
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Eryck Pedro da Silva

Misconceptions in Correct Code: Assisting Instructors

and Students by Shedding Light on What is Potentially

Overshadowed by Automated Correction

Problemas de Compreensão em Códigos Corretos:

Auxiliando Instrutores e Alunos ao Iluminar o que é

Potencialmente Ofuscado pela Correção Automática

CAMPINAS

2024

Eryck Pedro da Silva

Misconceptions in Correct Code: Assisting Instructors and

Students by Shedding Light on What is Potentially

Overshadowed by Automated Correction

Problemas de Compreensão em Códigos Corretos: Auxiliando

Instrutores e Alunos ao Iluminar o que é Potencialmente

Ofuscado pela Correção Automática

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutor em Ciência da Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Rodolfo Jardim de Azevedo
Co-supervisor/Coorientador: Dr. Ricardo Edgard Caceffo

Este exemplar corresponde à versão final da
Tese defendida por Eryck Pedro da Silva e
orientada pelo Prof. Dr. Rodolfo Jardim de
Azevedo.

CAMPINAS

2024

Ficha catalográfica

Universidade Estadual de Campinas (UNICAMP)

Biblioteca do Instituto de Matemática, Estatística e Computação Científica

Ana Regina Machado - CRB 8/5467

 Silva, Eryck Pedro da, 1993-

 Si38m SilMisconceptions in correct code : assisting instructors and students by

shedding light on what is potentially overshadowed by automated correction /

Eryck Pedro da Silva. – Campinas, SP : [s.n.], 2024.

 SilOrientador: Rodolfo Jardim de Azevedo.

 SilCoorientador: Ricardo Edgard Caceffo.

 SilTese (doutorado) – Universidade Estadual de Campinas (UNICAMP),

Instituto de Computação.

 Sil1. Programação (Computadores) - Estudo e ensino. 2. Aprendizagem -

Avaliação. 3. Python (Linguagem de programação de computador). I. Azevedo,

Rodolfo Jardim de, 1974-. II. Caceffo, Ricardo Edgard, 1983-. III. Universidade

Estadual de Campinas (UNICAMP). Instituto de Computação. IV. Título.

Informações Complementares

Título em outro idioma: Problemas de compreensão em códigos corretos : auxiliando

instrutores e alunos ao iluminar o que é potencialmente ofuscado pela correção automática

Palavras-chave em inglês:
Computer programming - Study and teaching

Assessment of learning

Python (Computer program language)

Área de concentração: Ciência da Computação

Titulação: Doutor em Ciência da Computação

Banca examinadora:
Rodolfo Jardim de Azevedo [Orientador]

Rodrigo Silva Duran

Leandro Silva Galvão de Carvalho

Jacques Wainer

Julio Cesar dos Reis

Data de defesa: 01-08-2024

Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-5141-6936

- Currículo Lattes do autor: http://lattes.cnpq.br/4106945354159329

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Eryck Pedro da Silva

Misconceptions in Correct Code: Assisting Instructors and

Students by Shedding Light on What is Potentially

Overshadowed by Automated Correction

Problemas de Compreensão em Códigos Corretos: Auxiliando

Instrutores e Alunos ao Iluminar o que é Potencialmente

Ofuscado pela Correção Automática

Banca Examinadora:

• Prof. Dr. Rodolfo Jardim de Azevedo
IC/UNICAMP

• Prof. Dr. Rodrigo Silva Duran
IFMS

• Prof. Dr. Leandro Silva Galvao de Carvalho
IComp/UFAM

• Prof. Dr. Jacques Wainer
IC/UNICAMP

• Prof. Dr. Julio Cesar dos Reis
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 01 de agosto de 2024

Dedication

I dedicate this thesis to my father, Edivaldo. One of the first things I remember you

teaching me was how to count money. You told me to start with the larger values and

then add the smaller ones. Little did I wonder back then that you were teaching me a

metaphor on how life should be lived: solving bigger problems first makes the smaller

ones simpler. This teaching, amongst many others, helped me endure the rainy periods

throughout this journey. Today, paraphrasing Elidibus1, I am proud to say that the rains

have ceased, and I am grateful for the view of a beautiful day. Though you are not here

to see it, I am sure you are witnessing it from wherever you are, and one day, at duty’s

end, we will meet again.

1Character in FINAL FANTASY XIV Online, a game developed by Square Enix.

You are stronger than all things that made

you weak.

("You Are Stronger". Music written by
Lotus Juice.)

Acknowledgements

To God, for allowing me to conduct this work with the support of my family and friends.
To my parents, Edivaldo (in memoriam) and Cícera, for believing in me even during

the times when I doubted myself. Your love and guidance will always be among the main
reasons for my achievements.

To my sister, Monica, and my niece, Isabelly, for always providing me with support
and motivation. I know that no matter how challenging life gets, we will always be there
for each other.

To my advisor, Rodolfo, and co-advisor, Ricardo, for all their wisdom and, more
importantly, their patience in assisting me throughout these years. You can be certain
that the things I learned were not only for this Ph.D. but for life as well.

To professors Tomasz, Zanoni, Paulo, and Jacques, as well as the MC102 teaching
assistants, for their immense support in conducting my research at UNICAMP. I also
thank all 32 CS1 instructors and 56 undergraduates who volunteered for the studies.

To all my friends at LSC for welcoming me so openly when I first entered that labora-
tory. The laughter, escapades, and, of course, coffee, certainly aided me on this journey.

To Victor and Paulo, my long-term friends since middle school. We have stuck together
through challenges, setbacks, and victories. Your companionship was, and will always be,
an essential part of my life.

To Lucas Oliveira, for immensely assisting me in developing the didactic materials
used in this thesis. Your support was crucial during times when I was almost having a
mental breakdown trying to understand how to edit the short videos.

To Leonardo Lima, my dearest friend, words will never be enough to describe what
you have done for me. God arranged for us to meet during the most challenging time
of my life, and we persevered. Thank you for all the text revisions. Thank you for all
the Google Meet conversations which always lasted at least five hours. Thank you for
enduring my whims and tantrums despite being in a completely different academic field.
Thank you, for everything.

To Bp. Bruno Leonardo, for sharing your wisdom in God’s name. Your words strength-
ened my faith during the periods when I needed them the most. My bishop, have I told
you today that I love you?

To all brothers, sisters, and entities at F ∴ E ∴ E ∴ U whom helped me immensely
during the times when not only my body ached, but my spirit as well. Both healing and
wisdom were key factors that helped me continue on this journey.

And to all my other friends and family members who supported me during this long
and challenging research period.

This work was partially funded by the Teaching, Research and Extension Support
Fund (FAEPEX) under grant numbers 38813-20 and 69086-24, and by the Brazilian Na-
tional Council for Scientific and Technological Development (CNPq) under grant number
142476/2020-0.

Resumo

Um dos desafios do ensino-aprendizagem de introdução à programação em universidades
(CS1) é a elaboração de feedback adequado aos estudantes: um elevado número de alunos
por turma gera dificuldades ou mesmo inviabiliza a interação individual entre instrutor e
discente. Nesse cenário, a geração de feedback costuma ser realizada por meio de siste-
mas de avaliação automática de código. No entanto, como essas ferramentas costumam
apenas verificar se o código está correto, outras características presentes podem ser igno-
radas. Nesta tese, foram identificados Problemas de Compreensão em Códigos Corretos
(PC³), que são comportamentos que potencialmente indicam compreensões incompletas
ou erradas sobre os conceitos de CS1. Ao todo, 45 PC³ foram identificados ao analisar
manualmente 2,441 códigos de alunos em uma turma de introdução à programação em
Python lecionada no paradigma estruturado. A validação inicial dos PC³ foi realizada por
meio de consulta docente e discente, com o objetivo de identificar as potenciais causas dos
alunos cometerem esses comportamentos. A consulta com os docentes também permitiu
listar 15 PC³ considerados como mais graves, ou seja, que possuem maior prioridade de
correção em sala de aula. Com foco da tese redirecionado para esses PC³ mais graves,
foram construídos artefatos educacionais para auxiliar o ensino e a aprendizagem de CS1
com respeito a esses comportamentos: uma ferramenta de detecção automática e a ela-
boração de materiais didáticos que abordam a explicação do porquê esses PC³ devem ser
evitados. A ferramenta de detecção automática foi utilizada em um estudo em larga escala
para avaliar a frequência dos PC³ mais graves ao longo de oito semestres letivos de uma
disciplina de CS1, totalizando mais de 40.000 submissões. Os resultados obtidos demons-
tram que os PC³ mais graves ocorrem continuamente ao longo de um semestre letivo, não
aparentando serem corrigidos por conta própria dos alunos. Oito desses PC³ mais graves
englobam tópicos sobre comandos de decisão e de repetição, assuntos cruciais em CS1. O
restante denota uma despreocupação discente em manter organização e legibilidade dos
códigos. Os materiais educacionais foram avaliados em um estudo de caso com 23 discen-
tes de uma turma de CS1. Os resultados obtidos sugerem que a instrução, dentro ou fora
de sala de aula, tem o poder de influenciar tanto a ocorrência como a correção de PC³.
No entanto, somente a aplicação de materiais não aparenta ser suficiente para mitigar
PC³, pois o ambiente educacional precisa reforçar, em mais aspectos, a necessidade dos
discentes evitarem esses comportamentos. Esta tese propõe que docentes e discentes de
disciplinas de introdução à programação atentem-se para a verificação dos PC³ além da
corretude dos códigos, pois os resultados sugerem que os alunos obtêm aprovação nessas
disciplinas, podendo atingir a nota máxima, mas ainda assim carregar uma compreensão
incompleta ou errada dos conceitos aprendidos.

Abstract

One of the challenges with respect to teaching and learning undergraduate introduc-
tory programming courses (CS1) is developing appropriate feedback for students. This
challenge is especially seen in classes with a high number of students, as this situation
significantly hinders the individual interaction between the instructor and the student. In
this context, feedback generation is usually carried out through automatic code evalua-
tion systems. However, since these tools generally check only whether the code is correct,
other features present in the code may be ignored. This thesis identified Misconceptions in
Correct Code (MC³), coding behaviors present in novice programmers’ code that poten-
tially indicate incomplete or incorrect understanding of CS1 concepts. In total, 45 MC³

were identified by manually analyzing 2,441 student codes from a Python CS1 course
taught within the structured programming paradigm. The initial validation of MC³ was
conducted by consulting both CS1 teachers and students, to identify potential causes of
why students develop these coding behaviors. Consulting with CS1 teachers also allowed
listing 15 most severe MC³, i.e., those with a greater correction priority in the classroom.
Shifting the thesis focus to these most severe MC³, educational artifacts were constructed
to assist in CS1 teaching and learning with respect to these behaviors: a tool for au-
tomated detection and elaboration of didactic materials that explains about these MC³

and informs why they should be avoided. The automated detection tool was used in a
large-scale study to assess the frequency of the most severe MC³ in eight academic terms
of a CS1 course, totaling more than 40,000 submissions. The results obtained demon-
strate that MC³ occurs continuously throughout an academic semester, causing students
to not correct these behaviors by themselves. Eight of these severe MC³ encompasses top-
ics related to decision and iteration structures, crucial concepts in CS1. The remaining
evidence a careless approach to coding, as students tend to ignore aspects such as orga-
nization and readability. The didactic materials were evaluated in a case study with 23
students in a CS1 class. The evidence collected suggests that instruction, inside or outside
the classroom, has the power to influence both the occurrence and mitigation of MC³.
However, using the materials appears not to be enough to effectively mitigate the occur-
rence of MC³. The educational environment must reinforce, in more ways, the reasons
why students should avoid these coding behaviors. This thesis proposes that both CS1
teachers and students should also focus on addressing MC³ in addition to code correct-
ness, as the results suggest that students often obtain approval in these courses, possibly
even with a maximum grade, but still carry an incomplete or wrong understanding of the
concepts learned.

List of Figures

1.1 Summary of the methodology used and the obtained results of this thesis. . 24

2.1 Distribution of the publication year of the retrieved documents that con-
tained syllabi information in the CS1 syllabi analysis article. 38

2.2 Frequency distribution of the presence of the initial 72 identified CS1 topics
in the CS1 syllabi analysis article. 39

2.3 Total class hours distribution identified in the CS1 syllabi analysis article. . 42

3.1 Description of the methods used in the MC³ identification article. 60

4.1 Proportion of submissions per each analyzed term identified in the large-
scale study article. 98

4.2 Grouped frequency distribution of MC³ B6, C2, C4, and H1 identified in
the large-scale article. 100

4.3 Grouped frequency distribution of MC³ A4, B9, C1, C8, and E2 identified
in the large-scale article. 101

4.4 Grouped frequency distribution of MC³ B8, D4, G4, and G5 identified in
the large-scale article. 102

4.5 Proportion of MC³ occurrences per days left until assignments’ deadlines
identified in the large-scale article. 105

B.1 Flashcard for MC³ A4: Redefinition of built-in 182
B.2 Flashcard for MC³ B9: elif/else retesting already checked conditions . . 183
B.3 Flashcard for MC³ C1: while condition tested again inside its block 183
B.4 Fçashcard for MC³ C8: for loop having its iteration variable overwritten. . 184
B.5 Flashcard for MC³ D4: Function accessing variables from outer scope. . . . 184
B.6 Flashcard for MC³ G5: Arbitrary organization of declarations 185

List of Tables

2.1 Summary of the related work presented in the CS1 syllabi analysis article. 32
2.2 General distribution of the public universities and CS1 syllabi analyzed. . . 37
2.3 Brazilian geographical distribution of the public universities and CS1 syl-

labi that composed the main results of the CS1 syllabi analysis article. . . 37
2.4 Ranking of the most covered CS1 topics from Brazilian public universities. 40
2.5 Most common CS1 courses’ names from Brazilian public universities. . . . 40
2.6 Periods in which Brazilian public universities suggests that students should

take the CS1 course. 41
2.7 Programming paradigms taught in CS1 courses from Brazilian public uni-

versities. 42
2.8 Programming languages taught in CS1 courses from Brazilian public uni-

versities. 43
2.9 Comparison of the programming languages identified from documents rang-

ing from 2006-2022 to those obtained from 2018-2022 in the CS1 syllabi
analysis article. 47

2.10 Final grouping of the most covered topics in Brazilian public universities. . 50

3.1 Summary of the related work presented in the MC³ identification article. . 59
3.2 Description of how many student solutions to the assignments were sub-

mitted, correct, and analyzed in the MC³ identification article. 67
3.3 Severity ranking of the 45 identified MC³. 68
3.4 Frequency distribution of the most severe MC³ organized by assignment

topics in the MC³ identification article. 74

4.1 Summary of the related work presented in the large-scale study article. . . 91
4.2 List of most severe MC³ used in the large-scale study article. 92
4.3 Distribution of classes, students, assignments, and submissions per aca-

demic terms analyzed in the large-scale study article. 98
4.4 Results obtained from Kruskal-Wallis test to compare MC³ occurrences

between the first and second halves of MC102 academic terms. 104
4.5 Description of students’ interaction with each developed educational material.114
4.6 Contingency table for Group A. 114
4.7 Contingency table for Group B. 114

5.1 List of MC³ and their related teaching interventions developed in this thesis.119
5.2 MC³ categories related to the most covered topics found in CS1 syllabi

analysis. 121

Contents

1 Introduction 16
1.1 Problem Definition . 18
1.2 Objectives . 20

1.2.1 Hypothesis . 20
1.2.2 Main Objective . 21
1.2.3 Specific Objectives . 21

1.3 Contributions . 21
1.4 Ethical Considerations . 23
1.5 Methodology and Text Organization . 23
1.6 The Researcher-Participant-Instructor . 25

2 A Syllabi Analysis of CS1 Courses from Brazilian Public Universities 27
2.1 Introduction . 27
2.2 Background and Related Work . 30
2.3 Methods . 32

2.3.1 Data Collection . 33
2.3.2 Data Analysis . 34

2.4 Results . 36
2.4.1 General Information . 36
2.4.2 RQ1: CS1 Topics . 37
2.4.3 RQ2: CS1 Courses’ Names . 39
2.4.4 RQ3: When Students Take the CS1 Course 40
2.4.5 RQ4: Class Hours Duration . 41
2.4.6 RQ5: Programming Paradigms and Languages 41

2.5 Discussion . 43
2.5.1 Brazilian Public Universities . 43
2.5.2 CS1 Syllabi . 44
2.5.3 Contextualization of Brazilian CS1 Courses 45
2.5.4 Covered Topics . 47

2.6 Limitations and Threats to Validity . 50
2.7 Conclusions . 51
2.8 Afterword . 51

3 When Test Cases Are Not Enough: Identification, Assessment, and
Rationale of Misconceptions in Correct Code (MC³) 53
3.1 Introduction . 53
3.2 Background and Related Work . 56

3.2.1 Background . 56

3.2.2 Related Work . 58
3.3 Methods . 60

3.3.1 MC³ Identification . 60
3.3.2 RQ1: MC³ Severity Classification 62
3.3.3 RQ2: Addressing MC³ in CS1 . 63
3.3.4 RQ3: Frequency Distribution of MC³ 64
3.3.5 RQ4: Why Students Code with MC³ 65

3.4 Results . 66
3.4.1 MC³ Identification . 66
3.4.2 Questionnaire . 67
3.4.3 Interviews with CS1 Instructors . 71
3.4.4 MC³ Frequency Distribution . 72
3.4.5 Observation in a CS1 Course . 74

3.5 Discussion . 76
3.5.1 MC³ Severity and Reasons for Occurrence (RQ1 and RQ4) 76
3.5.2 Addressing MC³ in CS1 Classes (RQ2 and RQ3) 81

3.6 Limitations and Threats to Validity . 83
3.7 Conclusions . 83
3.8 Afterword . 85

4 From forest to leaves: assessing and addressing misconceptions in pro-
gramming novices’ correct code 86
4.1 Introduction . 86
4.2 Background and related work . 88

4.2.1 Assessing correct but poorly constructed novices’ code 88
4.2.2 Large-scale studies in CS1 . 89
4.2.3 Comparison with our work . 90

4.3 Misconceptions in Correct Code (MC³) . 91
4.3.1 The Algorithms and Computer Programming course 91
4.3.2 Identification and initial assessments of MC³ 91

4.4 Methods . 96
4.4.1 Data collection . 96
4.4.2 RQ1: MC³ frequency distribution 96
4.4.3 RQ2: Influence of the passage of time in MC³ occurrence 97

4.5 Results and discussion . 97
4.5.1 Terms and classes . 97
4.5.2 RQ1: MC³ frequency distribution 99
4.5.3 RQ2: Influence of the passage of time in MC³ occurrence 103

4.6 Implications for CS1 teaching practices . 106
4.7 Limitations and threats to validity . 107
4.8 Conclusions . 107
4.9 Afterword: a Case Study to assess educational materials 108

4.9.1 Related work on addressing misconceptions 108
4.9.2 Methods . 110
4.9.3 Results and discussion . 113
4.9.4 Conclusions . 116

5 Discussion 118
5.1 SO1: Identification, analysis, and validation of MC³ 118
5.2 SO2: Development of valid artifacts that address MC³ 121
5.3 SO3: Assessment of artifacts in a CS1 teaching environment 123

6 Reflections at Journey’s End 126

A Catalog of Misconceptions in Correct Code 146
A.1 Most Severe MC³ . 146

A.1.1 A4: Redefinition of built-in . 147
A.1.2 B6: Boolean comparison attempted with while loop 147
A.1.3 B8: Non utilization of elif/else statement 148
A.1.4 B9: elif/else retesting already checked conditions 149
A.1.5 B12: Consecutive equal if statements with distinct operations in

their blocks . 150
A.1.6 C1: while condition tested again inside its block 150
A.1.7 C2: Redundant or unnecessary loop 151
A.1.8 C4: Arbitrary number of for loop executions instead of while . . . 152
A.1.9 C8: for loop having its iteration variable overwritten 153
A.1.10 D4: Function accessing variables from outer scope 154
A.1.11 E2: Redundant or unnecessary use of lists 154
A.1.12 F2: Specific verification for instances of open test cases 155
A.1.13 G4: Functions/variables with non significant name 156
A.1.14 G5: Arbitrary organization of declarations 157
A.1.15 H1: Statement with no effect . 158

A.2 Other MC³ . 159
A.2.1 A1: Unused variable . 159
A.2.2 A2: Variable assigned to itself . 160
A.2.3 A3: Variable unnecessarily initialized 161
A.2.4 A5: Unused import . 161
A.2.5 A6: Variables with arbitrary values (Magic Numbers) used in op-

erations . 162
A.2.6 A7: Arbitrary manipulations to modify declared variables 162
A.2.7 A8: Arbitrary treatment of the stopping point of reading values . . 163
A.2.8 B1: Redundant or simplifiable Boolean comparison 164
A.2.9 B2: Boolean comparison separated in intermediary variables 164
A.2.10 B3: Arithmetic expression instead of Boolean 165
A.2.11 B4: Repeated commands inside if-elif-else blocks 166
A.2.12 B5: Nested if statements instead of Boolean comparison 167
A.2.13 B7: Boolean validation variable instead of elif/else 167
A.2.14 B10: Unnecessary elif/else . 168
A.2.15 B11: Consecutive distinct if statements with the same operations

in their blocks . 169
A.2.16 C3: Redundant operations inside loop 170
A.2.17 C5: Use of intermediary variables to loop control 170
A.2.18 C6: Multiple distinct loops that operates over the same iterable . . 171
A.2.19 C7: Arbitrary internal treatment of loop boundaries 172
A.2.20 D1: Inconsistent return declaration 173
A.2.21 D2: Too many return declarations inside a function 173

A.2.22 D3: Redundant or unnecessary return declaration 174
A.2.23 E1: Checking all possible combinations unnecessarily 175
A.2.24 F1: Verification for non explicit conditions 176
A.2.25 G1: Long line commentary . 176
A.2.26 G2: Exaggerated use of variables to assign expressions 177
A.2.27 G3: Too many declarations in a single line of code 178
A.2.28 G6: Functions not documented in the Docstring format 179
A.2.29 H2: Redundant typecast . 180
A.2.30 H3: Unnecessary or redundant semicolon 180

B Developed Educational Materials 182
B.1 Flashcards . 182

B.1.1 A4: Redefinition of built-in . 182
B.1.2 B9: elif/else retesting already checked conditions 183
B.1.3 C1: while condition tested again inside its block 183
B.1.4 C8: for loop having its iteration variable overwritten 184
B.1.5 D4: Function accessing variables from outer scope 184
B.1.6 G5: Arbitrary organization of declarations 185

B.2 Short Videos . 185

C Publisher’s Authorization 186

D Research Ethics Committee Approvals 188

16

Chapter 1

Introduction

“All the journeys start some where with a first step.”

—“Full Moon Full Life”. Music written by Lotus Juice.

I begin this thesis by stating that its genesis traces back to my undergraduate years,

where the seeds of my academic pursuit began to sprout. Though the early stages of my

journey were unassuming, the challenges inherent in the pursuit of a bachelor’s degree

in computer science played a slow but pivotal role in igniting a somewhat latent desire

to become a researcher. However, it was not until the culmination of my undergraduate

studies that I recognized a profound interest in the intersection of computing and edu-

cation, particularly in how computational tools could enhance the teaching and learning

experience, especially for students outside the field of Computer Science (CS). This real-

ization coalesced my personal motivations, propelling me towards a deeper exploration of

this research domain.

The integration of CS programs into university curricula has often been justified by

the need to cultivate a new generation of highly skilled professionals, particularly in tech-

nical domains like programming [60]. Traditionally, these programs have drawn students

from Science, Technology, Engineering, and Mathematics (STEM) fields. However, there

exists another compelling argument grounded in the demands of the labor market, which

emphasizes the necessity for professionals that are adept not only in programming but

also in leveraging CS knowledge to automate tasks such as spreadsheet management,

database access, and interactive art creation [21]. This argument portrays an interdis-

ciplinary appeal of CS, leading to an extension beyond STEM disciplines, permeating

into diverse areas such as Law [123], Cognitive Psychology [25], and Biology [40]. Conse-

quently, CS educators often find themselves catering to student cohorts from non-STEM

backgrounds1. This situation, in my opinion, elicits a distinct set of interesting challenges

that needs to be addressed both inside and outside the classroom.

This thesis centers on a specific aspect of Computer Science education: introductory

programming. Within the literature, undergraduate courses covering this subject are

1I acknowledge literature often refers to these groups of students as majors and non-majors in CS.
However, I am not aware of any related term used in Brazilian’s higher education system. Therefore, I
chose not to use the literature terms as they might induce similarity between different types of higher
education systems.

17

commonly referred to as Computer Science 1 (CS1) courses [8, 62]. Despite the absence of

consensus regarding the precise content of CS1 courses [13, 14, 62, 115], they are designed

to cultivate students’ systematic and logical reasoning skills. Moreover, these courses

often serve as the initial exposure to programming languages, particularly for students

enrolled in non-STEM programs. Consequently, CS1 courses play a foundational role in

undergraduate curricula, shaping students’ preparedness for subsequent courses and their

future professional endeavors [33, 91, 125]. I personally believe this applies to all students

who take the CS1 course, independently of their undergraduate program. Once again, the

challenge remains to CS educators to foster this vision upon their STEM and non-STEM

students.

The significance of CS1 courses is accompanied by a multitude of challenges inherent

in their teaching and learning processes. These challenges manifest in high rates of failure

and dropout, as documented in both global [76, 90, 98, 140] and Brazilian national con-

texts [24, 32, 53]. Contributing factors to these rates include the large class sizes, which

hinder individualized attention between students and instructors, and the misalignment

of student expectations with the course content (e.g., the misconception that CS can

be entirely detached from mathematics) [20]. Additionally, the diverse educational back-

grounds of students prior to enrolling in the undergraduate program also elicits these rates

[140]. This factor can be related to students’ performance in STEM courses in primary

and secondary education [32] as well as varying levels of computer literacy, since many

students may only have developed skills such as text editing or web browsing.

Reasons for student dropout in CS1 courses often stem from a combination of time

constraints and a lack of motivation to continue the course [76]. This lack of motivation

derives from students’ view of CS1 as a challenging subject, thus leading to difficulties in

efficiently allocating study time to grasp course concepts. Additionally, Galvão et al. [53]

stated that CS1 courses are frequently viewed as peripheral activities within non-STEM

undergraduate programs, fostering the misconception that programming skills are merely

obligatory components of the curriculum rather than essential tools for future professional

endeavors. Moreover, even students that do not evade from CS1 may experience feelings

of inadequacy compared to their peers, indicating a pervasive sense of falling behind [98].

The utilization of automatic grading systems (autograders) represents another aspect

addressed in this thesis. In the context of CS1 courses, autograders have been employed

since 1960 to accommodate larger class sizes, offering significant time and cost savings

[65]. In contemporary settings, Massive Open Online Courses (MOOCs) frequently utilize

autograders to bridge the gap in formative feedback often lacking in online learning envi-

ronments [88]. However, the use of autograders can also lead to unintended consequences.

These consequences often manifest in behaviors that negatively impact the overall learn-

ing outcomes of CS1 courses. For instance, some students may exhibit a tendency to

excessively rely on the feedback generated by autograders [10, 66]. Another problematic

behavior emerges when students prioritize satisfying the autograder’s criteria for correct-

ness at the expense of neglecting other essential aspects of coding. This thesis specifically

focuses on addressing the latter behavior.

18

1.1 Problem Definition

Assessment is the primary means by which instructors determine whether students are

meeting the learning outcomes of a given subject [79]. These assessments can be designed

as formative, to gauge learning progress, or summative, to evaluate the achievement of

learning objectives. In computer education research, much attention has been devoted

to the assessment of programming exercises. However, as Lancaster et al. [79] note, de-

spite the recognition of assessment’s vital role in achieving learning outcomes, there is

no consensus on how it should be structured. This lack of agreement stems from the

complex and multifaceted nature of programming, which encompasses both the cognitive

load placed on students and the varying levels of intuition instructors have about pro-

gramming. Additionally, the ongoing debate over how programming courses should be

taught contributes to the lack of consensus [62, 107].

Given the importance of assessment in education, the question arises of how it can be

effectively implemented in the classroom. One solution has been the design of conduct-

ing assessment in an automated format. In CS1, this approach restricts assessment to

objective tasks, such as multiple-choice questionnaires, program correctness based on a

predetermined set of expected output, and adherence to specific coding styles [85, 86, 103].

While the use of autograders saves time and allows for larger class sizes [65], a significant

drawback is the limited feedback provided, especially when compared to those from a

human instructor [45, 79].

Prather et al. [103] categorize autograders into three main classifications based on

their functionalities: assessment of code output, promotion of test-based development,

and support for students enrolled in programming courses. These tools extend beyond

classroom environments; for instance, Competitive Programming [78] platforms attract

both novice and experienced programmers to hone their problem-solving skills. In such

contexts, autograders evaluate code based on factors beyond correctness, including run-

ning time. Platforms like Beecrowd2 and Codeforces3 employ grading systems that rank

competitors, fostering a competitive environment reminiscent of gaming. Participants

progress to more challenging problem sets upon completion of earlier ones, enhancing

engagement and skill development.

As previously mentioned, autograders that solely assess code output play a crucial role

in assisting instructors and teaching assistants by reducing the workload associated with

assessment [46, 53, 65]. However, like any tool, autograders are prone to failure. Since

students typically need to submit their solutions via the autograder system, frustration

can quickly escalate if the system malfunctions, particularly when this happens close

to an assignment deadline [68]. I can personally attest to this since I received my fair

share of e-mails from my students in a late Sunday’s night alleging the submission system

was offline and there was nothing they could do. Another issue arises from an excessive

reliance on autograder feedback [10]. In such cases, students tend to rely solely on error

messages from the autograder when elaborating their solutions, foregoing a more effort-

2https://judge.beecrowd.com/
3https://codeforces.com/

19

based approach to coding. This dependency is detrimental as it discourages students from

actively engaging in the problem-solving process.

Autograders have played a significant role in research aimed at identifying and ad-

dressing code that fails to compile or achieve the desired outcome [7, 16, 83, 94]. Such

research is important, considering that this type of code often represents students’ initial

programming attempts. However, in the context of CS1 classes, even code that produces

the expected output may exhibit characteristics that experienced programmers would

typically avoid [39, 75, 126]. This suggests that students who receive maximum grades

from autograders may still possess incorrect or incomplete understandings of the concepts

taught. In educational settings where neither instructors nor autograders assess code

characteristics beyond correctness, students can successfully complete CS1 courses while

harboring faulty comprehensions.

Examples of assessments that go beyond code correctness include evaluations of code

quality [23, 86]. In these cases, students’ code are assessed based on adherence to pre-

determined coding styles, such as indentation, variable naming, and function length [86].

Feedback on this type of assessment is valuable to students, as readability and maintain-

ability are essential skills expected of professional programmers [23, 70, 73].

However, while such assessments focus on surface-level code quality, CS1 students may

still write code with characteristics that suggest a faulty or incomplete understanding of

key concepts, such as decision and iteration structures. These issues may not be detected

by standard coding style checks. An instance of this type of incomplete comprehension

regarding a CS1 topic is exemplified in Code 1.1. In a typical assignment task involving

the classification of a triangle based on the lengths of its sides, a student initially checks if

all three sides (sA, sB, and sC) are equal (line 5). Subsequently, the student uses an elif

statement (line 8) to determine if the triangle is isosceles. However, in the same elif

statement, the student also redundantly verifies if the previous condition (line 5) is false.

Since the elif statement inherently performs this check, the second declared condition of

the elif in line 8 is unnecessary. This redundancy suggests a potential misunderstanding

of how the elif statement operates. Code 1.2 presents an amended version of Code 1.1,

omitting the redundant check within the elif statement in line 8.

1 sA = float(input("Side␣A:"))

2 sB = float(input("Side␣B:"))

3 sC = float(input("Side␣C:"))

4

5 if sA == sB == sC:

6 print("Equilateral␣triangle.")

7

8 elif (sA == sB or sA == sC or sB == sC) and not (sA == sB == sC):

9 print("Isosceles␣triangle.")

10

11 else:

12 print("Scalene␣triangle.")

Code 1.1: Example of an elif retesting an already checked condition.

20

1 sA = float(input("Side␣A:"))

2 sB = float(input("Side␣B:"))

3 sC = float(input("Side␣C:"))

4

5 if sA == sB == sC:

6 print("Equilateral␣triangle.")

7

8 elif sA == sB or sA == sC or sB == sC:

9 print("Isosceles␣triangle.")

10

11 else:

12 print("Scalene␣triangle.")

Code 1.2: Code 1.1 without the unnecessary check in the elif.

Both Code 1.1 and 1.2 produce the expected outcome in an assessment solely based on

output, earning students maximum grades. However, it is conceivable that a student may

harbor incomplete or incorrect understandings of the elif statement in Code 1.1. This

thesis directs its investigation towards coding behaviors that may indicate flawed compre-

hension, despite code correctness. Hence, these behaviors are termed Misconceptions in

Correct Code (MC³)4. In this context, I have chosen to classify them as misconceptions

[106] since, within the CS1 domain, literature often defines misconceptions as syntac-

tic, semantic, or logical errors [6, 28, 30, 54]. However, these studies do not limit their

investigation to correct code.

The study on MC³ presented in this thesis contributes to CS1 programming assessment

research by extending the common focus on automated feedback generation, identified as

the most widespread method [85]. The aim of this research was to uncover the underlying

causes of MC³ and develop educational materials designed to support instructors while

providing students with diverse forms of feedback.

1.2 Objectives

The research on MC³ outlined in this thesis aims to enhance the teaching and learning

process for both students and instructors of CS1 courses. This study will specifically

target CS1 courses utilizing the imperative programming paradigm, due to constraints of

scope. The target audience comprises students, whom the research aims to empower by

providing tools to identify and understand why MC³ should be avoided; and instructors,

who will benefit from the identification and categorization of MC³, along with insights

into the reasons behind student development of these behaviors. In light of these factors,

the hypothesis and both main and specific objectives of this thesis were established.

1.2.1 Hypothesis

This research hypothesizes that CS1 students can write code that produces correct out-

puts while still harboring misconceptions about the underlying programming concepts.

4In Brazilian Portuguese these were named as Problemas de Compreensão em Códigos Corretos, thus
leading to PC³ as its acronym.

21

Furthermore, these misconceptions can be systematically identified, cataloged, and effec-

tively addressed in CS1 classes.

1.2.2 Main Objective

The main objective of this thesis is to identify, assess, and catalog MC³ within CS1 en-

vironments. Through this process, the groundwork lays the development of educational

artifacts aimed at addressing these misconceptions. These artifacts serve within and be-

yond CS1 classrooms, aiding both instructors and students in raising awareness about

MC³. By gaining an understanding of MC³, students are likely to deepen their compre-

hension of CS1 concepts, thereby mitigating the occurrence of these behaviors in their

code.

1.2.3 Specific Objectives

SO1: To systematically identify, analyze, and validate MC³ within CS1 environments.

The validation process encompasses two contexts: internal and external. The internal

context pertains to the specific environment where the research on MC³ is conducted,

ensuring the relevance and applicability of the findings within this setting. Moreover, the

external context examines how the identified MC³ may manifest in CS1 classes across

similar teaching contexts, thereby establishing the generalizability of the thesis’ findings.

SO2: To develop valid artifacts designed to address MC³ within CS1 classes. These

artifacts serve to aid both instructors and students in identifying and comprehending the

underlying causes of MC³, as well as providing guidance on how to avoid them when

coding.

SO3: To implement and assess the artifacts developed in SO2 within a CS1 class. The

assessment involves gathering reflections on the adoption of these artifacts, including

students’ perceptions and engagement. Additionally, the assessment aims to determine

whether the artifacts effectively mitigate the occurrence of MC³ among students.

1.3 Contributions

This thesis makes the following contributions:

• It conducts a comprehensive review of CS1 syllabi in Brazilian Public Universities,

elucidating the most common teaching contexts. (Chapter 2)

• It identifies and validates 45 MC³ through manual assessment of students’ code.

Subsequently, 15 MC³ are further analyzed since these are classified most needing

addressment in CS1 classes. (Chapter 3)

• It presents an automated detection tool for 14 of the 15 MC³ classified as most in

need of addressment in CS1 classes. The tool is developed in Python using static

code analysis. (Chapter 3)

22

• It presents educational materials comprised of lecture slides, short videos, and flash-

cards for nine of the 14 automatically detectable MC³ since these nine were identified

as most common (Chapter 4).

This thesis claims that even though MC³ exhibit varying frequency distributions, they

do not entirely vanish by the conclusion of a CS1 course. Consequently, students may

complete the course while retaining misconceptions about learned concepts. Furthermore,

the study finds that MC³ occurrence is not dependent on previous occurrences, nor are

influenced by time constraints regarding the submission deadlines for assignments. How-

ever, instructional methods, both within and outside CS1 classes, appear capable of both

inducing and mitigating the incorporation of MC³. The assessment of educational arti-

facts underscores the importance of elaborating MC³ educational materials that engage

students by addressing language barriers effectively and presenting content in a format

that captures students’ attention. As correctness remains the primary goal for students

in assignment solutions, materials that fail to motivate them to push themselves beyond

correctness may risk being perceived as unimportant.

The elaboration of this thesis resulted in the following publications in chronological

order:

1. Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. Análise estática de código

em conjunto com autograders. In Anais Estendidos do I Simpósio Brasileiro de

Educação em Computação, pages 25–26, Porto Alegre, RS, Brasil, 2021. SBC. DOI:

https://doi.org/10.5753/educomp_estendido.2021.14858 [114].

2. Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. Análise dos Tópicos Mais

Abordados em Disciplinas de Introdução à Programação em Universidades Federais

Brasileiras. In Anais do II Simpósio Brasileiro de Educação em Computação, pages

29–39, Porto Alegre, RS, Brasil, 2022. SBC. DOI: https://doi.org/10.5753/

educomp.2022.19196 [115].

3. Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. Misconceptions in Correct

Code: rating the severity of undesirable programming behaviors in Python CS1

courses. Technical Report IC-23-01, Institute of Computing, University of Camp-

inas, 2023. DOI: http://dx.doi.org/10.13140/RG.2.2.28739.89127 [116].

4. Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. Passar nos casos de teste

é suficiente? Identificação e análise de Problemas de Compreensão em Códigos

Corretos. In Anais do III Simpósio Brasileiro de Educação em Computação, pages

119–129, Porto Alegre, RS, Brasil, 2023. SBC. DOI: https://doi.org/10.5753/

educomp.2023.228346 [117].

5. Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. A syllabi analysis of CS1

courses from brazilian public universities. Brazilian Journal of Computers in Edu-

cation, 31 (1):407–436, Aug. 2023. DOI: https://doi.org/10.5753/rbie.2023.

2870 [118].

23

6. Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. When Test Cases Are Not

Enough: Identification, Assessment, and Rationale of Misconceptions in Correct

Code (MC³). Brazilian Journal of Computers in Education, 31:1165–1199, Dec.

2023. DOI: https://doi.org/10.5753/rbie.2023.3552 [119].

Publication 2 was awarded as Best Track Paper in the symposium, resulting in Publi-

cation 5 as its extended version. Similarly, Publication 4 received an Honorable Mention

in the symposium, resulting in Publication 6 as its extended version.

1.4 Ethical Considerations

Since part of the conducted research of this thesis involved human participants, all projects

received prior evaluation and approval from the Ethics Research Committee affiliated with

Universidade Estadual de Campinas. A total of three projects were elaborated. Approval

of all three projects is present in Appendix D.

• Title: Análise de Problemas de Programação em Disciplinas de Introdução à Pro-

gramação em Python.

Title (English): An Analysis of Programming Issues in Python Introductory Pro-

gramming Courses.

CAAE: 51444121.5.0000.5404.

• Title: Aplicação de uma Observação Semiestruturada em Turma de Introdução à

Programação.

Title (English): Application of a Semistructured Observation in an Introductory

Programming Course.

CAAE: 60258622.8.0000.5404.

• Title: Aplicação e Avaliação de Artefatos Educacionais em Turma de Introdução

à Programação.

Title (English): Application and Assessment of Educational Artifacts in an In-

troductory Programming Course.

CAAE: 70220523.0.0000.5404.

1.5 Methodology and Text Organization

This thesis adopts the format of an article collection, a structure endorsed by Universidade

Estadual de Campinas5. In this format, the thesis is organized into chapters consisting

of published or to-be-published articles. For the purpose of this thesis, I have opted to

present the extended versions (publications 5 and 6) of the published articles, as they

offer a more comprehensive exposition of the research findings.

5https://www.prpg.unicamp.br/wp-content/uploads/sites/10/2021/06/ccpg_in_2021_002_

20210616.pdf

24

Figure 1.1: Summary of the methodology used and the obtained results of this thesis.

25

The research questions derived from the objectives of this thesis are presented in

Chapters 2, 3, and 4. Additionally, while the text of these chapters were elaborated

as they were published, I have added afterword sections to them with the purpose of

clarity and connection to this thesis. Publisher authorization for Chapters 2 and 3 can be

found in Appendix C. Figure 1.1 presents a summary of the methodology used alongside

the results obtained in each chapter. The connection between the results of each lane

are demonstrated as well as the corresponding Specific Objective (SO1, SO2, and SO3)

assessed in each chapter.

Chapter 2 presents an analysis of CS1 syllabi in Brazil, aiming to elucidate the land-

scape of the teaching of these courses within the country and its comparison to interna-

tional contexts. This analysis was driven to understand the potential replicability of our

findings across different higher education institutions. This chapter encompasses SO1.

The article that composes this chapter has been published in the Brazilian Journal of

Computers in Education (RBIE)6.

Chapter 3 serves as the centerpiece of this thesis. It presents the identification and

initial assessments of MC³, offering comprehensive descriptions of the methodologies em-

ployed throughout the study. The findings of this chapter shed light on the prevalent

MC³ that warrant attention in CS1 classrooms, while also elicit potential educational

interventions to address these misconceptions. This chapter encompasses SO1 and SO2.

The article that composes this chapter has also been published in the Brazilian Journal

of Computers in Education (RBIE).

Chapter 4 further explores the identified MC³ through a mixed-methods approach,

comprising a large-scale study and a case study. The large-scale study aims to under-

stand how students incorporate MC³ into their code over the course of an academic

term, as well as to explore the potential influence of classroom teaching contexts on stu-

dents’ incorporation of MC³. Furthermore, the case study seeks to investigate the efficacy

of explanation-driven MC³ educational materials in aiding students’ understanding and

avoidance of these misconceptions. This chapters encompasses SO1, SO2, and SO3. This

chapter was written as a journal article, but it has not been published yet.

Chapter 5 presents a discussion to connect the results obtained in previous chapters.

The discussion is guided by an assessment of each one of the three Specific Objectives

proposed in this thesis. Lastly, Chapter 6 provides the conclusions obtained in this thesis

as well as elicits possible future work.

1.6 The Researcher-Participant-Instructor

Throughout the years of conducting this thesis, I have learned the significance of providing

and analyzing context in any endeavor. With this in mind, I have decided to provide a

brief overview of my background, believing that it will aid future readers in understanding

the perspective from which this work arises.

As mentioned earlier in this chapter, my interest in educational research solidified

during the final year of my bachelor’s degree. At that time, I assessed the potential

6https://sol.sbc.org.br/journals/index.php/rbie

26

of educational software to enhance primary education, focusing particularly on Biology

classes. This exploration extended into my master’s, where I utilized visual programming

blocks and agent-based modeling to facilitate teaching and learning in Biology across both

primary and secondary educational levels.

The impetus for pursuing this thesis emerged during my tenure as a teaching assistant

in a CS1 class during my master’s. This hands-on experience allowed me to engage with

students from diverse educational backgrounds, particularly those not enrolled in STEM

programs. It is also an interesting fact that I did not have experience with autograders

back then, although I knew about their usage. Following this experience, I found my-

self increasingly drawn to educational settings of this nature, prompting me to further

investigate the field.

Finally, the title of this section encapsulates the perspective I envision about myself

after having conducted the development of this thesis. It took time before I could fully

engage in research with CS1 students, during which I also acted as their teaching assistant.

In the final year of this thesis, I assumed the role of instructor for a CS1 class while I also

was conducting my research. Reflecting on these experiences, it has been impossible to

separate my participation in both research and teaching throughout this journey.

27

Chapter 2

A Syllabi Analysis of CS1 Courses from

Brazilian Public Universities1

Abstract: The design and administration of methodological interventions is a possible

way to address dropout and failure rates in undergraduate introductory programming

courses (CS1). However, to implement such strategies, it is required to identify how CS1

courses are organized and offered to students. In this work, we analyzed 225 syllabi from

CS1 courses distributed in 95 Brazilian public universities. We collected these syllabi

from Brazilian undergraduate programs with focus on Computer Science aspects. We

report context information regarding the most covered topics, most common CS1 course

names, when undergraduates take the course, total class hours, and the programming

paradigms and languages taught. The results indicate that the Brazilian scenario has its

own characteristics that differs from those presented in related work conducted in other

countries or world regions. In Brazil, we identified 90% of the analyzed CS1 courses teaches

the procedural paradigm, with C as the most common programming language (53% of

the total). These results differ from those conducted in other countries where Java and

object-oriented are the most common languages and paradigm taught in CS1 courses.

We believe that our results can be used to: (1) provide an update to those interested in

the Brazilian scenario of CS1 courses; (2) support future interventions in teaching and

learning of CS1; and (3) support the Brazilian community in the development of future

CS1 syllabi.

2.1 Introduction

The utilization of computers, as a tool, continues to expand in most diverse areas. In

2005, it was estimated there would be over 90 million of end users in American workplaces,

varying from spreadsheet users to actual programmers [110]. As consequence of this, more

undergraduate programs are offering Computer Science (CS) classes to their students.

These classes are often referred as CS+X in the literature [124]. Although CS+X classes

are often in the Science, Technology, Engineering and Mathematics (STEM) field, such

1This paper was published in the Brazilian Journal of Computers in Education (RBIE). DOI: https:
//doi.org/10.5753/rbie.2023.2870

28

as Cognitive Psychology [25] and Biology [40], they can also be found in other areas, such

as Law [123].

A typical course within the teachings of CS regards the concepts of computer pro-

gramming. In 1978, the Association for Computing Machinery (ACM) defined the terms

CS1 and CS2 to describe the first two programming courses a student takes in an CS un-

dergraduate program [8]. These terms have been used over 40 years, typically assigning

CS1 to basic concepts of programming, and CS2 to data structures. However, there is no

consensus of what exactly should be taught in these courses [62]. Literature reviews also

beckon this statement by mentioning that publications regarding CS1 course contents are

still stable over the last few decades [14, 85]. In Brazil, CS1 courses have many different

names, even within a same higher education institution [91]. Examples of the names

include “Introduction to Programming”, “Introduction to Algorithms”, “Algorithms and

Data Structures”, “Algorithms and Computer Programming”, among others.

Usually, undergraduate students start developing their logical and systematical think-

ing in CS1 courses. These courses also present a first programming language to the

students. In other words, CS1 courses are an important background not only for the

remainder of the CS undergraduate program, but also for the professional formation of

the undergraduates [33, 125]. However, along with this importance, CS1 teaching faces

recurrent challenges regarding high rates of failure and dropout [24, 76, 93, 98, 140]. To

help solving these problems, several research with interventions in teaching and learning

of CS1 have been made [7, 28, 29, 82, 135].

Given the importance and the challenges that CS1 courses have, how do we construct

solutions that will work in the multiple scenarios in which teaching and learning of these

courses happen? In terms of programming being hard to learn, Luxton-Reilly [84] said

that we make introductory courses difficult by establishing unrealistic expectations upon

novices. The same author also stated that revisiting what is expected from students

at the end of introductory programming courses might be the key to improve students’

learning, address negative impacts of disciplinary measures, and create a more equitable

environment in these classes. A possible first step to revisit what is expected from students

would be to understand which concepts are being taught in CS1 courses. This step

proves to be another challenge because some educators might say that all introductory

programming courses teach the same thing: the basics of computer science and computer

programming [85]. However, if we are to follow this rationale, there would be no need for

research about CS1 curricula - and that does not happen in practice.

This work was motivated by the potential that an assessment of the characteristics CS1

courses could have. Among these characteristics were the most covered topics. With this

list of the frequency of the topics, researchers would be able to understand which topics

are most or least covered so they could construct teaching and learning interventions.

However, to ensure that this assessment would be holistic, the search ought to be done

not only in terms of quantity, but also covering a broad geographic context. We decided

to focus on Brazil because: (i) as far as we know, similar research in the literature do not

state that Brazil was covered in their results [9, 12, 13, 63, 111]; and (ii) we did not find any

other work that conducted a holistic search in Brazil to assess the characteristics of CS1

courses with focus on the most covered topics. Finally, we decided to limit our research

29

to Brazilian public universities, which are composed by federal, state, and municipal

institutions. Public universities were selected because they are present in all geographical

regions of the country, and they are the ones that most appear in international rankings,

such as the World University Rankings of the Times Higher Education2.

An interesting approach to help with the research of the most covered topics would be

to consult entities that are directly involved with the design of undergraduate programs.

In Brazil, the organization and research of CS teaching have always been conducted by the

Ministry of Education together with the Brazilian Computer Society (SBC). Among the

contributions by both groups are discussions that elaborate and assess CS undergraduate

programs. The Formation Guidelines for Computer Science Undergraduate Programs

[149] are a result of several research that culminated in orientation to develop pedagogical

projects. The document is organized by the types of CS undergraduate program in Brazil.

In a global scenario, the Computing Curricula 2020 [35] provides recommendations in the

same way. ACM and the Institute of Electrical and Electronic Engineers (IEEE-CS)

elaborated this document, and it is also endorsed by SBC.

