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where 𝑁ℱ is a torsion-free sheaf called the normal sheaf of ℱ; this is also known in the literature as a Pfaff field of

rank 1. The nonnegative integer 𝑟 above is called the degree of ℱ; we note that this definition is in general different

from the one proposed in [3, Definition 2] for Pfaff fields, though both definitions coincide for 𝑋 = ℙ3. Note that

rk(𝑁ℱ) = 2.

The image of themorphism 𝜎∨ ∶ 𝑇𝑋 → 𝑋(𝜏𝑋 + 𝑟) is the twisted ideal sheafℐ𝑍(𝑟 + 𝜏𝑋) of a subscheme of𝑋 of dimen-

sion at most 1, called the singular scheme ofℱ and denoted by Sing(ℱ). Thus, dualizing the sequence in display (1.1), we

obtain

0 → 𝑁∨
ℱ
→ Ω1𝑋

𝜎∨

→ ℐ𝑍(𝑟 + 𝜏𝑋) → 0, (1.2)

where 𝑁∨
ℱ
is called the conormal sheaf ofℱ.

In general, the singular scheme 𝑍 ∶= Sing(ℱ)may contain a pure one-dimensional subscheme obtained as follows. Let

𝑈 be the maximal 0-dimensional subsheaf of𝑍 ; the quotient sheaf𝑍∕𝑈must be the structure sheaf of pure dimension

1 scheme, call it 𝐶. We therefore obtain the exact sequence

0 → 𝑈 → 𝑍 → 𝐶 → 0 (1.3)

or, equivalently,

0 → ℐ𝑍 → ℐ𝐶 → 𝑈 → 0. (1.4)

The scheme 𝐶 is called the one-dimensional component of the singular scheme ofℱ, and it is denoted by Sing1(ℱ).

Foliations by curves on threefolds have not been widely considered so far. A systematic study for the case 𝑋 = ℙ3 was

initiated in [11] and continued in [8]. Furthermore, the authors of [7] consider foliations by curves on Fano threefolds,

obtaining results regarding the connectedness of the singular scheme Sing(ℱ) and the stability of the conormal sheaf𝑁∨
ℱ
.

In all of these papers the focuswas on foliationswhose singular schemehas pure dimension 1,which implies that conormal

sheaf must be locally free; we will consider arbitrary foliations by curves and a wider class of threefolds, generalizing

many of the results obtained in [7, 8, 11]. We emphasize that this is a considerable step forward for two reasons: first, rank

2 locally free sheaves are much more restrictive class in comparison to rank 2 reflexive sheaves; second, a generic vector

field 𝜎 ∈ 𝐻0(𝑇𝑋(𝑟 + 𝜏𝑋) gives rise to a foliation by curves as in display (1.1) only isolated singularities, and foliations by

curves with locally free conormal sheaves only occur in high codimension.

The first goal of this paper is to provide a relation between the Chern classes of the conormal sheaf𝑁∨
ℱ
and the discrete

invariants of the singular scheme 𝑍, namely the length of 𝑈 and the degree and genus of 𝐶, see Section 3. In particular,

we show that

∫
𝑋

𝑐3(𝑇𝑋(𝑟 + 𝜏𝑋)) = −∫
𝑋

𝑐3(Ω
1
𝑋(−𝑟 − 𝜏𝑋)) = ℎ0(𝑈) +

∑

𝑗

𝜇𝑋(𝐶𝑗 , 𝑟), (1.5)

where Sing1(ℱ) =
⨆
𝑗 𝐶𝑗 is the partition of the curve Sing1(ℱ) into its connected components, and

𝜇𝑋(𝐶, 𝑟) ∶= 3(𝑟 + 𝜏𝑋) deg(𝐶) + 2𝜒(𝐶). (1.6)

Next, we turn our attention to describing properties of the conormal sheaf of a foliation by curves. We study its Betti

numbers ℎ𝑝(𝑁∨
ℱ
(𝑘)) and give criteria that guarantee its stability (in the sense of Mumford–Takemoto).

Recall that a torsion-free sheaf 𝐹 is said to be 𝜇-(semi)stable (with respect to 𝐻) if every subsheaf 𝐿 ⊂ 𝐹 for which 𝐹∕𝐿

is torsion free satisfies

𝑐1(𝐿) ⋅ 𝐻
2

rk(𝐿)
< (≤) 𝑐1(𝐹) ⋅ 𝐻2

rk(𝐹)
.

In particular, note that if 𝑇𝑋 is 𝜇-stable, then 𝜏𝑋 > 𝑐𝑋∕3𝜈𝑋 .

MainTheorem1. Letℱ be a foliation by curves of degree 𝑟 satisfying dimSing(ℱ) = 0 on a smooth projective threefold

𝑋 with Pic(𝑋) = ℤ such that ℎ1(𝑋(𝑡)) = 0 for all 𝑡 ∈ ℤ.
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1. Assume that dim𝑍 = 0; if 𝑟 > (≥) 𝑐𝑋∕𝜈𝑋 − 3𝜏𝑋 , then 𝑁ℱ is 𝜇-(semi)stable; if 𝑇𝑋 is 𝜇-stable, then 𝑁ℱ is 𝜇-stable for

every 𝑟.

2. If 𝑟 < (≤) 2𝜌𝑋 − 𝜏𝑋 + 𝑐𝑋∕𝜈𝑋 , then the conormal sheaf of a foliation by curves of degree 𝑟 on 𝑋 is 𝜇-(semi)stable.

This is proved in Section 5.We observe that the hypothesisℎ1(𝑋(𝑡)) = 0 for all 𝑡 ∈ ℤ is satisfied by every Fano threefold,

while𝑇𝑋 is𝜇-stablewhenever𝑋 is a smoothweighted projective complete intersectionFano threefoldwith Picard number

equal to one.

The set of vector fields 𝜎 ∈ 𝐻0(𝑇𝑋(𝑟 + 𝜏𝑋)) for which dim coker 𝜎∨ = 0 is an open subset of ℙ(𝐻0(𝑇𝑋(𝑟 + 𝜏𝑋)). For

this reason, foliations by curves satisfying dimSing(ℱ) = 0 are called generic. Therefore, the first part of Main Theorem 1

implies that generic foliations by curves of degree 𝑟 provide a family of 𝜇-stable rank 2 reflexive with given Chern classes

parametrized by and open subset of ℙ(𝐻0(𝑇𝑋(𝑟 + 𝜏𝑋)). It turns out that such families are dense within an irreducible

component of the (Gieseker–Maruyama) moduli space of stable rank 2 sheaves on the projective space ℙ3 and while only

defined a closed subset within an irreducible component of themoduli space of stable rank 2 sheaves on a smooth quadric

threefold 𝑄3. The following theorem, proved in Sections 6 and 7.1, arises as an interesting application of Main Theorem 1

to the study of moduli spaces of rank 2 reflexive sheaves on threefolds.

Main Theorem 2.

1. The moduli space of stable rank 2 sheaves on ℙ3 with Chern classes

(𝑐1, 𝑐2, 𝑐3) =

{
(0, 3𝑘2 + 4𝑘 + 2, 8𝑘3 + 16𝑘2 + 12𝑘 + 4), 𝑘 ≥ 1

(−1, 3𝑘2 + 𝑘 + 1, 8𝑘3 + 4𝑘2 + 2𝑘 + 1), 𝑘 ≥ 0

contains a rational irreducible component whose generic point is the normal sheaf of a generic foliation be curves on

ℙ3.

2. The moduli space of stable rank 2 sheaves on 𝑄3 with Chern classes

(𝑐1, 𝑐2, 𝑐3) =

{
(0, (3𝑘2 + 6𝑘 + 4)𝐻2, (8𝑘3 + 24𝑘2 + 26𝑘 + 6)𝐻3), 𝑘 ≥ 1

(−𝐻, (3𝑘2 + 3𝑘 + 1)𝐻2, (8𝑘3 + 12𝑘2 + 8𝑘 − 2)𝐻3), 𝑘 ≥ 0

possesses an irreducible component which contains, as a closed subset, the normal sheaves of generic foliations by

curves on 𝑄3.

It is worth remarking that Main Theorems 1 and 2 are parallel to [6, Theorem 1] and [6, Theorem 3], respectively,

concerning generic codimension one distributions on threefolds.

Finally, we consider local complete intersection (LCI) foliations, which are defined as foliations by curves with locally

free conormal sheaves; the nomenclature is motivated by the fact that they are given locally as the intersection of two

codimension one distributions. When the conormal sheaf 𝑁∨
ℱ
splits as a sum of line bundles, we say thatℱ is a complete

intersection (CI) foliation; CI foliations by curves on Fano thereefolds are studied in [7], where characterizations in terms

of the singular scheme are provided. Here, motivated by the classification of LCI foliations by curves of low degree on ℙ3

given in [8], we give the first steps towards a classification of LCI foliations by curves on smooth quadric hypersurfaces in

ℙ4 of degree 0 and 1. To be precise, we prove in Section 7:

Main Theorem 3. Letℱ be a local complete intersection foliation of degree d a smooth quadric hypersurface 𝑄3 ⊂

ℙ4.

1. For 𝑑 = 0, we have that 𝑁∨
ℱ
= 𝑆(−1), where 𝑆 is the spinor bundle, and Sing(ℱ) is the disjoint union of a line and a

conic.

2. For 𝑑 = 1, we have that 𝐸 ∶= 𝑁∨
ℱ
(2) and 𝐶 ∶= Sing(ℱ) are one of the following three possibilities:

(2.1) 𝐸 is the 𝜇-stable bundle with Chern classes 𝑐1(𝐸) = 0 and 𝑐2(𝐸) = 2𝐿 and 𝐶 is a rational curve of degree 6;

(2.2) 𝐸 is the 𝜇-semistable bundle with Chern classes 𝑐1(𝐸) = 0 and 𝑐2(𝐸) = 2𝐿 and 𝐶 is a curve of degree 6 given by

the union of a rational and an elliptic curves.

(2.3) 𝐸 = ⊕2
𝑄 and 𝐶 is a connected curve of degree 8 and genus 3.
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2 PRELIMINARY RESULTS

Following the notation set up in the Introduction, we will use this section to go over some details that will be useful

later on.

We begin by observing that the dualization of the sequence in display (1.1) also yields

𝑥𝑡1(𝑁ℱ ,𝑋) ≃ 𝑍(𝑟 + 𝜏𝑋) and 𝑥𝑡𝑝(𝑁ℱ ,𝑋) = 0 for 𝑝 = 2, 3. (2.1)

In particular, note that if ℱ is not generic, then 𝑁ℱ is not reflexive, since in this case 𝑥𝑡1(𝑁ℱ ,𝑋) would be a

0-dimensional sheaf.

In addition, we remark that the conormal sheaf 𝑁∨
ℱ
, which is always reflexive, is locally free if and only if ℱ has no

isolated singularities, that is 𝑈 = 0 and Sing(ℱ) = Sing1(ℱ). Indeed, dualizing the exact sequences in displays (1.2) and

(1.4), we obtain

𝑥𝑡1(𝑁∨
ℱ
,𝑋) ≃ 𝑥𝑡2(𝐼𝑍(𝑟 + 𝜏𝑋),𝑋) ≃ 𝑥𝑡3(𝑈,𝑋); (2.2)

in particular, note that

ℎ0(𝑥𝑡1(𝑁∨
ℱ
,𝑋)) = ℎ0(𝑥𝑡3(𝑈,𝑋)) = ℎ0(𝑈), (2.3)

where the last inequality follows from Serre duality.

