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Resumo

O uso de modelos de transferência de aprendizado em problemas de processamento de lin-
guagem natural tornou-se uma prática padrão na academia e na indústria. Isso permite
ajustar modelos pré-treinados em um conjunto de dados menor, obtendo maior generali-
zação do que abordagens sem pré-treinamento. No entanto, quando a distribuição entre a
tarefa pré-treinamento e a tarefa-alvo varia significativamente, por exemplo, ao conside-
rar ambientes informais e gramática especializada, esses ganhos tendem a ser diminuídos.
Nesse contexto, uma quantidade maior de dados na tarefa de destino torna-se necessária.
A obtenção de dados supervisionados é complexa e cara. Para algumas aplicações, torna-
se inviável a operacionalização. Por isso, várias pequenas empresas se limitam a usar essa
tecnologia no dia a dia.

Esta dissertação de mestrado propõe uma nova abordagem para a aprendizagem por
transferência curricular na qual tarefas intermediárias são criadas em uma sequência de
etapas de treinamento. Nossa abordagem é guiada pelo “data hacking” que permite uma
adaptação mais gradual entre o pré-treinamento e as distribuições alvo. Isso tem o poten-
cial de reduzir significativamente os custos de geração de dados anotados. Nossa contribui-
ção revela que a inserção de tarefas intermediárias no treinamento fim-a-fim de Sistemas
de Diálogo Orientados a Tarefas permite uma melhor otimização do modelo final. Como
consequência, uma avaliação de alto nível deste agente. Para avaliar essa metodologia,
recorremos a dados bem estabelecidos na academia e projetamos um conjunto de da-
dos para experimentação. Nesta metodologia, observamos uma melhora significativa em
comparação com outras abordagens de pré-treinamento conhecidas.



Abstract

The use of transfer learning models in natural language processing problems has become
standard practice in academia and industry. This allows adjusting pre-trained models in
a smaller dataset, obtaining greater generalization than approaches without pre-training.
However, when the distribution between the pre-training task and the target task varies
significantly, for example, in considering informal environments and specialized grammar,
these gains tend to be diminished. In this context, an enormous amount of data in the
target task becomes necessary. Obtaining supervised data is complex and costly. For some
applications, it becomes unfeasible to operationalize. Therefore, several small companies
are limited to using this technology in their day-to-day operations.

This M.Sc. Thesis proposes a novel approach to curriculum transfer learning in which
intermediate tasks are created in a sequence of training steps. Our approach is guided
by “data hacking” that allows a more gradual adaptation between the pre-training and
target distributions. This has the potential to significantly reduce the generation costs
of annotated data. Our contribution reveals that the insertion of intermediate tasks in
end-to-end Task-Oriented Dialog Systems training allows better optimization of the final
model. As a consequence, a high-level evaluation of this agent. To evaluate this method-
ology, we resorted to well-established data in the academy and designed a dataset for
experimentation. In this methodology, we observed a significant improvement compared
to other known pre-training approaches.
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Chapter 1

Introduction

1.1 Context and Motivation

The industry’s digital revolution started decades ago, with the advent of the Internet and

personal computers. This revolution seems far from an end due to its continuous insertion

into the most diverse areas, like health, agriculture, and mobility (Bojanova, 2014). As

a general trend, with the increased usage of edge devices, several users are abandoning

traditional counter services and adopting pure virtual means to solve their problems, like

websites or apps (Nedelkoska and Quintini, 2018; Helbing, 2019; Acemoglu and Restrepo,

2020).

These interface solutions with rich user experience could solve the needs of services and

stand as the primary solution for many applications. However, they are not fully adequate

for complex tasks, which generally require a time-consuming interaction with searching

and clicking counter-intuitive interfaces in web pages (Adamopoulou and Moussiades,

2020). Examples of these complex interactions are solving a technical problem with a

credit card or returning some defective product. This trend increased the demand for

enhanced interfaces designed for improved Human-Computer interaction experiences.

Natural language communication can be considered the most acceptable, flexible, and

richest interface when dealing with humans (Foster, 2019). Companies adopt chat inter-

faces where employees can directly communicate with customers via text messages to solve

their needs. At the same time that this could be an alternative adopted in some business

models, this kind of service has high costs (Cugini et al., 2007; Huang et al., 2020) and

could not be affordable by many others. In recent years, automating this process using

expert systems has become a hot topic for the industry and the academy (Huang et al.,

2020). In this context, agents capable of rich natural language functionalities emerged as

a research area to address this problem.