The Formation Guidelines and the Computing Curricula 2020 are well suited doc-

uments for the creation of pedagogical projects. However, they focus on competencies

that each student must develop by the end of the undergraduate program, not necessar-

ily being achieved in each of the courses. Considering this, they would not be the ideal

source to obtain information specifically for CS1 courses. In this work, we chose to search

and analyze documents that had already been created by the public universities: their

pedagogical project and the syllabi for CS1 courses. By analyzing these documents, we

would be able not only to identify the covered topics, but also other characteristics of the

CS1 courses.

We created five research questions to contextualize the Brazilian CS1 courses from

public universities:

RQ1: What are the most common topics covered in CS1 courses from Brazilian public

universities?

RQ2: What are the most common CS1 courses’ names from Brazilian public universities?

RQ3: When do Brazilian public universities’ curricula suggest students take the CS1

course?

RQ4: What is the average of the total class hours of the CS1 courses from Brazilian

public universities?

RQ5: What are the programming paradigms and programming languages taught in CS1

courses from Brazilian public universities?

We manually searched the websites for 157 Brazilian public universities and curated

225 CS1 syllabi present in a total of 95 institutions. We used the pedagogical projects

together with the CS1 syllabi to answer each of the aforementioned research questions.

Our results indicate that the Brazilian scenario has characteristics that differs from those

in other countries, such as the programming paradigm and languages that are taught.

We believe that our results can contribute to researchers interested in an update about

the context of CS1 teaching in Brazil, especially in worldwide research where the spoken

language can be a barrier (almost all Brazilian syllabi we found were only in Brazilian

2https://www.timeshighereducation.com/world-university-rankings

30

Portuguese, for example). The results can also be used to help in the construction of

teaching and learning interventions of CS1 courses. Lastly, we believe that the list of

most covered topics can also be used in the creation of new syllabi by Brazilian higher

education institutes.

The remainder of this paper is organized as follows. In Section 2.2 we present the

background and related work. In Section 2.3 we detail the methodology used, followed

by the obtained results in Section 2.4. We discuss the obtained results in Section 2.5. In

Section 2.6 we present the limitations and threats to validity of this research. Lastly, the

conclusions are presented in Section 2.7.

2.2 Background and Related Work

The syllabus is a valuable tool in higher education because it is often the first formal way in

which students receive information about a course. Syllabi analysis is important because

the syllabus is an educational tool with functionalities that are commonly unknown to

administration, faculty, and students [44]. While designing a syllabus or course outline,

the instructor needs to take careful consideration of topics covered, assignments’ due,

and learning objectives [89]. McKeachie also says that, for undergraduates, the syllabus

establishes expectations and directions for a particular course, thus providing a way of

security. Even though the definitions of what a quality syllabus has not been clearly

defined [44], some suggested models go way beyond the aforementioned characteristics. A

course calendar, grading information with the rubrics that are used, additional resources,

and a guide to use the syllabus are examples of suggested items to be included in a syllabus

[57].

Becker and Fitzpatrick [13] analyzed syllabi from CS1 courses of 916 institutions

present in the QS World University Rankings from 2016-20173. The authors were moti-

vated to answer what exactly CS1 teachers expect from their students at the end of the

introductory course. While they were searching for learning outcomes, a total of 15 topics

were among the most covered: testing and debugging, writing programs, and selection

statements were the top three. Becker and Fitzpatrick also reported information about

the most used programming languages, in which Java, Python, and C++ were the most

used. Finally, they also created an online tool for the community in which it is possible

to sort and analyze their gathered date about the syllabi. However, as mentioned in their

work, they could only process English-created material. We believe this could possibly be

the reason Brazil was not present in their analysis.

Porfirio, Pereira, and Maschio [101] also did an analysis of syllabi from CS1 courses.

They consulted 10 Brazilian federal universities (two for each geographic region) listed

in the RUF 2018 Ranking4 for Computing Programs. The authors were interested in

discovering basic concepts that every student should master independently of the adopted

approach in CS1 courses. In their work, they reported 10 most covered topics, with

conditional structures, repetition structures, and data types being the top three. The

3https://www.topuniversities.com/university-rankings/world-university-rankings/2016
4https://ruf.folha.uol.com.br/2018/ranking-de-cursos/computacao/

31

authors’ main goal was to create an automated assessment of computer programming

skills by analyzing source code, called the A-Learn EvId method.

Syllabi analysis is also present in other CS related areas. Fréchet, Savoine and Dufresne

[52] analyzed syllabi of text-analysis courses from 45 graduate political science programs.

The authors presented a systematic method for analyzing syllabi and retrieving informa-

tion to help early-career professors and political science departments to build syllabi for

text-analysis courses. The authors reported a method for evidencing most cited academic

papers and books used in the syllabi, and about the choice of software between R or

Python. Using the same systematic method, Abad, Ortiz-Holguin, and Boza [1] analyzed

syllabi of 51 Distributed Systems courses to answer if what is being taught in these courses

matches important curricula initiatives. The authors reported the most covered topics,

books, and papers listed in the analyzed syllabi of Distributed Systems courses.

The aforementioned studies used syllabi analysis approaches to find common topics in

CS1 and CS related areas, sometimes extending it to other information also presented in

these documents. However, analyzing syllabi has been deemed a challenging task to do

in a large scale [13, 130]. As a result of this, other ways of listing topics in CS1 were used

in the literature, such as surveying academics [63, 111] and textbook analysis [18, 130].

In general, these studies did not have the most covered topics as a main objective, but

instead focused on aspects such as importance or difficulty perceived of said topics. Hertz

and Ford [63] culled a list with 17 topics from the literature and surveyed CS1 professors

to investigate correlations between the importance of these topics and students’ developed

skills. Schulte and Bennedsen [111] did a similar approach in surveying professors to find

what they teach, what they believe that should be taught, and the CS1 topics students

tend to have difficulty with. Their survey used a list of 28 topics to compose the analysis.

Berges and Hubwieser [18] developed a semiautomated mechanism for textual analy-

sis. The authors used this mechanism with five CS1 books, which addressed the object-

oriented paradigm, to elaborate Concept Specification Maps. Their provided list of topics

varied for each book, with their most populated listings ranging between 17 and 18 topics.

Tew and Guzdial [130] used a bottom-up approach with 12 textbooks to identify concepts

taught by multiple CS1 courses. Their initial analysis culminated in a wide list with more

than 400 topics. However, after further refinements that used other established curric-

ula, and sorting concepts by programming paradigm, they ended with a list of 29 topics.

In the end, the authors used their result to create a validated assessment of CS1 topics

known as Foundational CS1 (FCS1) [131].

We present a summary of the presented related work in Table 2.1. We briefly compare

the methodology, total of respondents, syllabi or textbooks analyzed, and if each work

covered Brazil in their analysis. We omitted research from Abad et al. [1] and Fréchet et

al. [52] from the table because they did not evaluate CS1 courses.

Our work differs from the studies done by Becker and Fitzpatrick [13] and Porfirio et

al. [101] because we analyzed 225 CS1 syllabi from Brazilian public universities, covering

all geographical regions. We also report more information such as most common names of

CS1 courses, research question also presented in Abad et al. [1] albeit their focus was on

Distributed Systems courses. Our ranking of the most covered topics was done without

filters of importance nor perceived difficulty of these topics, differing from other studies

32

Table 2.1: Summary of the related work presented in this section. Table is sorted alpha-
betically by the methodology.

Research Methodology N Covered Brazil?

Hertz and Ford [63] Online survey with instructors 99 Not mentioned*
Schulte and Bennedsen [111] Online survey with instructors 349 Not mentioned*
Becker and Fitzpatrick [13] Syllabi analysis 234 No
Porfirio et al. [101] Syllabi analysis 10 Yes
Berges and Hubwieser [18] Textbook analysis 5 N/A**
Tew and Guzdial [130] Textbook analysis 12 N/A**

This work Syllabi analysis 225 Yes

*Authors did not mention Brazil among the respondents’ location.
**Verification not applicable since the methodology used textbooks.

in the field that identify difficult topics and develop methods to mitigate these difficulties

[6, 7, 28, 95]. These kind of research shows where they succeeded or failed, thus enriching

the community [136]. However, the field could benefit more from empirical applications

involving the results obtained for the already developed methods instead of creating new

ones [85].

2.3 Methods

In this work, we gathered data directly from publicly available sources provided from

Brazilian universities to answer each proposed research question. As previously stated,

we decided to focus on public universities because they are the most present in rankings,

and they cover all Brazilian geographical regions, thus providing a broad criterion for

analysis.

In Brazil, public universities are higher education institutions financially maintained

by the government. As consequence of this, one of their main characteristics is to serve the

public and collective interest [49]. Public universities are also known for their rigorous

undergraduate admission process based on entrance exams, and the absence of tuition

costs for the students. There are three types of public universities in Brazil: federal,

state, and municipal. To guide our research in an ordered manner, we used three listings

that described the universities from each desired group. According to the lists, there

are 69 federal [144], 47 state [145], and 41 municipal [146]. Since many undergraduate

programs can offer CS1 courses, we decided to limit our scope to Computer Science

related undergraduate programs. As the Formation Guidelines [149] were organized by

CS undergraduate programs, it seemed appropriate to use them in our work. We analyzed

the following programs: Bachelor in Computer Science, Bachelor in Computer Science

and Engineering, Bachelor in Software Engineering, and Bachelor in Information Systems.

Another analyzed program can be described as a degree in Computer Science that prepares

CS teachers to act in Brazilian’s first and secondary educational levels. We did include

undergraduate programs with minor difference in their names from the ones we sought,

as well as programs which were in person or in distance learning format. It is important

33

to state that even though undergraduate programs that offers a Technology degree are

present in the Formation Guidelines, we did not include them in our research.

2.3.1 Data Collection

The entire process of data collection was done manually since data had to be collected

directly from publicly available sources from the institutions. The following steps describe

how this process occurred for all types of public universities (federal, state, and municipal):

1. Selection of a public university from the corresponding base listing [144, 145, 146].

This base listing was composed of two types of institutions: universities and colleges.

However, as our focus was Brazilian public universities, we discarded the latter type

of institution from our analysis.

2. Navigation to the university’s official website.

3. Search for the desired undergraduate programs offered by the university. We decided

to verify all possible campi that had each targeted program so that we could identify

distinct versions that CS1 programs may have. This step repeated itself until all

desired undergraduate programs were analyzed. If the university did not have any

of the targeted programs, it was discarded from our analysis.

4. We used two criteria for determining if a course was considered as CS1: whether

it had focus on teaching computer programming concepts (including or not the

teaching of a programming language); and whether it was the first course with

this former criterion listed in the university’s suggested curriculum order. Our

approach was similar to Guo’s [58] as we did not consider courses that only teach

basic computer literacy. If more than one course had both criteria, we compared

their syllabi and chose the one which had more topics covered. However, if a public

university had two courses that taught different programming paradigms in the same

curricular period, both courses were included. Also, if a CS1 course was divided into

two, one taught in class and the other in the laboratory, we merged both.

5. Once a CS1 course had been identified, two documents were searched to answer the

proposed research questions: the pedagogical project of the undergraduate courses,

and the syllabus of the CS1 courses. We expected both documents to complement

themselves regarding the information we needed, but our focus was the syllabi.

However, these documents were not always sufficient to identify what we wanted.

In some cases, the syllabi were already present in the pedagogical project, in oth-

ers, though, they were not, leading us to search the institution’s website for more

documents. One example of other type of document was the program contents for

a specific semester. If we could not find any other document within their website,

we Google searched “<institution name> + <CS1 course name> + <syllabi>” (in

Brazilian Portuguese) to find instructors’ personal websites or repositories that con-

tained information about the syllabi. If we could not find or did not have access

to any syllabi information using the aforementioned methods (sometimes the of-

ficial websites were offline or they required login information to have access), the

34

CS1 course was discarded from our analysis even if we had found other desired

information about it.

6. Saving of the retrieved data by collecting and pasting directly from the sources.

At the end of the data collection process, we had one main document for each type

of public university (federal, state, and municipal). The documents were organized by

geographical region, institution, undergraduate program and CS1 course name. The data

was collected in two cycles: the first happened during July and September of 2021, in

which we focused on federal universities; and the second happened during April and July

of 2022, in which we covered state and municipal universities.

2.3.2 Data Analysis

Since we used different approaches to answer the proposed research questions, we decided

to describe the analysis methods for each one. We had identified two issues before our

analysis began: the possibility of having multiple equivalent CS1 courses from the same

institution in the assembled documents, and whether we would use or not the public

universities’ names in our results.

As we believe that having multiple equivalent CS1 courses would not add any impact in

the results, we decided to maintain only one version of the equivalent courses, discarding

the rest. This process only happened when the retrieved documents clearly stated that

those courses were equivalent to each other. This also means that there was one syllabus

per CS1 course. In the remainder of this article, we use these terms (CS1 course and

syllabi) as synonyms when representing results. As for the other issue, we chose to present

only the public university names in Appendix 1. The reason for this was because we did

not have any intention of highlighting nor comparing these institutions in respect to how

they structure their CS1 courses.

One final information we used in our general analysis was the specified year in which

the data began to be officially recognized by the public university. We collected this

information from each analyzed document e.g., the year in which the pedagogical project

for the undergraduate program began. We decided to present this information to illustrate

how old the collected data was. The emphasis in officially recognized means that if the

university did have a more recent pedagogical project but it was still in the process of

approval, we used the official one at that time. If we used more than one document to

collect data about a CS1 course, we considered the year of the most recent one.

RQ1: What are the most common topics covered in CS1 courses from Brazilian public

universities?

A CS education researcher analyzed the syllabi to identify the topics. For each found

syllabus, he listed each of the covered topics in a worksheet. The list expanded with

new topics as more syllabi were analyzed. During this analysis, the researcher used his

experience to identify and group together topics with different names but meant the same

concept. At the same time, the covered topics present in distinct syllabi were signaled

and counted when the analysis ended.

35

Once the researcher had finished assembling the list with the topics and their frequen-

cies, we sorted them decreasingly by the frequency. Since the goal was to identify the

most common topics, we decided to report a subset of the initial list because the first

assembled listing had many items. This subset was composed by applying two minimum

thresholds regarding the frequencies. Finally, we decided to compare our listing with those

assembled from related work. This comparison checked whether the topics were present

or not in the other listings.

RQ2: What are the most common CS1 courses’ names from Brazilian public universities?

We created a worksheet containing all the retrieved CS1 courses’ names to answer this

question. Even though courses that were divided into theoretical and practical classes

were merged, we decided to keep only one name in the analysis (generally being the

course regarding the theoretical class). The reason for that was because in most cases

in which this situation occurred, the names were, for example, “Algorithms” and “Labo-

ratory of Algorithms”. If a course had numbered and not numbered names, we chose to

consider both e.g., “Algorithms” and “Algorithms 1”. This decision was made because this

occurrence means that some universities have subsequent courses with the same name.

RQ3: When do Brazilian public universities’ curricula suggest students take the CS1

course?

To answer this question, we analyzed how the public universities divide their curricula,

as some institutions organize them by semester (semiannual), and others, by years (an-

nual). Then we grouped together when their CS1 courses were suggested for the students

to take e.g., first semester or first year. There were some cases in which even though

the institution divided their curricula in years, the CS1 course only happens in one of its

semesters. When this happened, the course was considered as semiannual.

RQ4: What is the average of the total class hours of the CS1 courses from Brazilian

public universities?

Since not all CS1 courses explicitly stated how their class hours are divided (e.g.,

theory and practice), we chose to consider the absolute total. In other words, even if

a specific CS1 course stated how its class hours are divided, the hours were summed.

The same rule applied in cases when one CS1 course was divided into theoretical and

practical classes. Before computing the average, we grouped courses with similar length.

The reason for that was because it would not be reasonable to aggregate the total class

hours for semiannual and annual courses. CS1 courses that happened in one semester of

a scholarly year were considered as semiannual for this analysis. Finally, it is important

to say that this data was not available for all found CS1 courses.

RQ5: What are the programming paradigms and programming languages taught in CS1

courses from Brazilian public universities?

The syllabi from the CS1 courses were used to answer this question. However, the

retrieved syllabi did not always explicitly state the paradigm or the language. When this

happened, the researcher responsible for the analysis decided to infer it from both the

36

syllabus description and the suggested bibliography. While the paradigm could also be in-

ferred by the programming language (e.g., Haskell would imply the functional paradigm),

most object-oriented languages can be used to teach the procedural paradigm or the

object-oriented paradigm (know together as the imperative paradigm) [85]. Based on

this, the researcher classified the paradigm based on his experience regarding the topics

covered in the CS1 course. It was reported, inferred or not, a programming paradigm for

every syllabus analyzed.

As for the programming language, the researcher consulted the suggested books in the

bibliography (both basic and recommended) in the order they were listed. Then, he used

the first one in which it was possible to infer a programming language. It is important to

say that not all retrieved syllabi included a bibliography, and some books did not specify

or used more than one programming language. In these cases, the language was classified

as not possible to infer. We report the percentage of each inferred paradigm and language

in our results in Section 2.4.

2.4 Results

In this section, we describe the results obtained with the execution of the data collection

and analysis detailed in Section 2.3. We begin by presenting the general information

about the public universities and the retrieved documents. Then we report the results for

each research question, focusing on details about the application of the proposed methods.

We present the discussion about the results and the answers for each research question in

Section 2.5.

2.4.1 General Information

Table 2.2 presents the total amount of public universities and CS1 syllabi analyzed in

this research. The associated type of public institution (federal, state, and municipal) is

also described. For the public universities, we report the total that was present in the

base listings [144, 145, 146], the total universities that offered a targeted CS related un-

dergraduate program for this research (detailed in Section 2.3), and the total universities

that we used to compose our main results. For the CS1 syllabi, we report the total syllabi

that we retrieved from the analyzed documents, and the distinct syllabi that we used to

compose our main results. In total, we used 95 public universities and 225 CS1 syllabi in

our main results.

Table 2.3 presents the geographic distribution of public universities and CS1 syllabi.

We decided to report this distribution only for the universities and syllabi that composed

our main results. In other words, Table 2.3 expands the numbers reported on both Used

columns from Table 2.2. Our results managed to provide a broad analysis in terms of

covering all Brazilian geographic regions in this research. This was only possible because

of the federal universities since, after the discarding process mentioned in Section 2.3,

state and municipal institutions were not present in all regions.

The distribution of the years of the documents in which we retrieved the syllabi infor-

mation from is represented in Figure 2.1. As explained in Section 2.3, we only used the

37

Table 2.2: General distribution of the public universities and CS1 syllabi analyzed.

Universities CS1 Syllabi

Type of
institution

Present in
Base Listings

Had Targeted
CS Programs

Used Retrieved Used

Federal 69 63 61 195 150
State 47 35 32 88 72
Municipal 41 15 2 8 3

Total 157 113 95 291 225

Table 2.3: Brazilian geographical distribution of the public universities and CS1 syllabi
that composed the main results of this research

Universities CS1 Syllabi

Region Federal State Municipal Federal State Municipal

Center-west 8 3 0 17 10 0
North 9 0 0 22 0 0
Northeast 17 12 0 48 20 0
South 9 8 1 28 17 1
Southeast 18 9 1 35 25 2

Total 61 32 2 150 72 3

most recent documents that were officially recognized by the university. We assessed this

factor even when we had to use other sources (such as class slides retrieved from instruc-

tors’ websites) by checking if their publication year was within the official pedagogical

project from the undergraduate program of the institution at that time. We present the

distribution for each type of public university (federal, state, and municipal). The aster-

isk in 2022 indicates that the process of data collection and analysis happened between

2021 and 2022, meaning that the retrieved documents in 2022 could not be valid for the

whole year. The numbers do not add up to 225 because we could not identify a year for

8 syllabi. While there were documents dating from as far as 2006, more than half (116)

were from 2018 to 2022.

2.4.2 RQ1: CS1 Topics

As described in Section 2.3, we identified different CS1 topics by manually reading all

the 225 syllabi from CS1 courses that were not considered equivalent to each other. We

organized the initial listing by counting how many syllabi each topic covered, then we

sorted the list decreasingly. In total, 72 different topics were identified. Although we

decided to omit this initial list from our reports, we illustrate the frequency distribution

of the 72 identified CS1 topics in Figure 2.2. The analysis of this distribution indicated

that 51 different topics were present in less than 25 common syllabi. In other words, this

means that approximately 71% of the identified topics were common to less than 11% of

the total syllabi used in this research. On the other hand, there was no topic common to

all 225 syllabi. We discuss the possible causes of both factors in Section 2.5.

38

20
06

20
07

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

*

Publication year of the retrieved documents

0

5

10

15

20

25

30

35

40

To
ta

l

2
4

2
5

3

8

3
6

8
10

14

30

16

21

16

1

1

4

1

2

1

3

8
7

6

9

8

5

5

5

1

1

1
Federal
State
Municipal

Figure 2.1: Distribution of the publication year of the retrieved documents that contained
syllabi information. N = 217. It was not possible to retrieve the year in 8 syllabi. The
asterisk in 2022 indicates that the corresponding retrieved syllabi might not be valid for
the whole year since the data collection happened between 2021 and 2022.

Table 2.4 presents the ranking of the most covered topics. Since we were interested

in the most common (RQ1), we decided to consider a subset of the initial listing with 72

topics. To do that, two thresholds were applied based upon the total of 225 syllabi used:

the first was 10%, and the second was 33%. In total, 21 topics remained after applying the

first threshold, and after the second, 12 topics remained. For each topic we report: the

descriptive name, in which we tried to describe the different ways each syllabus referred

to a same topic; the total number of the syllabi that each topic had in common; and, as

a complement of the latter, the fraction of its frequency in terms of the 225 syllabi used.

Table 2.4 is already represented with the initial threshold i.e., all the 21 topics appeared

39

0 25 50 75 100 125 150 175 200
Common syllabi

0

10

20

30

40

To
pi

cs
45

6

3 2 2 1 2 1 1 1 1
3

1
3

Figure 2.2: Frequency distribution of the presence of the initial 72 identified CS1 topics.

in at least 33% of total syllabi. A horizontal line defines the second threshold: the first

12 topics appeared in at least 10% of total syllabi.

The comparison of our listing with related work is also present in Table 2.4. We used

the listings retrieved from Becker and Fitzpatrick [13] and Porfirio et al. [101] because

they also analyzed CS1 syllabi. We also included the listings from Hertz and Ford [63],

and Schulte and Bennedsen [111] to the comparison. It is important to notice that we

only considered the 15 most covered topics from Becker and Fitzpatrick [13] since the

authors explicitly highlighted them. As explained in Section 2.3, we compared if a topic

in our listing was present or not in the others, marking the presence with the ✓symbol.

An example reading of Table 2.4 is that the topic Conditional commands appeared in

204 syllabi, and was common to 91% of all 225 syllabi. The same topic is also present in

Becker and Fitzpatrick [13], Porfirio et al. [101], Hertz and Ford [63], and Schulte and

Bennedsen [111].

2.4.3 RQ2: CS1 Courses’ Names

We collected the CS1 course name directly from the used syllabi to calculate the results.

The methodology was analogous to the one used in finding the most covered topics: we

counted the frequency of each course name and ranked their total decreasingly. Table

2.5 presents the listing with the most common names. The total does not add up to 225

40

Table 2.4: Ranking of the most covered CS1 topics from Brazilian public universities. The
horizontal line highlights the second threshold applied. Becker, Porfirio, Hertz, Schulte
represent listings retrieved from [13, 63, 101, 111], respectively.

Topic Total % Becker Porfirio Hertz Schulte

Conditional commands 204 91 ✓ ✓ ✓ ✓

Variables, constants, and assignments 201 89 ✓ ✓ ✓ ✓

Repetition commands 200 89 ✓ ✓ ✓ ✓

One-dimensional homogeneous composite variables 184 82 ✓ ✓ ✓ ✓

Arithmetical, logical, and relational expressions 181 80 ✓ ✓ ✓

Functions, modularization, subprograms 180 80 ✓ ✓ ✓ ✓

Multidimensional homogeneous composite variables 173 77 ✓ ✓ ✓

Data input/output 141 63 ✓ ✓ ✓

Algorithm representation forms 127 56 ✓ ✓

Heterogeneous composite variables 118 52 ✓ ✓

Recursion 85 38 ✓ ✓ ✓

Scope of variables and parameter usage 82 36 ✓ ✓

File handling 69 31 ✓ ✓

Basic computer organization 64 28
Pointers and dynamic memory allocation 61 27 ✓

Debugging 40 18 ✓ ✓ ✓

Documentation 37 16 ✓

Testing 33 15 ✓ ✓

Sorting algorithms 30 13 ✓

Search algorithms 30 13
Programming environments 22 10 ✓

because we decided to omit names that appeared less than 5 times. It is important to

notice that the translation of the course names was conducted by ourselves. This means

that the names might not be exactly how each public university would translate them

officially.

Table 2.5: Most common CS1 courses’ names from Brazilian public universities.

Name (original) Name (our translation) Total

Programação 1 Programming 1 23
Introdução à Programação Introduction to Programming 20
Algoritmos e Programação 1 Algorithms and Programming 1 16
Algoritmos e Estruturas de Dados 1 Algorithms and Data Structures 1 16
Algoritmos Algorithms 15
Algoritmos e Programação Algorithms and Programming 14
Algoritmos 1 Algorithms 1 11
Fundamentos de Programação Programming Fundamentals 10
Introdução à Computação Introduction to Computing 6
Técnicas de Programação 1 Programming Techniques 1 5
Programação de Computadores 1 Computer Programming 1 5
Algoritmos e Programação de Computadores Algorithms and Computer Programming 5

2.4.4 RQ3: When Students Take the CS1 Course

We mostly used the pedagogical projects from each undergraduate program to identify

when the public universities suggests that the students take the CS1 course. As explained

41

in Section 2.3, each course was separated in terms of their duration and how each public

university divided their curricula. Table 2.6 presents the results obtained in this analysis,

sorted by the total number of CS1 courses for each suggested period. The quarter sug-

gested period is composed of a four-month cycle, meaning that the institution divided its

scholarly year in three quarters.

Table 2.6: Periods in which Brazilian public universities suggests that students should
take the CS1 course.

Suggested Period CS1 Courses

1st Semester 194
2nd Semester 17
1st Year 10
2nd Year 2
1st Quarter 1
4th Semester 1

Total 225

2.4.5 RQ4: Class Hours Duration

Since most of the CS1 courses happened in an annual or semiannual format, we decided

to group them by this category independently of when the CS1 course is suggested in the

curriculum. This means that we considered courses in the 1st or 2nd Year as annual, and

courses in the 1st, 2nd, and 4th Semester as semiannual (these items are from Table 2.6).

Figure 2.3 illustrates the distribution of total class hours (combining theory and prac-

tice) for both semiannual and annual CS1 courses. An example analysis of the figure

reveals that 108 semiannual CS1 courses had a total class duration between 60 and 75

hours, while only 1 annual course fell within the same interval. On average, semiannual

courses had a total class duration of 79 hours, with a standard deviation of 21. In con-

trast, annual courses had an average total class duration of 146 hours, with a standard

deviation of 54. It should be noted that class hours for five courses, including the one

classified in the 1st Quarter (Table 2.6), could not be found.

2.4.6 RQ5: Programming Paradigms and Languages

As mentioned in Section 2.3, the syllabi were used to identify the programming paradigms

and languages taught in the CS1 courses. However, this information was not often ex-

plicitly stated. Because of that, we decided to infer it from the covered topics and the

bibliography listed in the syllabi. Table 2.7 presents the programming paradigms taught

in CS1 courses, sorted decreasingly by the total number of courses. Table 2.8 lists the

programming languages, also sorted decreasingly by the total number of courses. For both

tables, we also inform the approximate percentage of courses in which we had to infer the

information. This means that, for example, in Table 2.7, from the total of 202 courses

identified to teach the procedural paradigm, 92 (46%) were inferred from the syllabi (us-

ing the covered topics). Another example, in Table 2.8, from the total of 120 courses that

42

30 45 60 75 90 105 120 135 150 165 180 195 210
Class Hours

0

20

40

60

80

100

C
S

1
C

ou
rs

es

1

108

14

64

6
10

2 2 11 1 1 3 1 2 3

Semiannual
Annual

Figure 2.3: Total class hours distribution. N = 220. It was not possible to retrieve the
class hours in 5 syllabi.

taught the C programming language, 86 (72%) were inferred from the syllabi (using the

first listed item in the bibliography in which it was possible to infer a programming lan-

guage). On a final note, the CS1 courses from Table 2.7 do not add up to 225 because we

omitted one CS1 course that taught computational thinking concepts. The CS1 courses

from Table 2.8 also do not add up to 225 because we could not infer the programming

language of 57 syllabi.

Table 2.7: Programming paradigms taught in CS1 courses from Brazilian public univer-
sities.

Paradigm CS1 Courses Total (%)* Inferred (%)**

Procedural 202 90 46
Object-oriented 16 7 0
Functional 6 3 33

* % of all 225 CS1 courses.
** % of the corresponding number of CS1 Courses.

43

Table 2.8: Programming languages taught in CS1 courses from Brazilian public universi-
ties.

Language CS1 Courses Total (%)* Inferred (%)**

C 120 53 72
Python 19 8 68
Java 10 4 80
Pascal 7 3 71
C++ 6 3 83
Haskell 5 2 60
Scratch 1 <1 100

* % of all 225 CS1 courses.
** % of the corresponding number of CS1 Courses.

2.5 Discussion

We present the discussion of the obtained results in this section. We begin by discussing

the assets used in this work (public universities and the syllabi), then we follow by the

contextualization of the CS1 courses from public Brazilian universities (RQ2-RQ5), and

finally we address implications regarding the most covered topics in these courses (RQ1).

2.5.1 Brazilian Public Universities

The distribution of public universities presented on Table 2.2 indicates that there are

more federal institutions than state and municipal, although these last two have similar

numbers. However, it becomes clear that not all institutions offer the CS undergraduate

programs that we were interested in. Specifically in terms of the municipal institutions,

approximately only one third of the total offers these CS undergraduate programs. This

could be explained by the fact that there are municipals dedicated to specific areas such

as Medicine, Humanities or Law: these institutions did not offer any CS undergraduate

program. The same fact could also be applied to state and federal universities, albeit in

a lower rate of occurrence. There is also the fact of the presence of programs that offers a

Technology degree: they were sometimes present in institutions, but we did not analyze

them. We also discarded CS1 courses that we were not able to retrieve the syllabi, thus, if

this occurred for all CS1 courses from an institution, the whole institution was discarded.

While the number of federal and state universities did not vary much between the ones

that had a CS undergraduate program of interest and the ones used, these totals varied

for municipal institutions. In fact, we had difficulties in finding the syllabi for the CS1

courses present in the municipal universities.

As mentioned in Section 2.4, the geographic distribution of the public universities

used in this research (Table 2.3) covered all Brazilian geographic regions albeit it was

only possible because of the federal institutions. Northeast, southeast, and south are

the regions with most universities and syllabus for CS1 courses used in this research. We

believe that the reason for this was the presence of different CS1 courses in different campi

from the same institution that were not equivalent to each other. These regions are the

most populated in Brazil. Porfirio et al. [101] mentioned to have retrieved ten syllabi

44

from ten federal public universities: two for each Brazilian geographic region. Since we

managed to analyze 225 syllabi, our results can be seen as an update to theirs.

The year distribution of the retrieved documents (Figure 2.1) concentrates more than

half in more recent years, with 2018 being most frequent year. This result could indicate

that these documents might be close to what is being currently taught in the CS1 classes

from Brazilian public universities. However, as explained before, we did not consider

pedagogical projects still under approval at that time. This means that an updated

version of the CS1 could be in effect by the time of the publication of this research if

the new pedagogical project was approved in the meantime. The documents retrieved in

the years 2020 and 2021 are also important to consider. As consequence of the Sars-Cov-

2 pandemic, many Brazilian institutions created Emergency School Periods to be able

to teach. The adaptation necessary for the implementation of these periods could have

impacts on the concepts taught in CS1 classes, especially for those universities in which

the in person learning format was predominant. While Becker and Fitzpatrick [13] and

Porfirio et al. [101] do not directly inform about the years of their retrieved syllabi, all

authors used universities from rankings created between 2016 and 2018. Since our results

go from 2006 to 2022, they can be seen as a complement of the research of these authors.

2.5.2 CS1 Syllabi

The syllabi used in this search were not homogeneous, containing distinct levels of detail.

We found syllabi that were defined in few lines and others that detailed the topics taught

per week. We also identified that syllabi used different ways to express the same topic

e.g., loops were sometimes called “repetition commands”, “iterative commands” or even

represented as “control structures” (combined with conditional commands). As explained

in Sections 2.3 and 2.4, this was the reason a CS education researcher had to use his

experience to identify equivalent topics represented with different names. We illustrate

the heterogeneity of the syllabi by presenting examples from different public universities

below, classified as S1 and S2. It is important to remember that these syllabi were

originally elaborated in Brazilian Portuguese and were translated by the authors.

S1: Algorithms, fundamental programming concepts, expressions, control flow, func-

tions and procedures, pointers, vectors and matrices, strings, dynamic allocation, struc-

tured types, files.

S2: Basics of programming logic: algorithms characteristics, algorithm representa-

tions, programs, instruction, sequences, successive refinement. Concepts of a procedural

language: the C programming language, compiler, basic data types, constants and vari-

ables, comments, reserved words, logic and arithmetic expressions, assignment commands,

data input and output. Control structures: conditional structures, iterative structures.

Structured data types: vectors, matrices, dynamic memory allocation, pointers, user de-

fined types. Modularization: functions, scope, parameters, recursion, file handling.

Porfirio et al. [101] mentioned that syllabi may use different ways to express the same

topic. In S1, we considered that control flow is related to both conditional and iterative

commands, topic explicitly stated as control structures in S2. Becker and Fitzpatrick [13]

also reported this factor in a similar way since the authors presented a concept frequency

45

in terms of being explicit or not explicit in the analyzed syllabi. In our analysis, we found

topics with vague meanings e.g., fundamental programming concepts (present in S2) could

have different meanings depending on the programming paradigm.

We did not find any CS1 syllabi that was described with the detail levels that Grunert

[57] specified. At best, we encountered the total class hours dedicated to each covered

topic. In fact, most descriptions of the syllabi could be classified as course outlines.

However, as McKeachie [89] stated that the instructor needs to take careful considerations

regarding the covered topics, assignments’ due, and learning objectives while constructing

both syllabus and course outline, we did not discard any documents regarding its level of

details. The data collection process used in this research was challenging, since we had

to search the universities websites. If there was a national repository of syllabi, future

research like our work would be simpler because researchers would be able to retrieve data

by applying searching techniques like those used in systematic reviews, thus dedicating

their focus on the assessment of topics. There are initiatives of repositories with these

characteristics [64, 133].

We do not believe that the absence of a topic in a syllabus implies that the related

CS1 course does not cover it. S1, for example, does not explicitly state variables and

constants, but they state vectors, matrices, and strings. This means that the presence

of advanced topics that require basic ones implies that the latter topics are covered in

the course but were omitted in the syllabus. This could explain why no topic appeared

in all 225 syllabi (Figure 2.2 and Table 2.4). On the other hand, the presence of many

different topics in few syllabi (Figure 2.2) could be explained by topics covered by other

programming paradigms (such as the functional, which only appeared in 6 out of the

225 syllabi (Table 2.7)). The autonomy Brazilian public universities have could also have

influenced the topic distribution, because institutions could be teaching specific topics to

prepare professionals with a particular set of skills required for that geographic region, or

to balance students with different background.

2.5.3 Contextualization of Brazilian CS1 Courses

Based on the results obtained from RQ3 (Table 2.6), almost 99% of the analyzed CS1

courses are offered within the first scholarly year of the undergraduate programs. This

was expected since most Brazilian universities divide their curricula in semiannual periods.

This result also means that students are exposed to CS1 concepts early in their academic

life. The only exception for this is one course that is offered in the fourth semester. We

identified that this CS1 course is from a Bachelor in Computer Science and Engineering.

While we could not find any reasons for this occurrence, the CS1 course is present at

the end of the basic cycle. The basic cycle is a biannual period that aggregates com-

mon courses between Brazilian Bachelor in Engineering undergraduate programs. RQ4

expresses that annual CS1 courses have an average total class hours doubled than semi-

annual ones. This factor indicates consistency among these averages even though annual

CS1 courses are not common when compared to semiannual courses identified in this

research.

46

As explained in Section 2.3, we considered numbered entries as individual names to

answer RQ2 (Table 2.5). The presence of these numbered entries in our results could indi-

cate that there are other programming courses in sequence. In fact, we identified courses

like that while searching for the introductory programming courses: in these cases, the

CS1 course was a prerequisite to the subsequent one. This indicates that some Brazilian

public universities organize their curricula by providing CS1 and CS2 courses although

we only focused on the first one. We exemplify this factor by the presence of 16 CS1

courses named Algorithms and Data Structures 1. While data structures can be seen as a

CS2 topic, some universities might divide its topics between CS1 and CS2, thus corrob-

orating that there is no consensus among these courses [62]. Examples of course names

that were omitted in Table 2.5 (because they were present in less than five courses) were:

variations from the listed courses (e.g., Programming and Data Structures 1, Program-

ming Principles); names containing the taught programming paradigm (e.g., Functional

Programming, Introduction to Structured Programming, Object-oriented Programming

Language); and other specific names (e.g., Applied Informatics, Information Processing).

Table 2.7 shows the programming paradigm of all used syllabi. There is a major gap

between procedural (202 syllabi) and the object-oriented paradigm (16 syllabi), and this

gap is increased when compared to the functional paradigm (6 syllabi). Using our criteria

to identify CS1 courses (Section 2.3), we identified one course that taught computational

thinking [147] concepts. Since it might not be fit to classify it as a programming paradigm,

we decided to omit it from the table, thus the total does not add up to 225. Our inferring

methodology was the same for all syllabi, used only when there was no explicit word or

topic containing the paradigm. It is important to notice that we did not need to infer

any course that teaches the object-oriented paradigm because it was explicitly stated in

all 16 corresponding syllabi.

The other result that complements the answer to RQ5 is the programming language

distribution (Table 2.8). Although C, Python, and Java are the most common languages,

there is a major gap between C and the rest. C is more than 6 times higher than

Python (119 compared to 19, respectively). This result differs from others found in the

literature, which has reports indicating that Java is the predominant language [12, 13, 112].

We identified some reasons for this. First, our results are limited to Brazilian public

universities. We did not find any related work that explicitly said to cover Brazil, but

there are research that focused on other specific countries. Avouris [9] analyzed 121 CS1

courses from Greece and C was the most used language, appearing in 37 courses. Becker

[12] surveyed instructors from 39 CS1 courses and Java was the most used language,

appearing in 49% of the courses. Second, the methodology used could also have impacted

in the results. Research that surveyed instructors directly are more precise than those

who used syllabi (like this research) that might be outdated. The third reason is a direct

consequence of the second because we retrieved information from documents published

from 2006 and 2022, even though most of them were from 2018 and further. Lastly,

the publication year of the used documents could also have impacted in our inferring

methodology, since the bibliography used to infer the programming language could also

be outdated.

47

To compare if there was any difference when limiting to recent years, we filtered the

results from Table 2.8 to include only CS1 courses in which we obtained information from

2018 to 2022. The results obtained from this filtering is presented in Table 2.9. There

were 124 syllabi from 2018 to 2022, but it was not possible to infer a language from 28

of them. In general, the results from the filtering do not differ much from our initial

findings. The gap between C and Python was not altered (45% of the total courses before

and after). Pascal and C++ also appeared less times (both were 3% of the total courses

before, and 2% and 1% after, respectively).

We conclude that these results indicate that the Brazilian scenario has its own contexts

for teaching CS1, differing from those in other countries or world regions. In general, all

the obtained information about the contextualization of CS1 courses is a consequence of

the aforementioned autonomy that Brazilian public universities have. The majority of

CS1 courses teach the procedural paradigm, perhaps due to a general consensus that it

is the best approach for beginner programmers. Regarding the programming language,

there may be several factors that contribute to C being the most taught. One factor could

be instructors’ traditionalist view about the language, preferring it over others, arguably.

However, there may also be factors related to the costs associated with training faculty

to teach other programming languages, such as Python. We make this statement because

the ability to program in a language and the ability to effectively teach it are two distinct

skills.

Table 2.9: Comparison of the programming languages identified from documents ranging
from 2006-2022 to those obtained from 2018-2022. It was possible to infer a programming
language from 168 syllabi in the 2006-2022 period, and from 96 syllabi in the 2018-2022
period.

2006-2022 2018-2022

Language CS1 Courses Total (%)* Inferred (%)*** CS1 Courses Total (%)** Inferred (%)

C 120 53 72 70 56 67
Python 19 8 68 14 11 64
Java 10 4 80 8 6 75
Pascal 7 3 71 2 2 0
C++ 6 3 83 1 1 100
Haskell 5 2 60 1 1 0
Scratch 1 <1 100 0 0 -

* % of 225 CS1 courses present in the 2006-2022 period.
** % of 124 CS1 courses present in the 2018-2022 period.

*** % of the corresponding number of CS1 Courses.

2.5.4 Covered Topics

As detailed in Section 2.4, we omitted the full list with 72 topics because we wanted to

identify the most covered topics in RQ1 (Table 2.4). Our decision to create two thresholds

(common topics present in 10% and 33% of the total syllabi, respectively) was established

to highlight the topics that were most common. Topics that remained outside the thresh-

olds (i.e., appeared in less than 33% of total syllabi) include, but are not limited to:

object-oriented and functional paradigm concepts (e.g., classes, objects, monads, func-

48

tion overloading); basic computer usage (word editors, spreadsheets, operating system,

Internet browser); and advanced algorithms (geometric, non-deterministic). The absence

of some of these topics in the thresholds corroborate with the procedural paradigm being

the one most taught. As stated earlier, universities have the autonomy to select topics

based on the desired professional outcome.

The 12 topics listed in the second threshold (Table 2.4) represent concepts present in

the procedural paradigm. A special note is that the topic Algorithm representation forms

was identified in syllabi that did not start with a specific programming language, teaching

the other concepts via pseudocode. We noted CS1 courses that only begins teaching a pro-

gramming language at the end of the course, while others did not mention any language.

We conclude that this also contributed to the number of courses in which we could not

infer the programming language. We also decided to list a group of concepts in a specific

topic because of the different ways syllabi referred to them. Some examples of topics were:

One-dimensional homogeneous composite variables, which included topics as vectors, lists,

arrays, and strings; Multidimensional homogeneous composite variables, which included

matrices; and Heterogeneous composite variables, which contained structures, unions, and

dictionaries.

We also noted discrepancies regarding the frequency of topics that are closely related

to each other. For example, in Table 2.4, Functions, modularizations, and subprograms

appear in 80% of all syllabi whereas Scope of variables and parameter usage and Recursion

appear in 36% and 38%, respectively. There could be a couple reasons for this, and

they depend on the programming paradigm that each course teaches. Scope of variables

and parameter usage could just have been omitted in the syllabus since it already had

listed Functions, modularizations, and subprograms. However, since there were syllabi

reporting both, we decided to treat them as separate topics. Recursion, on the other

hand, could be related to the elaboration of the CS1 course itself. Since recursion is often

considered a difficult topic to teach and learn [28], some curricula might delay its teaching

to subsequent programming courses. Another relatable example regards the gaps between

composite variables: there is one gap between one and multidimensional homogeneous,

and an even greater gap with the heterogeneous types.

2.5.4.1 Comparison with Topics Listed in Related Work

The 12 topics present in the second threshold (at least 33% of total syllabi) appears in at

least 2 out of the 4 analyzed related work (Table 2.4). This is an important factor because

it establishes a certain degree of similarity with listings obtained from related work even

though they were conducted in a different context (except for Porfirio et al. [101]).

We identified that some topics which were classified as distinct in Table 2.4 were

sometimes grouped together in related work. For instance, in our work, we reported Con-

ditional commands and Repetition commands as distinct topics. Becker and Fitzpatrick

[13] listed Selective statements (if/else/etc.) separately from Repetition & loops, Porfirio

et al. [101] listed Conditional structures separately from Repetition structures, Hertz and

Ford [63] grouped these concepts as Control constructs, and Schulte and Bennedsen [111]

grouped them as Selection and Iteration. Another example is Variables, constants, and as-

49

signments and Arithmetical, logical, and relational expressions were grouped as Variables,

types, expressions [63] and as Variables, assignment, arithmetic operators, declarations,

data types [13]. Since all reported listings were built upon the authors’ experience, in-

cluding our work, we consider this difference in grouping as just a matter of opinion in

reporting the topics.

Our listing contemplated 9 of the 10 topics listed in Porfirio et al. [101]. Table 2.4

shows only 8 because they listed Data types as a separate topic, and we considered it

within Variables, constants, and assignments. Another topic presented in this related

work was Introduction to programming. This was an abstract concept in which we did not

consider as a CS1 topic per se, thus we did not include it in our listing. Since Porfirio et

al. [101] assessed a subset of 10 Brazilian federal universities, we consider our listing as

an expansion of their initial work regarding the Brazilian scenario.

Debugging and Testing are topics that were not present in our second threshold but

appeared in 75% and 50% of the related work, respectively. Debugging appeared in 40

out of 225 syllabi (18%). This concept is related to the teaching of specific tools used

to debug code and some public universities might not teach them in the introductory

programming course. Similarly, Testing appeared in 33 out of 225 syllabi (15%). Specific

teachings of this topic could be covered in future courses that focuses more on software

engineering concepts. The same analogy could also be applied to Documentation.

Lastly, we also searched for topics that were reported in the related work but not in our

listing. Examples of topics in this classification were: abstract concepts (e.g., problem

solving, writing programs, mental models); object-oriented concepts (e.g., classes and

objects, inheritance and polymorphism, encapsulation); advanced data structures (e.g.,

graphs, trees, linked-lists); and algorithm efficiency (e.g., big-O notation).

The comparison of our listing with those obtained from related work makes the iden-

tification of common topics possible. However, except for Porfirio et al. [101], all research

were conducted regarding different contexts, especially nationwide. This is corroborated

by the results obtained from RQ5 (Tables 2.7 and 2.8). Since the programming paradigm

taught in CS1 courses from Brazilian public universities (procedural was the most com-

mon) is different from the one taught in other countries (object-oriented), topic listings

would certainly be different. All of this contributes to Hertz’s [62] view that there is no

consensus of what is taught in CS1 and CS2.

2.5.4.2 Grouping of the Second Threshold

As consequence of the discussion this section provided, the second threshold applied in

Table 2.4 answers RQ1, our main research question. We decided to group the 12 high-

lighted topics by joining the closely related, using data from the listings we had found in

related work. Table 2.10 presents the final grouping, indicating the group name and the

grouped topics from Table 2.4. A description of each group is stated below.

• Algorithm representations: This group consists of topics related to other ways

of constructing and representing algorithms, not necessarily using a programming

language. Examples include pseudocode and flowcharts.

50

Table 2.10: Final grouping of the most covered topics in Brazilian public universities.
Table sorted alphabetically by the group name.

Group Topics (Table 2.4)

Algorithm representations Algorithm representation forms

Basic concepts of algorithm construction
Variables, constants, and assignments
Arithmetical, logical, and relational expressions
Data input/output

Composite variables
One-dimensional homogeneous composite variables
Multidimensional homogeneous composite variables
Heterogeneous composite variables

Control structures
Conditional commands
Repetition commands

Functions, scope, and parameter usage
Functions, modularization, subprograms
Scope of variables and parameter usage

Recursion Recursion

• Basic concepts of algorithm construction: This group consists of primordial

topics necessary for the construction of simple algorithms. Examples include vari-

ables, constants, basic data types, and expressions. Assignment and input/output

(from keyboard) commands are also present in this group.

• Composite variables: This group consists of composite types of data such as vec-

tors, strings, matrices, and structures. Other types that depend on the programming

language (e.g., lists, tuples, dictionaries) are also present in this group.

• Control structures: This group consists of commands for selection and iteration

of code. These structures can vary based on the programming language or algorithm

representation.

• Function, scope, and parameter usage: This group consists of concepts re-

lated to functions, subprograms, and modularization. Since scope of variables and

parameter usage is closely related, we decided to also include them in this group.

• Recursion: This group consists of the specific topics regarding recursion. Again,

we decided to create a separate group for this because the analyzed CS1 syllabi

listed them separately. Recursion is also presented as a specific topic in related

work.

2.6 Limitations and Threats to Validity

The main limitations regarding this work are consequences of the restrictions related to

data collection explained in Section 2.3. Since our data collection and analysis had to be

done manually, we had to limit our assessment. Choosing Brazilian public universities

provides a broad context of assessment, since it covered all national geographical regions.

Brazilian public universities are also the most present in international rankings. However,

51

there are other types of higher education institutions in the country, especially private

universities and colleges. It is possible that our results could be different if we assessed

data from these other institutions. Another limitation factor was the availability of the

documents from the universities’ websites. Data from public universities that we were not

able to retrieve could also have changed our results.

We identify three main threats to the validity of this research. First, we used our

empirical knowledge to identify and list the distinct covered topics present in each syllabus.

Second, the dominance of the procedural paradigm taught in CS1 courses influenced in our

discussion about the presence of topics in the syllabi. Third, our inferring methodology

about the programming languages taught was vastly dependent on each syllabus. Since

the analyzed syllabi were not homogeneous (sometimes not even listing the bibliography)

and included documents ranging from as far as 2006, this could also have impacted on our

results. We tried to mitigate these threats by comparing our topics with others retrieved

from related work, and by applying a filter to analyze the programming languages from

syllabi from 2018 to 2022.

2.7 Conclusions

In this work, we presented an assessment of characteristics of CS1 courses from Brazilian

public universities. Our focus was the most covered topics, but we also reported the most

common course names, when undergraduates take the course, time that is dedicated to

teaching the course, and the programming paradigms and languages taught. To answer

each research question, we gathered data directly from the public universities’ websites,

searching for undergraduate Computer Science programs listed in the Formation Guide-

lines for Computer Science Undergraduate Programs [149]. The main document analyzed

was the syllabi of CS1 courses.

