithm Classifier

Output:
C : X → Y :: Classifier

1. for i← 1 to 3 do:

2. let Ti,0 ← BootstrapSample(L)

3. let fi,0 ← Train(H, Ti,0)

4. let ei,0 ∈ R← 0.5, ℓi,0 ∈ N← 0, ui ∈ Z← 1

5. while (u1 = 1 or u2 = 1 or u3 = 1) do:

6. for i← 1 to 3 do:

7. ui ← 0

8. let ei,t ∈ R← Error(fj,t, fk,t,L)

9. if ei,t < ei,t−1 do:

10. let Li,t ← {(x⃗, y) : x⃗ ∈ U , y = fj,t−1(x⃗) = fk,t−1(x⃗), i ̸= j ̸= k}

11. let ℓi,t ← |Li,t|

12. if ℓi,t−1 = 0 do ℓi,t−1 ← +ei,t/(ei,t−1 − ei,t) + 1,

13. if ℓi,t−1 < ℓi,t do:

14. if ei,tℓi,t < ei,t−1ℓi,t−1 do ui ← 1

15. else if ℓi,t−1 >
ei,t

ei,t−1 − ei,t
do:

16. Li,t ← Subsample(Li,t, +ei,t−1ℓi,t−1/ei,t − 1,)

17. ui ← 1

18. for i← 1 to 3 do:

19. if ui = 1 do fi,t ← Train(H,L ∪ Li,t)

20. if ui = 0 do fi,t ← fi,t−1

21. let C : X → Y ← argmax
y ∈ Y

∑

fi,t(x⃗)=y
i∈{1,2,3}

1

22. return C

The algorithm starts by creating the initial training set from a bootstrapping [9] of

57

L, the function BootstrapSample3 is called to perform this task. Next, we set the

initial classifier error rate ei,0 to its maximum theoretical value 0.5, and the size of the

pseudo-label set to 0.

The main loop starts and will run while all three classifiers are not updated within

a single loop. For each classifier we start by setting a variable ui to 0 to signal if the

classifier will be updated. Here we need a way to estimate the error rate of every pair

of classifiers. In his work, Zhou [39] suggests that assuming the unlabeled examples hold

the same distribution as the labeled ones, we can estimate this error only by the labeled

dataset. This is done by calling the function Error4.

With the new error value, we check if it’s smaller than the error of the previous

iteration. If this check fails, we continue to the beginning of the next iteration. Otherwise,

we construct the pseudo-labeled dataset Li,t for each classifier and calculate its size ℓi,t.

If we’re on the first iteration, then the previous value of ℓ will be zero as set on line 4,

we then update it to the smallest integer that still satisfies the condition in Proposition

1.7.2.

To determine if the new dataset is to be used to train a new classifier, we first check

if condition 1 (ℓi,t−1 < ℓi,t) is satisfied and next condition 2 (ei,tℓi,t < ei,t−ℓi,t−1). If both

are satisfied, we signal that a new classifier can be trained from the new set by setting

ui equal to 1. However, if condition 2 is initially violated, we can try to subsample Li,t

into an appropriate size. For this to be possible, we check if the condition on Proposition

1.7.2 is satisfied. If so, we call the function Subsample5 that will receive a set Li,t and

sample +ei,t−1ℓi,t−1/ei,t − 1,) elements without reposition from it, updating ui right after.

Once we calculated Li,t and ui, we train a new classifier i from the training set L∪Li,t

if ui = 1. Otherwise, the dataset would lead to a worst classifier, so we maintain the

previous one for the next iteration.

Finishing the main loop, we construct the final classifier C as the majority vote from

the three classifiers. Here we can assume that for a multi-classification problem, if each

classifier gives a different label, a random one is chosen.

Convergence

The algorithm is designed to guarantee that a classifier i, at iteration t, has a bounded

error of ϵi,t. Therefore, at each loop, an improved classifier is trained or the previous one

is maintained, assuring the process is consistent and converging to a better classifier.

Hyperparameters

The Algorithm receives no hyperparameters beyond the choice of base classifier H.

3See Appendix B.3.
4See Appendix B.4.
5see Appendix B.5.

58

Variations

As a part of the wrapper family, the Tri-Training algorithm supports the natural variations

that arise from different choices of base classifiers. In his work, Zhou [39] uses J4.8 decision

trees, BP neural networks and Naive Bayes, showing promising results with Tri-Training

performing better than Co-Training and Self-Training on a number of datasets.

59

3.8 TSVM

The Transductive Support Vector Machine algorithm was initially proposed by Vapnik

[35], and improved upon by Joachims [19]. This method behaves similarly to wrapper

methods, since it uses an underlying supervised algorithm, while incorporating unlabeled

data in the training process through a pseudo-labeling process.

The standard soft-margin inductive SVM for a binary classification problem is given

by the following minimization problem:

min
w⃗,b,À1,...,Àℓ

(

1

2
||w⃗||2 + C

ℓ
∑

i=1

Ài

)

, (3.57)

subject to: ∀ℓi=1((yi(w⃗ · x⃗i + b) g 1− Ài) ' (Ài > 0)),

where w⃗ is an orthogonal vector to the margin hyperplane, b is a real constant that

characterizes the plane’s offset from the origin, Ài is a slack variable associated with the

point (x⃗i, yi), and C is a positive real constant.

The main idea behind TSVM is to solve the problem 3.57 on the labeled dataset, and

use this solution to pseudo-label the set U . With a new augmented training set composed

of the original labeled set and the new pseudo-labeled set, we find the new maximum

margin by solving a slight variation of 3.57 given by:

min
w⃗,b,À1,...,Àℓ+u

(

1

2
||w⃗||2 + C

ℓ
∑

i=1

Ài + C ′

ℓ+u
∑

j=ℓ+1

Ài

)

, (3.58)

subject to: ∀ℓ+u
i=1 ((yi(w⃗ · x⃗i + b) g 1− Ài) ' (Ài > 0)),

where we include the slack variables for the pseudo-labeled points with the constant C ′.

This allows the algorithm to control the importance of the label and unlabeled examples.

In order to control accuracy metrics, such as recall and precision, Joachims [19] pro-

poses the number of desired positive labels to be passed as a hyperparameter, allowing

new constants C ′
− and C ′

+ to be defined in the optimization problem to accommodate the

ratio of positive and negative examples. The final optimization problem for the TSVM is

given by:

min
w⃗,b,À1,...,Àℓ+u

(

1

2
||w⃗||2 + C

ℓ
∑

i=1

Ài + C ′
+

∑

yi=1

Ài + C ′
−

∑

yi=−1

Ài

)

, (3.59)

subject to: ∀ℓ+u
i=1 ((yi(w⃗ · x⃗i + b) g 1− Ài) ' (Ài > 0)).

The problem (3.59) is encapsulated by the function SolveSVM(T , C, C ′
−, C

′
+), yield-

ing the solution (w⃗, b, À⃗), where T is the training set, and À⃗ ∈ R
ℓ+u is the vector where Ài

60

is the slack variable of example x⃗i.

Algorithm: 11 TSVM (Binary)

Input:
C ∈ R :: Weight of the Slack Variables for Labeled Examples
C ′ ∈ R :: Weight of the Slack Variables for Unlabeled Examples
p ∈ N :: Number of Unlabeled Points to Receive a Positive Label

Output:
L ¢ X × Y :: Pseudo-labeled Dataset

1. let w⃗ ∈ R
ℓ, b ∈ R, À⃗ ∈ R

ℓ+u

2. w⃗, b, À⃗ ← SolveSVM(L, C, 0, 0)

3. let V ∈ R
u×2 ← Vi = (x⃗i, (w⃗ · x⃗i + b)), x⃗i ∈ U

4. V ← Order(V, Vi2)

5. let L ¢ X ×Y ← {(x⃗i, yi) : x⃗i ∈ V1, (yi = 1 ' 1 f i f p) ((yi = −1 ' i > p)}

6. let C ′
+ ∈ R←

p

u− p
· 10−5, C ′

− ∈ R← 10−5

7. let Iu ∈ N← {ℓ+ 1, . . . , ℓ+ u}

8. while (C ′
− < C ′) ((C ′

+ < C ′) do:

9. w⃗, b, À⃗ ← SolveSVM(L ∪ L, C, C ′
−, C

′
+)

10. while ∃i, j ∈ Iu((yiyj < 0) ' (Ài > 0) ' (Àj > 0) ' (Ài + Àj > 2)) do:

11. L ← (L ∪ {(xi,−yi), (xj,−yj)}) \ {(xi, yi), (xj, yj)}

12. w⃗, b, À⃗ ← SolveSVM(L ∪ L, C, C ′
−, C

′
+)

13. C ′
− ← min{2C ′

−, C
′}, C ′

+ ← min{2C ′
+, C

′}

14. return L

The algorithm begins by solving a inductive SVM over the labeled dataset L. Next, we

create and order the pairs (x⃗i, (w⃗ · x⃗i+ b)) by decreasing order of their second component,

and construct the pseudo-labeled set L by setting the label yi = 1 for the first p points in

V and y = −1 for the last u− p.

The constants C ′
+ and C ′

− are initiated to small values. Inspired by Joachims [19], we

use 10−5, with the value of C ′
+ multiplied by the ratio of positive to negative examples.

These values will be progressively incremented with each iteration until they reach the

value C ′.

The main loop starts by solving the altered SVM problem (3.59) on the training set

61

L ∪ L. We then search for pairs of points in the pseudo-labeled dataset with opposite

labels (yiyj < 0), where both have a positive influence in the cost Ài > 0 ' Àj > 0, and a

conjoined influence above a certain threshold - here we use Ài+Àj > 2 [19]. For every such

pair we swap the labels and retrain the model to find a new margin. When exhausted,

we increase the cost of mislabeling by increasing C ′
+ and C ′

− and repeat the process.

Convergence

To show the algorithm converges we just need to prove that the inner and outer while

loops stops at a finite number of iterations.

Proposition 1.8.1: The inner loop of the algorithm stops at a finite number of loops.

Proof: (see Appendix A.8)

Proposition 1.8.2: The outer loop of the algorithm stops at a finite number of loops.

Proof: Since by Proposition 1.8.1 the inner loop converges, and the condition of the

outer loop only depends on the values of C ′
− and C ′

+ which are doubling every iteration,

the loop breaks when the last of the two constants reach a value higher than C ′. Math-

ematically, let n ∈ N be the smallest number of iterations that satisfy this condition, we

have:

2n ·min{C ′
−, C

′
+} g C ′ (3.60a)

n g log2

(

C ′

min{C ′
−, C

′
+}

)

(3.60b)

n = ∗log2

(

C ′

min{C ′
−, C

′
+}

)

. (3.60c)

■

Hyperparameters

The algorithm receives three hyperparameters as inputs. The constants C and C ′ are

positive real numbers designed to attribute different levels of importance to labeled and

unlabeled misclassification, while p is the number of unlabeled examples to receive a

positive pseudo-label.

Variations

The most common variation of the algorithm is the adaptation to remove the hyperpa-

rameter p and allow the method to freely classify the unlabeled examples.

62

Algorithm: 12 TSVM 2 (Binary)

Input:
C ∈ R :: Weight of the Slack Variables for Labeled Examples
C ′ ∈ R :: Weight of the Slack Variables for Unlabeled Examples

Output:
L ¢ X × Y :: Pseudo-labeled Dataset

1. let w⃗ ∈ R
ℓ, b ∈ R, À⃗ ∈ R

ℓ+u

2. w⃗, b, À⃗ ← SVM(L, C, 0)

3. let L ¢ X × Y ← {(x⃗i, yi) : x⃗i ∈ U , yi = sign(w⃗ · x⃗i + b)}

4. let Iu ∈ N← {ℓ+ 1, . . . , ℓ+ u}

5. while (C ′ < C) do:

6. w⃗, b, À⃗ ← SVM(L ∪ L, C, C ′)

7. while ∃i, j ∈ Iu((yiyj < 0) ' (Ài > 0) ' (Àj > 0) ' (Ài + Àj > 2)) do:

8. L ← (L ∪ {(xi,−yi), (xj,−yj)}) \ {(xi, yi), (xj, yj)}

9. w⃗, b, À⃗ ← SVM(L ∪ L, C, C ′)

10. C ′ ← min{2C ′, C}

11. return L

Where the function SVM solves the minimization problem (3.58).

63

3.9 LapSVM

The Laplacian Support Vector Machine (LapSVM) was first proposed by Belkin et al. in

2006 [4] as an adaptation of the well known SVM algorithm to handle unlabeled data.

Take the standard SVM minimization problem using the hinge loss function:

f ∗ = argmin
f∈HK

1

ℓ

ℓ
∑

i=1

(1− yif(x⃗i))+ + µA||f ||
2
K , (3.61)

where (1− yif(x⃗i))+ = max{0, 1− yif(x⃗i)} is the hinge loss function, K : X ×X → R

is a Mercer kernel and HK is the associated Reproducing Kernel Hilbert Space (RKHS) of

functions X → R with a given norm || · ||K . The expression µA||f ||
2
K is then a regularizing

term to impose smoothness [4].

Furthermore, by the classical Representer Theorem, the above equation can be repre-

sented by a linear combination of the Kernel function evaluated on the training examples.

f ∗(x⃗) =
ℓ
∑

i=1

³iK(x⃗i, x). (3.62)

This turns the problem into a search for the coefficients ³i. In their approach, Belkin

et al. [4] shows that the standard SVM minimization problem:

min
f∈HK ,Ài∈R

1

ℓ

ℓ
∑

i=1

Ài + µA||f ||
2
K , (3.63a)

s.t. yif(x⃗i) g 1− Ài, i = 1, . . . , ℓ (3.63b)

Ài g 0, i = 1, . . . , ℓ, (3.63c)

can be rewritten through the Lagrange multiplies ´ = [´1, . . . , ´ℓ]
T as

³ =
Y ´∗

2µA
, (3.64)

where

Y ∈ Yℓ×ℓ =







Yij = yi if i = j

Yij = 0 if i ̸= j
, (3.65)

Q = Y

(

Y

2µA

)

Y, (3.66)

´∗ = max
´∈Rℓ

ℓ
∑

i=1

´i −
1

2
´TQ´. (3.67)

64

Now we turn to the adaptation of the given problem to the semi-supervised setting.