The field of Natural Language Processing (NLP) and Computational Linguistics en-

ables computers to understand human language automatically (Russell and Norvig, 2010).

Whereas early attempts focused purely on complex rule-based approaches, none of those

models could work in unrestricted environments with high effectiveness. Statistical mod-

eling has become the standard method for obtaining those rules that generalize for many

contexts (Jurafsky and Martin, 2020). When equipped with several layers and adequate

blocks for language representation, statistical models might acquire a human-like perfor-
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mance while being less challenging to engineer (Eisenstein, 2019). Furthermore, at the

top of those models, Language Models (LMs) stands as the standard technique to deploy

state-of-the-art intelligent systems capable of communicating.

Several fields in Artificial Intelligence (AI) still require supervised data to accomplish

human-level behavior. Differently, language modeling enables models to attain high stan-

dards in NLP with unsupervised data, which has little to no cost for data acquisition; then

apply those models with a high bias to other fields, with few or zero-shot learning (Brown

et al., 2020). This kind of approach revolutionized the field of deep learning because it

enabled searching for better learning architectures that are stable and scalable instead of

producing better context-specific data sets.

TODS is a conversational agent that interacts through natural language with cus-

tomers and can accomplish tasks by communicating with other computational systems.

This agent is one of the best cost-effective solutions for assisting customers in complex

scenarios. A customer can freely describe a problem (s)he wants to solve in natural tex-

tual language, and the agent can execute the desired activity with the help of artificial

intelligence and engineering techniques. The agent should not only perform those resolu-

tions but needs to behave like a human to keep customers engaged and satisfied (Roller

et al., 2020).

1.2 Problem Characterization

State-of-the-art dialog systems are trained in unsupervised data by language modeling

(Raffel et al., 2020), exploring the massive capabilities of scaled LMs. In recent news,

one of those models, LaMDA (Thoppilan et al., 2022), trended as being conscious by

deceiving humans on how well it could behave “humanly” (Luscombe, 2022). In general

cases, it could solve problems in NLP out-of-the-box. It is not reasonable for complex

and context-dependent problems, and the model should be fine-tuned for this task.

The TODS task, encoded as an end-to-end sequence for language modeling, presents

an unusual structure that is not present in the data used for pre-training LMs. Figure 1.1

exemplifies this observation. The encoded sentence is a regular grammar for the meta-

structure, where utterances have a conversation bias, with a distribution of words drifting

from the general domain. We have a classification and Named Entity Recognition (NER)

tasks for the belief state where the model infers the user’s intent and extracts slot values.

Finally, it learns an action to take, which shapes the following response.

Although the grammar for encoding the TODS seems feasible when each task is ob-

served individually, the meta-generalization required for the learner to acquire this com-

plex grammar simultaneously is not easily doable with restricted data (Su et al., 2021).

Those over-parametrized models tend to overfit the supervised data, leading to poor

generalization and prompting undesirable effectiveness in real-world applications. In par-

ticular, for the case of TODS, which acts in a sequential decision that could propagate

errors over the process. This requires many more expensive annotated examples compared

to standard NLP tasks.

While the unsupervised data generally have derisive costs, supervised data is costly
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Figure 1.1: Example of NLP tasks presented in an encoded end-to-end TODS for a pizza
ordering chatbot.

to build (Budzianowski et al., 2018; Byrne et al., 2019). For small business models with

specific needs and context, conversational agents present as a non-affordable solution.

This context points out that many businesses could not benefit from the scalability and

optimized operationalization this agent could provide.

Framing a problem in easier abstractions is an old pedagogical approach that was also

successful in training Deep Neural Networks (NNs) (Bengio et al., 2009). It is challenging

the training conversational agents that should perform complex tasks while having enough

annotated data for detecting statistical patterns. Our research investigates how to explore

biases in varying tasks to improve and reduce the engineering costs of conversational

agents.

1.3 Objectives and Developed Approach

Inspired by pedagogical and optimization literature, a curriculum approach presents ex-

amples to learners that gradually increase in complexity or difficulty. This allows the

learner to focus on acquiring the basic skills in the initial steps and helps to learn later

posed examples (Bengio et al., 2009). By the same principle, we could guide the learner

through a learning process by presenting not only examples but complete new tasks with

increasing complexity, similar to how humans acquire knowledge over tasks. For example,

teaching a kid basic arithmetic helps them later to learn differential calculus.