In total, our results derived from 225 syllabi within 95 Brazilian public universi-

ties. The most covered topics were from concepts related to the procedural programming

paradigm. We identified 12 topics among the most frequent and grouped them in 6 cat-

egories: Algorithm representations; Basic concepts of algorithm construction; Composite

variables; Control structures; Functions, scope, and parameter usage; and Recursion. We

also concluded that the CS1 course is within the first scholarly year in 99% of the Brazil-

ian public universities. The most common names of CS1 courses vary, and some of them

have numbered entries that implies subsequent courses with the same name in the cur-

riculum. Regarding the total class hours, we identified that it is dependent on the course

being semiannual or annual, but in average, the latter is double the former. Lastly, we

concluded that the most common taught programming paradigm is the procedural one,

and the most common programming language is C.

2.8 Afterword

Regarding the thresholds outlined in Section 2.4, we initially selected 10% of the total 225

syllabi as a promising threshold to identify the most covered topics. However, the resulting

52

21 topics exhibited a wide range of occurrences, from 204 to 22 (Table 2.4). Given this

variability, which we believed could obscure our objective of identifying the most covered

topics, we opted to apply a stricter threshold of 33% of the total syllabi. These results

mainly align with this thesis by enabling an external validation: the final grouping of

the most covered topics (Table 2.10) encompasses almost all categories identified in MC³.

This discussion is further explored with the assessment of SO 1 in Chapter 5.

The assertions that C is the most used language and that the procedural paradigm

is the most prevalent should be considered within the limitations of this chapter’s study.

As outlined in Section 2.6, our research was solely based on publicly available documents.

Additionally, the time frame should also be acknowledged: this thesis was defended in

2024, while the study was conducted in 2022. To gain a clearer understanding of whether,

or why, these remain the most widely used, further research is necessary. A potential

approach could involve directly surveying nationwide CS1 instructors or CS program

coordinators regarding the programming languages they currently employ.

53

Chapter 3

When Test Cases Are Not Enough:

Identification, Assessment, and

Rationale of Misconceptions in Correct

Code (MC³)1

Abstract: Automated grading systems (autograders) assist the process of teaching in

introductory programming courses (CS1). However, the sole focus on correctness can

obfuscate the assessment of other characteristics present in code. In this work, we in-

vestigated if code, deemed correct by an autograder, were developed with characteristics

that indicated potential misunderstandings of the concepts taught in CS1. These charac-

teristics were named Misconceptions in Correct Code (MC³). By analyzing 2,441 codes

developed by CS1 students, we curated an initial list of 45 MC³. This list was assessed

by CS1 instructors, resulting in the identification of MC³ that should be addressed in

classes. We selected the 15 most severe MC³ for further investigation, including a semi-

structured observation in a CS1 course and an automated detection software using static

code analysis. The results suggested that students develop these MC³ either due to an

incomplete comprehension of the concepts taught in CS1 course or a lack of attention

while elaborating their code, with correctness being their primary goal. We believe our

results can contribute to: (1) the research field of misconceptions in CS1; (2) promoting

alternative approaches to complement the use of autograders in CS1 classes; and (3) pro-

viding insights that can serve as the foundation for teaching interventions involving MC³

in CS1.

3.1 Introduction

The need for interdisciplinary domains to solve modern problems constantly requires

professionals with knowledge in computer literacy. As a result, an increasing number of

undergraduate programs are incorporating Computer Science (CS) related classes into

1This paper was published in the Brazilian Journal of Computers in Education (RBIE). DOI: https:
//doi.org/10.5753/rbie.2023.3552

54

their curricula. While these classes are predominantly found in programs within the

Science, Technology, Engineering, and Mathematics (STEM) field [25, 40], they are also

being introduced in other areas, including Law [123].

When considering the context of CS teaching, one of the common courses focuses on

introductory programming concepts, commonly referred to as CS1 [8]. CS1 courses are

often associated with challenges, including high failure and dropout rates [24, 76, 140].

Among the various factors contributing to these rates, the number of students per class

stands out. The high student-to-teacher ratio hinders individual attention, leading to

student demotivation.

Automated grading systems, commonly known as autograders, have been employed in

CS1 courses to address the challenges associated with large class sizes. As early as 1960,

Hollingsworth [65] highlighted the potential benefits of autograders, including time and

cost savings, as well as the ability to accommodate larger classes. Today, autograders

are extensively used in courses with these characteristics, particularly in Massive Open

Online Courses, facilitating individual attention between instructors and students [88].

In the educational context, autograders play a crucial role in grading assignments,

relieving instructors of some of their workload and conserving resources [46, 53, 65]. How-

ever, the use of autograders can also influence the development of undesirable habits in

students. Baniassad et al. [10] noted that students may become overly reliant on the

feedback provided by autograders, leading them to rely on trial-and-error approaches in

their coding. Frustration among CS1 students can also arise when automated tools ex-

perience malfunctions [68] or when students mistakenly assume that autograders cannot

make mistakes, resulting in overconfidence [66].

One common application of autograders in CS1 courses is to verify if the output of a

code matches the expected predetermined output [103]. This approach fosters research

aimed at understanding and enhancing the teaching and learning of concepts based on

code correctness [7, 16, 83, 94]. However, in CS1, even code that produces the desired

outcome can exhibit undesirable characteristics that experienced programmers would typ-

ically avoid [39, 126]. Examples of such characteristics include higher code complexity

resulting from the redundant use of syntactic constructs, such as conditional statements

or nested loops [67, 114, 134]. The sole focus on code correctness may lead students to

disregard other important code attributes, such as readability and maintainability, which

are crucial for future programmers [39, 74]. In a CS1 setting where both instructors and

students solely assess code functionality without considering other indicators, potential

misconceptions or incomplete understanding of CS1 topics may go unnoticed and unad-

dressed.

An example of incomplete understanding of a CS1 topic is illustrated in Code 3.1. In

this code, a student employed conditional statements to determine whether the value of

the variable var was zero/positive or negative. However, likely due to a belief that the

else clause is mandatory, the student checked both desired cases for var in lines 2 and

4, while also including an unnecessary else statement in line 6. Despite knowing that

both necessary conditions were already checked in the if-elif statements, the student

mistakenly believed that the else clause was obligatory and included redundant instruc-

55

tions within its body to not alter the correct output. Code 3.2 provides an alternative

implementation that resolves the misconception demonstrated in Code 3.1.

1 var = int(input())

2 if var >= 0:

3 print("var␣is␣positive␣or

␣0")

4 elif var < 0:

5 print("var␣is␣negative")

6 else:

7 (...)

Code 3.1: Example of unnecessary else

1 var = int(input())

2 if var >= 0:

3 print("var␣is␣positive␣or

␣0")

4 else:

5 print("var␣is␣negative")

Code 3.2: Code 3.1 without the
unnecessary else

This work was motivated by the need to assess code that had already been deemed

correct by an autograder. By correct, we refer to code that successfully passed all the

tests designed to evaluate the code output for specific inputs. Since we were within a CS1

context, these tests primarily focused assessing the correctness of the code by testing both

standard and boundary values as inputs. In this work, we were specifically interested

in identifying whether correct code could exhibit behaviors that potentially indicated

incomplete understanding of CS1 topics. To conduct our analysis, we classified these

behaviors as misconceptions [106]. In CS1, research on misconceptions typically focuses

on identifying and classifying errors made by students, including syntactic, semantic,

or logical errors [6, 28, 30, 54]. However, these studies are not necessarily limited to

correct code. Therefore, we chose to narrow our investigation and specifically examine

code that produced the expected results. As a result, we established a subgroup called

Misconceptions in Correct Code (MC³). In other words, whereas MC³ are misconceptions

within the CS1 research field, not all misconceptions studied in this field can be classified

as MC³.

With the hypothesis that MC³ exist in code deemed correct by an autograder, this

work aimed to address the following research questions:

RQ1: Which MC³ are the most severe, requiring high-priority explanations in CS1

courses?

RQ2: How can MC³ be potentially addressed in CS1 classes, considering multiple contexts

of teaching and learning?

RQ3: What is the frequency distribution of MC³ in a typical CS1 course?

RQ4: What are the reasons behind CS1 students incorporating MC³ into their code?

In total, an exploratory analysis of students’ code submitted for assignments in a CS1

course revealed the presence of 45 MC³, indicating misconceptions and incomplete under-

standings of key CS1 topics. To prioritize the most critical misconceptions for classroom

intervention, a survey was conducted among CS1 instructors. From this survey, the top

15 MC³ were identified and given priority to investigation. These misconceptions predom-

inantly revolved around Boolean expressions and iteration, with additional focus on code

organization, the use of variables and functions, and the characteristics of autograders,

including test cases. The analyses involving CS1 instructors and students shed light on

the reasons behind the incorporation of MC³ in code, which included incomplete com-

prehension of CS1 topics and a lack of attention to coding practices, stemming from a

56

narrow focus on correctness alone. CS1 instructors and students also emphasized that

addressing MC³ in CS1 classes can be facilitated through automated detection and feed-

back mechanisms, integration into lecture classes, and the adoption of Active Learning

techniques. Additionally, we developed a prototype of an automated detection tool for

the most severe MC³, and while the occurrence of these misconceptions was not found

to be high in absolute numbers, their presence was observed throughout the entirety of a

CS1 course.

We believe that our findings can contribute for the broader community, particularly in

the context of CS1 education supported by autograders from which MC³ are possibly being

overlooked. While previous literature may have identified similar behaviors to MC³, our

survey with CS1 instructors and conversations with students provided additional insights

into the underlying reasons for these misconceptions throughout the course. Based on the

evidence we have gathered, we advocate for the development of formative feedback that

can be directed towards instructors, teaching assistants, and students, with the aim of

enhancing the teaching and learning experience in CS1 courses.

The remainder of this paper is organized as follows. Section 3.2 presents the back-

ground and related work. The methodology used are described in Section 3.3, followed

by the obtained results in Section 3.4. We discuss the results in Section 3.5. Section

3.6 details the limitations and threats to validity of this research. Lastly, we present the

conclusions in Section 3.7.

3.2 Background and Related Work

In this section, we dedicate our focus to providing a theoretical background that formed

the basis of our hypothesis to the development of this work, as well as discussing re-

lated research in a similar domain. The background section delves into the intricate

details of student errors commonly encountered in CS1, as well as highlighting the role

of autograders in this context. Subsequently, we describe related works with the aim of

examining and synthesizing existing literature that has addressed similar challenges, while

also identifying their strategies and methodologies. Additionally, we clarify the specific

contribution and position of our work within this broader research landscape.

3.2.1 Background

There are various terms used to describe faulty comprehensions of concepts taught in CS1

classes. Qian and Lehman [106] conducted a systematic literature review on this topic

and identified terms such as errors, bad comprehensions, challenges, and misconceptions

commonly used in the literature. They classified these faulty comprehensions into dif-

ferent levels of knowledge: syntactic, conceptual, and strategic. At the syntactic level,

comprehension issues arise from a lack of understanding of basic rules of a programming

language, such as mandatory Python indentation or the use of semicolons in Java. The

conceptual level encompasses issues related to the understanding of programming con-

structs, such as variable declaration or loops. Finally, issues at the strategic level occur

57

when students struggle to apply the knowledge acquired at the syntactic and concep-

tual levels while solving problems. Qian and Lehman classified misconceptions as issues

present in the conceptual level.

The identification of misconceptions is an important aspect of developing concept in-

ventories (CI) [3, 4]. A CI is an assessment tool specifically designed to identify and

address misconceptions within a specific domain of knowledge [4, 28], often in the form

of a multiple-choice questionnaire. Almstrum et al. [4] proposed a development process

for constructing and validating a CI, which involves steps such as using open-ended ques-

tions to discover misconceptions, interviewing students, piloting a set of multiple-choice

questions, and employing statistical analysis to validate the CI. This development process

has been applied to the creation of CI for CS1 in programming languages such as C [28],

while there are ongoing research for Python [54] and Java [30]. Additionally, Tew and

Guzdial [131] developed the Foundational CS1 (FCS1) assessment tool, designed to be

used independently of a specific programming language.

Regarding automated assessment tools, Ureel II and Wallace [134] identified two dis-

tinct groups that these tools may fall into: autograders and critiquers. Autograders

primarily focus on unit testing and may not be suitable for providing feedback on all

types of bad coding behaviors, as some of them might happen on correct code. On the

other hand, critiquers are similar to autograders, but aim to provide feedback based on

the instructors’ pedagogical knowledge. This formative feedback is crucial as it can lead

to significant improvements in students’ understanding [31]. However, there is a risk of

students becoming overly reliant on automated feedback [10]. Baniassad et al. [10] found

that students were using the feedback merely to correct mistakes in their code without

engaging in thorough thinking. To address this issue, the authors implemented a penalty

system in a CS1 course, whereby students received lower grades for successive submis-

sions to an autograder. As a result, the authors observed a decrease in the number of

submissions while only slightly affecting the median grade. Although the students ex-

pressed concerns with each submission, they also reported that they checked their code

more carefully and analyzed their mistakes before submitting again.

Instructors and teaching assistants can also benefit from the feedback provided by

autograders or similar tools. Pereira et al. [93] conducted a study where they collected and

analyzed various features from students’ submissions to a CS1 course in Python, enabling

them to predict whether students would pass or fail the course. These features included,

but were not limited to, the number of submissions, time spent on each submission,

number of problems solved correctly, and average lines of code per submission. The

authors argued that assessing the first two weeks of assignments is crucial for creating an

early prediction and providing support to students who may be at risk of failing the course.

Similarly, using machine learning techniques, Lima et al. [82] classified coding questions

present in an autograder to ensure a balanced distribution of assignments among students.

To achieve this, the authors analyzed past students’ submissions to these questions and

collected code attributes such as complexity and the number of syntax constructs, along

with the success rate in completing the assignments. Both studies were conducted using

CodeBench2, an autograder developed by the Federal University of Amazonas.

2https://codebench.icomp.ufam.edu.br/

58

3.2.2 Related Work

By analyzing students’ answers to exams and interviewing CS1 instructors, Caceffo et al.

[28] identified 15 misconceptions in the C programming language. These misconceptions

were classified into seven categories: function parameter use and scope; variables, identi-

fiers, and scope; recursion; iteration; structures; pointers; and Boolean expressions. The

findings from this analysis served as the basis for the development of a concept inventory.

Gama et al. [54] conducted an analysis to examine the applicability of the miscon-

ceptions identified by Caceffo et al. [28] to the Python language. Based on the frequency

of these misconceptions in open-ended exam questions, they made decisions regarding

whether to retain or discard each misconception. Two categories, structures and pointers,

were deemed irrelevant in Python and were discarded, while a new category emerged:

use and implementation of classes and objects. In total, Gama et al. hypothesized 28

misconceptions, requiring further validation.

Araújo et al. [6] expanded upon the results obtained by Gama et al. [54] through an

empirical study. Given the similarity in the teaching contexts of the analyzed CS1 courses

in both works, the authors stated that this empirical study could be conducted. Similar to

the previous studies, students’ answers to open-ended exam questions were used. Araújo

et al. identified 27 misconceptions, with 19 of them present in the listing provided by

Gama et al. The remaining eight misconceptions were grouped into a new category called

Additional, which consisted of simple logic and syntactic errors.

Regarding the use of autograders in CS1, Araujo et al. [7] developed the Python En-

hanced Error Feedback (PEEF). PEEF is an online integrated development environment

(IDE) that provides enhanced compiler error messages, an integrated chat feature, and

performs dynamic code analysis through unit testing. The authors discussed the potential

uses of this tool for both students and instructors in CS1 courses. Another tool, PyTA,

was created by Liu and Petersen [83]. PyTA promotes static code analysis [142] to pro-

vide comprehensive feedback by presenting warnings and error messages in a simplified

manner to students. Liu and Petersen conducted a study in which students had the op-

tion to consult or not consult this enhanced feedback. Among the students who chose

to use it, they observed a reduction in the number of errors per assignment, the total

number of submissions until an assignment had an error corrected, and the total number

of submissions until the assignment passed all the test cases.

Among research that focused on analyzing correct code in CS1, De Ruvo et al. [39]

introduced the concept of semantic styles. Semantic styles are indicators that potentially

reveal a poor understanding of programming concepts. The authors analyzed students’

submissions to programming assignments and identified 16 semantic styles. Among these,

12 were related to conditional commands, such as unnecessary else statements or dupli-

cated code within an if/else structure. The remaining four semantic styles were associated

with the use of variables.

Motivated by the goal of providing formative feedback that closely resembles that of

an instructor, Ureel II and Wallace [134] developed WebTA. They classified their tool

as an automated critiquer capable of detecting anomalous coding behaviors, regardless

of whether the code is correct. WebTA can identify pre-existing misconceptions from

59

the literature (approximately 200), and it also allows instructors to create new coding

behavior rules to detect specific anomalous code expected for an assignment.

The A-Learn Evid, developed by Porfirio et al. [101], is an automatic method for iden-

tifying students’ programming skills. The authors aimed to automate the assessment of

these skills, going beyond functionality, in order to allow instructors to provide timely and

formative feedback to students. The method employs both static and dynamic analysis

of students’ source code and can identify 37 programming skills. Examples of these skills

include variables, Boolean expressions, infinite loops, control structures, and functions.

Refactoring Programming Tutor (RPT)3, developed by Keuning et al. [75], is an In-

telligent Tutoring System [138] that provides step-by-step hints for improving the quality

of correct code. The system incorporates rules idealized by experienced instructors, refac-

toring rules found in established software, and previous literature, including the semantic

styles identified by De Ruvo et al. [39]. Keuning et al. outlined 19 refactoring rules im-

plemented in RPT, covering areas such as expressions, branching, loops, and declarations.

In their study, Oliveira et al. [92] analyzed program snapshots of students who worked

on programming exercises in RPT to identify errors made by students during code refac-

toring. The authors examined 482 sequences of these program snapshots, which were

created by 133 students. Based on their analysis, Oliveira et al. categorized these errors

as refactoring misconceptions. They identified a total of 25 refactoring misconceptions,

which were catalogued into five groups: arithmetic expressions, Boolean expressions, con-

ditionals, flow, and loops.

Table 3.1: Comparison of this research with the presented related work.

Research
Errors/Misconceptions

analyzed
Analysis of
correct code

Language

Caceffo et al. [28] 15 - C
Gama et al. [54] 28 - Python
Araujo et al. [6] 21 - Python
Araujo et al. [7] Not mentioned* - Python
Liu and Petersen [83] Not mentioned* - Python
De Ruvo et al. [39] 16 ✓ Java
Ureel II and Wallace [134] 200 ✓ Java
Porfirio et al. [101] 37 ✓ C
Keuning et al. [75] 19 ✓ Java
Oliveira et al. [92] 25 ✓ Java

This research 45 ✓ Python

*Total not informed. Authors used enhanced compiler error messages for Python errors.

Table 3.1 presents a comparison of our work with the related research discussed in

this section. One key characteristic of our work is its focus on analyzing misconceptions

exclusively in code that is deemed correct by an autograder, which sets it apart from some

of the related research that did not apply this condition [6, 7, 28, 54, 83]. Additionally, our

study specifically targets misconceptions found in students’ code for CS1 courses taught in

Python, while other research had primarily focused on different programming languages

[39, 75, 92, 134].

3http://hkeuning.nl/rpt/

60

3.3 Methods

In this section, we describe the methods employed in the research on MC³, encompassing

data collection and analysis. The section begins by providing background information

on the analyzed CS1 course and outlining the identification process of the MC³. Subse-

quently, we present the details of the severity ranking (RQ1) and explain how the MC³

can be addressed in CS1 classes (RQ2). We then explain how the frequency of the most

severe MC³ was calculated (RQ3), followed by how we delved into the reasons why stu-

dents incorporate MC³ into their code (RQ4). Figure 3.1 summarizes the methods used

in this work.

MC³
Identification

Questionnaire
(RQ1)

Observation
(RQ4)

Interview
(RQ2)

Automated
Detection
(RQ3)

45 MC³ identified

based on 2,441

students'

submissions

15 MC³ classified

as most severe

CS1 teaching

contexts and

interventions for

addressing MC³

Students' rationale

for incorporating

MC³ in their code

Prototype for detecting

14 MC³ based on

static analysis

Figure 3.1: Description of the methods used in this research.

3.3.1 MC³ Identification

The primary objective of this phase was to determine whether code deemed correct by

an autograder exhibited characteristics that could indicate an incomplete understanding

of CS1 learning objectives. To achieve this, we analyzed the course of Algorithms and

Computer Programming (MC102) at UNICAMP, which has a high number of enrolled

students per semester (approximately 600). MC102 is organized in a coordinated envi-

ronment that follows the same syllabus and practical assignments to a group of bachelors’

programs, mostly engineering. The course teaches the imperative paradigm using the

Python programming language since 2018.

The basic syllabus for MC102 is the following: basic concepts of computer organi-

zation; data I/O; arithmetic, logical, and relational expressions; conditional commands;

repetition commands; lists, tuples, dictionaries, strings, and matrices; functions and scope

61

of variables; sorting algorithms; searching algorithms; recursion; and recursive sorting al-

gorithms.

During the semester, MC102 students are assigned practical tasks. Although these

tasks cover most of the syllabus topics, some topics are combined within a single one

(e.g., lists and tuples, strings and dictionaries), while others lack dedicated tasks (e.g.,

functions and recursive sorting algorithms). All assignments are submitted via SuSy4,

an autograder developed within the institution itself. SuSy performs a dynamic analysis

of each submission to verify whether the output matches the expected results for each

task. This assessment is conducted using test cases, which consist of predefined input

and expected output data. Test cases can be open, which are visible to students, whereas

closed test cases are not visible. The grade for each assignment is determined by the

number of test cases the students’ submissions pass. SuSy may also limit the maximum

number of submissions (typically set to 20 to prevent trial-and-error usage) and imposes a

maximum execution time for the code. The system is also capable of detecting plagiarism

among submissions. To identify the presence of MC³ in code deemed correct by an

autograder, we collected and analyzed the students’ submissions to MC102 assignments.

3.3.1.1 Data Collection

All students’ submissions were collected using SuSy. We analyzed submissions from a

total of 19 different bachelors’ programs in the first term of 2020. The process of data

collection and analysis took place after the term ended.

Since our objective was to analyze characteristics present in correct code, a filtering

process had to be conducted before the analysis began. For each submission, SuSy gener-

ates a log file that contains various information, including the total number of test cases

passed by the submission. The system retains only the last submission made by each

student. By utilizing this log file, we were able to identify the code that passed all test

cases for all assignments.

In the aforementioned academic term, the course had a total of 14 assignments. As this

research was in its initial exploratory stages, it was decided to only collect tasks assigned

in the first half of the course, before the first partial exam. This decision considered the

identification of undesirable behaviors and incomplete comprehensions developed during

the learning of basic CS1 topics. Our goal in doing this was because if these characteristics

are not addressed early on, they may manifest in more complex topics taught later.

Additionally, some assignments within this interval covered the same topic and were

excluded from the analysis. In total, six assignments were chosen for analysis, as described

in Section 3.4.

3.3.1.2 Data Analysis

All submissions were manually analyzed, following the sequential order of the assignments.

We created spreadsheets to organize the occurrences identified in students’ code. Initially,

these occurrences were simple annotations that described coding behaviors present in the

4http://ic.unicamp.br/~susy/

62

submissions. As the analysis progressed, we identified similar behaviors and assigned

them provisional names, grouping and updating related occurrences as necessary. Since

we planned to obtain external validation (RQ1 and RQ2) of these coding behaviors be-

fore conducting further investigations, we did not perform any assessment of the MC³

frequency.

After completing the analysis of all submissions, a categorization process was initiated.

This process consolidated the MC³ by grouping similar occurrences that had been anno-

tated. The categories were named based on the work of Gama et al. [54]. We analyzed a

total of 2,441 submissions, resulting in an initial list of 45 MC³ divided into 8 categories,

detailed in Section 3.4.

While it can be argued that the identification of MC³ was thorough because we ana-

lyzed submissions from 19 different bachelors’ programs from the same CS1 course, there

are potential issues to be noted. The discovered MC³ may be influenced by institutional

locality since all programs were from the same institution. Furthermore, the interpre-

tation of MC³ may be influenced by the researchers’ bias. To address these issues, we

conducted a survey involving CS1 instructors to assess the MC³. The survey consisted of

an online questionnaire to classify the severity of each MC³, and a semi-structured inter-

view [81] to identify different teaching and learning contexts of CS1 and explore how MC³

could be addressed in classes. Due to the COVID-19 pandemic and the desire to reach

a broader audience, the survey was conducted entirely online. As the survey involved

human participants, it received prior evaluation and approval from a Research Ethics

Committee5.

3.3.2 RQ1: MC³ Severity Classification

Our objective was to determine how CS1 instructors would classify all 45 MC³ in terms of

the severity of these coding behaviors. By severity, we refer to the high priority need for

explanation in CS1 classes, as these MC³ indicate potential misconceptions or incomplete

understandings of the learning objectives. Another anticipated outcome of this phase was

to establish a ranking for the initial list of MC³. We believed that with a ranked list, we

would be able to identify and further investigate the most severe MC³.

3.3.2.1 Data Collection

We collected the data using an online questionnaire. The invitation period spanned from

January to February 2022, and we accepted responses until the end of March of the

same year. We distributed the invitations through discussion lists and directly contacted

authors who had recently published papers focused on CS1. The estimated average com-

pletion time for the questionnaire was between 40 to 55 minutes. The completion process

involved the following steps:

1. Detailing the Informed Consent Form that provided a comprehensive explanation

of the research and requested the respondent’s consent.

5Approval can be consulted in Plataforma Brasil with CAAE number: 51444121.5.0000.5404.

63

2. Basic contextualization questions about the respondent, including name, institution

of employment, years of experience teaching CS1, experience teaching Python, and

familiarity with other programming languages.

3. Questions for classifying the severity of the MC³. Each item in the questionnaire

presented the MC³ name, a brief description, a generic code sample illustrating the

MC³, and a description of the sample. The severity classification consisted of two

parts: a Likert item inquiring whether the respondent considered the MC³ to be

severe, and an optional text field for additional comments on the MC³.

4. Invitation for the respondent to participate in the semi-structured interview.

3.3.2.2 Data Analysis

The MC³ severity ranking was conducted based on the frequencies obtained from the

Likert items. Initially, we grouped the frequencies of similar response categories: strongly

disagree (SD) and disagree (D), neutral (N) and blank (B), and strongly agree (SA)

and agree (A). Next, we calculated the difference between the frequencies of those who

considered the MC³ to be severe and those who did not. This difference, referred to as

DIF, can be interpreted as (SA+ A)− (N +B + SD +D).

The commentaries provided by respondents were analyzed using context analysis [81].

Four main topics related to the MC³ were identified: severity, frequency, reasons for their

occurrence, and strategies to mitigate their occurrence. Although the results obtained

with this analysis were not directly used in the ranking of MC³, we believe that the

obtained data can contribute to a deeper understanding of these behaviors and serve as

a foundation for further investigation into MC³.

3.3.3 RQ2: Addressing MC³ in CS1

We conducted semi-structured interviews [81] with CS1 instructors to answer this ques-

tion. The interviews aimed to gather more information about the diverse contexts of

teaching and learning of CS1, explore whether the MC³ or similar behaviors occur in

other CS1 courses, and understand how instructors handle these behaviors. Additionally,

we sought to gather instructors’ opinions on potential interventions to address the MC³

in CS1 classes.

3.3.3.1 Data Collection

Since this research on MC³ was primarily exploratory in nature, we chose a semi-structured

format for the interviews to allow for flexibility. To ensure geographic diversity among

the CS1 instructors who had volunteered for the interviews, we chose to invite at least

one instructor from each institution in every participating country. The interviews took

place between March and July of 2022 and were expected to last approximately 40 min-

utes each. We utilized Google Meet as the platform to conduct the conversations. The

interviewing process consisted of the following steps:

64

1. A brief introduction by the researcher, including an explanation of the research

purpose and objectives, followed by a request for the interviewee’s consent to record

the interview.

2. A set of questions focused on the structure of the CS1 classes taught by the instruc-

tor.

3. A set of questions concerning the MC³ and how the instructor handles them.

4. A set of questions related to teaching and learning interventions aimed at mitigating

the occurrence of MC³ and the instructor’s perspectives on their implementation in

the classroom.

3.3.3.2 Data Analysis

After the interviews were concluded, each answer was compiled and analyzed individually

using content analysis [81]. The information obtained from the interviews was organized

into different categories, which included the context in which the instructors teach, such as

the class outline, assigned tasks, and the use of autograders. Additionally, the instructors’

opinions on the MC³ were examined, including whether they observed these behaviors in

their classes, how they dealt with them, and examples of other similar behaviors they

encountered. Furthermore, the instructors provided insights on potential artifacts and

interventions to address the MC³ in CS1 classes, such as the use of autograders capable

of detecting MC³ and the implementation of Active Learning [22] techniques specifically

targeting these coding behaviors.

3.3.4 RQ3: Frequency Distribution of MC³

Building upon the insights obtained from RQ1 and RQ2, our next endeavor was to explore

the automatic detection of the most severe MC³. Automating this procedure would not

only facilitate its integration with an autograder but also provide the opportunity to assess

the frequency of MC³ in our dataset, as well as in other datasets. Additionally, analyzing

the distribution of MC³ occurrences would shed light on when these behaviors emerge in

CS1, in terms of the topics covered in assignments, and whether they persist until the

end of the course.

3.3.4.1 Data Collection

To accomplish the automatic detection, we leveraged static analysis techniques [142].

Specifically, we employed Python module AST6 for this purpose. This module provides

tools to inspect and modify the Abstract Syntax Tree [77] of Python code, which is

generated after parsing the syntax but before compiling the bytecode.

Out of the 45 identified MC³, a subset of 15 was deemed the most severe (refer to

Section 3.4 for detailed information). We chose to prioritize the implementation of the au-

tomatic detection process for this subset. The implementation was carried out exclusively

6https://docs.python.org/3/library/ast.html

65

in Python 3, utilizing its AST module. We collected and analyzed students’ submissions

for the MC102 course that were elaborated in the first academic term of 2020 and the

second term of 2022.

3.3.4.2 Data Analysis

The assignments in each analyzed academic terms were different from each other. To

account for this, we opted to group them based on the CS1 concept intended to be

explored in these assignments. For each submission, we parsed the code and checked for

the presence of the selected MC³, counting whether the MC³ was present or not in the

code. Subsequent occurrences of the same MC³ in the same code were not counted twice.

During the implementation process, we encountered certain challenges in the auto-

mated detection of certain MC³. Specifically, decisions regarding code that was deemed

redundant, non-significant, or unnecessary still required instructor intervention. In such

cases, we employed threshold values to determine if the code exhibited the associated

MC³ or not. Further details on the grouping of CS1 concepts and the thresholds used can

be found in Section 3.4.

3.3.5 RQ4: Why Students Code with MC³

During the identification of the MC³, we were unable to directly inquire with the students

about why they incorporated these behaviors into their code, as the first term of 2020 had

already concluded. While we did gather some insights on the reasons for MC³ occurrences

through RQ1 and RQ2, those responses were provided by CS1 instructors, not students.

Given this limitation, we decided to investigate one context of teaching and learning of

CS1 to understand what could contribute to the development of MC³ by students. To

achieve this, we conducted an assessment during an academic semester of the MC102

course in the second term of 2022 and in the first term of 2023, engaging with both

students and the instructor. As with our previous methodology, this approach involving

human participants underwent evaluation and approval by a Research Ethics Committee7.

3.3.5.1 Data Collection

A semi-structured observation [37] methodology was employed to gather the data. Cohen

et al. [37] suggest that this approach is ideal for capturing real-time data in live situ-

ations, accessing personal knowledge, and analyzing details that might have been over-

looked. Given the phenomenological nature of the participants’ experiences, we adopted

a qualitative approach to explore the connections, causes, and correlations related to the

MC³ over time.

Prior to analyzing the students’ submitted code for the assignments, we obtained

their consent to use their code for research purposes. The presence of MC³ in the code

was examined after the submission deadline. In this research, all code submissions were

checked for the presence of any MC³, regardless of the severity of the behaviors. Following

each assignment analysis, one researcher conducted brief conversations of approximately

7Approval can be consulted in Plataforma Brasil with CAAE number: 60258622.8.0000.5404.

66

10 to 15 minutes, during which he asked the students about their reasons for incorporating

MC³ into their code. Simultaneously, he explained the identified MC³ to them. These

conversations took place outside of class hours, at a time and place mutually agreed upon

by the student and the researcher. The observational data was recorded by the instructor

using field notes.

In a similar manner, the instructor was asked for his consent to be observed during his

classes. The same researcher attended all lectures during the second term of 2022, each

one being a 2 hour slide based class with some code examples executed. The primary

objective of this observation was to analyze whether the educational material used in the

classes might potentially contain MC³, which could influence students to develop these

behaviors in their code. Analogous to the conversations, the researcher also recorded

observational data from the CS1 classes using field notes. At the end of the term, the

researcher conducted an interview with the instructor to present our findings.

3.3.5.2 Data Analysis

The field notes that were developed during the observation of the instructor and the

conversations with students were analyzed using content analysis [81]. By observing

the lectures, the researcher aimed to identify whether the educational materials utilized,

such as class slides or code developed in class, contained any instances of MC³. At the

conclusion of the term, all identified MC³ in these materials were cataloged. Similarly, we

analyzed the various reasons provided by the students for incorporating MC³ into their

code, grouping together similar explanations. While we investigated all instances of MC³

that occurred in both the classroom and the conversations, for the purpose of this paper,

we will focus solely on the most severe behaviors as identified in RQ1.

3.4 Results

This section presents the results obtained, following the same order as described in Section

3.3. Firstly, we provide a detailed explanation of the initial list of identified MC³ and

their respective categories, along with the assignments that were analyzed during this

phase. Next, we present the results obtained from the online questionnaire, including the

severity ranking of MC³ and code examples illustrating the behaviors classified as most

severe. Subsequently, we delve into the results from the semi-structured interviews with

CS1 instructors, followed by an analysis of the frequency distribution of the most severe

MC³. Finally, we conclude this section presenting the results obtained from the semi-

structured observation conducted with CS1 instructors and students. For more detailed

information on RQ1 and RQ2, we direct the reader to our Technical Report [116].

3.4.1 MC³ Identification

As mentioned in Section 3.3, a total of six assignments were selected for analysis. The

dataset consisted of 2,959 student submissions, out of which 2,874 passed all test cases.

These submissions were the last ones that each student submitted for the assignments.

67

Table 3.2 provides detailed information on the relevant topics covered in each assign-

ment, along with the number of general submissions, correct submissions, and the subset

of submissions that were analyzed. We chose to analyze roughly half (220) of the cor-

rect submissions for the last two assignments because they covered similar CS1 concepts

(loops). Moreover, we believed that, by doing this, we would still have an adequate vol-

ume of material for an initial exploratory manual analysis. After applying these filters,

we analyzed a total of 2,441 submissions.

Table 3.2: Description of how many student solutions to the assignments were submitted,
correct (i.e. passed all test cases), and analyzed (i.e. checked by the researcher).

Related Topic Submitted Correct Analyzed

Arithmetic operations: the int type 535 529 529
Arithmetic operations: the float type 499 491 491
Logical operations: the bool type 511 503 503
Conditionals I 499 478 478
Simple loops: while 459 452 220
Nested loops: for 456 421 220

Total 2,959 2,874 2,441

After analyzing all 2,441 submissions, we identified a total of 45 MC³, which were

split into eight distinct categories. Table 3.3 shows the list of MC³ with their severity

classifications. The categories are named as follows: A) Variables, identifiers, and scope

(A1 to A8); B) Boolean Expressions (B1 to B12); C) Iteration (C1 to C8); D) Function

parameter use and scope (D1 to D4); E) Reasoning (E1 and E2); F) Test Cases (F1 and

F2); G) Code Organization (G1 to G6); and H) Other (H1 to H3).

The topics listed in Table 3.2 correspond to the assignments appointed to students.

Given the allotted time for submission (typically three weeks), students often learn about

future concepts while working on prior assignments and may incorporate these concepts

into their code. This phenomenon may account for the presence of MC³ related to concepts

such as functions (category D) and lists (MC³ E2) in our dataset.

3.4.2 Questionnaire

A total of 32 volunteers participated in the questionnaire. The respondents were dis-

tributed across different countries as follows: Brazil (18), United States of America (9),

Australia (1), Colombia (1), Finland (1), Slovenia (1), and The Netherlands (1). All an-

swers received, including those with blank responses, were considered valid and included

in the analysis.

Table 3.3 displays the MC³ severity ranking, presenting the ID, name, total number

of responses for each Likert item category (strongly agree and agree (SA + A), neutral

and blank (N + B), strongly disagree and disagree (SD + D)), and the calculated DIF

(described in Section 3.3) for each MC³. The names given to the MC³ were carefully

chosen to best describe the associated misconceptions. The table also includes a threshold

indicated by a horizontal line, highlighting the most severe MC³. Any MC³ with a DIF

68

value greater than 10 was classified as most severe, resulting in a total of 15 behaviors

falling within this category8.

Table 3.3: Severity ranking of the 45 identified MC³. Table is sorted decreasingly by the
DIF column. The horizontal line highlights the 15 most severe MC³.

ID Name SA+A N+B SD+D DIF

C8 for loop having its iteration variable overwritten 31 0 1 30
B6 Boolean comparison attempted with while loop 26 4 2 20
C1 while condition tested again inside its block 26 3 3 20
B8 Non utilization of elif/else statement 24 8 0 16
C2 Redundant or unnecessary loop 24 5 3 16
C4 Arbitrary number of for loop executions instead of while 24 5 3 16
D4 Function accessing variables from outer scope 24 4 4 16
G4 Functions/variables with non-significant name 24 7 1 16
H1 Statement with no effect 24 7 1 16
B12 Consecutive equal if statements with distinct operations in their blocks 23 5 4 14
B9 elif/else retesting already checked conditions 23 4 5 14
E2 Redundant or unnecessary use of lists 23 3 6 14
A4 Redefinition of built-in 22 3 7 12
F2 Specific verification for instances of open test cases 22 8 2 12
G5 Arbitrary organization of declarations 22 6 4 12

C3 Redundant operations inside loop 21 9 2 10
E1 Checking all possible combinations unnecessarily 21 7 4 10
G3 Too many declarations in a single line of code 21 7 4 10
A2 Variable assigned to itself 20 7 5 8
A6 Variables with arbitrary values (Magic Numbers) used in operations 20 6 6 8
A7 Arbitrary manipulations to modify declared variables 20 7 5 8
B11 Consecutive distinct if statements with the same operations in their blocks 20 6 6 8
B10 Unnecessary elif/else 19 9 4 6
B3 Arithmetic expression instead of Boolean 19 6 7 6
B4 Repeated commands inside if-elif-else blocks 19 11 2 6
D1 Inconsistent return declaration 19 6 7 6
A8 Arbitrary treatment of the stopping point of reading values 18 8 6 4
B7 Boolean validation variable instead of elif/else 18 5 9 4
C7 Arbitrary internal treatment of loop boundaries 17 6 9 2
C6 Multiple distinct loops that operates over the same iterable 16 9 7 0
F1 Verification for non explicit conditions 16 9 7 0
H2 Redundant typecast 16 8 8 0
G6 Functions not documented in the Docstring format 14 14 4 -4
A1 Unused variable 13 9 10 -6
A3 Variable unnecessarily initialized 12 8 12 -8
B1 Redundant or simplifiable Boolean comparison 12 12 8 -8
D2 Too many return declarations inside a function 12 8 12 -8
B5 Nested if statements instead of Boolean comparison 11 12 9 -10
G2 Exaggerated use of variables to assign expressions 11 13 8 -10
C5 Use of intermediary variable to loop control 10 11 11 -12
D3 Redundant or unnecessary return declaration 10 12 10 -12
H3 Unnecessary or redundant semicolon 8 8 16 -16
B2 Boolean comparison separated in intermediary variables 7 9 16 -18
G1 Long line commentary 7 8 17 -18
A5 Unused import 5 8 19 -22

In this study, we will concentrate our analysis on the 15 most severe MC³. To illustrate

these misconceptions, we have created four sets of Python code. These code examples

were constructed to provide generic samples of each coding behavior.

8Thesis note: in this chapter, we exemplify and explore only the 15 most severe MC³. Chapter
5 presents Table 5.1, which lists all the teaching interventions developed in this thesis. Additionally,
Appendix A provides detailed information for all 45 identified MC³, including examples, rationale, con-
sequences, and possible classroom interventions.

69

3.4.2.1 Set 1

This example, denoted in Code 3.3, contains 5 MC³: A4, D4, G4, G5, and H1. In line 9,

the built-in function max was redefined (A4) by the user, creating it as a new function.

In this same function, variables a and b were accessed, but they were not present in the

function’s scope (D4). Variables that were not significantly named (G4) were declared

in the code, such as a, b, c, x, and y. The code was elaborated with an arbitrary

organization (G5) as it alternated between input (line 1) and function declaration (line

2). This pattern was further repeated in lines 7, 8, and 9. Lastly, a statement with no

effect (H1) was declared in line 4 because the result of the function round was not assigned

to a variable.

1 a = int(input ())

2 def foo(a):

3 a = a / 3.5

4 round(a, 2)

5 return a

6

7 b = int(input ())

8 c = int(input ())

9 def max():

10 if b >= c:

11 return b

12 return c

13

14 x = foo(a)

15 y = max()

16 print(x, y)

Code 3.3: Examples of MC³: A4, D4, G4, G5, and H1

3.4.2.2 Set 2

This example, denoted in Code 3.4, contains 4 MC³: B6, B8, B9, and B12. A while

loop was used instead of an if (B6) to check if the sum of num1 and num2 was greater

than 9 in line 4 because a break statement was declared in line 6. The non-utilization of

elif/else (B8) in line 10 could have resulted in the value of res being overwritten (lines

9 and 11) depending on the value of num2. The elif declared in line 15 checked if the

value of num1 was not even. However, this check was unnecessary because it was already

guaranteed when using an elif (B9). Lastly, the exact same condition was checked in

lines 18 and 20, albeit with distinct operations inside each block (B12). These conditions

could have been grouped in a single if statement.

70

1 num1 = int(input ())

2 num2 = int(input ())

3

4 while num1 + num2 > 9:

5 print(num1 + num2 , "has␣more␣than␣1␣digit")

6 break

7

8 if num2 <= 0:

9 res = num1 * num2

10 if num2 % 2 == 0:

11 res = num1 ** num2

12

13 if num1 % 2 == 0:

14 print(num1 , "odd")

15 elif num2 % 2 == 0 and num1 % 2 != 0:

16 print(num2 , "odd", num1 , "even")

17

18 if num1 == num2 * 2:

19 print(num1 , "multiple␣of", num2)

20 if num1 == num2 * 2:

21 print(num1 , "odd")

Code 3.4: Examples of MC³: B6, B8, B9, and B12

3.4.2.3 Set 3

This example, denoted in Code 3.5, contains 4 MC³: C1, C2, C4, and C8. A while

loop, declared in line 16, had its condition verified again in its block (C1) in line 19.

There was no need to verify numMax again since it was set at the end of the loop. The

for loop declared in line 9 was executed only once (C2), thus making it unnecessary. In

line 2, another for loop was declared to read and add values to a list. However, it was

arbitrarily declared (C4) to be executed 9999 times, hoping that the stopping condition

(line 4) would happen before reaching the maximum iteration value. Lastly, the for loop

declared in line 12 had its iteration variable k overwritten (C8) inside the loop’s body, in

line 14.

3.4.2.4 Set 4

This example, denoted in Code 3.6, contains 2 MC³: E2 and F2. A list was used to store

input values in lines 2 to 5. However, the storing process was not necessary (E2) if the

purpose was only to sum these input values, as described in the declared loop in line 8.

In this case, totalSum could have been calculated while reading the input. Now, suppose

that the set of input from open test cases was I = {{1, 1, 1}, {2, 2, 2}, {1, 2, 3, 4, 5}} and

the expected output was O = {{3}, {6}, {15}}. To obtain the correct result, the code did

not use the value of totalSum, but rather printed the expected values for each specified

entry (F2) in lines 11, 13, and 15.

71

1 numList = []

2 for i in range (9999):

3 a = int(input())

4 if a == 0:

5 break

6 numList.append(a)

7

8 numMax = max(numList)

9 for j in range (1):

10 print(numMax)

11

12 for k in range(numMax):

13 print(k + 1)

14 k += 2

15

16 while numMax != 0:

17 print(numMax)

18 numMax = numMax - 1

19 if numMax == 0:

20 break

Code 3.5: Examples of MC³: C1, C2, C4, and C8

1 numList = []

2 num = int(input())

3 while num != 0:

4 numList.append(num)

5 num = int(input ())

6

7 totalSum = 0

8 for item in numList:

9 totalSum += item

10

11 if numList == [1, 1, 1]:

12 print (3)

13 elif numList == [2, 2, 2]:

14 print (6)

15 elif numList == [1, 2, 3, 4, 5]:

16 print (15)

Code 3.6: Examples of MC³: E2 and F2

3.4.3 Interviews with CS1 Instructors

Out of the 32 instructors who had answered the questionnaire, 18 volunteered to partici-

pate in the semi-structured interview. We were able to conduct the interviews with nine

participants: seven from Brazil and two from the United States of America. The average

interview duration was approximately 42 minutes.

All interviewees stated that they have been using Python in their CS1 courses recently.

Instructors mentioned assigning summative tasks to students, which varied from lists of

72

exercises to coding projects. Six participants confirmed using autograders to assess these

tasks, while three preferred manual assessment, strictly not using autograders.

The way in which instructors use autograders also varies. Regarding students’ sub-

missions, three instructors stated that they manually check them, even if the code passes

the test cases. One instructor mentioned that he does not check the submissions, while

two instructors stated that they only check if the assignment is complex. Among the

respondents who do not use these systems, one mentioned that he is not familiar with

them, and two others stated that, since their classes are small, they prefer to manually

evaluate the assignments. They argued that this is the best way to assess if students are

understanding the concepts taught.

Interviewees mentioned that they have encountered the following MC³: B1, C2, F2,

and G4. Instructors also identified similar behaviors, such as the inadequate use of func-

tions (e.g., using a function that encapsulates the entire code), using lists when other data

structures would have been more appropriate, and inconsistent code style (e.g., spacing

between lines and characters).

All instructors expressed their interest in an autograder that can detect MC³. How-

ever, they also agreed that the feedback provided to students should be configurable,

as five interviewees emphasized that too much information can have a negative impact.

Other suggested features for this autograder included the application of machine learning

techniques to teach code refactoring, evaluation of code complexity, relaxing the strictness

of automated correction (removing the binary factor if a test case was passed or failed),

a dashboard showing statistics on the occurrence of MC³, and means to verify if students

are implementing the feedback related to MC³ in their code (such as questionnaires).

As an additional intervention method for addressing MC³, eight instructors expressed

interest in using Peer Instruction (PI) [38]. PI is an Active Learning technique that pro-

motes meaningful discussions among students regarding different comprehension aspects

of a topic. In the context of MC³, we proposed an idea where, after introducing a new

CS1 topic in class, instructors would administer a multiple-choice question. This ques-

tion would present code snippets constructed with MC³, and students would attempt to

identify and understand why these coding behaviors should be avoided. However, the

interviewed instructors highlighted that the optimal time to use this technique would

be after students have become familiar with the relevant CS1 topics. Additionally, in-

terviewees expressed concerns about the timing of administering these questions. They

suggested that it would be best to incorporate them in a dedicated class session, such as

one focusing on code quality. Only one instructor expressed disinterest in using this tech-

nique, citing limited time to implement it with undergraduate students. The instructor

also raised concerns about the potential for cheating or guessing among students when

answering multiple-choice questions.

3.4.4 MC³ Frequency Distribution

As mentioned in Section 3.3, we conducted an analysis of all MC102 assignments for the

first term of 2020 and the second term of 2022. The first term consisted of 14 assignments,

while the second term consisted of 15. Since the assignments in both terms explored

73

similar CS1 concepts, we grouped them together based on their general topics. This

grouping resulted in the identification of seven distinct main topics, encompassing a total

of 11,141 correct submissions. The distribution of submissions per topic is presented with

the MC³ frequency in Table 3.4.

By using the Python AST module, we managed to implement an automatic detection

for 14 out of the 15 MC³ classified as most severe. To simplify the implementation,

we focused on the fact that the analyzed code would be somewhat simple because it

would come from CS1 assignments solved by CS1 students. This allowed us to strive for

a generic code for automated detection as we could check simple cases that comprised

the MC³. For instance, regarding the MC³ C1 (while condition tested again inside its

block), our detection only checks for while loops in which the condition is composed of

only one variable. Our rationale for this was because it is rare for CS1 students to declare

a while loop with a condition comprised of more than one variable. Another example is

the detection for the MC³ B8 (Non utilization of if-elif-else). We limited it only to

check if there was declared an if-elif structure (without an else). In this case, our

rationale was to point out to the students that, probably, either their last elif could

have been an else, or the whole decision structure could have been made by only ifs,

as they were already mutually exclusive. In light of this approach, we were not able to

create a generic automated detection for the MC³ F2 (Specific verification for instances

of open test cases) since it depended heavily on the test cases.

Another challenge we faced was addressing the MC³ C4 (Arbitrary number of for loop

executions instead of while), E2 (Redundant or unnecessary use of lists), and G4 (Func-

tions/variables with non-significant names). We recognized that these asserting these

MC³ depends on the instructor’s perspective. To address this, we introduced thresholds

that can be set by the instructor to determine the presence of these MC³ in the code.

For C4, the code determines the presence of the MC³ if the number of iterations in the

range-based for loop is greater than or equal to a constant (set as 7 in our results).

