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Resumo

As equações de Stokes são usadas para modelar o movimento de fluidos onde termos iner-

ciais podem ser desprezados, como por exemplo na indústria de petróleo. Técnicas tradicionais

de elementos finitos, como a formulação de Taylor-Hood, não garantem a conservação local

da massa ponto a ponto. Isso pode ser alcançado empregando uma formulação mista com a

combinação adequada de espaços H(div) e L2. Para estudar o impacto de obstruções no fluxo

de um fluído, este trabalho apresenta uma nova formulação híbrida-híbrida para resolver as

equações de Stokes. Além disso, uma variação do espaço H(div) tradicional, chamada Hdiv-C,

é usada para aproximar o campo de velocidade. O espaço Hdiv-C é criado usando conceitos da

sequência exata de De Rham e requer menos funções do que os espaços H(div) tradicionais de

elementos finitos. Um algoritmo visando a geração automática de malhas é desenvolvido para

criar domínios obstruídos. Um protótipo em escala é numericamente estudado para mostrar um

procedimento que pode ser adotado para avaliar o melhor tipo de obstrução capaz de impor uma

queda de pressão específica no fluxo. Os resultados mostram que a formulação dupla híbrida

combinada com o espaço Hdiv-C é adequada para resolver problemas de Stokes, com taxas de

convergência ótimas, comparáveis ao elemento de Taylor-Hood.

Palavras-chave: Equações de Stokes, formulação híbrida-híbrida, espaços H(div), geração

automática de malhas, domínios obstruídos.



Abstract

The Stokes equations are used to model the motion of fluid flows where inertial terms can

be neglected, such as in the production well context. Traditional finite element approaches such

as the Taylor-Hood element do not ensure the local conservation pointwise of the mass. This

can be achieved by employing a mixed formulation with the proper combination of H(div) and

L2 spaces. To study the impact of obstructed flows, this work presents a new hybrid-hybrid for-

mulation to solve the Stokes equations. In addition, a variation of the traditional H(div) space,

called Hdiv-C, is used to approximate the fields. The Hdiv-C space is created using concepts of

the exact De Rham sequence and is shown to yield a smaller global system of equations than

traditional finite element H(div) spaces. An algorithm aiming the automatic mesh generation is

developed to create obstructed domains and verify the impacts of the obstructions on the flow

pattern. An in-scale prototype is studied to show a procedure that can be adopted to numerically

evaluate the best type of obstruction capable of imposing a specific pressure drop in the flow.

The results show that the hybrid-hybrid formulation combined with the Hdiv-C space is suitable

for solving Stokes problems, with optimal convergence rates, comparable to the Taylor-Hood

element.

Keywords: Stokes equations, hybrid-hybrid formulation, H(div) spaces, automatic mesh gen-

eration, obstructed domains.
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Chapter 1

Introduction

Energy demand is rising faster than the capacity of oil production worldwide. To increase

production, more advanced technologies can be employed. After the primary extraction level,

the secondary and tertiary levels of oil recovery might be applied. The secondary level of ex-

traction consists of, for instance, pumping water into the reservoir to increase reservoir pressure.

The tertiary level is about enhancing the oil recovery by using chemicals, thermal procedures,

and other sorts of techniques [1].

Water injection, or waterflooding, is a key element in modern processes of oil extraction.

To displace the fluid within the reservoir into the production wells, water is injected into the

reservoir, through injection wells. Filling the void left by produced oil, which prevents land-

slides and maintains high reservoir pressure and minimizing environmental impacts (reinjection

of produced water) are some of the advantages of water injection [2].

Produced water injection is the most common method to increase oil production [2]. Pro-

duced water is co-produced with the oil stream and, due to the traces of oil and other chemicals,

its filtration and disposal in nature are not easy tasks. In this context, aspects such as the geom-

etry of the well, and flux pattern might have a significant impact on the injectivity of produced

water into the well, and consequently, on the oil production.

Aiming to better investigate the loss of the injectivity of produced water, a project titled

"Experimental and numerical study of the loss of injectivity of produced water in reservoir rock

with the variation of physical and geometric parameters of the well" financed by TotalEnergies is

being developed. The project is divided into experimental analyses and numerical simulations.

During the experimental analyses, a 10m module will be built to assess the effects influence of

the presence of solid or oil residual on the injectivity loss of the well.

However, since the flux pattern inside the module is not expected to vary significantly, ob-

structions will be inserted into the module to induce head loss. An in-scale prototype will be

used to previously study the effects of different obstructions geometries within the module (see

Figure 1.1). The prototype is 1 m long and 9 cm in diameter.
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Obstructor device

Figure 1.1: Schema for the reduced module.

Scale models might not be representative. In this work, numerical simulations aim to repro-

duce the fluid flow through the in-scale prototype and assess the effects of different obstructions

geometries on the fluid flow.

Assuming a low Reynolds number, the flow is steady and the inertial terms can be ne-

glected. Then, the Navier-Stokes equations can be simplified to the Stokes equations [3]. The

Stokes equations are widely used to model fluid motion in various scientific and engineering

fields [4–8]. In this work, it is used to model the fluid flow within the wellbore. From a math-

ematical perspective, the Stokes formulation can be compared to isotropic elasticity theory as

both phenomena are governed by similar equations [9, 10].

Over the years, various numerical techniques have been used to solve Stokes’ problems. The

three main methods for simulating Stokes flow are the Finite Difference Method (FDM), the

Finite Volume Method (FVM), and the Finite Element Method (FEM). FEM offers advantages

such as the ability to handle irregular geometries, the versatility to impose complex boundary

conditions, and work with non-uniform meshes. FEM provides reliable solutions even in the

presence of material property discontinuities (in solids or fluids) and external body forces [11,

12].

When solving the Stokes equations using a finite element framework, the commonly used

approach is the Galerkin Method (GM). For a comprehensive list of references on this topic, see

[4, 9, 13–17]. Among the most popular methods for solving the velocity and pressure unknown

fields, the Taylor-Hood formulation [18] is widely employed. The Taylor-Hood element utilizes

continuous quadratic piecewise functions to approximate the velocity and continuous linear

piecewise functions to approximate the pressure. In other words, both the velocity and pressure

are approximated using H1(Ω) spaces, as opposed to using discontinuous functions for the

pressure (L2(Ω) spaces). In this work, the Taylor-Hood element is used for comparison against

the proposed method.

As an alternative to the traditional Galerkin Methods (GMs), Discontinuous Galerkin Meth-

ods (DGMs) have been developed. Unlike standard GMs, DGMs do not enforce continuity in

the velocity components between elements. In this context, stabilization factors and/or sym-
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metry terms need to be added to the finite element formulation. Examples of Discontinuous

Galerkin methods can be found in [19–25].

The appropriate selection of H(div,Ω)-L2(Ω) for the velocity and pressure fields has been

demonstrated to enable local mass conservation of the approximation [26,27]. This means that,

assuming the flow is incompressible and there are no source or sink terms, the divergence of

the velocity is zero at each point [28]. However, the tangential component of the velocity is

not inherently continuous between elements, when using H(div,Ω) functions. Therefore, the

adopted formulation must enforce the continuity of the tangential velocity. For more details on

H(div,Ω) spaces, one refers to the following works [26–31].

The starting point of this work is [27], in which a semi-hybrid formulation is presented

to solve Stokes’ equations. The semi-hybrid formulation approximates velocity ensuring the

continuity of the tangential velocity weakly by applying Lagrange multipliers. In this context,

the introduced Lagrange multipliers have the physical meaning of tangential stresses. Although

stable from a mathematical point of view, this formulation leads to a saddle-point system with

two distinct types of Lagrange multipliers that require more sophisticated algorithms to solve.

Therefore, this work proposes a second hybridization of the tangential stress aiming to improve

stability and a global matrix with better spectral properties. This new approach is called hybrid-

hybrid formulation.

In both the semi-hybrid and hybrid-hybrid formulations, static condensation is employed to

i) enhance computational efficiency and ii) recover a symmetric positive semi-definite elemental

matrix for the latter. However, there is a distinction between the two formulations in terms

of the condensed system’s Degrees of Freedom (DoFs). In the semi-hybrid formulation, the

system after the condensation includes DoFs from velocity, pressure and traction, whereas, in

the hybrid-hybrid formulation, only velocity and pressure DoFs are present.

After the static condensation is applied, the resulting system in the hybrid-hybrid formu-

lation still has a saddle-point structure, but only the Lagrange multipliers associated with the

pressure are present. The Lagrange multipliers associated with the velocity no longer yield ze-

ros in the diagonal of the matrix, since the traction is condensed. This leads to a more stable

system, from a numerical point of view, when compared to the semi-hybrid formulation. Note

that despite the introduction of a new Lagrange multiplier, the total number of DoFs in the

condensed system remains the same as in the semi-hybrid formulation.

The current work also aims to verify the hybrid-hybrid formulation when two different types

of H(div,Ω) spaces are used to approximate velocity. In Section 2 of [32], a methodology to

construct a stable space for mixed problems generalized for any polynomial order is presented.

The space created by this methodology is herein called Hdiv-S (here S stands for "Standard"

because it is the way the space is constructed in the NeoPZ environment by default). For more

information on three-dimensional Hdiv-S space, the reader is referred to [33].

The so-called Hdiv-C (C stands for "Constant" since the space is constant divergence) is

the other H(div,Ω)-type space used in this work. One constructs an H(curl) space to filter its
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functions whose curl forms a linearly independent set of divergence-free functions. Then, the

edge functions from H(curl) are replaced by RT0 (Raviart Thomas zero order) functions with

element-wise constant divergence. Hdiv-C space has, therefore, a reduced number of shape

functions when compared to Hdiv-S space, which leads to a smaller system of equations. More

details for constructing Hdiv-C spaces can be found in Section 3 from [34].

It is well-established that the accuracy and reliability of the solution depend on the choice of

velocity-pressure approximation spaces [10, 35]. For example, using equal H1(Ω) approxima-

tions for both velocity and pressure fields leads to an unstable solution and unphysical pressure

oscillations [36]. To ensure the convergence of the method and overcome numerical challenges,

it is necessary to satisfy the Babuska-Brezzi condition [37,38]. The approximation spaces avail-

able in NeoPZ environment satisfy the De Rham complex and consequently the LBB condition

for incompressibility.

This work’s main goal is to employ the hybrid-hybrid formulation to simulate fluid flow

through obstructed channels. To achieve this, a new algorithm for mesh generation is devel-

oped to create meshes for any type of obstruction automatically and efficiently. The results are

obtained by solving the Stokes equations, using two different variations of the H(div,Ω) space

(Hdiv-S and Hdiv-C) to interpolate the velocity field. Both spaces are compared to the tradi-

tional Taylor-Hood element and the effect of different obstruction geometries on the fluid flow

is studied. The object-oriented programming environment NeoPZ1 written in C++ is used to

implement the numerical simulations.

1.1 Objectives

This work aims to implement the hybrid-hybrid formulation for the Stokes problem and

automate mesh generation, using both Hdiv-S and Hdiv-C spaces in problems of industrial

interest, more specifically, to simulate fluid flow through obstructed channels.

Specific objectives are:

• Study of the intrinsic phenomena and laws that govern fluid dynamics in the context of

the Stokes problems;

• Implementation of the hybrid-hybrid formulation for Stokes problems using H(div,Ω)

spaces (Hdiv-S and Hdiv-C);

• Two- and three-dimensional code verification, comparing the solutions with analytical

solutions and studying rates of convergence;

• Implementation of a Python Gmsh interface, capable of creating meshes with pre-defined

obstructions automatically and efficiently; and

• Study of the effect of different obstructions geometries on the fluid flow.
1NeoPZ open source platform <https://github.com/labmec/neopz>
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1.2 Dissertation Structure

This work is organized into seven chapters. Chapter 2 presents basic concepts widely em-

ployed in continuum mechanics such as material derivatives, conservation of mass and balance

of momentum equations. The finite element method is properly introduced in Chapter 3, show-

ing the process of creation for Hdiv-S and Hdiv-C shape functions, and methods applied to

reduce execution time and impose boundary conditions.

Stokes equations are presented in Chapter 4 along with their weak formulation. Three dif-

ferent formulations are presented: the Taylor-Hood element, a classical mixed formulation ap-

proach, the semi-hybrid formulation, and finally the hybrid-hybrid. Chapter 5 shows numerical

simulations used to verify the code and study the range of applications of the proposed method.

Chapter 6 presents the mesh generation algorithm, the obstruction geometries studied, and

their effects on the fluid flow. Ultimately, Chapter 7 presents the conclusions and future work.
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Chapter 2

Basic Concepts of Continuum Mechanics

Continuum mechanics is a branch of mechanics that deals with the study of materials (solids

or fluids) as a continuous medium. A continuous medium is a set of infinitesimal particles,

grouped and assessed macroscopically. It is supposed that there are no discontinuities between

the particles, and the material properties can be described as continuous functions of space and

time.

There are two ways to describe the behavior of a continuous medium: from the material

point of view (also called Lagrangian description) and from the spatial point of view (also

called Eulerian description). The material point of view follows the motion of a particle of

the material, while the spatial point of view follows the motion of a fixed point in space. In

solid mechanics, the material description is more used, while in fluid mechanics, the spatial

description is often preferred.

In this chapter, special attention is given to the conservation and balance equations, funda-

mental to the understanding of the Stokes governing equations. For a comprehensive text on the

topic, the reader is referred to [39–41].

2.1 Mathematical Operators

Physical phenomena are often described by the laws of continuum mechanics, which are

in turn expressed in terms of differential equations. In this section, the mathematical operators

gradient, divergence, and curl, usually employed in continuum mechanics are defined.

The gradient denotes the directions of the greatest change of a given function. The diver-

gence represents the change in volume of the outward flux of a vector or tensor field from an

infinitesimal volume. The curl is a measure of the rotation of a vector field.

Let g, g, and G be scalar, vector, and tensor functions, respectively. The gradient, diver-
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gence and curl operators are defined, in cartesian coordinates, as follows

∇g =

{
∂g

∂x
,
∂g

∂y
,
∂g

∂z

}T

, ∇g =









∂gx
∂x

∂gx
∂y

∂gx
∂z

∂gy
∂x

∂gy
∂y

∂gy
∂z

∂gz
∂x

∂gz
∂y

∂gz
∂z









, (2.1)

∇ · g =
∂g

∂x
+

∂g

∂y
+

∂g

∂z
, ∇ ·G =









∂Gxx

∂x
+ ∂Gxy

∂y
+ ∂Gxz

∂z

∂Gyx

∂x
+ ∂Gyy

∂y
+ ∂Gyz

∂z

∂Gzx

∂x
+ ∂Gzy

∂y
+ ∂Gzz

∂z









. (2.2)

∇× g =







∂gz
∂y

− ∂gy
∂z

∂gx
∂z

− ∂gz
∂x

∂gy
∂x

− ∂gx
∂y







. (2.3)

2.2 Equations of Motion

As mentioned before, there are two ways to describe the behavior of a continuous medium:

the material or Lagrangian description and the spatial or Eulerian description. Consider the con-

figurations presented in Figure 2.1. The region Ω0 is referred to as the reference or undeformed

configuration, while the region Ωt is known as the current or deformed configuration.

Ωt

χ(X, t)

Ω0

χ−1(X, t)

P ′P

x

y

z

xX

Figure 2.1: Motion and configurations of a continuous medium.