The transfer learning approach trains a model with an auxiliary task to artificially

yield more data for the training process. In the sequential case, a source task, where

the source task is similar to the target task, presents a considerable amount of data. We

can use it as a pre-training phase, where later, this model with a better initialization

presents an adequate starting point for fine-tuning the target task. Although pre-training

significantly helps in the learning process, when the selected hypothesis deviates between

source and target, the final model cannot present desirable effectiveness, and we need

more expensive data in the target domain.

In this MS.c Thesis, we propose creating a pre-training curriculum named Curricular

Transfer Learning (CTL), in which we consider intermediate tasks instead of a single

source task. In these intermediate tasks, we acquire training data and simulate one or

more properties presented in the final task. Given that the bias is more suited for the

final task, the model can demand fewer update steps for the final task by having another
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pre-training step. This helps it be less prone to overfit and acquire a better generalization.

To simulate our target data, we use the structure present in online forums, especially

for this study, we selected the TripAdvisor forum. In this kind of social media, a user

starts a thread on a focused topic, like games, movies, etc. The thread creator receives

many replies to its message based on what he is requesting.

To create data that resembles our TODS data, we use the discussed topic to simulate

the intent classification task. As conversational forums have a distribution of words that

follow dialog acts, we use the thread creator’s message as utterances and other replying

messages as responses.

We conducted this research in the context of a project funded by Ci&T. The critical

concern in the project was the investigation and the development of humanized chatbots,

the commercial name for TODS, to solve the needs of small businesses in Brazil. While

first-generation chatbots that only allow prompted menu navigation are well-established in

the industry. Fourth-generation conversational agents have no tooling and engineering for

the deployment. So, one of the crucial points in this research project is to deploy a fourth-

generation chatbot solution from the ground up to deepen the researchers’ technique and

create the required tools.

This project contributed to us to evaluate the applicability of our methodology. To

this end, we simulate a real-world scenario to deploy a conversational agent in the context

of pizza ordering.

1.4 Synthesis of Results

In this MS.c. thesis by analyzing the grammatical structures and properties of a sequence-

encoded TODS dataset, we discovered a strategy to generate data that resembles the same

properties of the addressed problem. So we propose a strategy to generate intermediate

training data, which works as a curriculum in the grammar acquisition level for LMs.

By exploring variations in pre-training strategies, we found that a curriculum of

grammar-encoded tasks helps initialize downstream TODS tasks and significantly im-

proves the overall effectiveness of LMs both in direct optimization and high-level evalua-

tion. We found in our experiments that via meta-learning, it is, without teaching explicit

tasks, but showing general language skills we desire our model to acquire, the LM presents

a better initialization and convergence in the out-of-sample data in desired properties in

the intermediate tasks.

Given the sequential decision process of these systems, these gains significantly im-

proved our system evaluated in our real-world scenario. This curriculum of knowledge

transfer not only improves TODS in a general sense but is extremely helpful in contexts

where data acquisition is costly, and there are few available examples.

1.5 Thesis Structure

Chapter 2 provides a background introduction to the literature addressed in this investi-

gation. We start by exploring fundamental concepts in deep learning and NLP. Then, we
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explore studies on curriculum learning, the main foundation of our research. We present

studies on transfer learning, especially for the sequential case, where we extended the

source-target task framework. Finally, we explore the literature on TODS, the applica-

tion we found results in, and friendly abstractions to illustrate our methodology.

Chapter 3 presents a synthesis of related studies in curriculum, transfer, and multi-

task learning literature. We detail each study and present how it is compared with our

present proposal. We discuss investigations in the TODS literature and studies presenting

a similar proposal to ours, e.g., computer vision and Reinforcement Learning (RL). To the

best of our knowledge, no literature work designed intermediate tasks to improve learning

transferability.

Chapter 4 presents and formalizes our methodology. The CTL approach combines

curriculum learning and sequential transfer learning for a gradual adaptation to the final

task employing intermediate tasks in the learning process. We present a model for formal

analysis of encoded-like tasks and how to derive intermediate datasets from them. We

present a generalized intuition on the CTL approach and apply it to the TODS problem.