Similarly, for E2, we count the number of lists in the code and check if it exceeds a con-

stant threshold (set as 10 in our results). As for G4, we established three constants: the

minimum number of characters for variables’ names, the minimum number of characters

for functions’ names, and the percentage threshold of variables or functions that can have

fewer characters than the specified thresholds. If the percentage of variables or functions

outside the specified thresholds exceeds the given percentage threshold, the code is con-

sidered to have the MC³. In our results, we set the minimum thresholds to 4 characters

for variables, 8 characters for functions, and 70% as the percentage threshold. We defined

these constants based on a small subset of students’ submissions we checked manually for

assignments in both academic terms.

Table 3.4 presents the distribution of the analyzed correct submissions for each topic

as well as the MC³ frequency. The DIF values are the same presented in Table 3.3.

The number of correct submissions per topic varied based on the number of assignments

for each term. Since the number of submissions varied for each topic, we calculated

the frequency as a percentage of correct submissions in which the respective MC³ was

exhibited. Since a single submission could have more than one distinct MC³, the columns

74

might not add to 100%. In Section 3.5, we delve into the reasons behind these variations

and discuss how they impact our findings.

Table 3.4: Frequency distribution of the most severe MC³ organized by assignment topics.
The analyzed correct submissions is presented in parenthesis for each topic. The frequency
is a percentage of correct submissions that exhibited the respective MC³. Table is sorted
decreasingly by Total.

MC³ DIF
Types, I/O,
Operations

(2,662)

Conditional
Commands

(1,445)

Repetition
Commands

(1,855)

Lists, Tuples,
Strings,

Dictionaries
(2,928)

Matrices
(1,237)

Searching
and Sorting
Algorithms

(813)

Recursion
(201)

Total
(11,141)

G4 16 61.8 44.8 26.6 19.1 32.7 26.3 60.7 36.7
B8 16 0.5 55.7 32.6 27.7 45.6 20.4 13.4 26.8
G5 12 0.1 1.0 1.6 5.5 30.0 29.2 32.3 7.9
D4 16 0.0 0.6 0.5 3.3 30.8 17.1 39.8 6.4
B9 14 0.0 3.2 5.5 2.8 0.2 3.9 0.0 2.4
A4 12 0.3 2.8 2.3 1.7 2.1 4.6 3.5 1.9
C8 30 0.0 0.1 2.5 2.8 2.7 4.7 1.0 1.8
C1 20 0.0 0.0 1.0 2.0 0.1 2.1 0.5 0.9
E2 14 0.0 0.1 0.2 0.4 3.3 0.9 2.0 0.6
B12 14 0.0 1.7 0.2 0.0 0.1 0.0 1.0 0.3
H1 16 0.3 0.3 0.3 0.2 0.3 0.1 0.0 0.3
C4 16 0.0 0.1 0.3 0.2 0.3 0.4 1.0 0.2
C2 16 0.0 0.1 0.2 0.3 0.6 0.0 0.0 0.2
B6 20 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0

3.4.5 Observation in a CS1 Course

The semi-structured observation took place in one MC102 class during the second term

of 2022 and another class in the first term of 2023. In 2022, a researcher observed the

lectures and had conversations with students. In 2023, the same researcher conducted only

the conversations. In total, 20 students and one instructor participated in the activities.

While the researcher observed and analyzed all lectures and educational materials, he

evaluated all assignments except for the ones regarding Searching and Sorting Algorithms

and Recursion (following the topics in Table 3.4).

3.4.5.1 Conversations with Students

Based on the researcher’s notes, we identified students’ reasons for 10 MC³: A4, B8, B9,

C1, C8, D4, E2, G4, G5, and H1. In general, two recurring comments were observed

regarding these MC³. Firstly, students expressed a concern about ensuring that their

code passed all test cases. This led to the development of MC³ such as C1 and B9, where

students included redundant checks to guarantee code correctness. This same mindset also

influenced other behaviors, including D4, G4, and G5, as students, focused only in the

functioning of their code, neglected coding guidelines such as code organization, providing

all function arguments, and using meaningful variable names. Secondly, students also

expressed to have a careless approach to coding. MC³ A4 emerged due to students

unintentionally redefining built-in functions without realizing it. Additionally, instances

of B8 occurred when students left unused code snippets in their solutions or just used a

copy-paste approach with elif statements, neglecting to consider an else clause.

75

We also observed instances where students demonstrated incomplete comprehension of

CS1 topics, leading to the occurrence of MC³. For example, instances of C1 arose because

students believed that the while loop condition must be checked at the end of its body.

Similarly, in the case of C8, students mistakenly thought that the iteration variable of a

for loop needed to be manually updated, leading them to overwrite it. Another common

observation was students coding with B9 due to a lack of understanding of how elif

statements work, resulting in the repetition of already checked conditions. Furthermore,

students, struggling with the concept of decision structures, resorted to coding with only

if statements, leaving their code prone to errors. Lastly, this misunderstanding of deci-

sion structures also influenced the occurrence of H1. Students mistakenly believed that

else clauses were mandatory and, without knowing what to express in them, included

statements with no effect to not alter the code output.

Lastly, students expressed their preferences for specific coding practices. One reason

for the occurrence of E2 was that students felt comfortable deliberately using lists. This

behavior stemmed from either a lack of awareness that lists were unnecessary for the task

or their familiarity with certain features of lists (e.g., using the sum() built-in function).

Similarly, the comfort students felt while coding influenced the occurrence of G4, as they

preferred using simple letters as variable names for the sake of ease and speed. We also

observed that the nature of the assignments themselves had an impact on the occurrence

of E2 and G4. For example, as the specific assignment for dictionaries did not force the use

of this data structure, students resorted to solutions created solely using lists. Likewise,

when assignments named entry values with non-significant names, students adopted these

names in their code and created other variables with similar non-significant names based

on the instructions provided.

3.4.5.2 Assessment of Educational Materials

The researcher only identified the MC³ A4 while analyzing the lecture slides and code

snippets developed in the classes. A code sample in the slides for Strings redefined the

built-in type str by assigning it to a new variable. The same behavior happened in the

slides for Dictionaries, albeit it was the max() function that was redefined as a variable.

The last built-in function that was redefined was bin(). This one was set as the argument

of a user-defined function in the slides for Recursion. In this case, there was a redefinition

even if it only pertained to the function’s scope. However, students who developed the

MC³ in their code did not justify having seen it in class.

We presented our findings to the instructor at the end of the 2022 term. In general,

he said he had overlooked the scenarios where a redefinition of built-ins can lead to

because A4 was present in code snippets that served a simple purpose in the slides. We

presented the concepts behind our study of MC³, and the instructor expressed interest in

learning more. He also suggested exploring automated detection using machine learning

techniques. The slides that contained the MC³ A4 had the code snippets modified for the

next term in 2023.

76

3.5 Discussion

In relation to RQ1 and RQ2, although we had initially aimed for a higher number of

volunteers, we found the geographic distribution of the 32 respondents to the questionnaire

to be satisfactory. Furthermore, all nine interviewees represented different institutions.

Therefore, we conclude that these factors contributed to gathering opinions from CS1

instructors teaching in diverse contexts, allowing us to assess the severity of and potential

approaches to addressing MC³ in CS1 classes.

As for RQ3 and RQ4, although both analyses were conducted within a single institu-

tion, we examined students’ submissions for 19 different bachelors’ programs MC102 in

2020 and 20 in 20229 to calculate the frequency distribution of MC³. Additionally, the

participants in the semi-structured observation represented different programs, namely

bachelor’s programs in chemistry engineering, statistics, and agricultural engineering.

Given the variation in programs across the terms analyzed, we can conclude that our

analysis encompassed students with diverse backgrounds and objectives in both research

questions.

3.5.1 MC³ Severity and Reasons for Occurrence (RQ1 and RQ4)

The identification and assessment of the MC³ followed some of the guidelines described by

Almstrum et al. [4]. Although our aim was not to develop a CI, we analyzed open-ended

MC102 assignments, consulted experts in the field (survey with CS1 instructors), and

conducted observations to understand the process by which students develop misunder-

standings (conversations with MC102 students). By conducting these three assessments,

we were able to mitigate potential biases in the opinions of the researchers who identified

the MC³. In the following subsections, we discuss the most severe MC³ within each cate-

gory (highlighted in Table 3.3), incorporating the opinions collected from CS1 instructors

and explaining why MC102 students incorporated those MC³ into their code.

3.5.1.1 A: Variables, identifiers, and scope

In this category, only A4 was classified as most severe. Instructors stated that the severity

is associated because this behavior can lead to unexpected errors in the code that will

be difficult to detect. However, instructors also stated that the occurrence is intrinsically

related to Python and the natural language students choose to program (e.g., English or

Portuguese). On the other hand, students explained that they did not pay attention while

programming, thus incorporated this MC³ in their code. In our analysis, we identified

redefinitions of built-in types (e.g., bool, dict, list, and str) and of built-in functions

(e.g., min(), max(), len(), input(), among others). Almost all those redefinitions

happened when students created variables with those names in their code. We agree with

the opinions stated by CS1 instructors, particularly when students are redefining built-

in types because typecasting is a common in CS1 assignments, especially when reading

9Thesis note: In the original article, this year was incorrectly cited as “2023.” I have taken the
liberty of correcting it to the accurate year in this thesis.

77

data from external sources. While we also identified this category present in other work

[39, 75, 92], this behavior did not appear in them.

The occurrence of A4 depends on the natural language used by the student for pro-

gramming. Students who prefer using English-based variable or function names are more

likely to redefine built-ins. While it is not possible to redefine built-in types in strongly

typed languages, it is possible to redefine built-in methods in languages like Java. How-

ever, we argue that this is less likely to occur arbitrarily, as opposed to built-in functions

in Python.

3.5.1.2 B: Boolean expressions

MC³ B6, B8, B9, and B12 were classified as the most severe in this category. Instruc-

tors generally agreed that these behaviors indicate a lack of clarity in students’ thought

processes when developing their own code. This lack of clarity often stems from an in-

complete or poor comprehension of decision statements. Another possible reason could

be the development of poor coding habits resulting from previous attempts by students

to learn programming.

For MC³ B6 and B12, we did not obtain specific results regarding why students develop

these misconceptions. However, the incorrect use of the while statement in B6 may be

related to students attempting to apply a newly learned concept in their code, even

when it is not necessary. This phenomenon is referred to as knee-jerk [134]. Soloway and

Ehrlich [126] describe MC³ B6 as follows: “An IF should be used when a statement body is

guaranteed to be executed only once, and a WHILE used when a statement body may need

to be repeatedly executed” (p. 597). As for MC³ B12, one possible reason is that students

are attempting to emphasize both conditional blocks with the same if statement. In this

case, students may or may not be aware that these blocks could have been merged. RPT

[75] has rules to extract duplicate declarations inside if/else statements, and Oliveira et

al. [92] identified misconceptions when students try to refactor these declarations, such as

keeping unnecessary else blocks and incorrectly updating necessary Boolean expressions.

Students provided different reasons for exhibiting MC³ B8. Among those who men-

tioned being absent-minded while programming, it was either because they perceived their

code to be already correct or because they wanted to quickly complete the assignment.

However, other students mentioned being unfamiliar with elif or else statements, re-

sulting in their avoidance of using these constructs in their code. This aligns with what

the instructors mentioned about incomplete or poor comprehension of decision structures.

In our opinion, students may simply be distracted and mistakenly use elif instead of an

appropriate else statement. However, coding with only if statements can lead to buggy

programs, as the stated conditions may not be mutually exclusive. This latter behavior

is indeed more severe and should be addressed accordingly.

The reasons behind students coding with MC³ B9 were similar to those for B8. In

addition to students attributing it to being absent-minded while programming, we also

identified comments indicating a poor comprehension of the elif statement. Although

one instructor mentioned that students exhibiting this behavior may do so to help organize

their thought process, we consider that if this misconception persists in later parts of a

78

CS1 course, it indicates a fundamental misunderstanding. Table 3.4 illustrates that B9

did indeed appear throughout the analyzed assignments. De Ruvo et al. [39] identified

MC³ B9 as ’Unnecessary IF/ELSE’.

When considering that MC³ B6, B8, B9, and B12 all pertain to conditional state-

ments, we argue that these MC³ can occur in programming languages that employ such

constructs. While the use of the elif statement is exclusive to Python, all the afore-

mentioned MC³ can also manifest in other programming languages using only if-else

statements.

3.5.1.3 C: Iteration

Among the MC³ in this category, C1, C2, C4, and C8 were considered the most severe.

According to the instructors, these behaviors primarily stem from students’ lack of com-

fort with a particular structure, leading them to prefer one over another. One common

commentary was that instructors intentionally do not teach the break statement to dis-

courage coding behaviors associated with these MC³. The use of break is a topic of

discussion among both CS1 instructors and the programming community at large [127].

We were unable to gather specific information on why students implemented MC³ C2

and C4 in their code. In the case of C4, we agree with the instructors’ views that students’

preference for a specific construct indicates a lack of understanding. Instead of using a

while loop, students with this behavior replace it with a for loop with an arbitrary

number of iterations. This suggests a potential misunderstanding of while loops. On the

other hand, we argue that C2 is another example of the knee-jerk phenomenon. In this

case, students use loops that execute only once because they have recently learned the

concept and think it is necessary to apply it.

Regarding the MC³ C1, students provided two main reasons for their behavior: either

they wanted to ensure the correctness of their code, or they were unaware that manually

checking the while condition was unnecessary. In both cases, evidence suggests that

students have an incomplete understanding of how the while construct works, and this

misconception should be addressed when identified. RPT has refactoring rules similar to

C1 and other previously mentioned MC³, such as removing break statements in a loop or

rewriting a for loop with a while [75]. Oliveira et al. [92] also identified misconceptions

when students attempt these refactorings, such as replacing a for loop with an incorrect

while or for-each loop.

In the case of the MC³ C8, students stated that they either believed incrementing the

iteration variable was necessary or alleged overwriting the said variable due to inatten-

tion. These commentaries exemplify an incomplete understanding of loop constructs, as

students are confusing while and for loops. Additionally, the inattention in overwriting

the iteration variable can be attributed to students’ lack of experience. We agree with

CS1 instructors who emphasized the need to address this behavior to prevent code mal-

functions that may be difficult to detect and correct in the future. Similar to the previous

category, MC³ C1, C2, C4, and C8 can manifest in other programming languages with

iteration constructs. While there may be some variations, such as with the for-loop in

Java, we argue that these misconceptions can generally be replicated.

79

3.5.1.4 D: Function parameter use and scope

In this category, only the MC³ D4 was considered as most severe. CS1 instructors stated

that although this is another Python specific misconception, it can lead to bad coding

practices in the future, such as code that is both difficult to read and maintain. In-

structors also noted that this behavior is often observed in students with previous coding

experience. Based on the students’ explanations, it was identified that D4 was primarily

caused by inattention while programming. In this case, students did not pass variables

as arguments to a declared function but observed that it did not affect the correctness of

the code. Therefore, students did not bother passing variables as arguments. To promote

the practice of writing readable and maintainable code, we argue that this MC³ should

be properly addressed when detected.

The occurrence of D4 is related to the language being static or dynamic typed. In

Python, this MC³ can occur more readily since variables do not need to be explicitly

declared as globals to be used inside functions without being passed as parameters. The

use of globals is discouraged in CS1 and D4 should not happen in any programming

languages.

3.5.1.5 E: Reasoning

MC³ E2 was the only one classified as most severe in this category. According to CS1

instructors, they only see a problem with lists that are created and used only once,

suggesting that students who exhibit this behavior may have misunderstood the concepts

of lists. Instructors also mentioned that this MC³ is common and difficult to rectify.

Based on students’ comments, the predominant reason for using lists in this manner is

the comfort associated with this structure. Students also mentioned using lists to store

input first and then consume it later.

While it is acknowledged that students may be organizing their thoughts by creating

composition plans [51, 126] that involve separating input from consumption, our analysis

suggests that some students may develop a reliance on lists as the default solution for any

assignment. During conversations about the assignment designed for the use of dictio-

naries in Python, students who did not use this data structure in their solutions claimed

to have managed using only lists. Although the use of dictionaries was not mandatory in

the assignment, these students ended up with larger and more complex code. Based on

this observation, we reason that a clear and meaningful use of lists should be addressed

in CS1 to mitigate this MC³. We argue that the occurrence of E2 is related to the ease

of use of lists in Python. Students might not develop this MC³ in C, for example, but it

is possible in other languages such as C++ or Java.

3.5.1.6 F: Test cases

Among the MC³ in this category, only F2 was classified as most severe. According to

instructors, students exhibiting this behavior may either struggle with understanding the

functionalities of the autograder or attempt to cheat the system. However, during the

conversations with students, we did not specifically identify this particular MC³. Our

80

conclusion is based on the instructors’ opinions, suggesting that students displaying this

behavior may have difficulties to understand the concepts of input and output. The

occurrence of F2 is solely dependent on the use of autograders.

3.5.1.7 G: Code organization

The most severe MC³ in this category were G4 and G5. Instructors emphasized that

variables or functions with insignificant names should only be used in coding drafts, not

in the final submissions. They also commented that disorganized code reflects a lack of

clarity in students’ reasoning, which explains why students arbitrarily define functions.

Instructors generally agreed that both MC³ should be addressed early in CS1 courses to

promote code legibility and maintainability.

Regarding G4, students provided various explanations. Students mentioned that they

used small, alphabetical variable names to quickly develop their code. Others claimed

to be influenced by the assignment’s description. For instance, if in the description was

said that variables a, b, and c were specified for the sides of a triangle, students naturally

created these variables in their code. While these names were meaningful in the context

of the assignment, our analysis revealed that students also used arbitrary alphabetical

letters for other variables required for features such as triangle classification. Based on

this, we underscore the importance of teaching significant naming in CS1 classes while

ensuring that assignment descriptions align with this principle.

As for G5, students echoed the reasons mentioned by the instructors. They stated that

they created functions during their thought process while solving the assignment, and

since their code was correct, they did not prioritize organizing them. We argue that this

behavior arises because students are not being assessed on code organization. However,

it is crucial to address this issue when detected to code readability and maintainability.

Since naming variables or functions and the organization of declarations is commonplace

in other programming languages, we also argue that the occurrence of both G4 and G5

are not exclusively to Python.

3.5.1.8 H: Other

Among the MC³ in this category, only H1 was classified as the most severe. Instructors

stated that this behavior often arises from a lack of attention while students are coding

and, if left unaddressed, can result in future bugs. While it is common at the beginning

of the course, instructors mentioned that if it persists in later parts, it indicates that the

student is struggling with the underlying concepts. In our conversations with students,

we observed instances of loose declarations, such as a True statement, placed within the

body of an unnecessary else clause. Students explained that they believed the loose

statement was necessary to maintain the code’s functionality. While we acknowledge that

this MC³ is related to a lack of attention while coding, it can be mitigated by encouraging

students to refine their code even after it is correct. De Ruvo et al. [39] listed a semantic

style similar to H1 called "Useless Declaration / Assignment Division". We are unaware

of anything that can impede the occurrence of H1 in other programming languages.

81

3.5.2 Addressing MC³ in CS1 Classes (RQ2 and RQ3)

The decision to study MC³ in Python was well-founded as this language is widely uti-

lized [13, 58]. This assertion was further supported by the CS1 instructors who were

interviewed. Our findings revealed that CS1 students are assigned various types of pro-

gramming tasks, ranging from practice exercises to final projects. MC³ can emerge within

the process of students’ developing their solutions to these multiple types of assignments.

This factor underscores the need for diverse approaches to address MC³ within CS1 classes.

3.5.2.1 Insights from CS1 Instructors

We observed that the decision to use autograders in CS1 classes depends on various factors,

such as class size and the complexity of configuring the autograder for different assign-

ments. Considering these factors, an effective autograder capable of detecting MC³ would

need to be adaptable and applicable in diverse teaching contexts of CS1. Furthermore,

according to the instructors, automated detection alone is not sufficient. The feedback

provided by the tool is a crucial aspect that can either motivate or demotivate students.

Henceforth, we argue that careful consideration should be given to the construction and

delivery of feedback, as overly technical information may not be helpful, especially for

beginners.

We also noted that implementing PI would require preparation and adjustment of

CS1 courses, as half of the interviewees admitted being unfamiliar with Active Learning

techniques. This implementation would also increase the workload for instructors [30].

However, despite these challenges, research has demonstrated positive outcomes when

employing Active Learning techniques [120, 121]. For example, students achieved better

results compared to traditional teaching methods [122], and failure rates were reduced

[102]. These results serve as motivation for the use of PI in CS1 classes. We argue that

integrating PI with the study of MC³ would not only complement the feedback provided

by an autograder capable of detecting these behaviors but would also provide new insights

into why students code with MC³.

3.5.2.2 Insights from MC102 Students

After concluding the conversations with students, we distributed a survey to gather ad-

ditional insights about their experiences with learning about MC³. Out of the 20 partic-

ipants, eight responded to the questionnaire. Although the response rate was relatively

low, these responses provided valuable insights into how students reflected on the MC³

discussed during the conversations and how they believe MC³ could be addressed in the

context of MC102.

Students shared that they have become more attentive to code organization, emphasiz-

ing the importance of using meaningful variable names (MC³ G4) and declaring functions

at the beginning of their code (MC³ G5). In terms of Boolean expressions, students men-

tioned that they have learned about the functionality of the elif statement, thus avoiding

checking already performed checks in previous if statements (MC³ B9). Additionally,

students reported that their misunderstandings regarding if-elif-else constructs have

82

been clarified. Lastly, students expressed increased awareness to avoid rechecking the

while condition at the end of its body (MC³ C1).

Overall, students expressed agreement that MC³ should be addressed in the classroom.

They provided several suggestions on how to incorporate discussions about MC³ into the

teaching process. One suggestion was for the instructor to select anonymized student

solutions to the assignments and discuss the MC³ present in these solutions during lec-

tures. If not done during lectures, students suggested that teaching assistants could fulfill

this role during practice hours. Another suggestion involved sending individual e-mails to

students, explaining the specific MC³ found in their assignment solutions. One student

emphasized the importance of timely feedback on MC³, as they would not remember

their solutions after some time had passed between submission and classroom discussions.

Lastly, a student proposed that the class slides for each CS1 topic should already include

information about the most frequent MC³.

The feedback received from students indicated that they found the conversations to

be positive and helpful. Students’ suggestions for addressing MC³ in CS1 classes comple-

mented insights from interviewed instructors. These suggestions and insights were crucial

to understand the reasons for the development of MC³ and should provide a foundation to

the design of formative feedback messages, which can later be incorporated to autograders.

3.5.2.3 Insights from MC³ Automated Detection

The frequency distribution of MC³, as presented in Table 3.4, reveals that these mis-

conceptions can occur throughout the entire duration of a CS1 course, although their

occurrences are generally not high. It is important to note that, on a first glance, certain

MC³ should not be prone to occur in assignments conducted before the corresponding

CS1 topic is taught. For instance, in MC102, repetition commands are taught after con-

ditional commands. One might assume that students would not develop MC³ related to

loops before the concept of loops is introduced. However, the table indicates occurrences

of C8, C2, and C4 in assignments focused on conditional commands. Similarly, MC³ D4

and G5, which are function-related misconceptions, occur before functions are taught in

the same CS1 course, which is right before the topic of matrices. Our evidence suggests

that students developing misconceptions before the teaching of the related CS1 topic may

indicate prior programming knowledge, which aligns with the observations made by CS1

instructors.

The distribution of MC³ G4 and B8 should be interpreted with caution. As mentioned

earlier, our initial development of the automated detection system relied on generic rules

as a foundation to keep its usage simple. In the case of G4, we used constant thresholds to

determine whether variables and functions had significant names based on their character

length. This approach was influenced by the variable and function names provided in the

assignment descriptions, as students often used these names in their code. Consequently,

some names that met our thresholds might still be considered insignificant based on

the assignment context. Regarding B8, our detection was limited to identifying elif

statements without an accompanying else statement. While we acknowledge that this

83

issue should be addressed in feedback, we recognize that it is not as severe as the presence

of consecutive if statements that are not mutually exclusive.

We acknowledge that linting tools, which identify bugs, errors, and code anomalies

according to a specific coding style [39], could also detect MC³, particularly those in cat-

egory A. However, these tools often provide extensive feedback that may overwhelm CS1

students [74, 75]. Although their feedback can be customized, it raises the same regard-

ing instructors’ increased workload. Furthermore, the effectiveness of these tools depends

on the topics covered in each course, as the CS1 syllabus may vary [13, 118]. Evidence

suggests further research to explore and develop viable and comprehensive approaches to

integrating automated MC³ detection in CS1 courses.

3.6 Limitations and Threats to Validity

The primary limitation of this study regards the teaching context of the CS1 course used

for identifying and analyzing the MC³. Although this course was from a single institution,

the analysis was composed of different undergraduate programs. Additionally, the course

taught the Python programming language using the imperative paradigm. We recognize

that MC³ may occur in other languages, but some misconceptions like A4, D4, and E2 are

more prone to happen in Python. Therefore, we consider that replication of this research

may differ when conducted in CS1 courses that use different programming languages and

paradigms.

Another limitation stems from the dataset used to identify MC³. While the analyzed

assignments (Table 3.2) and the identified MC³ categories (Table 3.3) represented topics

listed as most covered in typical CS1 courses [13, 118], we acknowledge that our MC³ list

may not be exhaustive. Specific MC³ related to other CS1 concepts may exist. However,

since our data demonstrated students incorporating MC³ throughout the entire semester,

we argue that the identified listing remains significant for addressing MC³ in CS1 classes.

The subjective nature of identifying the MC³ poses the main threat to the validity of

this study. To mitigate this concern, we developed the survey with CS1 instructors. The

respondents’ geographic distribution, along with their diverse teaching contexts, helped

identify the most severe MC³ that should be adequately addressed in CS1 classes.

3.7 Conclusions

The objective of this study was to identify characteristics in code, which, despite pass-

ing all test cases in an autograder, indicated faulty or incomplete understandings of CS1

concepts. These identified characteristics were termed Misconceptions in Correct Code

(MC³). By analyzing 2,441 student submissions to assignments in a CS1 course taught

in Python using the imperative paradigm, we identified a total of 45 MC³. These mis-

conceptions were divided into eight categories: A) Variables, identifiers, and scope; B)

Boolean expressions; C) Iteration; D) Function parameter use and scope; E) Reasoning;

F) Test cases; G) Code organization; and H) Other.

84

To determine the severity of each MC³ and prioritize those that required immediate

attention in the classroom, we conducted a survey with CS1 instructors. A total of 32

instructors participated in an online questionnaire, which included Likert-item questions

to assess the severity of each MC³. Additionally, nine of these instructors took part in

a semi-structured interview, aimed at exploring different strategies to address MC³ in

various teaching and learning contexts within CS1 courses. Furthermore, to gain insights

into the reasons why students incorporated MC³ in their code, we conducted a semi-

structured observation in a CS1 course. This observation involved 20 students and one

instructor. Additionally, we developed an automated detection method, based on static

code analysis, for the MC³ identified as the most severe. All methods that included

research with human participants were first assessed and approved by an Ethics Research

Committee.

We have identified and ranked 15 MC³ as the most severe out of the total identified

misconceptions. Among these, eight are directly related to core concepts of Boolean ex-

pressions and iteration, which are fundamental in a typical imperative-based CS1 course.

Both instructors and students provided insights into the reasons behind the development

of these MC³. Some of these reasons included: students’ misconceptions about Python

constructs, such as decision statements and loops; as well as a careless approach to code

development, where the focus is solely on achieving correctness with regard to test cases.

Instructors and students have suggested various strategies to address MC³ in CS1 classes:

integrating the detection of these misconceptions into an autograder to provide formative

feedback; incorporating MC³ into lecture slides or during practice hours; and integrating

them into Active Learning techniques like Peer Instruction. Additionally, our initial im-

plementation of automated detection revealed that while these misconceptions may not

occur in large numbers, they are distributed throughout the entire CS1 course.

Based on the evidence obtained, it is concluded that research on MC³ is well-founded

as it provides valuable assistance to CS1 students and instructors by identifying under-

lying misconceptions that can persist even in correct code. If left unaddressed, these

misconceptions may carry over into subsequent CS courses, hindering students’ progress.

The 15 MC³ identified as the most severe were found to be rooted in faulty understand-

ings of CS1 topics and a lack of attention to coding characteristics such as readability

and maintainability. While there is ongoing discussion among instructors and teaching

assistants regarding the prioritization of factors like code efficiency versus readability and

maintainability [11, 51], researchers argue that stimulating behaviors related to the latter

is more beneficial for CS1 students [39, 70, 74]. Therefore, we advocate that addressing

MC³ in CS1 classes should involve educational materials taught by both instructors and

teaching assistants, assignment design, and formative feedback. The insights obtained by

students and instructors regarding the reasons behind MC³ occurrence serve as basis for

creating feedback messages that can improve teaching and learning outcomes [31]. The

aim is to provide timely and formative feedback that closely aligns with the guidance an

instructor would offer since the purpose of the course is to teach and not to grade [45].

85

3.8 Afterword

The names assigned to each of the eight MC³ categories, as described in Section 3.4, were

inspired by the taxonomy used in the work of Gama et al. [54]. Adopting a taxonomy

from an established study on Python misconceptions appeared to be a suitable approach.

However, we had to develop new categories to more accurately describe our identified

groups of MC³ for those we could not find a proper group in the related work. As earlier

mentioned in Chapter 2, the MC³ categories match the grouping of the identified most

covered topics, and this match will be further discussed in Chapter 5.

Section 3.4 outlined the CS1-related topics covered in each of the six assignments used

as the basis for manually identifying the 45 MC³ (Table 3.2). However, as noted, the

submission deadline for an assignment is typically three weeks, allowing students to learn

new concepts while still working on their previous assignments. Additionally, due to the

COVID-19 pandemic, these deadlines were exceptionally extended for that academic term

of MC102. Considering the deadline for the last assignment we used in our analysis, we

expect that students could have already been exposed to the following topics: basic con-

cepts of computer organization; data I/O; arithmetic, logical, and relational expressions;

conditional commands; repetition commands; lists, tuples, dictionaries, strings, and ma-

trices; and functions and variable scope. This factor provides further explanation on why

we identified MC³ related to topics beyond those listed in Table 3.2.

86

Chapter 4

From forest to leaves: assessing and

addressing misconceptions in

programming novices’ correct code1

Abstract: Use of automatic grading systems help alleviate instructor’s workload in in-

troductory programming courses (CS1). However, novices may over rely on correctness

and still exhibit coding behaviors that potentially indicates misunderstandings of the con-

cepts taught in the course. In this work, we investigate students’ code for a Python CS1

course to assess occurrence of misconceptions present in code that already produces the

expected results. These were named Misconceptions in Correct Code (MC³). We con-

duct a large-scale study analyzing over 40,000 correct submissions from students in eight

academic terms of a CS1 course, assessing characteristics of the frequency distribution of

MC³. Our results indicate that, by the end of the CS1 course, a fraction of novices still

struggles to grasp fundamentals regarding conditional and repetition commands, as well

as exhibits a lack of effort to produce code that promotes readability and maintainability.

Evidence also suggests that MC³ are persistent across the academic term, indicating that

students do not correct these behaviors by themselves. We propose that CS1 students

should receive feedback on their correct code especially when they might not fully un-

derstand the course’s learning objectives. In order to do that, instructors should also

implement formative artifacts to engage students in understanding the consequences that

may befall lest those misconceptions are not addressed.

4.1 Introduction

Over the years, numerous studies have focused on identifying factors that hinder the

learning process for novice programmers. These studies often focus on introductory pro-

gramming courses, commonly referred to as CS1 and CS2 [8]. Typically offered during

the early stages of undergraduate programs, these courses play a crucial role in laying

the foundation for students’ programming skills. Despite ongoing debates on the specific

1This paper was not yet published. However, it was constructed as a journal article for future sub-
mission.

87

topics that should be covered in these courses [13, 62, 118], they consistently face common

challenges, including high dropout and failure rates [2, 76, 98].

A particular area of research aims to identify, understand, and address common mis-

takes made by novice programmers. In the context of CS1, these mistakes are described

using various terms such as faulty comprehensions, issues, errors, and misconceptions

[106]. The differences in these terms reflect the specific aspects of code that researchers

choose to focus on. Some studies investigated how students learn to program, targeting

specific levels of code complexity [41, 42, 126, 128]. Others concentrated on compiler

error messages, seeking to improve the presentation of these messages to novice program-

mers [7, 15, 99]. Similarly, other research identified students’ misconceptions through

analysis of incorrect exam or assignment solutions [6, 28, 54]. However, some studies

focused on identifying misconceptions in code that already produced the expected re-

sults [39, 75, 92, 114, 119]. These studies highlighted the importance of addressing these

misconceptions even in seemingly correct code, as they possibly indicate incomplete or

incorrect understanding of the underlying concepts. Independent of the focus, all research

in this category is important because not only do these misconceptions hinder students

in CS1, but they can also continue to manifest in later courses [72].

The initial step in understanding common mistakes among novice programmers of-

ten involves observation processes. Large-scale studies have been pivotal in identifying

the frequency distribution of error messages [34, 104], analyzing demographic contexts

regarding error messages [141], and studying the time it takes students to rectify errors

[5]. Furthermore, misconceptions can be addressed through concept inventories, validated

assessment instruments designed to pinpoint and rectify misconceptions within specific

knowledge domains [4]. These inventories may focus on particular topics such as recur-

sion [61], general concepts of CS1 regardless of programming languages [71, 131], or focus

on specific languages such as C [28]. Ongoing research is exploring concept inventories

for languages like Java [30] and Python [54]. Once sets of misconceptions are identi-

fied and validated, they can be incorporated into teaching in other ways. These include

providing formative feedback generated through automated detection of misconceptions

[47, 50, 59], addressing misconceptions through educational media [20, 97, 100], creating

repositories that present fine-grained information on misconceptions [36], and developing

sets of questions that educators can integrate into their classrooms [55].

In a previous study [119], we explored a specific type of misconception concerning CS1

topics in Python, referred to as Misconceptions in Correct Code (MC³). MC³ are coding

behaviors that indicate an incomplete or incorrect understanding of CS1 topics. These

coding behaviors are present in student code that already produces the desired results.

We also identified that MC³ are identified in teaching environments that use autograders

[65], which are automated assessment tools that often grade students’ submissions mainly

for code correctness [103]. For example, students may mistakenly include redundant logic

in an else clause, believing it to be mandatory. In this case, students exhibit a faulty

comprehension of conditional commands albeit their code produces the expected output.

In this work, we conducted a large-scale study using automated MC³ detection in a CS1

course at a Brazilian state university to assess the persistence of MC³ and further analyze

the frequency behavior of their occurrences.

88

This study aimed to address the following research questions:

• RQ1: How are the occurrences of MC³ distributed throughout academic terms of a

CS1 course?

• RQ2: In what ways does the passage of time affect MC³ occurrences throughout the

academic term?

Our large-scale analysis, encompassing over 40,000 student code submissions across

eight academic semesters, reveals that while MC³ vary in frequency, students do not ap-

pear to naturally correct these behaviors over the academic term of the CS1 course. Fur-

ther analysis shows that the frequency distribution of MC³ remains persistent throughout

the academic term. In other words, students begin to develop MC³ at some point during

the course, and these misconceptions may even carry over into later CS courses. Addi-

tionally, MC³ occurrences do not seem to be influenced by the proximity to assignment

deadlines, nor are they dependent on previous occurrences.

We believe that the findings of this study can contribute to enriching the community

discussion on the general assessment of student learning in CS1. MC³ present challenges

as they manifest in an already functioning code, influencing students’ perceptions of the

importance of learning about these behaviors.

The remainder of this paper is structured as follows: Section 4.2 provides background

information and presents related work. Section 4.3 presents more information about

MC³. The methods are described in Section 4.4, followed by the obtained results and its

discussion in Section 4.5. Section 4.6 described the implications of the results for CS1

teaching. Section 4.7 describes the limitations and threats to validity, and the conclusions

are presented in Section 4.8.

4.2 Background and related work

This section provides a review of previous research addressing challenges similar to those

examined in this study. We begin by discussing studies that investigated why novices

elaborate code that is correct but also presents poorly constructed structures. Following

this, we explore large-scale studies that focused on analyzing students’ errors. At the end

of this section, a comparison of how this work differs from related ones is presented.

4.2.1 Assessing correct but poorly constructed novices’ code

Soloway and Ehrlich [126] proposed that novices and expert programmers differ in their

knowledge of programming plans and rules of programming discourse. Programming plans

involve action sequences, such as item search loops, while programming discourse rules

encompass general conventions expected by experienced programmers, like naming vari-

ables or functions appropriately. According to the authors, a program can be technically

correct but difficult to read or write if the programmer deviates from these discourse

rules. In their empirical study involving 180 programmers, including novices and experts,

89

Soloway and Ehrlich compared the performance of evaluating programs constructed with

and without adherence to these rules. They found that expert programmers performed

similarly to novices when prompted with programs that violated discourse rules.

Joni and Soloway [70] proposed an alternative approach to assessing students’ code

by prioritizing readability over efficiency, in which the latter is generally used to evaluate

a working but poorly constructed program. They argued that readable code follows

a concise plan structure, minimizing confusion for other programmers. In their study,

they analyzed 57 examples of working but poorly constructed code from around 200

students in an introductory Pascal course. Applying the concepts of programming plans

and rules of programming discourse, they found that over 90% of the analyzed code

violated these rules, leading to reduced readability. The authors identified specific rules

related to variable management, if statements, while loops, and students’ rationale for

code construction.

Fisler et al. [51] advocated for the teaching of problem decomposition and program-

ming plans in CS1 courses across undergraduate programs. Their multinational study

introduced modernized plan-composition problems in CS1 courses, encompassing both

imperative and functional programming paradigms. Students were tasked not only to

elaborate solutions to these problems but also rank their preference on preestablished

solutions. The authors highlighted the impact of library functions on students’ plan com-

position, as well as how programming paradigms influence the creation of intermediate

variables.

In a related study, Izu et al. [69] aimed to improve program comprehension skills in

novice programmers through the principles of program composition and plans. This pro-

gram comprehension involves code reading, interpretation, and explanation skills. Draw-

ing from a review of the literature and insights from experienced instructors, the Working

Group developed a map of learning activities and possible learning trajectories. These

resources were designed to help instructors decompose complex tasks and identify the

targeted concepts for program comprehension.

4.2.2 Large-scale studies in CS1

Altadmri and Brown [5] analyzed Java code from more than 250,000 students worldwide,

comprising several different institutions within an academic year. These codes were ob-

tained from the Blackbox dataset [26], a large repository that collects data from the BlueJ

IDE, mainly used by novice programmers. The authors assessed 18 types of mistakes, in-

cluding syntax (in which the program does not compile) and semantic (in which the

program does compile but produces a wrong output) errors. In their findings, Altadmri

and Brown noted that, in addition to mismatching brackets or quotations, semantic er-

rors were among the most frequent. The frequency of these errors varied throughout the

academic term, with syntax errors being more frequent at the beginning and then dimin-

ishing, whereas semantic errors exhibited the opposite trend. In addition, students tended

to spend less time rectifying syntax and type errors compared to semantic errors. This

observation suggests that semantic errors pose greater challenges for students to resolve,

as indicated by the authors’ analysis.

90

Pritchard [104] conducted a study investigating syntax and run-time errors in both

Python and Java. The datasets analyzed comprised 640,000 submissions with errors in

Python and approximately 4 million in Java. These datasets were sourced from CS Circles

[105] and Blackbox. While the authors identified the most frequent error messages in each

language, their primary objective was to determine if the error frequency adhered to a

Zipf-Mandelbrot distribution. This distribution implies a certain inherent order to error

messages, ranging from most to least frequent. In their findings, Pritchard demonstrated

empirically that the error frequencies indeed resemble the Zipf-Mandelbrot distribution,

shedding light on the underlying structure of error occurrence in programming languages.

In a similar study, Caton et al. [34] analyzed 32,000 Java submissions from novice pro-

grammers using the CodeRunner platform. The authors aimed to explore the relationship

between syntax and compiler errors and cases where code runs but produces incorrect re-

sults. By categorizing error frequencies into different states, Caton et al. employed a

combination of Markov chain analysis and Association Rule Mining to uncover patterns

and relationships. They observed that simple errors that led to a faulty compilation of-

ten recurred successively. Furthermore, these simple errors were found to increase the

likelihood of code that compiled, but produced the wrong results by 50%. The authors

advocated that teaching contexts that use autograders should present materials to make

students aware of these error scenarios.

Wang et al. [141] conducted a large-scale randomized controlled trial to evaluate the ef-

fectiveness of error messages in introductory programming courses. Their objective was to

compare traditional Python error messages with two novel approaches that utilized Ope-

nAI’s GPT to generate enhanced error messages. The study involved over 8,000 students

from 146 countries, resulting in the generation of over 400,000 errors across different types

of messages. In assessing effectiveness, Wang et al. analyzed the time students took to fix

these errors. Additionally, the authors analyzed effectiveness by demographics, includ-

ing different human development indices, gender, and previous programming experience.

Overall, the findings suggested that error messages generated by GPT were consistently

more helpful to students across diverse demographics compared to traditional Python

error messages.

4.2.3 Comparison with our work

Table 4.1 provides a summary of the contributions of the most relevant previous studies

compared to ours. The table outlines the corpus analyzed to make up each study, cate-

gorized by the types of mistakes examined. Our study differs from those that conducted

large-scale analyzes [5, 34, 104, 141] in that we focused on code that already produces

the expected results, thus excluding syntax or semantic errors. By expanding the ana-

lyzes conducted in our previous work [119], this research contributes to both the areas of

large-scale investigations and to the studies of misconceptions in CS1.

91

Table 4.1: Comparison of this research with the described related work.

Corpus Mistakes
Language(s)

Research Type Analyzed Type(s)

Altadmri and Brown [5] Students 250,000 Syntax, semantic Java
Pritchard [104] Code Over 4 million Syntax, compiler Java, Python
Caton et al. [34] Code 32,000 Syntax, compiler, semantic Java
Wang et al. [141] Students 8,000 Syntax, compiler Python
Silva et al. [119] Code 2,441 MC³ Python

This research Code 40,882 MC³ Python

4.3 Misconceptions in Correct Code (MC³)

In this section, we begin by presenting the details of the CS1 course that served as the

basis for our studies. We then briefly summarize the results of our previous work [119],

describing the process used to identify the list of MC³ employed in this research.

4.3.1 The Algorithms and Computer Programming course

For both studies, we chose a CS1 course called Algorithms and Computer Programming

(MC102) from a Brazilian state university as basis for research. MC102 typically enrolls

approximately 600 students per academic term. The course has been using Python 3 since

2018, with instruction focused on the imperative paradigm. MC102 classes are generally

coordinated between professors, where all students follow the same syllabus and complete

identical exams and practical assignments. Bachelor’s programs in this environment are

mostly in engineering disciplines. MC102 follows a six-hour per week structure, with four

hours allocated to theory lectures and two hours to practical sessions. Instructors are

offered a deck of lecture slides and follow a predetermined calendar, ensuring that all

different classes advance at the same pace. Practical sessions are facilitated by teaching

assistants and serve primarily to provide guidance and assistance with the completion of

practical assignments.

The syllabus for MC102 can be described in the following order: basic concepts of

computer organization; data I/O; arithmetic, logical, and relational expressions; condi-

tional commands; repetition commands; lists, tuples, dictionaries, strings, and matrices;

functions and scope of variables; sorting algorithms; searching algorithms; recursion; and

recursive sorting algorithms.

4.3.2 Identification and initial assessments of MC³

In CS1, research on misconceptions typically centers on identifying and classifying the

errors students make, which may include syntactic, semantic, or logical errors [28, 30, 106,

128]. However, these studies are not necessarily limited to correct code. Thus, we chose to

narrow our focus and specifically examine faulty or incomplete understandings manifested

in code that already produces the expected results. As a result, we established a subgroup

termed Misconceptions in Correct Code (MC³). In other words, while MC³ represents

92

a subset of misconceptions within the broader CS1 research field, not all misconceptions

studied in this field can be classified as MC³.

The identification process involved a manual analysis of 2,441 student submissions.

By grouping similar coding behaviors, we identified a total of 45 MC³, which were then

organized into eight distinct categories. Each MC³ was assigned an identifier, consisting of

the category letter and a sequential number. The categories are as follows: A) Variables,

identifiers, and scope (MC³ A1 to A8); B) Boolean expressions (MC³ B1 to B12); C)

Iteration (MC³ C1 to C8); D) Function parameter use and scope (MC³ D1 to D4); E)

Reasoning (MC³ E1 and E2); F) Test cases (MC³ F1 and F2); G) Code organization

(MC³ G1 to G6); and H) Other (MC³ H1 to H3).

After identifying the initial list of MC³, we conducted assessments with both CS1

instructors and students to explore the underlying causes of these misconceptions. Ad-

ditionally, we sought to determine which MC³ were most critical to address, prioritizing

those that posed greater severity and required correction during the CS1 course. These

assessments were carried out through questionnaires, participant observations [37], and

semi-structured interviews [81]. The design of these processes were based upon the guide-

lines for identifying misconceptions established by Almstrum et al. [4]. Specifically, we

analyzed open-ended assignments from MC102, consulted experts in the field (CS1 in-

structors), and conducted observations with CS1 students within the context where these

misconceptions arose.

4.3.2.1 Most severe MC³

Following the initial assessments, 15 of the original 45 MC³ were identified as the most

severe. Table 4.2 presents their corresponding IDs and names. It is important to note

that, for the sake of consistency with the original list (which is omitted in this study),

the names and IDs of these 15 MC³ remained unchanged.

Table 4.2: List of most severe MC³ identified in our previous work [119]. Table is sorted
in lexicographical order by MC³ ID.

ID Name

A4 Redefinition of built-in
B6 Boolean comparison attempted with while loop
B8 Non utilization of elif/else statement
B9 elif/else retesting already checked conditions
B12 Consecutive equal if statements with distinct operations in their blocks
C1 while condition tested again inside its block
C2 Redundant or unnecessary loop
C4 Arbitrary number of for loop execution instead of while
C8 for loop having its iteration variable overwritten
D4 Function accessing variables from outer scope
E2 Redundant or unnecessary use of lists
F2 Specific verification for instances of open test cases
G4 Functions/variables with non significant name
G5 Arbitrary organization of declarations
H1 Statement with no effect

93

Code 4.1 exemplifies six MC³: A4, B6, B8, B9, B12, and G4. The variables num1

and num2 were likely declared with non-significant names (G4). In line 4, the variable

sum redefines a Python built-in function (A4). Additionally, the while condition in line

5 executes only once, indicating a potential confusion with an if statement (MC³ B6).

Furthermore, the if-elif sequence in lines 9 and 11 lacks a final else clause (MC³

B8). In this case, the elif in line 11 could be simplified as an else. The elif in line

16 redundantly checks the opposite condition already addressed in line 14 (MC³ B9),

possibly indicating an incomplete understanding of elif behavior. Lastly, lines 20 and

22 verify the same if condition but perform different operations within their blocks (MC³

B12), which could have been consolidated into a single if statement.

1 num1 = int(input ())

2 num2 = int(input ())

3

4 sum = num1 + num2

5 while sum > 9:

6 print(sum , "has␣more␣than␣one␣digit")

7 break

8

9 if num1 % 2 == 0:

10 print(num1 , "is␣even")

11 elif num1 % 2 == 1:

12 print(num1 , "is␣odd")

13

14 if num1 < 0:

15 print(num1 , "is␣negative")

16 elif num2 < 0 and num1 >= 0:

17 print(num2 , "is␣negative", num1 , "is␣non -negative")

18

19 doubleCond = num1 == num2 * 2

20 if doubleCond:

21 print(num1 , "is␣multiple␣of", num2)

22 if doubleCond:

23 print(num1 , "is␣even")

Code 4.1: Examples of MC³: A4, B6, B8, B9, B12, and G4.

Code 4.2 illustrates five MC³: C1, C2, C4, C8, and H1. In line 2, a for loop is

declared, but it attempts to simulate a while loop by using an arbitrary number of

iterations, indicating a misunderstanding between the two constructs (C4). Additionally,

the for loop in line 9 executes only once, which suggests a misinterpretation of a loop’s

purpose (C2). The for loop in line 12 overwrites its iteration variable, k, within the

loop body (C8), potentially reflecting the student’s lack of awareness about how iteration

variables are updated. In line 19, an if statement checks the while condition at the end of

the loop’s body (c1), which is redundant, as this test is inherently performed at the end of

each while iteration. Lastly, line 25 contains a standalone True statement, which serves

no functional purpose (MC³ H1). Its occurrence may stem from other misconceptions

such as the belief that the else clause is mandatory.

94

1 numList = []

2 for i in range (9999):

3 a = int(input())

4 if a == 0:

5 break

6 numList.append(a)

7

8 numMax = max(numList)

9 for j in range (1):

10 print(numMax)

11

12 for k in range(numMax):

13 print(k + 1)

14 k += 2

15

16 while numMax != 0:

17 print(numMax)

18 numMax = numMax - 1

19 if numMax == 0:

20 break

21

22 if numMax % 2 == 0:

23 print(numMax , "is␣even")

24 else:

25 True

Code 4.2: Examples of MC³: C1, C2, C4, C8, and H1.

Code 4.3 illustrates the remaining four most severe MC³: D4, E2, F2, and G5. The

use of numList can be considered a redundant use of lists (E2), as it is only used to sum

its values in lines 8 and 9. In this scenario, totalSum could have been calculated while

reading the input. Additionally, the code demonstrates arbitrary organization of decla-

rations (G5), with function definitions interspersed with variable manipulations. Ideally,

functions should be defined at the beginning of the code for better structure. Further-

more, CheckSum() accesses the value of numList, which lies outside its scope (MC³ D4),

a practice that should be avoided. Now, consider that the set of input from open test

cases for the code was I = {{1, 1, 1}, {1, 2, 3}, {1, 2, 3, 4, 5}} and the expected output was

O = {{3}, {6}, {15}}. To achieve the correct result, the student ignored the value of

totalSum, instead directly printed the expected values for each input (F2) in lines 12,

14, and 16. This suggests a potential misunderstanding of how the autograder system

operates.

