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1 | INTRODUCTION

The study of holomorphic foliations on complex manifolds is a classical topic of research that goes back to the end of the
19th century, though the qualitative study of polynomial differential equations by Poincaré, Darboux, and Painlevé, and
currently with ramifications to complex geometry and algebraic geometry. We are presently interested in the latter, and
our objective is to apply algebraic geometric techniques to understand the normal and conormal sheaves and singular
schemes of foliations of dimension 1 on smooth projective varieties of dimension 3.

So let X be a smooth projective threefold X of Picard rank 1. Let Ox(1) denote the ample generator of Pic(X), and given
asheaf F on X, we set F(r) := F @ Ox(1)®", as usual. Let TX denote the tangent bundle of X and define

Tx :=min{t € Z | HTX(1)) # 0}, px :=min{t € Z | H'(Q} (1)) # 0} ,

vy :=/H3 and cy ;=/CI(Q§).H2=—/01(TX)-H2’
X X

X

where H := c¢;(Ox(1)) is the ample generator of Pic(X).
A foliation by curves & on X is a short exact sequence of the form

F 1 0 Ox(—r—1y) > TX = Ng = 0 1)
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where Ny is a torsion-free sheaf called the normal sheaf of &F; this is also known in the literature as a Pfaff field of
rank 1. The nonnegative integer r above is called the degree of F; we note that this definition is in general different
from the one proposed in [3, Definition 2] for Pfaff fields, though both definitions coincide for X = P3. Note that
rk(Ng) = 2.

The image of the morphism oV : TX — Ox(tx + r) is the twisted ideal sheaf . ,(r + 7x) of a subscheme of X of dimen-
sion at most 1, called the singular scheme of ¥ and denoted by Sing(%). Thus, dualizing the sequence in display (1.1), we
obtain

Vv
0—NY - QL5 7,0 +174) > 0, 1.2)

where N, is called the conormal sheaf of F .

In general, the singular scheme Z : = Sing(%) may contain a pure one-dimensional subscheme obtained as follows. Let
U be the maximal 0-dimensional subsheaf of O;; the quotient sheaf @, /U must be the structure sheaf of pure dimension
1 scheme, call it C. We therefore obtain the exact sequence

0-U—->0;—->0:—-0 1.3)
or, equivalently,
0> F;,>F-—-U=>N0. (1.4)

The scheme C is called the one-dimensional component of the singular scheme of #, and it is denoted by Sing, (F).

Foliations by curves on threefolds have not been widely considered so far. A systematic study for the case X = P3 was
initiated in [11] and continued in [8]. Furthermore, the authors of [7] consider foliations by curves on Fano threefolds,
obtaining results regarding the connectedness of the singular scheme Sing(%) and the stability of the conormal sheaf N;.
In all of these papers the focus was on foliations whose singular scheme has pure dimension 1, which implies that conormal
sheaf must be locally free; we will consider arbitrary foliations by curves and a wider class of threefolds, generalizing
many of the results obtained in [7, 8, 11]. We emphasize that this is a considerable step forward for two reasons: first, rank
2 locally free sheaves are much more restrictive class in comparison to rank 2 reflexive sheaves; second, a generic vector
field o € H(TX(r + tx) gives rise to a foliation by curves as in display (1.1) only isolated singularities, and foliations by
curves with locally free conormal sheaves only occur in high codimension.

The first goal of this paper is to provide a relation between the Chern classes of the conormal sheaf N, ;fi and the discrete
invariants of the singular scheme Z, namely the length of U and the degree and genus of C, see Section 3. In particular,
we show that

/ e3(TX(r + 7)) = — / e3(QL (=1 — 1)) = h%(U) + Y ux(Cj. 1), (1.5)
X X j

where Sing, (¥) = | | i C; is the partition of the curve Sing, (¥) into its connected components, and
Ux(C,r) := 3@ + tx)deg(C) + 2x(O¢). (1.6)

Next, we turn our attention to describing properties of the conormal sheaf of a foliation by curves. We study its Betti
numbers hP(N. ; (k)) and give criteria that guarantee its stability (in the sense of Mumford-Takemoto).

Recall that a torsion-free sheaf F is said to be u-(semi)stable (with respect to H) if every subsheaf L C F for which F/L
is torsion free satisfies

Cl(L)'H2 CI(F)'H2
0 9 "x®

In particular, note that if TX is u-stable, then 7y > cx /3vy.

Main Theorem 1. Let & be a foliation by curves of degree r satisfying dim Sing(%) = 0 on a smooth projective threefold
X with Pic(X) = Z such that h'(Ox(t)) = 0forall t € Z.
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1. Assume that dim Z = 0; if r > (>) cx/vx — 37x, then Ng is u-(semi)stable; if TX is u-stable, then Ng is u-stable for
every r.
2. Ifr < (=) 2px — Ty + cx /vy, then the conormal sheaf of a foliation by curves of degree r on X is u-(semi)stable.

This is proved in Section 5. We observe that the hypothesis h!'(Ox(t)) = Oforall ¢ € Z issatisfied by every Fano threefold,
while TX is u-stable whenever X is a smooth weighted projective complete intersection Fano threefold with Picard number
equal to one.

The set of vector fields o € H*(TX(r + tx)) for which dim coker c¥ = 0 is an open subset of P(H(TX(r + tx)). For
this reason, foliations by curves satisfying dim Sing(%) = 0 are called generic. Therefore, the first part of Main Theorem 1
implies that generic foliations by curves of degree r provide a family of u-stable rank 2 reflexive with given Chern classes
parametrized by and open subset of P(H(TX(r + 7x)). It turns out that such families are dense within an irreducible
component of the (Gieseker-Maruyama) moduli space of stable rank 2 sheaves on the projective space P? and while only
defined a closed subset within an irreducible component of the moduli space of stable rank 2 sheaves on a smooth quadric
threefold Qs. The following theorem, proved in Sections 6 and 7.1, arises as an interesting application of Main Theorem 1
to the study of moduli spaces of rank 2 reflexive sheaves on threefolds.

Main Theorem 2.

1. The moduli space of stable rank 2 sheaves on P3 with Chern classes

(0,3k? + 4k + 2,8k + 16k*> + 12k + 4), k> 1
(c1,¢5,03) = 5 3 2
(-1,3k*+k+1,8k>+4k“+2k+1), k>0

contains a rational irreducible component whose generic point is the normal sheaf of a generic foliation be curves on
P3.
2. The moduli space of stable rank 2 sheaves on Q; with Chern classes
( ) (0, (3k? + 6k + 4)H?, (8k>® + 24k? + 26k + 6)H?), k > 1
€1,C3,C3) =
RS (—H, (3k? + 3k + 1)HZ, (8k® + 12k + 8k — 2)H%), k >0

possesses an irreducible component which contains, as a closed subset, the normal sheaves of generic foliations by
curves on Qs.

It is worth remarking that Main Theorems 1 and 2 are parallel to [6, Theorem 1] and [6, Theorem 3], respectively,
concerning generic codimension one distributions on threefolds.