Given a rank 2 reflexive sheaf 𝐹 on a projective threefold 𝑋 with Picard rank 1, one can show, using the same argument

as in [9, Proposition 2.6], that

∫
𝑋

𝑐3(𝐹) = ℎ0(𝑥𝑡1(𝐹,𝑋)); (2.4)

indeed, first note that if 𝑄 is a 0-dimensional sheaf on 𝑋, then Grothendieck–Riemann–Roch implies that 2ℎ0(𝑄) =

∫
𝑋
𝑐3(𝑄). Recall that 𝐹 admits a resolution 0 → 𝐿1 → 𝐿0 → 𝐹 → 0, where 𝐿1 and 𝐿0 are locally free sheaves; dualizing

this sequence, one obtains, since 𝐹∨ ≃ 𝐹 ⊗ det(𝐹)∨

0 → 𝐹 → 𝐿∨0 ⊗ det(𝐹) → 𝐿∨1 ⊗ det(𝐹) → 𝑥𝑡1(𝐹,𝑋) → 0.

Comparing Chern classes, one concludes that 2𝑐3(𝐹) = 𝑐3(𝑥𝑡1(𝐹,𝑋)), and integration leads to the equality in display

(2.4).

Lettingℱ be a foliation by curves, we gather the equalities in displays (2.3) and (2.4) to obtain

∫
𝑋

𝑐3(𝑁
∨
ℱ
) = ℎ0(𝑈). (2.5)

Finally, the simplest examples of foliations by curves are the complete intersection ones, given by sequences of the form

0 → 𝑋(−𝑟1 − 𝜌𝑋) ⊕ 𝑋(−𝑟2 − 𝜌𝑋) → Ω1𝑋 → ℐ𝐶(𝑟 + 𝜏𝑋) → 0,

where 𝑟 = 𝑐𝑋∕𝜈𝑋 + 𝑟1 + 𝑟2 + 2𝜌𝑋 − 𝜏𝑋 . Local complete intersection foliations by curves on hypersurfaces 𝑋 ⊂ ℙ4 can be

constructed as follows.

Example 1. Let 𝐹 be a globally generated rank 2 locally free sheaf on a threefold hypersurface 𝑋 ⊂ ℙ4. Note that Ω1𝑋(2)

is globally generated, since we have epimorphisms

Ω1
ℙ4
(2) ↠

(
Ω1
ℙ4
(2)

)
|𝑋 ↠ Ω1𝑋(2)

and Ω1
ℙ4
(2) is globally generated. We then have that 𝐹 ⊗Ω1𝑋(2) is also globally generated, thus [14, Teorema 2.8] implies

that there exists an injective morphism 𝜙 ∶ 𝐹∨ → Ω1𝑋(2) that degenerates in codimension at least 2. It follows that coker 𝜙

is a torsion-free sheaf of rank 1, therefore

ℱ ∶ 0 → 𝐹∨(−2)
𝜙
→ Ω1𝑋 → ℐ𝑍(𝑟 + 𝜏𝑋) → 0

is an LCI foliation by curves on 𝑋 with 𝑟 = 𝑐1(Ω
1
𝑋) − 𝑐1(𝐹

∨(−2)) − 𝜏𝑋 = 𝑑 + 𝑐1(𝐹) − 𝜏𝑋 − 1, where 𝑑 is the degree of 𝑋.
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556 CAVALCANTE et al.

We recall that a vector bundle𝐹 on𝑋 is arithmetically CohenMacaulay if and only if𝐹 has no intermediate cohomology,

i.e., 𝐻𝑖(𝑋, 𝐹(𝑡)) = 0 for every 𝑡 ∈ ℤ and 1 ≤ 𝑖 ≤ 𝑛 − 1. If 𝐹 has all the intermediate cohomology modules with trivial

structure, it is called 1-Buchsbaum (i.e., arithmetically Buchsbaum).

We will use the following relation between the conormal sheaf of a foliation by curves and its singular locus [7].

Theorem2.1 [7, Theorem 1.2]. Letℱ be adistribution of dimension one ona smoothweighted projective complete intersection

Fano threefold 𝑋, with index 𝜄𝑋 and Picard number one. If 𝑍 = Sing(ℱ) is the singular scheme ofℱ, then:

1. If𝑁∨
ℱ
is arithmetically Cohen Macaulay, then 𝑍 is arithmetically Buchsbaum, with

ℎ1(𝑋,ℐ𝑍(𝑟)) = 1 being the only nonzero intermediate cohomology for𝐻𝑖(ℐ𝑍).

2. If 𝑍 is arithmetically Buchsbaum with ℎ1(𝑋,ℐ𝑍(𝑟)) = 1 being the only nonzero intermediate cohomology for𝐻𝑖(ℐ𝑍) and

ℎ2(𝑁∨
ℱ
) = ℎ2(𝑁∨

ℱ
(−𝑐1(𝑁

∨
ℱ
) − 𝜄𝑋)) = 0 and 𝜄𝑋 ∈ 1, 2, 3, then𝑁∨

ℱ
is arithmetically Cohen Macaulay.

3 PROPERTIES OF THE SINGULAR SCHEME

Our first goal is to provide a relation between the Chern classes of the conormal sheaf and the numerical invariants of the

singular scheme of a foliation by curves on threefold𝑋. Grothendieck–Riemann–Roch implies that 𝑐3(𝑄) = (2ℎ0(𝑈)∕𝜈𝑋) ⋅

𝐻3, where 𝑈 is a 0-dimensional sheaf on 𝑋; moreover, if 𝐶 ⊂ 𝑋 is a curve, then 𝑐2(𝐶) = 𝑐2(ℐ𝐶) = [𝐶] and

𝜒(𝐶) =
1

2 ∫𝑋 ([𝐶] ⋅ 𝑐1(𝑇𝑋) + 𝑐3(𝐶)) ⟹ ∫
𝑋

𝑐3(𝐶) = 2𝜒(𝐶) + ∫
𝑋

[𝐶] ⋅ 𝑐1(Ω
1
𝑋).

Therefore, we obtain

𝑐3(𝐶) = −𝑐3(ℐ𝐶) =
2

𝜈𝑋
𝜒(𝐶) ⋅ 𝐻

3 + [𝐶] ⋅ 𝑐1(Ω
1
𝑋). (3.1)

With these facts in mind, we are finally ready to state the main result of this section.

Theorem 3.1. Let ℱ be a foliation by curves of degree 𝑟 on threefold 𝑋, with Pic(𝑋) = ℤ ⋅ 𝐻, where 𝐻 is the class of a

hyperplane section, i.e.,𝐻 = 𝑐1(𝑋(1)). Then

𝑐1(𝑁
∨
ℱ
) = 𝑐1(Ω

1
𝑋) − (𝑟 + 𝜏𝑋)𝐻;

𝑐2(𝑁
∨
ℱ
) = 𝑐2(Ω

1
𝑋) − 𝑐1(Ω

1
𝑋)(𝑟 + 𝜏𝑋)𝐻 + (𝑟 + 𝜏𝑋)

2𝐻2 − [𝐶];

𝑐3(𝑁
∨
ℱ
) = (ℎ0(𝑈)∕𝜈𝑋)𝐻

3 = −𝑐3(Ω
1
𝑋(−𝑟 − 𝜏𝑋)) − 3(𝑟 + 𝜏𝑋)[𝐶]𝐻 − (2𝜒(𝐶)∕𝜈𝑋)𝐻

3.

Proof. Use 𝑐(Ω1𝑋) = 𝑐(𝑁∨
ℱ
) ⋅ 𝑐(ℐ𝑍(𝑟 + 𝜏𝑋)) to obtain

𝑐1(Ω
1
𝑋) = 𝑐1(𝑁

∨
ℱ
) + 𝑐1(ℐ𝑍(𝑟 + 𝜏𝑋));

𝑐2(Ω
1
𝑋) = 𝑐2(𝑁

∨
ℱ
) + 𝑐1(𝑁

∨
ℱ
) ⋅ 𝑐1(ℐ𝑍(𝑟 + 𝜏𝑋)) + 𝑐2(ℐ𝑍(𝑟 + 𝜏𝑋));

𝑐3(Ω
1
𝑋) = 𝑐3(𝑁

∨
ℱ
) + 𝑐3(ℐ𝑍(𝑟 + 𝜏𝑋)) + 𝑐1(𝑁

∨
ℱ
) ⋅ 𝑐2(ℐ𝑍(𝑟 + 𝜏𝑋)) + 𝑐2(𝑁

∨
ℱ
) ⋅ 𝑐1(ℐ𝑍(𝑟 + 𝜏𝑋)).

The first equation gives 𝑐1(𝑁
∨
ℱ
) = 𝑐1(Ω

1
𝑋) − (𝑟 + 𝜏𝑋)𝐻. From the exact sequence (1.3), it follows that 𝑐2(ℐ𝑍(𝑟 + 𝜏𝑋)) =

𝑐2(ℐ𝐶(𝑟 + 𝜏𝑋)) = [𝐶], thus substitution into the second equation yields

𝑐2(𝑁
∨
ℱ
) = 𝑐2(Ω

1
𝑋) − 𝑐1(Ω

1
𝑋) ⋅ (𝑟 + 𝜏𝑋)𝐻 + (𝑟 + 𝜏𝑋)

2𝐻2 − [𝐶].

Moreover, by substituting the expressions for the first and second Chern classes into the third equation, we obtain

𝑐3(Ω
1
𝑋) = 𝑐3(𝑁

∨
ℱ
) + 𝑐3(ℐ𝑍(𝑟 + 𝜏𝑋)) + 𝑐2(Ω

1
𝑋)(𝑟 + 𝜏𝑋)𝐻 (3.2)

−2(𝑟 + 𝜏𝑋)[𝐶]𝐻 − 𝑐1(Ω
1
𝑋)(𝑟 + 𝜏𝑋)

2𝐻2 + 𝑐1(Ω
1
𝑋)[𝐶]

+ (𝑟 + 𝜏𝑋)
3𝐻3.
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Using the sequence in display (1.4) and the formula in (3.1), we obtain

𝑐3(ℐ𝑍) = 𝑐3(ℐ𝐶) − 𝑐3(𝑈) = −
1

𝜈𝑋

(
2𝜒(𝐶) + 2ℎ

0(𝑈)
)
⋅ 𝐻3 − [𝐶] ⋅ 𝑐1(Ω

1
𝑋) (3.3)

thus 𝑐3(ℐ𝑍(𝑟 + 𝜏𝑋)) = 𝑐3(ℐ𝑍) − (𝑟 + 𝜏𝑋)[𝐶]𝐻. Substituting into the equation in display (3.2), we obtain

𝑐3(Ω
1
𝑋) − (𝑟 + 𝜏𝑋)𝑐2(Ω

1
𝑋)𝐻 + (𝑟 + 𝜏𝑋)

2𝑐1(Ω
1
𝑋)𝐻

2 − (𝑟 + 𝜏𝑋)
3𝐻3

= 𝑐3(𝑁
∨
ℱ
) −

1

𝜈𝑋

(
2𝜒(𝐶) + 2ℎ

0(𝑈)
)
⋅ 𝐻3 − 3(𝑟 + 𝜏𝑋)[𝐶]𝐻,

and note that the left-hand side of the previous equality (written in the top line) matches 𝑐3(Ω
1
𝑋(−𝑟 − 𝜏𝑋)). Using that

𝑐3(𝑁
∨
ℱ
) = (ℎ0(𝑈)∕𝜈𝑋)𝐻

3, we have that

(ℎ0(𝑈)∕𝜈𝑋)𝐻
3 = −𝑐3(Ω

1(−𝑟 − 𝜏𝑋)) − 3(𝑟 + 𝜏𝑋)[𝐶]𝐻 −
2

𝜈𝑋
𝜒(𝐶)𝐻

3,

as claimed. □

In particular, we obtain the following expected result.