The position vector X defines the coordinates of a given particle occupying position P in the
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reference configuration. Assuming that the body moves to a new position Ωt at time t, vector x

defines the coordinates of the particle occupying the spatial point P ′ in the current configuration.

The position of particles can be described by the evolution of their spatial coordinates along

time, given by the motion function χ as follows

x(X, t) =







χ(X1, t)

χ(X2, t)

χ(X3, t)

X(x, t) =







χ−1(x1, t)

χ−1(x2, t)

χ−1(x3, t)

. (2.4)

For χ to be properly considered as a motion function, some mathematical restrictions must

be satisfied. X is the position vector at time t = 0. χ must be continuous since the motion of

the particles is continuous. Two particles cannot occupy simultaneously the same position in

space and a particle cannot occupy two different positions at the same time.

Any property of the particle can be described in material or spatial terms. Let C and c be

material and spatial fields containing the property of interest (e.g. density, velocity, etc) of a

given particle. The relation between the material and spatial fields is given by Eq. (2.5)

c(x, t) = c(χ(X, t), t) = C(X, t). (2.5)

2.3 Material Time Derivative

The material time derivative is a measure of the rate at which the material field F changes

with time, as seen by an observer moving with the particle. It is the derivative of F with respect

to time, keeping the spatial coordinates constant.

DF(X, t)

Dt
=

(
∂F

∂t

)

X

, (2.6)

where the subscript X denotes that the derivative is taken keeping the spatial coordinates con-

stant.

The material time derivative can be also expressed in terms of the derivative of the spatial

field f with respect to time, as seen by an observer fixed in space. This is done by the chain

rule, as follows

Df(χ(X, t), t)

Dt
=

(
∂f(χ(X, t), t)

∂t

)

χ

+

(
∂f(χ, t)

∂χ

)

t

·

(
∂χ(X, t)

∂t

)

X

. (2.7)

The velocity field v can be defined by the derivative of χ with respect to time. Then, Eq.

(2.7) can be rewritten as
Df(χ(X, t), t)

Dt
=

∂f

∂t
+ v · ∇f, (2.8)
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which the first term of the right-hand side is known as the local time derivative and the second

term is known as the convective derivative. The local time derivative is a measure of the rate at

which the field changes at a given point in space, while the convective derivative is a measure

of the rate at which the field changes as the particle moves. Notice that eqs. (2.6) and (2.8) are

equivalent.

When the field f is the velocity field vecv, the material time derivative yields into the accel-

eration field
Dv

Dt
=

∂v

∂t
+ v · ∇v = a, (2.9)

which is important to the understanding of the balance of linear momentum.

2.4 Conservation of Mass

The amount of material a body contains is described by the mass field m. In classical

mechanics, mass cannot be produced or destroyed, which means that in a motion, with the

absence of sources (reservoirs that supply mass) or sinks (reservoirs that remove mass), the

mass field is conserved. In other words, any particle with mass m at the reference configuration

will have the same mass at the current configuration

m(Ω0) = m(Ωt) > 0. (2.10)

Hence, the material time derivative of the mass field is zero

D

Dt
m(Ω0) =

D

Dt
m(Ωt) = 0. (2.11)

The density ρ0 is defined as the mass per unit volume at the reference configuration, while

the density ρ is defined as the mass per unit volume at the current configuration. Note that,

while ρ is a function of space and time, ρ0 is time-independent. In the differential form, the

relation between mass and density is given by Eq. (2.12)

m =

∫

Ω0

ρ0(X)dV =

∫

Ωt

ρ(x, t)dv = const > 0, (2.12)

where dV and dv are the volume elements in the reference and current configurations, respec-

tively. The rate of change of mass is given by Eq. (2.13)

Dm

Dt
=

D

Dt

∫

Ω0

ρ0(X)dV =
D

Dt

∫

Ωt

ρ(x, t) = 0, (2.13)

since the density at the reference ρ0 does not depend on time, Eq. (2.13) yields

Dρ

Dt
= 0. (2.14)
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Eq. (2.14) describes the conservation of mass from a material point of view. To obtain the

conservation equation from a spatial point of view, the material derivative presented in Eq. (2.7)

is employed
Dρ

Dt
=

∂ρ

∂t
+∇ · (ρv) = 0. (2.15)

Considering the case in which ρ is constant, Eq. (2.15) yields

∇ · v = 0. (2.16)

2.5 Balance of the Linear Momentum

The balance of the linear momentum equation arises from Newton’s first and second princi-

ples of motion, in the context of continuum mechanics. Let L(t) be the linear momentum of a

body at time t, defined by the product of the mass m and velocity v(x, t)

L(t) =

∫

Ω0

ρ0(X)V (X)dV =

∫

Ωt

ρ(x, t)v(x, t)dv. (2.17)

Taking the material time derivative of the linear momentum with respect to time yields the

resulting force F (t)

DL(t)

Dt
=

D

Dt

∫

Ω0

ρ0V dV =
D

Dt

∫

Ωt

ρvdv = F (t). (2.18)

Next, the forces acting on the surface of the body are considered. Let ∂Ω be the boundary of

the body at any time t, including at the reference moment. The boundary is subject to tractions

t(x, t,n) = σn, where σ is the Cauchy stress tensor and n is the outward unit normal vector.

In addition, the continuum is also subject to body forces f(x, t) so that the total external forces

F (t) acting on the body is given by Eq. (2.19)

F (t) =

∫

∂Ωt

tdA+

∫

Ωt

fdv, (2.19)

in which dA is the area element of the boundary ∂Ωt. By applying the divergence theorem, the

traction can be rewritten as
∫

∂Ωt

tdA =

∫

∂Ωt

σndA =

∫

Ωt

∇ · σdv. (2.20)

By plugging Eq. (2.20) into eqs. (2.19) and (2.18)

∫

Ωt

(
D

Dt
ρv −∇ · σ + f

)

dv = 0, (2.21)

which can only be null if the integrand is null. Therefore, the balance of linear momentum is
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properly defined by Eq. (2.22)
D

Dt
ρv = ∇ · σ + f . (2.22)

In the case of steady flows, Eq. (2.22) can be rewritten as

∇ · σ + f = 0. (2.23)

2.6 The Piola Transformation

Vectors and tensors quantities can be described in both the reference and current configu-

rations. When a transformation maps vectors from the material to the spatial configuration, it

is called a push-forward operation χ∗(·). The opposite, when a quantity is mapped from the

spatial to the material configuration, it is called a pull-back operation χ−1
∗ (·).

The Piola transformation is an example of these operations. Let A be a material vector field

and a be the spatial vector field, then the Piola transformation is defined as

A = Jχ−1
∗ (a), (2.24)

where χ−1
∗ (·) = F−1(·), and F is the deformation gradient tensor defined by

F = ∇χ =









∂χ1

∂X1

∂χ1

∂X2

∂χ1

∂X3

∂χ2

∂X1

∂χ2

∂X2

∂χ2

∂X3

∂χ3

∂X1

∂χ3

∂X2

∂χ3

∂X3









, (2.25)

J is the determinant of F , also known as the volume ratio or the Jacobian of the transformation

and can be seen as a scale factor for the transformation.

It can be shown that the Piola transformation conserves the flux of a vector field between

the reference and current configurations. This property is important in the applications of the

H(div) approximation spaces used in this work (see Section 3.6.4).
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Chapter 3

The Finite Element Method

The Finite Element Method (FEM) is a general procedure to find approximated solutions to

Boundary Value Problems (BVPs) governed by Partial Differential Equations (PDEs) [42]. It

has emerged from engineering fields based on divide-and-conquer techniques, discretizing the

continuum domain into a finite amount of partitions with defined behavior [43]. The system’s

solution arises from the assembly of each partition, followed by the imposition of Boundary

Conditions (BCs) on the previous continuum domain [11]. In the following sections, the basic

concepts of the FEM are presented, including the approximation spaces, the weak statement,

the Galerkin method, and the shape functions used in the current work.

3.1 Approximation Spaces

In this section, the L2(Ω), H1(Ω), and H(div,Ω) spaces are formally defined, along with

their respective inner products and norms.

3.1.1 The Lebesgue Space

For scalar functions u, the L2(Ω) space can be defined by:

L2(Ω) =

{

u :

∫

Ω

u2 dΩ < ∞

}

. (3.1)

The inner product and norm of the space L2(Ω) are defined respectively by:

(u, v)L2 = (u, v) =

∫

Ω

u v dΩ, (3.2)

∥u∥L2 = ∥u∥ = (u, u)
1

2 . (3.3)
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For vector functions u, the L2(Ω) space is defined by

[
L2(Ω)

]d
=






u :

∫

Ω

(
d∑

i=1

u2
i

) 1

2

dΩ < ∞






, (3.4)

with d ∈ {2, 3} and ui being the components of the vector function u. The respective norm is

defined by

∥u∥[L2(Ω)]d = ∥u∥ =

(
d∑

i=1

u2
i

) 1

2

. (3.5)

3.1.2 The Hilbert Space

The H1(Ω) space comprises the functions u of L2(Ω) that have the first derivative square-

integrable as well. It is defined by

H1(Ω) =
{

u ∈ L2(Ω) : ∇u ∈
[
L2(Ω)

]d
}

. (3.6)

Eqs. (3.7) and (3.8) describe the H1(Ω) inner product and norm

(u, v)H1 = (u, v) + (∇u,∇v), (3.7)

∥u∥H1 =
(
∥u∥2 + ∥∇u∥2

) 1

2 . (3.8)

3.1.3 The H(div, Ω) Space

In H(div,Ω) spaces, the divergence of a vector function u must be square-integrable

H(div, Ω) =
{
u ∈ [L2(Ω)]d : ∇ · u ∈ L2(Ω)

}
. (3.9)

The inner product and associated norm are defined as follows:

(u,v)H(div, Ω) = (u,v) + (∇ · u,∇ · v), (3.10)

∥u∥H(div, Ω) =
(
∥u∥2 + ∥∇ · u∥2

) 1

2 . (3.11)

3.1.4 The H(curl, Ω) Space

The H(curl,Ω) space is defined by

H(curl, Ω) =
{
u ∈ [L2(Ω)]d : ∇× u ∈ L2(Ω)

}
. (3.12)
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The inner product and norm of the H(curl,Ω) space are defined by

(u,v)H(curl, Ω) = (u,v) + (∇× u,∇× v), (3.13)

∥u∥H(curl, Ω) =
(
∥u∥2 + ∥∇ × u∥2

) 1

2 . (3.14)

3.2 Weak Statement

Let Ω ¢ R
d, d ∈ {2, 3}, be a polygonal domain with border ∂Ω ¢ R

d−1, n being an unit

normal vector pointing outwards Ω, and t the associated tangent vector. The domain is divided

into shape-regular partitions T = {Ωe, e = 1, ..., N} of Ω, formed by elements Ωe with usual

geometries (triangular, quadrilateral, tetrahedral, hexahedral) and boundary ∂Ωe.

The mesh skeleton comprises all element edges E that form the set ε. The set of internal

edges is denoted by ε0 = {E ∈ ε : E ¢ Ω}. To each internal edge, a unit normal nE

and tangent tE vectors are associated forming a right-hand coordinate system. Over interfaces

E ∈ ε0 between to consecutive elements Ω1 and Ω2, the jump operator of a function v is defined

by

JvK = v2|E − v1|E, (3.15)

in which vi = v|Ωi
.

Poisson’s equation is here used to illustrate how to obtain the weak statement of a model

problem. The Poisson problem consists of finding u such that

∇ · σ = f in Ω, (3.16)

σ = −Kp∇u in Ω, (3.17)

u = uD on ∂ΩD, (3.18)

σn = σN on ∂ΩN , (3.19)

in which σ is the flux, f is the body force, u is the state variable, uD is the Dirichlet BC, σN

is the Neumann BC, and Kp is a scalar. In Darcy’s problems Kp is the permeability of the

media, in heat conduction it is the conductibility, etc. Note that the boundary ∂Ω is divided into

the Dirichlet ∂ΩD and Neumann ∂ΩN parts, on which the respective boundary conditions are

imposed.

The first step to obtain the weak formulation is to apply the Weighted Residual Method,

multiplying the PDE by a test function v and integrating over the domain Ω

∫

Ω

∇ · (σ)v dΩ =

∫

Ω

fv dΩ, (3.20)

using Green’s theorem to the left-hand side of Eq. (3.20), and replacing σ by its definition, the
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weak formulation of the Poisson problem is obtained. The Poisson’s problem then reads: find

u ∈ U = {u|u ∈ H1(Ω), u = uD on ∂ΩD} such that

∫

Ω

−Kp∇u · ∇v dΩ =

∫

Ω

fv dΩ +

∫

∂Ω

σNv ds ∀v ∈ V (3.21)

is satisfied, where V = {v|v ∈ H1(Ω), v = 0 on ∂ΩD}. The Dirichlet BC is strongly imposed,

while the Neumann BC is weakly enforced by the last term of the right-hand side of Eq. (3.21).

3.3 The Galerkin Method

If the weak formulation of Eq. (3.21) is solved for all v ∈ V, the solution obtained is the

same as the one obtained solving the strong form of Eq. (3.17). However, the approximation

space V has an infinite number of basis functions, which makes it computationally unfeasible

to solve.

The Galerkin Method proposes a methodology to solve the weak formulation, using no

longer the infinite-dimensional space V, but a finite-dimensional subspace. In this context,

functions u and v are replaced by their approximations: the trial function uh and the test function

vh, respectively

u ≈ uh =
n∑

i=1

αiφi, v ≈ vh =
n∑

j=1

βjφj, (3.22)

where φi is the set of shape functions of a given approximation space, αi and βj are unknown

coefficients, and n is the approximation space’s number of equations. Replacing Eq. (3.22) in

Eq. (3.21) the Poisson’s problem weak formulation becomes

n∑

i=1

n∑

j=1

(∫

Ω

−Kp∇φi · ∇φj dΩ

)

αj =
n∑

i=1

∫

Ω

φif dΩ +

∫

∂ΩN

φiσN ds ∀φi ∈ V. (3.23)

The original PDE is now transformed into a linear system. Eq (3.23) can be written in a

matrix form as:

Kα = f , (3.24)

in which the stiffness matrix coefficients Kij , the unknown coefficients αi, and the load vector

coefficients fi are defined as follows

Kij =
n∑

i=1

n∑

j=1

(∫

Ω

−Kp∇φi · ∇φj dΩ

)

,

α = [αi, αi+1, ..., αn]
T ,

f =

[
n∑

i=1

∫

Ω

φif dΩ +

∫

∂ΩN

φiσN ds

]T

.
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One key characteristic of the Galerkin Method is that it proposes to approximate both the

trial and test functions using the same set of basis functions. This fact assigns to the stiffness

matrix important properties, such as symmetry. Ultimately, the solution for the coefficients α

can be found by solving the linear system of Eq. (3.24), and the solution to the original BVP

can be evaluated once the coefficients are known (Eq. (3.22)).

Naturally, the quality of the solution depends directly on the choice of the approximation

space. FEM is applied to provide a systematic technique to construct the shape functions for

Galerkin approximations.

3.4 Master and Deformed Elements

As previously discussed, the strong form of a BVP is turned into a linear system that rep-

resents the weak formulation approximated by the Galerkin Method. The stiffness matrix is

obtained through the evaluation of integrals defined over the element domain. However, each

element has a different domain, which makes it difficult to propose a set of shape functions φ

that can be generically applied to all elements.