Finally, we consider local complete intersection (LCI) foliations, which are defined as foliations by curves with locally
free conormal sheaves; the nomenclature is motivated by the fact that they are given locally as the intersection of two
codimension one distributions. When the conormal sheaf N; splits as a sum of line bundles, we say that F is a complete
intersection (CI) foliation; CI foliations by curves on Fano thereefolds are studied in [7], where characterizations in terms
of the singular scheme are provided. Here, motivated by the classification of LCI foliations by curves of low degree on P3
given in [8], we give the first steps towards a classification of LCI foliations by curves on smooth quadric hypersurfaces in
P* of degree 0 and 1. To be precise, we prove in Section 7:

Main Theorem 3. Let F be a local complete intersection foliation of degree d a smooth quadric hypersurface Q; C
P4,

1. For d = 0, we have that N; = S(—1), where S is the spinor bundle, and Sing(%) is the disjoint union of a line and a
conic.
2. Ford =1, we have that E := N;(z) and C := Sing(%) are one of the following three possibilities:
(2.1) E is the u-stable bundle with Chern classes ¢;(E) = 0 and c¢,(E) = 2L and C is a rational curve of degree 6;
(2.2) E is the u-semistable bundle with Chern classes ¢;(E) = 0 and c,(E) = 2L and C is a curve of degree 6 given by
the union of a rational and an elliptic curves.
(23) E = ng and C is a connected curve of degree 8 and genus 3.
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2 | PRELIMINARY RESULTS

Following the notation set up in the Introduction, we will use this section to go over some details that will be useful
later on.
We begin by observing that the dualization of the sequence in display (1.1) also yields

Ext'(Ng,Ox) = Oz(r + 7x) and ExtP(Ng,O0x) =0  for p=2,3. (2.1)

In particular, note that if % is not generic, then Ny is not reflexive, since in this case £xt' (N, Ox) would be a
0-dimensional sheaf.

In addition, we remark that the conormal sheaf N;, which is always reflexive, is locally free if and only if ¥ has no

isolated singularities, that is U = 0 and Sing(¥) = Sing, (¥). Indeed, dualizing the exact sequences in displays (1.2) and
(1.4), we obtain

EXtY(NY,0y) ~ Ext’(I,(r + Tx), Ox) =~ Ext>(U, Ox); (2.2)
in particular, note that

hO(Ext (N, 0x)) = h(Ext* (U, Oy)) = hO(U), 2.3)

where the last inequality follows from Serre duality.
Given a rank 2 reflexive sheaf F on a projective threefold X with Picard rank 1, one can show, using the same argument
as in [9, Proposition 2.6], that

[ s = Wexti 0.0 24
X
indeed, first note that if Q is a O-dimensional sheaf on X, then Grothendieck-Riemann-Roch implies that 2h°(Q) =

/X c3(Q). Recall that F admits a resolution 0 - L; - Ly — F — 0, where L; and L, are locally free sheaves; dualizing
this sequence, one obtains, since F¥ ~ F ® det(F)V

0 F - LY @ det(F) — LY @ det(F) — &xt'(F,Ox) — 0.

Comparing Chern classes, one concludes that 2¢;(F) = c;(€xt'(F, Ox)), and integration leads to the equality in display
(2.4).
Letting & be a foliation by curves, we gather the equalities in displays (2.3) and (2.4) to obtain

/ c3(NY) = ho(U). (2.5)

X

Finally, the simplest examples of foliations by curves are the complete intersection ones, given by sequences of the form
0 — Ox(—r1 — px) ® Ox (-1, — px) = Q > Fc(r +1x) = 0,

where r = ¢y /vy + 1, + 1, + 2px — Tx. Local complete intersection foliations by curves on hypersurfaces X C P* can be
constructed as follows.

Example 1. Let F be a globally generated rank 2 locally free sheaf on a threefold hypersurface X C P*. Note that Q}l((z)
is globally generated, since we have epimorphisms

L2 > (0L,@))1x » Q4@

and Qﬂlﬂ(z) is globally generated. We then have that F ® Q)l((z) is also globally generated, thus [14, Teorema 2.8] implies

that there exists an injective morphism ¢ : FV — 9)1((2) that degenerates in codimension at least 2. It follows that coker ¢
is a torsion-free sheaf of rank 1, therefore

F 0= F(=2) 50l =T, +1y) >0

is an LCI foliation by curves on X with r = cl(Q}() —(FY(=2)) —tx = d + ;(F) — tx — 1, where d is the degree of X.
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We recall that a vector bundle F on X is arithmetically Cohen Macaulay if and only if F has no intermediate cohomology,
i.e, H(X,F(t)) =0 for every t € Z and 1 <i < n— 1. If F has all the intermediate cohomology modules with trivial
structure, it is called 1-Buchsbaum (i.e., arithmetically Buchsbaum).

We will use the following relation between the conormal sheaf of a foliation by curves and its singular locus [7].

Theorem 2.1[7, Theorem 1.2]. Let F be a distribution of dimension one on a smooth weighted projective complete intersection
Fano threefold X, with index ty and Picard number one. If Z = Sing(F) is the singular scheme of F, then:

LIf N;, is arithmetically Cohen Macaulay, then Z is arithmetically Buchsbaum, with
h'(X,.7,(r)) = 1 being the only nonzero intermediate cohomology for H'(. ).

2. IfZ is arithmetically Buchsbaum with h'(X, % ;(r)) = 1 being the only nonzero intermediate cohomology for H'(. ;) and
h*(N3) = h*(N3.(—c(N3) — tx)) = O and ty € 1,2,3, then N, is arithmetically Cohen Macaulay.

3 | PROPERTIES OF THE SINGULAR SCHEME

Our first goal is to provide a relation between the Chern classes of the conormal sheaf and the numerical invariants of the
singular scheme of a foliation by curves on threefold X. Grothendieck-Riemann-Roch implies that c;(Q) = (2h°(U)/vy) -
H3, where U is a 0-dimensional sheaf on X; moreover, if C C X is a curve, then ¢,(O¢) = ¢,(F) = [C] and

10 =3 [ (Cl-e) +e@) = [ @0 =210+ [ [e]-c@h)

Therefore, we obtain
2
c3(Oc) = —c3(F¢) = ;X(Oc) CH3 4 [C] - ¢1(). (€AY

With these facts in mind, we are finally ready to state the main result of this section.

Theorem 3.1. Let F be a foliation by curves of degree r on threefold X, with Pic(X) = Z - H, where H is the class of a
hyperplane section, i.e., H = ¢;(Ox(1)). Then

c1(N3) = ¢1(Qy) — (r + T)H;
(N3 = 62(Q) — 1 () + Tx)H + (r + x)*H* — [C];
cs(Ny) = (h°(U) /vx)H? = —c3(Q3 (=1 — 7x)) = 3(r + Tx)[CIH — (20 (Oc) /vx)H>.
Proof. Use c(QL) = c(NY) - c(.F4(r + 7x)) to obtain
c1(Q}) = c1(N3) + ¢ (I (r + 7x));
e2(Q}) = (N + (N3 - €1 (T 2(r + Tx)) + (I 2(r + Tx));
c3(Qy) = cs(N%) + e3(F 2(r +7x)) + c1(N3) - e2(I 2(r + 7)) + ¢2(N3) - €1(F 2 (r + ).

The first equation gives cl(N;) = cl(Q)l() — (r + 7x)H. From the exact sequence (1.3), it follows that ¢,(F,(r + 7)) =
¢ (Fc(r + 7x)) = [C], thus substitution into the second equation yields

e (N%) = c2(Q)) — e1(Qy) - (r + Tx)H + (r + 7x)*H? — [C].
Moreover, by substituting the expressions for the first and second Chern classes into the third equation, we obtain
c3(Qy) = c3(N) + c3(I2(r + X)) + Q) + Tx)H (3.2)
—2(r + T)[CIH — c1(Q)(r + Tx)*H? + ¢1(Q3)[C]

+ (r + Tx)3H3.
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Using the sequence in display (1.4) and the formula in (3.1), we obtain

1
e3(Iz) =c3(Ic) —e3(U) = e (2x(Oc) +2h°()) - H? = [C] - ¢1(Q}) (3:3)
thus c3(F 7 (r + tx)) = ¢3(Fz) — (r + 7x)[C]H. Substituting into the equation in display (3.2), we obtain

e3(Q) — (r + ) ()H + (r + 1x)%c1 (Q)H? — (r + 7x)*H?