After conducting interviews with both CS1 instructors and students, two primary

causes for the occurrence of MC³ were identified: incomplete comprehension of underly-

ing concepts and a careless approach to coding. Many students expressed difficulties in

understanding decision-making and iteration constructs, leading to MC³ in categories B

and C. In contrast, other MC³ were frequently attributed to students focusing solely on

passing test cases, neglecting proper code organization (MC³ D4 and G5) or the naming

of variables and functions (MC³ A4 and G4). Additionally, it was also noted that the au-

tograder’s functionality contributed to the occurrence of MC³, particularly in cases such

95

as C1 and G5. Students reported concerns that the system might reject their solutions

unless they included redundant checks, or that they deliberately disorganized their code

to avoid plagiarism detection.

1 numList = []

2 num = int(input())

3 while num != 0:

4 numList.append(num)

5 num = int(input ())

6

7 totalSum = 0

8 for item in numList:

9 totalSum += item

10

11 def CheckSum ():

12 if numList == [1, 1, 1]:

13 print (3)

14 elif numList == [1, 2, 3]:

15 print (6)

16 elif numList == [1, 2, 3, 4, 5]:

17 print (15)

18 CheckSum ()

Code 4.3: Examples of MC³: D4, E2, F2, and G5.

4.3.2.2 Automated detection of MC³

Another contribution from previous work [119] was the development of a tool2 for the

automated detection of MC³ using static code analysis [142]. The tool is capable of

detecting, with varying degrees of abstraction, 14 of the MC³ classified as most severe

(with the exception of F2). It is important to note that some MC³ detection require

specific configuration, which must be set by the instructor based on the criteria of the

assignments.

• C4: requires the user to set the threshold to consider how many for loop iterations

(declared inside the range() function) are needed to be present to flag the MC³.

• E2: requires the user to set the threshold to consider how many user-declared lists

are needed to be present to flag the MC³.

• G4: requires the user to set a minimum character length for variables and function

names. The MC³ is flagged if a percentage of total variables or functions that

does not match the length criteria is met. This percentage is also defined by the

instructor.

2https://github.com/eryckpedro/mc4

96

4.4 Methods

In this section, we outline the methods used in this research. Since the same data collection

process was applied to both research questions, we begin by detailing this process. We

then describe the investigation into the frequency distribution of MC³ across the academic

terms of a CS1 course (RQ1). Following this, we present how the analyzes of MC³

persistence and the patterns in its occurrence were conducted (RQ2).

4.4.1 Data collection

We collected students’ assignment submissions through the institutional autograder, which

conducts dynamic analysis to evaluate whether each code passes pre-established test cases.

In total, submissions from eight different academic terms were analyzed. To ensure that

we focused solely on correct code, which is part of the definition of MC³, we removed sub-

missions that did not pass all test cases. Following this filtering process, the submissions

were classified by academic term, class, assignment number, and individual student ID.

The frequency distribution of each MC³ was calculated using the developed tool described

in Section 4.3.

We examined the presence of MC³ only in students’ solutions to the practical assign-

ments of MC102. It should be noted that the course grade formula has changed since

2018. In older terms, the total grade was composed of both practical assignments and

partial exams. This changed in 2020, when the total grade began to consist only of the

weighted average of practical assignments. Assignments are also changed for each term,

sometimes with a variation in their total number. Consequently, certain topics in the

syllabus were occasionally grouped together in the same assignment (e.g., strings and dic-

tionaries), while others appeared across multiple assignments (e.g., matrices, recursion).

4.4.2 RQ1: MC³ frequency distribution

The primary objective of this phase was to explore how the occurrence of MC³ evolves

throughout the academic terms of a CS1 course. This inquiry was motivated by the

hypothesis that MC³ may initially manifest during the course but tend to diminish, or

vanish entirely, as students gain programming experience. To evaluate this, we analyzed

the frequency distribution of MC³ across multiple assignments from multiple academic

terms of MC102.

To conduct the data analysis, the frequency distribution of each MC³ was calculated

as a proportion of the total submissions for each assignment (already considering our

filtering process). Then these results were grouped by sequential assignment number.

This approach facilitated not only the evaluation of the proportion of submissions that

incorporated MC³, but also the identification of how these occurrences are distributed

alongside the academic term. Even though not all analyzed academic terms had the

same number of assignments, all assignments followed the sequential order of the course

syllabus (see Section 4.3). Consequently, we decided to group together assignments with

equal number across all terms before calculating the frequency distribution of each MC³.

97

4.4.3 RQ2: Influence of the passage of time in MC³ occurrence

This phase sought to evaluate whether the occurrence of MC³, as identified in RQ1,

persists throughout the academic term. Assessing persistence allowed us to deepen our

understanding of the frequency distribution and identify potential avenues for future ed-

ucational interventions. Additionally, we examined if contextual factors related to the

practical assignments influenced the development of MC³, with particular attention to

the proximity of submission deadlines. We hypothesized that students facing time con-

straints closer to the submission deadline would be more likely to develop MC³.

The analysis in this phase differed slightly from that of RQ1. To focus on the overall

occurrence of MC³, we chose to aggregate all MC³ occurrences rather than analyzing them

individually. However, this approach encountered two challenges: the first MC102 assign-

ment and the MC³ related to functions/variables with non-significant names (classified as

G4). The initial assignment in MC102 is solution-guided, intended to familiarize students

with the autograder using a straightforward arithmetic exercise, resulting in minimal orig-

inal code creation by students. The issue with MC³ G4 is that our automated detection

tool requires the instructor’s expertise to determine if the MC³ is present. Given the

size of our dataset, manually assessing G4 occurrence in each code would be impractical.

Consequently, both the first assignment and MC³ G4 were excluded from the analyzes

conducted in RQ2. Additionally, we also opted to remove assignments 14 and 15 due to

the their low number of submissions (Section 4.5 presents further details).

For the evaluation of MC³ occurrence in relation to the proximity to the assignment

deadline, we first determined the number of days remaining until the deadline for all

submissions containing at least one MC³. Subsequently, we calculated the total number

of submissions in each category based on the number of days remaining until the deadline.

This process also aggregated all assignments based on their number but was computed

separately for each analyzed academic term.

4.5 Results and discussion

This section presents and discusses the results obtained in this research, following the

structure outlined in Section 4.4. First, details are provided about the MC102 terms and

classes whose submissions were analyzed. Then, we examine the frequency distribution of

MC³ across academic terms (RQ1). Finally, we present the persistence analysis of MC³,

exploring its occurrence behaviors and its relation to assignment deadlines (RQ2).

4.5.1 Terms and classes

Table 4.3 further presents contextual information on the eight academic terms analyzed in

MC102. As mentioned above, the number of assignments varied in recent terms, despite

maintaining the same syllabus. Each term is identified in a year-semester format (e.g.

“2018-1” denotes the first academic semester of 2018). To maintain confidentiality, we

have chosen to provide only the total number of distinct classes rather than their specific

identifiers, as disclosing these could potentially allow for the identification of individual

98

instructors via the institutional website. The submissions listed in the table had passed

all test cases. As the analysis for RQ2 did not consider submissions of assignments 1, 14,

15 and MC³ G4, the table also presents the totals after these exclusions.

Table 4.3: Distribution of classes, students, assignments, and submissions per academic
terms analyzed in this research.

Submissions

Term Classes Students Assignments All Used in RQ2*

2018-1 7 754 10 4,649 3,969
2018-2 7 657 12 5,087 4,505
2019-1 6 567 12 4,670 4,129
2019-2 8 623 12 4,896 4,315
2020-1 6 569 14 5,341 4,772
2022-2 7 634 15 5,811 5,076
2023-1 4 557 15 4,593 4,024
2023-2 8 625 15 5,835 4,930

Total 53 4,986 105 40,882 35,720

*Excludes assignments 1, 14, 15 and occurrences of MC³ G4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

20

40

60

80

100

Pr
op

or
tio

n
of

 s
ub

m
is

si
on

s
(%

)

2018-1
2018-2
2019-1
2019-2

2020-1
2022-2
2023-1
2023-2

Figure 4.1: Proportion of submissions per each analyzed term.

Figure 4.1 shows the proportion of submissions in the assignments of each term. The

calculations were based on the “All” column in Table 4.3. These proportions serve to

complement the subsequent analyses presented in this section by illustrating the trend

of decreasing submissions throughout each term. To facilitate comparison, we identified

the assignment with the highest number of submissions in each term and normalized the

99

submissions accordingly. This approach allows for a clearer understanding of the relative

distribution of submissions across assignments. Overall, the figure highlights a notable

decrease in submissions for later assignments compared to initial ones.

As described in Table 4.3, a total of 53 classes, covering submissions to 105 distinct

assignments, were included in the analysis. As stated previously, MC102 is administered

to most STEM programs within the university besides computer science and computer

engineering. Consequently, classes in a single term comprised students from various pro-

grams. Considering this diversity, we argue that the substantial number of classes enabled

a comprehensive large-scale analysis, encompassing students from distinct programs and

educational backgrounds.

The total number of submissions for each term aligns with our expectations. According

to the definition, the analysis of MC³ is conducted solely on code that had passed all

test cases of an autograder. However, in MC102, students’ grades are determined by

the number of tests their programs pass. Consequently, if students are already satisfied

with a specific grade for an assignment, they may not invest additional effort to further

elaborate their code to pass all test cases. This phenomenon also explains the decreasing

number of submissions in later assignments, as illustrated in Figure 4.1. In these instances,

the students had probably attained a minimum passing grade and chose to refrain from

completing subsequent assignments or not to make additional efforts to pass all test cases.

4.5.2 RQ1: MC³ frequency distribution

As detailed in Section 4.4, we aggregated assignments with equal numbers across the

eight analyzed terms to facilitate analysis. The automated detection method that we

used ensured that multiple occurrences of the same MC³ within the same code were not

double-counted. This allowed us to calculate the frequency distribution of each MC³

relative to the total submissions for each assignment. Given the varying scales of these

frequencies, we categorized them into three groups based on similar scales, as illustrated

in Figures 4.2, 4.3, and 4.4.

Furthermore, it is important to note that the detection of certain MC³ is based on

predefined constants set by the instructor, as explained in Section 4.3. For our analysis, we

established the following thresholds to determine the presence of specific MC³: a constant

value of 50 within the for loop (MC³ C4), a total of 10 declared lists (MC³ E2). These two

were selected based upon expectations made upon the assignments’ guidelines throughout

the academic terms. Regarding the criteria for variable and function naming conventions

(MC³ G4), variables were required to have names with a minimum of four characters,

functions with a minimum of eight characters, and no more than 70% of the total variables

and functions could violate these naming requirements. The literature suggests that

names should be meaningful; while some studies argue that longer names are beneficial

[56], others highlight the potential impact of name length on human memory constraints

[19]. To balance these perspectives, we set longer requirements for function names than

for variables. Additionally, the 70% threshold allows some flexibility, permitting the use of

shorter names, such as those commonly employed in loop iterations, where shorter, more

concise names tend to remain meaningful [17]. While we did not manually assess whether

100

the submissions had the MC³ G4, we decided to keep them in our plots to illustrate its

distribution based upon employed this criterion used in automated detection.

In general, individual frequency distributions reveal that, in general, nearly all MC³

occurrences are present throughout the academic term of the CS1 course. Arguably, MC³

B6 and B9 are the only ones that show a decrease in occurrences at a certain point,

suggesting a potential disappearance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
es

 (%
)

0.2
0.3 0.3

0.2

0.1
0.1 0.1 0.1 0.1

Distribution of B6 in all terms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0.2

0.1

0.4
0.3

0.2 0.2

0.3
0.2

0.4

0.2

Distribution of C2 in all terms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
es

 (%
)

0.3
0.2

0.1 0.1

0.3

0.2

1.3

0.9

0.7

Distribution of C4 in all terms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0.2

0.1
0.1 0.1 0.1

0.2

0.1
0.2

0.3
0.2

0.1

0.2

0.1

0.2

1.0

Distribution of H1 in all terms

Figure 4.2: Grouped frequency distribution of MC³ B6, C2, C4, and H1. Ranges are
between 0 and 1.5%.

The decision to calculate the frequency of each occurrence of MC³ (see Figures 4.2, 4.3,

and 4.4) was based on two factors: normalizing the submissions with MC³ over the total

submissions per assignment and aggregating data from the eight terms analyzed. Using

the first factor, we aim to identify trends in each event, particularly focusing on assessing

whether any MC³ disappears or decreases over the term. Regarding the second factor, we

aggregated terms with varying total numbers of assignments. However, we argue that this

decision had minimal influence on the results, as the MC102 syllabus remained consistent

throughout these semesters, and the assignment order followed the syllabus in all terms.

Thus, the overall trend would probably have remained unchanged regardless of the term

aggregation approach.

Figure 4.2 illustrates the MC³ frequencies of the categories of Boolean expressions (B6),

iteration (C2 and C4), and Other (H1). This figure grouped MC³ with the least proportion

of occurrences, ranging from 0 to 1.5%. Despite their small proportions, these MC³

101

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0

2

4

6

8

10

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
es

 (%
)

0.1

1.3 1.3
0.8

2.3 2.3

1.2
1.9

1.6

4.2

1.7

4.2
4.8

2.0

2.9

Distribution of A4 in all terms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0.8

3.5

4.8

6.9

8.1

10.1

3.2

5.5

0.5 0.6 0.3

2.9

0.5

Distribution of B9 in all terms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0

2

4

6

8

10

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
es

 (%
)

0.7
0.1

1.8

0.1 0.3
0.9

0.2 0.2 0.2

2.8

0.2

Distribution of C1 in all terms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0.3
0.7

2.1 2.3

4.0
4.5

4.0

2.8

3.7

4.8

7.1

1.6
1.9

Distribution of C8 in all terms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0

2

4

6

8

10

Pr
op

or
tio

n
of

 o
cc

ur
re

nc
es

 (%
)

0.1

1.2
0.4

1.7

2.7

1.9
2.5 2.8

0.6
1.1

3.4

Distribution of E2 in all terms

Figure 4.3: Grouped frequency distribution of MC³ A4, B9, C1, C8, and E2. Ranges are
between 0 and 10%.

persisted throughout the entire course. Confusion between while and if statements (B6)

appeared to begin early and persisted until the 13th assignment, typically associated with

sorting and selection algorithms. Similarly, C2, which involves iteration loops declared to

execute only once, exhibited a similar persistence pattern. In contrast, C4 experienced

a spike in the 12th assignment, expected to cover matrices. This spike suggested that

102

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0

10

20

30

40

50

60

70

80

Pr
op

or
tio

n
of

 c
cc

ur
re

nc
es

 (%
)

2.9

16.0

32.8

48.7
43.0

39.2 39.8

24.0

37.0

48.8

15.5

36.8

18.8

38.0 38.5

Distribution of B8 in all terms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0.1 0.6 0.5 0.9 2.1
6.9

10.6
16.1

26.4

16.0

40.0

14.1

43.7

55.3

Distribution of D4 in all terms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0

10

20

30

40

50

60

70

80

Pr
op

or
tio

n
of

 c
cc

ur
re

nc
es

 (%
)

83.3

41.1
35.3

42.4

30.7

18.0

26.7

16.7

25.6
30.9 30.8

36.3

19.5

41.4

30.3

Distribution of G4 in all terms

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Assignment

0.4 0.9 0.9 1.3 3.6

31.1

14.2
18.0

23.3 21.0

34.7

23.4

33.3
29.3

Distribution of G5 in all terms

Figure 4.4: Grouped frequency distribution of MC³ B8, D4, G4, and G5. Ranges are
between 0 and 80%.

students still struggle to understand the differences between for and while loops in

the latter stages of the course. Furthermore, the results indicate that students declare

statements that have no effect throughout the course (H1).

MC³ with proportions of occurrences ranging from 0 to 10% were grouped in Fig-

ure 4.3. Four distinct categories were represented: Variables, identifiers and scope (A4);

Boolean expressions (B9); Iteration (C1 and C8); and Reasoning (E2). Throughout the

course, students continued to redefine the Python built-ins (A4), indicating a persistent

misunderstanding of these concepts. Although one might argue that novices may not

initially be familiar with all built-ins, the results suggest that this misconception persists

until the end of the course. The confusion about the concepts of elif (B9) exhibited a

peculiar trend: its occurrence increased until it reached its peak in the seventh assign-

ment, typically related to lists and tuples, and then decreased rapidly. This suggests that

students may have learned to avoid this misconception only toward the end of the course.

The incidences of C1 and C8 followed similar trends, persisting from early assignments un-

til the course’s conclusion. Both occurrences indicate a continued struggle with concepts

related to while and for loops. In particular, MC³ C8 (for loop having its iteration

variable overwritten) deserves further attention, as it was classified as the most severe in

the work conducted by Silva et al. [119]. Regarding E2, the threshold of more than 10

user-declared lists used to determine this MC³ in a submission suggests that a fraction

103

of students may excessively rely on these structures in their code. This overreliance is

especially prominent in assignments in the second half of the course, including the 9th

assignment, usually dedicated to dictionaries.

Figure 4.4 presents the occurrences of MC³, with proportions ranging from 0 to 80%.

Three distinct categories were identified: Boolean expressions (B8); Function parameter

use and scope (D4); and Code organization (G4 and G5). Analysis revealed that students

consistently declared if-elif sequences without an else throughout the course, making

this MC³ the most frequent within its category. In contrast, D4 began to increase approxi-

mately midway until the end of the course, corresponding to the period when functions are

introduced into the syllabus. This means that despite recommendations against the use

of global variables, students continued to increase their use. Regarding G4, although we

did not manually assess these submissions to verify the presence of variables or functions

with non significant names, it is inferred that approximately 40% of students employed

names violating the established minimum lengths we defined (four and eight characters,

respectively). This observation was particularly notable in the 1st assignment, which pro-

vided guided solutions suggesting names that violated our rules. Lastly, G5 exhibited a

similar trend to D4, as both MC³ involve functions. However, the presence of G5 suggests

that the students did not consistently follow suggestions to declare their functions at the

beginning of the code, demonstrating a lack of attention to code organization.

The frequencies of MC³ suggest that a fraction of students continue to struggle to grasp

the fundamentals related to control and repetition commands by the end of the course.

Furthermore, students exhibit a lack of attention or organization in their coding processes,

as evidenced by the presence of MC³ A4, G5, and H1. Although our course analysis did

not span the entire academic year, some distributions were similar to those observed

by Altadmri and Brown [5]. The authors justified peaks in error frequencies with the

introduction of new concepts in the course. In our analysis, the peaks were not necessarily

when students learned a new concept, we argue that it was when they most needed to

apply the concept related to each MC³. Furthermore, certain MC³ were significantly

more frequent than others. Despite the type of error analyzed between Pritchard [104]

and ours, the authors highlighted that errors with arbitrarily small frequencies are not

uncommon. We posit that this is the same case with respect to MC³.

4.5.3 RQ2: Influence of the passage of time in MC³ occurrence

The results from RQ1 showed that, although the frequency distribution of each MC³

varies, they tend to appear at some point during the academic term and is potentially

persistent until the end. Based on this evidence and also considering the flow of the

academic term in terms of sequential assignments, the persistence analysis was structured

as a comparison of MC³ occurrences between the first and second halves of the academic

term.

As described in Section 4.4, our analysis focused on general MC³ occurrences. Based

on that, we grouped assignments across all academic terms by their number and checked

for occurrence of any MC³. However, the results in Figure 4.1 revealed a significantly low

number of submissions for assignments 14 and 15 (around 20% of the total). Given the

104

potential impact of these low submission counts on the analysis, we also chose to exclude

assignments 14 and 15. Consequently, the persistence analysis of MC³ was conducted

using assignments 2 to 13, excluding MC³ G4, as previously explained.

The remaining 12 assignments (2 to 13) were divided into two groups to represent

the first and second halves of the academic term: assignments 2 through 7 for the first

half, and 8 through 13 for the second. For each assignment, we calculated the aggregated

proportions of MC³ occurrences. Since the results did not meet the assumptions for

parametric testing, we applied the Kruskal-Wallis test to assess the persistence of MC³

occurrences. The test results are presented in Table 4.4.

Table 4.4: Results obtained from Kruskal-Wallis test to compare MC³ occurrences be-
tween the first and second halves of MC102 academic terms.

Aggregated MC³ occurrences
per assignment in all terms (%)

1st half (2 to 7) 2nd half (8 to 13)

16.9 42.6
35.7 57.9
52.3 70.8
48.2 41.0
48.3 77.2
64.0 51.0

H 1.256
p-value 0.26

ε
2 0.02

The null hypothesis for this test posited that there were no differences between the

two halves of the academic term. Rejecting the null hypothesis would suggest a significant

difference in MC³ occurrences between the two halves. However, as shown in Table 4.4 and

considering a significance level of 0.05, we failed to reject the null hypothesis, indicating

no significant differences between the two groups. Furthermore, the small effect size

reinforces the similarity between the halves in terms of MC³ proportions, supporting the

view that these errors are stable or persistent throughout the academic term.

As for the analysis regarding proximity to assignments’ deadlines, Figure 4.5 illus-

trates the distribution of MC³ occurrences in relation to the number of days remaining

until assignment deadlines. We chose to truncate the results at the 21-day mark due to

variations in the duration of academic terms. MC³ occurrences were calculated as the

proportion of submissions containing at least one MC³ (except for G4) relative to the to-

tal number of submissions made each day, considering all assignments for that academic

term. Although there are small variations per academic term, the results indicate that

there is no discernible difference in the occurrence of MC³ based on the proximity of

assignment deadlines.

As indicated by the results from RQ1, MC³ occurrences appear to be closely linked

to the points in the course when students are most required to apply the concepts they

have learned. As the course progresses, students must increasingly rely on these concepts

in subsequent assignments, which explains the alternating but overall increasing cycle of

105

0 7 14 21
Days left

0

20

40

60

80

Pr
op

or
tio

n
of

 s
ub

m
is

si
on

s
w

ith
 M

C
³ (

%
)

2018-1

0 7 14 21
Days left

2018-2

0 7 14 21
Days left

0

20

40

60

80

Pr
op

or
tio

n
of

 s
ub

m
is

si
on

s
w

ith
 M

C
³ (

%
)

2019-1

0 7 14 21
Days left

2019-2

0 7 14 21
Days left

0

20

40

60

80

Pr
op

or
tio

n
of

 s
ub

m
is

si
on

s
w

ith
 M

C
³ (

%
)

2020-1

0 7 14 21
Days left

2022-2

0 7 14 21
Days left

0

20

40

60

80

Pr
op

or
tio

n
of

 s
ub

m
is

si
on

s
w

ith
 M

C
³ (

%
)

2023-1

0 7 14 21
Days left

2023-2

Figure 4.5: Proportion of MC³ occurrences per days left until assignments’ deadlines.

occurrences shown in Table 4.4 and Figures 4.2, 4.3 and 4.4. The test results suggest

that these frequencies are persistent throughout the academic term. This implies that

MC³ occurrences begin at some point during the course and continue until its conclusion,

indicating that students may even carry these misconceptions over into future CS courses.

This persistence is concerning because, as noted in this study’s motivation, focusing solely

106

on passing test cases through automated assessment is insufficient to address deeper issues

like MC³.

On another aspect of the passage of time, the results from Figure 4.5 reveal that,

contrary to our initial beliefs, the proximity of the assignment deadline did not seem to

influence the occurrence of MC³. Our hypothesis posited that students, when under time

pressure near the assignment deadline, might prioritize correctness over other aspects of

their code. Although we did observe a generalized greater number of submissions on the

last day, normalization of MC³ occurrences in proportion to all submissions indicated

a relatively stable pattern over the 21-day period analyzed. These results suggest that

factors other than the submission date may contribute to the occurrence of MC³.

To further examine the distribution of aggregated MC³ occurrences presented in Ta-

ble 4.4, an autocorrelation test was conducted. Our objective was to identify potential

trends in MC³ occurrences over the course of the academic term. Although the test results

(omitted in this study) indicated cyclic patterns, all values fell within the confidence inter-

val, suggesting no significant evidence of a lagged relationship between MC³ occurrences

across assignments. In other words, while the Kruskal-Wallis test indicated persistence

of MC³, this persistence does not appear to relate from occurrences in past assignments.

This supports the idea that other factors, such as broader learning difficulties with specific

concepts (as discussed in Section 4.3), are the underlying causes for MC³ occurrence.

4.6 Implications for CS1 teaching practices

The analysis from both RQ1 and RQ2 conducted an investigation of MC³ occurrences both

individually and in general. The varying frequency distribution highlights the unique

nature of each MC³, potentially linked to the specific topic and the difficulty involved

in correcting it. We recognize that misconceptions like built-in redefinition (MC³ A4)

and overwriting the for loop iteration variable (MC³ C8) arise from different cognitive

processes and, as such, may require distinct approaches for rectification.

Students’ emphasis to code correctness when using autograders has a significant impact

on the occurrence of MC³. According to the Dual Process Theory [108], two complemen-

tary cognitive systems exist: the intuitive and the reflective. When students focus solely

on passing tests, they primarily engage their intuitive system, which leads them to over-

look other code characteristics, such as significant variable or function naming (MC³ G4),

code organization (MC³ G5), or built-in redefinition (MC³ A4). Another consequence is

related to the perceived cost [143] of writing code while paying attention to these charac-

teristics. The lack of evaluation beyond correctness may cause students to neglect these

aspects, as there is no immediate reward for addressing them. We advocate that this

neglect could also contribute to the development of MC³.

As noted by Joni and Soloway [70], focusing on code efficiency in terms of runtime

and resource usage is often not persuasive enough for novices to appreciate code char-

acteristics beyond correctness. This poses a significant challenge in encouraging CS1

students to recognize and address MC³. Instructors and teaching assistants should seize

opportunities during lectures to demonstrate real-life examples of how poor readability

107

and maintainability can negatively impact code. However, it is important to acknowledge

that student programming skills are not solely shaped within the confines of CS1 class-

rooms. The presence of habits developed in previous programming knowledge, access to

external educational materials, and peer interactions also play significant roles in influ-

encing students’ coding behaviors. Therefore, supplementary educational materials that

highlight these differences, along with the integration of automated feedback on MC³ into

autograder systems, can further support students outside the classroom.

4.7 Limitations and threats to validity

The main limitation of this study is the reliance on data from a single higher education

institution, which offered a CS1 course taught in Python using the imperative paradigm.

To mitigate this limitation, we focus on the coordinated environment of the CS1 course,

which enrolls students from various STEM bachelor’s programs each term. Although

this allowed us to study a diverse cohort of undergraduates with different educational

backgrounds, it is important to recognize that the results may vary if data from other

institutions were analyzed. Furthermore, we acknowledge that the replication of this

study is simplified due to the popularity of Python as a language in CS1 [58], and the fact

that the syllabus of MC102 covers most of the topics addressed in these courses [118].

A potential threat to validity stems from the use of our MC³ automated detection tool,

given the limitations and challenges encountered during its development. To address

concerns regarding the instructor’s expertise, we reviewed the assignment details and

selected appropriate threshold values for the required metrics used in automated detection

(refer to Section 4.3), such as the maximum expected iterations for for loops (MC³ C4)

and the total number of user-declared lists (MC³ E2). Additionally, we opted to exclude

G4 from the persistence analysis due to the impracticality of accurately assessing this

MC³. The tool has been made publicly available, allowing other researchers to utilize and

enhance it.

4.8 Conclusions

This research aimed to assess occurrence’s behaviors of misconceptions, referred to as

Misconceptions in Correct Code (MC³), that programming novices exhibit in code that

yields the expected outcome. These misconceptions potentially indicate that students

have poor or incomplete understanding of the CS1 topics. To achieve our objectives,

we conducted a large-scale study analyzing over 40,000 student submissions from eight

distinct terms of a CS1 course.

The study revealed that, even at the end of the CS1 course, a fraction of students

appeared to lack complete comprehension of concepts related to conditional and repetition

commands. In addition, students also exhibited a tendency to neglect the readability and

maintainability of their code. Evidence suggests persistence in MC³ occurrence, meaning

that students start developing MC³ at certain points during the CS1 course and carries

them until its end, possibly even carrying them to future CS courses. Additionally, the

108

occurrence of MC³ does not seem to be influenced by time constraints of assignments’

deadlines nor is dependent on previous occurrences, further suggesting that the underlying

causes are indeed rooted in learning difficulties to specific CS1 concepts.

The research proposed in this paper serves as a cautionary note to CS1 instructors

that students continue to incorporate MC³ into their code by the end of the course. Al-

though our studies focused on Python courses, it is not unfathomable that MC³ can also

occur in other programming languages [119]. Our results contribute to pave the way for

future studies that aim to address MC³, enriching discussions among peer researchers

by highlighting our successful and unsuccessful approaches [136]. Furthermore, we ac-

knowledge and advocate for the adoption of rather new technologies, such as enhanced

AI-generated feedback, which holds promise in assisting both instructors and students in

the CS1 teaching and learning process. This integration of traditional and novel educa-

tional tools bridges a gap in empirical research by leveraging existing results alongside

new ones [85].

4.9 Afterword: a Case Study to assess educational ma-

terials

This afterword serves to complement Chapter 4 by providing additional data that was

omitted from the original article due to space constraints. The primary contribution

of this section is a case study evaluating the educational materials developed for MC³,

which include lecture slides, short videos, and flashcards. The study aimed to address the

following research question:

• RQ: In what ways can educational materials be used to teach CS1 students about

MC³?

The case study was conducted with 23 students from a MC102 class taught in the

second academic term of 2023. The results suggest that the use of specific educational

materials can have a positive impact on mitigating MC³. However, the findings also high-

light challenges related to the implementation of these materials and student engagement.

By demonstrating the persistence of MC³ and the positive impact that short videos, flash-

cards, and slides can have on mitigating these misconceptions, the studies presented in

this chapter lay the groundwork for the development of additional educational materials

to address MC³ in CS1 courses.

4.9.1 Related work on addressing misconceptions

Plass-Oude Bos [100] conducted a study involving 41 secondary and undergraduate stu-

dents to identify and rectify common misconceptions related to variable assignment and

manipulation. The study focused on six learning goals, for which an interactive edu-

cational video was developed to assist students in understanding the correct concepts.

Multiple-choice questions embedded within the video provided interactive engagement

with the students. The video adhered to suggested guidelines [137] on length, conciseness,

109

and clarity of explanations for presented tasks. The pre and post-tests were administered

as questionnaires to evaluate student understanding, and Plass-Oude Bos reported a sig-

nificant improvement in students’ performance on the post-tests, indicating a positive

impact of the educational video.

The study conducted by Plass-Oude Bos [100] was a collaborative effort with Peters

[97], who provided further information on the effectiveness of the educational videos de-

veloped by Plass-Oude Bos. Among the details explained by Peters was the assessment

of the videos’ effectiveness in addressing misconceptions and instructing learning goals re-

lated to variables in imperative programming. This effectiveness was evaluated based on

the number of incorrect responses to a post-test questionnaire that assessed the students’

understanding after watching the videos. Peters reported that some misconceptions were

fully resolved, meaning that they no longer occurred. Others varied significantly and

marginally diminishing in terms of recurrence, and one misconception increased its occur-

rence after viewing the video. Regarding learning goals, students demonstrated a better

understanding of variable names, assignment structures, storage limitations, and variable

changeability.

Multimedia artifacts have been used to address misconceptions in other aspects of

computer science education. In their work, Blank et al. [20] presented experimental re-

sults from a multimedia course designed to correct misconceptions about computer science

of students, which could negatively impact their perception of the field. The experiment

involved 55 undergraduate students who completed pre- and post-test questionnaires as-

sessing their opinions on stereotypical beliefs about computer science (e.g.,“a strong math

background is needed to succeed in computer science"). The authors reported that the

multimedia course successfully countered these negative stereotypes, leading to positive

changes in students’ perceptions of computer science.

Chiodini et al. [36] compiled a curated inventory3 of programming misconceptions with

the primary aim of providing students and educators with easy access to these types of re-

sources. The inventory resulted from assessments of observations, programming activities,

and artifacts produced by students across various courses over a decade. The inventory

initially targeted Java, but was expanded with Python, JavaScript, and Scratch. Orga-

nized by concept, programming language, language specification, and textbook section,

the inventory contains 198 misconceptions, each described by several attributes, including

explanation videos. A central feature of the inventory is the juxtaposition of the wrong

aspects in the misconception with the explanation of how the correct form should be.

This approach is known as refutation text and has the objective of facilitating notions

behind conceptual changes [132]. The inventory is hosted at progmiscon.org.

Gomes et al. [55] created an educational artifact comprising multiple-choice questions

designed to aid students and instructors in introductory programming courses. This arti-

fact is grounded in the principles of programming antipatterns [27], which are commonly

encountered solutions to problems resulting in negative consequences. The authors devel-

oped a total of 63 questions for C and 46 for Python, with the difficulty of the questions

tailored to the associated antipatterns. Additionally, Gomes et al. conducted a pilot test

to evaluate the correctness of the questionnaire. While the authors expressed overall

3progmiscon.org

110

satisfaction with the results, they noted that the small number of participants warrants

further investigation.

Evans et al. [47] developed SIDE-lib, focusing on identifying symptoms and miscon-

ceptions in Python code. Symptoms, defined as small parts of code that reveal misun-

derstandings of programming concepts, can lead to correct or incorrect code, indicating

underlying misconceptions held by the programmer. The authors obtained symptoms and

misconceptions by analyzing 1,331 submissions from students. SIDE-lib can detect 33

symptoms and 25 potential misconceptions. Outside the scope of introductory program-

ming courses, Ferrao et al. [48] developed embedded-check, a tool for detecting high-level

conceptual mistakes in an Embedded Systems course. This tool, elaborated as the result

of several years of course observation, detects 13 designed rules that indicate concep-

tual errors. Ferrao et al. highlighted that the embedded check enables timely formative

feedback to students and reduces the workload of instructors in assessing assignments.

4.9.2 Methods

Building on insights obtained with respect to the frequency analysis of MC³, described

in Section 4.5, we developed a set of educational materials focused on the nine most

frequent MC³. These materials aimed to revisit concepts taught in the CS1 course while

explaining why code should not be structured with MC³ and providing strategies to avoid

such coding behaviors, similar to refutation text approach used by Chiodini et al. [36].

The educational materials can be consulted in Appendix B of this thesis.

We chose to develop the educational materials in the form of short videos (under 60

seconds, based in the format of YouTube Shorts4) and flashcards, anticipating that these

formats would be more accessible to students. The use of these educational materials also

aligns with the principles of spaced repetition [22, 43], which helps reactivate students’

retention of knowledge. The learning of new concepts follow a “forgetting curve” [22,

96, 113], indicating that the concepts that are learned tend to be forgotten unless they

are revisited periodically. The theory suggests that the time required for reactivation

decreases over time, making the content easier to remember and eventually leading to

peak retention. Additionally, previous studies in CS1 classes have shown positive results

with the use of videos, either as supplementary instructional material [129] or as the

primary material [87]. Additionally, flashcards are commonly utilized in Active Learning

techniques [22], with demonstrated positive impacts observed in both basic education [2]

and higher education [80, 109, 150].

Given the context of this study, a case study emerged as the optimal research method.

Case studies are frequently employed when researchers have limited control over events

[37], as anticipated in our scenario where the educational materials would be introduced

into an ongoing CS1 class comprising students with diverse backgrounds. Moreover,

case studies focus on individual actors and highlight specific events relevant to the case

[37], aligning with our focus on the identified MC³. Our case study can be classified as

explanatory [37], as its objective was to assess whether the educational materials positively

influenced students’ reasoning in code development.

4https://www.youtube.com/intl/en/creators/shorts/

111

From the list of the 14 MC³ presented in Section 4.5, we selected the following for focus:

A4 (redefinition of built-in), B8 (non utilization of elif/else statement), B9 (elif/else

retesting already checked conditions), C1 (while condition tested again inside its block),

C8 (for loop having its iteration variable overwritten), D4 (function accessing variables

from outer scope), E2 (redundant or unnecessary use of lists), G4 (functions/variables

with non significant name), and G5 (arbitrary organization of declarations). These MC³

appeared to be the most frequent. However, due to the complexity of representing MC³

B8, E2, and G4 in short videos and flashcards, we decided to create specific lecture slides

to address them instead. Since this case study approach involved human participants, it

received prior evaluation and approval by an Ethics Research Committee affiliated with

Universidade Estadual de Campinas5.

4.9.2.1 Data collection

The case study was conducted during the second academic term of 2023. In this term, I

acted as both instructor and researcher. Students were volunteered for the study during

the first two weeks of the course. Following recruitment, students who agreed to partici-

pate via an Informed Consent Form were divided into two groups: Group A and Group B.

The division process involved ordering students by their ID numbers and then alternating

the allocation of students between the two groups.

Group A received short videos and flashcards related to MC³ A4, C1, and D4, while

Group B received for MC³ B9, C8, and G5. These resources were disseminated via

institutional email to students after the corresponding CS1 topics were taught and before

the related assignments were released. This process envisioned the spaced repetition while

also providing new information about MC³. The videos were uploaded in YouTube while

the flashcards were created digitally using Canva6 and attached to the email. Both groups

received one video and one flashcard simultaneously, ensuring balance between the groups;

for instance, while Group A received materials for A4, Group B received materials for B9,

and so forth.

Additionally, the slides covering MC³ B8, E2, and G4 were presented in lectures to

all attending students, regardless of their participation as volunteers, following the same

principle of being taught after the corresponding CS1 topics were covered. However,

non-participants did not have their code evaluated.

In this case study, our hypothesis was that students in each group would potentially

incorporate less of each MC³ after they received instruction about them. Additionally,

we anticipated low occurrences of MC³ B8, E2, and G4 for both groups, since these were

taught in lectures. To optimize results, students were encouraged to review the materials

before attempting the assignment. Students also were requested to refrain from sharing

the videos and flashcards. However, it was not possible to ensure compliance with the

latter requirement.

Although the academic term comprised a total of 15 assignments, the intervention

period extended until the deadline for the tenth assignment. During this time, submis-

5Approval can be consulted in Plataforma Brasil with CAAE number 70220523.0.0000.5404.
6https://www.canva.com/

112

sions from participating students were collected via the institutional autograder after the

deadline for each assignment. Additionally, students were administered two electronic

questionnaires during the intervention period: one midway and another at the end. The

second was only sent to respondents of the first one. These questionnaires aimed to

determine when students watched each short video, flashcard, and MC³ lecture slides

presented. They also included questions soliciting students’ opinions on the developed

materials.

4.9.2.2 Data analysis

The MC³ frequency distribution was calculated using the developed automated detection

tool. However, given the focus on evaluating the educational materials, the primary

objective was to assess occurrences before and after students viewed each dedicated MC³

material. Based on the assignment number reported by students in the questionnaires,

valid submissions (i.e. submissions that passed all test cases) for an assignment were

classified into one of four cases:

• O-W: Submissions with an occurrence of MC³ X where the student had watched

the materials related to X.

• O-NW: Submissions with an occurrence of MC³ X where the student had not

watched the materials related to X.

• NO-W: Submissions with no MC³ occurrences where the student had watched

previous MC³ materials.

• NO-NW: Submissions with no MC³ occurrences where the student had not watched

previous MC³ materials.

The first assignment was discarded in this analysis since it had a guided solution.

Regarding MC³ G4, I manually assessed its presence in submissions from Groups A and

B. If a submission contained more than one MC³ and the student had watched materials

related to at least one of them, it was classified as O-W. Submissions for each group were

categorized separately, ensuring that specific MC³ taught to one group were not counted

as occurrences for the other group.

On the other hand, for MC³ B8, E2, and G4, which were taught in lectures, we

determined that all assignments after that lecture would consider the corresponding MC³

as covered. Consequently, all assignments were classified as either O-NW or NO-NW

before the lecture and as O-W or NO-W after the lecture.

Students who did not respond to the first questionnaire were excluded from the re-

search. If a student only answered the first questionnaire, their responses were considered,

but any subsequent sent educational materials were automatically classified as not watched

by the student. Additionally, submissions that did not pass all the test cases were deemed

invalid and therefore discarded from analysis.

All occurrences classified as O-W, O-NW, NO-W, and NO-NW were tallied and or-

ganized into one contingency table for Group A and another for Group B. The following

113

conditions indicated that the materials had a positive impact on reducing MC³ occur-

rences:

1. The number of occurrences where students had watched the materials was lower

than those where they had not watched (O-W < O-NW).

2. The number of submissions with no MC³ occurrences where students had watched

the materials was greater than those where they had not watched (NO-W > NO-

NW).

3. If both conditions 1 and 2 were met, we assessed whether the frequency distribution

of the contingency table significantly differed from one obtained by chance. To

accomplish this, the Chi-Squared test [81] was employed. Further details regarding

the hypothesis can be found in Section 4.9.3.

The other questions regarding students’ opinions on the educational materials en-

compassed various field formats. Likert-items responses were analyzed using descriptive

statistics, while responses from open-text fields were subjected to content analysis [81].

Specifically on the latter, the aim was to identify students’ perspectives on the integration

of these materials into CS1 lectures and the MC³ they had learned to avoid incorporating

in their code.

4.9.3 Results and discussion

A total of 28 students volunteered to participate in the case study research, resulting

in Groups A and B consisting of 14 students each initially. However, due to reasons

such as abandonment of the course or failure to respond to the first questionnaire, the

analysis was based on data from 12 students in Group A and 11 students in Group B.

The following paragraphs show the findings on MC³ occurrences and students’ opinions

on the educational materials separately.

4.9.3.1 Students’ interaction with the materials

Table 4.5 displays the overall interaction the students had with each MC³ educational

material. As previously explained, the short videos and flashcards were sent simultane-

ously by the researcher, and both groups received their assigned materials at the same

time. In addition, the table presents the total number of students who had watched each

material. These totals were calculated based upon students’ answers to the administered

questionnaires.

Overall, engagement with V&F 1 and 2 was satisfactory, as most of the students in

both groups indicated that they had watched the materials. Students’ responses to when

they had watched the materials varied, but when calculating median and mode values

to these responses, the results confirmed that the students did indeed access both videos

and flashcards near the dedicated assignment. However, the initial statistics obtained

from YouTube’s dashboard suggested that the videos were not being viewed as expected.

In response, additional efforts were made to increase student participation, including

114

Table 4.5: Description of students’ interaction with each developed educational material.

MC³
Total of students who
watched each material

Materials Group A Group B
Group A
(N = 12)

Group B
(N = 11)

V&F 1 A4 B9 12 11
V&F 2 C1 C8 12 11
V&F 3 D4 G5 7 10
Slides 1 G4 7 9
Slides 2 B8 5 6
Slides 3 E2 4 7

reminders to watch the materials. It is plausible that this constant reminder process

contributed to improve engagement among students.

The slides, on the other hand, apparently did not receive significant engagement. We

argue that the main reason for this was the optional lecture attendance policy implemented

in the second term of 2023, period in which the case study was conducted. Despite the

researcher uploading slides to Google Classroom after each session, it is possible that

students simply ignored them. In addition, a strike affected teaching across the entire

institution where the case study was conducted, resulting in almost four weeks without

lectures. We propose that the strike could have influenced overall engagement, particularly

regarding students’ engagement with V&F 3, as depicted in Table 4.5.

4.9.3.2 MC³ occurrences in Groups A and B

Taking into account the nine assignments that comprise the intervention period, Group A

was expected to produce a total of 108 submissions, while Group B was expected to yield

99 submissions. However, after excluding invalid submissions (i.e., those that did not

pass all test cases), the analysis was conducted with 93 submissions from Group A and 94

from Group B. The contingency tables summarizing the frequencies of O-W (occurrences

when students had watched), O-NW (occurrences when students had not watched), NO-

W (non-occurrences when students had watched), and NO-NW (non-occurrences when

students had not watched) are presented in Tables 4.6 and 4.7 for Group A and Group

B, respectively.

Table 4.6: Contingency table for Group
A.

NW W

O 30 26
NO 10 27

χ 5.4
p-value 0.021

Table 4.7: Contingency table for Group
B.

NW W

O 13 39
NO 8 34

χ 0.2
p-value 0.660

Since the cells in both contingency tables were greater than five and represented mu-

tually exclusive scenarios, such as a submission being classified as either O-W or O-NW,

115

the Chi-Squared test was employed. The null hypothesis posited that the distributions

of rows and columns were obtained by chance. For Group A, the test resulted in χ = 5.4

and p-value = 0.021. In contrast, for Group B, the test resulted in χ = 0.2 and p-value =

0.660. With a significance level of 0.05, we rejected the null hypothesis for Group A but

not for Group B. The results obtained from Group A met all the established conditions

outlined in Section 4.9.2 (O-W < O-NW, NO-W > NO-NW, p-value < 0.05). However,

the results of Group B only satisfied the second condition (NO-W > NO-NW).

The results presented in Tables 4.6 and 4.7 depict lessons learned and new oppor-

tunities. First, the small values in NO-NW for both groups indicate that MC³ are not

randomly incorporated by the students, which further supports that MC³ are persistent

if they are not addressed in class. Secondly, despite the apparent low engagement with

the materials, Group A met all the established conditions to suggest a positive impact in

mitigating the occurrences of MC³. In contrast, Group B had the O-W tripled compared

to O-NW (39 and 13, respectively). Although one might be tempted to argue that the

materials had the opposite desired outcome for Group B, since we could not reject the

null hypothesis for this group, we cannot consider its results as strong as those for Group

A. Furthermore, different mitigation effects in MC³ could explain the variations between

O-W and NO-W, as similar effects were reported by Peters [97] regarding students who

watched the interactive video.

4.9.3.3 Students’ responses to the questionnaires

The first questionnaire was administered to students after the lecture and presented slides

that addressed MC³ E2. At this moment, the students had received materials V&F 1 and

2, as well as slides 1 and 2 (see Table 4.5). In total, the first questionnaire collected

responses from 12 students in Group A and 11 students in Group B. Subsequently, the

second questionnaire was distributed immediately after the end of the intervention period.

At this time, Group A had seven respondents for the second questionnaire, while Group

B had ten respondents.

When asked with the statement “the videos and flashcards had an appropriate didactic

language,” all 17 students classified it as either “agree” or “strongly agree”. These opinions

were also reflected in their perspectives on the incorporation of these materials into the

CS1 course. In Group A, four students advocated for the integration of both videos and

flashcards, while one student suggested that only flashcards should be integrated, and

two students believed that the materials should not be part of the lectures. Similarly, in

Group B, seven students supported the integration of both materials, one student pre-

ferred only flashcards, and two students opposed the inclusion of the materials in lectures.

Students who favored both materials or just the flashcards argued that integration would

not consume excessive lecture time, while those who disagreed expressed skepticism about

the fit of these materials in a standard lecture setting.

Although we analyzed responses to questions about the MC³ students learned to avoid,

we chose to omit details of these results. The main reason for this was that the majority

of students in both groups stated positive impacts in their learning, but as discussed

earlier, evidence suggested positive impacts only for Group A. However, a few contrary

116

opinions could shed light on this outcome. Two students expressed the view that videos

and flashcards alone were not sufficient to understand MC³, emphasizing the need for in-

person explanations of the topics. Additionally, another student suggested incorporating

a live code compilation to illustrate the differences between code with and without MC³.

This perspective raises concerns about a potential misunderstanding of MC³, as the code

output would remain unchanged regardless of their presence.

Despite the low response rate to the questionnaire, students expressed positive feed-

back on the editing, formatting, and language used in the educational materials. Re-

garding the videos, we attribute this positive opinion to the format of YouTube Shorts.

The constraint of a 60-second length and the vertical aspect influenced the production

of our videos. In line with the refutation text approach for explaining MC³, our videos

met criteria such as length and conciseness, suggested by previous studies on video-based

content for CS1 [36, 87, 97]. We posit that these videos can be further refined and utilized

in future iterations of MC102, aligning with the reusability value emphasized by Stephen-

son [129]. Similarly, the development of flashcards followed a digital format to facilitate

student access. Most of the respondents considered flashcards to be complementary to

the videos. Although evidence suggests that this type of media is popular among college

students [109], the results obtained in this case study further contribute to the belief that

the full pedagogical potential of digital flashcards remains to be fully explored [150].

4.9.3.4 Limitations and threats to validity

The main limitation of this study stems from it being conducted in a single academic

term of a higher education institution. Moreover, the obtained results are significantly

dependent on the number of participants, which was low. Although we observed small

positive effects in Group A, caution should be exercised in generalizing these findings. To

mitigate this limitation, comprehensive details of the methodology were provided while

also highlighting potential avenues for future research iterations.

4.9.4 Conclusions

This afterword presented a case study designed to assess educational materials developed

to teach students about MC³. A total of 23 students participated in the study, which was

conducted in a MC102 class taught in the second academic term of 2023 at Universidade

Estadual de Campinas. Since the study involved human participants, it received prior

evaluation and approval by the Ethics Research Committee of the same institution.

The obtained results indicated that explanation-driven short videos, flashcards, and

slides had a positive impact on MC³ mitigation. However, these educational materials

were not sufficient to achieve the desired outcome. Evidence suggests that although these

formats initially appealed to students, they were not prominently accessed throughout the

CS1 course. This lack of consultation may be attributed to automated grading systems

that primarily assess code correctness, thereby reinforcing students’ focus solely on this

aspect. However, I agree with the assertions made by Joni and Soloway [70], advocating for

instructors to provide feedback based on the concepts of readability and maintainability

rather than solely on code efficiency when addressing MC³ to novice programmers. This

117

presents a challenge, as instructors may find themselves in the dilemma of effectively

convincing students that their already working solutions need to be penalized, but, at the

same time, instructors should not forget that the purpose of assessment is to teach and

not to grade [45].