A way to overcome this issue is to map the element domain Ωe into a master element domain

Ω̂, using linear transformations. Over the master element, the integrals are no longer evaluated

in the cartesian coordinates system (x, y, z), instead, they are evaluated in the parametric coor-

dinates system (ξ, η, ζ). Figure 3.1 illustrates both linear transformations Te : Ω̂ → Ωe, and

T−1
e : Ωe → Ω̂.

η

ξ

(−1,−1)

(1, 1)

Ω̂

Ωe

y

x

η

ξ

T−1

e

Te

Figure 3.1: Geometrical transformations Te and T−1
e .

These linear transformations are defined in three dimensions as follows:

Te :







x = x(ξ, η, ζ)

y = y(ξ, η, ζ)

z = z(ξ, η, ζ)

; T−1
e :







ξ = ξ(x, y, z)

η = η(x, y, z)

ζ = ζ(x, y, z)

, (3.25)
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along with the mapping function:

x =
nF∑

n=1

xiφ̂i(ξ, η, ζ); y =
nF∑

n=1

yiφ̂i(ξ, η, ζ), z =
nF∑

n=1

ziφ̂i(ξ, η, ζ), (3.26)

in which xi, yi, and zi are the nodal coordinates of the deformed element related to the shape

function φ̂i defined in the master element, and nF is the number of functions defined over the

master element used in the mapping function. Unless it is said otherwise, the mapping function

used in this work only considers linear shape functions. More information about the set of shape

functions can be found in Section 3.6.

Triangular and quadrilateral master elements are depicted in Figure 3.2,

Figure 3.2: Triangle and Quadrilateral master elements.

η

ξ

(−1,−1)

(1, 1)

c0 c1

c2c3

r0

r1

r2

r3
f0

(1, 0)

(0, 1)

(0, 0)
ξ

η

c0 c1

c2

r0

r2 r1
f0

in which, circles illustrate the vertices, pentagons the edges, and squares the faces. In three-

dimensional elements, there is also the volume. All these master elements’ characteristics are,

herein, called "sides". In this work, triangle, quadrilateral, tetrahedral, and hexahedral elements

are considered, of which master element’s geometry is defined by [44] as follows:

• for triangles: Ω̂ = {(ξ, η); ξ g 0, η g 0, ξ + η f 1};

• for quadrilaterals: Ω̂ = [−1, 1]× [−1, 1];

• for tetrahedral: Ω̂ = {(ξ, η, ζ); ξ g 0, η g 0, ζ g 0, ξ + η + ζ f 1};

• for hexahedral: Ω̂ = [−1, 1]× [−1, 1]× [−1, 1];

3.5 Numerical Integration

Numerical integration is used to evaluate the stiffness matrix, load vector, and compute

error. The Gaussian Quadrature

∫

Ω

f(x, y, z) dΩ ≈

nPoints∑

i=1

|det(J)|f(x(ξi, ηi, ζi))wi, (3.27)
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is employed in this framework to integrate quadrilateral and hexahedral elements. In Eq. (3.27),

nPoints is the Gaussian Quadrature number of points for a given polynomial order with respec-

tive weights wi, f is the function to be integrated, (x, y, z) are the cartesian coordinates, (ξ, η, ζ)

are the parametric coordinates, and det(J) is the determinant of the Jacobian matrix J defined

as

J =









∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ









. (3.28)

For triangular elements, the Hammer Quadrature detailed in [45] is used.

3.6 Shape Functions

Shape functions are composed according to the approximation space, the element type, and

the polynomial approximation order. The following sections discuss the particularities of H1(Ω)

and H(div,Ω) approximation spaces.

3.6.1 H1(Ω)-conforming Scalar Shape Functions

A systematic way to construct shape functions for H1(Ω)-conforming spaces is proposed

by [44]. The shape functions employed by NeoPZ are hierarchical, rather than Lagrangian.

Hierarchical functions consider all the polynomial orders up to a given k in a single set of shape

functions, while Lagrangian functions consider only the polynomial order k. In the literature,

other types of shape functions can be found. To obtain an approximation space of continuous

functions, the authors enumerate the following properties:

1. A shape function cannot be associated with two or more sides of the same element;

2. A side of non-null dimension has zero or more shape functions associated with it;

3. A shape function related to a side of dimension d is non-zero on this side and null on any

other side of dimension < d;

4. Each shape function of a given element is associated with its sides.

Taking these properties into account, the shape functions can be divided into four categories:

vertex, edge, face, and internals. Each one of them is briefly commented below.

• Vertex Shape Functions: denoted by φ̂ci. They are composed of Lagrangian first-order

shape functions. Unitary on the vertex ci and null on any other vertex, edges, and faces

not sharing the vertex ci.
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• Edge Shape Functions: denoted by φ̂n
ri

. Non-zero on the edge ri. They vanish in all

other edges and faces not sharing the edge ri;

• Face Shape Functions: denoted by φ̂n0,n1

fi
. Non-zero on the face fi. They are null on all

other faces not sharing the face fi;

• Volume Shape Functions: denoted by φ̂n0,n1,n2

vi
. They vanish in all vertices, edges, and

faces.

• Triangle Elements

Consider the triangle master element depicted in Figure 3.2. For a given polynomial ap-

proximation order k, the number of shape functions associated with this element can be seen in

Table 3.1.

Table 3.1: Number of H1(Ω)-conforming shape functions on triangular elements.

Side Type Number of Shape Functions

Vertex 3

Edge 3(k − 1) with k g 2

Face (k−2)(k−1)
2

with k g 3

• Vertex functions φ̂ci :

φ̂c0(ξ, η) = 1− ξ − η, φ̂c1(ξ, η) = ξ, φ̂c2(ξ, η) = η. (3.29)

• Edge functions φ̂n
ri

:

φ̂n
r0
(ξ, η) = φ̂c0(ξ, η)φ̂c1(ξ, η)fn(η + 2ξ − 1),

φ̂n
r1
(ξ, η) = φ̂c1(ξ, η)φ̂c2(ξ, η)fn(η − ξ),

φ̂n
r2
(ξ, η) = φ̂c2(ξ, η)φ̂c0(ξ, η)fn(1− 2η − ξ),

(3.30)

for n = 0, ..., k − 2.

• Face functions φ̂n0,n1

f0
:

φ̂n0,n1

f0
(ξ, η) = φ̂c0(ξ, η)φ̂c1(ξ, η)φ̂c2(ξ, η)fn0

(2ξ − 1)fn1
(2η − 1), (3.31)

where fn(·) = cos(n arccos(·)) are the Chebychev polynomials, in which 0 < n0+n1 < k−3.

• Quadrilateral Elements

Consider now, the quadrilateral master element in Figure 3.2. The numbers of its shape

functions, for a given k, are listed in Table 3.2.
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Table 3.2: Number of H1(Ω)-conforming shape functions on quadrilateral elements.

Side Type Number of Shape Functions

Vertex 4

Edge 4(k − 1), with k g 2

Face (k − 1)2, with k g 2

• Vertex functions φ̂ci :

φ̂c0(ξ, η) =
(1− ξ)(1− η)

4
, φ̂c1(ξ, η) =

(1 + ξ)(1− η)

4
,

φ̂c2(ξ, η) =
(1 + ξ)(1 + η)

4
, φ̂c3(ξ, η) =

(1− ξ)(1 + η)

4
.

(3.32)

• Edge functions φ̂ri :

φ̂n
r0
(ξ, η) = 4φ̂c0(ξ, η)[φ̂c1(ξ, η) + φ̂c2(ξ, η)]fn(ξ),

φ̂n
r1
(ξ, η) = 4φ̂c1(ξ, η)[φ̂c2(ξ, η) + φ̂c3(ξ, η)]fn(η),

φ̂n
r2
(ξ, η) = 4φ̂c2(ξ, η)[φ̂c3(ξ, η) + φ̂c0(ξ, η)]fn(−ξ),

φ̂n
r3
(ξ, η) = 4φ̂c3(ξ, η)[φ̂c0(ξ, η) + φ̂c1(ξ, η)]fn(−η),

(3.33)

for n = 0, ..., k − 2.

• Face functions φ̂fi :

φ̂n0,n1

f0
= 16φ̂c0(ξ, η)φ̂c2(ξ, η)fn0

(ξ)fn1
(η), (3.34)

in which 0 < n0, n1 < k − 2.

For hexahedral elements, the number of scalar shape functions for H1(Ω)-conforming spaces

is given by Table 3.3.

Table 3.3: Number of H1(Ω)-conforming shape functions on hexahedral elements.

Side Type Number of Shape Functions

Vertex 8

Edge 12(k − 1), with k g 2

Face 6(k − 1)2, with k g 2

Volume (k − 1)2, with k g 2

The creation of three-dimensional elements is similar to the process aforementioned. More

details of the shape functions for tetrahedral and hexahedral elements can be found in Sections
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4.4 and 4.7 of [44], respectively. Table 3.4 summarizes the set of shape functions for H1(Ω)-

conforming spaces in two- and three-dimensional elements.

Table 3.4: Set of shape functions for H1(Ω)-conforming spaces.

Element dimension Shape Functions

2D φ̂ci , φ̂ri , φ̂fi

3D φ̂ci , φ̂
n
ri

, φ̂fi , φ̂vi

in which φ̂vi is the volume shape function.

3.6.2 H(div, Ω) Hierarchical Vector Shape Functions

The creation of two- and three-dimensional hierarchical vector shape functions for H(div,Ω)

spaces adopted in this work is proposed in [32, 33]. Since the procedures for two and three

dimensions are different, they are treated separately.

• Two-Dimensional Vector Fields at Master Element

The creation of H(div,Ω) space shape functions proposed by [32] is based on the multipli-

cation of scalar shape functions by vector fields. To each side, two vectors are connected. These

vectors can be defined using the canonical orthonormal vectors e1 = {1, 0, 0}, e2 = {0, 1, 0},

and e3 = {0, 0, 1}. Figure 3.3 depicts the two-dimensional vector fields associated with the

creation of H(div,Ω) shape functions.

v
r̂0,ĉ0 v

r̂0,§ v
r̂0,ĉ1

v
r̂1,ĉ1

v
r̂1,§

v
r̂1,ĉ2

v
r̂2,ĉ3 v

r̂2,§ v
r̂2,ĉ2

v
r̂3,ĉ0

v
r̂3,§

v
r̂3,ĉ3

v
r̂0,∥

v
r̂1,∥

v
r̂2,∥

v
r̂3,∥

v
f̂0,1

v
f̂0,2

v
r̂0,ĉ0 v

r̂0,§
v
r̂0,ĉ1

v
r̂1,ĉ1

v
r̂1,§

v
r̂1,ĉ2

v
r̂2,ĉ0
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v
r̂0,∥

v
r̂1,∥

v
r̂2,∥

v
r̂0,1

v
f̂0,2

Figure 3.3: Vector fields at two-dimensional reference elements.

For two dimensions, vector fields v can be defined as follows:

1. vr̂i,ĉj - vectors associated with a vertex ĉj on the edge r̂i. Each vr̂i,ĉj should be aligned to

the adjacent edge, that also shares the vertex ĉj .
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2. vr̂i,§ - an outward normal vector to the edge ri;

3. vr̂i,∥ - tangent to the edge ri;

4. vf̂0,i, with i = {1, 2} - the orthonormal vectors ei associated with the face f̂0.

Sets 1 and 2 listed above configure the so-called "Edge vectors" and, thus, are responsi-

ble for creating the edge shape functions of the H(div,Ω) space. Sets 3 and 4, conversely,

are called "Internal Vectors" and generate the internal shape functions, i.e., functions without

normal components.

• Two-Dimensional Elements

For both triangle and quadrilateral elements, the H(div,Ω) generation process of shape func-

tions is the same, the product of scalar H1(Ω) shape functions and v, as follows.

• Edge Functions:

φ̂r̂i,ĉj = φ̂ĉj v
r̂i,ĉj , (3.35)

φ̂r̂i,n = φ̂n
r̂i
vr̂i,§. (3.36)

For Eq. (3.35), it is mandatory to verify that, if ĉj is a vertex of r̂k and r̂i ̸= r̂k, with r̂i

adjacent to r̂k, then the product φ̂r̂k,ĉj ·nk shall be null. Over the edge r̂i, the normal component

is φ̂r̂i,ĉj · ni = φ̂ci . Eq. (3.36) vanishes at any r̂k ̸= r̂i and has normal component equal to

φ̂r̂i,n · ni = φ̂n
r̂i

.

• Internal Functions:

φ̂f̂0,r̂i,n = φ̂n
r̂i
vr̂i,∥, (3.37)

φ̂
f̂0,n0,n1

i = φ̂n0,n1

f̂0
vf̂0,i. (3.38)

For any edge r̂k ̸= r̂i, Eq. (3.37) vanishes. Over the edge r̂i, its normal component shall

be null. On every edge of the face f̂0, Eq. (3.38) vanishes. There exist (k + 1)(k + 2), and

2(k+1)2 shape functions in a triangular and quadrilateral, respectively. To these sets, are added

functions of which the divergence has the same polynomial order as k. H(div,Ω) functions have

continuous normal components across element interfaces [46].

• Three-Dimensional Vector Fields at Master Element

The creation of H(div,Ω) shape functions for three-dimensional elements is proposed by

[33]. The vector fields are defined as follows

1. vf̂i,ĉ - vectors associated with the vertices ĉ of face f̂i;

2. vf̂i,r̂ - vectors associated with the edges r̂ of face f̂i;

3. vf̂i,§ - normal vector associated with the face f̂i;
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4. vr̂i,∥ - aligned vectors to the edge r̂i;

5. v
f̂i,∥
j , with j = {1, 2} - tangent vectors to the face f̂i;

6. vv̂i
j , with j = {1, 2, 3} - orthonormal vectors ej associated with the volume v̂.

Sets 1, 2, and 3 listed above configure the face vector field. Thus they are responsible for

creating the face shape functions for the H(div,Ω) space. Sets 4, 5, and 6, conversely, compose

the internal vector field and generate the internal shape functions, i.e., functions without normal

components.

• Three-Dimensional Elements

The process of creation for three-dimensional elements is similar to the two-dimensional

case. The multiplication of scalar H1(Ω) shape functions and v is performed as follows.

• Face Functions:

φ̂f̂i,ĉ = φ̂ĉ v
f̂i,ĉ, (3.39)

φ̂f̂i,r̂,n = φ̂n
r̂ vf̂i,r̂, (3.40)

φ̂f̂i,n0,n1 = φ̂n0,n1

f̂i
vf̂i,§. (3.41)

The normal component of Eq. (3.39), vanishes at any face f̂k ̸= f̂i that shares the vertex

ĉ. Over the face f̂i, the normal component is φ̂f̂i,ĉ · ni = φ̂ĉ. In faces whose edges do not

include r̂i Eq. (3.40) vanishes. The normal component of Eq. (3.40) is φ̂f̂i,r̂,n · ni = φ̂n
r̂ .

Eq. (3.41) vanishes at any face f̂k ̸= f̂i and over face f̂i has normal component equal to

φ̂f̂i,n0,n1 · ni = φ̂n0,n1

f̂i
.

• Internal Functions:

φ̂v̂i,r̂,n = φ̂n
r̂ vr̂,∥, (3.42)

φ̂
v̂i,f̂ ,n0,n1

j = φ̂f̂ v
f̂ ,∥
j , (3.43)

φ̂
v̂i,n0,n1,n2

j = φ̂n0,n1,n2

v̂i
vv̂i
j . (3.44)

On all edges that do not share the edge r̂i, Eq. (3.42) vanishes. Over the edge r̂i, the normal

component is null. Eq. (3.44) vanishes on all faces of the volume v̂i.