Corollary 3.2. If ℱ is a generic foliation by curves of degree 𝑟 on a smooth projective threefold with Pic(𝑋) = ℤ, then the

length of Sing(ℱ) is equal to

−∫
𝑋

𝑐3(Ω
1
𝑋(−𝑟 − 𝜏𝑋)) = ∫

𝑋

𝑐3(𝑇𝑋(𝑟 + 𝜏𝑋)).

We observe that, in the previous statement, the singular locus of a generic foliation by curves need not be reduced and

may contain multiple points.

Next, note that the degree of a curve 𝐶 ⊂ 𝑋 is defined as follows:

deg(𝐶) = ∫
𝑋

[𝐶] ⋅ 𝐻. (3.4)

The following result is obtained simply by integrating the second and third identities in Theorem 3.1.

Corollary 3.3. If ℱ is a local complete intersection foliation by curves of degree 𝑟 on a smooth projective threefold with

Pic(𝑋) = ℤ, then

deg(𝐶) = ∫
𝑋

(
𝑐2(Ω

1
𝑋) − 𝑐2(𝑁

∨
ℱ
)
)
𝐻 − (𝑟 + 𝜏𝑋)𝑐𝑋 + (𝑟 + 𝜏𝑋)

2𝜈𝑋

𝜒(𝐶) = −
1

2 ∫𝑋
(
𝑐3(Ω

1(−𝑟 − 𝜏𝑋)) + 3(𝑟 + 𝜏𝑋)[𝐶]𝐻
)
.

Given a positive integer 𝑟 > 0, we introduce the following invariant for a connected curve 𝐶 ⊂ 𝑋:

𝜇𝑋(𝐶, 𝑟) ∶= 3(𝑟 + 𝜏𝑋) deg(𝐶) + 2𝜒(𝐶). (3.5)

With this notation in mind, the third equality in Theorem 3.1 can be rewritten in the following manner:

∫
𝑋

𝑐3(Ω
1
𝑋(−𝑟 − 𝜏𝑋)) = −∫

𝑋

𝑐3(𝑇𝑋(𝑟 + 𝜏𝑋)) = −ℎ0(𝑈) −
∑

𝑗

𝜇𝑋(𝐶𝑗 , 𝑟), (3.6)

where Sing1(ℱ) =
⨆
𝑗 𝐶𝑗 is the partition of the curve Sing1(ℱ) into its connected components.

In other words, for any foliation by curves of degree 𝑟, the right-hand side of the equality in display (3.6) depends only

on 𝑋 and 𝑟. The first term can be understood as the contribution of isolated singularities, counted with multiplicity, while

the second term can be understood as the contribution of each connected component of Sing1(ℱ).
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Next, motivated by the consideration in the previous paragraphs, we show how to determine the number of connected

components of Sing1(ℱ) for a foliation by curvesℱ in terms of the conormal sheaf.

Theorem 3.4. Let ℱ be a nongeneric foliation by curves of degree 𝑟 on a smooth threefold 𝑋 such that ℎ1(𝑋) = 0. If

ℎ𝑝(Ω1𝑋(−𝑟 − 𝜏𝑋))) = 0 for 𝑝 = 1, 2, then

ℎ0(𝐶) = ℎ2(𝑁∨
ℱ
(−𝑟 − 𝜏𝑋)) + 1 − ∫

𝑋

𝑐3(𝑁
∨
ℱ
),

where 𝐶 ∶= Sing1(ℱ). In particular, if 𝐶 is reduced, then it is connected if and only if ℎ
2(𝑁∨

ℱ
(−𝑟)) = ∫

𝑋
𝑐3(𝑁

∨
ℱ
).

We observe that the hypothesis ℎ1(𝑋) = 0 holds for hypersurfaces in ℙ4 and Fano threefolds, while the hypothesis

ℎ1(Ω1𝑋(−𝑟 − 𝜏𝑋))) = 0 holds for smooth weighted projective complete intersection Fano threefold with Picard number

equal to one when 𝑟 ≠ −𝜏𝑋 . Separating these varieties by the index and comparing the values of −𝑟 − 𝜏𝑋 for which

ℎ2(Ω1𝑋(−𝑟 − 𝜏𝑋)) = 0, we can see that the common vanishing of cohomology group, occurs when 𝑟 < −𝜏𝑋 − 4.

Proof. Consider the exact sequence 1.2 defining the distributionℱ; twisting it by𝑋(−𝑟 − 𝜏𝑋) and passing to cohomology

we obtain

𝐻1(Ω1𝑋(−𝑟 − 𝜏𝑋)) → 𝐻1(ℐ𝑍) → 𝐻2(𝑁∨
ℱ
(−𝑟 − 𝜏𝑋)) → 𝐻2(Ω1𝑋(−𝑟 − 𝜏𝑋)),

thus

ℎ0(𝑍) − 1 = ℎ1(ℐ𝑍) = ℎ2(𝑁∨
ℱ
(−𝑟 − 𝜏𝑋)),

where the first equality follows from the standard sequence 0 → ℐ𝑍 → 𝑋 → 𝑍 → 0. Using the sequence in display (1.3),

we obtain

ℎ0(𝐶) = ℎ1(𝑍) − ℎ
0(𝑈).

Using the equality in display (2.4), we obtain

ℎ0(𝐶) = ℎ2(𝑁∨
ℱ
(−𝑟 − 𝜏𝑋)) + 1 − ∫

𝑋

𝑐3(𝑁
∨
ℱ
).

The second statement follows from the fact that 𝐶 is connected if and only if ℎ0(𝐶) = 1, when 𝐶 is reduced. □

As an application of Theorem 3.4, we provide conditions that guarantee the connectedness of the one-dimensional

component of the singular set of a foliation by curves.

Corollary 3.5. Letℱ be a foliation by curves on a Fano threefold 𝑋 of degree 𝑟; assume that 𝐶 ∶= Sing1(ℱ) reduced.

1. If 𝜄𝑋 = 4 and 𝑟 ≠ 1, then 𝐶 is connected if and only if ℎ2(𝑁∨
ℱ
(1 − 𝑟)) = ∫

ℙ3
𝑐3(𝑁

∨
ℱ
).

2. If 𝜄𝑋 = 3 and 𝑟 ≠ {0, 1}, then 𝐶 is connected if and only if ℎ2(𝑁∨
ℱ
(−𝑟)) = ∫

𝑄3
𝑐3(𝑁

∨
ℱ
).

3. If 𝜄𝑋 = 2 and 𝑟 < −4 − 𝜏𝑋 , then 𝐶 is connected if and only if ℎ
2(𝑁∨

ℱ
(−𝑟 − 𝜏𝑋)) = ∫

𝑋
𝑐3(𝑁

∨
ℱ
).

4. If 𝜄𝑋 = 1 and 𝑟 < −3 − 𝜏𝑋 , then 𝐶 is connected if and only if ℎ
2(𝑁∨

ℱ
(−𝑟 − 𝜏𝑋)) = ∫

𝑋
𝑐3(𝑁

∨
ℱ
).

4 COHOMOLOGY OF THE CONORMAL SHEAF

This section is dedicated to the study of the cohomology ring of the conormal sheaf of a foliations by curves on a smooth

weighted projective complete intersection Fano threefold, setting up some technical results that will be useful later on.

We start by establishing some vanishing results.

Lemma 4.1. Ifℱ is a foliation by curves on a smooth weighted projective complete intersection Fano threefold 𝑋, then
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(1) ℎ0(𝑁∨
ℱ
(𝑡)) = 0 for 𝑡 ≤ 1;

(2) ℎ1(𝑁∨
ℱ
(𝑡)) = 0 for 𝑡 ≤ −𝑟 − 𝜏𝑋 ;

(3) ℎ3(𝑁∨
ℱ
(𝑡)) = 0 for 𝑡 ≥ 𝑟 + 𝜏𝑋 − 1.

Proof. For item (1), we consider the exact sequence in display (1.2) twisted by 𝑄3(𝑡) and after taking the long exact

sequence of cohomology. By [1, Lemma 5.17], ℎ0(Ω1𝑋(𝑡)) = 0 for 𝑡 ≤ 1.

Item (2) is obtained considering the following piece of the long exact cohomology sequence

⋯→ 𝐻0(𝑋,ℐ𝑍(𝑟 + 𝜏𝑋 + 𝑡)) → 𝐻1(𝑋,𝑁∨
ℱ
(𝑡)) → 𝐻1(𝑋,Ω1𝑋(𝑡)).

The term on the left vanishes when 𝑡 ≤ −𝑟 − 𝜏𝑋 , while the term of the right vanishes for all 𝑡 ≠ 0.

For item (3), by Serre duality we get ℎ3(𝑁∨
ℱ
(𝑡)) = ℎ0((𝑁∨

ℱ
)∨(−𝑡 − 𝜄𝑋)). Since 𝑁

∨
ℱ
is a rank two reflexive sheaf,

(𝑁∨
ℱ
)∨ = 𝑁∨

ℱ
(−𝑐1(𝑁

∨
ℱ
)) = 𝑁∨

ℱ
(𝜄𝑋 + 𝑟 + 𝜏𝑋).

Thus, by item (1), ℎ0(𝑁∨
ℱ
(𝑟 + 𝜏𝑋 − 𝑡)) = 0 for 𝑡 ≥ 𝑟 + 𝜏𝑋 − 1. □

Now, we dualize the sequence in display (1.2) obtaining

0 → 𝑋(−𝑟 − 𝜏𝑋)
𝜎
→ 𝑇𝑋 → 𝑁∨∨

ℱ

𝜁
→ 𝜔𝐶 ⊗𝜔∨𝑋(−𝑟 − 𝜏𝑋) → 0, (4.1)

where 𝐶 ∶= Sing1(ℱ) and 𝜔𝐶 is its dualizing sheaf. Set 𝐺 ∶= ker 𝜁, and consider the short exact sequences

0 → 𝑋(−𝑟 − 𝜏𝑋)
𝜎
→ 𝑇𝑋 → 𝐺 → 0 and 0 → 𝐺 → 𝑁∨

ℱ
⊗ det(𝑁ℱ)

𝜁
→ 𝜔𝐶 ⊗𝜔∨𝑋(−𝑟 − 𝜏𝑋) → 0, (4.2)

where we use 𝑁∨∨
ℱ

≃ 𝑁∨
ℱ
⊗ det(𝑁ℱ) since 𝑁

∨
ℱ
is a reflexive rank 2 sheaf.

Lemma 4.2. Ifℱ is a foliation by curves on a smooth weighted projective complete intersection Fano threefold 𝑋, then

(1) ℎ2(𝑁∨
ℱ
(𝑡)) = 0 for 𝑡 > −2𝜄𝑋 + 1;

(2) ℎ1(𝑁∨
ℱ
(𝑡)) = ℎ1(𝜔𝐶 ⊗𝜔∨𝑋(𝑡 − 𝑟 − 𝜏𝑋)) for 𝑡 > max{8 − 𝜄𝑋 − 𝑟 − 𝜏𝑋 , −2𝜄𝑋 + 1};

Proof. Using the two sequences in display (4.2), we obtain

ℎ2(𝐺(𝑡)) = ℎ0(𝑋(−𝑡 + 𝑟 + 𝜏𝑋 − 𝜄𝑋)),

since ℎ2(𝑇𝑋(𝑡)) = ℎ3(𝑇𝑋(𝑡)) = 0 for 𝑡 > −𝜄𝑋 and ℎ3(𝑋(𝑡 − 𝑟 − 𝜏𝑋)) = ℎ0(𝑋(−𝑡 + 𝑟 + 𝜏𝑋 − 𝜄𝑋)), by Serre duality. So,

ℎ2(𝐺(𝑡)) = 0 for 𝑡 > 𝑟 + 𝜏𝑋 − 𝜄𝑋 + 1, and hence ℎ
2(𝑁∨

ℱ
(𝑡)) = 0 for 𝑡 > −2𝜄𝑋 + 1.