118

Chapter 5

Discussion

This chapter endeavors to synthesize the findings of this thesis. While Chapters 2 to 4

provided a clear chronological progression of this work, certain details may have been

dispersed across these chapters. Given that each chapter has addressed its respective

research questions, I have chosen to structure this discussion by revisiting each specific

objective defined in Chapter 1.

This thesis did not fully explore all 45 identified MC³ listed initially; instead, the focus

was directed towards the 15 MC³ classified as most severe. To aid readers in this chapter,

Table 5.1 lists all MC³ and each related teaching intervention developed in this thesis.

All developed teaching interventions can be found in Appendix B. Recall that MC³ were

divided into eight categories: A) Variables, identifiers, and scope (A1 to A8); B) Boolean

expressions (B1 to B12); C) Iteration (C1 to C8); D) Function parameter use and scope

(D1 to D4); E) Reasoning (E1 and E2); F) Test cases (F1 and F2); G) Code organization

(G1 to G6); and H) Other (H1 to H3).

Insights into the reasons for the occurrence of other MC³, which were not extensively

explored, were gathered through conversations with MC102 students and consultations

with CS1 instructors. To compile all information related to MC³, including those not

extensively covered, I have included a catalog in Appendix A. I chose to keep in the

catalog all originally identified MC³ to enable other researchers to recognize them in their

teaching environments and develop educational materials based on this thesis’ findings.

5.1 SO1: Identification, analysis, and validation of MC³

This objective served as the central contribution of this thesis. The identification and

analysis of MC³ were accomplished through the study of students’ code within a specific

educational context. While this may be considered a limitation, it is not uncommon in

similar research endeavors where the exploration of misconceptions began within specific

environments before broader validation was pursued [6, 28, 36, 92]. As outlined in SO1, the

validation of MC³ required both internal and external assessments, which were conducted

iteratively throughout the development of this thesis.

The internal validation process involved semi-structured observations within MC102

classes and analysis of automatically detectable MC³ in students’ code. Conversations

119

Table 5.1: List of MC³ and their related teaching interventions developed in this thesis.
The middle horizontal line denotes the 15 most severe MC³. Table sorted in lexicograph-
ical order by MC³ ID.

ID Name DIF AD SV FC LS

A4 Redefinition of built-in 12 ✓ ✓ ✓

B6 Boolean comparison attempted with while loop 20 ✓

B8 Non utilization of elif/else statement 16 ✓ ✓

B9 elif/else retesting already checked conditions 14 ✓ ✓ ✓

B12 Consecutive equal if statements with distinct operations in their blocks 14 ✓

C1 while condition tested again inside its block 20 ✓ ✓ ✓

C2 Redundant or unnecessary loop 16 ✓

C4 Arbitrary number of for loop execution instead of while 16 ✓

C8 for loop having its iteration variable overwritten 30 ✓ ✓ ✓

D4 Function accessing variables from outer scope 16 ✓ ✓ ✓

E2 Redundant or unnecessary use of lists 14 ✓ ✓

F2 Specific verification for instances of open test cases 12
G4 Functions/variables with non significant name 16 ✓ ✓

G5 Arbitrary organization of declarations 12 ✓ ✓ ✓

H1 Statement with no effect 16 ✓

A1 Unused variable -6
A2 Variable assigned to itself 8
A3 Variable unnecessarily initialized -8
A5 Unused import -22
A6 Variables with arbitrary values (Magic Numbers) used in operations 8
A7 Arbitrary manipulations to modify declared variables 8
A8 Arbitrary treatment of the stopping point of reading values 4
B1 Redundant or simplifiable Boolean comparison -8
B2 Boolean comparison separated in intermediary variables -18
B3 Arithmetic expression instead of Boolean 6
B4 Repeated commands inside if-elif-else blocks 6
B5 Nested if statements instead of boolean comparison -10
B7 Boolean validation variable instead of elif/else 4
B10 Unnecessary elif/else 6
B11 Consecutive distinct if statements with the same operations in their blocks 8
C3 Redundant operations inside loop 10
C5 Use of intermediary variable to loop control -12
C6 Multiple distinct loops that operates over the same iterable 0
C7 Arbitrary internal treatment of loop boundaries 2
D1 Inconsistent return declaration 6
D2 Too many return declarations inside a function -8
D3 Redundant or unnecessary return declaration -12
E1 Checking all possible combinations unnecessarily 10
F1 Verification for non explicit conditions 0
G1 Long line commentary -18
G2 Exaggerated use of variables to assign expressions -10
G3 Too many declarations in a single line of code 10
G6 Functions not documented in the Docstring format -4
H2 Redundant typecast 0
H3 Unnecessary or redundant semicolon -16

DIF: Total difference between CS1 instructors who agreed MC³ was severe and those who did not (Chapter 3).
AD: Automated Detection. SV: Short Video. FC: Flashcard. LS: Lecture Slides.

with MC102 students confirmed some of my initial expectations regarding incomplete or

incorrect comprehensions of CS1 topics. However, I was particularly struck by students’

explanations for MC³ such as C1 (while condition tested again inside its block) and

G5 (arbitrary organization of declarations), which were rooted in concerns related to the

120

autograder. Some students wanted to ensure the system would not wrongly assess their

code, leading to the declaration of redundant checks. Others were overly cautious about

plagiarism detection, organizing their code in (confusing or redundant) ways they believed

would differ from typical student submissions. When curating the initial list of MC³, I

had not anticipated that the use of an autograder could influence MC³ reasoning aside

from incomplete or incorrect comprehensions.

Students’ preference for one construct over another may contribute to the occurrence

of MC³ such as C4 (arbitrary number of for loop instead of while) and E2 (redundant

or unnecessary use of lists). The mere-exposure effect [148] can help explain this phe-

nomenon. In CS1 context, students who are repeatedly exposed to exercise solutions that

utilize a particular construct may become more familiar with it, leading them to prefer

its use even when other constructs would be more appropriate.

The occurrence of some MC³ reflecting a careless approach to coding may also be

linked to how students perceive the effort required to adhere to these practices within

their educational context. Wigfield and Eccles [143] describe that the cost of engaging

in a specific activity limits access to other activities based on the effort required for the

former. This concept can be related to MC³ in the Code Organization category. When

the CS1 course focus solely on code correctness, students may not understand the benefits

of using meaningful variable or function names (MC³ G4) and maintaining organized code

(MC³ G5). As a result, students may perceive the costs of adhering to these practices

as too high since they would not understand the reason why these should be adhered to.

This reinforces the importance of instructors actively engaging students by demonstrating

practical scenarios in which obfuscated and disorganized code proves detrimental.

A lack of attention during programming was also considered as cause for MC³ A4

(redefinition of built-in) and G4 (functions/variables with non significant name). The

Dual Process Theory in cognitive psychology [108] postulates the existence of two cognitive

systems: one that is fast and intuitive, and another that is slow and reflective. The

reflexive system is associated with rule learning, which can be linked with the awareness

of coding behaviors such as MC³. When students focus primarily on passing all test cases

in an autograder, they may engage the fast system, potentially neglecting attention to

other important aspects of their code.

The initial frequency distribution of MC³ occurrence was presented in Chapter 3 and

further explored in Chapter 4. As demonstrated, the 14 automatically detectable MC³

manifest at some point during the CS1 course and persist by the conclusion of the course.

This permeates the notion that students can complete the course with top grades while re-

taining incomplete or incorrect understandings of the material. While the frequency varies

for each MC³ (refer to Table 3.4 and Figures 4.2, 4.3, and 4.4), eight of these miscon-

ceptions relate to core concepts such as decision and iteration structures. The remaining

MC³ reflect careless approach to coding. Despite arguments that novice programmers,

especially from non-STEM backgrounds, should not prioritize these aspects [10, 51], I

contend otherwise. The 15 most severe MC³ encompass either incomplete understand-

ings of CS1 topics or coding behaviors that impact code readability and maintainability.

Early emphasis on these skills should be integrated into CS1 courses, as programming is

121

typically a collaborative endeavor. On the other hand, I do believe that addressing code

efficiency should only occur in subsequent programming courses after CS1.

The external validation was carried out by the questionnaire and semi-structured inter-

views with CS1 instructors, complemented by syllabi analysis in Chapter 2. Consultations

with CS1 instructors not only allowed the identification of the most severe MC³ but also

provided insights into diverse teaching contexts beyond MC102. For instance, as discussed

in Chapter 3, six instructors reported using autograders, but only three manually assess

students’ code even when it passes all test cases. This highlights additional teaching con-

texts where MC³ may manifest, potentially allowing students to complete the CS1 course

without addressing these misconceptions. Moreover, instructors who prefer manual as-

sessment emphasize its efficacy in gauging students’ grasp of course material, especially

when assessing code with MC³ like behaviors.

The syllabi analysis conducted in Chapter 2 yielded insights into CS1 teaching con-

texts in Brazil, revealing notable similarities to the MC102 course. For example, 90% of

CS1 courses emphasize programming through the procedural paradigm. Even though C

seemed to be the most popular language, Python was the second one. Furthermore, as

discussed in Chapter 3, the most severe MC³ can potentially happen across other pro-

gramming languages, particularly those within categories B (Boolean expressions) and C

(Iteration). Table 5.2 expands upon Table 2.10 by illustrating MC³ categories that are re-

lated to the most covered topics identified in the syllabi analysis. MC³ categories G (Code

organization) and H (Other) were not included in the table, as the related misconceptions

can arise from any topic covered in CS1. These findings illustrate the presence of diverse

CS1 teaching contexts where students may develop MC³. However, as further discussed in

this chapter, I do not assert that these findings alone indicate that CS1 students develop

MC³.

Table 5.2: MC³ categories related to the most covered topics found in CS1 syllabi analysis
(Chapter 2).

Group MC³ Categories

Algorithm representations N/A
Basic concepts of algorithm construction A, B
Composite variables C, E
Control structures B, C, F
Functions, scope and parameter usage D
Recursion D

5.2 SO2: Development of valid artifacts that address

MC³

The goal of this objective was to develop artifacts that would directly and indirectly assist

CS1 instructors and students in addressing MC³ within the course. This objective yielded

two key artifacts: an automated detection tool capable of identifying 14 of the 15 most

severe MC³ and a set of educational materials, comprised of short videos, lecture slides,

122

and flashcards. Validity from these artifacts stemmed from two facts: they were created

using the insights and findings in SO1; and their elaboration followed methodologies or

guidelines present in the literature.

Focusing on identifying the 15 most severe MC³ in SO1 was a deliberate research

design choice to streamline the scope of this work. However, even within this focused

scope, implementing the automated detection proved to be the most challenging aspect

of this thesis. Analyzing the Abstract Syntax Tree is a common method for implementing

static code analysis in similar research [39, 47, 59, 75], and authors have reported inherent

challenges in this process. As detailed in Chapter 3, the developed tool for this thesis can

effectively detect 14 out of the 15 most severe MC³. Nevertheless, several simplifications

were necessary during implementation, primarily due to the anticipated low complexity

of the analyzed code authored by CS1 students. For instance, simplifications included

limiting the detection of MC³ C1 (while condition tested again inside its block) for

only one while condition, since it would be rare for students to declare more. Another

example was limiting detection of MC³ B8 (non utilization of elif/else statements) to

only consider if-elif sequences without an else clause.

Another important aspect of the automated detection design was the incorporation

of instructors’ expertise. The necessity for this design became apparent when I had to

address questions like "How many iterations of a for-loop would suggest that a while

loop should have been used instead?" for MC³ C4 (arbitrary number of for loop execu-

tions instead of while). Similar questions arose when considering the maximum allowable

number of declared lists that would indicate a misuse of this structure (MC³ E2 - redun-

dant or unnecessary use of lists) and, perhaps the most challenging one, was determining

the minimum number of characters required for a variable or function name to be con-

sidered significant (MC³ G4 - variables/functions with non significant names). Given the

context-dependent nature of these MC³, instructors are best positioned to make such de-

terminations, having developed each CS1 assignment and understanding what to expect

from their students. The use of threshold constants to identify these MC³ is akin to the

symptom-based approach discussed in Evans et al. [47], where the presence of a symptom

may or may not indicate a misconception. The instructor’s expertise is also required in

EduLint1, a Python linter designed for novice programmers. EduLint performs code qual-

ity checks using static code analysis, and some of the detected flaws are similar to MC³.

However, since not all checks may be relevant for novices, EduLint’s guidelines suggest

that instructors configure which defects will trigger warnings.

The development of educational materials served as a complement to interventions

addressing MC³ in CS1 courses. This initiative stemmed from personal interest and a

lack of existing research (at least as far I was able to find) specifically targeting novice

programmers’ misconceptions [36, 97, 100]. Short videos and flashcards can also help

students by providing spaced repetition [22, 43] in order to reactivate and reach peak

retention of the contents taught. Previous research on the use of videos in CS1 provided

guidelines for future content creation [129, 137], emphasizing appropriate length, language

format, and cost-effectiveness attributes. It is crucial for instructors to ensure that future

classes will benefit from these resources due to the potential production costs associated

1https://edulint.readthedocs.io/en/latest/

123

with video creation. In light of this, the developed educational materials in this thesis

were shared with MC102 instructors. The large-scale analysis conducted in Chapter 4

highlighted the persistence of the most severe MC³ in CS1 classes, with nine appearing

most frequently. This finding justified the creation of videos for use in future MC102

or similar courses, aligning with the cost-effectiveness importance mentioned. Moreover,

since the guidelines generally suggests for short videos, the use of YouTube Shorts was

considered due to its popularity among educational channels23. I had hoped this format

would appeal to students’ attention. Lastly, the proper language was achieved by using

code examples created by CS1 students in the original assessment that led to the iden-

tification of MC³. By using these examples —and even reinforcing during lectures these

examples were created by previous students— the attention impact would be enhanced.

Both short videos and flashcards were created to complement each other, guided by

the same elaboration rationale outlined above. As I am not a designer, I encountered

challenges assembling these materials, particularly due to a lack of proficiency in platforms

like CapCut4 or Canva5. However, the most daunting task was adapting content to fit

within 60-second videos or a single-page digital flashcard. Consequently, I opted to use

lecture slides to explain MC³ B8, E2, and G4, as I determined that these MC³ required

more extensive explanations. The format was the only distinction between these slides

and the other materials, which were all developed with the same methodology in mind.

5.3 SO3: Assessment of artifacts in a CS1 teaching en-

vironment

This objective aimed to evaluate the developed artifacts from SO2 within a CS1 class,

conducted as a case study in an MC102 course with a total of 23 student participants. At

the start of the course, students were divided into two groups, A and B. Throughout the

course, each group received a set of short videos and flashcards addressing specific MC³

(refer to Table 4.5). The lecture slides were administered to all students, but only par-

ticipants had their code analyzed. After the intervention period concluded, each group’s

MC³ occurrences were compared internally to analyze whether individual students who

watched the corresponding educational materials showed changes in MC³ occurrences.

The tool for automated detection assisted in this frequency analysis, although the tool

itself was not directly assessed with respect to the students.

As discussed in Chapter 3, the distribution of materials was structured to continually

introduce novel videos and flashcards to both groups, following the principles of spaced

repetition. The timing of material dissemination during the CS1 course was determined by

when each MC³ was observed to peak (based on Table 3.4 and Figures 4.2, 4.3, and 4.4).

Similarly, the scheduling of lecture slides was aligned with these observations. However,

as previously mentioned, I encountered challenges with this approach when I noticed

2https://www.youtube.com/@funwithpython8618/shorts
3https://www.youtube.com/@fastprogramming9916/shorts
4www.capcut.com
5www.canva.com

124

that students were not consistently viewing the YouTube-hosted videos. To address this

wavering interest issue, I sent friendly reminders each week via email and during lectures

to encourage engagement with the materials. Maintaining regular communication with

participants proved essential in addressing this common issue with this kind of research.

Group A’s results (Table 4.6) suggest that the materials had a positive impact on

mitigating MC³ occurrences. This conclusion is supported by the comparison of total

submissions with and without MC³ based on whether students had watched the materials.

Specifically, the total submissions with MC³ were lower when students had watched the

materials compared to when they had not. Additionally, the total submissions without

any MC³ after watching the materials were higher than when they had not watched. In

contrast, Group B (Table 4.7) yielded different results, with total submissions showing

MC³ occurrences three times higher than when students had not watched the materials.

This could indicate that the materials had a potentially negative impact on mitigating

MC³ occurrences in Group B. However, the Chi-Squared test rejected the null hypothesis

for Group A but not for Group B. In other words, the results from Group A suggest that

the materials were beneficial, whereas the results for Group B were inconclusive.

What could explain the divergence between the two groups? Despite the nearly equal

arrangement of students and consistent material distribution methods across both groups,

attention is drawn to the nature of the MC³ themselves. It is possible that MC³ A4,

C1, and D4 were more effectively explained and understood through short videos and

flashcards compared to MC³ B9, C8, and G5. Additionally, although Table 4.5 suggests

that Group B displayed slightly more interest in watching the materials than Group A,

this did not translate into a positive outcome in the results. Furthermore, the fact that

MC³ B8, D4, and G5 are among the most frequent (Figure 4.4) implies that they may be

more challenging to address effectively.

Ultimately, my conclusions suggest that addressing MC³ through media formats like

videos and flashcards is valuable but insufficient on its own. Their incorporation into

CS1 courses must be coupled with a clear emphasis on the importance of avoiding MC³,

and this emphasis must be reinforced periodically by instructors and teaching assistants

during the CS1 course. This is especially crucial in courses where automatically graded

assignments heavily influence students’ final grades, as is the case with MC102. If in-

structors opt to penalize students’ solutions with MC³, they should justify it by using

code readability and maintainability attributes. This is because justifications on code

total running time or resource consumption is not suited for CS1 students [70]. The goal

of this thesis is heavily influenced by this statement, since its purpose is but to support

instructors and teaching assistants to help students develop strong programming skills.

Lastly, another aspect of SO3 involved assessing the reflections on the adoption of

MC³ interventions in CS1 classes. Although MC102 students provided feedback on the

research they participated in, these responses were not included in the articles represented

in Chapters 3 and 4 due to space constraints and a low response rate. However, I would

like to share some of these responses here, as I have come to appreciate the value of context

to understand situations better. The responses were originally in Brazilian Portuguese.

125

“I would just like to thank the opportunity to participate
in the research. In the beginning I had no idea that I
would receive feedback in the way they were given and,
undoubtedly, they were extremely valuable and made me
realize many mistakes I was committing. They have also
provided a sense of security in writing code with the pre-
sented commands.”

(A male student that participated in the semi-structured
observation).

“I would like to thank the opportunity to participate in the
project, it was extremely useful for me as I learned many
things I had not seen in the classroom.”

(A female student that participated in the semi-structured
observation).

“As a novice programmer, I consider that this research
and its educational materials were of great assistance to
prevent redundancies and imprecision. I would also like
to emphasize that the materials addressing ‘Pitfalls’ were
extremely important to help me avoid common flaws in
my code development, as an excessive use of lists, confuse
variable naming, etc.”

(A male student from Group B that participated in the
case study).

“I did not perceive any change regarding elaborating my
code as a programmer that would follow coding patterns,
especially since this is not my goal with programming.
However, I began to be more consistent in the way I have
elaborated my code from one assignment to another.”

(A male student from Group A that participated in the
case study.)

126

Chapter 6

Reflections at Journey’s End

“For this journey’s end is but a step forward to tomorrow.”

—“Flow”. Music written by Masayoshi Soken.

This thesis aimed to enhance the teaching and learning of undergraduate introduc-

tory programming courses (CS1) by investigating coding behaviors exhibited by students

that may indicate incomplete or incorrect comprehension of course topics. These be-

haviors, identified in functionally correct code, were termed Misconceptions in Correct

Code (MC³). All analysis primarily focused on the teaching context of the Algorithm and

Computer Programming (MC102) course at Universidade Estadual de Campinas, which

uses the Python programming language within the procedural paradigm. The thesis was

presented as an article collection (Chapters 2 to 4), with each chapter representing a

contribution to the study of MC³.

Chapter 2 presented an analysis of CS1 course syllabi from Brazilian public universi-

ties. The primary objective was to assess the alignment of covered topics with those taught

in MC102, thereby evaluating one replicability factor of this thesis’ studies. A total of 225

syllabi from 95 public universities were analyzed, identifying 12 topics grouped into six

categories: Algorithm representations; Basic concepts of algorithm construction; Compos-

ite variables; Control structures; Functions, scope, and parameter usage; and Recursion.

The most recent version of the MC102 syllabus covers all these categories except for Al-

gorithm representations. The analysis also revealed that C is the most commonly taught

programming language (53%), followed by Python (8%), with the procedural paradigm

being the predominant approach. These findings indicate diverse teaching contexts where

MC³ could manifest, but they are not enough to underscore their reasons for occurrence.

Chapter 3 detailed the methodology employed to identify and assess the list of MC³. A

total of 45 MC³ were identified through manual assessment of 2,441 student submissions.

Following consultations with 32 CS1 instructors, 15 MC³ were classified as most severe,

warranting deeper investigation. Instructors also shared insights into why students exhibit

these coding behaviors and proposed teaching interventions to address them. The inves-

tigation into MC³ occurrence also included semi-structured observations within MC102

classes, involving 20 students and one instructor. Results revealed that eight of the 15

most severe MC³ are directly related to Boolean expressions and iteration, core concepts

127

in procedural-based programming. Evidence suggested that students often exhibit mis-

conceptions about Python constructs such as decision statements and loops. Additionally,

a careless coding approach, where functionality takes precedence over other aspects, was

also identified as a contributing factor to MC³ occurrence. The chapter also introduced

an automated detection tool capable of identifying 14 out of the 15 most severe MC³,

which was used in assessing their frequencies throughout MC102 academic semesters.

Chapter 4 further explored MC³ frequencies through a comprehensive study spanning

eight academic terms of MC102. Over 40,000 student submissions were analyzed with the

developed automated detection tool, revealing that MC³ exhibit varying distributions.

Analysis also revealed that the general frequency of MC³ development is persistent, indi-

cating that they do not disappear if no intervention is conducted. This insight inspired

the creation of educational materials targeting nine of the most frequent MC³. These

materials, consisting of short videos, flashcards, and lecture slides, were designed to en-

gage students and reinforce why these coding behaviors should be avoided. A case study

involving 23 students assessed the impact of these materials, with results indicating a pos-

itive effect on mitigating some MC³ in one group of students while yielding inconclusive

results in another. These results elicit the importance of integrating such materials within

the CS1 curriculum but, to increase their effectiveness, instructors and teaching assistants

must continuously reinforce why MC³ should be avoided. These materials should also be

created with a proper language and a compelling format to increase students’ engagement.

The thesis’ concluding statement is that CS1 students can develop code that produces

the expected outcome while still developing coding behaviors that elicits an incomplete

or faulty comprehension of the CS1 topics. Although identified in Python, MC³ can

manifest in other imperative programming languages, suggesting that these behaviors are

rooted in students’ cognitive processes. Subsequently, as students’ cognitive processes

are highly influenced by their learning environment, this research emphasizes that to

effectively address MC³, code attributes such as readability and maintainability must be

reinforced beyond correctness. The role of instructors and teaching assistants is crucial in

mitigating the occurrence of MC³, as they can unintentionally reinforce these behaviors

through educational materials and teaching practices.

Future research on MC³ could focus on developing additional materials for use during

CS1 lectures. For example, creating a concept inventory tailored to address MC³ behav-

iors could serve as an initial step toward implementing Active Learning techniques like

Peer Instruction. While I did not have the opportunity to explore this idea, I believe

it could be effectively applied in CS1 teaching environments, whether in classrooms or

laboratories. Since students can interact with multiple-choice questionnaires using smart-

phones or clickers, lectures in classrooms can benefit from this approach without requiring

computers.

Enhancing the automated detection of MC³ while also providing formative feedback

directly to students is another possibility of future research. A few years ago, I might

have suggested that feedback should be solely provided by an autograder detecting MC³.

However, given the increasing interest in using Large Language Models (LLMs) in CS1

teaching, I now argue that leveraging this technology to address and provide feedback

on MC³ behaviors is a more promising approach. Recent research by Wang et al. [141]

128

explored different types of generated feedback, primarily focused on syntax errors. The

authors reported that OpenAI’s ChatGPT consistently generated more helpful messages

compared to traditional Python error messages. Investigating whether similar feedback

from LLMs can effectively address MC³ would be valuable.

Lastly, I do not disregard the importance of exploring MC³ occurrence in other CS1

teaching contexts, including demographic factors such as gender, previous programming

experience, and type of higher education institution. Another important consideration

is students’ prior submissions before the final one containing MC³. While this thesis

demonstrated that assignment deadlines do not significantly impact MC³ occurrence, it

is possible that students who exhibit these behaviors were previously struggling to ensure

their code passed all test cases. These attributes can contribute to creating more nuanced

student profiles in Learning Analytics, for example. Although the presence of MC³ alone

may not determine a student’s likelihood of failing the CS1 course, other related aspects

could be inferred and studied further.

The reason behind this chapter’s name is that I have come to realize the metaphor that

“Ph.D. is journey”. This realization coalesced because I once heard that “good research

leaves the seed for other research” and that “a thesis must tell a story”. While I do not

believe this metaphor applies to research as an entity, it does apply to research cycles. As

for my cycle, while I certainly do not consider myself as a hero, many were its similarities

with the stages of the Hero’s Journey, as listed by Vogler [139]. I experienced my call to

adventure, faced refusals and challenges, sought guidance from mentors, confronted inner

trials, and emerged with new insights akin to the hero’s return with the elixir, created to

improve the ordinary world of teaching and learning in CS1.

129

Bibliography

[1] Cristina L. Abad, Eduardo Ortiz-Holguin, and Edwin F. Boza. Have We Reached

Consensus? An Analysis of Distributed Systems Syllabi. In Proceedings of the

52nd ACM Technical Symposium on Computer Science Education, SIGCSE ’21,

page 1082–1088, New York, NY, USA, 2021. Association for Computing Machinery.

ISBN 9781450380621. doi: 10.1145/3408877.3432409.

[2] Ashish Aggarwal, Christina Gardner-McCune, and David S. Touretzky. Evaluat-

ing the effect of using physical manipulatives to foster computational thinking in

elementary school. In Proceedings of the 2017 ACM SIGCSE Technical Sympo-

sium on Computer Science Education, SIGCSE ’17, page 9–14, New York, NY,

USA, 2017. Association for Computing Machinery. ISBN 9781450346986. doi:

10.1145/3017680.3017791. URL https://doi.org/10.1145/3017680.3017791.

[3] Murtaza Ali, Sourojit Ghosh, Prerna Rao, Raveena Dhegaskar, Sophia Jawort, Alix

Medler, Mengqi Shi, and Sayamindu Dasgupta. Taking stock of concept inven-

tories in computing education: A systematic literature review. ICER ’23, page

397–415, New York, NY, USA, 2023. Association for Computing Machinery. ISBN

9781450399760. doi: 10.1145/3568813.3600120. URL https://doi.org/10.1145/

3568813.3600120.

[4] Vicki L. Almstrum, Peter B. Henderson, Valerie Harvey, Cinda Heeren, William

Marion, Charles Riedesel, Leen-Kiat Soh, and Allison Elliott Tew. Concept inven-

tories in computer science for the topic discrete mathematics. In Working Group

Reports on ITiCSE on Innovation and Technology in Computer Science Educa-

tion, ITiCSE-WGR ’06, page 132–145, New York, NY, USA, 2006. Association for

Computing Machinery. ISBN 1595936033. doi: 10.1145/1189215.1189182. URL

https://doi.org/10.1145/1189215.1189182.

[5] Amjad Altadmri and Neil C.C. Brown. 37 million compilations: Investigating

novice programming mistakes in large-scale student data. In Proceedings of the

46th ACM Technical Symposium on Computer Science Education, SIGCSE ’15,

page 522–527, New York, NY, USA, 2015. Association for Computing Machinery.

ISBN 9781450329668. doi: 10.1145/2676723.2677258. URL https://doi.org/10.

1145/2676723.2677258.

[6] Ada Araujo, Daniel Filho, Elaine Oliveira, Leandro Carvalho, Filipe Pereira, and

David Oliveira. Mapeamento e análise empírica de misconceptions comuns em

130

avaliações de introdução à programação. In Anais do Simpósio Brasileiro de Edu-

cação em Computação, pages 123–131, Porto Alegre, RS, Brasil, 2021. SBC. doi:

10.5753/educomp.2021.14478.

[7] Luis Araujo, Roberto Bittencourt, and Christina Chavez. Python Enhanced Error

Feedback: Uma IDE Online de Apoio ao Processo de Ensino-Aprendizagem em

Programação. In Anais do Simpósio Brasileiro de Educação em Computação, pages

326–333, Porto Alegre, RS, Brasil, 2021. SBC. doi: 10.5753/educomp.2021.14500.

[8] Richard H. Austing, Bruce H. Barnes, Della T. Bonnette, Gerald L. Engel, and

Gordon Stokes. Curriculum ’78: Recommendations for the Undergraduate Program

in Computer Science— a Report of the ACM Curriculum Committee on Computer

Science. Commun. ACM, 22(3):147–166, mar 1979. ISSN 0001-0782. doi: 10.1145/

359080.359083.

[9] Nikolaos Avouris. Introduction to Computing: A Survey of Courses in Greek Higher

Education Institutions. In Proceedings of the 22nd Pan-Hellenic Conference on In-

formatics, PCI ’18, page 64–69, New York, NY, USA, 2018. Association for Com-

puting Machinery. ISBN 9781450366106. doi: 10.1145/3291533.3291549.

[10] Elisa Baniassad, Lucas Zamprogno, Braxton Hall, and Reid Holmes. Stop the

(autograder) insanity: Regression penalties to deter autograder overreliance. In

Proceedings of the 52nd ACM Technical Symposium on Computer Science Educa-

tion, SIGCSE ’21, page 1062–1068, New York, NY, USA, 2021. Association for

Computing Machinery. ISBN 9781450380621. doi: 10.1145/3408877.3432430. URL

https://doi.org/10.1145/3408877.3432430.

[11] Alexandre Barbosa, Evandro Costa, and Patrick Brito. Juízes online são sufi-

cientes ou precisamos de um var? In Anais do III Simpósio Brasileiro de Ed-

ucação em Computação, pages 386–394, Porto Alegre, RS, Brasil, 2023. SBC.

doi: 10.5753/educomp.2023.228224. URL https://sol.sbc.org.br/index.php/

educomp/article/view/23909.

[12] Brett A. Becker. A Survey of Introductory Programming Courses in Ireland. In Pro-

ceedings of the 2019 ACM Conference on Innovation and Technology in Computer

Science Education, ITiCSE ’19, page 58–64, New York, NY, USA, 2019. Association

for Computing Machinery. ISBN 9781450368957. doi: 10.1145/3304221.3319752.

[13] Brett A. Becker and Thomas Fitzpatrick. What do cs1 syllabi reveal about our

expectations of introductory programming students? In Proceedings of the 50th

ACM Technical Symposium on Computer Science Education, SIGCSE ’19, page

1011–1017, New York, NY, USA, 2019. Association for Computing Machinery. ISBN

9781450358903. doi: 10.1145/3287324.3287485. URL https://doi.org/10.1145/

3287324.3287485.

[14] Brett A. Becker and Keith Quille. 50 Years of CS1 at SIGCSE: A Review of the

Evolution of Introductory Programming Education Research. In Proceedings of the

131

50th ACM Technical Symposium on Computer Science Education, SIGCSE ’19, page

338–344, New York, NY, USA, 2019. Association for Computing Machinery. ISBN

9781450358903. doi: 10.1145/3287324.3287432.

[15] Brett A Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle

Goslin, and Catherine Mooney. Effective compiler error message enhancement

for novice programming students. Computer Science Education, 26(2-3):148–175,

2016. doi: 10.1080/08993408.2016.1225464. URL https://doi.org/10.1080/

08993408.2016.1225464.

[16] Brett A. Becker, Kyle Goslin, and Graham Glanville. The effects of enhanced com-

piler error messages on a syntax error debugging test. SIGCSE 2018 - Proceedings of

the 49th ACM Technical Symposium on Computer Science Education, 2018-Janua:

640–645, 2018. doi: 10.1145/3159450.3159461.

[17] Gal Beniamini, Sarah Gingichashvili, Alon Klein Orbach, and Dror G. Feitelson.

Meaningful identifier names: The case of single-letter variables. In 2017 IEEE/ACM

25th International Conference on Program Comprehension (ICPC), pages 45–54,

2017. doi: 10.1109/ICPC.2017.18.

[18] Marc Berges and Peter Hubwieser. Concept Specification Maps: Displaying Con-

tent Structures. In Proceedings of the 18th ACM Conference on Innovation and

Technology in Computer Science Education, ITiCSE ’13, page 291–296, New York,

NY, USA, 2013. Association for Computing Machinery. ISBN 9781450320788. doi:

10.1145/2462476.2462503.

[19] Dave Binkley, Dawn Lawrie, Steve Maex, and Christopher Morrell. Impact of

limited memory resources. In Proceedings of the 2008 The 16th IEEE Interna-

tional Conference on Program Comprehension, ICPC ’08, page 83–92, USA, 2008.

IEEE Computer Society. ISBN 9780769531762. doi: 10.1109/ICPC.2008.31. URL

https://doi.org/10.1109/ICPC.2008.31.

[20] Glenn D Blank, Sally Hiestand, and Fang Wei. Overcoming misconceptions about

computer science with multimedia. In Proceedings of 35th SIGCSE Technical Sym-

posium on Computer science Education, 2004.

[21] Paulo Blikstein and Sepi Hejazi Moghadam. Computing Education Literature Re-

view and Voices from the Field, page 56–78. Cambridge Handbooks in Psychology.

Cambridge University Press, 2019.

[22] C.C. Bonwell and J.A. Eison. Active Learning: Creating Excitement in the Class-

room. J-B ASHE Higher Education Report Series (AEHE). Wiley, 1991. ISBN

9781878380081.

[23] Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle van Assema, Rodrigo Duran, Sara

Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner, and Bonnie MacKellar.

"i know it when i see it" perceptions of code quality: Iticse ’17 working group report.

132

In Proceedings of the 2017 ITiCSE Conference on Working Group Reports, ITiCSE-

WGR ’17, page 70–85, New York, NY, USA, 2018. Association for Computing

Machinery. ISBN 9781450356275. doi: 10.1145/3174781.3174785. URL https:

//doi.org/10.1145/3174781.3174785.

[24] Yorah Bosse and Marco Gerosa. Reprovações e Trancamentos nas Disciplinas de

Introdução à Programação da Universidade de São Paulo: Um Estudo Preliminar.

In Anais do XXIII Workshop sobre Educação em Computação, pages 426–435, Porto

Alegre, RS, Brasil, 2015. SBC. doi: 10.5753/wei.2015.10259.

[25] Carla E. Brodley, Benjamin J. Hescott, Jessica Biron, Ali Ressing, Melissa Peiken,

Sarah Maravetz, and Alan Mislove. Broadening Participation in Computing via

Ubiquitous Combined Majors (CS+X). In Proceedings of the 53rd ACM Technical

Symposium on Computer Science Education V. 1, SIGCSE 2022, page 544–550, New

York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450390705.

doi: 10.1145/3478431.3499352.

[26] Neil Christopher Charles Brown, Michael Kölling, Davin McCall, and Ian Utting.

Blackbox: a large scale repository of novice programmers’ activity. In Proceedings of

the 45th ACM Technical Symposium on Computer Science Education, SIGCSE ’14,

page 223–228, New York, NY, USA, 2014. Association for Computing Machinery.

ISBN 9781450326056. doi: 10.1145/2538862.2538924. URL https://doi.org/10.

1145/2538862.2538924.

[27] William H Brown, Raphael C Malveau, Hays W" Skip" McCormick, and Thomas J

Mowbray. AntiPatterns: refactoring software, architectures, and projects in crisis.

John Wiley & Sons, Inc., 1998.

[28] Ricardo Caceffo, Steve Wolfman, Kellogg S. Booth, and Rodolfo Azevedo. Develop-

ing a Computer Science Concept Inventory for Introductory Programming. In Pro-

ceedings of the 47th ACM Technical Symposium on Computing Science Education,

SIGCSE ’16, page 364–369, New York, NY, USA, 2016. Association for Computing

Machinery. ISBN 9781450336857. doi: 10.1145/2839509.2844559.

[29] Ricardo Caceffo, Guilherme Gama, and Rodolfo Azevedo. Exploring Active Learn-

ing Approaches to Computer Science Classes. In Proceedings of the 49th ACM Tech-

nical Symposium on Computer Science Education, SIGCSE ’18, page 922–927, New

York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450351034.

doi: 10.1145/3159450.3159585.

[30] Ricardo Caceffo, Pablo Frank-Bolton, Renan Souza, and Rodolfo Azevedo. Identi-

fying and validating java misconceptions toward a cs1 concept inventory. In Pro-

ceedings of the 2019 ACM Conference on Innovation and Technology in Computer

Science Education, ITiCSE ’19, page 23–29, New York, NY, USA, 2019. Association

for Computing Machinery. ISBN 9781450368957. doi: 10.1145/3304221.3319771.

URL https://doi.org/10.1145/3304221.3319771.

133

[31] Andrew Cain and Muhammad Ali Babar. Reflections on applying construc-

tive alignment with formative feedback for teaching introductory programming

and software architecture. In Proceedings of the 38th International Conference

on Software Engineering Companion, ICSE ’16, page 336–345, New York, NY,

USA, 2016. Association for Computing Machinery. ISBN 9781450342056. doi:

10.1145/2889160.2889185. URL https://doi.org/10.1145/2889160.2889185.

[32] Tânia Alencar de Caldas. Desempenho dos alunos numa disciplina introdutória de

programação e o conhecimento longevo. Master’s thesis, Universidade Estadual de

Campinas, 2020. URL https://hdl.handle.net/20.500.12733/1640661.

[33] RLBL Campos. Metodologia ERM2C: Para melhoria do processo de ensino-

aprendizagem de lógica de programação. In XVIII Workshop sobre Educação

em Computação, pages 961–970. XXX Congresso da Sociedade Brasileira de

Computação, 2010. URL https://docplayer.com.br/52972769-Metodologia-

erm2c-para-melhoria-do-processo-de-ensino-aprendizagem-de-logica-

de-programacao.html.

[34] Simon Caton, Seán Russell, and Brett A. Becker. What fails once, fails again:

Common repeated errors in introductory programming automated assessments. In

Proceedings of the 53rd ACM Technical Symposium on Computer Science Education

- Volume 1, SIGCSE 2022, page 955–961, New York, NY, USA, 2022. Association

for Computing Machinery. ISBN 9781450390705. doi: 10.1145/3478431.3499419.

URL https://doi.org/10.1145/3478431.3499419.

[35] CC2020 Task Force. Computing Curricula 2020: Paradigms for Global Computing

Education. Association for Computing Machinery, New York, NY, USA, 2020. ISBN

9781450390590. doi: https://doi.org/10.1145/3467967.

[36] Luca Chiodini, Igor Moreno Santos, Andrea Gallidabino, Anya Tafliovich, André L.

Santos, and Matthias Hauswirth. A curated inventory of programming language mis-

conceptions. In Proceedings of the 26th ACM Conference on Innovation and Tech-

nology in Computer Science Education V. 1, ITiCSE ’21, page 380–386, New York,

NY, USA, 2021. Association for Computing Machinery. ISBN 9781450382144. doi:

10.1145/3430665.3456343. URL https://doi.org/10.1145/3430665.3456343.

[37] Louis Cohen, Lawrence Manion, and Keith Morrison. Research Methods in Educa-

tion. Routledge, 2005.

[38] Catherine H. Crouch and Eric Mazur. Peer Instruction: Ten years of experience

and results. American Journal of Physics, 69(9):970–977, 09 2001. ISSN 0002-9505.

doi: 10.1119/1.1374249. URL https://doi.org/10.1119/1.1374249.

[39] Giuseppe De Ruvo, Ewan Tempero, Andrew Luxton-Reilly, Gerard B. Rowe, and

Nasser Giacaman. Understanding semantic style by analysing student code. In

Proceedings of the 20th Australasian Computing Education Conference, ACE ’18,

page 73–82, New York, NY, USA, 2018. Association for Computing Machinery.

134

ISBN 9781450363402. doi: 10.1145/3160489.3160500. URL https://doi.org/10.

1145/3160489.3160500.

[40] Zachary Dodds, Ran Libeskind-Hadas, and Eliot Bush. When CS 1 is Biology

1: Crossdisciplinary Collaboration as CS Context. In Proceedings of the Fifteenth

Annual Conference on Innovation and Technology in Computer Science Education,

ITiCSE ’10, page 219–223, New York, NY, USA, 2010. Association for Computing

Machinery. ISBN 9781605588209. doi: 10.1145/1822090.1822152.

[41] Benedict du Boulay. Some difficulties of learning to program. Journal of Educational

Computing Research, 2(1):57–73, 1986. doi: 10.2190/3LFX-9RRF-67T8-UVK9.

URL https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9.

[42] Rodrigo Duran, Juha Sorva, and Otto Seppälä. Rules of program behavior. ACM

Trans. Comput. Educ., 21(4), nov 2021. doi: 10.1145/3469128. URL https://doi.

org/10.1145/3469128.

[43] Hermann Ebbinghaus. Memory: a contribution to experimental psychology. Annals

of neurosciences, 20(4):155—156, October 2013. ISSN 0972-7531. doi: 10.5214/ans.

0972.7531.200408. URL https://europepmc.org/articles/PMC4117135.

[44] Mary B. Eberly, Sarah E. Newton, and Robert A. Wiggins. THE SYLLABUS

AS A TOOL FOR STUDENT-CENTERED LEARNING. The Journal of General

Education, 50(1):56–74, 2001. ISSN 00213667, 15272060. URL http://www.jstor.

org/stable/27797862.

[45] Stephen H. Edwards. Automated feedback, the next generation: Designing learning

experiences. In Proceedings of the 52nd ACM Technical Symposium on Computer

Science Education, SIGCSE ’21, page 610–611, New York, NY, USA, 2021. Asso-

ciation for Computing Machinery. ISBN 9781450380621. doi: 10.1145/3408877.

3437225. URL https://doi.org/10.1145/3408877.3437225.

[46] Margaret Ellis, Clifford A. Shaffer, and Stephen H. Edwards. Approaches for coordi-

nating etextbooks, online programming practice, automated grading, and more into

one course. SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium on

Computer Science Education, pages 126–132, 2019. doi: 10.1145/3287324.3287487.

[47] Abigail Evans, Zihan Wang, Jieren Liu, and Mingming Zheng. Side-lib: A library

for detecting symptoms of python programming misconceptions. In Proceedings of

the 2023 Conference on Innovation and Technology in Computer Science Education

V. 1, ITiCSE 2023, page 159–165, New York, NY, USA, 2023. Association for

Computing Machinery. ISBN 9798400701382. doi: 10.1145/3587102.3588838. URL

https://doi.org/10.1145/3587102.3588838.

[48] Rafael Corsi Ferrao, Igor dos Santos Montagner, Mariana Silva, Craig Zilles, and

Rodolfo Azevedo. Embedded-check: A code quality tool for automatic firmware

verification. In ITiCSE 2024, Association for Computing Machinery. Association

for Computing Machinery, 2024. In Press.

135

[49] FIA. Universidades públicas: O que são, importância e lista de instituições, 2019.

URL https://fia.com.br/blog/universidades-publicas/. Online.

[50] Björn Fischer, Fabian Birk, Eva-Maria Iwer, Sven Eric Panitz, and Ralf Dörner.

Addressing misconceptions in introductory programming: Automated feedback in

integrated development environments. In Proceedings of the 15th International Con-

ference on Education Technology and Computers, ICETC ’23, page 1–8, New York,

NY, USA, 2024. Association for Computing Machinery. ISBN 9798400709111. doi:

10.1145/3629296.3629297. URL https://doi.org/10.1145/3629296.3629297.

[51] Kathi Fisler, Shriram Krishnamurthi, and Janet Siegmund. Modernizing plan-

composition studies. In Proceedings of the 47th ACM Technical Symposium

on Computing Science Education, SIGCSE ’16, page 211–216, New York, NY,

USA, 2016. Association for Computing Machinery. ISBN 9781450336857. doi:

10.1145/2839509.2844556. URL https://doi.org/10.1145/2839509.2844556.

[52] Nadjim Fréchet, Justin Savoie, and Yannick Dufresne. Analysis of Text-Analysis

Syllabi: Building a Text-Analysis Syllabus Using Scaling. PS: Political Science &

Politics, 53(2):338–343, 2020. doi: 10.1017/S1049096519001732.

[53] Leandro Galvão, David Fernandes, and Bruno Gadelha. Juiz online como ferramenta

de apoio a uma metodologia de ensino híbrido em programação. Brazilian Sympo-

sium on Computers in Education (Simpósio Brasileiro de Informática na Educação

- SBIE), 27(1):140, 2016. ISSN 2316-6533. doi: 10.5753/cbie.sbie.2016.140. URL

http://milanesa.ime.usp.br/rbie/index.php/sbie/article/view/6694.

[54] Guilherme Gama, Ricardo Caceffo, Renan Souza, Raysa Bennati, Tales Aparecida,

Islene Garcia, and Rodolfo Azevedo. An Antipattern Documentation about Mis-

conceptions related to an Introductory Programming Course in Python. Technical

Report IC-18-19, Institute of Computing, University of Campinas, November 2018.

[55] Gabriel Gomes, Ygor Nishi, Paula Ramos, Leonardo Silva, Eduardo Guerra, Igor

Wiese, and Yorah Bosse. Um recurso educacional para desenvolver a habilidade da

percepção de padrões de equívocos com aprendizes de programação. In Anais do

III Simpósio Brasileiro de Educação em Computação, pages 328–336, Porto Alegre,

RS, Brasil, 2023. SBC. doi: 10.5753/educomp.2023.228330. URL https://sol.

sbc.org.br/index.php/educomp/article/view/23903.

[56] Remo Gresta, Vinicius Durelli, and Elder Cirilo. Naming practices in object-oriented

programming: An empirical study. Journal of Software Engineering Research and

Development, 11(1):5:1 – 5:16, Feb. 2023. doi: 10.5753/jserd.2023.2582. URL

https://journals-sol.sbc.org.br/index.php/jserd/article/view/2582.

[57] Judith Grunert. The Course Syllabus: A Learning-Centered Approach. Anker Pub-

lishing Co. Inc., Bolton, MA, USA, 1 edition, 1997. ISBN 9781882982189.

[58] Philip Guo. Python Is Now the Most Popular Introductory Teaching Language

at Top U.S. Universities, 2014. URL https://cacm.acm.org/blogs/blog-

136

cacm/176450-python-is-now-the-most-popular-introductory-teaching-

language-at-top-us-universities/fulltext. Online.

[59] Luke Gusukuma, Austin Cory Bart, and Dennis Kafura. Pedal: An infrastructure

for automated feedback systems. In Proceedings of the 51st ACM Technical Sym-

posium on Computer Science Education, SIGCSE ’20, page 1061–1067, New York,

NY, USA, 2020. Association for Computing Machinery. ISBN 9781450367936. doi:

10.1145/3328778.3366913. URL https://doi.org/10.1145/3328778.3366913.

[60] Mark Guzdial and Benedict du Boulay. The History of Computing Education Re-

search, page 11–39. Cambridge Handbooks in Psychology. Cambridge University

Press, 2019.

[61] Sally Hamouda, Stephen H Edwards, Hicham G Elmongui, Jeremy V Ernst,

and Clifford A Shaffer. A basic recursion concept inventory. Computer Sci-

ence Education, 27(2):121–148, 2017. doi: 10.1080/08993408.2017.1414728. URL

https://doi.org/10.1080/08993408.2017.1414728.

[62] Matthew Hertz. What Do "CS1" and "CS2" Mean? Investigating Differences

in the Early Courses. In Proceedings of the 41st ACM Technical Symposium

on Computer Science Education, SIGCSE ’10, page 199–203, New York, NY,

USA, 2010. Association for Computing Machinery. ISBN 9781450300063. doi:

10.1145/1734263.1734335.

[63] Matthew Hertz and Sarah Michele Ford. Investigating Factors of Student Learning

in Introductory Courses. In Proceeding of the 44th ACM Technical Symposium on

Computer Science Education, SIGCSE ’13, page 195–200, New York, NY, USA,

2013. Association for Computing Machinery. ISBN 9781450318686. doi: 10.1145/

2445196.2445254.

[64] Gregory W. Hislop, Lillian Cassel, Lois Delcambre, Edward Fox, Rick Furuta, and

Peter Brusilovsky. Ensemble: Creating a National Digital Library for Computing

Education. In Proceedings of the 10th ACM Conference on SIG-Information Tech-

nology Education, SIGITE ’09, page 200, New York, NY, USA, 2009. Association

for Computing Machinery. ISBN 9781605587653. doi: 10.1145/1631728.1631783.

[65] Jack Hollingsworth. Automatic graders for programming classes. Commun. ACM,

3(10):528–529, October 1960. ISSN 0001-0782. doi: 10.1145/367415.367422. URL

https://doi.org/10.1145/367415.367422.

[66] Silas Hsu, Tiffany Wenting Li, Zhilin Zhang, Max Fowler, Craig Zilles, and Karrie

Karahalios. Attitudes surrounding an imperfect ai autograder. In Proceedings of the

2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York,

NY, USA, 2021. Association for Computing Machinery. ISBN 9781450380966. doi:

10.1145/3411764.3445424. URL https://doi.org/10.1145/3411764.3445424.

137

[67] Petri Ihantola and Andrew Petersen. Code complexity in introductory programming

courses. In Proceedings of the 52nd Hawaii International Conference on System

Sciences, pages 7662–7670, 2019.