Table 3.5 summarizes the set of shape functions for H(div,Ω) spaces in two- and three-

dimensional elements. More details about the creation of H(div,Ω) shape functions for three-

dimensional elements can be found in Appendix A of [33].
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Table 3.5: Set of shape functions for H(div,Ω) spaces.

Element dimension Shape Functions

2D φ̂r̂i,ĉj , φ̂r̂i,n, φ̂f̂0,r̂i,n, φ̂f̂0,n0,n1

i

3D φ̂f̂i,ĉ, φ̂f̂i,r̂,n, φ̂f̂i,n0,n1 , φ̂v̂i,r̂,n, φ̂v̂i,f̂ ,n0,n1

j , φ̂v̂i,n0,n1,n2

j

The hierarchical H(div,Ω) space created following the aforementioned procedure is herein

called Hdiv-S (refers to [32, 33] for deeper pieces of information). One goal of this work is to

compare the performance of the Hdiv-S space with a constant divergence space, herein called

Hdiv-C. The next section explains how the Hdiv-C space is created.

3.6.3 A Constant Divergence H(div, Ω) Space

The Hdiv-C space is introduced in Section 3 of [34]. It is created from the De Rham exact

sequence theory, which is defined for two and three dimensions by eqs. (3.45) and (3.46),

respectively

R −→ H1(Ω)
∇×
−−→ H(div, Ω)

∇·
−→ L2(Ω) −→ {0}, (3.45)

R → H1(Ω)
∇
−→ H(curl, Ω)

∇×
−−→ H(div, Ω)

∇·
−→ L2(Ω) → {0} (3.46)

where, for two-dimensional scalar functions, the curl operator is also known as the rotated

gradient operator.

Let φH1

be a scalar function in the H1(Ω) space, φhcurl a vector function in H(curl,Ω), φhdiv

a vector function in H(div,Ω), and φL2

a scalar function in L2(Ω). Then the following relations

are valid

{∇φH1

} = {φhcurl|∇ × φhcurl = 0} (3.47)

{∇ × φhcurl} = {φhdiv|∇ · φhdiv = 0} (3.48)

{∇ · φhdiv} = {φL2

} (3.49)

Taking these relations into account, the procedures for creating the Hdiv-C space for two-

and three-dimensional functions are explained. For two dimensions, the rotated gradient of

H1(Ω) functions is taken as the basis for the H(div,Ω) space. The edge functions of the just

created H(div,Ω) space are then replaced by RT0 functions (Ravian-Tomas zero order) [47],

which leads to a constant divergence space.

For three dimensions, the space H(curl,Ω) by multiplying the H1(Ω) functions by the tan-

gent vector field of the faces. From the H(curl,Ω) functions, those that have zero divergence are

filtered out, leading to the creation of the H(div,Ω) space. The face functions are then replaced

by the RT0 functions, which are constant by element.

An advantage of this procedure is that all functions of H(div,Ω) with divergence equal

to zero are obtained directly from the H(curl,Ω) functions. Moreover, the De Rham exact
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sequence allows the creation of approximation spaces for higher polynomial orders.

Divergence-free problems, such as the Stokes equations for incompressible fluids, can be

approximated with a very efficient constant H(div,Ω) basis. The Hdiv-C space is key for opti-

mizing the iterative methods for solving the global system of equations.

3.6.4 H(div, Ω) Shape Functions with Piola Transformation

The current work employs H(div,Ω) spaces to interpolate velocity and solve the Stokes

equations. One of the main characteristics of H(div,Ω) spaces is that only the normal compo-

nent of the velocity is continuous across elements. The linear transformation presented in Sec-

tion 3.4, however, is not able to conserve normal components in vector fields such as H(div,Ω).

To overcome this issue, the Piola Transformation (see Section 2.6) is employed to map the

shape functions evaluated in the master element to the deformed element.

T div : φ =
1

|det(J)|
Jφ̂. (3.50)

in which J is the Jacobian matrix of the transformation.

Moreover, it is verified that, for vector fields mapped by Eq. (3.50), the following property

is also valid [46]

∇ · φ =
1

|det(J)|
∇ · φ̂. (3.51)

3.7 Static Condensation

Static condensation is a method that aims to reduce the size of linear systems by condens-

ing the number of Degrees of Freedom (DoF) of the system. The term was first employed

to condense the DoF of statical structural analysis, grouping the equations into different sub-

sets [48, 49].

Let αi be linear coefficients related to internal shape functions, which are associated with

one element without interacting with other elements; and the coefficients αe, conversely, being

related to shape functions that interact between elements. In this context, the static condensation

as proposed by [50] compacts and solves the linear system of Eq. (3.52)






Kii Kie

Kei Kee












αi

αe







=







Fi

Fe







, (3.52)

where the stiffness matrix in Eq. (3.24) is divided into four submatrices: Kii, Kie, Kei, and

Kee, and the load vector is divided into Fi and Fe, according to internal and external DoFs (see

Section 4.4 for more details).
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By isolating αi yields to Eq. (3.53)

αi = K−1
ii (Fi −Kieαe), (3.53)

and replacing αi in the second equation of Eq. (3.52), the condensed system is obtained as

shown in Eq. (3.54)

(Kee −KeiK
−1
ii Kie)

︸ ︷︷ ︸

K∗

αe = Fe −KeiK
−1
ii Fi

︸ ︷︷ ︸

F ∗

, (3.54)

in which K∗ is the condensed stiffness matrix, and F ∗ is the condensed load vector.

It is noted that the global system of equations has a smaller number of equations. The

procedure can lead to a significant decrease in computational time during the solver step.

3.8 The Penalty Method

Let B be a big number, significantly greater than the entries in the stiffness matrix, but not

big enough to compromise numerical stability. Then this big number B can be used to impose

the Dirichlet BC [51].

Imposing a Dirichlet BC, the weak formulation for Poisson’s problem reads: find u ∈ U

such that
∫

Ω

−Kp∇u · ∇v dΩ + B

∫

∂ΩD

uv ds =

∫

Ω

fv dΩ +

∫

∂Ω

σNv ds+B

∫

∂ΩD

uDv ds, (3.55)

is satisfied. It is noted that the stiffness matrix remains symmetric after the penalty method is

applied.
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Chapter 4

The Stokes Equations

In this chapter, the Stokes equations are presented. The problem statement is formalized,

and its weak formulation is derived. Three mixed formulations with different FEM approaches

to solving the Stokes equations are discussed: the Taylor-Hood element, the semi-hybrid, and

the hybrid-hybrid method. For the last two, the local mass conservation is discussed.

4.1 The Problem Statement

The motion of a fluid flow can be defined, in a general way, by the Navier-Stokes equations,

composed of a balance of momentum (Eq. (4.1)) and a mass conservation equation (Eq. (4.2)),

in which ρ is the fluid density; ∂t the partial derivative with respect to time; u the velocity vector

field; µ the fluid viscosity; p the fluid pressure; and f the body forces. It can be employed

to solve problems in the fields of aeronautical engineering, the petroleum industry, and even

biological studies in problems such as the bloodstream flow [52].

Inertial Terms
︷ ︸︸ ︷

ρ( ∂tu
︸︷︷︸

Variation

+ u · ∇u
︸ ︷︷ ︸
Convection

)−

Divergence of stress
︷ ︸︸ ︷

µ∆u
︸ ︷︷ ︸

Diffusion

+ ∇p
︸︷︷︸

Internal Source

=

Source Terms
︷︸︸︷

f , (4.1)

∂tρ+ ρ∇ · (u) = 0. (4.2)

The convection term configures the nonlinearity of the Navier-Stokes problem. If the flow

is said to be in a steady state, then velocity does not vary over time. For flows with a very low

Reynolds number, the convection parcel can be neglected. Knowing that the flow is incompress-

ible, the density is constant and therefore does not vary over time as well. These assumptions

simplify the Navier-Stokes equations into the Stokes equations reads: find the velocity u and
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the pressure p such that:

−∇ · σ = f in Ω, (4.3)

∇ · u = 0 in Ω, (4.4)

u = uD on ∂ΩD, (4.5)

σn = σN on ∂ΩN . (4.6)

Eq. (4.3) represents the divergence of the Cauchy stress, whose constitutive law is given by

Eq. (4.7)

σ = 2µε(u)− pI, (4.7)

ε =
1

2

(
∇u+∇uT

)
, (4.8)

where I is the second order identity tensor and ε is the symmetric strain rate tensor. Eq. (4.4)

is the conservation of mass law, assuming that the flow is incompressible. Equations (4.5) and

(4.6) represent the Dirichlet and Neumann BCs, respectively, imposed on the Dirichlet boundary

∂ΩD and the Neumann boundary ∂ΩN .

Depending on the method, pressure and velocity can be approximated by different spaces.

Let Qe be the polynomial space composed of scalar functions and
#»

Ve be the polynomial space

composed of vector functions. The local approximation spaces for pressure and velocity are

defined in the following sections.

4.2 The Taylor-Hood Approximation

Among the many approaches to solving the Stokes equations employing the FEM, the

Taylor-Hood [18] element is the most widely used. In Taylor-Hood schemes, both velocity

and pressure are approximated by continuous piecewise polynomials interpolated by H1(Ω)

spaces:

Qc =
{
q ∈ L2(Ω) ∩ H1(Ω) : q|Ωe

∈ Qe ∀Ωe ∈ T
}
, (4.9)

[Qc]
d =

{

v ∈
[
H1(Ω)

]d
: v|Ωe

∈ [Qe]
d ∀ Ωe ∈ T : v · n|ΩD

= 0
}

. (4.10)

To obtain the weak formulation of the Stokes problem, the procedure explained in Section

3.2 is employed. Equations 4.3 and 4.4 are multiplied by test functions v and q and integrated

over the discretized domain

∑

Ωe∈T

∫

Ωe

v · (∇ · σ) dΩe =
∑

Ωe∈T

∫

Ωe

v · f dΩe ∀ v ∈ [Qc]
d, (4.11)

∑

Ωe∈T

∫

Ωe

q ∇ · u dΩe = 0 ∀ q ∈ Qc. (4.12)



CHAPTER 4. THE STOKES EQUATIONS 44

Integrating by parts and applying the Divergence theorem in Eq. (4.11) yields

∑

Ωe∈T

∫

Ωe

σ · ∇v dΩe =
∑

Ωe∈T

(∫

Ωe

v · f dΩe +

∫

∂Ωe∩ΩN

(σn) · v ds

)

. (4.13)

Replacing the stress definition in Eq. 4.13, the Stokes weak formulation for Taylor-Hood

elements reads: find u ∈ U and p ∈ H1(Ω) such that:

∑

Ωe∈T

(∫

Ωe

2µε (u) · ε (v) dΩe −

∫

Ωe

p∇ · v dΩe

)

=

∑

Ωe∈T

(∫

Ωe

v · f dΩe +

∫

∂Ωe∩∂ΩN

( σn) · v ds

)

∀ v ∈ [Qc]
d,

(4.14)

∑

Ωe∈T

−

∫

Ωe

q∇ · u dΩe = 0 ∀ q ∈ Qc, (4.15)

where U =
{
u|u ∈ H1(Ω),u = uD on ∂ΩD

}
.

Since both velocity and pressure fields are approximated simultaneously, the weak formula-

tion of eqs. (4.14) and (4.15) must satisfy the inf-sup condition [37, 38]. The inf-sup condition

is a necessary and sufficient condition for the stability of the mixed formulation. Taylor-Hood

elements are proven to satisfy the inf-sup condition, ensuring stability when the velocity ap-

proximation order is equal to k and the pressure approximation order is equal to k − 1. In this

work, velocity is quadratic and pressure is linear.

4.2.1 Boundary Conditions

In the Taylor-Hood element, the boundary conditions are applied as follows:

• Dirichlet BC: Both components of velocity are weakly imposed and can be calculated

by the use of the Penalty method (Sec. 3.8);

• Neumann BC: surface traction is weakly imposed by the right-hand side of Eq. (4.14).

4.3 The Semi-Hybrid Approach

The Taylor-Hood methodology is commonly used, but it does not guarantee a divergence-

free approximation, which means that mass conservation may not be preserved locally. To

address this issue, the semi-hybrid formulation is employed.

4.3.1 Finite Dimension Spaces

To achieve the weak formulation for the Stokes equations using H(div,Ω) spaces as inter-

polating, three approximation spaces are herein defined: one for velocity, one for pressure, and
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the last one for the Lagrange multiplier used to ensure the continuity of the tangential velocity.

Given a macro portion T = {Ωe} of Ω, the velocity approximation space
#»

Vdiv is defined

by [31] as follows
#»

Vd =
{

v ∈ H(div,Ω) : v|Ωe
∈

#»

Ve ∀Ωe ∈ T
}

, (4.16)

#»

Vdiv =
#»

Vd ∩ H1(T ,Rd), (4.17)

and pressure approximation space Qd as follows

Qd =
{
q ∈ L2(Ωe) : q|Ωe

∈ Qe ∀Ωe ∈ T
}
. (4.18)

A very important property of these spaces is that ∇·
#»

Vdiv = Qd, which leads to the method’s

De Rham compatibility (see Section 2.1 of [34] and eqs. (3.45) and (3.46)). The Lagrange

multiplier space, also known as the tangential traction space, is defined as

Λ =
{
σn|∂Ωe

∈ H − 1/2(∂Ωe,R
d), ∀Ωe ∈ T : σ ∈ H(div,Ω)

}
. (4.19)

Recalling that the Lagrange multiplier λ has the physical meaning of tangential stress, the

space Λ is decomposed into two subspaces: one for the normal component of the stress Λn and

the other for the tangential component λt

Λn = {λn = (λ · n)n, λ ∈ Λ}, Λt =
{
λt = λ− (λ · n)n, λ ∈ Λ

}
. (4.20)

4.3.2 H(div, Ω) Weak Formulation

Once the approximation spaces are properly defined, the semi-hybrid formulation for the

Stokes problem can be derived. The procedure is first presented by [27]. Since the tangential

velocity is no longer continuous, due to H(div,Ω) space, the first term on the right-hand side of

Eq. (4.14) can be rewritten in terms of the normal and tangential components as follows

∫

∂Ωe

(σn) · v ds =

∫

∂Ωe

(n¹ n)(σn) · v ds+

∫

∂Ωe

(I − n¹ n)(σn) · v ds (4.21)

However, it is known that Jv ·nK = 0 for all v ∈
#»

Vdiv. Therefore, the traction on interfaces

is expressed only by its tangential component

∑

Ωe∈T

∫

∂Ωe

(n¹ n)(σn) · v ds =
∑

E∈ε0

∫

E

(σn · n)Jv · nK dE = 0, (4.22)

∑

Ωe∈T

∫

∂Ωe

(σn) · v ds =
∑

Ωe∈T

∫

∂Ωe

(I − n¹ n)(σn) · v ds. (4.23)
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Replacing the tangential traction by the Lagrange multiplier λt, Eq. (4.23) becomes

∑

Ωe∈T

∫

∂Ωe

λt · v ds =
∑

E∈ε0

∫

E

λt · JvK dE +
∑

E∈∂ΩN

∫

∂Ωe

λt · v ds. (4.24)

By summing up all the contributions from each element, the semi-hybrid formulation for

the Stokes problem reads: find u, p, and λt ∈
#»

Vdiv ×Qd × Λt such that

∑

Ωe∈T

(∫

Ωe

2µε(u) · ε(v) dΩe −

∫

Ωe

p∇ · (v) dΩe

)

−
∑

E∈ε0

∫

E

λt · JvK dE =

∑

Ωe∈T

(∫

Ωe

v · f dΩe +

∫

∂Ωe∩∂ΩN

(σn · n)(v · n) ds

)

∀v ∈
#»

Vdiv,

(4.25)

∑

Ωe∈T

−

∫

Ωe

q∇ · (u) dΩe = 0 ∀q ∈ Qd, (4.26)

∑

E∈ε0

∫

E

ηt · JuK dE =
∑

Ωe∈T

∫

∂Ωe∩∂ΩN

ηt · (u− uD) ds ∀ηt ∈ Λt, (4.27)

4.3.3 Boundary Conditions

Dirichlet BCs u = uD are decomposed into its normal and tangential components, as

follows

• Normal velocity: is weakly imposed through the use of the penalty method, applying the

expression
∫

∂ΩD
B(u · n− uD · n)(v · n) ds = 0, where B is the penalization constant

(see Section 3.8).