L (24(0¢) + 200(U)) - H? = 3(r + 7)[CIH,

=c3(N3) — b

and note that the left-hand side of the previous equality (written in the top line) matches c3(Q)1((—r — Tx)). Using that
c3(NY,) = (h°(U)/vx)H?, we have that

2
(R(U)/vx)H? = —¢3(Q' (=1 — X)) = 3(r + Tx)[C]H — EX(OC)H3,
as claimed. O
In particular, we obtain the following expected result.

Corollary 3.2. If ¥ is a generic foliation by curves of degree r on a smooth projective threefold with Pic(X) = Z, then the
length of Sing(%F) is equal to

- / e5(QL(=r — 7)) = / & (TX(r +14)).
X X

We observe that, in the previous statement, the singular locus of a generic foliation by curves need not be reduced and
may contain multiple points.
Next, note that the degree of a curve C C X is defined as follows:

deg(C) = /[C] -H. (3.4)
X
The following result is obtained simply by integrating the second and third identities in Theorem 3.1.

Corollary 3.3. If F is a local complete intersection foliation by curves of degree r on a smooth projective threefold with
Pic(X) = Z, then

deg(C) = / (6(QL) — x(NI))VH — (r + Tx)ex + (r + 7w
X

100 = =3 [ (es@\(or = 00) + 30 + elCl).
X

Given a positive integer r > 0, we introduce the following invariant for a connected curve C C X:
Ux(C,r) := 3@ + ) deg(C) + 2x(O¢). (3.5)

With this notation in mind, the third equality in Theorem 3.1 can be rewritten in the following manner:

[ es@ir =) == [ x4+ 00) = ~hW) - ¥ c(Cp (36)
X X i

J

where Sing, (F) = |_]j Cj is the partition of the curve Sing, (¥) into its connected components.

In other words, for any foliation by curves of degree r, the right-hand side of the equality in display (3.6) depends only
on X and r. The first term can be understood as the contribution of isolated singularities, counted with multiplicity, while
the second term can be understood as the contribution of each connected component of Sing, (F).
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Next, motivated by the consideration in the previous paragraphs, we show how to determine the number of connected
components of Sing, (%) for a foliation by curves F in terms of the conormal sheaf.

Theorem 3.4. Let F be a nongeneric foliation by curves of degree r on a smooth threefold X such that h'(Ox) = 0. If
hP(Qs (—r — 7x))) = 0 for p = 1,2, then

ROc) = R(NL(~r — 1)) +1 - / &N,
X

where C := Sing, (). In particular, if C is reduced, then it is connected if and only if hZ(N;(—r)) = /X c3(N;).

We observe that the hypothesis h!'(©y) = 0 holds for hypersurfaces in P* and Fano threefolds, while the hypothesis
hl(Q}((—r — 7x))) = 0 holds for smooth weighted projective complete intersection Fano threefold with Picard number
equal to one when r # —7y. Separating these varieties by the index and comparing the values of —r — 7y for which
hZ(Q}((—r — Tx)) = 0, we can see that the common vanishing of cohomology group, occurs when r < —tx — 4.

Proof. Consider the exact sequence 1.2 defining the distribution &; twisting it by Ox(—r — 7x) and passing to cohomology
we obtain

HY(Qy (=1 — 1)) = H'(I7) = HA (N3 (=1 — %)) = H*(Qy (-1 — 7)),
thus
h2(O7) — 1 = h'(Iz) = K> (N (-1 — Tx)),

where the first equality follows from the standard sequence 0 —» .¥; — Ox — O, — 0. Using the sequence in display (1.3),
we obtain

h°(Oc) = h'(0z) — h°(U).

Using the equality in display (2.4), we obtain

HOc) = RN (—r — 13)) + 1 — / E5(NY).
X

The second statement follows from the fact that C is connected if and only if h°(@.) = 1, when C is reduced. O

As an application of Theorem 3.4, we provide conditions that guarantee the connectedness of the one-dimensional
component of the singular set of a foliation by curves.

Corollary 3.5. Let F be a foliation by curves on a Fano threefold X of degree r; assume that C := Sing, () reduced.

1. Ifiy = 4andr # 1, then C is connected if and only if R*(NJ.(1 — 1)) = fP3 c3(N).

2. Ifty = 3andr # {0, 1}, then C is connected if and only if h*(Ng, (1)) = fQ3 c3(N3).

3. Ifiy =2andr < —4 — 1y, then C is connected if and only if *(NJ.(—r — 7x)) = [, c3(N3).
4. Ifiy = landr < =3 — 1y, then C is connected if and only if *(NJ.(—r — 7x)) = [, c3(Ng).

4 | COHOMOLOGY OF THE CONORMAL SHEAF
This section is dedicated to the study of the cohomology ring of the conormal sheaf of a foliations by curves on a smooth
weighted projective complete intersection Fano threefold, setting up some technical results that will be useful later on.

We start by establishing some vanishing results.

Lemma 4.1. If ¥ is a foliation by curves on a smooth weighted projective complete intersection Fano threefold X, then
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1) h°(Ny(®) =0fort <1;
(2) K(NG(@®) =0fort < —r—1x;
(3) K*(Ng () =0fort >r+1yx -1

Proof. For item (1), we consider the exact sequence in display (1.2) twisted by O, (t) and after taking the long exact
sequence of cohomology. By [1, Lemma 5.17], hO(Q}I((t)) =0fort <1.
Item (2) is obtained considering the following piece of the long exact cohomology sequence

= H/X, I7(r + 7x + 1)) » H'(X,NJ.(1)) = H'(X, Q3 (1)).

The term on the left vanishes when ¢t < —r — 7y, while the term of the right vanishes for all ¢ # 0.
For item (3), by Serre duality we get h*(NJ.(t)) = h°(N3,)"(—t — tx)). Since N, is a rank two reflexive sheaf,

(NJ)Y = NJ(—c;(NJ)) = N (b + 7 + 7).
Thus, by item (1), RO(Ng(r + 7x —t)) = 0for t > r + 7y — 1. O

Now, we dualize the sequence in display (1.2) obtaining

0— Ox(—r - TX) E) TX — Név —{> wc CU;(—V - TX) -0, (41)

where C := Sing, (%) and w( is its dualizing sheaf. Set G := ker ¢, and consider the short exact sequences

0= Ox(—r—1x) S TX>G—=0and 0> G — Ny, ® det(Ng) 5 we @ wy(—r —1x) = 0, (4.2)
where we use N;V ~ N;, ® det(Ng) since N; is a reflexive rank 2 sheaf.

Lemma 4.2. If ¥ is a foliation by curves on a smooth weighted projective complete intersection Fano threefold X, then

1) h*(N(1) =0fort > =25 +1;
(2) K(N3(1) = h'(we @ wy(t —r —Tx)) for t > max{8 — 1y —r — 7, —2tx + 1};

Proof. Using the two sequences in display (4.2), we obtain
RA(G(1) = hO(Ox(—t + 1 + 7 — 1)),
since h*(TX(t)) = h3(TX(t)) = 0 for t > —ty and h3(Ox(t —r — 1x)) = h%(Ox(—t + r + Tx — tx)), by Serre duality. So,
h*(G(t)) = 0for t > r + Tx — tx + 1, and hence h*(Ng.(t)) = O for ¢t > =21 + 1.
For item (2), separating the varieties by the index and comparing the values of ¢ + iy for which hl(fo(t +1y)) =

h'(TX(t)) = 0, we can see that the common vanishing of cohomology group, occurs when ¢ > 8. So, h'(G(t)) = 0 for
t > 8,and h'(Ng, ® det(Ng)) = h'(we ® wy(t —r —1x)) for t > max{8,r + 7y — ty + 1}. Therefore,

h'(NZ.(1) = h'(we ® wy(t —r —1y)) for t>max{8 — iy —r — 7y, =2ty + 1}. O
Finally, we state two corollaries on generic foliations on X = P? and X = Qs that will be specifically used below.
Corollary 4.3. If % is a generic foliation by curves of degree r on P>, then:
(D h°(Ng(£) =0 fort < —2;
(2) h'(N%(t)) =0 forallt € Z;
(3) h*(N%(t)) = h%(Ops(—t +r — 5)) for (t # —4 and t > —5), moreover h*(N(t)) = 0 fort > r — 4;
(4) K*(Ng(t)) =0 fort > —5.