The way the information of unlabeled examples are absorbed into the training process

is through another regularizing term µI ||f ||
2
I that encodes the intrinsic structure of the

distribution of the inputs in X . A natural choice for the term ||f ||2I is
∫

x∈M
||∇Mf ||2dPX

[4], where M ¢ R
n is a compact sub-manifold, ∇Mf is the gradient of f in M, and PX

is the probability distribution of the inputs x. The regularizing term is approximated as:

µI

∫

x∈M

||∇Mf ||2dPX ≈
µI

(u+ ℓ)2

ℓ+u
∑

i

ℓ+u
∑

i

(f(x⃗i)− f(x⃗j))
2Wij, (3.68)

where W is the similarity matrix of the data. We can also write it in matrix notation

µI
(u+ ℓ)2

ℓ+u
∑

i

ℓ+u
∑

i

(f(x⃗i)− f(x⃗j))
2Wij =

µI
(u+ ℓ)2

fTLf , (3.69)

where f = [f(x⃗1), . . . , f(x⃗ℓ+u)]
T and L = D−W is the graph Laplacian with D being

the diagonal matrix given by Dii =
ℓ+u
∑

j=1

Wij. The minimization problem for the graph

Laplacian is then:

f ∗ = argmin
f∈HK

1

ℓ

ℓ
∑

i=1

(1− yif(x⃗i))+ + µA||f ||
2
K + µI ||f ||

2
I , (3.70a)

f ∗ = argmin
f∈HK

1

ℓ

ℓ
∑

i=1

(1− yif(x⃗i))+ + µA||f ||
2
K +

µI
(u+ ℓ)2

fTLf . (3.70b)

Similar to the standard SVM problem, Belkin et al. [4] shows that the minimization

problem can be solved through Lagrange multipliers as:

´∗ = max
´∈Rℓ

ℓ
∑

i=1

´i −
1

2
´TQ´, (3.71)

s.t.
ℓ
∑

i=1

´iyi = 0 and 0 f ´i f
1

ℓ
, i = 1, . . . , ℓ, (3.72)

where

Q = Y JK(2µAI + 2
µI

(ℓ+ u)2
LK)−1JTY, (3.73)

Y =







Yij = yi if i = j

Yij = 0 if i ̸= j
(3.74)

65

J ∈ R
ℓ×(ℓ+u) =







Jij = 1, if i = j and j f ℓ

Jij = 0, otherwise
, (3.75)

K ∈ R
(ℓ+u)×(ℓ+u) =

{

Kij = K(x⃗i, x⃗j). (3.76)

The solution for ´∗ is then used to calculate the coefficients ³i through:

³ = (2µAI + 2
µI

ℓ+ u

2

LK)−1JTY ´∗, (3.77)

with the final solution being given by:

f ∗(x⃗) =
ℓ+u
∑

i=1

³iK(x⃗, x⃗i). (3.78)

66

Algorithm: 13 LapSVM

Input:
W ∈ R

(ℓ+u)×(ℓ+u) :: Similarity Matrix
K : X × X → R :: Kernel Function
µA ∈ R :: Regularization constant for the ambient space
µI ∈ R :: Regularization constant for the input space

Output:
C : X → Y :: Classifier

1. let D ∈ R
(ℓ+u)×(ℓ+u) ← Dij =







ℓ+u
∑

i=1

Wij, if i = j

0, if i ̸= j

2. let K ∈ R
(ℓ+u)×(ℓ+u) ← Kij = K(x⃗i, x⃗j)

3. let L ∈ R
(ℓ+u)×(ℓ+u) ← D −W

4. let Y ∈ R
ℓ×ℓ ← Yij =

{

yi, if i = j

0, if i ̸= j

5. let J ∈ R
ℓ×(ℓ+u) ← Jij =

{

1, if i = j and j f ℓ

0, otherwise

6. let I ∈ R
(ℓ+u)×(ℓ+u) ← Iij =

{

1, if i = j

0, if i ̸= j

7. let Q ∈ R
ℓ×ℓ ← Y JK

(

2µAI + 2
µI

(ℓ+ u)2
LK

)−1

JTY

8. let ´∗ ∈ R
ℓ×1 ← Solve

(

max
ℓ
∑

i=1

´i −
1

2
´TQ´,

ℓ
∑

i=1

´iyi = 0, 0 f ´i f
1

ℓ

)

9. let ³ ∈ R
ℓ+u ←

(

2µAI + 2
µI

(ℓ+ u)2
LK

)−1

JTY ´∗

10. let f ∗(x⃗) : X → R←
ℓ+u
∑

i=1

³iK(x⃗i, x⃗)

11. let C(x⃗) : X → Y ← sign(f ∗(x⃗))

12. return C

The algorithm is straightforward, with a sequence of definitions and calculations of the

described matrices, and then the optimization problem of finding ´∗ so the coefficients ³i

can be finally calculated and the classifier C defined.

67

Convergence

The convergence of the LapSVM depends on the optimization problem behind ´∗, since

the remaining of the algorithm is simply calculating different matrices.

Hyperparameters

The LapSVM, like graph-based models, uses a similarity matrix W to model the similarity

between points. This is used to approximate the regularizing term ||f ||2I as shown. The

algorithm also requires a kernel function K, and the constants µA and µI that controls

the penalization of f in the ambient space and the input space X respectively.

Variations

Since the algorithm requires the calculation of the inverse of the (ℓ+u)×(ℓ+u) matrix K,

which has time complexity O((ℓ+u)3), the training process can be slow for large datasets.

To address this, Belkin et al. [4] proposes the equation a variation of the LapSVM where

f ∗ = wTx is used instead of Eq. (3.62).

68

3.10 SSGMM

The Semi-Supervised Gaussian Mixture Model (SSGMM) algorithm was initially proposed

by Shahshahani and Landgrebe in 1994 [30]. The algorithm has in essence the same

structure of a simple supervised expectation maximization (EM) algorithm for a mixture

of Gaussians. The difference only arises in the formula for updating the values of the

mixture coefficients Ã, the mean vectors µ⃗, and the Covariance matrices Σ. Since the

SSGMM is a generative algorithm, our goal is to model the input space X itself, that

is, we want to determine the likelihood that a point x⃗ is observed, or P (x⃗). Let the

distribution of the input space be a mixture of |Y| multivariate Gaussians (one for each

class), then our desired probability is given by:

P (x⃗|Θ) =
∑

c∈Y

ÃcN (x⃗|µ⃗c,Σc), (3.79)

where Θ = {Ã1, µ⃗1,Σ1, . . . , Ã|Y|, µ⃗|Y|,Σ|Y|} are all the Gaussian parameters, with Ãi ∈

R, µ⃗i ∈ R
n, and Σi ∈ R

n×n, where n is the dimension of the point x⃗i. Lastly, the term

N (x⃗|µ⃗,Σc) is the multivariate Gaussian distribution with mean vector µ⃗c and covariance

matrix Σc. The learning procedure is then stated as follows: Let there be the set of

labeled examples L = {(x⃗1, y1), . . . , (x⃗ℓ, yℓ)} of size ℓ and the set U = {x⃗ℓ+1, . . . , x⃗ℓ+u}

with u unlabeled examples, and let Sc = {x⃗ : (x⃗, c) ∈ L} be the set of all inputs from the

labeled dataset with the label c. We perform an iterative process of updating the values

of Ãc, µ⃗c,Σc for every class c, until convergence, and using the following equations [30]:

ri,c =
ÃcN (x⃗ℓ+i|µc,Σc)
∑

j∈Y

ÃjN (x⃗ℓ+i|µj,Σj)
, (3.80)

Ãc =
1

u

u
∑

i=1

ri,c, (3.81)

µ⃗c =
1

uÃ′
c + |Sc|

(

u
∑

i=1

ri,cx⃗ℓ+i +
∑

x⃗∈Sc

x⃗

)

, (3.82)

Σc =

u
∑

i=1

ri,c(x⃗ℓ+i − µ⃗c)(x⃗ℓ+i − µ⃗c)
T +

∑

x⃗∈Sc

(x⃗− µ⃗c)(x⃗− µ⃗c)
T

uÃ′
c + |Sc|

, (3.83)

where ri,c is our current estimate of the probability of a point x⃗i having a class c, and

we represent the previous value of Ã, µ⃗ or Σ by Ã′, µ⃗′ and Σ′, respectively.

69

Algorithm: 14 SSGMM

Input:
Ã1, . . . , Ã|Y| ∈ R :: Initial estimation of the mixture coefficients for each class
µ⃗1, . . . , µ⃗|Y| ∈ R

n :: Initial estimation of the average vectors
Σ1, . . . ,Σ|Y| ∈ R

n×n :: Initial estimation of the Covariance matrices

Output:
C : X → Y :: Classifier

1. for c← 1 to |Y| do:

2. Sc ← {x⃗ ∈ X : (x⃗, c) ∈ L}

3. Ã′
c ← −Ãc, µ⃗

′
c ← −µ⃗c, Σ

′
c ← −Σc

4. while ∀j∈Y
(

(Ãj ̸= Ã′
j) ((µ⃗j ̸= µ⃗′

j) ((Σj ̸= Σ′
j)
)

do:

5. for i← 1 to u do:

6. for c ∈ Y do:

7. ri,c ←
ÃcN (x⃗ℓ+i|µc,Σc)
∑

j∈Y

ÃjN (x⃗ℓ+i|µj,Σj)

8. for c ∈ Y do:

9. Ã′
c ← Ãc, µ⃗

′
c ← µ⃗c, Σ

′
c ← Σc

10. Ãc ←
1

u

u
∑

i=1

ri,c

11. µ⃗c ←
1

uÃ′
c + |Sc|

(

u
∑

i=1

ri,cx⃗ℓ+i +
∑

x⃗∈Sc

x⃗

)

12. Σc ←

u
∑

i=1

ri,c(x⃗ℓ+i − µ⃗c)(x⃗ℓ+i − µ⃗c)
T +

∑

x⃗∈Sc

(x⃗− µ⃗c)(x⃗− µ⃗c)
T

uÃ′
c + |Sc|

13. let C(x⃗) : X → Y ← argmax
y
N (x⃗|µ⃗y,Σy)

14. return C

We start the algorithm by defining the sets Sc for each class and starting the variables

that will retain the previous values of Ã, µ⃗ and Σ. Here we set them to be the negative

of their respecting starting values to assure the main loop will start. We then set the

convergence criteria as when no difference is noted among the previous and current value

of the parameters. The main loop then starts by estimating the probabilities of each

unlabeled point i having the class c, that is ri,c. We then update the variables holding

70

the previous values of the parameters and update the parameters themselves according

to Eq. (3.81), (3.82) and (3.83).

Once the algorithm converges, we define the classifier as a function of a point x⃗ that

selects the class that has the higher likelihood of generating the point x⃗.

Convergence

According with McLachlan et al. [23], the EM algorithm is guaranteed to increase the

desired likelihood at every iteration. However, it need not converge to a global maximum,

being possible that it converges to a local maximum or a saddle point.

Hyperparameters

The only hyperparameters the algorithm requires are the initial estimates of the mixture

coefficients Ãi, the average vectors µ⃗i and the covariance matrices Σi for each class i.

According to Shahshahani and Landgrebe [30], a reasonable set of starting values can be

obtained by using the labeled examples only.

Variations

The variations of the SSGMM algorithm are obtained when different assumptions or type

of distributions are used. In particular, in Shahshahani and Landgrebe [30] discusses

alternatives like the non-parametric case (not Gaussians), or a semi-parametric approach

where some assumptions of the parametric case still holds, and a different set of equations

for updating the values Ã, µ⃗ and Σ are derived.

71

Chapter 4

Methodology

4.1 OpenML-CC18

OpenML is a free online framework for the study of Machine Learning, containing datasets,

algorithms and experiments designed to help further knowledge and study of the field [34].

Among the benchmark suites offered, the OpenML-CC18 [6] is a collection of 72 cu-

rated datasets for classification tasks, with the following admission criteria [28]:

• No artificial datasets;

• No dataset is a subset of a larger datasets;

• No dataset is a binarization of other datasets;

• No dataset is perfectly predictable by a single feature;

• 500 f Number of Instances f 10000;

• 2 f Number of Classes;

• At least 20 examples per class;

• No class is less than 5% of the total number of examples;

• Number of features after auto-encoding < 5000.

The datasets are distributed by number of examples and by number of features (after

auto-encoding) according to Figure 4.1.

72

Figure 4.1. Distribution of datasets by instances and features.
Source: Adapted from [6].

4.2 LAMDA-SSL

LAMDA-SSL is a Python library for the study and applications of semi-supervised learn-

ing algorithms, encompassing modules for data processing, data augmentation, hyperpa-

rameter search, model training and evaluation, among others. The framework contains 30

semi-supervised algorithms implemented in Python, 12 of which are statistical learning

methods and 18 are deep learning models, being able to perform classification, regression

and clustering tasks in a wide variety of data types, such as text, image, graph and tabular

data [18].

The algorithms of interest are the nine statistical learning methods for classification

tasks, according to Figure 4.2.

Figure 4.2. Statistical learning algorithms in LAMDA-SSL.
Source: [17].

73

4.3 General Setup

The first step of the research consists in collecting implementations of semi-supervised

algorithms, as well as the datasets to be used. We suggest the use of the Python library

LAMDA-SSL (4.2) with 9 algorithms based on statistical Machine Learning, as well as

the Self-Training implementation by the Scikit-Learn [27] Python library. The diversity

of algorithms in the proposed repository fills every category of interest presented in Figure

(1.1), except the perturbation-based category, for which no satisfactory implementation

was found. The categories presented in Figure (1.1) are filled in the following manner:

• Self-Training: Self-Training

• Co-Training: Co-Training, Tri-Training

• Boosting: Assemble, SemiBoost

• Maximum-margin: LapSVM

• Perturbation-based:

• Manifolds: LapSVM

• Generative Models: SSGMM

• Transductive: TSVM, Label Spreading, Label Propagation

with LapSVM being an intersectional model from the maximum-margin approach and

manifold regularization, and disregarding unsupervised-preprocessing since it’s not the

focus of the research.

For the data we propose the OpenML-CC18 collection of 72 curated datasets (4.1),

37 of them being for binary classification and the remaining 35 for multi-class with a well

distributed class proportion. We restrict the study to a subset of 44 of these datasets,

selected by size in order to allow the experiments to run in a manageable time frame.

Two categories of experiments are carried, inductive and transductive.

4.4 Inductive Setup

The inductive setup is characterized by two consecutive partitions of the dataset. We

start with an initial 75%-25% split for the training and test examples respectively. Next,

we adapt the dataset to the semi-supervised setting with a further split of the training set

between two parts. One remains untouched and will be regarded as the labeled dataset,

while the other has their labels removed to simulate unlabeled points. The new labeled

dataset is used to do a hyperparameter search, along with a list of possible values for

74

each desired hyperparameter to be evaluated. Once all the previous steps are finished,

the training can be conducted using the labeled and unlabeled data, along with the

optimal hyperparameters found. This results in the desired model, and the training time

is measured for future comparisons. Lastly, we evaluate the model in the test data to

obtain the positive, global and negative accuracy. A diagram of this process is presented

in Figure 4.3.