• Tangential velocity: weakly imposed using Eq. (4.27).

Neumann BCs are imposed in terms of stresses θN . Following the same done to Dirichlet

BCs, decomposing θN into normal and shear stresses, the BCs are enforced as follows

• Normal stress: weakly imposed by the term Eq. (4.25).

• Shear stress: the tangential stress θN is weakly imposed by the penalization method

through the expression
∫

∂ΩN
B(λt · t− θN · t)(ηt · t) ds = 0

4.4 The Hybrid-Hybrid Approach

The semi-hybrid approach has been proven to be mathematically consistent in [26], how-

ever, some of its properties must be highlighted. After eliminating the internal velocities

and higher order pressures from the global system, it originates a saddle-point problem with
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two different constraints: a mean pressure per element p ∈ L2(Ω) and the shear stresses

λt ∈ H−1/2(∂Ωe) over the element interfaces.

The decomposition of such matrices is complicated from the numerical point of view, as a

specific permutation must be employed to avoid zero pivots when decomposing the Lagrange

multipliers degrees of freedom. Additionally, the usage of the penalty method to impose shear

stress boundary conditions has been demonstrated to introduce numerical instabilities which

compromise the accuracy of the formulation.

Under these circumstances, and aiming to derive an equivalent formulation but with better

spectral properties, a second hybridization of the tangential stresses is proposed to recover the

primal form. Introducing the space Lt ¢ H1/2(∂Ωe) for the tangential velocity, defined over

the interfaces E ∈ ε0, the hybrid form thus reads: find {u, p,λt,ut} ∈
#»

Vdiv × Qd × Λt × Lt

such that for all v, q,ηt,vt ∈
#»

Vdiv ×Qd × Λt,Lt, the following equations are satisfied:

∑

Ωe∈T

(∫

Ωe

2µε(v) · ε(u)dΩe −

∫

Ωe

p(∇ · v)dΩe −

∫

∂Ωe

λt · vds

)

=

∑

Ωe∈T

(∫

Ωe

v · fdΩe +

∫

∂Ωe∩∂ΩN

(σn · n)(v · n)ds

) (4.28)

∑

Ωe∈T

−

∫

Ωe

q(∇ · u)dΩe = 0 (4.29)

∑

Ωe∈T

−

∫

∂Ωe

u · ηtd∂Ωe −
∑

E∈ε0

∫

E

JηtK · utdE = 0 (4.30)

∑

E∈ε0

−

∫

E

JλtK · vtdE =
∑

Ωe∈T

∫

∂Ωe∩ΩN

vt · (λt − θN) ds, (4.31)

where Eq. (4.31) was introduced to impose the continuity of the tangential traction across

ε0. Even though an additional constraint is introduced, λt is now associated with a single

element therefore it can be statically condensed and eliminated from the global system. Also,

its condensation into the tangential velocities gives rise to a symmetric-positive-semi-definite

block. The elemental matrix is then left with contributions from normal velocities, tangential

velocities, and a single pressure, thus having better spectral properties and being easier to solve

compared to Eqs. (4.25), (4.26) and (4.27).

4.4.1 Boundary Conditions

Dirichlet BCs u = uD are decomposed into its normal and tangential components. Differ-

ently from the semi-hybrid formulation, in the hybrid-hybrid formulation, both components of

the velocity are weakly imposed by the Penalty Method. The BCs are applied as follows

• Normal velocity: is weakly imposed through the use of the penalty method, applying the

expression
∫

∂ΩD
B(u · n− uD · n)(v · n) ds.
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• Tangential velocity: weakly imposed applying the penalty method given by the expres-

sion
∫

∂ΩD
B(u · t− uD · t)(v · t) ds.

Following the same done to Dirichlet BCs, decomposing θN into normal and shear stresses,

the BCs are enforced as follows

• Normal stress: weakly imposed by Eq. (4.28).

• Shear stress: weakly imposed by Eq. (4.31).

Figure 4.1 depicts the Lagrange multipliers created for each formulation. Note that the

Taylor-Hood element does not require the use of Lagrange multipliers (displayed in red and

blue), having continuous velocity between elements.

Ω1 Ω2

∂Ω1 ∂Ω2

u

(a) Taylor-Hood.

Ω1 Ω2

∂Ω1 ∂Ω2

u1 u2

λ
t

(b) Semi-hybrid

Ω1 Ω2

∂Ω1 ∂Ω2

u1 u2

λ
t
1

λ
t
2

u
t

(c) Hybrid-hybrid

Figure 4.1: Lagrange multiplier and elements E for each weak formulation.

4.5 Local Mass Conservation

As already mentioned, the semi-hybrid and the hybrid-hybrid formulations with the pair

H(div,Ω)-L2(Ω) guarantee local mass conservation. The conservation of mass must hold for

any test function q ∈ Qd. Choosing q = ∇ · u yields to:

−

∫

Ω

(∇ · u)2 dΩ = 0, (4.32)

which can only be satisfied if ∇ · u = 0. This is the definition of local mass conservation for

incompressible flows.

4.6 Computational Aspects

This section aims to briefly discuss the main impacts of this work on the NeoPZ library, as

well as the computational aspects of the hybrid-hybrid formulation implementation.

To be able to simulate Stokes flows with the hybrid-hybrid formulation, four classes are

developed in the NeoPZ library: ProblemData, TPZMeshOperator, TPZStokesMaterial, and

TPZStokesMaterialTH. ProblemData creates an object that contains all the necessary data for



CHAPTER 4. THE STOKES EQUATIONS 49

the simulation. The TPZMeshOperator class works on mesh methods, creating computational

and geometrical meshes, inserting interfaces, and condensing elements. The TPZMeshOpera-

tor also contains methods responsible for working and dealing with one of the main goals of

this work: obstructed domains. These functions can identify the elements belonging to the

obstruction so that their equations are filtered and not considered in the global system.

The other two classes contain the implementation of the weak statement for the hybrid-

hybrid and Taylor-Hood formulations of the Stokes equations, respectively. All these classes

are incorporated into the NeoPZ library, which can be used in the future for other people aiming

to simulate Stokes flows with the hybrid-hybrid formulation.

4.6.1 ProblemData

The ProblemData class is used to create an object that stores all the information required by

the simulation. The class has the following attributes:

• MeshName;

• HdivType;

• VelpOrder;

• TracpOrder;

• Dim;

• Resolution;

• StaticCondensation;

• Domain;

• NormalBoundary;

• TangentialBoundary;

• InterfaceID;

• LambdaID;

• HasAnalyticSolution;

Each one of these attributes can be set on a JSON file, that is read by the ProblemData class,

and assigned to the object. MeshName contains the gmsh file where the mesh information is,

HdivType is an integer, where 0 indicates Hdiv-S and 1 Hdiv-C, VelpOrder and TracpOrder is

the approximation order used in the simulation (more details in Table 4.1), and Dim stores the

simulation dimension. Resolution is a post process attribute, indicating the resolution of the

graphic result, and StaticCondensation is a bool that employs the static condensation.

The information about the domain, such as the viscosity value, is passed in the Domain at-

tribute. The same is valid for the boundary conditions, which are stored in the NormalBoundary

and TangentialBoundary attributes. For Taylor-Hood simulations, only the TangentialBoundary

is used due to the way the boundary conditions are imposed.

The InterfaceID and LambdaID are used to identify the interfaces and Lagrange multipliers

that are going to be inserted and created during the simulation. Finally, the HasAnalyticSolution

attribute is used to indicate whether the simulation has an analytical solution or not.
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4.6.2 TPZMeshOperator

The TPZMeshOperator class only has static methods, which means that no object of this

class is created to use its methods. The methods are called directly from the main function or

other parts of the code.

As shown in Figure 4.2, the TPZMeshOperator class’s methods can be divided into three

major groups: mesh creation, interfaces and static condensation, and filter and transfinite inter-

polation. The mesh creation group contains the methods responsible for creating the geometri-

cal and computational meshes for each state variable (velocity, pressure, Lagrange multipliers,

mean pressure, and mean flux if needed). The multiphysics mesh is created for the code to be

able to handle multiple state variables.

Figure 4.2: Methods of the TPZMeshOperator class.

During the creation of the velocity and pressure meshes, the polynomial order must be cho-
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sen properly to ensure the stability and convergence of the method. For H(div,Ω) spaces, a

difference is made between the polynomial order used for the facet and inner velocity. This is

because the inner velocity is enriched depending on whether the hybrid or semi-hybrid formu-

lation is employed and on the type of employed H(div,Ω) space. So is the pressure, in the case

of employing Hdiv-S.

Let k be the polynomial approximation order for the facet velocity, then Table 4.1 shows the

relation between the polynomial order for the velocities, facet and inner, pressure, and traction.

Table 4.1: Polynomial orders for the hybrid-hybrid and semi-hybrid formulations.

Method
Facet

Velocity

Inner

Velocity

Pressure Tangential Velocity

and TractionHdiv-S Hdiv-C

Taylor-Hood1 k k - - -

Semi-hybrid k k + 1 k + 1 0 k − 1

Hybrid-hybrid k k + 2 k + 2 0 k − 1

1 Taylor-Hood formulation does not employ H(div,Ω) spaces for the velocity. In
this case, no distinction is made between the inner and facet velocity, and the
pressure approximation order is equal to k−1. No Lagrange multiplier is used.

The insert interfaces and static condensation group is the group of methods that aims at

the insertion of all the interfaces required by the hybrid-hybrid formulation (see Figure 4.3).

Between each tangential traction and tangential velocity, one interface is created. Over these

interfaces, the jump of the Lagrange multipliers is evaluated. The CondenseElements method

is responsible for condensing the DoFs that are not shared between the elements. For the semi-

hybrid, internal velocities and discontinuous pressures, while for the hybrid-hybrid, internal

velocities, discontinuous pressures, and tangential tractions.

Ω1 Ω2
Ω1 Ω2

E1 E2 E2 E1

λ
t

λ
t

u
t

Figure 4.3: Interfaces inserted during the hybrid-hybrid formulation.

Where, in the hybrid-hybrid formulation, ε2 evaluates the tangential velocity ut and the

jump of λt between both elements, ensuring the continuity of the tangential velocity. In the
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semi-hybrid formulation, ε1 evaluates the jump of the velocity between the elements, ensuring

the continuity of the tangential traction λt.

The filtering functions are better explained in Chapter 6, where an obstruction device is

inserted into the domain to study its impact on the flow pattern. The transfinite interpolator (see

Section 5.2.1 for more details) is employed by using the SetExactArcRepresentation method,

for two-dimensional meshes, and SetExactCircleRepresentation, for three-dimensional meshes.

4.6.3 TPZStokesMaterial and TPZStokesMaterialTH

Since the TPZStokesMaterial and TPZStokesMaterialTH classes implement the weak state-

ment for the Stokes equations and inherit from the same base class, they are both discussed

in this Section. While the TPZStokesMaterial implements the hybrid-hybrid formulation, the

TPZStokesMaterialTH implements the Taylor-Hood formulation. Figure 4.4 shows the main

methods of the TPZStokesMaterial and TPZStokesMaterialTH classes.

Figure 4.4: TPZStokesMaterial and TPZStokesMaterialTH classes methods.

In these classes, two major groups can be identified: the group of methods responsible for

the weak statement, and the group of methods responsible for post-processing the solution. In

the Contribute method, the weak statement is implemented for the hybrid-hybrid and Taylor-

Hood formulations. The ContributeBC method is responsible for the implementation of the way

the boundary conditions are imposed. It is worth mentioning that there are many more methods

in the TPZStokesMaterial and TPZStokesMaterialTH classes that help in the implementation

of the weak statement. The full code can be found in Appendix A.
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The post-process group also is composed of many methods, however, the Solution and Er-

rors methods stand out. The solution method gets as input the solution obtained from the linear

system solver and returns the values for pressure, velocity, and stress. It also evaluates the exact

solution if it is available and the error between the numerical and exact solutions. The Errors

method evaluates the L2-error norm for each state variable and post-process variables.
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Chapter 5

Numerical Simulations

The first part of this section presents the Poiseuille flow problem and the Lid-Driven Cavity

problem as a way to verify the hybrid-hybrid formulation. Two- and three-dimensional versions

of these problems are presented. Convergence analyses are also performed to verify the rate of

convergence of the implemented formulation. For both, two- and three-dimensional problems,

the convergence rate and errors are calculated using the L2-error norm relative to the analytical

solution. Posteriorly, the results are compared to the expected rate of convergence (see Table

5.1) and the classical Taylor-Hood element.

Table 5.1: Simulation information for Taylor-Hood and hybrid-hybrid methods.

Method
Approximation Space L2-convergence rates

Divergence Free
for u for p in u in p in σ

Taylor-Hood H1(Ω) H1(Ω) k+1 k k No

Hybrid-hybrid
Hdiv-S L2(Ω) k+1 k k Yes

Hdiv-C L2(Ω) k+1 1 1 Yes

For the rates shown in Table 5.1, k is the polynomial order of the approximation space for

the facet velocity. A comparison considering the number of condensed Degrees of Freedom

(DoFs) and respective errors for Taylor-Hood and hybrid-hybrid formulations is also presented.

Finally, application examples are presented to demonstrate the range of flows that can be solved

using the hybrid-hybrid formulation.

5.1 Two-Dimensional Flows

Two benchmarks are presented in the current section. The first one is the Poiseuille flow,

which represents the flow between two parallel plates. In this case, both plates are fixed and a

pressure gradient induces the flow motion. For Poiseuille flows, a linear pressure distribution is
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expected along the flow direction and a quadratic velocity profile over the y-direction. Figure

5.1 depicts the expected velocity profile.

ux(y)
σn · n = −10

u · t = 0

u · t = 0

u · n = 0

σn · n = 0

u · t = 0

u · n = 0

u · t = 0

x

y

Figure 5.1: Poiseuille flow: boundary conditions and velocity profile.

The domain is given by the unit square Ω = [0, 1] × [0, 1]. Boundary conditions are also

shown in Figure 5.1. A no-slip (u · t = 0) BC is applied on every border, no-penetration

(u · n = 0) BC is imposed on the upper and lower borders, inlet normal stress ((σn) · n =

−10) is imposed on the left border, and outlet normal stress ((σn) · n = 0) is imposed on

the right border. For simplicity, viscosity µ is set to 1 and the domain is composed of 100

elements (10×10). See eqs. (5.1) to (5.3) for the Poiseuille flow analytical solution under these

conditions.

p = −10(x− 1) (5.1)

u =

{

∂p/∂x

2µ
(y − y2), 0

}

(5.2)

σ =







10(x− 1)
∂p/∂x
2µ

(1− 2y)

∂p/∂x
2µ

(1− 2y) 10(x− 1)






(5.3)

Figures 5.2 - 5.5 show the pressure, velocity and stress numerical solutions for the Poiseuille

flow. Note that two pressure and stress profiles are depicted, one using Hdiv-S space and another

using Hdiv-C space to approximate velocity.
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0.00 2.00 4.00 6.00 8.00 10.00

(a) Hdiv-S (b) Hdiv-C

Figure 5.2: 2D Poiseuille flow pressure field.