[68] Inside Higher Ed. Autograder issues upset students at berkeley, Nov 2018. Retrieved

on 06/22/2023 from link.

[69] Cruz Izu, Carsten Schulte, Ashish Aggarwal, Quintin Cutts, Rodrigo Duran, Mirela

Gutica, Birte Heinemann, Eileen Kraemer, Violetta Lonati, Claudio Mirolo, and

Renske Weeda. Fostering program comprehension in novice programmers - learning

activities and learning trajectories. In Proceedings of the Working Group Reports

on Innovation and Technology in Computer Science Education, ITiCSE-WGR ’19,

page 27–52, New York, NY, USA, 2019. Association for Computing Machinery.

ISBN 9781450375672. doi: 10.1145/3344429.3372501. URL https://doi.org/10.

1145/3344429.3372501.

[70] Saj-Nicole A. Joni and Elliot Soloway. But My Program Runs! Discourse Rules

for Novice Programmers. Journal of Educational Computing Research, 2(1):95–125,

1986. doi: 10.2190/6E5W-AR7C-NX76-HUT2.

[71] Lisa C. Kaczmarczyk, Elizabeth R. Petrick, J. Philip East, and Geoffrey L. Herman.

Identifying student misconceptions of programming. In Proceedings of the 41st

ACM Technical Symposium on Computer Science Education, SIGCSE ’10, page

107–111, New York, NY, USA, 2010. Association for Computing Machinery. ISBN

9781450300063. doi: 10.1145/1734263.1734299. URL https://doi.org/10.1145/

1734263.1734299.

[72] Cazembe Kennedy and Eileen T. Kraemer. What are they thinking? eliciting

student reasoning about troublesome concepts in introductory computer science.

In Proceedings of the 18th Koli Calling International Conference on Computing

Education Research, Koli Calling ’18, New York, NY, USA, 2018. Association for

Computing Machinery. ISBN 9781450365352. doi: 10.1145/3279720.3279728. URL

https://doi.org/10.1145/3279720.3279728.

[73] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. Code quality issues in stu-

dent programs. In Proceedings of the 2017 ACM Conference on Innovation and

Technology in Computer Science Education, ITiCSE ’17, page 110–115, New York,

NY, USA, 2017. Association for Computing Machinery. ISBN 9781450347044. doi:

10.1145/3059009.3059061. URL https://doi.org/10.1145/3059009.3059061.

[74] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. How teachers would help

students to improve their code. In Proceedings of the 2019 ACM Conference

on Innovation and Technology in Computer Science Education, ITiCSE ’19, page

119–125, New York, NY, USA, 2019. Association for Computing Machinery. ISBN

9781450368957. doi: 10.1145/3304221.3319780. URL https://doi.org/10.1145/

3304221.3319780.

138

[75] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. A tutoring system to

learn code refactoring. In Proceedings of the 52nd ACM Technical Symposium

on Computer Science Education, SIGCSE ’21, page 562–568, New York, NY,

USA, 2021. Association for Computing Machinery. ISBN 9781450380621. doi:

10.1145/3408877.3432526. URL https://doi.org/10.1145/3408877.3432526.

[76] Päivi Kinnunen and Lauri Malmi. Why Students Drop out CS1 Course? In Pro-

ceedings of the Second International Workshop on Computing Education Research,

ICER ’06, page 97–108, New York, NY, USA, 2006. Association for Computing

Machinery. ISBN 1595934944. doi: 10.1145/1151588.1151604.

[77] Thomas Kluvyer. Green Tree Snakes - the missing Python AST docs. Retrieved on

06/05/2023 from link.

[78] Antti Laaksonen. Guide to competitive programming. Springer, 2020.

[79] Thomas Lancaster, Anthony V. Robins, and Sally A. Fincher. Assessment and Pla-

giarism, page 414–444. Cambridge Handbooks in Psychology. Cambridge University

Press, 2019.

[80] N. Lasry. Clickers or Flashcards: Is There Really a Difference? The Physics

Teacher, 46(4):242–244, 04 2008. ISSN 0031-921X. doi: 10.1119/1.2895678. URL

https://doi.org/10.1119/1.2895678.

[81] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. Research Methods in

Human-Computer Interaction. Morgan Kaufmann, 2017.

[82] Marcos A. P. Lima, Leandro S. G. Carvalho, Elaine H. T. de Oliveira, David B.

F. de Oliveira, and Filipe D. Pereira. Uso de atributos de código para classificar

a dificuldade de questões de programação em juízes online. Revista Brasileira de

Informática na Educação, 29:1137–1157, set. 2021. doi: 10.5753/rbie.2021.29.0.

1137.

[83] David Liu and Andrew Petersen. Static analyses in python programming courses.

SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium on Computer

Science Education, pages 666–671, 2019. doi: 10.1145/3287324.3287503.

[84] Andrew Luxton-Reilly. Learning to Program is Easy. In Proceedings of the 2016

ACM Conference on Innovation and Technology in Computer Science Education,

ITiCSE ’16, page 284–289, New York, NY, USA, 2016. Association for Computing

Machinery. ISBN 9781450342315. doi: 10.1145/2899415.2899432.

[85] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gian-

nakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,

Judy Sheard, and Claudia Szabo. Introductory Programming: A Systematic

Literature Review. ITiCSE 2018 Companion, page 55–106, New York, NY,

USA, 2018. Association for Computing Machinery. ISBN 9781450362238. doi:

10.1145/3293881.3295779.

139

[86] Lauri Malmi, Ian Utting, and Amy J. Ko. Tools and Environments, page 639–662.

Cambridge Handbooks in Psychology. Cambridge University Press, 2019.

[87] Eric D. Manley and Timothy M. Urness. Video-based instruction for introductory

computer programming. J. Comput. Sci. Coll., 29(5):221–227, may 2014. ISSN

1937-4771.

[88] Samiha Marwan, Nicholas Lytle, Joseph Jay Williams, and Thomas Price. The

impact of adding textual explanations to next-step hints in a novice programming

environment. In Proceedings of the 2019 ACM Conference on Innovation and Tech-

nology in Computer Science Education, ITiCSE ’19, page 520–526, New York, NY,

USA, 2019. Association for Computing Machinery. ISBN 9781450368957. doi:

10.1145/3304221.3319759. URL https://doi.org/10.1145/3304221.3319759.

[89] Wilbert James McKeachie. Teaching tips: A guidebook for the beginning college

teacher. D.C. Heath and Company, Lexington, MA, USA., 7 edition, 1978. ISBN

978066901151.

[90] Dawn McKinney and Leo F Denton. Houston, we have a problem: there’s a leak in

the cs1 affective oxygen tank. ACM SIGCSE Bulletin, 36(1):236–239, 2004.

[91] Priscilla Nascimento. Recomendação de ação pedagógica no ensino de introdução à

programação por meio de raciocínio baseado em casos. Master’s thesis, Programa de

Pós-graduação em Informática, 2018. URL https://tede.ufam.edu.br/handle/

tede/6837.

[92] Eduardo Oliveira, Hieke Keuning, and Johan Jeuring. Student code refactoring

misconceptions. In Proceedings of the 2023 Conference on Innovation and Tech-

nology in Computer Science Education V. 1, ITiCSE 2023, page 19–25, New York,

NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701382. doi:

10.1145/3587102.3588840. URL https://doi.org/10.1145/3587102.3588840.

[93] Filipe Pereira, Samuel Fonseca, Elaine Oliveira, David Oliveira, Alexandra Cristea,

and Leandro Carvalho. Deep learning for early performance prediction of intro-

ductory programming students: a comparative and explanatory study. Revista

Brasileira de Informática na Educação, 28(0):723–748, 2020. ISSN 2317-6121. doi:

10.5753/rbie.2020.28.0.723.

[94] Filipe D. Pereira, Elaine H. T. Oliveira, David B. F. Oliveira, Alexandra I. Cristea,

Leandro S. G. Carvalho, Samuel C. Fonseca, Armando Toda, and Seiji Isotani.

Using learning analytics in the amazonas: understanding students’ behaviour in

introductory programming. British Journal of Educational Technology, 51(4):

955–972, 2020. doi: https://doi.org/10.1111/bjet.12953. URL https://bera-

journals.onlinelibrary.wiley.com/doi/abs/10.1111/bjet.12953.

[95] Roberto Pereira, Leticia Peres, and Fabiano Silva. Hello World: 17 habilidades

para exercitar desde o início da graduação em computação. In Anais do Simpósio

140

Brasileiro de Educação em Computação, pages 193–203, Porto Alegre, RS, Brasil,

2021. SBC. doi: 10.5753/educomp.2021.14485.

[96] Giovanni Kuckartz Pergher and Lilian Milnitsky Stein. Compreendendo o esqueci-

mento: teorias clássicas e seus fundamentos experimentais. Psicologia USP, 14(1):

129–155, 2003. ISSN 0103-6564. doi: 10.1590/S0103-65642003000100008. URL

https://doi.org/10.1590/S0103-65642003000100008.

[97] Rifca M Peters. Identifying and addressing common programming misconceptions

with variables-part ii. Master’s thesis, University of Twente, 2018.

[98] Andrew Petersen, Michelle Craig, Jennifer Campbell, and Anya Tafliovich. Revisit-

ing Why Students Drop CS1. In Proceedings of the 16th Koli Calling International

Conference on Computing Education Research, Koli Calling ’16, page 71–80, New

York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450347709.

doi: 10.1145/2999541.2999552.

[99] Raymond S. Pettit, John Homer, and Roger Gee. Do enhanced compiler error

messages help students? results inconclusive. In Proceedings of the 2017 ACM

SIGCSE Technical Symposium on Computer Science Education, SIGCSE ’17, page

465–470, New York, NY, USA, 2017. Association for Computing Machinery. ISBN

9781450346986. doi: 10.1145/3017680.3017768. URL https://doi.org/10.1145/

3017680.3017768.

[100] Danny Plass-Oude Bos. Identifying and addressing common programming miscon-

ceptions with variables (part 1). Master’s thesis, University of Twente, 2015.

[101] Andres Jessé Porfirio, Roberto Pereira, and Eleandro Maschio. A-Learn EvId: A

Method for Identifying Evidence of Computer Programming Skills Through Auto-

matic Source Code Assessment. Revista Brasileira de Informática na Educação, 29:

692–717, jul. 2021. doi: 10.5753/rbie.2021.29.0.692.

[102] Leo Porter, Cynthia Bailey Lee, and Beth Simon. Halving fail rates using peer

instruction: A study of four computer science courses. In Proceeding of the 44th

ACM Technical Symposium on Computer Science Education, SIGCSE ’13, page

177–182, New York, NY, USA, 2013. Association for Computing Machinery. ISBN

9781450318686. doi: 10.1145/2445196.2445250. URL https://doi.org/10.1145/

2445196.2445250.

[103] James Prather, Raymond Pettit, Kayla McMurry, Alani Peters, John Homer, and

Maxine Cohen. Metacognitive difficulties faced by novice programmers in au-

tomated assessment tools. ICER 2018 - Proceedings of the 2018 ACM Confer-

ence on International Computing Education Research, pages 41–50, 2018. doi:

10.1145/3230977.3230981.

[104] David Pritchard. Frequency distribution of error messages. In Proceedings of the

6th Workshop on Evaluation and Usability of Programming Languages and Tools,

141

PLATEAU 2015, page 1–8, New York, NY, USA, 2015. Association for Computing

Machinery. ISBN 9781450339070. doi: 10.1145/2846680.2846681. URL https:

//doi.org/10.1145/2846680.2846681.

[105] David Pritchard and Troy Vasiga. Cs circles: an in-browser python course for be-

ginners. In Proceeding of the 44th ACM Technical Symposium on Computer Science

Education, SIGCSE ’13, page 591–596, New York, NY, USA, 2013. Association for

Computing Machinery. ISBN 9781450318686. doi: 10.1145/2445196.2445370. URL

https://doi.org/10.1145/2445196.2445370.

[106] Yizhou Qian and James Lehman. Students’ misconceptions and other difficulties in

introductory programming: A literature review. ACM Transactions on Computing

Education (TOCE)., 18(1), oct 2017. doi: 10.1145/3077618. URL https://doi.

org/10.1145/3077618.

[107] Anthony V. Robins. Novice Programmers and Introductory Programming, page

327–376. Cambridge Handbooks in Psychology. Cambridge University Press, 2019.

[108] Anthony V. Robins. Dual process theories: Computing cognition in context. ACM

Trans. Comput. Educ., 22(4), sep 2022. doi: 10.1145/3487055.

[109] Inga Saatz and Andrea Kienle. Learning with e-flashcards – does it matter? In

Davinia Hernández-Leo, Tobias Ley, Ralf Klamma, and Andreas Harrer, editors,

Scaling up Learning for Sustained Impact, pages 629–630, Berlin, Heidelberg, 2013.

Springer Berlin Heidelberg. ISBN 978-3-642-40814-4.

[110] Christopher Scaffidi, Mary Shaw, and Brad Myers. Estimating the Numbers of End

Users and End User Programmers. In Proceedings of the 2005 IEEE Symposium on

Visual Languages and Human-Centric Computing, VLHCC ’05, page 207–214, USA,

2005. IEEE Computer Society. ISBN 0769524435. doi: 10.1109/VLHCC.2005.34.

[111] Carsten Schulte and Jens Bennedsen. What Do Teachers Teach in Introductory

Programming? In Proceedings of the Second International Workshop on Computing

Education Research, ICER ’06, page 17–28, New York, NY, USA, 2006. Association

for Computing Machinery. ISBN 1595934944. doi: 10.1145/1151588.1151593.

[112] Robert M. Siegfried, Katherine G. Herbert-Berger, Kees Leune, and Jason P.

Siegfried. Trends Of Commonly Used Programming Languages in CS1 And CS2

Learning. In 2021 16th International Conference on Computer Science & Education

(ICCSE), pages 407–412, 2021. doi: 10.1109/ICCSE51940.2021.9569444.

[113] Diogo Correia Araujo Silva. Flashcards digitais - técnica de repetição espaçada apli-

cada ao apoio na memorização do conteúdo estudado. Revista Gestão Universitária,

1:1–10, 2015.

[114] Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. Análise estática de código

em conjunto com autograders. In Anais Estendidos do I Simpósio Brasileiro de

Educação em Computação, pages 25–26, Porto Alegre, RS, Brasil, 2021. SBC. doi:

142

10.5753/educomp_estendido.2021.14858. URL https://sol.sbc.org.br/index.

php/educomp_estendido/article/view/14858.

[115] Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. Análise dos Tópicos Mais

Abordados em Disciplinas de Introdução à Programação em Universidades Federais

Brasileiras. In Anais do II Simpósio Brasileiro de Educação em Computação, pages

29–39, Porto Alegre, RS, Brasil, 2022. SBC. doi: 10.5753/educomp.2022.19196.

[116] Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. Misconceptions in Correct

Code: rating the severity of undesirable programming behaviors in Python CS1

courses. Technical Report IC-23-01, Institute of Computing, University of Camp-

inas, 2023.

[117] Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. Passar nos casos de teste é

suficiente? identificação e análise de problemas de compreensão em códigos corretos.

In Anais do III Simpósio Brasileiro de Educação em Computação, pages 119–129,

Porto Alegre, RS, Brasil, 2023. SBC. doi: 10.5753/educomp.2023.228346. URL

https://sol.sbc.org.br/index.php/educomp/article/view/23881.

[118] Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. A syllabi analysis of cs1 courses

from brazilian public universities. Brazilian Journal of Computers in Education, 31

(1):407–436, Aug. 2023. doi: 10.5753/rbie.2023.2870. URL https://sol.sbc.org.

br/journals/index.php/rbie/article/view/2870.

[119] Eryck Silva, Ricardo Caceffo, and Rodolfo Azevedo. When Test Cases Are Not

Enough: Identification, Assessment, and Rationale of Misconceptions in Correct

Code (MC³). Brazilian Journal of Computers in Education, 31:1165–1199, Dec.

2023. doi: 10.5753/rbie.2023.3552. URL https://sol.sbc.org.br/journals/

index.php/rbie/article/view/3552.

[120] Beth Simon, Michael Kohanfars, Jeff Lee, Karen Tamayo, and Quintin Cutts. Ex-

perience report: Peer instruction in introductory computing. In Proceedings of

the 41st ACM Technical Symposium on Computer Science Education, SIGCSE

’10, page 341–345, New York, NY, USA, 2010. Association for Computing Ma-

chinery. ISBN 9781450300063. doi: 10.1145/1734263.1734381. URL https:

//doi.org/10.1145/1734263.1734381.

[121] Beth Simon, Sarah Esper, Leo Porter, and Quintin Cutts. Student experience in

a student-centered peer instruction classroom. In Proceedings of the Ninth Annual

International ACM Conference on International Computing Education Research,

ICER ’13, page 129–136, New York, NY, USA, 2013. Association for Computing

Machinery. ISBN 9781450322430. doi: 10.1145/2493394.2493407. URL https:

//doi.org/10.1145/2493394.2493407.

[122] Beth Simon, Julian Parris, and Jaime Spacco. How we teach impacts student learn-

ing: Peer instruction vs. lecture in cs0. In Proceeding of the 44th ACM Technical

Symposium on Computer Science Education, SIGCSE ’13, page 41–46, New York,

143

NY, USA, 2013. Association for Computing Machinery. ISBN 9781450318686. doi:

10.1145/2445196.2445215. URL https://doi.org/10.1145/2445196.2445215.

[123] Robert H. Sloan, Cynthia Taylor, and Richard Warner. Initial Experiences with a

CS + Law Introduction to Computer Science (CS 1). In Proceedings of the 2017

ACM Conference on Innovation and Technology in Computer Science Education,

ITiCSE ’17, page 40–45, New York, NY, USA, 2017. Association for Computing

Machinery. ISBN 9781450347044. doi: 10.1145/3059009.3059029.

[124] Robert H. Sloan, Valerie Barr, Heather Bort, Mark Guzdial, Ran Libeskind-Hadas,

and Richard Warner. CS + X Meets CS 1: Strongly Themed Intro Courses, page

960–961. Association for Computing Machinery, New York, NY, USA, 2020. ISBN

9781450367936. doi: 10.1145/3328778.3366975.

[125] S. Sobral. 30 YEARS OF CS1: PROGRAMMING LANGUAGES EVOLUTION.

In ICERI2019 Proceedings, 12th annual International Conference of Education, Re-

search and Innovation, pages 9197–9205. IATED, 2019. ISBN 978-84-09-14755-7.

doi: 10.21125/iceri.2019.2214.

[126] Elliot Soloway and Kate Ehrlich. Empirical studies of programming knowledge.

IEEE Transactions on Software Engineering, SE-10(5):595–609, 1984. doi: 10.1109/

TSE.1984.5010283.

[127] Juha Sorva and Arto Vihavainen. Break statement considered. ACM Inroads, 7(3):

36–41, aug 2016. ISSN 2153-2184. doi: 10.1145/2950065. URL https://doi.org/

10.1145/2950065.

[128] Juha Sorva, Jan Lönnberg, and Lauri Malmi. Students’ ways of experiencing visual

program simulation. Computer Science Education, 23(3):207–238, 2013. doi: 10.

1080/08993408.2013.807962. URL https://doi.org/10.1080/08993408.2013.

807962.

[129] Ben Stephenson. Coding demonstration videos for cs1. In Proceedings of the 50th

ACM Technical Symposium on Computer Science Education, SIGCSE ’19, page

105–111, New York, NY, USA, 2019. Association for Computing Machinery. ISBN

9781450358903. doi: 10.1145/3287324.3287445. URL https://doi.org/10.1145/

3287324.3287445.

[130] Allison Elliott Tew and Mark Guzdial. Developing a Validated Assessment of

Fundamental CS1 Concepts. In Proceedings of the 41st ACM Technical Sympo-

sium on Computer Science Education, SIGCSE ’10, page 97–101, New York, NY,

USA, 2010. Association for Computing Machinery. ISBN 9781450300063. doi:

10.1145/1734263.1734297.

[131] Allison Elliott Tew and Mark Guzdial. The FCS1: A Language Independent As-

sessment of CS1 Knowledge. In Proceedings of the 42nd ACM Technical Sym-

posium on Computer Science Education, SIGCSE ’11, page 111–116, New York,

144

NY, USA, 2011. Association for Computing Machinery. ISBN 9781450305006. doi:

10.1145/1953163.1953200.

[132] Christine D Tippett. Refutation text in science education: A review of two decades

of research. International journal of science and mathematics education, 8:951–970,

2010.

[133] Manas Tungare, Xiaoyan Yu, William Cameron, GuoFang Teng, Manuel A. Pérez-

Quiñones, Lillian Cassel, Weiguo Fan, and Edward A. Fox. Towards a Syllabus

Repository for Computer Science Courses. SIGCSE Bull., 39(1):55–59, mar 2007.

ISSN 0097-8418. doi: 10.1145/1227504.1227331.

[134] Leo C. Ureel II and Charles Wallace. Automated critique of early programming

antipatterns. SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium on

Computer Science Education, pages 738–744, 2019. doi: 10.1145/3287324.3287463.

[135] Adilson Vahldick, Maria José Marcelino, and António José Mendes. Analyzing

novices’ fun and programming behaviours while playing a serious blocks-based game.

Revista Brasileira de Informática na Educação, 29:1337–1355, dez. 2021. doi: 10.

5753/rbie.2021.2069.

[136] David W. Valentine. CS Educational Research: A Meta-Analysis of SIGCSE Tech-

nical Symposium Proceedings. In Proceedings of the 35th SIGCSE Technical Sym-

posium on Computer Science Education, SIGCSE ’04, page 255–259, New York,

NY, USA, 2004. Association for Computing Machinery. ISBN 1581137982. doi:

10.1145/971300.971391.

[137] Hans Van der Meij and Jan Van der Meij. Eight guidelines for the design of in-

structional videos for software training. Technical communication, 60(3):205–228,

2013.

[138] Kurt VanLehn. The behavior of tutoring systems. International journal of artificial

intelligence in education, 16(3):227–265, 2006.

[139] Christopher Vogler. A practical guide to joseph campbell’s the hero with a thousand

faces. Hero’s Journey, 1985.

[140] Henry M. Walker. ACM RETENTION COMMITTEE Retention of Students in

Introductory Computing Courses: Curricular Issues and Approaches. ACM Inroads,

8(4):14–16, oct 2017. ISSN 2153-2184. doi: 10.1145/3151936.

[141] Sierra Wang, John Mitchell, and Chris Piech. A large scale rct on effective error

messages in cs1. In Proceedings of the 55th ACM Technical Symposium on Computer

Science Education V. 1, SIGCSE 2024, page 1395–1401, New York, NY, USA, 2024.

Association for Computing Machinery. ISBN 9798400704239. doi: 10.1145/3626252.

3630764. URL https://doi.org/10.1145/3626252.3630764.

145

[142] Brian A Wichmann, AA Canning, DL Clutterbuck, LA Winsborrow, NJ Ward, and

D William R Marsh. Industrial perspective on static analysis. Software Engineering

Journal, 10:69–75(6), March 1995.

[143] Allan Wigfield and Jacquelynne S. Eccles. Expectancy–Value Theory of Achieve-

ment Motivation. Contemporary Educational Psychology, 25(1):68–81, 2000. ISSN

0361-476X. doi: https://doi.org/10.1006/ceps.1999.1015.

[144] Wikipedia. Lista de universidades federais do brasil — wikipédia, a enciclopédia

livre, 2021. URL https://pt.wikipedia.org/w/index.php?title=Lista_de_

universidades_federais_do_Brasil&oldid=61551015. Online.

[145] Wikipedia. Lista de universidades estaduais do brasil — wikipédia, a enciclopédia

livre, 2022. URL https://pt.wikipedia.org/w/index.php?title=Lista_de_

universidades_estaduais_do_Brasil&oldid=63117788. Online.

[146] Wikipedia. Lista de universidades municipais do brasil — wikipédia, a enciclopédia

livre, 2022. URL https://pt.wikipedia.org/w/index.php?title=Lista_de_

universidades_municipais_do_Brasil&oldid=63408268. Online.

[147] Jeannette M. Wing. Computational Thinking. Commun. ACM, 49(3):33–35, mar

2006. ISSN 0001-0782. doi: 10.1145/1118178.1118215.

[148] Robert Zajonc. Mere Exposure: A Gateway to the Subliminal. Current Directions

in Psychological Science, 10(6):224–228, 2001. doi: 10.1111/1467-8721.00154.

[149] Avelino Francisco Zorzo, Daltro Nunes, Ecivaldo Matos, Igor Steinmacher, Re-

nata Mendes de Araujo, Ronaldo Correia, and Simone Martins. Referenciais de

Formação para os Cursos de Graduação em Computação. Sociedade Brasileira de

Computação (SBC), 2017. ISBN: 978-85-7669-424-3.

[150] Inez Zung, Megan N Imundo, and Steven C Pan. How do college students use

digital flashcards during self-regulated learning? Memory, 30(8):923–941, 2022.

doi: 10.1080/09658211.2022.2058553.

146

Appendix A

Catalog of Misconceptions in Correct

Code

This appendix presents a catalog compiling all obtained information regarding the 45

MC³ identified in this work. The catalog is divided into two sections: the first contains

information on the 15 most severe MC³, which are the focus of this thesis; while the

second presents information on the other 30 identified MC³. Both sections are listed by

MC³ IDs in lexicographical order, as represented in Table 5.1. Each MC³ is described

using the following attributes:

• ID and Name.

• Description: A brief explanation of how the MC³ manifests in the Python code.

• Example: A simple example of Python code that contains the MC³.

• DIF: An integer indicating the classified severity of the MC³. It was calculated

as the difference between instructors who agreed the MC³ was severe and those

who did not agree (refer to Table 3.3). The value of DIF ranges between [-22, 30],

indicating that greater values represent greater severity.

• Rationale: An explanation of why students develop this MC³. This explanation is

a conclusion given the opinions gathered from CS1 instructors and students.

• Consequences: Describes possible future coding behaviors that can arise if the

MC³ is not addressed.

• Intervention: Describes how students can be guided during the CS1 course to

mitigate the MC³.

A.1 Most Severe MC³

This section presents information on the 15 MC³ that were classified as most severe in

this thesis. The DIF values were used as a threshold to determine the most severe MC³.

In this case, all MC³ with a DIF strictly greater than 10 were classified as most severe.

147

Category A: Variables, identifiers, and scope

A.1.1 A4: Redefinition of built-in

Description This MC³ occurs when a student mistakenly names a variable or function

with the same name as a Python built-in function.

Example In Code A.1, the Python built-in min() is reassigned as a variable in line 7.

1 item1 = float(input("Value␣1:␣"))

2 item2 = float(input("Value␣2:␣"))

3 item3 = float(input("Value␣3:␣"))

4

5 total = item1 + item2 + item3

6

7 min = 0.15 * total

8 print("Minimum␣value:", min)

Code A.1: A4: Redefinition of built-in.

DIF 12

Rationale This MC³ arises because students are not familiar with all Python built-ins

initially. The choice of natural language for naming variables or functions (e.g., English,

Spanish, or Portuguese) also affects the likelihood of this MC³. Overall, this MC³ can be

classified as an unintentional, careless approach to coding.

Consequences This MC³ could lead to future errors that are difficult to identify if the

student later tries to use the original built-in as intended.

Intervention Students should be advised that redefining a built-in should be avoided.

Instructors and teaching assistants can point out how different programming environments

distinguish built-ins from other declared names, such as by using different font colors.

Category B: Boolean expressions

A.1.2 B6: Boolean comparison attempted with while loop

Description Indicates an occurrence when students attempt to create a basic compar-

ison statement using a while loop instead of appropriate conditional commands.

Example In Code A.2, the student declared a while loop instead of an if statement

to check the condition regarding num1 and num2 in line 4.

148

1 num1 = int(input ())

2 num2 = int(input ())

3

4 while num1 + num2 < 9:

5 print(num1 + num2 , "has␣more␣than␣1␣digit.")

6 break

Code A.2: B6: Boolean comparison attempted with while loop.

DIF 20

Rationale This MC³ arises because students might have difficulties distinguishing be-

tween general conditional statements and those used in loops. Another possible reason

for this MC³ is the uneducated programming knowledge students may have acquired

previously.

Consequences This MC³ indicates difficulties in understanding the concepts of condi-

tional statements and loops. If left unaddressed, it might lead to future struggles with

later topics.

Intervention Students should be instructed that loops are declared only when a block

of code is expected to execute more than once. Instructors can highlight the difference be-

tween general conditional statements and while conditional statements through examples

or exercises in lectures.

A.1.3 B8: Non utilization of elif/else statement

Description This MC³ occurs when students declare a sequence of if-elif statements

without including a concluding else clause.

Example In Code A.3, the elif declared in line 6 could have been an else. Moreover,

the if sequences declared in lines 9 and 11 can lead to overwriting the value of res

depending on the value of num2.

1 num1 = int(input ())

2 num2 = int(input ())

3

4 if num1 % 2 == 0:

5 print(num1 , "even")

6 elif num1 % 2 == 1:

7 print(num1 , "odd")

8

9 if num2 <= 0:

10 res = num1 * num2

11 if num2 % 2 == 0:

12 res = num1 ** num2

Code A.3: B8: Non utilization of elif/else statement.

149

DIF 16

Rationale This MC³ arises because students might have difficulties understanding the

differences between if, elif, and else. Specifically, students are struggling in identifying

mutually exclusive conditions to be checked.

Consequences While substituting an elif with an else is generally due to a lack of

attention, sequences of if statements with non-mutually exclusive conditions can result

in unexpected code outputs.

Intervention Students should be instructed about the differences between if, elif,

and else. Lecture examples can help in determining whether conditions are mutually

exclusive. Instructors can also provide examples of unexpected code outputs resulting

from a careless handling of non-mutually exclusive conditions.

A.1.4 B9: elif/else retesting already checked conditions

Description This MC³ occurs when students declare an elif statement checking the

opposite condition of a previously declared if or elif statement.

Example In Code A.4, the elif declared in line 8 is retesting the opposite condition

of an already verified if in line 5.

1 e1 = float(input("Edge␣1:␣"))

2 e2 = float(input("Edge␣2:␣"))

3 e3 = float(input("Edge␣3:␣"))

4

5 if e1 == e2 == e3:

6 print("Scalene␣triangle")

7

8 elif (e1 == e2 or e1 == e3 or e2 == e3) and not e1 == e2 == e3:

9 print("Isosceles␣triangle")

10

11 else:

12 print("Scalene␣triangle")

Code A.4: B9: elif/else retesting already checked conditions.

DIF 14

Rationale This MC³ arises because students might have difficulties understanding that

elif means “else if”. Another possible scenario is that students are performing redun-

dant checks to ensure the autograder does not incorrectly interpret their results.

Consequences Misconceptions about elif or misunderstandings about how the auto-

grader works can lead to redundant complexity in the students’ future code.

150

Intervention Students should be instructed about the differences between if, elif,

and else. Instructors should also reinforce how the autograder system works during

lectures.

A.1.5 B12: Consecutive equal if statements with distinct oper-

ations in their blocks

Description This MC³ occurs when students declare two or more if statements that

test the same condition, albeit executing different commands in each block.

Example In Code A.5, the if statements declared in lines 4 and 6 check the same

condition. They could have been merged in only one test.

1 num1 = int(input ())

2 num2 = int(input ())

3

4 if num1 == num2 * 2:

5 print(num1 , "multiple␣of", num2)

6 if num1 == num2 * 2:

7 print(num1 , "odd")

Code A.5: B12: Consecutive equal if statements with distinct operations in their blocks.

DIF 14

Rationale An underlying reason for this MC³ is that students explicitly want to sepa-

rate two or more if statements in their code, possibly due to their reasoning in solving

the assignment. It is also possible that students have the misconception that an if block

can only encapsulate a limited number of declarations.

Consequences This MC³ can lead to redundant complexity in the students’ future

code.

Intervention Students should be instructed that if, elif, or else blocks can encap-

sulate multiple statements to avoid this type of redundancy.

Category C: Iteration

A.1.6 C1: while condition tested again inside its block

Description This MC³ occurs when students declare a while loop and, at the end of

its body, also include an if statement to verify if the while condition has become false,

ending the loop with a break statement.

151

Example In Code A.6, the condition of the while declared in line 4 is unnecessarily

tested again in line 9.

1 sum_nums = total_nums = 0

2

3 num = int(input())

4 while num != 0:

5 sum_nums += num

6 total_nums += 1

7

8 num = int(input ())

9 if num == 0:

10 break

11

12 average = sum_nums / total_nums

13 print("Avarage:", average)

Code A.6: C1: while condition tested again inside its block.

DIF 20

Rationale This MC³ arises because students might have difficulties understanding the

concepts of the while command. However, the redundant check can also be deliberately

done by students who want to ensure the autograder does not incorrectly grade their

solutions. Instructors have also stated that this MC³ is closely related to incorrect teaching

of when to use the break command.

Consequences This MC³ can lead to redundant complexity in the students’ future

code. Incomplete understanding of the while command can also hinder comprehension

of later concepts taught in the CS1 course, such as iterating over data structures (e.g.,

lists and dictionaries).

Intervention Students should be instructed that the while condition is always verified

at the end of its block. Instructors can illustrate this with simple exercises during lectures.

Note that this MC³ does not apply to perpetual loops (i.e., while True loops) since those

explicitly require conditions different than True to be terminated with a break statement.

A.1.7 C2: Redundant or unnecessary loop

Description This MC³ occurs when students declare a while or for loop that delib-

erately executes only once.

Example In Code A.7, the for declared in line 4 is executed only once.

152

1 numbers = [int(num) for num in input().split()]

2 max_num = max(numbers)

3

4 for i in range (1):

5 print(max_num)

Code A.7: C2: Redundant or unnecessary loop.

DIF 16

Rationale An underlying reason for this MC³ is that when students first learn about

iteration commands, they believe they should use them immediately in the next assign-

ment. This phenomenon is referred to as a knee-jerk reaction. Note that MC³ B6 is a

special case of C2 when using while commands.

Consequences This MC³ can lead to redundant complexity in the students’ future

code. Incomplete understanding of iteration commands can also hinder comprehension of

later concepts taught in the CS1 course, such as iterating over data structures (e.g., lists

and dictionaries).

Intervention Students should be instructed that loops should only be used when a

block of code is expected to execute more than once.

A.1.8 C4: Arbitrary number of for loop executions instead of

while

Description This MC³ occurs when students declare a for loop to execute an exces-

sively high number of iterations, aiming to replicate the functionality of a while loop.

Example In Code A.8, the for declared in line 3 is executed 9999 times trying to

replicate a while loop.

1 numbers = []

2

3 for i in range (9999):

4 num = int(input ())

5 if num == 0:

6 break

7 numbers.append(num)

Code A.8: C4: Arbitrary number of for loop execution instead of while.

DIF 16

Rationale Students presenting this MC³ might be deliberately preferring to use for

loops instead of while loops. This preference can be related to faulty comprehensions of

how while loops are constructed.

153

Consequences This MC³ leaves the code prone to failure if it is executed more times

than the arbitrarily defined number of executions.

Intervention Students should be instructed about the differences between using for

and while loops. Instructors can use examples to illustrate that while loops are generally

best suited when the total number of executions is previously unknown.

A.1.9 C8: for loop having its iteration variable overwritten

Description This MC³ occurs when students reassign the value of the iteration variable

of a for loop inside the loop’s body.

Example In Code A.9, lines 7 and 8 are incrementing the iteration variables of the

declared for loops from lines 4 and 1, respectively.

1 for i in range(1, 11):

2 print("Summation␣Table␣of", i)

3

4 for j in range(1, 11):

5 print(i, "+", j, "=", i + j)

6

7 j = j + 1

8 i = i + 1

Code A.9: C8: for loop having its iteration variable overwritten.

DIF 30

Rationale This MC³ arises because students might have difficulties understanding the

concepts of the for command. Specifically, students are mistakenly believing they should

explicitly alter the iteration variable similar to while loops. Another possibility is a

careless approach while coding, as the students are not foreseeing the consequences of

overwriting the iteration variable.

Consequences In a single for loop, the effect of redefining the iteration variable is

negligible, as the structure simply ignores the previous redefinition. However, this MC³

can cause unexpected execution behaviors in nested loops that depend on the iteration

variables from outer loops.

Intervention Students should be advised not to redefine the iteration variable of a for

loop. Instructors can emphasize that the for command already increments the iteration

variable at the end of a loop. Moreover, if there is a need to use the value of an iteration

variable inside the loop, students should be oriented to create another variable that uses

the iteration variable.

154

Category D: Function parameter use and scope

A.1.10 D4: Function accessing variables from outer scope

Description This MC³ occurs when students declare functions that attempt to access

variables that are not present in the function’s scope.

Example In Code A.10, res is accessing values from variables a and b in line 2. These

variables are not present in SquaredSum()’s scope.

1 def SquaredSum ():

2 res = a**2 + 2*a*b + b**2

3 return res

4

5 a = int(input("Term␣a:␣"))

6 b = int(input("Term␣b:␣"))

7

8 print(SquaredSum ())

Code A.10: D4: Function accessing variables from outer scope.

DIF 16

Rationale This MC³ is related to a careless approach when using functions. While the

general scenario may not represent a misunderstanding of function concepts per se, some

students might be having difficulties with scope concepts.

Consequences This careless approach to coding can lead to issues regarding readability

and maintainability of future code created by students.

Intervention Students should be instructed to avoid using global variables whenever

possible. Instructors can provide various examples of variable scope during lectures, while

also emphasizing that when a function requires outer variables, they should be passed as

arguments.

Category E: Reasoning

A.1.11 E2: Redundant or unnecessary use of lists

Description This MC³ occurs when students excessively depend on lists as a solution

for various programming problems.

Example In Code A.11, numbers was declared as a list to read an undefined number of

entries. However, since the objective was to present the sum of all entries, it could have

been done while reading each value.

155

1 numbers = []

2 while True:

3 num = int(input ())

4 if num == 0:

5 break

6 numbers.append(num)

7

8 sum_nums = 0

9 for num in numbers:

10 sum_nums += num

11

12 print(sum_nums)

Code A.11: E2: Redundant or unnecessary use of lists.

DIF 14

Rationale This MC³ arises from students overly relying on lists as a solution for most

assignments. After learning about its concepts, students tend to use this structure even

when it is unnecessary for remembering or organizing a set amount of data.

Consequences Efficiency in terms of code running time is not the primary issue with

this MC³. Instead, this overreliance on lists can obscure students’ reasoning while solving

assignments, preventing them from considering other data structures, such as dictionaries,

when appropriate.

Intervention Students should be instructed to evaluate their use of lists when coding.

Instructors can emphasize that these structures should be used when there is a need to

remember a set of values. Moreover, instructors can also point out how exclusively using

lists can lead to complex code, especially when other structures such as dictionaries could

be more suitable.

Category F: Test cases

A.1.12 F2: Specific verification for instances of open test cases

Description This MC³ occurs when students create specific if conditions checking the

input from the openly shared test cases to print the expected corresponding output.

Example Suppose that a set of input from open test cases for Code A.12 was I =

{{1, 1, 1}, {1, 3, 5}, {1, 2, 3, 4, 5}} and the expected output was O = {{3}, {9}, {15}}. The

student created specific checks for each entry of I in lines 3, 5, and 7 while printing directly

the expected output of O in corresponding lines 4, 6, and 8.

156

1 numbers = [int(num) for num in input().split()]

2

3 if numbers == [1, 1, 1]:

4 print (3)

5 if numbers == [1, 3, 5]:

6 print (9)

7 if numbers == [1, 2, 3, 4, 5]:

8 print (15)

Code A.12: F2: Specific verification for instances of open test cases.

DIF 12

Rationale The main cause of this MC³ is related to students having difficulties un-

derstanding either the assignment itself and/or how the autograder works. This can be

problematic because it might appear that students are attempting to cheat the system by

aiming for a minimum grade by passing only the open test cases.

Consequences Difficulties in understanding how the autograder works can hinder stu-

dents’ ability to reason and elaborate their solutions for future assignments. Needless to

say, any attempts to cheat the system must be discouraged.

Intervention Students should be instructed that their code needs to be general in terms

of the inputs, not just tailored to pass the open test cases. Instructors should provide

detailed explanations of how the autograder system interacts with submitted code during

lectures to clarify its functionality.

Category G: Code organization

A.1.13 G4: Functions/variables with non significant name

Description This MC³ occurs as consequence of students using arbitrary names for

variables and functions in their code.

Example In Code A.13, the naming of variables a, b, c, d, f and function func()

turns the code difficult for a human to read and understand it.

157

1 a = float(input())

2 b = float(input())

3 c = float(input())

4 d = float(input())

5

6 def func(a, b, c, d):

7 f = ((c - a) ** 2 + (d - b) ** 2) ** 0.5

8 return f

9

10 print(func(a, b, c, d))

Code A.13: G4: Functions/variables with non significant name.

DIF 16

Rationale This MC³ arises from a general careless approach to coding. Students often

neglect to consider the significance of naming their variables, assuming their code func-

tions adequately without meaningful identifiers. Instructors have emphasized that this

programming practice may suffice for assessing simple code snippets but should never be

used in the final submission for an assignment.

Consequences This MC³ can result in the development of future code that severely

lacks readability and maintainability.

Intervention Students should be instructed that the names of variables or functions

should reflect their purpose in the code. Instructors can also provide guidance on strik-

ing a balance between commenting code and giving meaningful names to variables and

functions. Examples of larger, more complex code that does not have meaningful names

of variables or functions can be used to underscore the importance of readability and

maintainability.

A.1.14 G5: Arbitrary organization of declarations

Description This MC³ occurs when students structure their code arbitrarily, with func-

tions declared interchangeably with other statements.

Example In Code A.14, the code interchanges between function definitions and variable

manipulations.

158

1 def ReadData ():

2 data = [int(num) for num in input().split()]

3 return data

4

5 numbers = ReadData ()

6

7 def multiply(data):

8 total = 1

9 for num in data:

10 total *= num

11 return total

12

13 print(multiply(numbers))

Code A.14: G5: Arbitrary organization of declarations.

DIF 12

Rationale This MC³ arises from a general careless approach to coding. It often reflects

students’ thought processes while developing their solutions; once the code functions

correctly, students may neglect to reorganize it for clarity.

Consequences This MC³ can result in the development of future code that lacks read-

ability and maintainability.

Intervention Students should be instructed to organize all function declarations at the

beginning of the code. Similarly to G4, instructors can use examples of larger, more com-

plex code that has functions declared in arbitrary placements to emphasize the importance

of readability and maintainability.

Category H: Other

A.1.15 H1: Statement with no effect

Description This MC³ occurs when students include code in their programs that has

no effect on the program’s execution.

Example In Code A.15, the round() function invoked in line 5 has no effect since its

returning value was not assigned to a variable.

1 num1 = int(input ())

2 num2 = int(input ())

3

4 div_res = num1 / num2

5 round(div_res , 2)

6 print(format(div_res , ".2f"))

Code A.15: H1: Statement with no effect.

159

DIF 16

Rationale This MC³ can manifest in various forms, with the loss of a returning value

not assigned to a variable as its primary cause. Sometimes, students may include lone

statements such as True inside an unnecessary else clause to ensure the code functions.

Generally, this MC³ indicates faulty comprehension of diverse Python constructs.

Consequences If left unaddressed, this MC³ can result in future code with increased

complexity due to redundant statements, sometimes prone to errors in execution.

Intervention Students should be instructed to review their code to identify any redun-

dant statements. Instructors can reinforce during lectures that the returning value of a

function should be assigned to variables.

A.2 Other MC³

This section presents information on the other 30 MC³ that were also identified in this

thesis. Since these were not further explored in research with CS1 instructors and un-

dergraduates, information on Rationale, Consequences, and Intervention fields are mainly

based on my conclusions after consulting CS1 instructors and on the rare occasion these

MC³ showed up in the conversations with MC102 students.

Category A: Variables, identifiers, and scope

A.2.1 A1: Unused variable

Description Indicates an occurrence in which a variable was declared somewhere in the

code, but it was not used later.

Example In Code A.16, sum_vars was declared in line 4 but was not used later.

1 num1 = int(input ())

2 num2 = int(input ())

3

4 sum_vars = num1 + num2

5

6 print(num1 + num2)

Code A.16: A1: Unused variable.

DIF -6

Rationale This MC³ arises from students’ lack of attention while coding. A possible

scenario is when students change their strategy to solve an assignment but do not fully

erase their previous code.

160

Consequences This type of inattention can lead to neglecting important coding aspects

such as readability and maintainability.

Intervention Students should be instructed to revise their code before making their

final submission. Instructors and teaching assistants can also point out how different

programming environments highlight unused code, for example, by changing the color of

the font.

A.2.2 A2: Variable assigned to itself

Description Indicates an occurrence in which a variable receives itself as a result of an

assignment.

Example In Code A.17, odd is assigned to itself in line 7.

1 num1 = int(input ())

2

3 odd = False

4 if num1 % 2 == 1:

5 odd = True

6 else:

7 odd = odd

8

9 print("odd?:", odd)

Code A.17: A2: Variable assigned to itself.

DIF 8

Rationale This MC³ arises possibly due to confusion about how variable assignments

work. In Code A.17, students might think that the variable loses its value even when

the condition for it to be changed is not met. Other scenarios include redundant code

explicitly declared in an unnecessary else clause. In this case, students may mistakenly

believe else is mandatory and therefore create a redundant statement to avoid altering

the code’s output.

Consequences This misconception about assignments can lead to the development of

more redundant code in the future, resulting in poor readability and maintainability.

Intervention Students should be instructed on how variables can have their assigned

values changed when using different control structures in the code. Simple exercises can be

presented in lectures to demonstrate a variable’s output through different code executions.

161

A.2.3 A3: Variable unnecessarily initialized

Description Indicates an occurrence in which a variable is unnecessarily initialized

before being used in the code.

Example In Code A.18, var1 and var2 are assigned arbitrary values before receiving

the intended results from input() in lines 3 and 4, respectively.

1 var1 = 0

2 var2 = ’’

3 var1 = int(input ())

4 var2 = input ()

Code A.18: A3: Variable unnecessarily initialized.

DIF -8

Rationale This MC³ arises possibly due to confusion about how the assignment of

variables works. A possible scenario is that students may mistakenly believe every variable

must be assigned a dummy value before receiving an external input. This scenario could

also be related to prior programming education with strongly typed languages, such as

C.

Consequences This misconception about assignments can lead to the development of

more redundant code in the future, resulting in poor readability and maintainability.

Intervention Instructors can reinforce that input() overwrites any preexisting value

of a variable, emphasizing that the assignment of dummy values is redundant.

A.2.4 A5: Unused import

Description Indicates an occurrence in which an import from a library is declared in

the code, but none of its functionalities are used.

Example In Code A.19, the math module was imported but was not used.

1 import math

2 base = 3

3 exp = 4

4

5 print(base**exp)

Code A.19: A5: Unused import.

DIF -22

162

Rationale This MC³ arises from students’ lack of attention while coding. It mainly

stems from reusing code snippets that instructors might have used during lectures or a

piece of code that was previously removed.

Consequences This MC³ can easily be removed from the code. However, if not re-

moved, it can limit the portability of the code since other environments might not have

the required libraries.

Intervention Instructors should explain how and why imports are needed in the code.

Instructors and teaching assistants can also point out that some programming environ-

ments detect unused imports, for example, by underlining them with a different color.

A.2.5 A6: Variables with arbitrary values (Magic Numbers) used

in operations

Description Indicates an occurrence in which arbitrary values are used in the code.

These values, also known as “magic numbers”, are reliant on the problem instance and

can manifest either in the form of a lone variable or hard coded into another variable.

Example In Code A.20, the value of total is being hard coded with a magic number

in line 2.

1 price = float(input ())

2 total = price * 0.15

3

4 print(total)

Code A.20: A6: Variables with arbitrary values (Magic Numbers) used in operations.

DIF 8

Rationale One possible underlying reason for this MC³ is that students might lack

confidence in declaring and manipulating different variables.

Consequences This MC³ can lead to issues regarding maintainability in future code

created by the students.

Intervention Students should be instructed that magic numbers can be avoided by

assigning these numbers to constants at the beginning of the code.

A.2.6 A7: Arbitrary manipulations to modify declared variables

Description Indicates an occurrence in which variables have their values altered by

arbitrary means, such as erasing its value by assigning an empty string to it.

163

Example In Code A.21, var is being assigned an empty string in line 4 to erase its

previous value before being assigned a new one in line 5.

1 var = int(input())

2 while var != -1:

3 (...) #some operation with current var value

4 var = ’’

5 var = int(input ())

Code A.21: A7: Arbitrary manipulations to modify declared variables.

DIF 8

Rationale This MC³ arises possibly due to students having difficulties with the manip-

ulation of variables.

Consequences The arbitrary manipulation of variables in this MC³ can lead to issues

regarding readability and maintainability in future code created by the students.

Intervention Students should be instructed that every direct assignment overwrites

the previous value of a variable.

A.2.7 A8: Arbitrary treatment of the stopping point of reading

values

Description Indicates an occurrence in which the stopping condition for reading data

is not correctly implemented. In this scenario, the guard condition is included in the set

of valid data.

Example In Code A.22, the guard condition -1 is also appended to numbers before the

loop execution is terminated.

1 numbers = []

2 while True:

3 var = int(input ())

4 numbers.append(var)

5 if var == -1:

6 break

7

8 for num in numbers:

9 if num == -1:

10 numbers.remove(num)

Code A.22: A8: Arbitrary treatment of the stopping point of reading values.

DIF 4

164

Rationale The underlying reason for this MC³ is a careless approach students have

while coding.

Consequences Leaving invalid entries in the stored data can lead to unexpected code

executions if students forget to remove these invalid entries.

Intervention Students should be instructed not to include invalid entries in an expected

valid data set.