Corollary 4.4. If F is a generic foliation by curves of degree r on Q3, then:
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1) h°(Ng(t)) =0 fort < —1;

2) h'(N(=2)) = 1and h'(N%(t)) = 0 fort # —2;

3) W*(Ng(t)) = h%(Oq,(—t + 1 —3)) fort > —4and t # =3, in particular, *(Ng(t)) = 0 fort > r — 2;
4) h3(N%(t)) = 0 fort > —4.

5 | STABILITY RESULTS

In this section, we explore conditions under which one can guarantee that the conormal sheaf of a foliation by curves is
u-semistable. We begin by looking into generic foliations by curves.

Theorem 5.1. Let F be a generic foliation by curves of degree r on a smooth projective threefold X with Pic(X) = Z such
that W' (Ox(t)) =0 forallt € Z. If r > (>) cx/vx — 3Ty, then Ny is u-(semi)stable. If, in addition, TX is u-stable, then N

is u-stable for every r.

We observe that the hypothesis h!'(Ox(t)) = 0 for all ¢t € Z is satisfied by every Fano threefold, while TX is u-stable
whenever X is a smooth weighted projective complete intersection Fano threefold with Picard number equal to one.

Proof. Any rank 1 locally free subsheaf ©Ox(—t) < Ng induces a nontrivial section in H(Ng(t)). Twisting the exact
sequence in display (1.1) by Ox(t) and taking cohomology we obtain a surjective map

HUTX(t)) » H(N(1)),
since h'(Ox(t —r — 7)) = O for all t € Z. Thus, if h°(N5(t)) # 0, then ¢ > 7y. By hypothesis,
/ c;(Ng) - H? = —cx + (r + tx)vy > —21xVyx.
X
It follows that
/XCl(OX(—t)) -H? = —tvy < %/XQ(NEI) -H?,

thus N is u-semistable. Assuming the strict inequality r > cx /vx — 37x, we conclude that

1
Ox(-1)-H* < = Ng)-H?,
[ eOso-m <5 [ ain

X

thus N is u—stable.
When TX is u-stable, then we have

1
—Tva<§/C1(TX)‘H2 - CX—3TXVX<0.
X

Since r > 0, the inequality in the hypothesis is automatically satisfied, and we conclude that the normal sheaf of a generic
foliation by curves is automatically satisfied. O

Next, we consider nongeneric foliations by curves, showing that if the degree is sufficiently small, then the conormal
sheaf is u-(semi)stable.

Theorem 5.2. Let X be a smooth projective threefold with Pic(X) = Z. Ifr < (<) 2px — Tx + cx/Vx, then the conormal sheaf
of a foliation by curves of degree r on X is u-(semi)stable.

Proof. If N ; is not u-stable, then there exists a nontrivial section in H(N. SV;(k)) # 0, where

1 1
—k?}X > 5 '/};CI(N;)HZ - kVX < —E(CX - (r + Tx)Vx).
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It follows that h°(Q;,(k)) # 0, thus k > py, and
1
pxVx S —5(ex = (r+7x)vx) = 12 20x —Tx +cx/vx.
For the claim about u-semistability, one must only change the inequalities by strict ones. O

Remark 5.3. For X = P3, we have that (205 — 7x)vx — cx = 1, so the previous result guarantees that the conormal sheaf
of a foliation by curves of degree 0 is u-stable, while the conormal sheaf of a foliation by curves of degree 1is u-semistable.
However, the following complete intersection foliation by curves of degree 2 on P3

0 = Op3(=2) ® Op3(=3) = Qﬂlm - J,(1)=0
has a conormal sheaf which is not u-semistable. This example shows that the inequality in Theorem 5.2 is sharp.

As an application of Theorem 5.1, we provide an existence result for stable reflexive sheaves with given Chern classes.

Corollary 5.4. Let X be a smooth projective threefold with rank one Picard group. Then, for each integer r > cx /vx — 37x,
there exists a u-stable rank 2 reflexive sheaf E with Chern classes:

* ¢1(E) = c1(Qy) — (r + Ty)H;
* (E) = c3(Qy) — (r + Tx)He () + (r + 7¢)*H?;
* a(B) = —03(9;1((—" —Tx)):

In the next two sections, we will further study these sheaves on X = P3 and on X being a smooth quadric hypersurface

in P4,

6 | GENERIC FOLIATIONS BY CURVES ON P?

Recall that a generic foliation by curves % on X = P? is given by
F : 0o Ops(=r+1)>TP? > Ng — 0

since 7ps = —1,wherer > 0is the degree of . According to Theorem 5.1, the normal sheaf N is a u-stable rank 2 reflexive
sheaf on P3.
When F has odd degree, say r = 2k + 1, the normalization of the normal sheaf fits into the short exact sequence

0 = Ops(—2 — 3k) > TP3(=2 — k) = Ng(—2 — k) — 0, 6.1)

for k > 0. Similarly, if  has an even degree, say r = 2k, then the normalization of the normal sheaf fits into the short
exact sequence

0 = Ops(—1 = 3k) > TP3(=2 — k) = Ng(—2 — k) = 0, (6.2)

where k > 0.
For generic foliations by curves of odd degree, i.e., those given by the exact sequence in display (6.1), we show the
following theorem:

Theorem 6.1. For each k > 1, the moduli space of stable rank 2 reflexive sheaves on P> with Chern classes
(c1,¢5,¢3) = (0,3k? + 4k + 2,8k> + 16k? + 12k + 4)

contains a rational irreducible component of dimension 4k> + 20k? + 31k + 14 whose generic point is the normal sheaf of a
generic foliation of degree 2k + 1 on P given by the exact sequence in display (6.1).
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Before starting the proof of this theorem, we note that the family of sheaves Ng given by the exact sequence in display
(6.1), which we will denote simply by G(2k + 1), has dimension h°(TP3(2k)) — 1, since each sheaf Ny is defined by a
section

o € Hom(Ops3(—2 — 3k), TP3(=2 — k)) ~ HY(TP3(2k))
up to a scalar multiple, i.e., o € H°(TP3(2k)), so we must argue that the following equality holds:
dim Ext'(Ng, Ng) = dim G2k + 1) = h°(TP3(2k)) — 1 = 4k® + 20k? + 31k + 14,

for each k > 0.
Being N a stable rank 2 reflexive sheaf on P3 with ¢;(Ng) = 0, we have

dim Ext'(Ng, Ng) — dim Ext*(Ng, Ng) = 8¢,(Ng) — 3 = 24k? + 32k + 13,

see [9, Proposition 3.4].
Therefore, we must compute the dimension of Ext’ (N, Ng), showing that

dim Ext*(Ng, Ng ) = hO(TP3(2k)) — 24k? — 32k — 14 = 4k® — 4k®> — k + 1.