0.00 0.25 0.50 0.75 1.00 1.25

(a) ux

0.00 0.00

(b) uy

Figure 5.3: 2D Poiseuille flow velocity field.

-10.00 -8.00 -6.00 -4.00 -2.00 0.00

(a) σxx and σyy

-5.00 -3.00 -1.00 1.00 3.00 5.00

(b) σxy and σyx

Figure 5.4: 2D Poiseuille flow stress field - numerical results for Hdiv-S approximation space.
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(a) σxx and σyy

-5.00 -3.00 -1.00 1.00 3.00 5.00

(b) σxy and σyx

Figure 5.5: 2D Poiseuille flow stress field - numerical results for Hdiv-C approximation space.

As expected, Hdiv-C space yields an element-wise constant pressure, while Hdiv-S results

in a smoother pressure gradient along the domain. The velocity field is also in agreement with

the analytical solution, being the ux component quadratic and the uy component null. Both

spaces Hdiv-S and Hdiv-C yield the same result for the velocity field. When the Hdiv-S space

is employed, the analytic stress field is recovered. For Hdiv-C simulations, the deviatoric stress

recovers the analytic solution as the Cauchy stress tensor depends on the pressure.

The second benchmark is the Lid-Driven Cavity (LDC) flow. In this scenario, there is no

analytical solution available, but the flow behavior is numerically known and widely used in the

literature to verify numerical methods. LDC simulations offer a systematic way of comparison

between computational and experimental research and consist of a square cavity in which the

upper wall is a lid that is dragged at a constant velocity. This motion induces flow and vorticity

in the cavity. For more details on the LDC, one refers to [53].

Boundary conditions are as follows: no-penetration (u · n = 0) on every border, unit tan-

gential velocity (u · t = −1, negative due to the tangential vector orientation) on the top, and

slip condition ((σn) · t = 0) on the remaining borders (see Figure 5.6). The domain is the unit

square Ω = [0, 1]× [0, 1] and is composed of 100 elements. Viscosity µ is also set to 1.
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σn · t = 0

u · n = 0

σn · t = 0

u · n = 0

σn · t = 0

u · n = 0

u · t = −1
u · n = 0

u(x)

x

y

Figure 5.6: Lid-driven cavity flow: boundary conditions and velocity profile.

Velocity field and streamlines are depicted in Figure 5.7, which can be compared to the

results presented in [53]. Note that, due to the absence of the convective term, velocity is

symmetric along the y-axis. Streamlines show the expected vorticity pattern in the cavity.

(a) Velocity magnitude. (b) Streamlines.

Figure 5.7: 2D Lid-driven cavity flow velocity field.

Analyzing the pressure (see Figure 5.8), one can observe at the superior corners, the pres-

ence of two singularities. Such peaks of pressure are because the velocity is bivalued at these

corners, which means that on the lid it is required to be unit, and yet on the lateral walls it must

be null.
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-6.00 -4.00 -2.00 0.00 2.00 4.00 6.00

(a) Hdiv-S (×10
2).

-35.00 -20.00 -5.00 5.00 20.00 35.00

(b) Hdiv-C.

Figure 5.8: 2D Lid-driven cavity flow pressure field.

Note that the singularities presented in the pressure field are not the same for both Hdiv-S

and Hdiv-C spaces. This is expected since they are not analytical solutions to be achieved,

instead, they are singularities caused by a bi-valued velocity on the corner and depend on the

approximation space employed. The velocity profile and the streamlines are the same.

To avoid these singularities, the pressure on one of the superior corners can be imposed,

avoiding the bivalued velocity. However, the influence of these singularities over the domain

does not affect the rest of the solution, and the results remain consistent with the ones observed

in experimental studies [54]

Although both Poiseuille and Lid-Driven Cavity flows are used to observe whether the im-

plemented method is working, they do not provide a convergence analysis. Poiseuille flows

are too simple, and the analytical solution is a subset of the space used to interpolate velocity.

In other words, with only one element, the velocity solution is recovered. On the other hand,

LDC flows do not have an analytical solution, and a comparison can be made only qualitatively.

Thus, another problem, with an analytical solution complex enough is used to obtain the rate of

convergence for the double hyrbrid formulation.

5.1.1 Convergence Analysis for Quadrilateral Elements

A Stokes model with a manufactured solution is adopted to verify two-dimensional prob-

lems. The domain is the unit square Ω = [0, 1] × [0, 1] depicted in Figure 5.9. Boundary

conditions are applied as follows: tangential velocity (u ·t) on all edges, normal velocity (u ·n)

on the left, top, and right edges, and normal stress (σn · n) on the bottom edge.
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Ω

u · t

σn · n

u · t

u · n

u · t

u · n

u · t

u · n

Figure 5.9: Domain and boundary conditions for the two-dimensional verification test.

A similar problem, with a different pressure field, is proposed in [55]. The source term f

is chosen such that the eqs. (5.4) and (5.5) describe the solution for the velocity and pressure

fields, respectively

u =







−256x2(x− 1)2y(y − 1)(y − 2)

256y2(y − 1)2x(x− 1)(x− 2)






, (5.4)

p = 150

(

x−

1

2

)

2
(

y −
1

2

)

2

. (5.5)

Convergence analyses are performed for the Hdiv-C and Hdiv-S spaces using structured

meshes with N = 2 × 2, N = 4 × 4, N = 8 × 8, and N = 16 × 16 elements. For simplicity,

fluid viscosity µ is set to 1. The approximation order for the facet velocity is set to k = 1, 2, 3, 4.

Figure 5.10 shows the solutions for pressure and velocity fields when the Hdiv-C is employed

on the most refined mesh, for k = 4.

0.00 1.50 3.00 4.50 6.00 7.50

(a) Pressure field: Hdiv-C.

0.00 0.40 0.80 1.20 1.60 2.00 2.40

(b) Velocity field.

Figure 5.10: Achieved solution for the two-dimensional problem using k = 4, square mesh
with N = 16× 16 elements, and Hdiv-C space.

In Fig. 5.10, both pressure and velocity fields are warped so that the field magnitude is
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represented on the z-axis. The warp scale for pressure is equal to 0.025, and for velocity, 0.075.

Note that the pressure is constant by element, as expected in Hdiv-C simulations. The black

square underneath the plots indicates the domain of the problem.

If the Hdiv-S space is employed, the recovered pressure field is not constant by element,

resulting in a smoother solution (see Figure 5.11). The velocity field, however, is the same for

both spaces. The main reason why to use the Hdiv-C over Hdiv-S is that, for a lesser number of

DoFs, the Hdiv-C space yields a velocity solution with the same accuracy as the Hdiv-S space.

This is further discussed in Section 5.3.

0.00 1.80 3.60 5.40 7.20 9.00

Figure 5.11: Pressure field solution using k = 4, square mesh with N = 16× 16 elements, and
the Hdiv-S space.

Rates of convergence for the pressure, velocity, deviatoric stress, and the Cauchy stress fields

are displayed in Figures 5.12 - 5.15, respectively. Observe that kTH is the polynomial order of

the Taylor-Hood element, which is quadratic for this simulation. The subscript h beside each

state variable indicates the numerical solution. In this context, the L2-norm error is calculated

as the difference between the analytical and numerical solutions. Note that every element has

the average edge size hel = 1/N .
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Figure 5.12: Two-dimensional verification test: convergence analysis for pressure field.
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Figure 5.13: Two-dimensional verification test: convergence analysis for velocity field
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Figure 5.14: Two-dimensional verification test: convergence analysis for deviatoric stress.
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Figure 5.15: Two-dimensional verification test: convergence analysis for Cauchy stress.

The convergence rates shown in Figures 5.12 - 5.15 for all evaluated fields align with the ex-

pected rates presented in Table 5.1 for both methods. In comparison with Hdiv-C simulations,
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Taylor-Hood simulations demonstrate superior performance in terms of pressure field errors.

However, when compared to Hdiv-S, there is no difference in pressure errors between the two

methods. On the other hand, for the velocity and deviatoric stress fields, the hybrid-hybrid for-

mulation outperforms the Taylor-Hood formulation. Taylor-Hood element excel in the Cauchy

stress field due to the influence of pressure. This advantage over Hdiv-C is not observed when

compared to Hdiv-S.

The hybrid-hybrid formulation demonstrates its locally conservative property through the

L2-error norm of the velocity divergence, as shown in Table 5.2. The velocity field is perfectly

divergence-free, resulting in an error close to machine precision for all simulations.

Table 5.2: L2-error norms for the divergence of the velocity field for the manufactured solution.

||∇ · (u− uh)||L2

k = 1 k = 2

N Hdiv-C Hdiv-S N Hdiv-C Hdiv-S

2 6.60e-16 1.67e-14 2 7.81e-16 4.00e-14

4 8.83e-16 2.10e-14 4 9.14e-16 6.29e-14

8 1.13e-15 4.17e-14 8 1.30e-15 1.28e-13

16 2.14e-15 8.02e-14 16 2.36e-15 2.35e-13

k = 3 k = 4

N Hdiv-C Hdiv-S N Hdiv-C Hdiv-S

2 6.40e-16 1.37e-13 2 7.28e-16 3.13e-13

4 5.48e-16 4.51e-13 4 9.73e-16 8.32e-13

8 1.42e-15 7.52e-13 8 1.56e-15 1.58e-12

16 2.71e-15 1.66e-12 16 2.91e-15 3.15e-12

Taylor-Hood elements, however, are not locally conservative yielding significant errors for

the divergence of the velocity field (see Table 5.3).

Table 5.3: L2-error norms and rates of convergence for the divergence of the velocity field using
Taylor-Hood elements (manufactured solution).

N ||∇ · (u− uh)||L2 Rate

2 1.29245 -

4 0.38146 1.76

8 0.09922 1.94

16 0.02509 1.98

Although the quadratic rate of convergence is achieved, the error itself cannot be ignored.
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Even with 16 elements per edge, the error in the velocity divergence is still around 0.025, which

is significantly higher than the machine precision achieved in the hybrid-hybrid formulation

simulations. This should be considered when approximating the Stokes equations in situations

where local conservation is important.

5.2 Three-Dimensional Flows

Similar to the two-dimensional flows, the validation of three-dimensional problems is con-

ducted using the Poiseuille and LDC flows, along with the well-established Annular Couette

problem.

The three-dimensional Poiseuille flow is simulated within the unit cube Ω = [0, 1]× [0, 1]×

[0, 1]. Boundary conditions are an extension of the two-dimensional case, with normal stress

((σn) · n = −10) on the back surface, null normal stress ((σn) · n = 0) on the front surface,

no-penetration (u · n = 0) on the top, bottom, left and right surfaces, no-slip (u · t = 0) on

the top, bottom, back and front surfaces, and slip condition ((σn) · t = 0) on the left and right

surfaces.

The analytical solution is similar to the two-dimensional case (eqs. (5.1) to (5.3)), with

the non-null velocity component in the z-direction. The stress tensor is also extended to three

dimensions. A mesh with 10 hexahedral elements per edge is used and viscosity µ is set to 1.

Results are depicted in Figs. 5.16 - 5.19.

0.00 2.00 4.00 6.00 8.00 10.00

(a) Hdiv-S (b) Hdiv-C

Figure 5.16: 3D Poiseuille flow pressure field.
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0.00 0.25 0.50 0.75 1.00 1.25

(a) uz

0.00 0.00

(b) ux and uy

Figure 5.17: 3D Poiseuille flow velocity field.

-10.00 -8.00 -6.00 -4.00 -2.00 0.00

(a) σxx, σyy, and σzz

-5.00 -3.00 -1.00 1.00 3.00 5.00

(b) σyz and σzy

Figure 5.18: 3D Poiseuille flow stress field with Hdiv-S space.

(a) σxx, σyy, and σzz

-5.00 -3.00 -1.00 1.00 3.00 5.00

(b) σyz and σzy

Figure 5.19: 3D Poiseuille flow stress field with Hdiv-C space.



CHAPTER 5. NUMERICAL SIMULATIONS 66

Note that Poiseuille flows for two and three dimensions reach the same solution, which

matches the analytical solution. The velocity field is equal for both Hdiv-S and Hdiv-C, while

the pressure field is constant by element for Hdiv-C and smoother for Hdiv-S. The stress σxy,

σyx, σxz and σzx are null, not being represented in the figures.

The LDC is simulated in three dimensions as well. The domain is the unit cube Ω =

[0, 1] × [0, 1] × [0, 1]. Boundary conditions are no-penetration (u · n = 0) on every surface,

unit tangential velocity (u · t = −1) on the top surface, slip (σn · t = 0) on the front, back and

bottom surfaces, and no-slip condition (u · t = 0) on the left and right surfaces (Figure 5.20).

x

y

z

(σn · t) = 0
u · n = 0

u · n = 0
(σn · t) = 0

u · n = 0
u · t = −1

u · n = 0
(σn · t) = 0

u · n = 0

u · t = 0

u · n = 0

u · t = 0

Figure 5.20: Domain and boundary conditions for the three-dimensional Lid-Driven Cavity
problem.

The lid is dragged in the z-direction, and the domain is composed of 10 hexahedral elements

per edge. Viscosity µ is set to 1 and results for pressure and velocity are depicted in Figure 5.21.

-35.00 -20.00 -5.00 5.00 20.00 35.00

(a) Pressure.

0.00 0.20 0.40 0.60 0.80 1.00

(b) Velocity.

Figure 5.21: 3D Lid-driven cavity results for Hdiv-C space.

As can be seen, the solution in the three-dimensional LDC is the same as in the two-
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dimensional case. To verify the rate of convergence for the hybrid-hybrid formulation in three

dimensions, the Annular Couette flow is used.

5.2.1 Convergence Analysis for Hexahedral Elements

Three-dimensional formulations’ rates of convergence are verified using the Annular Cou-

ette flow problem. The problem involves two cylinders positioned concentrically. The inner

cylinder is pushed in the z-direction with a constant velocity vzinner = v∞, while the outer

cylinder remains stationary with vzouter = 0. As a result, the velocity profile in the radial direc-

tion follows a logarithmic pattern. The analytical solutions for the velocity and pressure can be

described by equations (5.6) and (5.7), respectively

u = v∞





log
(

Ro

r

)

log
(

Ro

Ri

)



 k̂, (5.6)

p = 1, (5.7)

in which, r is the radial distance from the center of the annulus, Ro is the radius of the outer

cylinder and Ri is the radius of the inner cylinder.

The domain is given by the annulus comprehended between the inner and outer cylinders,

with Ri = 1 and Ro = 2. However, taking advantage of the symmetry of the problem, only a

quarter of the annulus is simulated (see Figure 5.22). The boundary conditions are normal stress

on the front and back surfaces (σn ·n = 1), on every surface of the annulus, tangential velocity

(u · t) as a function of r is applied. Finally, on the inner, outer, and surfaces of symmetry the no

penetration condition (u · n = 0) is enforced.