For item (2), separating the varieties by the index and comparing the values of 𝑡 + 𝜄𝑋 for which ℎ1(Ω2𝑋(𝑡 + 𝜄𝑋)) =

ℎ1(𝑇𝑋(𝑡)) = 0, we can see that the common vanishing of cohomology group, occurs when 𝑡 > 8. So, ℎ1(𝐺(𝑡)) = 0 for

𝑡 > 8, and ℎ1(𝑁∨
ℱ
⊗ det(𝑁ℱ)) = ℎ1(𝜔𝐶 ⊗𝜔∨𝑋(𝑡 − 𝑟 − 𝜏𝑋)) for 𝑡 > max{8, 𝑟 + 𝜏𝑋 − 𝜄𝑋 + 1}. Therefore,

ℎ1(𝑁∨
ℱ
(𝑡)) = ℎ1(𝜔𝐶 ⊗𝜔∨𝑋(𝑡 − 𝑟 − 𝜏𝑋)) for 𝑡 > max{8 − 𝜄𝑋 − 𝑟 − 𝜏𝑋 , −2𝜄𝑋 + 1}. □

Finally, we state two corollaries on generic foliations on 𝑋 = ℙ3 and 𝑋 = 𝑄3 that will be specifically used below.

Corollary 4.3. Ifℱ is a generic foliation by curves of degree 𝑟 on ℙ3, then:

(1) ℎ0(𝑁ℱ(𝑡)) = 0 for 𝑡 ≤ −2;

(2) ℎ1(𝑁ℱ(𝑡)) = 0 for all 𝑡 ∈ ℤ;

(3) ℎ2(𝑁ℱ(𝑡)) = ℎ0(ℙ3(−𝑡 + 𝑟 − 5)) for (𝑡 ≠ −4 and 𝑡 ≥ −5), moreover ℎ2(𝑁ℱ(𝑡)) = 0 for 𝑡 ≥ 𝑟 − 4;

(4) ℎ3(𝑁ℱ(𝑡)) = 0 for 𝑡 ≥ −5.

Corollary 4.4. Ifℱ is a generic foliation by curves of degree 𝑟 on 𝑄3, then:
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1) ℎ0(𝑁ℱ(𝑡)) = 0 for 𝑡 ≤ −1;

2) ℎ1(𝑁ℱ(−2)) = 1 and ℎ1(𝑁ℱ(𝑡)) = 0 for 𝑡 ≠ −2;

3) ℎ2(𝑁ℱ(𝑡)) = ℎ0(𝑄3(−𝑡 + 𝑟 − 3)) for 𝑡 ≥ −4 and 𝑡 ≠ −3, in particular, ℎ2(𝑁ℱ(𝑡)) = 0 for 𝑡 ≥ 𝑟 − 2;

4) ℎ3(𝑁ℱ(𝑡)) = 0 for 𝑡 ≥ −4.

5 STABILITY RESULTS

In this section, we explore conditions under which one can guarantee that the conormal sheaf of a foliation by curves is

𝜇-semistable. We begin by looking into generic foliations by curves.

Theorem 5.1. Let ℱ be a generic foliation by curves of degree 𝑟 on a smooth projective threefold 𝑋 with Pic(𝑋) = ℤ such

that ℎ1(𝑋(𝑡)) = 0 for all 𝑡 ∈ ℤ. If 𝑟 > (≥) 𝑐𝑋∕𝜈𝑋 − 3𝜏𝑋 , then 𝑁ℱ is 𝜇-(semi)stable. If, in addition, 𝑇𝑋 is 𝜇-stable, then 𝑁ℱ

is 𝜇-stable for every 𝑟.

We observe that the hypothesis ℎ1(𝑋(𝑡)) = 0 for all 𝑡 ∈ ℤ is satisfied by every Fano threefold, while 𝑇𝑋 is 𝜇-stable

whenever 𝑋 is a smooth weighted projective complete intersection Fano threefold with Picard number equal to one.

Proof. Any rank 1 locally free subsheaf 𝑋(−𝑡) ↪ 𝑁ℱ induces a nontrivial section in 𝐻0(𝑁ℱ(𝑡)). Twisting the exact

sequence in display (1.1) by 𝑋(𝑡) and taking cohomology we obtain a surjective map

𝐻0(𝑇𝑋(𝑡)) ↠ 𝐻0(𝑁ℱ(𝑡)),

since ℎ1(𝑋(𝑡 − 𝑟 − 𝜏𝑋)) = 0 for all 𝑡 ∈ ℤ. Thus, if ℎ0(𝑁ℱ(𝑡)) ≠ 0, then 𝑡 ≥ 𝜏𝑋 . By hypothesis,

∫
𝑋

𝑐1(𝑁ℱ) ⋅ 𝐻
2 = −𝑐𝑋 + (𝑟 + 𝜏𝑋)𝜈𝑋 ≥ −2𝜏𝑋𝜈𝑋 .

It follows that

∫
𝑋

𝑐1(𝑋(−𝑡)) ⋅ 𝐻
2 = −𝑡𝜈𝑋 ≤ 1

2 ∫𝑋 𝑐1(𝑁ℱ) ⋅ 𝐻
2,

thus 𝑁ℱ is 𝜇-semistable. Assuming the strict inequality 𝑟 > 𝑐𝑋∕𝜈𝑋 − 3𝜏𝑋 , we conclude that

∫
𝑋

𝑐1(𝑋(−𝑡)) ⋅ 𝐻
2 <

1

2 ∫𝑋 𝑐1(𝑁ℱ) ⋅ 𝐻
2,

thus 𝑁ℱ is 𝜇−stable.

When 𝑇𝑋 is 𝜇-stable, then we have

−𝜏𝑋𝜈𝑋 <
1

3 ∫𝑋 𝑐1(𝑇𝑋) ⋅ 𝐻
2 ⟹ 𝑐𝑋 − 3𝜏𝑋𝜈𝑋 < 0.

Since 𝑟 ≥ 0, the inequality in the hypothesis is automatically satisfied, and we conclude that the normal sheaf of a generic

foliation by curves is automatically satisfied. □

Next, we consider nongeneric foliations by curves, showing that if the degree is sufficiently small, then the conormal

sheaf is 𝜇-(semi)stable.

Theorem5.2. Let𝑋 be a smooth projective threefold with Pic(𝑋) = ℤ. If 𝑟 < (≤) 2𝜌𝑋 − 𝜏𝑋 + 𝑐𝑋∕𝜈𝑋 , then the conormal sheaf
of a foliation by curves of degree 𝑟 on 𝑋 is 𝜇-(semi)stable.

Proof. If 𝑁∨
ℱ
is not 𝜇-stable, then there exists a nontrivial section in𝐻0(𝑁∨

ℱ
(𝑘)) ≠ 0, where

−𝑘𝜈𝑋 ≥ 1

2 ∫𝑋 𝑐1(𝑁
∨
ℱ
)𝐻2 ⟹ 𝑘𝜈𝑋 ≤ −

1

2
(𝑐𝑋 − (𝑟 + 𝜏𝑋)𝜈𝑋).
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It follows that ℎ0(Ω1𝑋(𝑘)) ≠ 0, thus 𝑘 ≥ 𝜌𝑋 , and

𝜌𝑋𝜈𝑋 ≤ −
1

2
(𝑐𝑋 − (𝑟 + 𝜏𝑋)𝜈𝑋) ⟹ 𝑟 ≥ 2𝜌𝑋 − 𝜏𝑋 + 𝑐𝑋∕𝜈𝑋 .

For the claim about 𝜇-semistability, one must only change the inequalities by strict ones. □

Remark 5.3. For 𝑋 = ℙ3, we have that (2𝜌𝑋 − 𝜏𝑋)𝜈𝑋 − 𝑐𝑋 = 1, so the previous result guarantees that the conormal sheaf

of a foliation by curves of degree 0 is 𝜇-stable, while the conormal sheaf of a foliation by curves of degree 1 is 𝜇-semistable.

However, the following complete intersection foliation by curves of degree 2 on ℙ3

0 → ℙ3(−2) ⊕ ℙ3(−3) → Ω1
ℙ3
→ ℐ𝑍(1) → 0

has a conormal sheaf which is not 𝜇-semistable. This example shows that the inequality in Theorem 5.2 is sharp.

As an application of Theorem 5.1, we provide an existence result for stable reflexive sheaves with given Chern classes.

Corollary 5.4. Let 𝑋 be a smooth projective threefold with rank one Picard group. Then, for each integer 𝑟 > 𝑐𝑋∕𝜈𝑋 − 3𝜏𝑋 ,

there exists a 𝜇-stable rank 2 reflexive sheaf 𝐸 with Chern classes:

∙ 𝑐1(𝐸) = 𝑐1(Ω
1
𝑋) − (𝑟 + 𝜏𝑋)𝐻;

∙ 𝑐2(𝐸) = 𝑐2(Ω
1
𝑋) − (𝑟 + 𝜏𝑋)𝐻𝑐1(Ω

1
𝑋) + (𝑟 + 𝜏𝑋)

2𝐻2;
∙ 𝑐3(𝐸) = −𝑐3(Ω

1
𝑋(−𝑟 − 𝜏𝑋)).

In the next two sections, we will further study these sheaves on 𝑋 = ℙ3 and on 𝑋 being a smooth quadric hypersurface

in ℙ4.

6 GENERIC FOLIATIONS BY CURVES ON ℙ𝟑

Recall that a generic foliation by curvesℱ on 𝑋 = ℙ3 is given by

ℱ ∶ 0 → ℙ3(−𝑟 + 1)
𝜎
→ 𝑇ℙ3 → 𝑁ℱ → 0

since 𝜏ℙ3 = −1, where 𝑟 ≥ 0 is the degree ofℱ. According to Theorem 5.1, the normal sheaf𝑁ℱ is a𝜇-stable rank 2 reflexive

sheaf on ℙ3.

Whenℱ has odd degree, say 𝑟 = 2𝑘 + 1, the normalization of the normal sheaf fits into the short exact sequence

0 → ℙ3(−2 − 3𝑘)
𝜎
→ 𝑇ℙ3(−2 − 𝑘) → 𝑁ℱ(−2 − 𝑘) → 0, (6.1)

for 𝑘 ≥ 0. Similarly, if ℱ has an even degree, say 𝑟 = 2𝑘, then the normalization of the normal sheaf fits into the short

exact sequence

0 → ℙ3(−1 − 3𝑘)
𝜎
→ 𝑇ℙ3(−2 − 𝑘) → 𝑁ℱ(−2 − 𝑘) → 0, (6.2)

where 𝑘 ≥ 0.

For generic foliations by curves of odd degree, i.e., those given by the exact sequence in display (6.1), we show the

following theorem:

Theorem 6.1. For each 𝑘 ≥ 1, the moduli space of stable rank 2 reflexive sheaves on ℙ3 with Chern classes

(𝑐1, 𝑐2, 𝑐3) = (0, 3𝑘2 + 4𝑘 + 2, 8𝑘3 + 16𝑘2 + 12𝑘 + 4)

contains a rational irreducible component of dimension 4𝑘3 + 20𝑘2 + 31𝑘 + 14 whose generic point is the normal sheaf of a

generic foliation of degree 2𝑘 + 1 on ℙ3 given by the exact sequence in display (6.1).
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562 CAVALCANTE et al.