Labeled Dataset

Test Data (25%)

Train Data (75%)

Data Split 1

Labeled Data

Unlabeled Data

Ratio

Seed Data Split 2

Hyperparameters

Hyperparameter Search

Model

Training TimeTraining

Positive Accuracy

Negative Accuracy

Global AccuracyEvaluation

Algorithm

Figure 4.3. Inductive setup.

Two categories of experiments are performed in the described setting. The first con-

sists in running only multi-class datasets in all algorithms that are supported by this

framework. The second is a binary classification setup, where all algorithms are run in

the originally binary datasets, as well as the multi-class sets after a forced binarization.

This is achieved by selecting the most frequent class as the positive label, and all others

are grouped as the negative label. This is done to secure a reasonable amount of positively

labeled examples and prevent the models from degenerating into classifying everything

into the negative category.

The binary experiments are performed for all 44 datasets, and 9 of the 10 algorithms,

leaving the TSVM method out for its intrinsically transductive nature. We also note

that even though the Label Spreading and Label Propagation algorithms are classified

as transductive, they are frequently used in inductive settings, justifying the decision to

include them in the inductive experiments as well.

For the multi-class, we can only carry the experiments in 17 out of the 44 datasets, since

they represent the multi-class subset of our selection. As the for algorithms tested, we

used 7 out of the 10 proposed, since the Assemble and SemiBoost methods are appropriate

only for binary classification, and the TSVM doesn’t qualify for the inductive setting as

discussed before.

The final difference between the binary and multi-class settings, is in the meaning of

the positive and negative examples. Here we defined the positive class for the binary

experiments, commonly referred as the target, as the least populous class, while the

75

negative is the most populous one. The positive accuracy is then defined as the proportion

of correctly labeled positive examples, and the negative accuracy is equivalently defined as

the proportion of correctly labeled negative ones. The positive and negative accuracy are

commonly named as sensitivity and specificity, respectively. However, since a multi-class

dataset with n classes would have n such accuracies, we define the positive accuracy of

a multi-class model as accuracy of the least frequent class, and the negative accuracy as

the accuracy of the most frequent class, analogously to the binary classification. Thus,

disregarding the intermediary classes which are only considered in the global accuracy

measurement.

4.5 Transductive Setup

The transductive setup differs from the inductive in the main goal of the learning task.

Here we want the best possible classification for the unlabeled data, something that is

potentially undesirable in an inductive task, since it can signal an overfitting of the training

data. The setup begins with a dataset, a unlabeled ratio and a seed used for reproducibility

purposes. The dataset is then split in two parts, one will remain unaffected and will serve

as the labeled dataset, and the other will have its labels removed to simulate the unlabeled

dataset – these labels will be saved for posterior calculations of accuracy. The labeled set

is then used for a hyperparameter search, and the training is conducted with the optimal

hyperparameters, the labeled dataset and the unlabeled dataset. Once the training is

over, the time elapsed is registered, and the model is evaluated. Here we unlabeled

dataset fulfills the role of the test set, with the posterior saved labels being the correct

labels.

Labeled Dataset

Labeled Data

Unlabeled Data

Ratio

Seed Data Split

Hyperparameters

Hyperparameter Search

Model

Training TimeTraining

Positive Accuracy

Negative Accuracy

Global AccuracyEvaluation

Algorithm

Figure 4.4. Transductive setup.

76

The experiments are carried in the same fashion as the binary setting for the induc-

tive. This decision was made since it enable us to use all the 10 proposed algorithms –

including the exclusively binary TSVM, Assemble and SemiBoost – as well as all the 44

datasets, permitting a more meaningful comparison between the methods. Furthermore,

even though only the TSVM, Label Spreading and Label Propagation are naturally trans-

ductive, this setting is easily adapted to any semi-supervised method, since they share as a

basic training premise the search for the best possible labels for the given unlabeled points.

This setting is then carried for the originally binary datasets and the binarized multi-class

datasets with the most frequent class as the positive and all the others grouped as the

negative. The positive and negative accuracy retains their previously discussed meanings.

4.6 Result Analysis

Given the inductive and transductive setup described, a complete experiment consists of

running a setup for every possible combination (respecting binary and multi-class limita-

tions) of dataset, algorithm, ratio and seed, generating entries of the form

n dataset algorithm seed ratio time global accuracy + accuracy - accuracy

for the n-th entry. These results are compiled and analyzed for the three proposed exper-

iments, namely inductive binary, inductive multi-class and transductive.

Since semi-supervised tasks are sensitive to the ratio between labeled and unlabeled

data, we propose four ratios of 0.25, 0.5, 0.75 and 0.9 of unlabeled data to evaluate different

scenarios of data availability. Moreover, we use the same three seeds for all experiments,

generating three respective measurements of time and accuracies for each combination of

dataset, algorithm and ratio. These three measurements are then averaged and the result

is used for the next step of statistical inference.

For the result analysis we perform a Wilcoxon signed-rank test for each separate pair

of performance metric and ratio. A group of observations is composed of the chosen

metric and ratio value for an algorithm, for each dataset, with each group being paired

one-to-one by the dataset. This test is non-parametric and ranked, allowing for the

assessment of global and pairwise differences between all groups, as well as the average

rankings of each algorithm, making possible observations like a consistent superior or

inferior performance of a method, all while not assuming a normal distribution of the

data. The Holm p-correction technique [13] is applied to avoid false positives, since the

comparison is between a sufficiently large number of pairs of algorithms, and such errors

would be expected.

77

Chapter 5

Results

In this section we present the results of the inductive binary, inductive multi-class and

the transductive setup from experiments run as describe in out methodology. We initially

present a table of average ranks among each algorithm. This is done by ordering the

algorithms for each dataset in ascending order, and assigning a rank according to its

position - with ties being solved by averaging the upper and lower ranks, e.g., 1.5 when

two algorithms tie for first. Following this information, we present a table containing the

p-values1 for each pairwise comparison among algorithms to access the significance of the

result. Each entry in this table is colored green if the result is significant (p f 0.05) or

red if it’s not. The results of a given setup is further divided into the global, positive and

negative accuracy. After presenting the data, we discuss the results.

5.1 Inductive

5.1.1 Binary

Global Accuracy

Ratio ASB LabelS LapSVM SemiB LabelP SelfT CoT TriT SSGMM

0.25 2.68 3.09 4.91 4.49 3.80 2.54 4.09 3.43 4.79

0.50 2.52 3.30 5.23 4.08 3.55 3.02 4.16 3.89 5.11

0.75 2.52 3.52 5.46 2.38 3.45 2.95 4.61 3.78 4.70

0.90 2.61 3.61 5.89 2.62 3.84 3.56 4.34 3.89 5.09

Table 5.1: Average rank of algorithms per ratio (Inductive binary global accuracy).

1For a more concise chapter, some tables can be found in Appendix C.

78

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 0.286 0.024 0.006 0.003 1.000 0.575 1.000 0.000

LabelS 0.286 - 0.581 0.039 0.008 1.000 1.000 0.882 0.000

LabelP 0.024 0.581 - 0.225 0.117 1.000 0.581 0.156 0.000

LapSVM 0.006 0.039 0.225 - 1.000 0.286 0.071 0.003 1.000

SemiB 0.003 0.008 0.117 1.000 - 0.156 0.225 0.027 1.000

SelfT 1.000 1.000 1.000 0.286 0.156 - 0.293 0.148 0.028

CoT 0.575 1.000 0.581 0.071 0.225 0.293 - 0.766 0.457

TriT 1.000 0.882 0.156 0.003 0.027 0.148 0.766 - 0.125

SSGMM 0.000 0.000 0.000 1.000 1.000 0.028 0.457 0.125 -

Table 5.2: Pairwise comparison p-values (25% Inductive binary global accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 0.509 0.419 0.004 0.066 1.000 0.014 0.074 0.001

LabelS 0.509 - 1.000 0.024 0.770 1.000 0.048 1.000 0.000

LabelP 0.419 1.000 - 0.017 1.000 1.000 0.174 1.000 0.001

LapSVM 0.004 0.024 0.017 - 0.012 0.770 1.000 0.776 1.000

SemiB 0.066 0.770 1.000 0.012 - 1.000 1.000 1.000 0.129

SelfT 1.000 1.000 1.000 0.770 1.000 - 0.985 1.000 0.027

CoT 0.014 0.048 0.174 1.000 1.000 0.985 - 1.000 0.985

TriT 0.074 1.000 1.000 0.776 1.000 1.000 1.000 - 0.187

SSGMM 0.001 0.000 0.001 1.000 0.129 0.027 0.985 0.187 -

Table 5.3: Pairwise comparison p-values (50% Inductive binary global accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 0.056 0.156 0.001 1.000 1.000 0.464 1.000 0.001

LabelS 0.056 - 1.000 0.019 0.002 1.000 1.000 1.000 0.000

LabelP 0.156 1.000 - 0.003 0.036 1.000 1.000 1.000 0.001

LapSVM 0.001 0.019 0.003 - 0.000 0.110 0.019 0.011 1.000

SemiB 1.000 0.002 0.036 0.000 - 1.000 0.073 0.863 0.000

SelfT 1.000 1.000 1.000 0.110 1.000 - 0.911 1.000 0.031

CoT 0.464 1.000 1.000 0.019 0.073 0.911 - 0.250 0.332

TriT 1.000 1.000 1.000 0.011 0.863 1.000 0.250 - 0.038

SSGMM 0.001 0.000 0.001 1.000 0.000 0.031 0.332 0.038 -

Table 5.4: Pairwise comparison p-values (75% Inductive binary global accuracy).

79

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 0.251 0.017 0.002 1.000 1.000 0.038 0.084 0.002

LabelS 0.251 - 1.000 0.004 0.004 1.000 0.216 1.000 0.001

LabelP 0.017 1.000 - 0.007 0.011 1.000 0.216 1.000 0.001

LapSVM 0.002 0.004 0.007 - 0.000 0.057 0.274 0.144 1.000

SemiB 1.000 0.004 0.011 0.000 - 1.000 0.005 0.049 0.000

SelfT 1.000 1.000 1.000 0.057 1.000 - 0.875 1.000 0.057

CoT 0.038 0.216 0.216 0.274 0.005 0.875 - 1.000 1.000

TriT 0.084 1.000 1.000 0.144 0.049 1.000 1.000 - 0.606

SSGMM 0.002 0.001 0.001 1.000 0.000 0.057 1.000 0.606 -

Table 5.5: Pairwise comparison p-values (90% Inductive binary global accuracy).

We begin our discussion with the evaluation of the global accuracy results for the binary

runs. From Table 5.1 we can discern the best performing algorithms on average for each

ratio of unlabeled data. The table suggests a superior performance of the Assemble and

Self-training algorithms, with a clear inferior performance of the LapSVM and SSGMM.

To access the pairwise differences, we suggest the comparison of the average rank of the

algorithms in Table 5.1, followed by the verification of the p-value associated with that

pair on the table with the appropriate unlabeled proportion. Take the Assemble algorithm

at 50% unlabeled ratio as an example. This is the best performing algorithm at this ratio,

with the following ranking:

Assemble > SelfT > LabelS > LabelP > TriT > SemiB > CoT > LapSVM > SSGMM

³ ³ ³ ³ ³ ³ ³ ³

1.000 0.509 0.419 0.074 0.066 0.014 0.004 0.001

Here we color the algorithms with a statistically significant result (p-value f 0.05) as

green, and with red otherwise. The comparison of the Assemble and Self-Training yields

a p-value of 1, while the Assemble and Label Spreading yields 0.509, with decreasing

p-values until p = 0.014 is reached for the Co-Training as the first significant result.

The comparison of any two algorithms is done as described. First comparing their

average ranks in Table 5.1 for the appropriate ratio, followed by checking the p-value

in Tables 5.2,5.3,5.4 or 5.5. The possible inferences about performance are presented in

Table 5.6:

80

25% 50% 75% 90%

ASB > LapSVM ASB > LapSVM ASB > LapSVM ASB > LapSVM

ASB > SemiB ASB > CoT ASB > SSGMM ASB > LabelP

ASB > LabelP ASB > SSGMM LabelS > LapSVM ASB > CoT

ASB > SSGMM LabelS > LapSVM SemiB > LabelS ASB > SSGMM

LabelS > LapSVM LabelS > CoT LabelS > SSGMM LabelS > LapSVM

LabelS > SemiB LabelS > SSGMM SemiB > LapSVM SemiB > LabelS

LabelS > SSGMM SemiB > LapSVM LabelP > LapSVM LabelS > SSGMM

TriT > LapSVM LabelP > LapSVM CoT > LapSVM SemiB > LapSVM

TriT > SemiB LabelP > SSGMM TriT > LapSVM LabelP > LapSVM

LabelP > SSGMM SelfT > SSGMM SemiB > LabelP SemiB > LabelP

SelfT > SSGMM SemiB > SSGMM SemiB > CoT

LabelP > SSGMM SemiB > TriT

SelfT > SSGMM SemiB > SSGMM

TriT > SSGMM LabelP > SSGMM

Table 5.6: Possible inferences (Inductive binary global accuracy).

A few comparisons are noteworthy, namely the five pairs with statistically significant

p-values on all ratios, representing algorithms that unequivocally outperforms the other

at any ratio. These results are:

• Assemble > LapSVM;

• Assemble > SSGMM;

• Label Spreading > LapSVM;

• Label Spreading > SSGMM;

• Label Propagation > SSGMM.

Finally, it is important to note that there is a balance between accuracy and training

time to be considered. Even though the Assemble algorithm is among the best performers,

it has the slowest training time of all, while algorithms like Self-Training being incredible

fast in comparison, for a non-significant difference in accuracy. We present the average

training time for each algorithm as a reference in Table 5.7.

81

Algorithm Average Training Time (s) Normalized Time

Label Spreading 3.48 1.00

Self-Training 7.41 2.13

Label Propagation 15.75 4.53

Tri-Training 25.17 7.23

SemiBoost 88.01 25.29

SSGMM 95.02 27.30

Co-Training 189.42 54.43

LapSVM 205.57 59.07

Assemble 319.73 91.88

Table 5.7: Average training time (Inductive binary).

Positive Accuracy

Ratio ASB LabelS LapSVM SemiB LabelP SelfT CoT TriT SSGMM

0.25 3.32 2.86 4.60 4.84 3.48 3.07 4.87 4.26 2.49

0.50 3.00 3.18 5.20 4.54 3.45 3.59 4.27 3.61 2.68

0.75 2.97 3.25 5.31 3.49 3.30 3.24 5.26 4.26 2.39

0.90 3.03 3.59 5.49 3.35 3.48 3.66 4.25 3.91 2.64

Table 5.8: Average rank of algorithms per ratio (Inductive binary positive accuracy).