Chapter 5 describes the conducted experiments. We isolate and compare our approach

to other known methodologies. We instantiate a task curriculum for TODS by extracting

forum data. We evaluate the CTL in direct optimization capabilities and the high-level

quality of the agent. In our conducted experiments, we measured the results in the

MultiWoZ dataset. We present detailed experimental analyses of language inference and

explain the intuition for the generalization provided by the curriculum.

Chapter 6 reports on our exploration to fully implement the curriculum for a “pizza

ordering agent” real-world setting. We start from the data creation process and finally

implement an end-to-end agent in a Web interface. We briefly present our novel methodol-

ogy for creating 4-level chatbot agents based on the Wizard-of-Oz approach. We evaluate

how our pre-training approach helps to learn when available training examples are scarce.

Finally, Chapter 7 summarizes our contributions regarding the construction of novel

datasets, methodologies, and experimental results. We provide discussions on transformer

abilities, and generalization from our advances reached. We further discuss the findings

and propose future research directions on the open problems observed.
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Chapter 2

Background

This Chapter presents the background literature relevant to understand our proposal.

We introduce fundamental concepts in NLP and Deep Learning, then present essential

concepts central to our proposed solutions.

2.1 Fundamental Concepts

Pre-trained models are the standard approach for inference in complex data (Ruder, 2019).

First, we optimize a model to realize some task in a dataset with several examples; later,

we adapt this trained model to our final task. Fine-tuning technique utilizes a pre-

trained model, a network that considers its parameters adjusted to another source task

as the initialization weights for the objective task. The weights are slightly modified to

adjust for the target task (Howard and Ruder, 2018). With enough labeled data in the

initial task, the neural network can acquire good biases as a starting point for the final

task.

In NLP, a strong approach for a pre-training task is language modeling. Lan-

guage Modeling consists in estimating the conditional probability of an element in

the language given the previous context. For example, in a word form, we estimate

P (wn|wn−1, wn−2, ...). For neural networks, we approach this by minimizing

LML = −
∑

n

log p¹(wn|w<n).

When neural models estimate conditional probabilities, they learn deep language patterns

suitable for several tasks in NLP (Brown et al., 2020).

When dealing with variable-length input-output sentences, representing the running

information in a fixed-size hidden state allows better semantic derivations of the model.

Encoder-Decoder architectures consist of the following: (i) an encoder model that

compresses the input sentence in an intermediate fixed-length representation; and (ii)

a decoder model that uses this compressed information to reconstruct the output sen-

tence (Cho et al., 2014). In this process, we force the model to learn a simplified deep

representation of the running data.

The Attention Mechanism improves intermediate representations by allowing vari-
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able intermediate states to attend to farther points, so the model could search for im-

portant semantics in the entire sentence and construct meaningful relations between the

sequential input (Bahdanau et al., 2015). Later, Vaswani et al. (2017) proposed to create

a model entirely based on attention blocks, named Transformer. Instead of using re-

current architectures, which suffer from vanishing gradients and optimization problems,

they used a full attention model composed of an encoder-decoder that can attend to past

or forward words even wider than previous architectures.

GPT-2 uses a causal approach for language modeling (Radford et al., 2019) to exploit

only the Decoder block of the transformer. The Causal Language Modeling approach

predicts the n-th token based on the previous n − 1 tokens sequentially. For efficiency,

in causal language modeling, all tokens are provided simultaneously. Still, each token

in the sequence has no access to the last tokens, so it could not use this information

to predict, enabling parallel training without overfitting. This model trained for causal

language modeling could be used auto-regressively for Natural Language Generation.

Given a predefined context, a language generation task synthesizes a sequence of words

with contextual meaning and correct grammatical construction. LMs, through context-

sensitive auto-regression, could infer sequences of texts with a meaningful response by

maximizing the likelihood of the desired task.

When scaled, causal LMs starts to learn many non-trivial properties of language,

acquiring the ability to few-shot in a myriad NLP tasks. The Few-Shot Learning

setting asks a model to predict some unknown task given a few examples. Like humans

do by demonstration, the model should only guess the answer given its prompted text,

without any gradient updates (Brown et al., 2020; Wang et al., 2020).

While LMs are extremely useful in NLP, and specifically in conversational environ-

ments, training deep models is not an easy task, as this dissertation addresses. The

following sections present concepts explored in this investigation that allow improving the

training of LMs, and we explore using them as conversational agents that help customers

solve tasks.