Proof of the Theorem 6.1. Applying the functor Hom (-,Ng(—2 — k)) to the exact sequence in display (6.1), we get the
isomorphism

Ext’(Ng, Ng) = HX(QL, ® Ng) (6.3)

since h!'(N(2k)) = h?(N4(2k)) = 0 by Corollary 4.3.
In order to compute hz(Q[lFD3 ® Ng), we twist the dual Euler sequence

00— Q, — O (-1)®»* —— Op: ——0

by ® N and pass to cohomology, obtaining the exact sequence in cohomology
0 —— H*(Q}, ® Ng) ——> H*(Ng(-1)®) —— H*(Ng) —= 0,
since H'(Ng) = H*(Q},, ® Ng) = 0. Thus, we get the equality
h*(Qp; ® Ng) = 4 - h*(Ng:(=1)) — h*(N3.).
Now, using item (3) of the Corollary 4.3 and the isomorphism (6.3), we get
dim Ext*(Ng, Ng:) = 4k3 — 4k? —k + 1,

for k > 1 and this ends the proof. O

Similarly, if a foliation by curves % on P? is given by short exact sequence in display (6.2), i.e., has degree even, then
the normal sheaf N has Chern classes

Cl(Ng) = _1’
c(Ng) =3k> +k+1,
c3(Ng) = 8k> + 4k? + 2k + 1.

Moreover, the family of this sheaves has dimension

dim G(2k) = hO(TP3(2k — 1)) — 1 = 4k3 4 14k? + 14k + 3.
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Following the proof of the Theorem 6.1, it is easy to show that
dim Ext*(Ng, Ng) = 4k3 — 6k? + 6k,
for k > 0 and hence
dim ¢(2k) = dim Ext'(Ng, Ng),
since
dim Ext'(Ng, Ng) — dim Ext*(Ng, Ng) = 8¢,(Ng:) — 2¢;(N5)? — 3 = 24k? + 8k + 3,

for k > 0, see [9, Proposition 3.4].
As in the case ¢; = 0, we have:

Theorem 6.2. For each k > 0, the moduli space of stable rank 2 reflexive sheaves on P with Chern classes
(c1,¢5,¢3) = (=1,3k? + k + 1,8Kk> + 4k? + 2k + 1)

contains a rational, irreducible component of dimension 4k> + 14k? + 14k + 3 whose generic point is the normal sheaf of a
generic foliation of degree 2k on P3 given by the exact sequence in display (6.2).

In the next section, we will do an analogous study when X = Q5 is a smooth quadric hypersurface in P*.

7 | FOLIATIONS BY CURVES ON QUADRIC THREEFOLDS
Let Q5 denote a smooth quadric hypersurface in P*. Let H be the class of a hyperplane section, so that
Pic(Q;) = H*(Q3,Z) = ZH .

Moreover, the cohomology ring H*(Q3, Z) is generated by H, a line L € H*(Q3, Z) and a point P € H%(Q3, Z) with the
relations: H2 = 2L, H - L = P, H? = 2P. In addition, we note that

70, =0, pg, =2, Vo, =2 and cg, = —3vg, = —6.

In this section, we will focus on foliations by curves of low degree on smooth quadric hypersurfaces. Our first remark
is a direct application of Theorem 5.2; since 20, — 7o, + ¢o,/Vo, = 1, we can then conclude that

1. if & is foliation by curves of degree 0 on Q3, then N; is u-stable;
2. if & is foliation by curves of degree 1 on Q3, then N; is u-semistable.
7.1 | Generic foliations by curves on quadric threefolds
A generic foliation by curves & on Q5 is given by
F 0—>(9Q3(—r)£>TQ3—>N.7—>0
since 7o, = 0, where r > 0 is the degree of #. According to Theorem 5.1, the normal sheaf N is a u-stable rank 2 reflexive
sheaf on Q5.

When & has odd degree, say r = 2k + 1, then the normalization of the normal sheaf fits into the short exact sequence

0 = Og, (=3 — 3k) > TQ3(~2 — k) » Ngp(—2 — k) — 0, (7.1)
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for k > 0. Similarly, if #F has even degree, say r = 2k, then the normalization of the normal sheaf fits into the short exact
sequence

0 = Og,(—2 = 3k) > TQ3(—2 — k) — Ns(—2 — k) > 0, (7.2)
where k > 0. From now on, we will focus on foliations of odd degree; the even case can be dealt with in a similar way.
Let F(2k + 1) denote the family of isomorphism classes of stable rank 2 reflexive sheaves on Q3 given by the short exact
sequences of the following form

0 — Og,(—3-3k)® Op,(—2—k) — QU1M|Q3(—k) —-F = 0. (7.3)

Note that if F is a generic foliation by curves of odd degree, then N (—2 — k) belongs to the family 7(2k + 1). Indeed, we
can use the isomorphism TQ; ~ QIQ3 (2), see [10], to rewrite the exact sequence in display (7.1) as follows

0— Og,(-3-3k) > Q) (k) = Ng(=2= k) = 0. (7.4)

We then have the commutative diagram

O, (~2 — k) == Oy (-2 - k)
n
0 ——> O, (=2 — k) ® O, (~3 — 3k) ——= QL |o,(—k) — = Ng(-2—k) —=0

00— g (-3-3k) ———— Q, (-k) —— Nz(-2—k) —=0

where ¢ = (1, 0) and 7 is the morphism induced by the inclusion Q; < P*.

On the other hand, since the quotient of an arbitrary section n € H O(Qulj)4 lo,(—k)) may not be isomorphic to Q! ;o we
observe that a generic sheaf of the family 7(2k + 1) is not isomorphic to the conormal sheaf of a generic foliation by
curves. In other words, the family of stable rank 2 reflexive sheaves obtained as the conormal sheaf of a generic foliation
by curves is strictly contained in the family F(2k + 1).

In order to further study the family 7(2k + 1), we need the following technical result.

Lemma 7.1. The sheaf Q,|q, is simple, i.e., dim Hom(Q},, |o,, Qp,lo,) = 1.

Proof. Applying the functor Hom (~,Q[}]7 +lo,) to the exact sequence

0— 0”1)4(—2) - Q”l]>4 - Qu13>4|03 -0, (7.6)
we get
0 — Hom(Qp, lo,» Q4 lo,) = Hom(Qp,, QL lo,) = - (7.7)

Now, applying the functor Hom(-,Qﬂlj)4 lo,) to the exact sequence

0= Qp, = Ops(-1)% = Ops = 0,
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we get dim Hom(QulM, Q|]1:>4 lo,) = 1,since HO(QHIJ74 lo,(1) = Hl(QﬂlJ,4 lo,(1)) = 0and hl(Qﬂlj,4 lo,) = 1. Since, by display (7.7),
1 < dim Hom(inj,4 los» inj,4 lo,) < dim Hom(inw Qﬂg4|Q3)
we conclude that dim Hom(Qul]>4 los» Qulj,4 lo,) = 1, as desired. O

Lemma7.2. Let$, ¢’ : Og, (=2 —1) @ Op,(-2) = Qulj)4 lg, bemonomorphismssuch thatF : —cokercandF’ := coker o’

are reflexive sheaves. F and F' are isomorphic if and only if there is an automorphismp € Aut(Oq,(=2 —r) ® Og,(-2)) with

Plop = ¢.