We turn to the evaluation of the performance of the algorithms for the positive accuracy.

The positive accuracy comparisons are done as discussed with the aid of Table 5.8

for the ranks, and the p-value tables (Appendix C). The only pair with a statistically

significant dominance is the SSGMM algorithm which outperformed the Co-Training in

all ratio scenarios. For a broad comparison, we see that the SSGMM is the clear winner in

all ratios, with the Assemble second, and LabelSpreading, Self-Training and LabelProp-

agation with a similar performance. The Laplacian Support Vector Machine follows the

trend in the global accuracy measures and is the worst performing algorithm.

We show the comparison of the algorithms at 50% unlabeled ratio and their respective

p-values when compared to the best performing method.

82

SSGMM > Assemble > LabelS > LabelP > SelfT > TriT > CoT > SemiB > LapSVM

³ ³ ³ ³ ³ ³ ³ ³

1.000 0.367 0.738 0.031 0.249 0.023 0.012 0.008

Here we observe that the transitive aspect of the performance does not carry to the p-

values, with the values showing a non-monotonous decrease. Although there is a tendency

to decrease the p-values as we compare models further apart - after all, the more discrepant

their performance, the more likely it is that the Wilcoxon test will signal that they come

from different distributions - the true value can fluctuate as some models can fail to

be trained at certain ratios or datasets, making the number of paired observations vary

slightly between pairs.

25% 50% 75% 90%

ASB > SemiB ASB > LapSVM ASB > LapSVM ASB > LapSVM

LabelS > SemiB ASB > SemiB LabelS > LapSVM LabelS > LapSVM

LabelS > CoT ASB > CoT SemiB > LapSVM SemiB > LapSVM

LabelP > SemiB LabelS > LapSVM LabelP > LapSVM LabelP > LapSVM

SSGMM > SemiB LabelS > SemiB CoT > LapSVM CoT > LapSVM

SSGMM > CoT LabelS > CoT TriT > LapSVM TriT > LapSVM

SSGMM > TriT LabelP > LapSVM SSGMM > LapSVM SSGMM > LapSVM

SSGMM > LapSVM SSGMM > SelfT SSGMM > SelfT

LabelP > SemiB SSGMM > CoT SSGMM > CoT

SSGMM > SemiB SSGMM > TriT SSGMM > TriT

SSGMM > SelfT

SSGMM > CoT

Table 5.9: Possible inferences (Inductive binary positive accuracy).

Negative Accuracy

Ratio ASB LabelS LapSVM SemiB LabelP SelfT CoT TriT SSGMM

0.25 2.81 3.20 2.66 2.08 3.00 2.68 2.87 3.17 4.37

0.50 3.39 3.68 2.74 2.70 3.57 2.54 3.57 3.43 4.98

0.75 3.09 3.36 2.23 2.49 3.18 2.46 3.04 3.61 4.36

0.90 3.33 3.64 2.54 3.24 3.64 2.59 3.45 3.57 4.86

Table 5.10: Average rank of algorithms per ratio (Inductive binary negative accuracy).

83

Finally, we evaluate the negative accuracy using Table 5.10 for the ranks and Tables C.5,

C.6, C.7 and C.8 for the p-values. It is clear that of all the metrics, the negative accuracy

yields the least amount of statistically significant results. We have the dominance of

the Self-Training algorithm over the SSGMM, with sparse significant results among other

pairs, all involving the SSGMM method. The LapSVM, Self-Training and SemiBoost are

the best performers by a close margin, with the SSGMM representing the worst method,

what justifies it being the source of the significant results in this comparison.

25% 50% 75% 90%

ASB > CoT LabelS > SSGMM SemiB > SSGMM SemiB > SSGMM

LabelS > SSGMM SelfT > SSGMM SelfT > SSGMM SelfT > SSGMM

LabelP > SSGMM CoT > SSGMM

SelfT > SSGMM TriT > SSGMM

CoT > SSGMM

TriT > SSGMM

Table 5.11: Possible inferences (Inductive binary negative accuracy).

84

5.1.2 Multi-class

The multi-class experiments were conducted as described and the results are available

in Appendix C. An evaluation of these results shows that no statistically significant re-

sult was achieved for any of the global, positive or negative accuracies. This is mainly

attributed to the smaller amount of datasets, 17 in comparison to the 44 binary compari-

son. Furthermore, the combination of algorithm, dataset and ratio can fail in the training

process, limiting the amount of groups even further for the comparison in the Wilcoxon

signed rank test. The average training time of each algorithm is presented in Table 5.12.

Algorithm Average Training Time (s) Normalized Time

Label Spreading 9.33 1.00

Self-Training 26.37 2.83

Label Propagation 47.15 5.05

Tri-Training 63.13 6.77

SSGMM 264.70 28.37

Co-Training 1105.44 118.48

Assemble 20042.05 2148.13

Table 5.12: Average training time (Inductive multi-class).

Observing the above table we notice that, removing the LapSVM and SemiBoost algo-

rithms from the comparison - once they are exclusively binary - we see that the rankings

of each algorithm’s training time remain exactly the same from the binary experiment

presented in Table 5.7, noticeably with the Label Spreading leading as the fastest method,

and the Assemble as the slowest.

85

5.2 Transductive

Global Accuracy

Ratio ASB LabelP LabelS LapSVM SelfT SemiB SSGMM TSVM

0.25 2.42 3.39 3.20 4.34 1.89 4.64 5.11 2.69

0.50 2.37 3.20 2.95 4.90 1.98 4.19 4.83 2.45

0.75 2.20 3.05 2.80 4.31 1.98 2.53 4.36 1.93

0.90 1.89 2.45 2.32 3.59 1.70 2.07 3.81 1.96

Table 5.13: Average rank of algorithms per ratio (Transductive global accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 0.011 0.011 0.011 0.000 0.525 0.000 1.000

LabelS 0.011 - 0.898 0.252 0.003 0.003 0.000 0.162

LabelP 0.011 0.898 - 0.525 0.008 0.000 0.001 0.179

LapSVM 0.011 0.252 0.525 - 1.000 0.003 0.898 0.043

SemiB 0.000 0.003 0.008 1.000 - 0.000 1.000 0.009

SelfT 0.525 0.003 0.000 0.003 0.000 - 0.000 1.000

SSGMM 0.000 0.000 0.001 0.898 1.000 0.000 - 0.001

TSVM 1.000 0.162 0.179 0.043 0.009 1.000 0.001 -

Table 5.14: Pairwise comparison p-values (25% Transductive binary global accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 0.032 0.007 0.003 0.001 0.684 0.000 1.000

LabelS 0.032 - 0.128 0.032 0.009 0.006 0.000 0.277

LabelP 0.007 0.128 - 0.032 0.009 0.001 0.001 0.128

LapSVM 0.003 0.032 0.032 - 0.168 0.001 1.000 0.018

SemiB 0.001 0.009 0.009 0.168 - 0.000 0.306 0.032

SelfT 0.684 0.006 0.001 0.001 0.000 - 0.000 1.000

SSGMM 0.000 0.000 0.001 1.000 0.306 0.000 - 0.000

TSVM 1.000 0.277 0.128 0.018 0.032 1.000 0.000 -

Table 5.15: Pairwise comparison p-values (50% Transductive binary global accuracy).

86

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 0.051 0.051 0.006 0.817 1.000 0.000 0.817

LabelS 0.051 - 0.673 0.039 0.181 0.006 0.000 0.054

LabelP 0.051 0.673 - 0.022 0.128 0.004 0.001 0.112

LapSVM 0.006 0.039 0.022 - 0.002 0.002 1.000 0.006

SemiB 0.817 0.181 0.128 0.002 - 0.268 0.000 0.771

SelfT 1.000 0.006 0.004 0.002 0.268 - 0.000 1.000

SSGMM 0.000 0.000 0.001 1.000 0.000 0.000 - 0.000

TSVM 0.817 0.054 0.112 0.006 0.771 1.000 0.000 -

Table 5.16: Pairwise comparison p-values (75% Transductive binary global accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 0.259 0.099 0.006 1.000 1.000 0.000 1.000

LabelS 0.259 - 1.000 0.011 0.308 0.127 0.000 1.000

LabelP 0.099 1.000 - 0.025 0.308 0.131 0.001 0.768

LapSVM 0.006 0.011 0.025 - 0.002 0.002 1.000 0.015

SemiB 1.000 0.308 0.308 0.002 - 0.278 0.000 1.000

SelfT 1.000 0.127 0.131 0.002 0.278 - 0.000 1.000

SSGMM 0.000 0.000 0.001 1.000 0.000 0.000 - 0.002

TSVM 1.000 1.000 0.768 0.015 1.000 1.000 0.002 -

Table 5.17: Pairwise comparison p-values (90% Transductive binary global accuracy).

We begin our analysis of the transductive experiments with the global accuracy. We notice

that the best performers are the Assemble, Self-Training and TSVM methods. However,

consulting p-value tables we conclude that there are no significant difference among them.

For the other tail of the performance spectrum, the SSGMM and LapSVM share the spot

for worse performance, since they alternate as having the highest average rank, while no

significant difference is observed between them. We present the possible inferences from

the joint examination of average rank and p-value tables.

87

25% 50% 75% 90%

ASB > LapSVM ASB > LapSVM ASB > LapSVM ASB > LapSVM

ASB > SSGMM ASB > SSGMM ASB > SSGMM ASB > SSGMM

LabelP > SSGMM LabelP > SSGMM LabelP > SSGMM LabelP > SSGMM

LabelS > SSGMM LabelS > SSGMM LabelS > SSGMM LabelS > SSGMM

SelfT > LapSVM SelfT > LapSVM SelfT > LapSVM SelfT > LapSVM

TSVM > LapSVM TSVM > LapSVM TSVM > LapSVM TSVM > LapSVM

SelfT > SSGMM SelfT > SSGMM SelfT > SSGMM SelfT > SSGMM

TSVM > SSGMM TSVM > SSGMM TSVM > SSGMM TSVM > SSGMM

ASB > LabelP ASB > LabelP SelfT > LabelP LabelP > LapSVM

ASB > LabelS ASB > LabelS LabelP > LapSVM LabelS > LapSVM

ASB > SemiB ASB > SemiB LabelS > LapSVM SemiB > LapSVM

SelfT > LabelP SelfT > LabelP SelfT > LabelS SemiB > SSGMM

LabelP > SemiB LabelP > SemiB SemiB > LapSVM

SelfT > LabelS SelfT > LabelS SemiB > SSGMM

LabelS > SemiB LabelS > SemiB

SelfT > SemiB SelfT > SemiB

TSVM > SemiB TSVM > SemiB

LabelP > LapSVM

LabelS > LapSVM

Table 5.18: Possible inferences (Transductive global accuracy).

From a comparison with the inductive experiments it’s evident the higher incidence of

statistically significant results. We attribute this to the bigger size of the datasets, once

the initial split between the training and testing sets are not required, the training set is

25% larger. There are 8 cases of unequivocally outperformance between methods:

• Assemble > LapSVM;

• Assemble > SSGMM;

• Label Propagation > SSGMM;

• Label Spreading > SSGMM;

• Self-Training > LapSVM;

• TSVM > LapSVM;

• Self-Training > SSGMM;

• TSVM > SSGMM.

88

Lastly, we present the average training time of each algorithm in the transductive

setup at Table 5.19.

Algorithm Average Training Time (s) Normalized Time

Label Spreading 2.36 1.00

TSVM 21.71 9.20

Label Propagation 30.69 13.00

Self-Training 42.18 17.87

SemiBoost 95.57 40.50

SSGMM 161.34 68.36

LapSVM 180.12 76.32

Assemble 924.73 391.83

Table 5.19: Average training time (Transductive).

The Label Spreading method maintains its position as the fasted algorithm with a

10-fold advantage over the second, while the Assemble is solidified as the slowest. The

TSVM, as a model exclusively to the transductive setup, has the second best performance

in time, as well as one of the top performances in the global accuracy metric. As for the

remaining algorithms, they maintain their relative positioning with the exception of the

Self-Training and Label Propagation which had their positions swapped.

Positive Accuracy

Ratio ASB LabelP LabelS LapSVM SelfT SemiB SSGMM TSVM

0.25 3.36 3.45 2.61 5.90 2.75 5.58 2.50 2.24

0.50 3.34 3.48 2.80 6.28 3.05 5.39 2.44 1.90

0.75 2.69 3.18 2.86 5.48 2.86 3.75 2.08 1.97

0.90 2.20 2.34 2.32 3.85 2.27 2.53 1.86 1.78

Table 5.20: Average rank of algorithms per ratio (Transductive positive accuracy).

For the positive accuracy, we see that the TSVM is the best performer for every ratio,

with the SSGMM as a close second, however, there is no statistical significance between

them at any ratio. The worst performer is the LapSVM in every ratio, being a source of a

considerable portion of the significant results when compared to the other methods. The

possible inferences are displayed in Table 5.21.

89

25% 50% 75% 90%

ASB > LapSVM ASB > LapSVM ASB > LapSVM ASB > LapSVM

ASB > SemiB ASB > SemiB ASB > SemiB LabelP > LapSVM

TSVM > ASB TSVM > ASB TSVM > ASB LabelS > LapSVM

LabelS > LabelP LabelS > LabelP LabelP > LapSVM SelfT > LapSVM

LabelP > LapSVM LabelP > LapSVM TSVM > LabelP SemiB > LapSVM

LabelP > SemiB LabelP > SemiB LabelS > LapSVM SSGMM > LapSVM

TSVM > LabelP TSVM > LabelP TSVM > LabelS TSVM > LapSVM

LabelS > LapSVM LabelS > LapSVM SelfT > LapSVM TSVM > SemiB

LabelS > SemiB LabelS > SemiB SemiB > LapSVM

SelfT > LapSVM TSVM > LabelS SSGMM > LapSVM

SSGMM > LapSVM SelfT > LapSVM TSVM > LapSVM

TSVM > LapSVM SSGMM > LapSVM SelfT > SemiB

SelfT > SemiB TSVM > LapSVM TSVM > SelfT

SSGMM > SemiB SelfT > SemiB TSVM > SemiB

TSVM > SemiB TSVM > SelfT

SSGMM > SemiB

TSVM > SemiB

Table 5.21: Possible inferences (Transductive positive accuracy).

Next, we point the 7 cases of algorithms that outperformed another in every ratio

scenario.

• Assemble > LapSVM;

• LabelP > LapSVM;

• LabelS > LapSVM;

• SelfT > LapSVM;

• SSGMM > LapSVM;

• TSVM > LapSVM;

• TSVM > SemiB.