Before starting the proof of this theorem, we note that the family of sheaves 𝑁ℱ given by the exact sequence in display

(6.1), which we will denote simply by (2𝑘 + 1), has dimension ℎ0(𝑇ℙ3(2𝑘)) − 1, since each sheaf 𝑁ℱ is defined by a

section

𝜎 ∈ Hom(ℙ3(−2 − 3𝑘), 𝑇ℙ
3(−2 − 𝑘)) ≃ 𝐻0(𝑇ℙ3(2𝑘))

up to a scalar multiple, i.e., 𝜎 ∈ 𝐻0(𝑇ℙ3(2𝑘)), so we must argue that the following equality holds:

dimExt1(𝑁ℱ , 𝑁ℱ) = dim(2𝑘 + 1) = ℎ0(𝑇ℙ3(2𝑘)) − 1 = 4𝑘3 + 20𝑘2 + 31𝑘 + 14,

for each 𝑘 ≥ 0.

Being 𝑁ℱ a stable rank 2 reflexive sheaf on ℙ3 with 𝑐1(𝑁ℱ) = 0, we have

dimExt1(𝑁ℱ , 𝑁ℱ) − dimExt2(𝑁ℱ , 𝑁ℱ) = 8𝑐2(𝑁ℱ) − 3 = 24𝑘2 + 32𝑘 + 13,

see [9, Proposition 3.4].

Therefore, we must compute the dimension of Ext2(𝑁ℱ , 𝑁ℱ), showing that

dimExt2(𝑁ℱ , 𝑁ℱ) = ℎ0(𝑇ℙ3(2𝑘)) − 24𝑘2 − 32𝑘 − 14 = 4𝑘3 − 4𝑘2 − 𝑘 + 1.

Proof of the Theorem 6.1. Applying the functor Hom (⋅,𝑁ℱ(−2 − 𝑘)) to the exact sequence in display (6.1), we get the

isomorphism

Ext2(𝑁ℱ , 𝑁ℱ) ≃ 𝐻2(Ω1
ℙ3
⊗𝑁ℱ) (6.3)

since ℎ1(𝑁ℱ(2𝑘)) = ℎ2(𝑁ℱ(2𝑘)) = 0 by Corollary 4.3.

In order to compute ℎ2(Ω1
ℙ3
⊗𝑁ℱ), we twist the dual Euler sequence

by⊗𝑁ℱ and pass to cohomology, obtaining the exact sequence in cohomology

since𝐻1(𝑁ℱ) = 𝐻3(Ω1
ℙ3
⊗𝑁ℱ) = 0. Thus, we get the equality

ℎ2(Ω1
ℙ3
⊗𝑁ℱ) = 4 ⋅ ℎ2(𝑁ℱ(−1)) − ℎ

2(𝑁ℱ).

Now, using item (3) of the Corollary 4.3 and the isomorphism (6.3), we get

dimExt2(𝑁ℱ , 𝑁ℱ) = 4𝑘3 − 4𝑘2 − 𝑘 + 1,

for 𝑘 ≥ 1 and this ends the proof. □

Similarly, if a foliation by curves ℱ on ℙ3 is given by short exact sequence in display (6.2), i.e., has degree even, then

the normal sheaf 𝑁ℱ has Chern classes

𝑐1(𝑁ℱ) = −1,

𝑐2(𝑁ℱ) = 3𝑘2 + 𝑘 + 1,

𝑐3(𝑁ℱ) = 8𝑘3 + 4𝑘2 + 2𝑘 + 1.

Moreover, the family of this sheaves has dimension

dim(2𝑘) = ℎ0(𝑇ℙ3(2𝑘 − 1)) − 1 = 4𝑘3 + 14𝑘2 + 14𝑘 + 3.
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Following the proof of the Theorem 6.1, it is easy to show that

dimExt2(𝑁ℱ , 𝑁ℱ) = 4𝑘3 − 6𝑘2 + 6𝑘,

for 𝑘 ≥ 0 and hence

dim(2𝑘) = dimExt1(𝑁ℱ , 𝑁ℱ),

since

dimExt1(𝑁ℱ , 𝑁ℱ) − dimExt2(𝑁ℱ , 𝑁ℱ) = 8𝑐2(𝑁ℱ) − 2𝑐1(𝑁ℱ)
2 − 3 = 24𝑘2 + 8𝑘 + 3,

for 𝑘 ≥ 0, see [9, Proposition 3.4].

As in the case 𝑐1 = 0, we have:

Theorem 6.2. For each 𝑘 ≥ 0, the moduli space of stable rank 2 reflexive sheaves on ℙ3 with Chern classes

(𝑐1, 𝑐2, 𝑐3) = (−1, 3𝑘2 + 𝑘 + 1, 8𝑘3 + 4𝑘2 + 2𝑘 + 1)

contains a rational, irreducible component of dimension 4𝑘3 + 14𝑘2 + 14𝑘 + 3 whose generic point is the normal sheaf of a

generic foliation of degree 2𝑘 on ℙ3 given by the exact sequence in display (6.2).

In the next section, we will do an analogous study when 𝑋 = 𝑄3 is a smooth quadric hypersurface in ℙ
4.

7 FOLIATIONS BY CURVES ON QUADRIC THREEFOLDS

Let 𝑄3 denote a smooth quadric hypersurface in ℙ
4. Let𝐻 be the class of a hyperplane section, so that

Pic(𝑄3) = 𝐻2(𝑄3, ℤ) = ℤ𝐻 .

Moreover, the cohomology ring 𝐻∗(𝑄3, ℤ) is generated by H, a line 𝐿 ∈ 𝐻4(𝑄3, ℤ) and a point 𝑃 ∈ 𝐻6(𝑄3, ℤ) with the

relations:𝐻2 = 2𝐿, 𝐻 ⋅ 𝐿 = 𝑃, 𝐻3 = 2𝑃. In addition, we note that

𝜏𝑄3 = 0 , 𝜌𝑄3 = 2 , 𝜈𝑄3 = 2 and 𝑐𝑄3 = −3𝜈𝑄3 = −6.

In this section, we will focus on foliations by curves of low degree on smooth quadric hypersurfaces. Our first remark

is a direct application of Theorem 5.2; since 2𝜌𝑄3 − 𝜏𝑄3 + 𝑐𝑄3∕𝜈𝑄3 = 1, we can then conclude that

1. ifℱ is foliation by curves of degree 0 on 𝑄3, then 𝑁
∨
ℱ
is 𝜇-stable;

2. ifℱ is foliation by curves of degree 1 on 𝑄3, then 𝑁
∨
ℱ
is 𝜇-semistable.

7.1 Generic foliations by curves on quadric threefolds

A generic foliation by curvesℱ on 𝑄3 is given by

ℱ ∶ 0 → 𝑄3(−𝑟)
𝜎
→ 𝑇𝑄3 → 𝑁ℱ → 0

since 𝜏𝑄3 = 0, where 𝑟 ≥ 0 is the degree ofℱ. According to Theorem 5.1, the normal sheaf𝑁ℱ is a 𝜇-stable rank 2 reflexive

sheaf on 𝑄3.

Whenℱ has odd degree, say 𝑟 = 2𝑘 + 1, then the normalization of the normal sheaf fits into the short exact sequence

0 → 𝑄3(−3 − 3𝑘)
𝜎
→ 𝑇𝑄3(−2 − 𝑘) → 𝑁ℱ(−2 − 𝑘) → 0, (7.1)
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for 𝑘 ≥ 0. Similarly, ifℱ has even degree, say 𝑟 = 2𝑘, then the normalization of the normal sheaf fits into the short exact

sequence

0 → 𝑄3(−2 − 3𝑘)
𝜎
→ 𝑇𝑄3(−2 − 𝑘) → 𝑁ℱ(−2 − 𝑘) → 0, (7.2)

where 𝑘 ≥ 0. From now on, we will focus on foliations of odd degree; the even case can be dealt with in a similar way.

Let (2𝑘 + 1) denote the family of isomorphism classes of stable rank 2 reflexive sheaves on𝑄3 given by the short exact

sequences of the following form

0 → 𝑄3(−3 − 3𝑘) ⊕ 𝑄3(−2 − 𝑘) → Ω1
ℙ4
|𝑄3(−𝑘) → 𝐹 → 0. (7.3)

Note that ifℱ is a generic foliation by curves of odd degree, then𝑁ℱ(−2 − 𝑘) belongs to the family (2𝑘 + 1). Indeed, we
can use the isomorphism 𝑇𝑄3 ≃ Ω1

𝑄3
(2), see [10], to rewrite the exact sequence in display (7.1) as follows

0 → 𝑄3(−3 − 3𝑘)
𝜎
→ Ω1

𝑄3
(−𝑘) → 𝑁ℱ(−2 − 𝑘) → 0. (7.4)

We then have the commutative diagram

where 𝜙 = (𝜂, 𝜎) and 𝜂 is the morphism induced by the inclusion 𝑄3 ↪ ℙ4.

On the other hand, since the quotient of an arbitrary section 𝜂 ∈ 𝐻0(Ω1
ℙ4
|𝑄3(−𝑘)) may not be isomorphic to Ω

1
𝑄3
, we

observe that a generic sheaf of the family (2𝑘 + 1) is not isomorphic to the conormal sheaf of a generic foliation by
curves. In other words, the family of stable rank 2 reflexive sheaves obtained as the conormal sheaf of a generic foliation

by curves is strictly contained in the family (2𝑘 + 1).
In order to further study the family (2𝑘 + 1), we need the following technical result.

Lemma 7.1. The sheafΩ1
ℙ4
|𝑄3 is simple, i.e., dimHom(Ω1

ℙ4
|𝑄3 , Ω

1
ℙ4
|𝑄3) = 1.

Proof. Applying the functor Hom (⋅,Ω1
ℙ4
|𝑄3) to the exact sequence

0 → Ω1
ℙ4
(−2)

⋅𝑓
→ Ω1

ℙ4
→ Ω1

ℙ4
|𝑄3 → 0, (7.6)

we get

0 → Hom(Ω1
ℙ4
|𝑄3 , Ω

1
ℙ4
|𝑄3) → Hom(Ω1

ℙ4
, Ω1

ℙ4
|𝑄3) → ⋯ (7.7)

Now, applying the functor Hom(⋅,Ω1
ℙ4
|𝑄3) to the exact sequence

0 → Ω1
ℙ4
→ ℙ4(−1)

⊕5 → ℙ4 → 0,
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we get dimHom(Ω1
ℙ4
, Ω1

ℙ4
|𝑄3) = 1, since𝐻0(Ω1

ℙ4
|𝑄3(1)) = 𝐻1(Ω1

ℙ4
|𝑄3(1)) = 0 and ℎ1(Ω1

ℙ4
|𝑄3) = 1. Since, by display (7.7),

1 ≤ dimHom(Ω1
ℙ4
|𝑄3 , Ω

1
ℙ4
|𝑄3) ≤ dimHom(Ω1

ℙ4
, Ω1

ℙ4
|𝑄3)

we conclude that dimHom(Ω1
ℙ4
|𝑄3 , Ω

1
ℙ4
|𝑄3) = 1, as desired. □

Lemma7.2. Let𝜙, 𝜙′ ∶ 𝑄3(−2 − 𝑟) ⊕ 𝑄3(−2) → Ω1
ℙ4
|𝑄3 bemonomorphisms such that𝐹 ∶ − coker 𝜎 and𝐹

′ ∶= coker 𝜎′

are reflexive sheaves.𝐹 and𝐹′ are isomorphic if and only if there is an automorphism𝜓 ∈ Aut(𝑄3(−2 − 𝑟) ⊕ 𝑄3(−2))with

𝜙′◦𝜓 = 𝜙.