Proof. If ¢’ o) = ¢, it is easy to check that coker ¢ and coker ¢’ are isomorphic.
Conversely, suppose

¢, ¢, . (903(—2 - r) (&) 0Q3(_2) - Qﬂl:Mng
are monomorphisms and
g:F->F

is an isomorphism between their cokernels. Applying the functor Hom(Qﬂlm 4lgs» +) to the exact sequence

0= Og,(=2—1)® Og,(-2) ﬂ Qé}AQ3 EI» F' >0,
we get the isomorphism
Hom(Qy, |o,> Q. lo,) ~ Hom(Q, |, F")
since
Hom(Q"1M|Q3, O (=2 —1) ® Og,(—2)) =~ HY(TP*|,(-2 — 1)) ® H (TP*|¢,(-2)) =0
and
Extl(Qﬂg4| x:00,(=2—1) ® Og,(-2)) ~ H(TP?*|o,(-2 — 1)) @ H'(TP*|o,(—2)) = 0.

1

Thus, given ¢ € Hom(Q"1M|Q3,F’), there exists a unique A € Hom(QulMle, Qp,.lo,) such that p’ol = £. Being Q, |,

simple, by Lemma 7.1, it follows that 1 is a multiple of the identity morphism.

Therefore, as gop € Hom(Qul],4 lQss F'), we get the following isomorphism between exact sequences:

$ »
0 — Og,(—2— 1) ® Oqg,(-2) .o, F 0

PR

¢ P
0 —— O, (—2—1) @ Oy, (-2) Q. lo, F' 0,

that is, there is an automorphism ¢ € Aut(Og,(—=2 —r) @ Op,(—2)) such that c’op =o0. O
It follows that

dim F(2k + 1) = dim Hom(Og, (-3 — 3k) @ O, (-2 — k), QU1M|Q3(—k))
— dim Aut(Og, (-3 — 3k) @ O, (-2 — k))

= 8k3 + 42k? + 69k + 44.
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On the other hand, the family D(2k + 1) of stable rank 2 sheaves obtained as conormal sheaves of generic foliations of
curves of odd degree is parametrized by an open subset of Hom(O, (-3 — 3k), Qés(—k)) up to a scalar factor, thus

dim D(2k + 1) = dim Hom(Oq, (-3 — 3k), Q}Q}(—k)) -1
= 8k> + 42k* + 69k + 34.
We are finally in a position to prove the main result of this section.

Theorem 7.3. Foreach k > 1, the moduli space of stable rank 2 reflexive sheaves on Qs with Chern classes
(c1,¢3,¢3) = (0,(3k? + 6k + 4)H?, (8k> + 24k? + 26k + 6)H?)

possesses an irreducible component of dimension 8k3 4 42k? 4+ 69k + 44 which contains, as a closed subset, the normal
sheaves of generic foliations by curves of degree 2k + 1 on Q5.

Proof. Given a foliation by curves F of odd degree, it is enough to argue that
dim Ext'(Ng, Ng:) = dim P(2k + 1) = 8k® + 42k? + 69k + 44.

for k > 1. Since dim F(2k + 1) is a lower bound for dim Extl(F , F) for sheaves F € F(2k + 1), semicontinuity allows us
to conclude that dim Extl(F ,F)=dim F(2k + 1) for a generic sheaf F € F(2k + 1).
Applying the functor Hom (-,N#(—2 — k)) in the exact sequence in display (7.1), we get the equality

3
2 (=1 dim Ext/(Ng:, N3:) = ¢(Q), ® Ng) = (N (1 +2k)). (7.8)

Jj=0

Now, we twist the exact sequences

0— Qu1:>4|Q3 - (9Q3(—1)@5 -0, >0 (7.9)
and
0 — Og,(-2) — Q"g4|Q3 - 9(123 -0 (7.10)

by ® N and then taking the Euler characteristic, we get
)((0(123 ® Ny ) — x(N&(1 + 2k)) = —36k? — 72k — 44. (7.11)
Here and from (7.8), it follows that
dim Ext'(Ng, Ng) — dim Ext*(Ng, N) = 36k? + 72k + 45,
since dim Hom(Ng, N&) = 1 and dim EXt3(Ng,Ng) = 0. Therefore, we must now show that
dim Ext*(Ng, Ng:) = dim F(2k + 1) — 36k? — 72k — 45 = 8k® + 6k — 3k — 1.

Applying the functor Hom (-, N (—2 — k)) to the exact sequence in display (7.1), we obtain the isomorphism
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Ext’(Ng, Ng) = Ext*(TQ;,Ng) = HX(TQ; ® Ng:(—2)),

since h!(N% (1 + 2k)) = h?>(N%(1 + 2k)) = 0 by Corollary (4.4).
Now, we twist the dual exact sequence in display 7.10 by ® N (—2) and pass to cohomology, obtaining

h*(TQ; @ N5 (—2)) = h*(TP*|o, ® N5 (-2)) — h*(N%),

since H'(Ng) = H3(TQ; ® N(=2)) = 0.
To compute h*(TP* lo, ® Ng:(—2)), we twist the exact sequences of the second line and last column in the diagram (7.5)
by ®T [P’4|Q3(k) and ®T [P’4|Q3(—2), respectively, and pass to cohomology, we have

W (TP, ® Ng(—2)) = h*(TP?|, (=3 — 2k)) = %(Zk —1)(2k + 1)(8k + 3),

since h*(TP*|,(=2)) = h*(TP*|o,(=2)) = R*(TP*|g, ® Q},lo,) = B (TP*|g, ® Q1,l0,) = 0.
So, for k > 1, we have

dim Ext*(Ng, Ng) = h*(TP*|, (=3 — 2k)) — h*(Ng) = 8k® + 6k> — 3k — 1,
since h*(Ng:) = h°(Oq, (-2 + 2k)) by Corollary 4.4. O

Remark 7.4. When k = 0, we can still conclude that the sheaves Ny given by the generic foliations by curves of degree 1 on
Q; are smooth points of the moduli space of stable rank 2 reflexive sheaves with Chern classes (c;, ¢, c3) = (0,4H?, 6H?)
within an irreducible component of dimension 45, since EXtZ(N 5, Ng) = 0. However, these sheaves only form a family of
dimension 44 within this irreducible component.

For the generic foliations by curves of degree r = 2k on Q3, we have the following theorem, whose proof is analogous
to the proof of the Theorem 7.3. We observe that the family of conormal sheaves of foliations by curves of even degree has
the following dimension:

dim D(2k) = dim Hom(Oq, (-2 — 3k), Qé}(—k)) -1
= 8k + 30k* + 33k + 9.
Theorem 7.5. For each k > 0, the moduli space of stable rank 2 reflexive sheaves on Q3 with Chern classes
(c1,¢3,03) = (—H, (3k? + 3k + 2)H?, (8k> + 12k? + 8k — 2)H?)

possesses an irreducible component of dimension 18 for k = 0, and 8k3 + 30k + 33k + 19, for k > 1 which contains, as a
closed subset, the normal sheaves of generic foliations by curves of degree 2k on Q5.

7.2 | Spinor foliations

Let us recall the definition and some properties of the spinor bundle on Q5. In particular, we revisit Ottaviani’s geometrical
construction [12, 13].

Let G(2,4) denote the Grassmannian of all two-dimensional linear subspaces of [K*. By using the geometry of the variety
of all one-dimensional linear subspaces of Qs it is possible to construct a morphisms : Q; — G(2,4). Let U be the universal
bundle of the Grassmannian.

Definition 7.6. The pull-back bundle S := s*U is called the spinor bundle on Q5.
It is easy to see that S is a rank 2 vector bundle; Ottaviani also shows that S is u-stable [12, Theorem 2.1], that S(1) is

globally generated and it satisfies S¥ = S(1) [12, Theorem 2.8(i)]. In addition, S is the unique stable rank 2 bundle on Q;
with ¢;(S) = —H and ¢,(S) = L, cf. [2], and fits into the short exact sequence
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0— Op,(-1) > S - I, -0, (7.12)
where L is a line in Q5.