With the exception of the dominance of the TSVM over the SemiBoost, this just

displays the poor performance of the LapSVM algorithm in the positive accuracy metric.

90

Negative Accuracy

Ratio ASB LabelP LabelS LapSVM SelfT SemiB SSGMM TSVM

0.25 2.91 2.89 3.77 1.38 2.52 1.39 5.03 3.93

0.50 3.00 2.98 3.55 1.28 2.43 1.53 4.75 3.79

0.75 2.49 2.61 2.84 1.17 2.16 1.86 4.14 3.28

0.90 1.86 2.18 2.09 1.04 1.61 1.63 3.14 2.48

Table 5.22: Average rank of algorithms per ratio (Transductive negative accuracy).

In contrast to the other experiments and metrics, the negative accuracy in the transductive

setup shows a outstanding performance of the LapSVM, with it being the top performer

at every ratio. On the other hand, the SSGMM is the worst performer for all ratios,

opposing its good performance in the positive metric. The remaining algorithms have an

overall similar performance, with the possible inferences being displayed on Table 5.23

25% 50% 75% 90%

LapSVM > ASB LapSVM > ASB LapSVM > ASB LapSVM > ASB

SemiB > ASB SemiB > ASB ASB > SSGMM ASB > SSGMM

ASB > SSGMM ASB > SSGMM LapSVM > LabelP LapSVM > LabelP

LabelP > LabelS LapSVM > LabelP LabelP > SSGMM LabelP > SSGMM

LapSVM > LabelP SemiB > LabelP LapSVM > LabelS LapSVM > LabelS

SemiB > LabelP LabelP > SSGMM SemiB > LabelS LabelS > SSGMM

LabelP > SSGMM LapSVM > LabelS LabelS > SSGMM LapSVM > SSGMM

LapSVM > LabelS SelfT > LabelS LapSVM > SelfT LapSVM > TSVM

SelfT > LabelS SemiB > LabelS LapSVM > SemiB SelfT > SSGMM

SemiB > LabelS LabelS > SSGMM LapSVM > SSGMM SemiB > SSGMM

LabelS > SSGMM LapSVM > SelfT LapSVM > TSVM TSVM > SSGMM

LapSVM > SelfT LapSVM > SSGMM SelfT > SSGMM

LapSVM > SSGMM LapSVM > TSVM SemiB > SSGMM

LapSVM > TSVM SemiB > SelfT TSVM > SSGMM

SemiB > SelfT SelfT > SSGMM

SelfT > SSGMM SemiB > SSGMM

SemiB > SSGMM SemiB > TSVM

SemiB > TSVM TSVM > SSGMM

TSVM > SSGMM

Table 5.23: Possible inferences (Transductive negative accuracy).

There are 11 cases of absolute outperformance between algorithms. They are:

91

• LapSVM > Assemble;

• Assemble > SSGMM;

• LapSVM > LabelP;

• LabelP > SSGMM;

• LapSVM > LabelS;

• LabelS > SSGMM;

• LapSVM > SSGMM;

• LapSVM > TSVM;

• SelfT > SSGMM;

• SemiB > SSGMM;

• TSVM > SSGMM.

It is easy to see that they represent the dominance of the LapSVM algorithm, or the

poor performance of the SSGMM.

92

Chapter 6

Conclusion

As the semi-supervised learning field expands, different approaches and algorithms are

proposed to tackle different learning problems. However, these methods are usually pre-

sented as top performers on cherry-picked datasets, with very little discussion on their

performance on a diverse selection of datasets, as well as lacking a satisfactory statistical

analysis of the results. With this critique in mind, we presented the current work aiming

to supplement the field with a quantitative comparison of semi-supervised algorithms in

diverse scenarios, and with a necessary statistical analysis.

The execution of two classes of experiments, inductive and transductive, allowed for

a more complete evaluation of different scenarios where semi-supervision can be applied.

The binary results allow us to draw useful conclusion on the comparative performance

of popular semi-supervised algorithms. Simple methods such as Self-Training and Label

Spreading have been proven to be among the best performers, while more complex ones

such as the LapSVM, SemiBoost and SSGMM didn’t perform as expected. Moreover,

the average training time shown of each method further corroborates the appeal of such

simpler methods, with the noticeable 40 times higher training time of the Assemble in

comparison with the Self-Training, for a somewhat equivalent performance. On the other

hand, the positive and negative accuracy have shown that some models are more appropri-

ate depending on what kind of error is desired to be minimized. The SSGMM have shown

a significant improvement when the positive accuracy is taken into consideration. Simi-

larly, the SemiBoost results suggest the algorithm is more appropriate when the negative

accuracy is an important factor. In contrast to the binary configuration, the multi-class

experiments showed no relevant results. This is conjectured to be a consequence of the

lower amount of datasets for this setting, since only 17 of the 44 used datasets are multi-

class. As for the transductive setup, we observe a higher number of significant results.

The relative performance of the methods remains similar to the inductive setup, with the

new TSVM algorithm being one of the best performers in the global and positive accuracy

as discussed.

93

Finally, the study fulfils its proposed goal, delivering a quantitative analysis of popular

semi-supervised algorithms, focused on tabular data. The statistical rigor of the study

is an attempt to provide a trustworthy source of information regarding the performance

of such algorithms. Being expected of the reader a correct assessment of their learning

problem, and the correct usage of the results presented here and the possible inferences

as well as their limitations. We also aim to inspire further research on the field of semi-

supervision, an area that has been gaining notoriety for its attempt to solve well-known

limitations of supervised and unsupervised learning paradigms.

94

Bibliography

[1] 20-newsgroup dataset. http://qwone.com/~jason/20Newsgroups/.

[2] Cmu world wide knowledge base project. https://www.cs.cmu.edu/afs/cs/

project/theo-11/www/wwkb/.

[3] Dana Angluin and Philip D. Laird. Learning from noisy examples. Machine Learning,

2:343–370, 1988.

[4] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A

geometric framework for learning from labeled and unlabeled examples. Journal of

Machine Learning Research, 7(85):2399–2434, 2006.

[5] Kristin P. Bennett, Ayhan Demiriz, and R. Maclin. Exploiting unlabeled data in

ensemble methods. Proceedings of the eighth ACM SIGKDD international conference

on Knowledge discovery and data mining, 2002.

[6] Bernd Bischl, Giuseppe Casalicchio, Matthias Feurer, Frank Hutter, Michel Lang,

Rafael G. Mantovani, Jan N. van Rijn, and Joaquin Vanschoren. Openml bench-

marking suites. arXiv:1708.03731v2 [stat.ML], 2019.

[7] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-

training. Proceedings of the Annual ACM Conference on Computational Learning

Theory, 10 2000.

[8] T. Diethe. 13 benchmark datasets derived from the UCI, DELVE and STAT-

LOG repositories. https://github.com/tdiethe/gunnar_raetsch_benchmark_

datasets/, 2015.

[9] B. Efron and R.J. Tibshirani. An Introduction to the Bootstrap. Chapman &

Hall/CRC Monographs on Statistics & Applied Probability. Taylor & Francis, 1994.

[10] Yue Fan, Anna Kukleva, and Bernt Schiele. Revisiting consistency regularization for

semi-supervised learning, 2021.

95

[11] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System Sciences,

55(1):119–139, 1997.

[12] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regression:

a statistical view of boosting (With discussion and a rejoinder by the authors). The

Annals of Statistics, 28(2):337 – 407, 2000.

[13] Sture Holm. A simple sequentially rejective multiple test procedure. Scandinavian

Journal of Statistics, 6(2):65–70, 1979.

[14] Zhe Huang, Gary Long, Benjamin Wessler, and Michael C. Hughes. A new semi-

supervised learning benchmark for classifying view and diagnosing aortic stenosis

from echocardiograms, 2021.

[15] J.J. Hull. A database for handwritten text recognition research. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 16(5):550–554, 1994.

[16] J.J. Hull. A database for handwritten text recognition research. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 16(5):550–554, 1994.

[17] Lin-Han Jia, Lan-Zhe Guo, Zhi Zhou, and Yu-Feng Li. Lamda-ssl repository.

https://github.com/YGZWQZD/LAMDA-SSL, 2022.

[18] Lin-Han Jia, Lan-Zhe Guo, Zhi Zhou, and Yu-Feng Li. Lamda-ssl: Semi-supervised

learning in python. arXiv preprint arXiv:2208.04610, 2022.

[19] Thorsten Joachims. Transductive inference for text classification using support vector

machines. In International Conference on Machine Learning, 1999.

[20] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning,

2017.

[21] Wei Liu, Jun Wang, and Shih-Fu Chang. Robust and scalable graph-based semisu-

pervised learning. Proceedings of the IEEE, 100(9):2624–2638, 2012.

[22] Pavan Kumar Mallapragada, Rong Jin, Anil K. Jain, and Yi Liu. Semiboost: Boost-

ing for semi-supervised learning. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 31(11):2000–2014, 2009.

[23] Geoffrey J. McLachlan and Thriyambakam Krishnan. The em algorithm and exten-

sions. 1996.

[24] C.L. Blake D.J. Newman and C.J. Merz. UCI repository of machine learning

databases, 1998.

96

[25] Kamal Nigam and Rayid Ghani. Analyzing the effectiveness and applicability of

co-training. In Proceedings of the Ninth International Conference on Information

and Knowledge Management, CIKM ’00, page 86–93, New York, NY, USA, 2000.

Association for Computing Machinery.

[26] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus Cubuk, and Ian Good-

fellow. Realistic evaluation of deep semi-supervised learning algorithms. Advances

in neural information processing systems, 31, 2018.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[28] Jan Van Rjin. Openml-cc18 curated classification benchmark.

https://www.openml.org/search?type=study&study_type=task&id=99&sort=runs_

included, 2018.

[29] H. Schutze. Dimensions of meaning. In Supercomputing ’92:Proceedings of the 1992

ACM/IEEE Conference on Supercomputing, pages 787–796, 1992.

[30] B.M. Shahshahani and D.A. Landgrebe. The effect of unlabeled samples in reduc-

ing the small sample size problem and mitigating the hughes phenomenon. IEEE

Transactions on Geoscience and Remote Sensing, 32(5):1087–1095, 1994.

[31] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A

Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Sim-

plifying semi-supervised learning with consistency and confidence. In H. Larochelle,

M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural In-

formation Processing Systems, volume 33, pages 596–608. Curran Associates, Inc.,

2020.

[32] Jong-Chyi Su, Zezhou Cheng, and Subhransu Maji. A realistic evaluation of semi-

supervised learning for fine-grained classification, 2021.

[33] Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised learning.

Machine Learning, 109(2):373–440, November 2019.

[34] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. Openml: net-

worked science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

[35] Vladimir Naumovich Vapnik. An overview of statistical learning theory. IEEE trans-

actions on neural networks, 10 5:988–99, 1999.

97

[36] Yidong Wang, Hao Chen, Yue Fan, Wang Sun, Ran Tao, Wenxin Hou, Renjie Wang,

Linyi Yang, Zhi Zhou, Lan-Zhe Guo, et al. Usb: A unified semi-supervised learning

benchmark for classification. Advances in Neural Information Processing Systems,

35:3938–3961, 2022.

[37] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised meth-

ods. In Annual Meeting of the Association for Computational Linguistics, 1995.

[38] Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Olkopf.

Learning with local and global consistency. Advances in Neural Information Process-

ing Systems 16, 16, 03 2004.

[39] Zhi-Hua Zhou and Ming Li. Tri-training: Exploiting unlabeled data using three

classifiers. Knowledge and Data Engineering, IEEE Transactions on, 17:1529– 1541,

12 2005.

[40] Xiaojin Zhu. Semi-supervised learning literature survey. Comput Sci, University of

Wisconsin-Madison, 2, 07 2008.

[41] Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data

with label propagation. 2002.

[42] Xiaojin Zhu, Zoubin Ghahramani, and John D. Lafferty. Combining active learn-

ing and semi-supervised learning using gaussian fields and harmonic functions. In

International Conference on Machine Learning, 2003.

98

Appendix A

Proofs

A.1 Proposition 1.5.1

We rewrite Eq. (3.32b by making the substitution yi = Ft(x⃗i) + wt+1ft+1(x⃗i) for every

unlabeled point x⃗i.

E(y⃗, S) =
l

∑

i=1

l+u
∑

j=l+1

Sije
−2yi(Ft(x⃗j)+wt+1ft+1(x⃗j))+µ

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗i)+wt+1ft+1(x⃗i)−Ft(x⃗j)−wt+1ft+1(x⃗j)

(A.1)

E(y⃗, S) =
l

∑

i=1

l+u
∑

j=l+1

Sije
−2yiFt(x⃗j)e−2yiwt+1ft+1(x⃗j)+µ

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗i)−Ft(x⃗j)ewt+1(ft+1(x⃗i)−ft+1(x⃗j)).

(A.2)

Using the inequality ea(x−y) f 1/2(e2ax + e−2ay) on the second term of Eq. (A.2):

E(y⃗, S) f
l

∑

i=1

l+u
∑

j=l+1

Sije
−2yiFt(x⃗j)e−2yiwt+1ft+1(x⃗j)

+
µ

2

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗i)−Ft(x⃗j)(e2wt+1ft+1(x⃗i) + e−2wt+1ft+1(x⃗j))). (A.3)

Let ¶(a, b) = 1 if a = b and 0 otherwise, and let the first double summation be

represented by T1 and the second by T2.

T1 =
l+u
∑

j=l+1

l
∑

i=1

Sije
−2Ft(x⃗j)e−2wt+1ft+1(x⃗j)¶(yi, 1) +

l+u
∑

j=l+1

l
∑

i=1

Sije
2Ft(x⃗j)e2wt+1ft+1(x⃗j)¶(yi,−1)

(A.4)

99

T1 =
l+u
∑

j=l+1

e−2wt+1ft+1(x⃗j)

l
∑

i=1

Sije
−2Ft(x⃗j)¶(yi, 1) +

l+u
∑

j=l+1

e2wt+1ft+1(x⃗j)

l
∑

i=1

Sije
2Ft(x⃗j)¶(yi,−1)

(A.5)

T2 =
µ

2

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗i)−Ft(x⃗j)e2wt+1ft+1(x⃗i) +

µ

2

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗i)−Ft(x⃗j)e−2wt+1ft+1(x⃗j).