Proof. If 𝜙′◦𝜓 = 𝜙, it is easy to check that coker 𝜙 and coker 𝜙′ are isomorphic.

Conversely, suppose

𝜙, 𝜙′ ∶ 𝑄3(−2 − 𝑟) ⊕ 𝑄3(−2) → Ω1
ℙ4
|𝑄3

are monomorphisms and

𝑔 ∶ 𝐹 → 𝐹′

is an isomorphism between their cokernels. Applying the functor Hom(Ω1
ℙ4
|𝑄3 , ⋅) to the exact sequence

0 → 𝑄3(−2 − 𝑟) ⊕ 𝑄3(−2)
𝜙′

→ Ω1
ℙ4
|𝑄3

𝑝′

→ 𝐹′ → 0,

we get the isomorphism

Hom(Ω1
ℙ4
|𝑄3 , Ω

1
ℙ4
|𝑄3) ≃ Hom(Ω1

ℙ4
|𝑄3 , 𝐹

′)

since

Hom(Ω1
ℙ4
|𝑄3 ,𝑄3(−2 − 𝑟) ⊕ 𝑄3(−2)) ≃ 𝐻0(𝑇ℙ4|𝑄3(−2 − 𝑟)) ⊕ 𝐻0(𝑇ℙ4|𝑄3(−2)) = 0

and

Ext1(Ω1
ℙ4
|𝑋 ,𝑄3(−2 − 𝑟) ⊕ 𝑄3(−2)) ≃ 𝐻1(𝑇ℙ4|𝑄3(−2 − 𝑟)) ⊕ 𝐻1(𝑇ℙ4|𝑄3(−2)) = 0.

Thus, given 𝜉 ∈ Hom(Ω1
ℙ4
|𝑄3 , 𝐹

′), there exists a unique 𝜆 ∈ Hom(Ω1
ℙ4
|𝑄3 , Ω

1
ℙ4
|𝑄3) such that 𝑝

′◦𝜆 = 𝜉. Being Ω1
ℙ4
|𝑄3

simple, by Lemma 7.1, it follows that 𝜆 is a multiple of the identity morphism.

Therefore, as 𝑔◦𝑝 ∈ Hom(Ω1
ℙ4
|𝑄3 , 𝐹

′), we get the following isomorphism between exact sequences:

that is, there is an automorphism 𝜓 ∈ Aut(𝑄3(−2 − 𝑟) ⊕ 𝑄3(−2)) such that 𝜎
′◦𝜓 = 𝜎. □

It follows that

dim(2𝑘 + 1) = dimHom(𝑄3(−3 − 3𝑘) ⊕ 𝑄3(−2 − 𝑘),Ω
1
ℙ4
|𝑄3(−𝑘))

− dimAut(𝑄3(−3 − 3𝑘) ⊕ 𝑄3(−2 − 𝑘))

= 8𝑘3 + 42𝑘2 + 69𝑘 + 44.
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On the other hand, the family (2𝑘 + 1) of stable rank 2 sheaves obtained as conormal sheaves of generic foliations of
curves of odd degree is parametrized by an open subset of Hom(𝑄3(−3 − 3𝑘),Ω

1
𝑄3
(−𝑘)) up to a scalar factor, thus

dim(2𝑘 + 1) = dimHom(𝑄3(−3 − 3𝑘),Ω
1
𝑄3
(−𝑘)) − 1

= 8𝑘3 + 42𝑘2 + 69𝑘 + 34.

We are finally in a position to prove the main result of this section.

Theorem 7.3. For each 𝑘 ≥ 1, the moduli space of stable rank 2 reflexive sheaves on 𝑄3 with Chern classes

(𝑐1, 𝑐2, 𝑐3) = (0, (3𝑘2 + 6𝑘 + 4)𝐻2, (8𝑘3 + 24𝑘2 + 26𝑘 + 6)𝐻3)

possesses an irreducible component of dimension 8𝑘3 + 42𝑘2 + 69𝑘 + 44 which contains, as a closed subset, the normal

sheaves of generic foliations by curves of degree 2𝑘 + 1 on 𝑄3.

Proof. Given a foliation by curvesℱ of odd degree, it is enough to argue that

dimExt1(𝑁ℱ , 𝑁ℱ) = dim(2𝑘 + 1) = 8𝑘3 + 42𝑘2 + 69𝑘 + 44.

for 𝑘 ≥ 1. Since dim(2𝑘 + 1) is a lower bound for dimExt1(𝐹, 𝐹) for sheaves 𝐹 ∈ (2𝑘 + 1), semicontinuity allows us
to conclude that dimExt1(𝐹, 𝐹) = dim(2𝑘 + 1) for a generic sheaf 𝐹 ∈ (2𝑘 + 1).
Applying the functor Hom (⋅,𝑁ℱ(−2 − 𝑘)) in the exact sequence in display (7.1), we get the equality

3∑

𝑗=0

(−1)𝑗 dimExt𝑗(𝑁ℱ , 𝑁ℱ) = 𝜒(Ω1𝑄3
⊗𝑁ℱ) − 𝜒(𝑁ℱ(1 + 2𝑘)). (7.8)

Now, we twist the exact sequences

0 → Ω1
ℙ4
|𝑄3 → 𝑄3(−1)

⊕5 → 𝑄3 → 0 (7.9)

and

0 → 𝑄3(−2) → Ω1
ℙ4
|𝑄3 → Ω1

𝑄3
→ 0 (7.10)

by⊗𝑁ℱ and then taking the Euler characteristic, we get

𝜒(Ω1𝑄3
⊗𝑁ℱ) − 𝜒(𝑁ℱ(1 + 2𝑘)) = −36𝑘2 − 72𝑘 − 44. (7.11)

Here and from (7.8), it follows that

dimExt1(𝑁ℱ , 𝑁ℱ) − dimExt2(𝑁ℱ , 𝑁ℱ) = 36𝑘2 + 72𝑘 + 45,

since dimHom(𝑁ℱ , 𝑁ℱ) = 1 and dimExt3(𝑁ℱ , 𝑁ℱ) = 0. Therefore, we must now show that

dimExt2(𝑁ℱ , 𝑁ℱ) = dim(2𝑘 + 1) − 36𝑘2 − 72𝑘 − 45 = 8𝑘3 + 6𝑘2 − 3𝑘 − 1.

Applying the functor Hom (⋅, 𝑁ℱ(−2 − 𝑘)) to the exact sequence in display (7.1), we obtain the isomorphism
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Ext2(𝑁ℱ , 𝑁ℱ) ≃ Ext2(𝑇𝑄3, 𝑁ℱ) ≃ 𝐻2(𝑇𝑄3 ⊗𝑁ℱ(−2)),

since ℎ1(𝑁ℱ(1 + 2𝑘)) = ℎ2(𝑁ℱ(1 + 2𝑘)) = 0 by Corollary (4.4).

Now, we twist the dual exact sequence in display 7.10 by⊗𝑁ℱ(−2) and pass to cohomology, obtaining

ℎ2(𝑇𝑄3 ⊗𝑁ℱ(−2)) = ℎ2(𝑇ℙ4|𝑄3 ⊗𝑁ℱ(−2)) − ℎ
2(𝑁ℱ),

since𝐻1(𝑁ℱ) = 𝐻3(𝑇𝑄3 ⊗𝑁ℱ(−2)) = 0.

To compute ℎ2(𝑇ℙ4|𝑄3 ⊗𝑁ℱ(−2)), we twist the exact sequences of the second line and last column in the diagram (7.5)

by⊗𝑇ℙ4|𝑄3(𝑘) and⊗𝑇ℙ
4|𝑄3(−2), respectively, and pass to cohomology, we have

ℎ2(𝑇ℙ4|𝑄3 ⊗𝑁ℱ(−2)) = ℎ3(𝑇ℙ4|𝑄3(−3 − 2𝑘)) =
1

3
(2𝑘 − 1)(2𝑘 + 1)(8𝑘 + 3),

since ℎ2(𝑇ℙ4|𝑄3(−2)) = ℎ3(𝑇ℙ4|𝑄3(−2)) = ℎ2(𝑇ℙ4|𝑄3 ⊗Ω1
ℙ4
|𝑄3) = ℎ3(𝑇ℙ4|𝑄3 ⊗Ω1

ℙ4
|𝑄3) = 0.

So, for 𝑘 ≥ 1, we have

dimExt2(𝑁ℱ , 𝑁ℱ) = ℎ3(𝑇ℙ4|𝑄3(−3 − 2𝑘)) − ℎ
2(𝑁ℱ) = 8𝑘3 + 6𝑘2 − 3𝑘 − 1,

since ℎ2(𝑁ℱ) = ℎ0(𝑄3(−2 + 2𝑘)) by Corollary 4.4. □

Remark 7.4. When 𝑘 = 0, we can still conclude that the sheaves𝑁ℱ given by the generic foliations by curves of degree 1 on

𝑄3 are smooth points of the moduli space of stable rank 2 reflexive sheaves with Chern classes (𝑐1, 𝑐2, 𝑐3) = (0, 4𝐻2, 6𝐻3)

within an irreducible component of dimension 45, since Ext2(𝑁ℱ , 𝑁ℱ) = 0. However, these sheaves only form a family of

dimension 44 within this irreducible component.

For the generic foliations by curves of degree 𝑟 = 2𝑘 on 𝑄3, we have the following theorem, whose proof is analogous

to the proof of the Theorem 7.3. We observe that the family of conormal sheaves of foliations by curves of even degree has

the following dimension:

dim(2𝑘) = dimHom(𝑄3(−2 − 3𝑘),Ω
1
𝑄3
(−𝑘)) − 1

= 8𝑘3 + 30𝑘2 + 33𝑘 + 9.

Theorem 7.5. For each 𝑘 ≥ 0, the moduli space of stable rank 2 reflexive sheaves on 𝑄3 with Chern classes

(𝑐1, 𝑐2, 𝑐3) = (−𝐻, (3𝑘2 + 3𝑘 + 2)𝐻2, (8𝑘3 + 12𝑘2 + 8𝑘 − 2)𝐻3)

possesses an irreducible component of dimension 18 for 𝑘 = 0, and 8𝑘3 + 30𝑘2 + 33𝑘 + 19, for 𝑘 ≥ 1 which contains, as a

closed subset, the normal sheaves of generic foliations by curves of degree 2𝑘 on 𝑄3.

7.2 Spinor foliations

Let us recall the definition and some properties of the spinor bundle on𝑄3. In particular, we revisit Ottaviani’s geometrical

construction [12, 13].

Let𝐺(2, 4) denote the Grassmannian of all two-dimensional linear subspaces of𝕂4. By using the geometry of the variety

of all one-dimensional linear subspaces of𝑄3 it is possible to construct amorphism 𝑠 ∶ 𝑄3 → 𝐺(2, 4). Let𝑈 be the universal

bundle of the Grassmannian.

Definition 7.6. The pull-back bundle 𝑆 ∶= 𝑠∗𝑈 is called the spinor bundle on 𝑄3.

It is easy to see that 𝑆 is a rank 2 vector bundle; Ottaviani also shows that 𝑆 is 𝜇-stable [12, Theorem 2.1], that 𝑆(1) is

globally generated and it satisfies 𝑆∨ = 𝑆(1) [12, Theorem 2.8(i)]. In addition, 𝑆 is the unique stable rank 2 bundle on 𝑄3
with 𝑐1(𝑆) = −𝐻 and 𝑐2(𝑆) = 𝐿, cf. [2], and fits into the short exact sequence
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0 → 𝑄3(−1) → 𝑆 → ℐ𝐿 → 0, (7.12)

where 𝐿 is a line in 𝑄3.