(a) Annular Couette Domain (b) Annular Couette Do-
main

Figure 5.22: Domain for the three-dimensional verification test.

As in the two-dimensional test, the convergence analyses are performed for Hdiv-C and

Hdiv-S over domains with N = 2×2×2, N = 4×4×4, N = 8×8×8, and N = 16×16×16
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hexahedral elements per edge (see Fig. 5.23). The approximation order for the facet velocity

is set to k = 1, 2, 3, 4. Viscosity is set to 1. Note that in the x and y-axis directions, the length

of the domain is 1, which is taken into account to calculate the value of hel. For the Annular

Couette flow problem, the average edge size is also given by 1/N due to the number of divisions

in the x and y-axis directions.

(a) 2× 2× 2 Mesh. (b) 4× 4× 4 Mesh. (c) 8× 8× 8 Mesh. (d) 16× 16× 16 Mesh.

Figure 5.23: Meshes for the three-dimensional verification test.

It is important to note that errors due to the circular geometry of the domain may affect the

quality of the solution, especially for more poorly refined meshes (figures 5.23a and 5.23b, for

instance). To avoid this issue, a transfinite interpolation developed in [56] is employed to ensure

that the mesh has the same geometry at any level of refinement. This transfinite interpolation

uses the ideas behind the Bilinearly Blended Coons Patches [57] to exactly represent the con-

tours of domains described by analytic functions allowing the element topology to naturally fit

the domain boundary.

In this context, Figure 5.24 shows the results for pressure and velocity fields in Hdiv-C

simulations. Observe that a whole cylinder is depicted, since after the quarter is simulated,

results are mirrored in the other quadrants of the annulus and the z−direction until the domain

is complete.
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1.00 1.00

(a) Pressure field

0.00 0.20 0.40 0.60 0.80 1.00

(b) Velocity field

Figure 5.24: Achieved solution for the three-dimensional problem using k = 4, hexahedral
mesh with N = 16 elements per edge, and Hdiv-C space.

Since the pressure is constant in the whole domain, only the solution achieved by the Hdiv-

C space is shown. The velocity field is the same for both spaces. The rates of convergence for

the pressure, velocity, deviatoric stress, and the Cauchy stress fields are displayed in Figures

5.25 - 5.29, respectively.
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Figure 5.25: Three-dimensional verification test: Convergence analysis for pressure.

Because the exact solution is a subset of the shape functions used to approximate the pres-

sure, the integral of the pressure field equals the mean pressure used in Hdiv-S static conden-

sation. However, this pressure is not constant by element, which leads to the apparent different

errors from the obtained with Hdiv-C. A way to directly compare both spaces is to analyze the

error in the mean pressure field of the Hdiv-S (Figure 5.26).
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Figure 5.26: Three-dimensional verification test: Convergence analysis for the mean pressure
field in Hdiv-S.

As shown by Figure 5.26, the error in the mean pressure field for Hdiv-S is similar to the

error in the pressure field for Hdiv-C. The difference in the error between the pressure fields is

due to reconstruction errors in the Hdiv-S space.

10
−1

10
0

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

1

2

1

3

1

4

1

5

hel

||
u
−
u
h
||
L

2

(a) Hdiv-C

10
−1

10
0

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

1

2

1

3

1

4

1

5

hel

||
u
−
u
h
||
L

2

k = 1

k = 2

k = 3

k = 4

kTH

(b) Hidv-S

Figure 5.27: Three-dimensional verification test: Convergence analysis for velocity
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Figure 5.28: Three-dimensional verification test: Convergence analysis for deviatoric stress.
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Figure 5.29: Three-dimensional verification test: Convergence analysis for stress.

For this three-dimensional problem, the convergence rates for pressure using the Hdiv-C

space are super convergent (i.e. more precise than expected). This is possible because the

analytical solution is included in the approximation space in the Hdiv-C space. The same is

true for the convergence rates of the Taylor-Hood method. For other fields such as velocity

and deviatoric stress, the Hdiv-C simulations perform better than Taylor-Hood, achieving the

optimum convergence rates. For the Cauchy stress field, the results are similar between Hdiv-S

and Taylor-Hood simulations, while Hdiv-C yields slightly better results.

Table 5.4 shows the errors for the divergence of the velocity, confirming that the formulation

is locally conservative for three-dimensional problems. The error for the divergence of the

velocity with Taylor-Hood simulations is also displayed in Table 5.5.

Table 5.4: L2-error norms for the divergence of the velocity field for the Annular-Couette flow.

||∇ · (u− uh)||L2

k = 1 k = 2

N Hdiv-C Hdiv-S N Hdiv-C Hdiv-S

2 5.62e-16 1.37e-13 2 5.96e-16 3.76e-13

4 1.775e-15 1.74e-13 4 1.83e-15 7.84e-13

8 6.58e-15 3.31e-13 8 6.68e-15 1.33e-12

16 2.52e-14 6.99e-13 16 2.53e-14 2.35e-12

k = 3 k = 4

N Hdiv-C Hdiv-S N Hdiv-C Hdiv-S

2 6.53e-16 7.56e-12 2 7.12e-16 1.34e-11

4 1.90e-15 1.16e-11 4 2.01e-15 2.25e-11

8 6.77e-15 2.44e-11 8 6.91e-15 4.50e-11

16 2.55e-14 5.38e-11 16 2.56e-14 9.95e-11
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Table 5.5: L2-error norms and rates of convergence for the divergence of the velocity field using
Taylor-Hood elements (Annular Couette flow).

N ||∇ · (u− uh)||L2 Rate

2 1.69e-3 -

4 3.26e-4 2.37

8 5.76e-5 2.50

16 1.01e-5 2.52

The findings for the Stokes flow align with the results obtained in the previous section.

The convergence rate for both two- and three-dimensional problems is in agreement with the

expected rates. These outcomes confirm the validity of the hybrid-hybrid method and demon-

strate its effectiveness in accurately and reliably solving Stokes’ problems.

The number of DoFs in Hdiv-C simulations is considerably smaller than in Hdiv-S simula-

tions. The following section aims to quantitatively compare both spaces in terms of error and

DoF number.

5.3 Comparison Between Hdiv-C and Hdiv-S

The main reason to employ Hdiv-C space is that by the intrinsic process of its space creation

(Section 3 of [34]), the space has considerably fewer DoFs than the Hdiv-S space. Although

both spaces have the same number of equations in the condensed system, the Hdiv-C space has

a considerably smaller number of global DoFs. This leads to a faster solution process, which is

particularly important for large-scale problems. Additionally, in situations where the pressure

field is constant by element, such as in Darcy flows, the Hdiv-C space is a better choice.

Table 5.6 shows the comparison between the number of DoF for the Hdiv-C and Hdiv-S

spaces for the two-dimensional with manufactured solution aforementioned.
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Table 5.6: Comparison between the number of DoF for the Hdiv-C and Hdiv-S spaces for the
manufactured solution problem.

k = 1 k = 2

N

Before

Condensation After

Condensation
N

Before

Condensation After

Condensation

Hdiv-C Hdiv-S Hdiv-C Hdiv-S

2 92 220 40 2 160 360 64

4 344 856 136 4 600 1400 216

8 1328 3376 496 8 2320 5520 784

16 5216 13408 1888 16 9120 21920 2976

k = 3 k = 4

N

Before

Condensation After

Condensation
N

Before

Condensation After

Condensation

Hdiv-C Hdiv-S Hdiv-C Hdiv-S

2 236 524 88 2 320 712 112

4 888 2040 296 4 1208 2276 376

8 3440 8048 1072 8 4688 10960 1360

16 13536 31968 4064 16 18464 43552 5152

Note that the Taylor-Hood element is also included in the comparison. When the error is

analyzed as a function of the number of DoFs, the expected rates of convergence for pressure

and velocity are given by eqs. (5.8) and (5.9).

Ratep ∝
k

dim
, (5.8)

Rateu ∝

k + 1

dim
, (5.9)

in which dim is the simulation dimension. Figures 5.30 and 5.31 show the number of DoF

after condensation versus the error for the pressure and velocity fields, respectively. Recall that

the rate of convergence for pressure in Hdiv-C simulations is proportional to k = 1, for any

polynomial order.
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Figure 5.30: Two-dimensional comparison between the number of DoF for pressure solution.
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Figure 5.31: Two-dimensional comparison between the number of DoF for pressure solution.

Taylor-Hood elements yield, for the same number of equations, a smaller error for pressure

than the hybrid-hybrid formulation. Treating velocity, however, the errors for hybrid-hybrid are

smaller than the ones obtained by Taylor-Hood. Also, notice that there is a significant reduction

(around 40%) in the number of degrees of freedom of Hdiv-S in comparison to Hdiv-C. This fact

cannot be neglected when dealing with large-scale problems, especially in three-dimensional

simulations, which are computationally more demanding than two-dimensional ones.

The analysis is repeated for the Annular Couette problem, where the number of DoFs for

the Hdiv-C and Hdiv-S spaces are compared in Table 5.7. In three-dimensional problems, the

reduction in DoFs is even more significant, ranging from 50% to almost 60% compared to the

Hdiv-S space.
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Table 5.7: Comparison between the number of DoF for the Hdiv-C and Hdiv-S spaces for the
Annular Couette flow.

k = 1 k = 2

N

Before

Condensation After

Condensation
N

Before

Condensation After

Condensation

Hdiv-C Hdiv-S Hdiv-C Hdiv-S

2 968 1992 224 2 2412 4412 620

4 7456 15648 1504 4 18480 34480 4144

8 58496 124032 10880 8 144576 272576 29888

16 463360 987648 82432 16 1143552 2167552 226048

k = 3 k = 4

N

Before

Condensation After

Condensation
N

Before

Condensation After

Condensation

Hdiv-C Hdiv-S Hdiv-C Hdiv-S

2 4696 8152 1232 2 7916 13404 2060

4 35936 63584 8224 4 60592 104496 13744

8 280960 502144 59264 8 473792 825024 99008

16 2221568 3991040 448000 16 3746560 6556416 748288

Figures 5.32 and 5.34 show the number of DoFs after condensation versus the error for the

pressure and velocity fields, respectively for three-dimensional simulations.
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Figure 5.32: Three-dimensional comparison between the number of DoF for pressure solution.

As explained before, the pressure error for Hdiv-S, in this case, is higher due to errors during

the pressure field reconstruction from a mean pressure field. To better compare the two spaces,

the error in the mean pressure field for Hdiv-S is depicted in Figure 5.33.
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Figure 5.33: Three-dimensional verification test: Convergence analysis for the mean pressure
field in Hdiv-S.

As expected, the error in the mean pressure field for Hdiv-S is of the same order of magni-

tude as the error in the pressure field for Hdiv-C.
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Figure 5.34: Three-dimensional comparison between the number of DoF for velocity solution.

The hybrid-hybrid formulation with the Hdiv-C space demonstrates superior performance in

terms of both pressure and velocity accuracy. However, it is important to note that the analytical

solution for pressure is a subset of the shape functions used in the Hdiv-C space, which may

have significantly influenced the results. For the Taylor-Hood formulation, even the rate of

convergence seems to be higher than expected, closer to the Hdiv-S results for k = 3, instead

of k = 2.

In terms of velocity, the hybrid-hybrid formulation achieves smaller errors compared to the

Taylor-Hood method. However, it is worth mentioning that the difference between Taylor-Hood

and hybrid-hybrid formulation results for the three-dimensional analysis is less pronounced than

in the two-dimensional case. To summarize, for the same number of equations, the double-

hybrid formulation achieved smaller errors for the velocity field than Taylor-Hood, which is
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observed in two- and three-dimensional problems. For pressure, the hybrid-hybrid formula-

tion does not perform better than the Taylor-Hood method in either two- or three-dimensional

problems.

5.4 Robustuness Tests

This section aims to demonstrate the robustness of the proposed method when solving

Stokes problems. The examples are chosen to illustrate the range of Stokes’ problems that

can be solved using the hybrid-hybrid formulation in many scientific and engineering fields.

5.4.1 Flow past a NACA Profile

The National Advisory Committee for Aeronautics (NACA) was an American agency de-

veloped to incentivize, coordinate and institutionalize aeronautical research. The NACA airfoil

series is a set of airfoil shapes widely employed in aircraft design. More about the NACA airfoil

and its series can be found in [58, 59].

The velocity involving a NACA airfoil does not configure a low Reynolds number regime

and therefore is not properly represented by the Stokes equations. However, simulations herein

intend to demonstrate the range of problems in which the hybrid-hybrid formulation can be

applied to solve Stokes equations. A general idea of the behavior of a wind tunnel test can be

drawn, and the method’s capacity to deal with voids inside its domain is also verified.

The simulation is carried out in a two-dimensional control volume, involving the NACA

airfoil profile. The domain is represented in Figure 5.35. Although the profile is modeled and

simulated without units or specific dimensions, the outer domain is 16 units long and 4 units

high at its maximum height. The NACA profile is 10 units long and 3.32 units high at its

maximum height.

u · n = 0

u · t = 0
u · n = 0

(σn) · t = 0

u∞ · n

u∞ · t

u∞ · n

u∞ · t

u∞ · n

u∞ · t

u∞ · n

u∞ · t

Figure 5.35: Domain for the flow past a NACA profile.

On the profile, no-penetration (u · n = 0) and slip condition (σn · t = 0) are imposed.

On every edge of the outer domain, normal and tangential velocities are imposed so that u∞ =

{
√

2

2
,
√

2

2
}. The viscosity is set to 1, and the polynomial order for the facet velocity is k = 2.
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The mesh is unstructured (see Figure 5.36), and the element size is defined to suit the NACA

profile’s dimensions.

Figure 5.36: Mesh for the flow past a NACA profile.

Figure 5.37 shows the results for the pressure and velocity fields.

(a) Pressure field.

(b) Velocity magintude field.

Figure 5.37: Flow past a Naca profile.

The algorithm not only demonstrates to deal with void regions inside the domain but also

represents the NACA profile’s response accurately. Results are consistent with the expected

behavior of a low Reynolds number fluid flow, with an increase in the velocity in the upper and

lower regions around the NACA, followed by a smooth decrease in the outlet region.

5.4.2 Flow through Serpetine’s Channels

Stokes flow can be adapted to analyze micromixers in lab-on-chip devices, widely employed

in medicine, biological and chemical engineering. Due to the scale of micromixers, usually µm
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to mm, they mix one or more fluid streams that are usually under a laminar regime.

Passive mixers mix these streams without any external source, only by the mechanism of the

micromixer itself. Inspired by the micromixer’s geometries described in [60,61], two serpentine

channels are simulated in this section.

The first serpentine, a two-dimensional sinusoidal serpentine, is given by Eq. (5.10)

y(x) = 0.8 sin

(

2πx

λ

)

, (5.10)

in which λ = 2.658 mm. The Serpentine’s dimensions and boundary conditions considered for

this simulation are depicted in Fig. 5.38. The channel has two inlets and one outlet. On the left

of the serpentine, there is a t-shaped inlet on which a normal pressure is applied ((σn)·n = 10).

On the right, there is a straight channel with a normal stress boundary condition ((σn) ·n = 0).

The perimeter of the serpentine has no-slip boundary conditions (u · t = 0) and on the top and

bottom of the sinusoidal channel no-penetration is enforced (u · n = 0). Viscosity is set to 1.

Figure 5.38: Sinusoidal serpentine’s geometry and boundary conditions.