(A.6)

By the symmetry of the double summation we can re-index the first term:

T2 =
µ

2

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗j)−Ft(x⃗i)e2wt+1ft+1(x⃗j) +

µ

2

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗i)−Ft(x⃗j)e−2wt+1ft+1(x⃗j)

(A.7)

T2 =
µ

2

l+u
∑

j=l+1

e2wt+1ft+1(x⃗j)

l+u
∑

i=l+1

Sije
Ft(x⃗j)−Ft(x⃗i) +

µ

2

l+u
∑

j=l+1

e−2wt+1ft+1(x⃗j)

l+u
∑

i=l+1

Sije
Ft(x⃗i)−Ft(x⃗j).

(A.8)

Adding T1 and T2 and regrouping by common terms we would get two new terms, say

T ′
1 and T ′

1, as below:

T ′
1 =

l+u
∑

j=l+1

e−2wt+1ft+1(x⃗j)

[

l
∑

i=1

Sije
−2Ft(x⃗j)¶(yi, 1) +

µ

2

l+u
∑

i=l+1

Sije
Ft(x⃗i)−Ft(x⃗j)

]

(A.9)

T ′
2 =

l+u
∑

j=l+1

e2wt+1ft+1(x⃗j)

[

l
∑

i=1

Sije
2Ft(x⃗j)¶(yi,−1) +

µ

2

l+u
∑

i=l+1

Sije
Ft(x⃗j)−Ft(x⃗i)

]

. (A.10)

Finally, this leads to

E(y⃗, S) f
l+u
∑

j=l+1

e−2wt+1ft+1(x⃗j)pj + e2wt+1ft+1(x⃗j)qj (A.11)

where

pj =
l

∑

i=1

Sije
−2Ft(x⃗j)¶(yi, 1) +

µ

2

l+u
∑

i=l+1

Sije
Ft(x⃗i)−Ft(x⃗j) (A.12)

100

qj =
l

∑

i=1

Sije
2Ft(x⃗j)¶(yi,−1) +

µ

2

l+u
∑

i=l+1

Sije
Ft(x⃗j)−Ft(x⃗i). (A.13)

■

A.2 Proposition 1.5.2

We rewrite Eq. (3.33) using the inequality eax f ea + e−a − 1 + ax, ∀x ∈ [−1, 1]

E ′(y⃗, S) =
l+u
∑

i=l+1

e−2wt+1ft+1(x⃗i)pi + e2wt+1ft+1(x⃗i)qi (A.14)

E ′(y⃗, S) f
l+u
∑

i=l+1

(e−2wt+1+e2wt+1−1−2wt+1ft+1(x⃗i))pi+(e2wt+1+e−2wt+1−1+2wt+1ft+1(x⃗i))qi

(A.15)

E ′(y⃗, S) f
l+u
∑

i=l+1

e−2wt+1(pi+ qi)+ e2wt+1(pi+ qi)− (pi+ qi)− 2wt+1ft+1(x⃗i)(pi− qi) (A.16)

E ′(y⃗, S) f
l+u
∑

i=l+1

(pi + qi)(e
2wt+1 + e−2wt+1 − 1)−

l+u
∑

i=l+1

2wt+1ft+1(x⃗i)(pi − qi). (A.17)

■

A.3 Proposition 1.5.4

We begin rewriting Eq. (3.33)

E ′(y⃗, S) =
l+u
∑

i=l+1

e−2wt+1ft+1(x⃗i)pi + e2wt+1ft+1(x⃗i)qi (A.18)

E ′(y⃗, S) =
l+u
∑

i=l+1

e−2wt+1pi¶(ft+1(x⃗i), 1) + e2wt+1pi¶(ft+1(x⃗i),−1)

+
l+u
∑

i=l+1

e2wt+1qi¶(ft+1(x⃗i), 1) + e−2wt+1qi¶(ft+1(x⃗i),−1) (A.19)

101

E ′(y⃗, S) =
l+u
∑

i=l+1

e−2wt+1(pi¶(ft+1(x⃗i), 1) + qi¶(ft+1(x⃗i),−1))

+
l+u
∑

i=l+1

e2wt+1(pi¶(ft+1(x⃗i),−1) + qi¶(ft+1(x⃗i), 1)) (A.20)

E ′(y⃗, S) = e2wt+1k + e−2wt+1k′ (A.21)

where

k =
l+u
∑

i=l+1

pi¶(ft+1(x⃗i),−1) + qi¶(ft+1(x⃗i), 1) (A.22)

k′ =
l+u
∑

i=l+1

pi¶(ft+1(x⃗i), 1) + qi¶(ft+1(x⃗i),−1). (A.23)

We can simplify k′ as

k′ =
l+u
∑

i=l+1

pi(1− ¶(ft+1(x⃗i),−1)) + qi(1− ¶(ft+1(x⃗i), 1)) (A.24)

k′ =
l+u
∑

i=l+1

(pi + qi)−
l+u
∑

i=l+1

pi¶(ft+1(x⃗i),−1) + qi¶(ft+1(x⃗i), 1) (A.25)

k′ = ¸ − k (A.26)

where ¸ =
l+u
∑

i=l+1

(pi + qi). This leads to

E ′(y⃗, S) = e2wt+1k + e−2wt+1(¸ − k) (A.27)

E ′(y⃗, S) = e2wt+1¸

(

k

¸

)

+ e−2wt+1¸

(

1−
k

¸

)

. (A.28)

The value ϵ = (k/¸) is the weighted error of the classifier ft+1, leading to the final

form of the function E ′:

E ′(y⃗, S) = e2wt+1¸ϵ+ e−2wt+1¸(1− ϵ) (A.29)

Deriving Eq. (A.29) with respect to wt+1 and equating it to 0 we get

dE ′

dwt+1

= 2¸ϵe2wt+1 − 2¸(1− ϵ)e−2wt+1 = 0 (A.30)

102

e4wt+1 =
1− ϵ

ϵ
(A.31)

wt+1 =
1

4
ln

(

1− ϵ

ϵ

)

(A.32)

or without ϵ

wt+1 =
1

4
ln











l+u
∑

i=l+1

pi¶(ft+1(x⃗i), 1) + qi¶(ft+1(x⃗i),−1)

l+u
∑

i=l+1

pi¶(ft+1(x⃗i),−1) + qi¶(ft+1(x⃗i), 1)











. (A.33)

■

A.4 Proposition 1.5.5

Taking the upper error function at the (t+ 1)th iteration

E ′t+1(y⃗, S) =
l+u
∑

i=l+1

e−2wt+1ft+1(x⃗i)pi + e2wt+1ft+1(x⃗i)qi (A.34)

and replacing wt+1 with its optimal value

wt+1 =
1

4
ln











l+u
∑

i=l+1

pi¶(ft+1(x⃗i), 1) + qi¶(ft+1(x⃗i),−1)

l+u
∑

i=l+1

pi¶(ft+1(x⃗i),−1) + qi¶(ft+1(x⃗i), 1)











(A.35)

wt+1 =
1

4
ln

(

1− ϵt+1

ϵt+1

)

(A.36)

we get

E ′t+1(y⃗, S) =
l+u
∑

i=l+1

pi

(

1− ϵt+1

ϵt+1

)−
ft+1(x⃗i)

2 + qi

(

1− ϵt+1

ϵt+1

)

ft+1(x⃗i)

2 (A.37)

E ′t+1(y⃗, S) =
l+u
∑

i=l+1

pi

(

1− ϵt+1

ϵt+1

)−1/2

¶(ft+1(x⃗i), 1) + pi

(

1− ϵt+1

ϵt+1

)1/2

¶(ft+1(x⃗i),−1)

+
l+u
∑

i=l+1

qi

(

1− ϵt+1

ϵt+1

)1/2

¶(ft+1(x⃗i), 1) + qi

(

1− ϵt+1

ϵt+1

)−1/2

¶(ft+1(x⃗i),−1) (A.38)

103

E ′t+1(y⃗, S) =

(

1− ϵt+1

ϵt+1

)−1/2 l+u
∑

i=l+1

(pi¶(ft+1(x⃗i), 1) + qi¶(ft+1(x⃗i),−1))

+

(

1− ϵt+1

ϵt+1

)1/2 l+u
∑

i=l+1

(pi¶(ft+1(x⃗i),−1) + qi¶(ft+1(x⃗i), 1)) (A.39)

E ′t+1(y⃗, S) =

(

1− ϵt+1

ϵt+1

)−1/2 l+u
∑

i=l+1

(pi(1− ¶(ft+1(x⃗i),−1)) + qi(1− ¶(ft+1(x⃗i), 1)))

+

(

1− ϵt+1

ϵt+1

)1/2 l+u
∑

i=l+1

(pi¶(ft+1(x⃗i),−1) + qi¶(ft+1(x⃗i), 1)) (A.40)

E ′t+1(y⃗, S) =

(

1− ϵt+1

ϵt+1

)−1/2

(¸t+1 − ¸t+1ϵt+1) +

(

1− ϵt+1

ϵt+1

)1/2

ϵt+1¸t+1 (A.41)

E ′t+1(y⃗, S) = (1− ϵt+1)
1/2ϵ

1/2
t+1¸t+1 + (1− ϵt+1)

1/2ϵ
1/2
t+1¸t+1 (A.42)

E ′t+1(y⃗, S) = 2¸t+1ϵt+1

√

1− ϵt+1

ϵt+1

(A.43)

using Lemma 1.5.6

E ′t+1(y⃗, S) = 2Et(y⃗, S)ϵt+1e
2wt+1 . (A.44)

Isolating ϵt+1 in Eq. (A.36)

ϵt+1 =
1

1 + e4wt+1
(A.45)

and substituting it in Eq. (A.44)

E ′t+1(y⃗, S) = Et(y⃗, S)
2e2wt+1

1 + e4wt+1
= Et(y⃗, S)

1

1/2(e−2wt+1 + e2wt+1)
(A.46)

E ′t+1(y⃗, S) =
Et(y⃗, S)

cosh(2wt+1)
. (A.47)

Since Et(y⃗, S) is bounded by E ′t(y⃗, S)

E ′t+1(y⃗, S) f
E ′t(y⃗, S)

cosh(2wt+1)
(A.48)

104

and since cosh(x) f ex for x > 0

E ′t+1(y⃗, S) f
E ′t(y⃗, S)

e2wt+1
(A.49)

E ′t+1(y⃗, S) f E
′
t(y⃗, S)e

−2wt+1 . (A.50)

If we repeatedly substitute the upper error on the right hand-side we get

E ′t+1(y⃗, S) f E
′
0(y⃗, S)e

−
t+1∑

i=1

2wi

(A.51)

where

E ′0(y⃗, S) =
l+u
∑

i=l+1

[

l
∑

j=1

Sij + µ

l+u
∑

j=l+1

Sij

]

. (A.52)

■

A.5 Lemma 1.5.6

Lemma 1.5.6 : Let

¸t+1 =
l+u
∑

i=l+1

pi + qi (A.53)

where

pi =
l

∑

j=1

Sije
−2Ft(x⃗i)¶(yj, 1) +

µ

2

l+u
∑

j=l+1

Sije
Ft(x⃗j)−Ft(x⃗i) (A.54)

qi =
l

∑

j=1

Sije
2Ft(x⃗i)¶(yj,−1) +

µ

2

l+u
∑

j=l+1

Sije
Ft(x⃗i)−Ft(x⃗j) (A.55)

then ¸t+1 = Et(y⃗, S).

Proof : We begin calculating pi + qi for a generic point x⃗i. Let pi + qi = Ai +Bi such that

Ai is the sum of the first term of pi with the first term of qi, and Bi is the sum of the

second term of pi with the second term of qi

l+u
∑

i=l+1

pi + qi =
l+u
∑

i=l+1

(
l

∑

j=1

Sije
−2Ft(x⃗i)¶(yj, 1) +

µ

2

l+u
∑

j=l+1

Sije
Ft(x⃗j)−Ft(x⃗i)

+
l

∑

j=1

Sije
2Ft(x⃗i)¶(yj,−1) +

µ

2

l+u
∑

j=l+1

Sije
Ft(x⃗i)−Ft(x⃗j)) (A.56)

105

l+u
∑

i=l+1

pi + qi =
l+u
∑

i=l+1

l
∑

j=1

[

Sije
−2Ft(x⃗i)¶(yj, 1) + Sije

2Ft(x⃗i)¶(yj,−1)
]

+
µ

2

l+u
∑

i=l+1

l+u
∑

j=l+1

[

Sije
Ft(x⃗j)−Ft(x⃗i) + Sije

Ft(x⃗i)−Ft(x⃗j)
]

(A.57)

l+u
∑

i=l+1

pi + qi =
l+u
∑

i=l+1

l
∑

j=1

Sije
−2Ft(x⃗i)yj

+
µ

2

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗j)−Ft(x⃗i) +

µ

2

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗i)−Ft(x⃗j). (A.58)

Since Ft(x⃗j) = yj for a labeled example x⃗j, and using the symmetry of the double sum-

mation to re-index the third term

l+u
∑

i=l+1

pi + qi =
l+u
∑

i=l+1

l
∑

j=1

Sije
−2yiyj

+
µ

2

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗j)−Ft(x⃗i) +

µ

2

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗j)−Ft(x⃗i) (A.59)

l+u
∑

i=l+1

pi + qi =
l+u
∑

i=l+1

l
∑

j=1

Sije
−2yiyj + µ

l+u
∑

i=l+1

l+u
∑

j=l+1

Sije
Ft(x⃗j)−Ft(x⃗i). (A.60)

The right hand-side of the Eq. (A.60) is precisely the error function in (3.32b) but at

iteration t. Therefore

l+u
∑

i=l+1

pi + qi = Et(y⃗, S). (A.61)

■

A.6 Proposition 1.7.1

If |Li,t−1| < |Li,t| it’s obvious that the numerator on the left-hand side of the inequality

is smaller than the numerator on the right-hand side, that is

|Li,t−1| < |Li,t| =⇒

√

c

|L ∪ Li,t|
<

√

c

|L ∪ Li,t−1|
. (A.62)

106

Similarly, we want the negative term on the denominator to be smaller on the left-

hand side, making the denominator bigger and the fraction smaller. In other words, we

want

¸L|L|+ ei,t|Li,t|

|L ∪ Li,t|
<

¸L|L|+ ei,t−1|Li,t−1|

|L ∪ Li,t−1|
. (A.63)

Since the denominator on the left-hand side of inequality (A.63) is already bigger than

the denominator on the right-hand side, we just want a smaller numerator on the left so the

fraction on the left will be smaller and the inequality (A.63) is satisfied. Mathematically,

we want

¸L|L|+ ei,t|Li,t| < ¸L|L|+ ei,t−1|Li,t−1| (A.64)

ei,t|Li,t| < ei,t−1|Li,t−1|. (A.65)

Therefore, if |Li,t−1| < |Li,t| and ei,t|Li,t| < ei,t−1|Li,t−1| the numerator of the left-hand

side of inequality (3.54) will be smaller, while the denominator will be bigger than the

equivalent right-hand side, satisfying the inequality.