Since the dual of the spinor bundle 𝑆∨ is globally generated, 𝑆∨(𝑡) is globally generated, for all 𝑡 ≥ 0, and thus so is

𝑆∨ ⊗Ω1
𝑄3
(2 + 𝑡). We can then apply Ottaviani’s Bertini-type theorem [14, Teorema 2.8], to show that there are foliations

by curves of the form

ℱ𝑡 ∶ 0 → 𝑆(−2 − 𝑡) → Ω1
𝑄3
→ ℐ𝐶(2 + 2𝑡) → 0; (7.13)

for each 𝑡 ≥ 0; note that deg(ℱ) = 2 + 2𝑡.

Furthermore, we observe that the 𝜇-stability of Ω1𝑄3
implies that there are no injective morphisms 𝑆(−2 − 𝑡) ↪ Ω1𝑄3

when 𝑡 ≤ −2, since

𝜇(𝑆(−2 − 𝑡)) = −(2𝑡 + 5)∕2 > −1 = 𝜇(Ω1𝑄3
).

Finally, we consider the case 𝑡 = −1 observing thatHom(𝑆(−1),Ω1
𝑄3
) ≃ 𝐻0(𝑆 ⊗ Ω1

𝑄3
(2)). First, twist the exact sequence

0 → 𝑄3(−2) → Ω → Ω1
𝑄3
→ 0, (7.14)

whereΩ ∶= Ω1
ℙ4
|𝑄3 , by 𝑆(2) to conclude that𝐻

0(𝑆 ⊗ Ω1
𝑄3
(2)) ≃ 𝐻0(𝑆 ⊗ Ω(2)), since ℎ0(𝑆) = ℎ1(𝑆) = 0. Next, noting that

𝐻0(𝑄3(1)) ≃ 𝐻0(ℙ4(1)), we use the Euler exact sequence for Ω
1
ℙ4
restricted to 𝑄3, namely

0 → Ω → 𝐻0(𝑄3(1)) ⊗ 𝑄3(−1) → 𝑄3 → 0; (7.15)

twisting it by 𝑆(2), we obtain the multiplication map 𝜇 ∶ 𝐻0(𝑄3(1)) ⊗ 𝐻0(𝑆(1)) → 𝐻0(𝑆(2)). Lemma 7.7 below

guarantees that 𝜇 is surjective. Since ker 𝜇 ≃ 𝐻0(𝑆 ⊗ Ω(2)), it follows that

ℎ0(𝑆 ⊗ Ω(2)) = 5 ⋅ ℎ0(𝑆(1)) − ℎ0(𝑆(2)) = 4. (7.16)

Lemma 7.7. Let 𝐹 be a globally generated coherent sheaf on a nonsingular threefold hypersurface 𝑋, and let

𝜀 ∶ 𝐻0(𝐹) ⊗ 𝑋 ↠ 𝐹 and 𝛽 ∶ 𝐻0(𝑋(1)) ⊗ 𝑋 ↠ 𝑋(1)

be the evaluation morphisms; set 𝐺 ∶= ker 𝜀. If𝐻1(𝐺(1)) = 0, then the multiplication map

𝜇 ∶ 𝐻0(𝐹) ⊗ 𝐻0(𝑋(1))⟶ 𝐻0(𝐹(1))

is surjective

This result applies nicely when 𝑋 is a quadric threefold and 𝐹 = 𝑆(1) is the twisted spinor bundle, 𝑘 ≥ 1; in this case,

𝐺 = 𝑆 ⊕ 𝑄3 (compare with [12, Theorem 2. (i)]), we know that𝐻1(𝐺(1)) = 0.

Proof. Twisting the exact sequence

0 → 𝐺 → 𝐻0(𝐹) ⊗ 𝑋 → 𝐹 → 0

by 𝑋(1) and passing to cohomology, we obtain

𝐻0(𝐹) ⊗ 𝐻0(𝑋(1))
𝜇
⟶𝐻0(𝐹(1));

note that this is surjective precisely when𝐻1(𝐺(1)) = 0. □
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To conclude the discussion of the case 𝑡 = −1, we prove:

Lemma 7.8. Every nontrivial morphism 𝜑 ∶ 𝑆(−1) → Ω1
𝑄3
is injective and has torsion-free cokernel.

Proof. If a nontrivial morphism 𝜑 ∶ 𝑆(−1) → Ω1𝑄3
is not injective, then ker 𝜑 ≃ 𝑄3(−𝑘) for some 𝑘 ≥ 2, since ker 𝜑must

be a rank 1 reflexive sheaf. Furthermore, im𝜑 ≃ ℐ𝑋(𝑘 − 3) for some curve𝑋; since this is a subsheaf ofΩ
1
𝑄3
, wemust have

𝑘 − 3 ≤ −2, leading to a contradiction.

Given a monomorphism 𝜑 ∶ 𝑆(−1) → Ω1
𝑄3
, let 𝑃 ∶= coker 𝜑; note that 𝑐1(𝑃) = 0. If 𝑃 is not torsion free, let 𝑇 ↪ 𝑃 be

its maximal torsion sheaf, so that 𝑃∕𝑇 ≃ ℐ𝑌(𝑘); we note that 𝑐1(𝑃∕𝑇) ≥ 0 since this is a quotient of Ω1
𝑄3
. Since 𝑐1(𝑇) =

−𝑐1(𝑃∕𝑇) ≤ 0, it follows that 𝑐1(𝑇) = −𝑐1(𝑃∕𝑇) = 0, so dim𝑇 ≤ 1. But we get, from the exact sequence 0 → 𝑇 → 𝑃 →

𝑃∕𝑇 → 0, that 𝑥𝑡𝑞(𝑃,𝑄3) ≠ 0 either for 𝑞 = 2 (if dim𝑇 = 1) or 𝑞 = 3 (if dim𝑇 = 0). But this contradicts the sequence

0 → 𝑆(−1)
𝜑
→ Ω1𝑄3

→ 𝑃 → 0, which implies that 𝑥𝑡𝑞(𝑃,𝑄3) = 0 for 𝑞 > 1. □

The results above lead us to the following definition.

Definition 7.9. A spinor foliation on𝑄3 is a foliation by curves whose conormal sheaf is isomorphic to the spinor bundle

up to twist, that is, 𝑁∨
ℱ
≃ 𝑆(−2 − 𝑡) for some 𝑡 ≥ −1.

The singular scheme𝐶 of the spinor foliationℱ𝑡 is a connected curve (by Corollary 3.5) of degree deg𝐶 = 6𝑡2 + 18𝑡 + 15

and genus 𝑔 = 10𝑡3 + 36𝑡2 + 43𝑡 + 16 (see Corollary 3.3). In addition,𝐶 is an arithmetically Buchsbaum curve [7, Theorem

4.1]; Ottaviani’s Bertini-type theorem implies that 𝐶 is smooth for generic choice of monomorphism 𝑆(−2 − 𝑡) ↪ Ω1
𝑄3
.

7.3 Foliations of odd degree

Let 𝐸 be a 𝜇-semistable rank 2 vector bundle on 𝑄3 with Chern classes 𝑐1(𝐸) = 0 (so that 𝐸∗ ≃ 𝐸) and 𝑐2 = 2𝐿. One can

show that

1. either 𝐸 is stable and is given by and extension ofℐ𝑋(1) by 𝑄3(−1), where 𝑋 is the union of two disjoint conics;

2. or 𝐸 is strictly 𝜇-semistable and is given by and extension ofℐ𝑌 by 𝑄3 , where 𝑌 is a double line of genus −2.

Indeed, the first claimwas proved byOttaviani and Szurek in [15, Section 2].When𝐸 is strictly𝜇-semistable, we consider

a nontrivial section 𝜎 ∈ 𝐻0(𝐸), and let 𝑌 ∶= (𝜎)0 be its zero locus. This gives us the short exact sequence

0 → 𝑄3

𝜎
→ 𝐸 → ℐ𝑌 → 0;

The numerical invariants of 𝑌 can easily be computed from the Chern Classes of 𝐸:

deg(𝑌) = 𝑐2(𝐸) = 2 and 2𝑝𝑎(𝑌) − 2 = −3𝑐2(𝐸) = −6 ⇒ 𝑝𝑎(𝑌) = −2,

as desired. One can check that

Ext1(ℐ𝑌 ,𝑄3) ≃ 𝐻2(ℐ𝑌(−3))
∨ ≃ 𝐻1(𝐿(−2))

∨ ≃ ℂ,

where 𝐿 ∶= 𝑌red is the line supporting 𝑌; moreover, note that 𝜔𝑌 ≃ 𝑌 ⊗𝜔𝑄3 , implying that the unique nontrivial

extension ofℐ𝑌 by 𝑄3 is indeed locally free.

Let us now focus on the first case assuming that 𝐸 is 𝜇-stable. Ottaviani and Szurek show that 𝐸(1) is globally generated

[15, Proposition 1.11].

Since 𝐸∨(1) is globally generated, 𝐸∨(𝑡) is globally generated, for all 𝑡 ≥ 1, and hence 𝐸∨ ⊗Ω1
𝑄3
(2 + 𝑡) is also globally

generated in this range. By Ottaviani’s Bertini-type theorem [14, Teorema 2.8], there is a foliation by curves of the form

ℱ𝑡 ∶ 0 → 𝐸(−2 − 𝑡) → Ω1
𝑄3
→ ℐ𝐶(2𝑡 + 1) → 0, 𝑡 ≥ 1; (7.17)
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note that deg(ℱ) = 2𝑡 + 1. By Corollary 3.3, we have that the singular scheme 𝐶 of a foliation of the form (7.17) is a

(generically smooth) curve of degree deg𝐶 = 22𝑡2 − 48𝑡 + 24 and genus 𝑔 = 58𝑡3 − 219𝑡2 + 262𝑡 − 97.

Furthermore, we observe that a sequence as in display (7.17) does not exist for 𝑡 ≤ −1: since Ω1
𝑄3
is 𝜇-stable, we must

have that

𝜇(𝐸(−2 − 𝑡)) = −2 − 𝑡 < −1 = 𝜇(Ω1
𝑄3
).

Finally, let us consider the critical case 𝑡 = 0. First, twist the exact sequence in display (7.14) by 𝐸(2) and then taking

the Euler characteristic, we get

𝜒(𝐸 ⊗Ω1𝑄3
(2)) = 𝜒(𝐸 ⊗Ω(2)) + 1,

since 𝜒(𝐸) = −1. Now, twist the exact sequence in display (7.15) by 𝐸(2) and then taking the Euler characteristic, we get

𝜒(𝐸 ⊗Ω(2)) = 8, since 𝜒(𝐸(1)) = 5 and 𝜒(𝐸(2)) = 17.