Since the dual of the spinor bundle SV is globally generated, S¥(t) is globally generated, for all ¢t > 0, and thus so is
SV ® 953(2 + t). We can then apply Ottaviani’s Bertini-type theorem [14, Teorema 2.8], to show that there are foliations
by curves of the form

F, 10> 8(-2-1)— 9(123 — Fo(2+2t) = 0; (7.13)
for each t > 0; note that deg(F) = 2 + 2t.

Furthermore, we observe that the u-stability of QlQ3 implies that there are no injective morphisms S(—2 — ) & 0(123
when ¢t < —2, since

US(=2—-1)=—-Qt+5)/2>-1= u(QéS).

Finally, we consider the case t = —1 observing that Hom(S(—1), Q}gs) ~ H%(S ® QlQ3(2)). First, twist the exact sequence

1
0-0g,(-2)—> Q- QQ3 - 0, (7.14)

where Q : = Qﬂl])4 lg,» by S(2) to conclude that HO(S ® Qle(Z)) ~ H(S ® Q(2)), since h°(S) = h!(S) = 0. Next, noting that
H 0((9(23(1)) ~ H%(Ops(1)), we use the Euler exact sequence for Qﬂlm , restricted to Q;, namely

0 - Q— H%0,(1)) ® Og,(—1) = Og, — 0; (7.15)

twisting it by S(2), we obtain the multiplication map u : H°(Qp,(1)) ® H(S(1)) — H°(S(2)). Lemma 7.7 below
guarantees that u is surjective. Since ker u ~ H°(S ® Q(2)), it follows that

ho(S ® Q(2)) = 5- h%(S(1)) — h°(S(2)) = 4. (7.16)
Lemma 7.7. Let F be a globally generated coherent sheaf on a nonsingular threefold hypersurface X, and let
e HH(F)® Ox » Fand f : H(Ox(1)) ® Ox » Ox(1)
be the evaluation morphisms; set G := kere. FH'(G(1)) = 0, then the multiplication map
u @ HO(F) @ H(Ox(1)) — H°(F(1))
is surjective

This result applies nicely when X is a quadric threefold and F = S(1) is the twisted spinor bundle, k > 1; in this case,
G = S @ O, (compare with [12, Theorem 2. (i)]), we know that HYG(1)) =0.

Proof. Twisting the exact sequence
0-G->HF)QOx - F—0
by Ox(1) and passing to cohomology, we obtain
HO(F) @ HO(Ox(1) — HO(F(D);

note that this is surjective precisely when H'(G(1)) = 0. O
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To conclude the discussion of the case t = —1, we prove:

Lemma 7.8. Every nontrivial morphism ¢ : S(-1) — Q(l23 is injective and has torsion-free cokernel.

Proof. If a nontrivial morphism ¢ : S(—-1) — 9(123 is not injective, then ker ¢ ~ O, (—k) for some k > 2, since ker ¢ must
be a rank 1 reflexive sheaf. Furthermore, im ¢ ~ .Fx(k — 3) for some curve X; since this is a subsheaf of QL we must have
k —3 < -2, leading to a contradiction. ’

Given a monomorphism ¢ : S(—1) — QlQS, let P := coker ¢; note that c;(P) = 0. If P is not torsion free, let T < P be

its maximal torsion sheaf, so that P/T ~ .Fy(k); we note that ¢;(P/T) > 0 since this is a quotient of 9(123. Since ¢(T) =
—c;(P/T) <0, it follows that ¢;(T) = —c;(P/T) = 0, so dim T < 1. But we get, from the exact sequence 0 > T — P —
P/T — 0, that Ext4(P, Og,) # 0 either for g = 2 (if dimT = 1) or ¢ = 3 (if dim T = 0). But this contradicts the sequence

0 - S(-1) 5 Qle — P — 0, which implies that £xt4(P, Og,) =0forg > 1. O
The results above lead us to the following definition.

Definition 7.9. A spinor foliation on Qj3 is a foliation by curves whose conormal sheaf is isomorphic to the spinor bundle
up to twist, that is, Ny, ~ S(—2 — t) for some t > —1.

The singular scheme C of the spinor foliation %, is a connected curve (by Corollary 3.5) of degree deg C = 6t + 18t + 15

and genus g = 103 + 36t% + 43t + 16 (see Corollary 3.3). In addition, C is an arithmetically Buchsbaum curve [7, Theorem
4.1]; Ottaviani’s Bertini-type theorem implies that C is smooth for generic choice of monomorphism S(-2 —t) & Qlos.

7.3 | Foliations of odd degree

Let E be a u-semistable rank 2 vector bundle on Q5 with Chern classes ¢;(E) = 0 (so that E* ~ E) and ¢, = 2L. One can
show that

L. either E is stable and is given by and extension of .7x(1) by Op,(—1), where X is the union of two disjoint conics;
2. or E is strictly u-semistable and is given by and extension of ¥y by O,, where Y is a double line of genus —2.

Indeed, the first claim was proved by Ottaviani and Szurek in [15, Section 2]. When E is strictly u-semistable, we consider
a nontrivial section o € H’(E), and let Y := (o), be its zero locus. This gives us the short exact sequence

0—>(9Q3 E>E—>JY—>O;
The numerical invariants of Y can easily be computed from the Chern Classes of E:
deg(Y)=cy(E) =2 and 2p,(Y)—2=-3c,(E) =—6 = pu(Y)=-2,
as desired. One can check that
Ext'(Jy, Oq,) = H(Iy(-3))" ~ H'(O1(-2))Y = C,

where L := Y4 is the line supporting Y; moreover, note that wy ~ Oy ® wQ, implying that the unique nontrivial
extension of Fy by O, is indeed locally free.

Let us now focus on the first case assuming that E is u-stable. Ottaviani and Szurek show that E(1) is globally generated
[15, Proposition 1.11].

Since EY(1) is globally generated, EV(¢) is globally generated, for all t > 1, and hence EV ® Qlo3(2 + t) is also globally

generated in this range. By Ottaviani’s Bertini-type theorem [14, Teorema 2.8], there is a foliation by curves of the form

F, 0> E(-2-1)—> Q}QS - FcQt+1)—=0, t>1; (7.17)
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note that deg(%) = 2t + 1. By Corollary 3.3, we have that the singular scheme C of a foliation of the form (7.17) is a
(generically smooth) curve of degree deg C = 22t> — 48t + 24 and genus g = 583 — 219¢% + 262t — 97.
Furthermore, we observe that a sequence as in display (7.17) does not exist for t < —1: since Qf123 is u-stable, we must
have that

UWE2—-1)=-2—-t<-1= ,u(QlQ3).

Finally, let us consider the critical case ¢t = 0. First, twist the exact sequence in display (7.14) by E(2) and then taking
the Euler characteristic, we get

X(E® Q) (2) = x(E@A2) +1,

since y(E) = —1. Now, twist the exact sequence in display (7.15) by E(2) and then taking the Euler characteristic, we get
X(E ® Q(2)) = 8,since y(E(1)) = 5and y(E(2)) = 17.

Thus, y(E ® 0(123(2)) = 9. Now, we will show that h°(E ® QlQ3 (2)) > 9. For this, it is sufficient to argue that h*(E ®
0(123(2)) = 0. Initially note that, by the exact sequence in display (7.14), h*(E ® (2103 (2)) = h*(E ® Q(2)), since h*(E) =
h3(E) = 0. Next, twist the exact sequence in display (7.15) by E(2) and then taking the long exact sequence in cohomology,
we have

- = HY(EQ2)) » H*(E ® Q(2)) » H*(E(1)®>) - --.
As h'(E(2)) = h*(E(1)) = 0, we get h*(E ® Q(2)) = h*(E ® 9(123(2)) = 0 and hence
h(E ® Qp (2)) 29,

since y(E ® 9(123 (2)) = 9. Therefore, there is nontrivial morphism ¢ : E(-2) — 9(123‘
Similarly, when E is strictly u-semistable, we get y(E ® 0(123(2)) =9and

h*(E ® Q,(2)) = R*(E ® Q(2)).