■

A.7 Proposition 1.7.2

Substituting the new size of Li,t in condition 1:

|Li,t−1| < ∗
ei,t−1|Li,t−1|

ei,t
− 1. (A.66)

We can strengthen the condition by requiring that |Li,t−1| be smaller than the right-hand

side without the ceiling function

|Li,t−1| <
ei,t−1|Li,t−1|

ei,t
− 1 < ∗

ei,t−1|Li,t−1|

ei,t
− 1. (A.67)

Isolating |Li,t−1| on the first inequality

|Li,t−1|ei,t < ei,t−1|Li,t−1| − ei,t (A.68)

|Li,t−1|(ei,t − ei,t−1) < −ei,t (A.69)

|Li,t−1|(ei,t−1 − ei,t) > ei,t (A.70)

107

|Li,t−1| >
ei,t

ei,t−1 − ei,t
. (A.71)

Therefore, if Eq. (A.71) is satisfied, condition 1 is also satisfied.

■

A.8 Proposition 1.8.1

First, we prove that the proposed label swapping results in a decrease in the cost function.

Notice that since the slack variable Ài represents the distance between a point x⃗i and its

assigned label’s margin, when we swap the labels there are two options: the point falls

at or before the new label’s margin at a distance 2 − Ài g 0, or the point falls after the

margin, in which case the slack variable is not necessary and is set to zero. This can be

represented by the expression À′i = max{0, 2− Ài}, where À′i is the new slack variable.

Let m and n be values that satisfy the inner loop conditions, and without loss of

generality let ym = 1 and yn = −1. The cost function presented in (3.59) can be rewritten

as

1

2
||w⃗||2 + C

ℓ
∑

i=1

Ài + C ′
+

∑

yi=1
i ̸=m

Ài + C ′
−

∑

yi=−1
i ̸=n

Ài + C ′
+Àm + C ′

−Àn. (A.72)

However, by the loop condition Àn + Àm > 2, we know that

C ′
+Àm + C ′

−Àn > C ′
+(2− Àn) + C ′

−(2− Àm) (A.73)

and since they satisfy the loop conditions, we know that

C ′
+Àm + C ′

−Àn > C ′
+ · 0 + C ′

− · 0. (A.74)

By expressions (A.73), (A.74) and the identity À′i = max{0, 2− Ài}, we can write

C ′
+Àm + C ′

−Àn > C ′
+À

′
m + C ′

−À
′
n. (A.75)

This shows that the new cost function is smaller after the label swapping.

Assuming that the minimization problem (3.59) is deterministic, and each permutation

of labels always yields the same finite cost, there are u points and 2 possible labels for

each, resulting in at most 2u possible values for the cost function, at least one of which is

bound to be the minimum. Since with every iteration we have only two options: we fail

to find pairs of points that satisfy the conditions and the loop breaks, or we find them

and decrease the cost function to a lower value among the 2u possibilities, bringing it

closer to the overall minimum. This makes it clear that the loop will break early if no

108

improvement can be made, or it will continue until it reaches the minimum value among

the 2u possibilities, where the next loop will fail to find adequate points or we would have

a contradiction.

109

Appendix B

Auxiliary Algorithms

B.1 Select

Algorithm: 15 Select

Input:

U ¢ XA ×XB :: Unlabeled Buffer Dataset

fI : X → R
|Y| :: View I Classifier

p ∈ Z
+ :: Number of Positively Labeled Examples to Select

n ∈ Z
+ :: Number of Negatively Labeled Examples to Select

Output:

S ¢ U :: Confident Unlabeled Examples

1. Let V + ∈ R
u ← V +

i = (fI(x⃗i))1, x⃗i ∈ U

2. V + ← Order(V +)

3. Let Sp ← {x⃗j ∈ U : (fI(x⃗j))1 ∈ V +
1:p}

4. U ← U \ Sp

5. Let V − ∈ R
u ← V −

i = (fI(x⃗i))2, x⃗i ∈ U

6. V − ← Order(V −)

7. Let Sn ← {x⃗j ∈ U : (fI(x⃗j))2 ∈ V −
1:n}

8. U ← U \ Sn

9. return Sp

⋃

Sn

110

B.2 Select’

Algorithm: 16 Select’

Input:

U ¢ XA ×XB :: Unlabeled Buffer Dataset

fI : X → R
|Y| :: View I Classifier

v⃗ ∈ Z
|Y| :: Number of Examples To Select For Each Class

Output:

S ¢ U :: Confident Unlabeled Examples

1. Let S ← ∅

2. for k ← 1 to |v⃗| do:

3. Let V (k) ∈ R
u ← V

(k)
i = (fI(x⃗i))k, x⃗i ∈ U

4. V (k) ← Order(V (k))

5. Let Sk ← {x⃗j ∈ U : (fI(x⃗j))k ∈ V
(k)
1:vk
}

6. U ← U \ Sk

7. S ← S
⋃

Sk

8. return S

111

B.3 BootstrapSample

Algorithm: 17 BootstrapSample

Input:

L ¢ X × Y :: Labeled Dataset

Output:

L′ ¢ X × Y :: Bootstrapped Dataset

1. let L′ ← ∅

2. for n← 1 to |L| do:

3. let m ∈ L ← Choose(L) :: Choose a single element

4. L′ ← L′ ∪ {m}

5. return L′

B.4 Error

Algorithm: 18 Error

Input:

fj,t : X → Y :: Classifier j at iteration t

fk,t : X → Y :: Classifier k at iteration t

L ¢ X × Y :: Labeled dataset

Output:

ei,t ∈ R :: Error rate of the combined classifiers fj,t and fk,t at iteration t

1. let C ¢ X × Y ← {(x⃗, y) : (x⃗, y) ∈ L, fj,t(x⃗) = fk,t(x⃗) = y}

2. let ei,t ∈ R←
|L| − |C|

|L|

3. return ei,t

112

B.5 Subsample

Algorithm: 19 Subsample

Input:

Li,t ¢ X × Y :: Examples pseudo-labeled by classifiers fj,t and fk,t

ℓ′i,t ∈ N :: Final size of set Li,t

Output:

L′
i,t ¢ Li,t :: New set Li,t

1. for n← 1 to (|Li,t| − ℓ′i,t) do:

2. let m ∈ Li,t ← Choose(Li,t) :: Choose a single element

3. Li,t ← Li,t \ {m}

4. return Li,t

113

Appendix C

Results and Tables

C.1 Binary Positive Accuracy

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 1.000 1.000 0.244 0.019 1.000 0.652 1.000 1.000

LabelS 1.000 - 0.230 0.244 0.003 1.000 0.006 0.652 0.807

LabelP 1.000 0.230 - 0.652 0.041 0.428 0.169 1.000 0.323

LapSVM 0.244 0.244 0.652 - 1.000 1.000 0.471 0.244 0.079

SemiB 0.019 0.003 0.041 1.000 - 0.428 0.169 0.240 0.003

SelfT 1.000 1.000 0.528 1.000 0.428 - 0.138 1.000 0.112

CoT 0.652 0.006 0.169 0.471 0.169 0.138 - 1.000 0.001

TriT 1.000 0.652 1.000 0.244 0.240 1.000 1.000 - 0.003

SSGMM 1.000 0.807 0.323 0.079 0.003 0.112 0.001 0.003 -

Table C.1: Pairwise comparison p-values (25% Inductive binary positive accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 1.000 1.000 0.016 0.027 1.000 0.050 0.095 1.000

LabelS 1.000 - 1.000 0.037 0.015 1.000 0.004 0.319 0.367

LabelP 1.000 1.000 - 0.008 0.015 1.000 0.095 1.000 0.738

LapSVM 0.016 0.037 0.008 - 0.095 0.405 0.405 0.249 0.008

SemiB 0.027 0.015 0.015 0.095 - 0.540 1.000 1.000 0.012

SelfT 1.000 1.000 1.000 0.405 0.540 - 1.000 1.000 0.031

CoT 0.050 0.004 0.095 0.405 1.000 1.000 - 1.000 0.023

TriT 0.095 0.319 1.000 0.249 1.000 1.000 1.000 - 0.249

SSGMM 1.000 0.367 0.738 0.008 0.012 0.031 0.023 0.249 -

Table C.2: Pairwise comparison p-values (50% Inductive binary positive accuracy).

114

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 1.000 1.000 0.006 1.000 1.000 0.272 0.808 0.982

LabelS 1.000 - 1.000 0.038 1.000 1.000 0.229 1.000 0.172

LabelP 1.000 1.000 - 0.006 1.000 1.000 0.808 1.000 0.491

LapSVM 0.006 0.038 0.006 - 0.014 0.505 0.006 0.006 0.003

SemiB 1.000 1.000 1.000 0.014 - 1.000 0.505 1.000 0.307

SelfT 1.000 1.000 1.000 0.505 1.000 - 0.691 1.000 0.017

CoT 0.272 0.229 0.808 0.006 0.505 0.691 - 0.626 0.001

TriT 0.808 1.000 1.000 0.006 1.000 1.000 0.626 - 0.010

SSGMM 0.982 0.172 0.491 0.003 0.307 0.017 0.001 0.010 -

Table C.3: Pairwise comparison p-values (75% Inductive binary positive accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 1.000 1.000 0.006 1.000 0.835 0.253 0.182 0.583

LabelS 1.000 - 1.000 0.034 1.000 1.000 0.253 1.000 0.126

LabelP 1.000 1.000 - 0.006 1.000 1.000 0.120 0.678 0.236

LapSVM 0.006 0.034 0.006 - 0.019 0.302 0.040 0.046 0.002

SemiB 1.000 1.000 1.000 0.019 - 1.000 0.336 1.000 0.253

SelfT 0.835 1.000 1.000 0.302 1.000 - 1.000 1.000 0.007

CoT 0.253 0.253 0.120 0.040 0.336 1.000 - 1.000 0.023

TriT 0.182 1.000 0.678 0.046 1.000 1.000 1.000 - 0.032

SSGMM 0.583 0.126 0.236 0.002 0.253 0.007 0.023 0.032 -

Table C.4: Pairwise comparison p-values (90% Inductive binary positive accuracy).

C.2 Binary Negative Accuracy

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.040

LabelS 1.000 - 1.000 1.000 1.000 1.000 1.000 1.000 0.009

LabelP 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000 0.022

LapSVM 1.000 1.000 1.000 - 1.000 1.000 0.961 1.000 1.000

SemiB 1.000 1.000 1.000 1.000 - 1.000 0.804 0.804 0.601

SelfT 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000 0.000

CoT 1.000 1.000 1.000 0.961 0.804 1.000 - 1.000 0.000

TriT 1.000 1.000 1.000 1.000 0.804 1.000 1.000 - 0.000

SSGMM 0.040 0.009 0.022 1.000 0.601 0.000 0.000 0.000 -

Table C.5: Pairwise comparison p-values (25% Inductive binary negative accuracy).

115

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.103

LabelS 1.000 - 1.000 1.000 1.000 0.069 1.000 1.000 0.019

LabelP 1.000 1.000 - 1.000 1.000 0.479 1.000 1.000 0.103

LapSVM 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000

SemiB 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 0.479

SelfT 1.000 0.069 0.479 1.000 1.000 - 0.179 0.091 0.001

CoT 1.000 1.000 1.000 1.000 1.000 0.179 - 1.000 0.237

TriT 1.000 1.000 1.000 1.000 1.000 0.091 1.000 - 0.238

SSGMM 0.103 0.019 0.103 1.000 0.479 0.001 0.237 0.238 -

Table C.6: Pairwise comparison p-values (50% Inductive binary negative accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.236

LabelS 1.000 - 1.000 1.000 0.904 0.096 1.000 1.000 0.113

LabelP 1.000 1.000 - 1.000 1.000 0.320 1.000 1.000 0.256

LapSVM 1.000 1.000 1.000 - 1.000 1.000 0.085 0.340 1.000

SemiB 1.000 0.904 1.000 1.000 - 1.000 1.000 1.000 0.033

SelfT 1.000 0.096 0.320 1.000 1.000 - 1.000 1.000 0.007

CoT 1.000 1.000 1.000 0.085 1.000 1.000 - 1.000 0.013

TriT 1.000 1.000 1.000 0.340 1.000 1.000 1.000 - 0.005

SSGMM 0.236 0.113 0.256 1.000 0.033 0.007 0.013 0.005 -

Table C.7: Pairwise comparison p-values (75% Inductive binary negative accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.196

LabelS 1.000 - 1.000 1.000 1.000 0.221 1.000 1.000 0.103

LabelP 1.000 1.000 - 1.000 1.000 0.253 1.000 1.000 0.298

LapSVM 1.000 1.000 1.000 - 1.000 1.000 1.000 1.000 1.000

SemiB 1.000 1.000 1.000 1.000 - 1.000 1.000 1.000 0.050

SelfT 1.000 0.221 0.253 1.000 1.000 - 0.103 0.103 0.004

CoT 1.000 1.000 1.000 1.000 1.000 0.103 - 1.000 1.000

TriT 1.000 1.000 1.000 1.000 1.000 0.103 1.000 - 0.540

SSGMM 0.196 0.103 0.298 1.000 0.050 0.004 1.000 0.540 -

Table C.8: Pairwise comparison p-values (90% Inductive binary negative accuracy).

116

C.3 Multi-class Global Accuracy

Ratio ASB LabelS LabelP SelfT CoT TriT SSGMM

0.25 3.00 3.35 4.69 2.75 4.36 2.86 3.00

0.50 3.82 3.82 4.06 3.00 4.21 2.86 2.53

0.75 3.27 4.00 4.25 2.94 4.07 2.86 2.47

0.90 3.09 4.24 4.06 2.75 4.07 3.00 2.40

Table C.9: Average rank of algorithms per ratio (Inductive multi-class global accuracy).

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000

LabelS 1.000 - 0.535 1.000 1.000 1.000 1.000

LabelP 1.000 0.535 - 0.322 1.000 1.000 1.000

SelfT 1.000 1.000 0.322 - 1.000 1.000 1.000

CoT 1.000 1.000 1.000 1.000 - 0.275 1.000

TriT 1.000 1.000 1.000 1.000 0.275 - 1.000

SSGMM 1.000 1.000 1.000 1.000 1.000 1.000 -

Table C.10: Pairwise comparison p-values (25% Inductive multi-class global accuracy).