Thus, 𝜒(𝐸 ⊗Ω1
𝑄3
(2)) = 9. Now, we will show that ℎ0(𝐸 ⊗ Ω1

𝑄3
(2)) ≥ 9. For this, it is sufficient to argue that ℎ2(𝐸 ⊗

Ω1
𝑄3
(2)) = 0. Initially note that, by the exact sequence in display (7.14), ℎ2(𝐸 ⊗ Ω1

𝑄3
(2)) = ℎ2(𝐸 ⊗ Ω(2)), since ℎ2(𝐸) =

ℎ3(𝐸) = 0. Next, twist the exact sequence in display (7.15) by 𝐸(2) and then taking the long exact sequence in cohomology,

we have

⋯→ 𝐻1(𝐸(2)) → 𝐻2(𝐸 ⊗ Ω(2)) → 𝐻2(𝐸(1)⊕5) → ⋯

As ℎ1(𝐸(2)) = ℎ2(𝐸(1)) = 0, we get ℎ2(𝐸 ⊗ Ω(2)) = ℎ2(𝐸 ⊗ Ω1
𝑄3
(2)) = 0 and hence

ℎ0(𝐸 ⊗ Ω1
𝑄3
(2)) ≥ 9,

since 𝜒(𝐸 ⊗Ω1𝑄3
(2)) = 9. Therefore, there is nontrivial morphism 𝜙 ∶ 𝐸(−2) → Ω1𝑄3

.

Similarly, when 𝐸 is strictly 𝜇-semistable, we get 𝜒(𝐸 ⊗Ω1
𝑄3
(2)) = 9 and

ℎ2(𝐸 ⊗ Ω1𝑄3
(2)) = ℎ2(𝐸 ⊗ Ω(2)).

To show that ℎ0(𝐸 ⊗ Ω1𝑄3
(2)) ≠ 0, we will argue that ℎ2(𝐸 ⊗ Ω(2)) ≤ 8. Indeed, twist the exact sequence in display (7.15)

by 𝐸(2) and then taking the long exact sequence in cohomology, we get the epimorphism

⋯→ 𝐻1(𝐸(2)) → 𝐻2(𝐸 ⊗ Ω(2)) → 0,

since ℎ2(𝐸(1)) = 0. Now, from the exact sequence

0 → 𝑄3

𝜎
→ 𝐸 → ℐ𝑌 → 0,

we get ℎ1(𝐸(2)) = ℎ1(ℐ𝑌(2)) ≤ 4, since 𝑌 is a double line. Therefore, ℎ2(𝐸 ⊗ Ω1
𝑄3
(2)) ≤ 4 and hence ℎ0(𝐸 ⊗ Ω1

𝑄3
(2)) ≥ 5.

In fact, every nontrivial morphism 𝜙 ∶ 𝐸(−2) → Ω1
𝑄3
is a monomorphism: if 𝜙 is not injective, then ker 𝜙 ≃ 𝑄3(−𝑘)

for some 𝑘 ≥ 3, since ker 𝜙 must be a rank 1 reflexive sheaf. Thus, im𝜙 ≃ ℐ𝑍(𝑘 − 4) for some curve 𝑍 ⊂ 𝑄3, since this a

rank 1 subsheaf ofΩ1
𝑄3
. The stability ofΩ1

𝑄3
implies that 𝑘 − 4 ≤ −2, leading to a contradiction. However, it is not clear to

the authors whether there exists 𝜙 ∈ Hom(𝐸(−2),Ω1
𝑄3
) such that coker 𝜙 is torsion free.

7.4 Local complete intersection foliations of degree 0

Let us now consider local complete intersection foliations by curves of degree 0 on a smooth quadric threefold 𝑄3, given

by exact sequences of the following form

ℱ ∶ 0 → 𝑁∨
ℱ
→ Ω1𝑄3

→ ℐ𝐶 → 0. (7.18)
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Proposition 7.10. If ℱ is a local complete intersection foliations of degree 0 a smooth quadric hypersurface 𝑄3 ⊂ ℙ4, then

𝑁∨
ℱ
= 𝑆(−1), where 𝑆 is the spinor bundle, and Sing(ℱ) is the disjoint union of a line and a conic.

Proof. Theorem 3.1 yields 𝑐1(𝑁
∨
ℱ
) = −3𝐻 and 𝑐2(𝑁

∨
ℱ
) = 4𝐻2 − [𝐶]. Since 𝑁∨

ℱ
is 𝜇-stable, we can use the Bogomolov

inequality to obtain the following bound on the degree of the singular curve 𝐶:

∫
𝑋

𝑐2(𝑁
∨
ℱ
)𝐻 ≥ 1

4 ∫𝑋 𝑐1(𝑁
∨
ℱ
)2𝐻 =

9

2
⇒ deg(𝐶) ≤ 7∕2.

If ℱ is not generic, we can conclude that 1 ≤ deg(𝐶) ≤ 3. In addition, Corollary 3.3 yields 𝜒(𝐶) = 2. Let us analyze

each possibility.

If deg(𝐶) = 1, then 𝐶 must be a line, contradicting the equality 𝜒(𝐶) = 2.

If deg(𝐶) = 2, so that 𝐶 is 2 disjoint lines or a double line, and hence 𝐶 is a 1-Buchsbaum curve.

The same happens when deg(𝐶) = 3: a curve of degree 3 and genus −1 must be a conic plus a line which is again a

1-Buchsbaum curve.

It follows from [7, Theorem 4.4], that𝑁∨
ℱ
is arithmetically Cohen–Macaulay, so𝑁∨

ℱ
is a direct sum of line bundles and

twisted spinor bundles by [4, Theorem 2.7]. Since rk(𝑁∨
ℱ
) = 2, we are left with two possibilities: either 𝑁∨

ℱ
= 𝑄3(𝑎) ⊕𝑄3(𝑏) with 𝑎 + 𝑏 = −3, or 𝑁∨

ℱ
= 𝑆(−1).

The first possibility is easy to rule out, since we must have 𝑎, 𝑏 ≤ −2, while the second case does indeed occur, by

inequality in display (7.16) and Lemma 7.8. □

7.5 Local complete intersection foliations of degree 1

Let us now consider local complete intersection foliations by curves of degree 1 on a smooth quadric threefold 𝑄3, given

by exact sequences of the following form:

ℱ ∶ 0 → 𝑁∨
ℱ
→ Ω1

𝑄3
→ ℐ𝐶(1) → 0. (7.19)

Furthermore, Theorem 3.1 yields 𝑐2(𝑁
∨
ℱ
) = −4𝐻 and 𝑐2(𝑁

∨
ℱ
) = 8𝐻2 − [𝐶].

Proposition 7.11. Let ℱ is a local complete intersection foliations of degree 1 with reduced singular scheme on a smooth

quadric hypersurface 𝑄3 ⊂ ℙ4, and set 𝐸 ∶= 𝑁∨
ℱ
(2) and 𝐶 ∶= Sing(ℱ). Then

1. 𝐸 is the 𝜇-stable bundle with Chern classes 𝑐1(𝐸) = 0 and 𝑐2(𝐸) = 2𝐿 and 𝐶 is a rational curve of degree 6;

2. 𝐸 is the 𝜇-semistable bundle with Chern classes 𝑐1(𝐸) = 0 and 𝑐2(𝐸) = 2𝐿 and 𝐶 is a curve of degree 6 given by the union

of a rational and an elliptic curves.

3. 𝐸 = ⊕2
𝑄

and 𝐶 is a connected curve of degree 8 and genus 3.

We remark that the bundles featured in items (1) and (2) above are precisely the one described in detail in Section 7.3.

Proof. By Bogomolov’s inequality, Δ(𝑁∨
ℱ
)𝐻 = 16𝐻3 − 4[𝐶]𝐻 ≥ 0. Thus, deg𝐶 ≤ 8. On the other hand, since𝑁∨

ℱ
is locally

free, Corollary 3.3 yields 𝜒(𝐶) = 10 −
3

2
deg(𝐶). If deg(𝐶) = 2, then 𝜒(𝐶) = 7, thus 𝐶 cannot be reduced. It follows that

deg(𝐶) = 4, 6, 8 since the 𝜒(𝐶) is a integer.

If deg(𝐶) = 4, then𝜒(𝐶) = 4 and the reducedness assumption implies that𝐶 consists of four skew lines. The conormal

sheaf has Chern classes 𝑐1(𝑁
∨
ℱ
) = −4𝐻 and 𝑐2(𝑁

∨
ℱ
) = 12𝐿. So, if 𝐸 ∶= 𝑁∨

ℱ
(2), then 𝐸 is a 𝜇-semistable rank 2 locally

sheaf with 𝑐1(𝐸) = 0 and 𝑐2(𝐸) = 4𝐿. It follows that ℎ0(𝐸(1)) > 0, since ℎ0(𝐸) ≠ 0 if 𝐸 is strictly 𝜇-semistable and by

[15, Proposition 3.1] if 𝐸 is 𝜇-stable, thus starting from a nontrivial section 𝜎 ∈ 𝐻0(𝐸(1)), we can build the following

commutative diagram:
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where 𝑋 ∶= (𝜎)0 is the vanishing locus of 𝜎. Dualizing the bottom line, we obtain the exact sequence

0 → 𝑄3(−1) → 𝐺∨ → 𝑄3(1)
𝜂
→ 𝜔𝐶(2) → ⋯

inducing a section 𝜂 ∈ 𝐻0(𝜔𝐶(1)). Since 𝐶 is the union of four skew lines, we have that ℎ0(𝜔𝐶(1)) = 0 thus 𝐺∨ ≃

𝑄3(−1) ⊕ 𝑄3(1). However, dualizing the middle column would induce a monomorphism 𝐺∨ ↪ 𝑇𝑄3, which can not

exist since ℎ0(𝑇𝑄3(−1)) = 0.

If deg(𝐶) = 6, then 𝜒(𝐶) = 1 and the conormal sheaf has Chern classes 𝑐1(𝑁
∨
ℱ
) = −4𝐻 and 𝑐2(𝑁

∨
ℱ
) = 10𝐿; set 𝐸 ∶=

𝑁∨
ℱ
(2), so that 𝐸 is a rank 2 locally sheaf with 𝑐1(𝐸) = 0 and 𝑐2(𝐸) = 2𝐿. Dualizing the exact sequence 0 → 𝐸(−2) →

Ω1
𝑄3
→ ℐ𝐶(1) → 0, we obtain

0 → 𝑄3(−1) → 𝑇𝑄3 → 𝐸(2) → 𝜔𝐶(2) → 0,

and one can check that ℎ0(𝐸) = ℎ0(𝜔𝐶). Since𝐸 is 𝜇-semistable, we have two possibilities: either𝐸 is 𝜇-stable and ℎ
0(𝐸) =

0, or 𝐸 is strictly 𝜇-semistable and ℎ0(𝐸) = 1. Note that ℎ0(𝜔𝐶) = ℎ1(ℐ𝐶), so 𝐶 is connected when 𝐸 is 𝜇-stable, and has

two connected components when 𝐸 is strictly 𝜇-semistable. In this last case, say 𝐶 = 𝐶1 ⊔ 𝐶2 so that 𝜒(𝐶1) + 𝜒(𝐶2) =

𝜒(𝐶) = 1, hence 𝜒(𝐶1) = 0 and 𝜒(𝐶2) = 1 (or the other way around), and we get that 𝐶1 is rational and 𝐶2 is elliptic.

Finally, if deg(𝐶) = 8, then 𝜒(𝐶) = −2 and the conormal sheaf has Chern classes 𝑐1(𝑁
∨
ℱ
) = −4𝐻 and 𝑐2(𝑁

∨
ℱ
) = 4𝐿;

set 𝐸 ∶= 𝑁∨
ℱ
(2), so that 𝐸 is a 𝜇-semistable rank 2 locally sheaf with 𝑐1(𝐸) = 0 and 𝑐2(𝐸) = 0. Therefore, only possibility

is 𝐸 = ⊕2
𝑄

hence𝑁∨
ℱ
= 𝑄(−2)

⊕2. Furthermore, one can use the exact sequence (7.19) to check that ℎ1(ℐ𝐶) = 0, so 𝐶 is

connected. □
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