To show that h’(E ® 9(123(2)) # 0, we will argue that h?(E ® Q(2)) < 8. Indeed, twist the exact sequence in display (7.15)
by E(2) and then taking the long exact sequence in cohomology, we get the epimorphism

-+ = H'(E(2)) - H*(E @ Q(2)) = 0,
since h?(E(1)) = 0. Now, from the exact sequence
g
0—>(9Q3—>E—>Jy—>0,

we get h'(E(2)) = h'(Fy(2)) < 4, since Y is a double line. Therefore, h?*(E ® Qé} (2)) < 4 and hence h°(E ® Q(lgs(z)) > 5.

In fact, every nontrivial morphism ¢ : E(-2) - 9(123 is a monomorphism: if ¢ is not injective, then ker ¢ ~ Og,(—k)
for some k > 3, since ker ¢ must be a rank 1 reflexive sheaf. Thus, im ¢ ~ .7 ,(k — 4) for some curve Z C Q3, since this a
rank 1 subsheaf of 9(123. The stability of 953 implies that k — 4 < —2, leading to a contradiction. However, it is not clear to

the authors whether there exists ¢ € Hom(E(—2), Q}QS) such that coker ¢ is torsion free.

7.4 | Local complete intersection foliations of degree O

Let us now consider local complete intersection foliations by curves of degree 0 on a smooth quadric threefold Qs, given
by exact sequences of the following form

9:0—>N;—>91Q3—>JC—>0. (7.18)
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Proposition 7.10. If F is a local complete intersection foliations of degree 0 a smooth quadric hypersurface Q; C P?, then
N, ; = S(—1), where S is the spinor bundle, and Sing(F) is the disjoint union of a line and a conic.

Proof. Theorem 3.1 yields ¢;(N3,) = —3H and ¢,(N,) = 4H* — [C]. Since N, is u-stable, we can use the Bogomolov
inequality to obtain the following bound on the degree of the singular curve C:

/Cz(Né)H 2 l/‘71(N9V;)2H =2 5 deg(0) <7/2.
X 4 X 2

If F is not generic, we can conclude that 1 < deg(C) < 3. In addition, Corollary 3.3 yields y(Oc) = 2. Let us analyze
each possibility.

If deg(C) = 1, then C must be a line, contradicting the equality y(O¢) = 2.

If deg(C) = 2, so that C is 2 disjoint lines or a double line, and hence C is a 1-Buchsbaum curve.

The same happens when deg(C) = 3: a curve of degree 3 and genus —1 must be a conic plus a line which is again a
1-Buchsbaum curve.

It follows from [7, Theorem 4.4], that N Q\; is arithmetically Cohen-Macaulay, so N ; is a direct sum of line bundles and
twisted spinor bundles by [4, Theorem 2.7]. Since rk(N;) = 2, we are left with two possibilities: either N;; = 0g,(a) ®
Op,(b)witha +b = —3,0r N, = S(-1).

The first possibility is easy to rule out, since we must have a,b < —2, while the second case does indeed occur, by
inequality in display (7.16) and Lemma 7.8. O

7.5 | Local complete intersection foliations of degree 1

Let us now consider local complete intersection foliations by curves of degree 1 on a smooth quadric threefold Qs, given
by exact sequences of the following form:

F:0->Ny - Q}QS - Fc(1) = 0. (7.19)

Furthermore, Theorem 3.1 yields ¢,(N,) = —4H and c,(N,) = 8H? — [C].

Proposition 7.11. Let & is a local complete intersection foliations of degree 1 with reduced singular scheme on a smooth
quadric hypersurface Q; C P*, and set E := NS,V](Z) and C := Sing(F). Then

1. E is the u-stable bundle with Chern classes ¢;(E) = 0 and c,(E) = 2L and C is a rational curve of degree 6;

2. E is the u-semistable bundle with Chern classes ¢;(E) = 0 and c,(E) = 2L and C is a curve of degree 6 given by the union
of a rational and an elliptic curves.

3. E= (932 and C is a connected curve of degree 8 and genus 3.

We remark that the bundles featured in items (1) and (2) above are precisely the one described in detail in Section 7.3.

Proof. By Bogomolov’s inequality, A(N;)H = 16H> — 4[C]H > 0. Thus, deg C < 8. On the other hand, since N; is locally
free, Corollary 3.3 yields y(Oc) = 10 — % deg(C). If deg(C) = 2, then y(Oc) = 7, thus C cannot be reduced. It follows that
deg(C) = 4, 6, 8 since the y(Oc) is a integer.

Ifdeg(C) = 4, then y(O¢) = 4 and the reducedness assumption implies that C consists of four skew lines. The conormal
sheaf has Chern classes ¢;(N3,) = —4H and ¢,(N,) = 12L. So, if E := N (2), then E is a u-semistable rank 2 locally
sheaf with ¢;(E) = 0 and c,(E) = 4L. It follows that h°(E(1)) > 0, since h°(E) # 0 if E is strictly u-semistable and by
[15, Proposition 3.1] if E is u-stable, thus starting from a nontrivial section o € H°(E(1)), we can build the following
commutative diagram:
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0 0
0q,(-3) O,(-3)
0 E(=2) Qé} (1) 0
0 Ix(-1) G (D) 0
0 0

where X := (o), is the vanishing locus of o. Dualizing the bottom line, we obtain the exact sequence
0 = Og,(-1) = G¥ = Op,(1) KA wc(2) > -

inducing a section 7 € H%(wc(1)). Since C is the union of four skew lines, we have that h°(wc(1)) = 0 thus GV ~
Og,(=1) ® Og,(1). However, dualizing the middle column would induce a monomorphism GV & TQ;, which can not
exist since h®(TQ;(—1)) = 0.

If deg(C) = 6, then y(O¢) = 1 and the conormal sheaf has Chern classes cl(N;;) = —4H and cz(Ng) =10L; setE :=
N;(z), so that F is a rank 2 locally sheaf with ¢;(E) = 0 and ¢,(E) = 2L. Dualizing the exact sequence 0 — E(-2) —
9(123 — (1) = 0, we obtain

0 — Op,(-1) = TQ; = E(2) = wc(2) — 0,

and one can check that h°(E) = h%(w(). Since E is u-semistable, we have two possibilities: either E is u-stable and h(E) =
0, or E is strictly u-semistable and h°(E) = 1. Note that h°(w.) = h'(.F(), so C is connected when E is u-stable, and has
two connected components when E is strictly u-semistable. In this last case, say C = C; U C;, so that x(Oc,) + x(O¢,) =
X(Oc¢) =1, hence x(Oc¢,) = 0and x(Oc,) = 1 (or the other way around), and we get that C, is rational and C, is elliptic.

Finally, if deg(C) = 8, then y(Oc) = —2 and the conormal sheaf has Chern classes cl(N;) = —4H and cz(N;) =4L;
setE := N;(2), so that E is a u-semistable rank 2 locally sheaf with ¢;(E) = 0 and c,(E) = 0. Therefore, only possibility

iSE = (932 hence N;’i = (9Q(—2)92. Furthermore, one can use the exact sequence (7.19) to check that h!'(F-) = 0, so C is
connected. O
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