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000

LabelS 1.000 - 1.000 1.000 1.000 1.000 1.000

LabelP 1.000 1.000 - 1.000 1.000 1.000 1.000

SelfT 1.000 1.000 1.000 - 1.000 1.000 1.000

CoT 1.000 1.000 1.000 1.000 - 1.000 1.000

TriT 1.000 1.000 1.000 1.000 1.000 - 1.000

SSGMM 1.000 1.000 1.000 1.000 1.000 1.000 -

Table C.11: Pairwise comparison p-values (50% Inductive multi-class global accuracy).

117

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000

LabelS 1.000 - 1.000 1.000 1.000 1.000 0.733

LabelP 1.000 1.000 - 0.231 1.000 0.598 0.975

SelfT 1.000 1.000 0.231 - 1.000 1.000 1.000

CoT 1.000 1.000 1.000 1.000 - 1.000 1.000

TriT 1.000 1.000 0.598 1.000 1.000 - 1.000

SSGMM 1.000 0.733 0.975 1.000 1.000 1.000 -

Table C.12: Pairwise comparison p-values (75% Inductive multi-class global accuracy).

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000

LabelS 1.000 - 1.000 0.097 1.000 1.000 0.844

LabelP 1.000 1.000 - 0.266 1.000 0.730 1.000

SelfT 1.000 0.097 0.266 - 1.000 1.000 1.000

CoT 1.000 1.000 1.000 1.000 - 1.000 1.000

TriT 1.000 1.000 0.730 1.000 1.000 - 1.000

SSGMM 1.000 0.844 1.000 1.000 1.000 1.000 -

Table C.13: Pairwise comparison p-values (90% Inductive multi-class global accuracy).

C.4 Multi-class Positive Accuracy

Ratio ASB LabelS LabelP SelfT CoT TriT SSGMM

0.25 2.27 2.88 3.56 2.69 3.50 2.29 2.07

0.50 2.55 2.76 3.44 2.62 3.57 2.57 2.20

0.75 2.45 2.88 3.56 2.75 3.50 2.57 1.60

0.90 2.73 2.88 3.38 2.81 3.36 2.50 1.40

Table C.14: Average rank of algorithms per ratio (Inductive multi-class positive accuracy).

118

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000

LabelS 1.000 - 1.000 1.000 1.000 1.000 1.000

LabelP 1.000 1.000 - 1.000 1.000 1.000 0.995

SelfT 1.000 1.000 1.000 - 0.773 1.000 1.000

CoT 1.000 1.000 1.000 0.773 - 1.000 1.000

TriT 1.000 1.000 1.000 1.000 1.000 - 1.000

SSGMM 1.000 1.000 0.995 1.000 1.000 1.000 -

Table C.15: Pairwise comparison p-values (25% Inductive multi-class positive accuracy).

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000

LabelS 1.000 - 1.000 1.000 1.000 1.000 1.000

LabelP 1.000 1.000 - 1.000 1.000 1.000 1.000

SelfT 1.000 1.000 1.000 - 1.000 1.000 1.000

CoT 1.000 1.000 1.000 1.000 - 1.000 1.000

TriT 1.000 1.000 1.000 1.000 1.000 - 1.000

SSGMM 1.000 1.000 1.000 1.000 1.000 1.000 -

Table C.16: Pairwise comparison p-values (50% Inductive multi-class positive accuracy).

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 0.937

LabelS 1.000 - 1.000 1.000 1.000 1.000 0.268

LabelP 1.000 1.000 - 1.000 1.000 1.000 0.080

SelfT 1.000 1.000 1.000 - 1.000 1.000 0.786

CoT 1.000 1.000 1.000 1.000 - 1.000 1.000

TriT 1.000 1.000 1.000 1.000 1.000 - 1.000

SSGMM 0.937 0.268 0.080 0.786 1.000 1.000 -

Table C.17: Pairwise comparison p-values (75% Inductive multi-class positive accuracy).

119

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 0.777

LabelS 1.000 - 1.000 1.000 1.000 1.000 0.155

LabelP 1.000 1.000 - 1.000 1.000 1.000 0.080

SelfT 1.000 1.000 1.000 - 1.000 1.000 0.298

CoT 1.000 1.000 1.000 1.000 - 1.000 0.524

TriT 1.000 1.000 1.000 1.000 1.000 - 0.328

SSGMM 0.777 0.155 0.080 0.298 0.524 0.328 -

Table C.18: Pairwise comparison p-values (90% Inductive multi-class positive accuracy).

C.5 Multi-class Negative Accuracy

Ratio ASB LabelS LabelP SelfT CoT TriT SSGMM

0.25 3.64 2.94 3.50 3.38 3.36 2.36 4.43

0.50 3.82 3.00 2.69 3.12 3.07 2.64 4.00

0.75 2.82 3.18 3.25 3.50 2.64 2.57 3.87

0.90 2.91 3.06 3.12 3.44 2.86 2.21 3.80

Table C.19: Average rank of algorithms per ratio (Inductive multi-class negative accuracy).

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000

LabelS 1.000 - 1.000 1.000 1.000 1.000 1.000

LabelP 1.000 1.000 - 1.000 1.000 1.000 1.000

SelfT 1.000 1.000 1.000 - 1.000 1.000 1.000

CoT 1.000 1.000 1.000 1.000 - 1.000 0.334

TriT 1.000 1.000 1.000 1.000 1.000 - 1.000

SSGMM 1.000 1.000 1.000 1.000 0.334 1.000 -

Table C.20: Pairwise comparison p-values (25% Inductive multi-class negative accuracy).

120

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000

LabelS 1.000 - 1.000 1.000 1.000 1.000 1.000

LabelP 1.000 1.000 - 1.000 1.000 1.000 1.000

SelfT 1.000 1.000 1.000 - 1.000 1.000 1.000

CoT 1.000 1.000 1.000 1.000 - 1.000 1.000

TriT 1.000 1.000 1.000 1.000 1.000 - 1.000

SSGMM 1.000 1.000 1.000 1.000 1.000 1.000 -

Table C.21: Pairwise comparison p-values (50% Inductive multi-class negative accuracy).

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000

LabelS 1.000 - 1.000 1.000 1.000 1.000 1.000

LabelP 1.000 1.000 - 1.000 1.000 1.000 1.000

SelfT 1.000 1.000 1.000 - 1.000 1.000 1.000

CoT 1.000 1.000 1.000 1.000 - 1.000 1.000

TriT 1.000 1.000 1.000 1.000 1.000 - 1.000

SSGMM 1.000 1.000 1.000 1.000 1.000 1.000 -

Table C.22: Pairwise comparison p-values (75% Inductive multi-class negative accuracy).

- ASB LabelS LabelP SelfT CoT TriT SSGMM

ASB - 1.000 1.000 1.000 1.000 1.000 1.000

LabelS 1.000 - 1.000 1.000 1.000 1.000 1.000

LabelP 1.000 1.000 - 1.000 1.000 0.825 1.000

SelfT 1.000 1.000 1.000 - 1.000 1.000 1.000

CoT 1.000 1.000 1.000 1.000 - 1.000 1.000

TriT 1.000 1.000 0.825 1.000 1.000 - 1.000

SSGMM 1.000 1.000 1.000 1.000 1.000 1.000 -

Table C.23: Pairwise comparison p-values (90% Inductive multi-class negative accuracy).

121

C.6 Transductive Binary Positive Accuracy

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 1.000 0.953 0.001 0.000 1.000 1.000 0.047

LabelS 1.000 - 0.001 0.000 0.000 1.000 1.000 0.439

LabelP 0.953 0.001 - 0.001 0.000 0.741 0.465 0.012

LapSVM 0.001 0.000 0.001 - 1.000 0.000 0.000 0.000

SemiB 0.000 0.000 0.000 1.000 - 0.000 0.000 0.000

SelfT 1.000 1.000 0.741 0.000 0.000 - 1.000 0.074

SSGMM 1.000 1.000 0.465 0.00 0.000 1.000 - 1.000

TSVM 0.047 0.439 0.012 0.000 0.000 0.074 1.000 -

Table C.24: Pairwise comparison p-values (25% Transductive binary positive accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 1.000 1.000 0.000 0.000 1.000 0.600 0.001

LabelS 1.000 - 0.007 0.000 0.000 1.000 0.366 0.030

LabelP 1.000 0.007 - 0.000 0.000 1.000 0.218 0.003

LapSVM 0.000 0.000 0.000 - 0.127 0.000 0.000 0.000

SemiB 0.000 0.000 0.000 0.127 - 0.000 0.000 0.000

SelfT 1.000 1.000 1.000 0.000 0.000 - 0.366 0.001

SSGMM 0.600 0.366 0.218 0.000 0.000 0.366 - 1.000

TSVM 0.001 0.030 0.003 0.000 0.000 0.001 1.000 -

Table C.25: Pairwise comparison p-values (50% Transductive binary positive accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 0.832 0.658 0.001 0.025 0.439 0.658 0.040

LabelS 0.832 - 0.832 0.000 0.439 1.000 0.227 0.001

LabelP 0.658 0.832 - 0.000 0.815 1.000 0.227 0.001

LapSVM 0.001 0.000 0.000 - 0.000 0.000 0.000 0.000

SemiB 0.025 0.439 0.815 0.000 - 0.021 0.131 0.001

SelfT 0.439 1.000 1.000 0.000 0.021 - 0.439 0.001

SSGMM 0.658 0.227 0.227 0.000 0.131 0.439 - 1.000

TSVM 0.040 0.001 0.001 0.000 0.001 0.001 1.000 -

Table C.26: Pairwise comparison p-values (75% Transductive binary positive accuracy).

122

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 1.000 1.000 0.001 0.307 0.777 1.000 0.180

LabelS 1.000 - 1.000 0.001 0.923 1.000 0.923 0.307

LabelP 1.000 1.000 - 0.001 1.000 1.000 0.870 0.109

LapSVM 0.001 0.001 0.001 - 0.002 0.002 0.001 0.001

SemiB 0.307 0.923 1.000 0.002 - 0.270 1.000 0.039

SelfT 0.777 1.000 1.000 0.002 0.270 - 0.964 0.072

SSGMM 1.000 0.923 0.870 0.001 1.000 0.964 - 1.000

TSVM 0.180 0.307 0.109 0.001 0.039 0.072 1.000 -

Table C.27: Pairwise comparison p-values (90% Transductive binary positive accuracy).

C.7 Transductive Binary Negative Accuracy

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 0.077 1.000 0.007 0.001 1.000 0.000 0.142

LabelS 0.077 - 0.027 0.001 0.000 0.007 0.000 1.000

LabelP 1.000 0.027 - 0.007 0.001 1.000 0.000 0.584

LapSVM 0.007 0.001 0.007 - 1.000 0.004 0.001 0.001

SemiB 0.001 0.000 0.001 1.000 - 0.000 0.000 0.000

SelfT 1.000 0.007 1.000 0.004 0.000 - 0.000 0.323

SSGMM 0.000 0.000 0.000 0.001 0.000 0.000 - 0.002

TSVM 0.142 1.000 0.584 0.001 0.000 0.323 0.002 -

Table C.28: Pairwise comparison p-values (25% Transductive binary negative accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 0.068 0.468 0.004 0.000 0.538 0.001 0.155

LabelS 0.068 - 0.210 0.002 0.001 0.005 0.000 0.538

LabelP 0.468 0.210 - 0.004 0.002 0.193 0.001 0.468

LapSVM 0.004 0.002 0.004 - 0.468 0.005 0.001 0.002

SemiB 0.000 0.001 0.002 0.468 - 0.000 0.000 0.002

SelfT 0.538 0.005 0.193 0.005 0.000 - 0.000 0.210

SSGMM 0.001 0.000 0.001 0.001 0.000 0.000 - 0.003

TSVM 0.155 0.538 0.468 0.002 0.002 0.210 0.003 -

Table C.29: Pairwise comparison p-values (50% Transductive binary negative accuracy).

123

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 0.271 0.289 0.006 0.255 0.506 0.001 0.239

LabelS 0.271 - 0.255 0.004 0.051 0.068 0.001 0.306

LabelP 0.289 0.255 - 0.009 0.079 0.180 0.001 0.239

LapSVM 0.006 0.004 0.009 - 0.014 0.011 0.001 0.001

SemiB 0.255 0.051 0.079 0.014 - 0.062 0.000 0.066

SelfT 0.506 0.068 0.180 0.011 0.062 - 0.000 0.079

SSGMM 0.001 0.001 0.001 0.001 0.000 0.000 - 0.014

TSVM 0.239 0.306 0.239 0.001 0.066 0.079 0.014 -

Table C.30: Pairwise comparison p-values (75% Transductive binary negative accuracy).

- ASB LabelS LabelP LapSVM SemiB SelfT SSGMM TSVM

ASB - 0.435 0.449 0.017 1.000 1.000 0.001 0.449

LabelS 0.435 - 1.000 0.015 0.115 0.115 0.000 0.419

LabelP 0.449 1.000 - 0.013 0.111 0.115 0.001 0.631

LapSVM 0.017 0.015 0.013 - 0.081 0.094 0.002 0.013

SemiB 1.000 0.115 0.111 0.081 - 1.000 0.001 0.419

SelfT 1.000 0.115 0.115 0.094 1.000 - 0.000 0.289

SSGMM 0.001 0.000 0.001 0.002 0.001 0.000 - 0.013

TSVM 0.449 0.419 0.631 0.013 0.419 0.289 0.013 -

Table C.31: Pairwise comparison p-values (90% Transductive binary negative accuracy).

	Introduction
	Context
	The Problem and Objectives
	Dissertation Structure

	Literature Review
	Original Papers
	Self-Training
	Label Propagation
	Label Spreading
	Assemble
	SemiBoost
	Co-Training
	Tri-Training
	TSVM
	LapSVM
	SSGMM

	Related Work

	Theoretical Foundations
	Self-training
	Label Propagation
	Label Spreading
	Assemble
	SemiBoost
	Co-Training
	Tri-Training
	TSVM
	LapSVM
	SSGMM

	Methodology
	OpenML-CC18
	LAMDA-SSL
	General Setup
	Inductive Setup
	Transductive Setup
	Result Analysis

	Results
	Inductive
	Binary
	Multi-class

	Transductive

	Conclusion
	Bibliography
	Proofs
	Proposition 1.5.1
	Proposition 1.5.2
	Proposition 1.5.4
	Proposition 1.5.5
	Lemma 1.5.6
	Proposition 1.7.1
	Proposition 1.7.2
	Proposition 1.8.1

	Auxiliary Algorithms
	Select
	Select'
	BootstrapSample
	Error
	Subsample

	Results and Tables
	Binary Positive Accuracy
	Binary Negative Accuracy
	Multi-class Global Accuracy
	Multi-class Positive Accuracy
	Multi-class Negative Accuracy
	Transductive Binary Positive Accuracy
	Transductive Binary Negative Accuracy