Category B: Boolean expressions

A.2.8 B1: Redundant or simplifiable Boolean comparison

Description Indicates an occurrence in which a Boolean comparison can be expressed

in a simpler way.

Example In Code A.23, the left hand side of the expression in line 4 is redundantly

being compared to True.

1 num1 = int(input ())

2 num2 = int(input ())

3

4 if (num1 >= num2) == True:

5 print(num1 , "greater␣than␣or␣equal␣to", num2)

6 else:

7 print(num1 , "lesser␣than", num2)

Code A.23: B1: Redundant or simplifiable Boolean comparison.

DIF -8

Rationale This MC³ arises from students who are still grasping the fundamental con-

cepts of decision statements.

Consequences This MC³ indicates a potential misunderstanding of conditional com-

mands if students are still routinely making this mistake by the end of the CS1 course.

Intervention Instructors can reinforce the concepts of redundant Boolean comparisons

in lectures using simple examples.

A.2.9 B2: Boolean comparison separated in intermediary vari-

ables

Description Indicates an occurrence in which a boolean comparison, with more than

two factors, is coded by assigning the preliminary results in auxiliary variables, instead

of calculating the whole expression in the same operation.

165

Example In Code A.24, cond1 and cond2 were declared as intermediary values for the

test conducted in line 8.

1 age = int(input())

2 c_time = int(input())

3 gender = input ()

4

5 cond1 = age > 65

6 cond2 = c_time > 10

7

8 if cond1 and cond2 and gender == ’M’:

9 print("Can␣retire.")

Code A.24: B2: Boolean comparison separated in intermediary variables.

DIF -18

Rationale This MC³ is only a real issue if students mistakenly believe that conditional

statements can only be constructed using variables. Aside from that, separating code in

auxiliary variables can keep the conditional statements short and more readable.

Consequences This MC³ indicates a potential misunderstanding of conditional com-

mands if students mistakenly believe that conditional statements can only be constructed

using variables.

Intervention Students should be instructed that breaking long expressions into vari-

ables is a good idea, but only when those variables are significantly named.

A.2.10 B3: Arithmetic expression instead of Boolean

Description Indicates an occurrence in which a Boolean expression is instead defined

as an arithmetic expression. In this case, students assign numbers to certain simpler

conditions and then perform an operation with these conditions, such as the sum of them.

Example In Code A.25, the decision statement declared in line 7 uses the sum of two

Boolean variables as its condition.

1 num1 = int(input ())

2 num2 = int(input ())

3

4 cond1 = num1 % 2 == 0

5 cond2 = num2 % 2 == 0

6

7 if cond1 + cond2 == 2:

8 print("odd␣numbers")

Code A.25: B3: Arithmetic expression instead of Boolean.

166

DIF 6

Rationale This MC³ arises from a possible misunderstanding of Boolean variables,

leading to discomfort in using them with Boolean operators. This misconception might

occur when students learn that, in Python, True can be interpreted as 1 and False can

be interpreted as 0.

Consequences This MC³ adds unnecessary complexity to the code’s logic, leading to

issues regarding readability and maintainability of future code.

Intervention Students should be instructed to avoid treating Boolean variables as in-

tegers whenever possible.

A.2.11 B4: Repeated commands inside if-elif-else blocks

Description Indicates an occurrence in which the same commands appear in different

blocks of if-elif-else.

Example In Code A.26, lines 5 to 7 and 10 to 12 are equal and could be factorized out

of the if-else statement.

1 order = input ()

2

3 if order == "online":

4 print("Processing␣online␣order")

5 print("Calculating␣shipping␣costs ...")

6 print("Applying␣discount ...")

7 print("Finalizing␣order ...")

8 else:

9 print("Processing␣in-store␣order")

10 print("Calculating␣shipping␣costs ...")

11 print("Applying␣discount ...")

12 print("Finalizing␣order ...")

Code A.26: B4: Repeated commands inside if-elif-else blocks.

DIF 6

Rationale Although this MC³ can be traced to a lack of attention while coding, these

repeating commands are often the result of copying and pasting code.

Consequences This MC³ leaves the code prone to errors due to the act of copying and

pasting. Additionally, it can lead to future issues with code maintenance, as students may

forget to alter all repeating code sequences when necessary.

167

Intervention Instructors can explain in lectures that repeating code in these situations

can be refactored by moving them outside of if-elif-else blocks.

A.2.12 B5: Nested if statements instead of Boolean comparison

Description Indicates an occurrence in which boolean comparisons are coded by nesting

if statements instead of using logic operators.

Example In Code A.27, lines 4 and 5 could have been merged in a single if by using

Boolean operators.

1 num1 = int(input ())

2 num2 = int(input ())

3

4 if num1 > 0:

5 if num2 > 0:

6 print(num1 , "positive", num2 , "positive")

Code A.27: B5: Nested if statements instead of Boolean comparison.

DIF -10

Rationale If there are only a few variables, this behavior might not be an issue. How-

ever, this MC³ arises if there are more variables handled in this manner, as this potentially

indicates students are avoiding using Boolean operators, possibly due to misunderstand-

ings.

Consequences If multiple variables are involved, this MC³ can lead to future complex

code created by the students. This can negatively influence the code’s readability and

maintainability.

Intervention If instructors or teaching assistants detect students routinely nesting mul-

tiple if statements, they can address merging using Boolean expressions with simple

examples during lectures.

A.2.13 B7: Boolean validation variable instead of elif/else

Description Indicates an occurrence in which a Boolean variable (validation flag) is

declared and assigned a condition that is tested further with consecutive if statements

when an elif/else could be implemented without the need of this flag.

Example In Code A.28, the flag variable declared in line 1 is used in sequential if

statements in lines 7, 9, and 11. The statements in lines 9 and 11 could have been declared

as elif-else blocks.

168

1 flag = False

2 var = input()

3

4 if len(var) == 0:

5 flag = True

6

7 if flag:

8 print("empty␣message")

9 if not flag and len(var) > 1:

10 print("words:", var.split ())

11 if not flag and len(var) == 1:

12 print("word:", var)

Code A.28: B7: Boolean validation variable instead of elif/else.

DIF 4

Rationale Although flag variables are commonly taught in CS1 classes, students might

mistakenly use them to structure their code only with if statements. This preference

over elif-else statements can stem from misunderstandings about these constructs.

Consequences This MC³ can lead to future complexity in code, resulting in mainte-

nance issues due to the use of flag variables.

Intervention Students should be instructed on the proper usage of flag variables. In-

structors can present clearly constructed examples during lectures to demonstrate when

these variables are most appropriate.

A.2.14 B10: Unnecessary elif/else

Description Indicates an occurrence in which elif/else statements are declared but

their blocks contain code that has no effect.

Example In Code A.29, the student checked all possible cases for num in lines 2 and 4,

while also including an unnecessary else statement in line 6. In this case, the else could

have been properly used in line 4.

1 num = int(input())

2 if num >= 0:

3 print(num , "is␣positive␣or␣0")

4 elif num < 0:

5 print(num , "is␣negative")

6 else:

7 (...) #some code that does not alter the output

Code A.29: B10: Unnecessary elif/else.

169

DIF 6

Rationale This MC³ arises because students might be having difficulties with condi-

tional statements, mistakenly believing that elif/else statements are mandatory.

Consequences This MC³ can lead to future redundant code, causing issues with read-

ability and maintainability due to misunderstandings of conditional statements.

Intervention Students should be oriented that elif/else statements are not manda-

tory and should only be used when appropriate.

A.2.15 B11: Consecutive distinct if statements with the same

operations in their blocks

Description Indicates an occurrence in which consecutive if statements that check

distinct conditions are declared, but there are repeated commands in their blocks.

Example In Code A.30, lines 5, 7, and 9 could have been merged into a single if since

their blocks performs the same commands.

1 e1 = float(input("Edge␣1:␣"))

2 e2 = float(input("Edge␣2:␣"))

3 e3 = float(input("Edge␣3:␣"))

4

5 if e1 <= 0:

6 print("invalid␣input")

7 if e2 <= 0:

8 print("invalid␣input")

9 if e3 <= 0:

10 print("invalid␣input")

Code A.30: B11: Consecutive distinct if statements with the same operations in their

blocks.

DIF 8

Rationale This MC³ arises because students might be having difficulties with condi-

tional statements, as the commands in the distinct if statements could be grouped into

a single statement.

Consequences While there are situations where this coding pattern is necessary, gen-

erally, this MC³ stems from a lack of clarity and may result in future code quality issues,

such as readability and maintainability.

Intervention Students should be encouraged to assess their code to identify possible

refactoring opportunities that will enhance readability and maintainability.

170

Category C: Iteration

A.2.16 C3: Redundant operations inside loop

Description Indicates an occurrence in which operations are being unnecessarily cal-

culated inside a loop.

Example In Code A.31, average is being calculated repeatedly and unnecessarily in

line 7, since this operation could have been performed once after the loop.

1 numbers = [int(i) for i in input().split()]

2 sum_num = total_num = 0

3

4 for num in numbers:

5 sum_num += num

6 total_num += 1

7 average = sum_num / total_num

8

9 print(average)

Code A.31: C3: Redundant operations inside loop.

DIF 10

Rationale This MC³ arises because students might be having difficulties identifying

refactoring possibilities within their code.

Consequences This MC³ can lead to increased code complexity and inefficiency. How-

ever, teaching about efficiency attributes such as code running time and resource con-

sumption is debatable among CS1 instructors.

Intervention If efficiency in resource consumption is within the learning objectives of

the CS1 course, students should be encouraged to refactor their code to identify and

remove redundant operations.

A.2.17 C5: Use of intermediary variables to loop control

Description Indicates an occurrence in which the variable that controls the loop is

updated via other intermediary variables which are fuzzy or obfuscated.

Example In Code A.32, var1 is updated using intermediary variables aux and var2 to

determine the execution of the while loop.

171

1 var1 = int(input ())

2 var2 = 1

3 while var1 != 0:

4 aux = int(input ())

5 var1 = aux + var2

6 (...)

Code A.32: C5: Use of intermediary variables to loop control.

DIF -12

Rationale This MC³ arises due to a lack of clarity in students’ thought processes,

reflecting in a lack of attention while coding.

Consequences Obfuscated logic in manipulating a loop’s conditional variable can lead

to issues in readability and maintainability of future code.

Intervention Similar to MC³ B6, students should be oriented to divide Boolean ex-

pressions into Boolean variables only if these variables have significant names.

A.2.18 C6: Multiple distinct loops that operates over the same

iterable

Description Indicates an occurrence in which multiple consecutive loops that operate

over the same iterable are declared with different operations being performed inside their

respective blocks.

Example In Code A.33, three for loops that iterates over numbers were declared in

lines 4, 8, and 12. All loops could have been merged into a single one.

1 numbers = [int(i) for i in input().split()]

2 sum_odd = sum_even = sum_num = 0

3

4 for num in numbers:

5 if num % 2 == 1:

6 sum_odd += num

7

8 for num in numbers:

9 if num % 2 == 0:

10 sum_even += num

11

12 for num in numbers:

13 sum_num += num

Code A.33: C6: Multiple distinct loops that operates over the same iterable.

DIF 0

172

Rationale This MC³ arises because students might have difficulties identifying refac-

toring possibilities within their code. In this case, students are possibly dividing their

logic into multiple steps and overlook refactoring once the code produces the expected

outcome.

Consequences Similar to MC³ C3, this MC³ can lead to increased code complexity in

terms of efficiency. However, teaching about efficiency attributes such as code running

time and resource consumption is debatable among CS1 instructors.

Intervention As with MC³ C3, if efficiency in resource consumption is within the learn-

ing objectives of the CS1 course, students should be encouraged to assess their code to

identify potential sections that can increase performance.

A.2.19 C7: Arbitrary internal treatment of loop boundaries

Description Indicates an occurrence in which the body of a loop contains specific con-

ditionals treating its boundary values.

Example In Code A.34, two if statements (lines 4 and 7) were declared to perform

operations inside the for loop declared in line 3. However, since these if statements

treats the boundary values, they could have been factored out of the loop.

1 numbers = [int(i) for i in input().split()]

2

3 for iter in range(len(numbers)):

4 if iter == 0:

5 (...)

6

7 if iter == len(numbers) - 1:

8 (...)

9

10 (...)

Code A.34: C7: Arbitrary internal treatment of loop boundaries.

DIF 2

Rationale This MC³ arises because students might have difficulties identifying refac-

toring possibilities within their code. In this case, students are overlooking the fact that

the boundary checks could have been performed outside the loop.

Consequences Similar to previous behaviors, this MC³ can lead to increased code

complexity in terms of efficiency. However, teaching about efficiency attributes such as

code running time and resource consumption is debatable among CS1 instructors.

173

Intervention If efficiency in resource consumption is within the learning objectives of

the CS1 course, students should be encouraged to assess their code to identify potential

sections that can increase performance.

Category D: Function parameter use and scope

A.2.20 D1: Inconsistent return declaration

Description Indicates an occurrence in which only some of the return declarations

inside a function return an expression.

Example In Code A.35, there should have been another return considering the case

the if statement in line 2 is evaluated as False.

1 def IsEven(num):

2 if num % 2 == 0:

3 return True

Code A.35: D1: Inconsistent return declaration.

DIF 6

Rationale This MC³ arises due to students’ lack of attention while coding. Specifically,

students are oblivious to code conventions regarding functions.

Consequences This MC³ can lead to the creation of code that is not formatted accord-

ing to PEP81: if any return statement returns an expression, any return statements

where no value is returned should explicitly state this as return None, and an explicit

return statement should be present at the end of the function (if reachable).

Intervention If code convention is within the learning objectives of the CS1 course,

instructors should orient about the importance of following these conventions.

A.2.21 D2: Too many return declarations inside a function

Description Indicates an occurrence in which a function has a high number of return

declarations inside its scope.

Example In Code A.36, function checker() was created with five return statements.

This could potentially indicate that said function is large and could benefit from being

split in smaller functions.

1https://www.python.org/dev/peps/pep-0008/

174

1 def process_number(n):

2 if n < 0:

3 return "Negative␣number"

4 if n == 0:

5 return "Zero"

6 if n > 0 and n <= 10:

7 return "Positive␣number␣less␣than␣or␣equal␣to␣10"

8 if n > 10 and n <= 100:

9 return "Positive␣number␣between␣11␣and␣100"

10 if n > 100:

11 return "Positive␣number␣greater␣than␣100"

12

13 return "Not␣a␣number"

Code A.36: D2: Too many return declarations inside a function.

DIF -8

Rationale An underlying reason for this MC³ is a misunderstanding of modularization

concepts. In this case, students are overlooking the fact that creating one large function

does not assist in code modularization.

Consequences This MC³ can lead to the creation of future code that has issues in

readability and maintainability.

Intervention While it may not always be the case, students should be oriented that

too many return declarations can indicate that a function may benefit from being split

into smaller functions.

A.2.22 D3: Redundant or unnecessary return declaration

Description Indicates an occurrence in which a return declaration that has no impact

over the execution of the program is present inside a function.

Example In Code A.37, an unnecessary return was declared in line 4.

1 def PrintBySide(elements)

2 for item in elements:

3 print(item , end="␣")

4 return

Code A.37: D3: Redundant or unnecessary return declaration.

DIF -12

Rationale This MC³ arises due to misunderstandings of function concepts. In this case,

students might mistakenly believe that the return statement is mandatory.

175

Consequences The redundancy resulting from this MC³ can lead to the creation of

future code that has issues in readability and maintainability.

Intervention Students should be oriented that the return statement is not mandatory

and should be used only when necessary. Instructors can explain this in parallel with MC³

D1.

Category E: Reasoning

A.2.23 E1: Checking all possible combinations unnecessarily

Description Indicates an occurrence in which all possible combinations of Boolean vari-

ables and/or expressions are unnecessarily declared in order to check all of their possible

combinations.

Example In Code A.38, the whole truth table was unnecessarily declared to assess

cond1 and cond2.

1 cond1 = (...) #a boolean expression

2 cond2 = (...) #another boolean expression

3

4 if not cond1 and not cond2:

5 print(False)

6 if not cond1 and cond2:

7 print(False)

8 if cond1 and not cond2:

9 print(False)

10 if cond1 and cond2:

11 print(True)

Code A.38: E1: Checking all possible combinations unnecessarily.

DIF 10

Rationale This MC³ arises due to students having difficulties with conditional state-

ments. In this case, students might be struggling to understand how Boolean operators

work.

Consequences This MC³ can lead to the creation of redundant code, promoting issues

with readability and maintainability. Moreover, as the number of variables increases, the

code becomes more susceptible to errors due to the necessity of more conditions to be

checked.

Intervention Students should be oriented about Boolean operators in Python. Exam-

ples can be used in lectures to address and exemplify why there is no need to assess all

possible combinations of Boolean variables.

176

Category F: Test cases

A.2.24 F1: Verification for non explicit conditions

Description Indicates an occurrence in which the student over verifies conditions for

the code, which were guaranteed by the assignment description they will not be present

in the test cases.

Example Consider that the assignment description for Code A.39 explicitly stated that

all test cases would consider the ages as greater than 0. Even so, the student assessed

this given information in line 4.

1 majorityAge = int(input())

2 age = int(input())

3

4 if age >= majorityAge and age > 0 and majorityAge > 0:

5 print("Adult")

Code A.39: F1: Verification for non explicit conditions.

DIF 0

Rationale A sense of safe programming is not an issue per se. This MC³ can only be a

problem if the student decides to unnecessarily check superfluous conditions that leaves

the code prone to errors.

Consequences The redundancy resulting from this MC³ can lead to the creation of

future code that has issues in readability and maintainability. A lack of attention while

creating unnecessary checks can leave the code prone to errors.

Intervention Although preventing unexpected input is a good programming practice,

students should also be oriented to understand the assignment’s description regarding the

expected functionality of the code.

Category G: Code organization

A.2.25 G1: Long line commentary

Description Indicates an occurrence in which long commentaries are written in the line

format in Python, extending the file horizontally.

Example In Code A.40, a long commentary was inserted in the line format (line 1).

177

1 (...) #a long line commentary that thoroughly explains this line of

code but the block format would have been more appropriate

instead ...

Code A.40: G1: Long line commentary.

DIF -18

Rationale This MC³ arises due to an incomplete understanding of Python properties.

In this case, students are unfamiliar with block comment formats.

Consequences As this coding behavior mostly adheres to a programming style, this

MC³ would only be an issue if the student is not following a predetermined style within

the CS1 course. However, a possibly related problem would reside in students’ reasoning,

as they might create long explanations for code instead of summarizing them in shorter

comments.

Intervention Students should be oriented about the proper usage of line and block

comments in Python. Additionally, instructors can reinforce that significant variable and

function names can reduce the amount of comments needed in the code.

A.2.26 G2: Exaggerated use of variables to assign expressions

Description Indicates an occurrence in which a high number of variables are declared

as a result of simpler expressions. These variables are later used in the code.

Example In Code A.41, a high number of variables were assigned simple expressions.

178

1 a, b, c = float(input()), float(input()), float(input ())

2 d = b ** 2

3 e = c ** 2

4 f = a ** 2

5 g = f - (e + d)

6 q = e - (f + d)

7 h = a + b + c

8 i = (c * b) - (a * c)

9 o = (a * b) - (a * c)

10

11 if h == 3 * a :

12 print("Equilateral␣triangle")

13 elif i == 0 :

14 print("Isosceles␣triangle")

15 elif o == 0:

16 print("Isosceles␣triangle")

17 else:

18 print("Scalene␣triangle")

Code A.41: G2: Exaggerated use of variables to assign expressions.

DIF -10

Rationale This MC³ arises due to students’ thought processes while solving an assign-

ment.

Consequences As previously discussed, dividing longer expressions into auxiliary vari-

ables can enhance code readability if the variables have significant names. However, if the

names are not meaningful, the opposite effect can occur, negatively impacting readability

and maintainability.

Intervention Students should be oriented about proper assignment when shortening

expressions into auxiliary variables. Instructors should emphasize the importance of using

descriptive names for auxiliary variables to maintain code clarity.

A.2.27 G3: Too many declarations in a single line of code

Description Indicates an occurrence in which many operations, distinct or not, are

declared in the same line of code.

Example In Code A.42, a for loop and a ternary if-else statement were declared

together in line 3.

179

1 numbers = [int(i) for i in input().split()]

2

3 for num in numbers: print(num*2) if num % 2 == 0 else print(num*3)

Code A.42: G3: Too many declarations in a single line of code.

DIF 10

Rationale This MC³ arises due to a preference in programming style. Students might

choose to write their code this way as they might be thinking that this structure achieves

efficiency in resource consumption by concatenating commands in a single line of code.

Consequences This MC³ can make the code prone to bugs and negatively impact

readability and maintainability.

Intervention Students should be oriented to avoid writing code in this manner. In-

structors can present examples during lectures that illustrate the difficulties in reading

and maintaining code written with this MC³.

A.2.28 G6: Functions not documented in the Docstring format

Description Indicates an occurrence in which the declared functions are either not

properly documented, or documented at all using Python Docstring format.

Example In Code A.43, the function distance() was briefly documented in line 2, but

this comment was not formatted in Python Docstring.

1 def distance(x1, x2, y1, y2):

2 #calculates the Euclidean distance

3 dist = ((y1 - x1) ** 2 + (y2 - x2) ** 2) ** 0.5

4 return dist

Code A.43: G6: Functions not documented in the Docstring format.

DIF -4

Rationale This MC³ arises due to an incomplete understanding of Python properties.

Similar to MC³ G1, students are unfamiliar with the block format commentaries used in

Python Docstring.

Consequences As with MC³ G1, this coding behavior adheres to a programming style.

Therefore, this MC³ would only be an issue if the student is not following a predetermined

style within the CS1 course. Undocumented functions can lead to issues regarding the

readability and maintainability of future code.

180

Intervention Students should be oriented about the existence and usage of Python

Docstring. Instructors can encourage Docstring usage by presenting their advantages

through examples during lectures.

Category H: Other

A.2.29 H2: Redundant typecast

Description Indicates an occurrence in which a typecast is applied to the result of a

function or expression that already results in the same type.

Example In Code A.44, the typcasts performed in lines 1 and 2 were redundant as the

operations already return values as str and int, respectively.

1 var1 = str(input ())

2 var2 = int(6 + 4)

Code A.44: H2: Redundant typecast.

DIF 0

Rationale This MC³ arises from misunderstandings about basic Python functionalities.

Specifically, students are oblivious to the resulting type of basic operations or built-ins.

Consequences The redundancy resulting from this MC³ can lead to the creation of

future code that has minor issues in readability and maintainability.

Intervention Instructors can reinforce the resulting type of operations or built-ins dur-

ing lectures. Moreover, students can be oriented that programming environments offer

ways to determine the resulting type of an operation, such as by hovering the mouse

cursor over it.

A.2.30 H3: Unnecessary or redundant semicolon

Description Indicates an occurrence in which a semicolon is used unnecessarily, typi-

cally at the end of a statement or declaration in a line of code.

Example In Code A.45, redundant semicolons were placed in lines 1 and 2.

1 var1 = input ();

2 var2 = int(input ());

3

4 print(var1 , ":␣", var2 , sep="")

Code A.45: H3: Unnecessary or redundant semicolon.

181

DIF -16

Rationale This MC³ arises from minor misunderstandings of Python syntax, likely

because students have previous programming knowledge of other languages.

Consequences The redundancy resulting from this MC³ can lead to the creation of

future code that has minor issues in readability and maintainability.

Intervention This MC³ should disappear as students progress in the CS1 course. How-

ever, instructors or teaching assistants can address this redundancy if they notice it in

students’ code.

182

Appendix B

Developed Educational Materials

This appendix presents information on the developed educational materials to address

MC³. In total, four different interventions were created: automated MC³ detection tool1,

short videos (60 seconds), digital flashcards, and lecture slides2.

B.1 Flashcards

All flashcards were developed in Brazilian Portuguese and are listed below.

B.1.1 A4: Redefinition of built-in

item1 = float(input("Valor 1:"))
item2 = float(input("Valor 2:"))
item3 = float(input("Valor 3:"))

total = item1 + item2 + item3

min = 0.15 * total
print(“Valor Mínimo:", min)

item1 = float(input("Valor 1:"))
item2 = float(input("Valor 2:"))
item3 = float(input("Valor 3:"))

total = item1 + item2 + item3

min = 0.15 * total
print(“Valor Mínimo:", min)

menor = min(item1, item2, item3)
print("Menor valor:", menor)

item1 = float(input("Valor 1:"))
item2 = float(input("Valor 2:"))
item3 = float(input("Valor 3:"))

total = item1 + item2 + item3

minimo = 0.15 * total
print(“Valor Mínimo:", minimo)

menor = min(item1, item2, item3)
print("Menor valor:", menor)

Este código funciona, mas está
sujeito a erros porque min, uma

função própria do Python, foi
redefinida como variável

Se mais tarde quisermos usar a
função própria do Python, o

programa irá se confundir e não
vai funcionar!

Dessa forma, sempre é
recomendável evitar a

redefinição dessas funções
próprias chamadas built-in

Fique atento!Fique atento!
Redefinir built-ins do Python pode levar a erros de difícil identificaçãoRedefinir built-ins do Python pode levar a erros de difícil identificação

Figure B.1: A4: Redefinition of built-in.

1https://github.com/eryckpedro/mc4
2https://drive.google.com/drive/folders/1fA-TkhGJ3Ff4KiH_K3bsywRyZPGfUJ7L?usp=drive_

link

183

B.1.2 B9: elif/else retesting already checked conditions

 print("Escaleno")

l1 = float(input("Lado 1:"))
l2 = float(input("Lado 2:"))
l3 = float(input("Lado 3:"))

if l1 == l2 == l3:
 print("Equilátero")

elif (l1==l2 or l2==l3 or l1==l3)
 and not l1 == l2 == l3:
 print("Isósceles")

 print("Escaleno")

l1 = float(input("Lado 1:"))
l2 = float(input("Lado 2:"))
l3 = float(input("Lado 3:"))

if l1 == l2 == l3:
 print("Equilátero")

elif l1==l2 or l2==l3 or l1==l3:
 print("Isósceles")

else: else:
Logo, verificar se l1 , l2 e

 não são iguais novamente
é desnecessário!

l1 l2 l3

O elif pode ser lido como um
"else if", ou seja, o else
garante a negação da
igualdade de l1 , l2 e l3l1 l2 l3

Fique atento!Fique atento!
O elif já garante a negação das condições declaradas anteriormenteO elif já garante a negação das condições declaradas anteriormente

Figure B.2: B9: elif/else retesting already checked conditions.

B.1.3 C1: while condition tested again inside its block

soma = quantidade = 0

entrada = int(input())

while entrada != 0:
 soma += entrada
 quantidade += 1

 entrada = int(input())
 if entrada == 0:
 break

print("A média é:", media)

soma = quantidade = 0

entrada = int(input())

while entrada != 0:
 soma += entrada
 quantidade += 1

 entrada = int(input())

media = soma / quantidade
print("A média é:", media)

media = soma / quantidade

O while sempre realiza o teste
para a variável entrada no

início do bloco

Logo, repetir o teste ao
final do bloco é
desnecessário!

Fique atento!Fique atento!
O laço while se encarrega de verificar a própria condição no início de seu blocoO laço while se encarrega de verificar a própria condição no início de seu bloco

Figure B.3: C1: while condition tested again inside its block.

184

B.1.4 C8: for loop having its iteration variable overwritten

for i in range(1, 11):
 print("Tabuada de", i)

 for j in range(1, 11):

 j = j + 1

 for j in range(1, 11):

for i in range(1, 11):
 print("Tabuada de", i)

 i = i + 1

 print(i, "+", j, "=", i + j) print(i, "+", j, "=", i + j)

As variáveis i e j serão
atualizadas conforme a

sequência criada pelo range()

Modificá-las manualmente é
inócuo porque a atualização

pelo range() acabará
sobrescrevendo o valor

Fique atento!Fique atento!
O for atualiza sua variável de iteração automaticamente ao final de seu blocoO for atualiza sua variável de iteração automaticamente ao final de seu bloco

Figure B.4: C8: for loop having its iteration variable overwritten.

B.1.5 D4: Function accessing variables from outer scope

print(QuadradoSoma())

b = int(input("Termo b:"))

def QuadradoSoma():
 resposta = a**2 + 2*a*b + b**2

 return resposta

print(QuadradoSoma(termo_a,
termo_b))

def QuadradoSoma(a, b):
 resposta = a**2 + 2*a*b + b**2

 return resposta

termo_b = int(input("Termo b:"))
a = int(input("Termo a:")) termo_a = int(input("Termo a:"))

QuadradoSoma() está
acessando os valores de a e b
externamente ao seu escopo

Como este acesso pode
gerar erros no futuro, o
ideal é passar variáveis

externas como parâmetro

Fique atento!Fique atento!
Se uma função precisar de variáveis externas, o recomendado é passá-las como parâmetroSe uma função precisar de variáveis externas, o recomendado é passá-las como parâmetro

Figure B.5: D4: Function accessing variables from outer scope.

185

B.1.6 G5: Arbitrary organization of declarations

def LerDados():
 dados = [int(i) for i

in input().split()]
 return dados

def LerDados():
 dados = [int(i) for i
 in input().split()]
 return dados

numeros = LerDados()
resultado = multiplicar(numeros)
print(resultado)

Alternar entre declarações de
funções e o código principal
dificulta a leitura do código

por programadores

Logo, o ideal é declarar
todas as funções no

começo do código

def multiplicar(dados):
 total = 1
 for dado in dados:
 total *= dado

resultado = multiplicar(numeros)
print(resultado)

 return total

numeros = LerDados()

Fique atento!Fique atento!
Uma boa ordenação de declarações ajuda a deixar o código mais organizadoUma boa ordenação de declarações ajuda a deixar o código mais organizado

def multiplicar(dados):
 total = 1
 for dado in dados:
 total *= dado
 return total

Figure B.6: G5: Arbitrary organization of declarations.

B.2 Short Videos

The short videos were also uploaded in YouTube via the Shorts format. The following

list presents each MC³ with its corresponding video (in Brazilian Portuguese).

• A4: Redefinition of built-in:

https://youtube.com/shorts/GDV8-HA9PZg

• B9: elif/else retesting already checked conditions:

https://youtube.com/shorts/Y7sugUt8OdQ

• C1: while condition tested again inside its block:

https://youtube.com/shorts/wG5GJjmvvTs

• C8: for loop having its iteration variable overwritten:

https://youtube.com/shorts/3Zq8i3U1DE4

• D4: Function accessing variables from outer scope:

https://youtube.com/shorts/1O_sRXEQ6PA

• G5: Arbitrary organization of declarations:

https://youtube.com/shorts/gONVV17oqtc

186

Appendix C

Publisher’s Authorization

As required by Universidade Estadual de Campinas for thesis written in the article collec-

tion format, this appendix presents the publisher’s authorization for reuse of the papers

described in Chapters 3 and 4.

Brazilian Journal of Computers in Education (RBIE)

• Source:

https://sol.sbc.org.br/journals/index.php/rbie/about/submissions

• Accessed on May 14th, 2024.

187

188

Appendix D

Research Ethics Committee Approvals

This appendix presents the approvals (in Brazilian Portuguese) of all elaborated final

reports of the three research projects sent to the Ethics Research Committee affiliated

with Universidade Estadual de Campinas.

UNICAMP - CAMPUS
CAMPINAS

PARECER CONSUBSTANCIADO DO CEP

Pesquisador:

Título da Pesquisa:

Instituição Proponente:

Versão:

CAAE:

Análise de Problemas de Programação em Disciplinas de Introdução à Programação
em Python

ERYCK PEDRO DA SILVA

Instituto de Computação

2

51444121.5.0000.5404

Área Temática:

DADOS DO PROJETO DE PESQUISA

Número do Parecer: 5.820.142

DADOS DO PARECER

Pesquisadores enviam relatório final de atividades do projeto citado acima

Apresentação da Notificação:

Apresentar relatório final de atividades do estudo

Objetivo da Notificação:

Mantidos em relação ao projeto original

Avaliação dos Riscos e Benefícios:

- Data da aprovação do projeto por este CEP: 24/11/2021 (parecer número 5.124.692, em

'PB_PARECER_CONSUBSTANCIADO_CEP_5124692.pdf', de 24/11/2021 16:22:32)

Comentários e Considerações sobre a Notificação:

Envio de Relatório Final

Esta notificação está sendo enviada como relatório final, informando a conclusão da

12/12/2022

Parecer Consubstanciado Emitido

Tipo de Notificação:

Situação da Notificação:

Data do Envio:

Justificativa:

Detalhe:

DADOS DA NOTIFICAÇÃO

CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTIFICO E
TECNOLOGICO-CNPQ

Patrocinador Principal:

13.083-887

(19)3521-8936 E-mail: cep@unicamp.br

Endereço:
Bairro: CEP:

Telefone:

Rua Tessália Vieira de Camargo, 126, 1° andar do Prédio I da Faculdade de Ciências Médicas

Barão Geraldo

UF: Município:SP CAMPINAS

Fax: (19)3521-7187

Página 01 de 03

189

UNICAMP - CAMPUS
CAMPINAS

Continuação do Parecer: 5.820.142

- Data de conclusão do estudo: 06/12/2022

Embora tenha sido, originalmente, previsto 100 voluntários para o projeto, foram incluídos 32 participantes

nesse estudo

Não houve registro de intercorrências

Informa o pesquisador que "Não ocorreram mudanças na metodologia tampouco no público-alvo definidos

originalmente" e que "Todos os protocolos foram seguidos conforme a descrição no projeto de pesquisa

aprovado"

Não houve publicação dos resultados

Sobre isso, o pesquisador acrescenta que "Os resultados estão sendo compilados no formato de um

Relatório Técnico, a ser publicado nos meios de comunicação da UNICAMP."

Para avaliação desta notificação foi analisado o relatório final anexado no documento intitulado

'NOTIFICACAO_CONCLUSAO.pdf', de 12/12/2022 15:36:13

Relatório enviado adequadamente, em formulário próprio deste CEP

Considerações sobre os Termos de apresentação obrigatória:

Relatório final aprovado

Conclusões ou Pendências e Lista de Inadequações:

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento Arquivo Postagem Autor Situação

Envio de Relatório
Final

NOTIFICACAO_CONCLUSAO.pdf 12/12/2022
15:36:13

ERYCK PEDRO DA
SILVA

Postado

Situação do Parecer:
Aprovado

Necessita Apreciação da CONEP:
Não

13.083-887

(19)3521-8936 E-mail: cep@unicamp.br

Endereço:
Bairro: CEP:

Telefone:

Rua Tessália Vieira de Camargo, 126, 1° andar do Prédio I da Faculdade de Ciências Médicas

Barão Geraldo

UF: Município:SP CAMPINAS

Fax: (19)3521-7187

Página 02 de 03

190

UNICAMP - CAMPUS
CAMPINAS

Continuação do Parecer: 5.820.142

CAMPINAS, 15 de Dezembro de 2022

Renata Maria dos Santos Celeghini
(Coordenador(a))

Assinado por:

13.083-887

(19)3521-8936 E-mail: cep@unicamp.br

Endereço:
Bairro: CEP:

Telefone:

Rua Tessália Vieira de Camargo, 126, 1° andar do Prédio I da Faculdade de Ciências Médicas

Barão Geraldo

UF: Município:SP CAMPINAS

Fax: (19)3521-7187

Página 03 de 03

191

UNIVERSIDADE ESTADUAL DE
CAMPINAS -

UNICAMP/CAMPUS CAMPINAS

PARECER CONSUBSTANCIADO DO CEP

Pesquisador:

Título da Pesquisa:

Instituição Proponente:

Versão:

CAAE:

Aplicação de uma Observação Semiestruturada em Turma de Introdução à
Programação

ERYCK PEDRO DA SILVA

Instituto de Computação

3

60258622.8.0000.5404

Área Temática:

DADOS DO PROJETO DE PESQUISA

Número do Parecer: 6.297.763

DADOS DO PARECER

As informações contidas nos campos "Apresentação da Notificação", "Objetivo da Notificação" e "Avaliação

dos Riscos e Benefícios" foram obtidas dos documentos apresentados para apreciação ética e das

informações inseridas pelo Pesquisador Responsável do estudo na Plataforma Brasil.

Foi encaminhada a notificação para análise do CEP do relatório final da pesquisa.

Apresentação da Notificação:

Encerramento do estudo no Brasil (envio de relatório final) – quando todas as etapas previstas foram

finalizadas.

Objetivo da Notificação:

Envio de Relatório Final

Esta notificação está sendo enviada como relatório final, informando a conclusão da

20/07/2023

Parecer Consubstanciado Emitido

Tipo de Notificação:

Situação da Notificação:

Data do Envio:

Justificativa:

Detalhe:

DADOS DA NOTIFICAÇÃO

Financiamento PróprioPatrocinador Principal:

13.083-887

(19)3521-8936 E-mail: cep@unicamp.br

Endereço:
Bairro: CEP:

Telefone:

Rua Tessália Vieira de Camargo, 126, 1° andar do Prédio I da Faculdade de Ciências Médicas
Barão Geraldo

UF: Município:SP CAMPINAS
Fax: (19)3521-7187

Página 01 de 03

192

UNIVERSIDADE ESTADUAL DE
CAMPINAS -

UNICAMP/CAMPUS CAMPINAS

Continuação do Parecer: 6.297.763

Mantidos em relação à última versão do projeto aprovado.

Avaliação dos Riscos e Benefícios:

Segundo informações contempladas no relatório final, a pesquisa foi concluída em 17/7/2023.

Foram incluídos 29 participantes de pesquisa do total de 182 previstos na folha de rosto.

Não houve intercorrências com os participantes de pesquisa.

De acordo com os comentários do pesquisador responsável contemplados nos itens 10 e 11 do relatório:

"Esta notificação está sendo enviada como relatório final, indicando a conclusão da pesquisa. O relatório

aqui apresentado contempla a Emenda aprovada pelo CEP em fevereiro de 2023. Os números de

participantes informados correspondem às duas turmas de Algoritmos e Programação de Computadores

(MC102) abordadas (uma no segundo semestre letivo de 2022 e a outra no primeiro semestre letivo de

2023). Não ocorreram mudanças nas metodologias propostas na Emenda. Todos os protocolos foram

seguidos conforme descritos no projeto aprovado."

"Embora os resultados ainda não tenham sido publicados, um Artigo Completo contendo os resultados foi

elaborado e submetido para a Revista Brasileira de Informática na Educação em julho de 2023. Até o

momento do envio deste relatório ao CEP, o trabalho submetido se encontra em avaliação. Link para o site

da revista: https://sol.sbc.org.br/journals/index.php/rbie/index"

Comentários e Considerações sobre a Notificação:

Vide campo abaixo "Conclusões ou Pendências e Lista de Inadequações"

Considerações sobre os Termos de apresentação obrigatória:

Diante do exposto, o Comitê de Ética em Pesquisa - CEP, de acordo com as atribuições definidas na

Resolução CNS nº 466 de 2012 e na Norma Operacional nº 001 de 2013 do CNS, manifesta-se pela

aprovação da notificação apresentada para o projeto de pesquisa.

Conclusões ou Pendências e Lista de Inadequações:

Considerações Finais a critério do CEP:

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento Arquivo Postagem Autor Situação

13.083-887

(19)3521-8936 E-mail: cep@unicamp.br

Endereço:
Bairro: CEP:

Telefone:

Rua Tessália Vieira de Camargo, 126, 1° andar do Prédio I da Faculdade de Ciências Médicas
Barão Geraldo

UF: Município:SP CAMPINAS
Fax: (19)3521-7187

Página 02 de 03

193

UNIVERSIDADE ESTADUAL DE
CAMPINAS -

UNICAMP/CAMPUS CAMPINAS

Continuação do Parecer: 6.297.763

CAMPINAS, 13 de Setembro de 2023

Renata Maria dos Santos Celeghini
(Coordenador(a))

Assinado por:

Envio de Relatório
Final

NOTIFICACAO_CONCLUSAO.docx 20/07/2023
12:03:04

ERYCK PEDRO DA
SILVA

Postado

Envio de Relatório
Final

NOTIFICACAO_CONCLUSAO.pdf 20/07/2023
12:03:07

ERYCK PEDRO DA
SILVA

Postado

Situação do Parecer:
Aprovado

Necessita Apreciação da CONEP:
Não

13.083-887

(19)3521-8936 E-mail: cep@unicamp.br

Endereço:
Bairro: CEP:

Telefone:

Rua Tessália Vieira de Camargo, 126, 1° andar do Prédio I da Faculdade de Ciências Médicas
Barão Geraldo

UF: Município:SP CAMPINAS
Fax: (19)3521-7187

Página 03 de 03

194

UNIVERSIDADE ESTADUAL DE
CAMPINAS -

UNICAMP/CAMPUS CAMPINAS

PARECER CONSUBSTANCIADO DO CEP

Pesquisador:

Título da Pesquisa:

Instituição Proponente:

Versão:

CAAE:

Aplicação e Avaliação de Artefatos Educacionais em Turma de Introdução à
Programação

ERYCK PEDRO DA SILVA

Instituto de Computação

2

70220523.0.0000.5404

Área Temática:

DADOS DO PROJETO DE PESQUISA

Número do Parecer: 6.713.604

DADOS DO PARECER

Pesquisadores enviam relatório final de atividades do projeto citado acima

Apresentação da Notificação:

Apresentar relatório final de atividades do estudo

Objetivo da Notificação:

Mantidos em relação ao projeto original

Avaliação dos Riscos e Benefícios:

Data da aprovação do projeto por este CEP: 13/07/2023 (parecer número 6.180.304, em

'PB_PARECER_CONSUBSTANCIADO_CEP_6180304.pdf', de 13/07/2023 10:27:40)

Data de conclusão do estudo: 22/01/2024

Comentários e Considerações sobre a Notificação:

Envio de Relatório Final

Esta notificação está sendo enviada como relatório final, indicando a conclusão da

15/02/2024

Parecer Consubstanciado Emitido

Tipo de Notificação:

Situação da Notificação:

Data do Envio:

Justificativa:

Detalhe:

DADOS DA NOTIFICAÇÃO

Financiamento PróprioPatrocinador Principal:

13.083-887

(19)3521-8936 E-mail: cep@unicamp.br

Endereço:
Bairro: CEP:

Telefone:

Rua Tessália Vieira de Camargo, 126, 1° andar do Prédio I da Faculdade de Ciências Médicas

Barão Geraldo

UF: Município:SP CAMPINAS

Fax: (19)3521-7187

Página 01 de 03

195

UNIVERSIDADE ESTADUAL DE
CAMPINAS -

UNICAMP/CAMPUS CAMPINAS

Continuação do Parecer: 6.713.604

Embora originalmente previstos 90 voluntários para essa pesquisa, foram incluídos 27 participantes no

estudo.

Não houve registro de intercorrências

Não houve publicação dos resultados

Informa também o pesquisador que

- "Não ocorreram mudanças nas metodologias propostas. Todos os protocolos foram seguidos conforme

descritos no projeto aprovado"

- "Os artefatos educacionais produzidos na pesquisa foram consolidados e disponibilizados para uso por

docentes e discentes de introdução à programação"

Para avaliação desta notificação foi analisado o relatório final anexado no documento intitulado

'NOTIFICACAO_CONCLUSAO.pdf', de 15/02/2024 18:44:44

Relatório enviado adequadamente, em formulário próprio deste CEP

Considerações sobre os Termos de apresentação obrigatória:

(nenhuma)

Recomendações:

Relatório final aprovado

Conclusões ou Pendências e Lista de Inadequações:

Este parecer foi elaborado baseado nos documentos abaixo relacionados:

Tipo Documento Arquivo Postagem Autor Situação

Envio de Relatório
Final

NOTIFICACAO_CONCLUSAO.pdf 15/02/2024
18:44:44

ERYCK PEDRO DA
SILVA

Postado

Situação do Parecer:
Aprovado

13.083-887

(19)3521-8936 E-mail: cep@unicamp.br

Endereço:
Bairro: CEP:

Telefone:

Rua Tessália Vieira de Camargo, 126, 1° andar do Prédio I da Faculdade de Ciências Médicas

Barão Geraldo

UF: Município:SP CAMPINAS

Fax: (19)3521-7187

Página 02 de 03

196

UNIVERSIDADE ESTADUAL DE
CAMPINAS -

UNICAMP/CAMPUS CAMPINAS

Continuação do Parecer: 6.713.604

CAMPINAS, 20 de Março de 2024

Renata Maria dos Santos Celeghini
(Coordenador(a))

Assinado por:

Necessita Apreciação da CONEP:
Não

13.083-887

(19)3521-8936 E-mail: cep@unicamp.br

Endereço:
Bairro: CEP:

Telefone:

Rua Tessália Vieira de Camargo, 126, 1° andar do Prédio I da Faculdade de Ciências Médicas

Barão Geraldo

UF: Município:SP CAMPINAS

Fax: (19)3521-7187

Página 03 de 03

197

	Introduction
	Problem Definition
	Objectives
	Hypothesis
	Main Objective
	Specific Objectives

	Contributions
	Ethical Considerations
	Methodology and Text Organization
	The Researcher-Participant-Instructor

	A Syllabi Analysis of CS1 Courses from Brazilian Public Universities
	Introduction
	Background and Related Work
	Methods
	Data Collection
	Data Analysis

	Results
	General Information
	RQ1: CS1 Topics
	RQ2: CS1 Courses' Names
	RQ3: When Students Take the CS1 Course
	RQ4: Class Hours Duration
	RQ5: Programming Paradigms and Languages

	Discussion
	Brazilian Public Universities
	CS1 Syllabi
	Contextualization of Brazilian CS1 Courses
	Covered Topics

	Limitations and Threats to Validity
	Conclusions
	Afterword

	When Test Cases Are Not Enough: Identification, Assessment, and Rationale of Misconceptions in Correct Code (MC³)
	Introduction
	Background and Related Work
	Background
	Related Work

	Methods
	MC³ Identification
	RQ1: MC³ Severity Classification
	RQ2: Addressing MC³ in CS1
	RQ3: Frequency Distribution of MC³
	RQ4: Why Students Code with MC³

	Results
	MC³ Identification
	Questionnaire
	Interviews with CS1 Instructors
	MC³ Frequency Distribution
	Observation in a CS1 Course

	Discussion
	MC³ Severity and Reasons for Occurrence (RQ1 and RQ4)
	Addressing MC³ in CS1 Classes (RQ2 and RQ3)

	Limitations and Threats to Validity
	Conclusions
	Afterword

	From forest to leaves: assessing and addressing misconceptions in programming novices’ correct code
	Introduction
	Background and related work
	Assessing correct but poorly constructed novices’ code
	Large-scale studies in CS1
	Comparison with our work

	Misconceptions in Correct Code (MC³)
	The Algorithms and Computer Programming course
	Identification and initial assessments of MC³

	Methods
	Data collection
	RQ1: MC³ frequency distribution
	RQ2: Influence of the passage of time in MC³ occurrence

	Results and discussion
	Terms and classes
	RQ1: MC³ frequency distribution
	RQ2: Influence of the passage of time in MC³ occurrence

	Implications for CS1 teaching practices
	Limitations and threats to validity
	Conclusions
	Afterword: a Case Study to assess educational materials
	Related work on addressing misconceptions
	Methods
	Results and discussion
	Conclusions

	Discussion
	SO1: Identification, analysis, and validation of MC³
	SO2: Development of valid artifacts that address MC³
	SO3: Assessment of artifacts in a CS1 teaching environment

	Reflections at Journey's End
	Catalog of Misconceptions in Correct Code
	Most Severe MC³
	A4: Redefinition of built-in
	B6: Boolean comparison attempted with while loop
	B8: Non utilization of elif/else statement
	B9: elif/else retesting already checked conditions
	B12: Consecutive equal if statements with distinct operations in their blocks
	C1: while condition tested again inside its block
	C2: Redundant or unnecessary loop
	C4: Arbitrary number of for loop executions instead of while
	C8: for loop having its iteration variable overwritten
	D4: Function accessing variables from outer scope
	E2: Redundant or unnecessary use of lists
	F2: Specific verification for instances of open test cases
	G4: Functions/variables with non significant name
	G5: Arbitrary organization of declarations
	H1: Statement with no effect

	Other MC³
	A1: Unused variable
	A2: Variable assigned to itself
	A3: Variable unnecessarily initialized
	A5: Unused import
	A6: Variables with arbitrary values (Magic Numbers) used in operations
	A7: Arbitrary manipulations to modify declared variables
	A8: Arbitrary treatment of the stopping point of reading values
	B1: Redundant or simplifiable Boolean comparison
	B2: Boolean comparison separated in intermediary variables
	B3: Arithmetic expression instead of Boolean
	B4: Repeated commands inside if-elif-else blocks
	B5: Nested if statements instead of Boolean comparison
	B7: Boolean validation variable instead of elif/else
	B10: Unnecessary elif/else
	B11: Consecutive distinct if statements with the same operations in their blocks
	C3: Redundant operations inside loop
	C5: Use of intermediary variables to loop control
	C6: Multiple distinct loops that operates over the same iterable
	C7: Arbitrary internal treatment of loop boundaries
	D1: Inconsistent return declaration
	D2: Too many return declarations inside a function
	D3: Redundant or unnecessary return declaration
	E1: Checking all possible combinations unnecessarily
	F1: Verification for non explicit conditions
	G1: Long line commentary
	G2: Exaggerated use of variables to assign expressions
	G3: Too many declarations in a single line of code
	G6: Functions not documented in the Docstring format
	H2: Redundant typecast
	H3: Unnecessary or redundant semicolon

	Developed Educational Materials
	Flashcards
	A4: Redefinition of built-in
	B9: elif/else retesting already checked conditions
	C1: while condition tested again inside its block
	C8: for loop having its iteration variable overwritten
	D4: Function accessing variables from outer scope
	G5: Arbitrary organization of declarations

	Short Videos

	Publisher's Authorization
	Research Ethics Committee Approvals