Figure 5.39 depicts the results for pressure and velocity fields. It is noted that a velocity

profile similar to the Poiseuille flow is achieved within the channel, including the characteristics

of the pressure gradient. The results are qualitatively consistent with the expected behavior of a

low Reynolds number fluid flow.
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0.00 2.00 4.00 6.00 8.00 10.00

(a) Pressure field.

0.00 0.60 1.20 1.80 2.40 3.00

(b) Velocity magnitude.

Figure 5.39: Flow through a 2D serpentine.

The velocity field is then divided into its X and Y components (Figure 5.40). The X compo-

nent is null in vertical sections of the channel, the same the Y component is null in horizontal

sections. Note that, in the apex of the sinusoidal curve, at the point where flow is expected to

be totally horizontal, the Y-velocity is null. It is also observed a symmetry in the Y component

results, with values with the same magnitude, but in opposite directions.

0.00 3.002.401.801.200.60

(a) ux.

-2.50 2.501.500.50-0.50-1.50

(b) uy.

Figure 5.40: Velocity components X and Y for the 2D serpentine.
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A "bumped" version of the previous serpentine is analyzed as well. Two behaviors are here

studied: the velocity increases when the channel’s cross-section shrinks keeping the flow rate

constant (Figure 5.41), and the pressure gradient between two consecutive bumps (Figure 5.42).

0.00 4.003.202.401.600.80

Figure 5.41: Velocity magnitude through a bumped 2D serpentine.

As expected, at the point in which the cross-section area decreases to half, the velocity

doubles.

0.00 10.008.006.004.002.00

(a) Pressure field.

4.80 5.305.205.105.004.90

(b) Pressure between bumps.

Figure 5.42: Pressure field through a bumped 2D serpentine.

Between two bumps there is a pressure gradient, small in comparison to the pressure drop

in the serpentine’s channel as a whole. The pressure gradient is more pronounced in the region

where the channel’s cross-section is smaller, as expected.

The last serpentine analyzed is a three-dimensional C-shaped serpentine. The following BCs

are imposed: no-slip (u · t = 0) on every face of the channel, inlet normal stress (σn ·n = 10),

outlet normal stress (σn ·n = 0), and no-penetration (u ·n = 0) on the remaining, as depicted

in Fig. 5.43.
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Figure 5.43: C-shaped serpentine’s geometry and boundary conditions.

Results are depicted in Figure 5.44.

0.0 2.0 4.0 6.0 8.0 10.0

(a) Pressure field.

0.0 10.0 20.0 30.0 40.0 50.0

(b) Streamlines for velocity magnitude (×10
−4).

Figure 5.44: C-shaped serpentine results.

The streamlines are shown for the 3D case. It is noted that the flow can pass through the

channel even when a different height level is imposed. At the corners, a region of low velocity is

observed. The higher the Reynolds number of the flow gets, the more pronounced the vorticity

in these regions would become if the full Navier-Stokes equations were to be solved.
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Chapter 6

Flow through Obstructed Domains

This chapter presents the framework developed to generate and simulate obstructed do-

mains. First, details of the implementation are discussed. The Gmsh [62] API for Python is

used to generate the mesh with obstructions. The code is structured in Object-Oriented Pro-

gramming (OOP) to facilitate the generation of different types of obstructions. A father class

TPZModuleTypology (Figure 6.1) is developed to generate the basis of the mesh geometry, i.e.,

the unobstructed cylinder, given geometric parameters such as radius and length.

Figure 6.1: Class diagram for the TPZModuleTypology class.

The TPZModuleTypology class is inherited by the classes that create the obstructions. This

way, the obstruction is inserted in a previously conceived geometry, regardless of the obstruc-

tion type, avoiding code repetition (see an example in Figure 6.2). A total of 4 geometries are

implemented: circular, cross, semi-arcs, and no obstruction. Note, however, that the code is

designed to be easily extended to other types of obstructions. New obstructions can be created

by modifying the methods ObstructionPoints, ObstructionArcs, and CreateObstruction. If nec-

essary, the obstruction’s geometry can be checked by the method CheckTopology. The classes

aforementioned can be found in Appendix A.
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Figure 6.2: Class diagram for an obstruction class.

All simulations are performed using the following BCs: no-slip on every wall (u · t = 0),

inlet and outlet normal stress ((σn)·n = 10 and (σn)·n = 0, respectively), and no-penetration

along the channel’s axis (u · n = 0). The obstructions are placed at the center of the channel,

and the flux is not allowed to pass through them (u · n = 0 and u · t = 0).

Filtering methods are developed in the TPZMeshOperator (Section 4.6.2) to remove the

equations of velocity related to the obstructions, which do not allow the fluid to pass through

them. These methods seek the elements that have the obstruction’s material ID and remove the

corresponding equations from the global system. A version of the same function can be used

when a null normal or tangential velocity is required.

Each channel has a unit length and radius and viscosity is also set to µ = 1 (see Figure 6.3).

The simulations are performed using the hybrid-hybrid formulation. When the obstructions are

shown, the domain’s opacity is set to 0.0015 to allow better visualization of the obstruction’s

geometry.
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Figure 6.3: Obstructed domain: geometry and boundary conditions.

Although non-unitary values are applied as BC, the quantities do not have a physical mean-

ing, which is the reason why the physical units are not presented. Recall that the behavior of the

flow is the main focus of this work, once the Stokes equations are linear and any scaling factor

can be applied to the variables.

6.1 Obstructed Domain Examples

Three types of obstructions are implemented to evaluate the flow behavior in obstructed do-

mains: circular, cross, and semi-arcs. The following sections show the results obtained for each

type of obstruction. Section 6.1.3 presents the results for cases in which multiple obstructions

are inserted in the domain.

6.1.1 Circular Gap

The first obstruction implemented is a circular gap, in which the flow is allowed to pass

only through a circular region in the center of the channel. Figure 6.4 shows the geometry of

the circular gap.
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Figure 6.4: Geometry of the circular obstruction.

The pressure field and the streamlines are both depicted in Figure 6.5. Since the boundary

conditions applied impose a normal stress of 10 at the inlet and 0 at the outlet, the most no-

ticeable pressure drop occurs at the circular obstruction. The streamlines show that the flow is

accelerated as it passes through the circular region.

-3.00 0.00 3.00 6.00 9.00 12.00

(a) Pressure field.

0.00 0.10 0.20 0.30 0.40

(b) Streamlines.

Figure 6.5: Results for circular obstruction.

A second analysis is performed to evaluate the flow pattern when multiple circular gaps are

inserted in the domain. The gaps are placed symmetrically in the middle of the domain, but

the same can be done randomly. The results for the pressure field and streamlines are shown in

Figure 6.6.
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-3.00 0.00 3.00 6.00 9.00 12.00

(a) Pressure field.

0.00 0.140.04 0.07 0.11

(b) Streamlines.

Figure 6.6: Results for multiple circular obstructions.

An analysis of the influence of the gap’s size on the flow behavior is presented in Section

6.1.4.

6.1.2 Cross Obstructions

The cross-shape obstruction is the second type of obstruction implemented. An example of

the geometry of the cross obstruction is shown in Figure 6.7.

Figure 6.7: Geometry of the cross obstruction.

The pressure field and streamlines are shown in Figure 6.8.



CHAPTER 6. FLOW THROUGH OBSTRUCTED DOMAINS 88

-3.00 0.00 3.00 6.00 9.00 12.00

(a) Pressure field.

0.00 0.04 0.120.08 0.16 0.20

(b) Streamlines.

Figure 6.8: Results for cross obstruction.

This example shows that the algorithm is capable of generating more complex geometries

than a simple circle. As mentioned, the OOP structure allows the code to be easily extended to

other geometries by creating new classes that inherit the TPZModuleTypology class and share

the same methods. The following section presents cases in which the domain is composed of

more than one type of obstruction.

6.1.3 Multiple Obstructions

Domain with multiple obstructions are easily generated by creating separated modules for

each obstruction, and then merging them into a single mesh. Figure 6.9 shows the geometry of

two examples: one with two circular obstructions and another with different types of obstruc-

tions.
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(a) Two circular obstructions. (b) Different obstructions.

Figure 6.9: Geometry of the domain with multiple obstructions.

The Gmsh software allows the module to be created and merged without overlapping the

surfaces and volumes, which is fundamental for the mesh to be correctly generated. The results

for the flow within a domain with two circular obstructions are shown in Figure 6.10.
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(a) Pressure field.

0.00 0.04 0.120.08 0.16 0.20

(b) Streamlines.

Figure 6.10: Results for two circular obstructions.

Figure 6.11 depicts the pressure field and streamlines for a domain with one obstruction

with a circular gap and another with multiple circular gaps placed in one-third and two-thirds

of the channel’s length, respectively. Note the division of the flow while passing through the

obstructions.
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Figure 6.11: Results for two different obstructions.

The results showed in Sections 6.1.1 - 6.1.3 demonstrate that the mesh generation algo-

rithm is robust and capable of creating obstructions with different types of geometries. The

flow behavior is consistent with the expected behavior, which points out that the hybrid-hybrid

formulation is also capable of simulating, qualitatively, the flow through obstructed domains.

Further analyses can be performed to evaluate the impact of different obstructions on the flow,

designing new and optimal geometries that return the desired pressure drop between the mod-

ules of the in-scale prototype.

6.1.4 The Influence of the Obstruction’s on the Flow

This section aims to evaluate the influence of the obstruction’s size on the flow behavior.

The domain is composed of an 80 cm long channel with a 9 cm diameter. A single circular

obstruction is placed at the center with a radius varying from 1 to 4 cm. Fluid viscosity is set to

1. The BCs are the same as the ones presented in Figure 6.3, with the difference that the normal

stress at the inlet is unitary.

The case with no obstructions is adopted as the reference. Figure 6.12 presents the pressure

field and the pressure drop over a line that crosses the channel at the center (following the z-

axis). Note that the observed pressure drop is the difference between the imposed pressure at

the inlet and the outlet.
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(b) Pressure drop.

Figure 6.12: Results for the reference domain without obstruction.

Figure 6.13 shows the velocity field and the velocity profile over the same line. The varia-

tions observed in the velocity profile are due to the mesh refinement. The element size hel is set

to 1 cm for all simulations.
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(b) Velocity profile.

Figure 6.13: Results for the domain without obstruction.

Figures 6.14 to 6.17 show the results for the pressure field and the pressure drop for the

domain with obstructions of different sizes. Note that, the wider the obstruction, the more

pressure is lost by the friction of the fluid with the walls, and naturally the more similar the

pressure drop is to the reference case.
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(b) Pressure drop.

Figure 6.14: Results for the domain with obstruction of radius 0.1 cm.
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(b) Pressure drop.

Figure 6.15: Results for the domain with obstruction of radius 0.2 cm.
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(b) Pressure drop.

Figure 6.16: Results for the domain with obstruction of radius 0.3 cm.
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(b) Pressure drop.

Figure 6.17: Results for the domain with obstruction of radius 0.4 cm.

In the first case, with the 1 cm radius obstruction, the pressure drop observed due to the

obstruction is 0.8, approximately. This amount slightly decreases as the obstruction radius

increases. For 2 cm, the pressure drop is 0.4, for 3 cm, less than 0.1, and finally, for 4 cm, the

obstruction is almost imperceptible.

Figures 6.18 to 6.21 show the velocity and the velocity profile for the same domains. Since

the inlet flow is not fixed, the velocity field magnitude for wider obstructions is observed to be

higher than for narrower ones. The velocity profiles also show that the peak velocity, at the

center of the channel, is higher for narrower obstructions.
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(b) Velocity profile.

Figure 6.18: Results for the domain with obstruction of radius 0.1 cm.
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(b) Velocity profile.

Figure 6.19: Results for the domain with obstruction of radius 0.2 cm.
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(b) Velocity profile.

Figure 6.20: Results for the domain with obstruction of radius 0.3 cm.
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(b) Velocity profile.

Figure 6.21: Results for the domain with obstruction of radius 0.4 cm.
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The velocity profiles also show the distance from the obstruction at which the flow is per-

turbed. Approximately 5 cm before and after the obstruction, the velocity profile begins to

change. Afterward, the flow pattern is reestablished. The peak velocity is observed at the center

of the channel, where the obstruction is placed. As the obstruction’s radius increases, the peak

velocity decreases, and the velocity profile becomes more uniform. For the larger obstruction,

although no disturbance is observed in the pressure gradient, the velocity profile is still affected

by the reduction of the channel’s cross-section.

A similar study can be done, changing the obstruction’s shape, position, and boundary con-

ditions to evaluate the flow behavior. The optimal geometry for the in-scale prototype can be

designed from this analysis and the pressure drop estimated for the 10-meter module. Ulti-

mately, numerical results can also be compared to experimental data to validate the model.
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Chapter 7

Conclusions and Future Work

In the development of this work, a methodology for the creation of meshes with obstructed

domains is presented, along with the implementation of a new hybrid-hybrid formulation for

the Stokes problems. A variation of the hierarchical H(div,Ω) spaces, the Hdiv-C, is employed

to solve the problems of interest in engineering and scientific applications.

The proposed method is optimal for cases in which local mass conservation is paramount.

The new hybrid-hybrid formulation is a suitable alternative for the semi-hybrid formulation,

without compromising computational performance. The H(div,Ω) spaces presented have demon-

strated to be competitive in terms of error and number of DoFs, after applying static condensa-

tion, when compared to the Mixed Taylor-Hood. Regarding the matrix structure, the proposed

method only has one pressure per element, while the Taylor-Hood presents one pressure per

node, resulting in a more complex system.

The condensing process when employing Hdiv-C is straightforward, while for the Hdiv-S

additional procedures are required to avoid singular matrices. As expected, the Hdiv-C results

for velocity and deviatoric stress are identical to the results obtained with the Hdiv-S. The ap-

proximation error for velocity and deviatoric stress, for both Hdiv-S and Hdiv-C, are better than

the Taylor-Hood element scheme. Not to mention the fact that, by its point-wise conservation of

the mass property, hybrid-hybrid formulation combined with the proper choice of the H(div,Ω)-

L2(Ω) spaces leads to a more accurate solution for the divergence of the velocity field than the

Taylor-Hood element.

Many examples of applications of the hybrid-hybrid formulation are presented in this work

to show the range of possibilities that the method can be used. All the examples are solved with

the same Object-Oriented code, which is now incorporated into the NeoPZ library.

Finally, the framework developed to create obstructed domains has shown to be robust and

capable of generating different types of obstructions and domains. In addition, the combination

of the mesh generator algorithm with the hybrid-hybrid formulation yields accurate simulations

with reliable results for the Stokes equations. It is believed that the methodology presented in

this work can be used to not only design the optimal geometry for the in-scale prototype but

also be employed in many fields of engineering in which the knowledge of the flow modeled by
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the Stokes equations is essential.

This project can be extended to different fields of applications. Some of the possible future

works are:

• The hybrid-hybrid formulation can be extended to solve Navier-Stokes problems, in which

the inertial terms are considered;

• The current constitutive law used for the Cauchy stress tensor only takes into account

Newtonian fluids. The code can be extended to include non-Newtonian fluids;

• Work can be done to develop optimal iterative methods that further optimize the method-

ology of solution of the hybrid-hybrid formulation;

• Within the TotalEnergies project, an experimental analysis of the axial flows in pipes

with obstruction devices is expected to be carried out in the next months. The proposed

numerical formulation shall be validated.
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Appendix A

Stokes Repository Code

The code used throughout this work can be found in the following GitHub repository: Lab-

mec/Mixed_Hybrid_Stokes.git
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