2.2 Curriculum Learning

The history of AI is heavily inspired by human learning. Naturally, several pedagogical

principles are inherited from this literature. First, exploited in animal training, by the

name of shaping (Skinner, 1958), the idea of presenting more complex tasks gradually

positively impacts learning. Designing a curriculum to teach humans demonstrated many

benefits in the learning process (Dansereau, 1978). By presenting a curriculum, the learn-

ers can focus on acquiring basic skills previously and then use these skills to learn more

advanced concepts. In the case of language acquisition, posing problems as tasks and or-

der by their complexity demonstrates a huge improvement in language teaching (Nunan,

1991).

This approach for training NNs could be interpreted as a continuation method in

optimization literature (Bengio et al., 2009). Remarking that complex instances have

nosier optimization surfaces, more simple examples are easier to find the global optimum
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and somehow could describe the global problem that is attempting to be optimized.

Considering auto-regressive language modeling sentences from corpora with cross-

entropy as cost functions C¼(¹), where C0 is easily optimized, and C1 is our target. We

can optimize for C0(¹) and gradually increase ¼ constraining ¹ to the minimum of C¼(¹).

As in Bengio et al. (2009), we can sort (or schedule) the training examples given some

complexity measure H; usually entropy, such that for a given distribution of sentences

Q¼, we have:

H(Q¼) < H(Q¼+ϵ) ∀ϵ > 0 (2.1)

and the sorting weight for each sentence z is given by

W¼(z) ≤ W¼+ϵ(z) ∀z, ∀ϵ > 0. (2.2)

Elman Elman (1993) was the first to address the problem of gradually learning more

advanced grammar in NNs. His work used a char-level Recurrent NN, and later formalized

by Bengio et al. Bengio et al. (2009) by the name of curriculum learning. Many studies

later explored this curriculum approach Soviany et al. (2022). In RL literature, we have

examples proposing the creation of intermediate tasks for smoothing learning the final

task Narvekar et al. (2016); Foglino and Leonetti (2019). Examples in computer vision

demonstrate intermediate tasks introduced to help the learner acquire abstractions for

the final task Pentina et al. (2015); Soviany et al. (2021).

Improving the initialization point and convergence path is a general procedure for

better optimizing models. The next section presents the transfer learning method for

better convergence.

2.3 Transfer Learning

Using additional data for learning a target task is a central aspect of modern deep learning,

as it helps improve the model bias. There are two main approaches for transfer learning,

multi-task learning, where the additional tasks help learn some aspects of the target task,

and sequential transfer learning, where the model is trained on a task and later fine-tuned

in another task. The first task also helps in the target task but is more general than the

target task.

The first study to propose sequential transfer learning dates from 1976 Bozinovski and

Fulgosi (1976). In the context of NLP, it is pretty recent. Radford et al. Radford et al.

(2017) proposed to predict the next word with an LSTM model, which presented a good

initialization for sentiment analysis. Then, ULMFiT from Howard and Ruder Howard

and Ruder (2018) proposed to use language modeling as the source task and fine-tune it

to various tasks with successful results. Since then, the standard approach for almost any

task in NLP has been to fine-tune a huge pre-trained LM in the specific target task to

archive good results.

Using the enormous generalization ability that pre-trained LMs had to other NLP

tasks, Radford et al. proposed GPT-2 Radford et al. (2019). It uses the decoder of a
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transformer architecture to train an auto-regressive causal LM. This architecture learned

next-word prediction on a vast data set. Several language-generation tasks, like text

summarization and response generation, were improved by fine-tuning this pre-trained

model. BERT Devlin et al. (2019), unlike GPT, uses an Masked LM applied to the

encoder part of the transformer and used the initial sequence token (<CLS>) to perform a

classification task. BERT pre-training consists of a multi-task objective. The pre-trained

BERT got state-of-the-art results in natural language inference, named entity recognition,

and question-answering tasks.

T5 approached multi-task learning by presenting all problems as a text-to-text infer-

ence Raffel et al. (2020), where the prefix of the input determines which task the model

should perform. For example, to translate a sentence from English to German, we present

the following input to the model: “Translate English to German: That is good”. With this

setting, the authors of T5 applied the original transformer architecture to several NLP

tasks without any modification, allowing massive training on many simultaneous tasks

that allowed T5 to score on top of many benchmarks.

Those models present an exciting property. Researchers executed other out-of-domain

tasks with few or no training data examples with reasonable precision. A great example

of this capacity is the GPT-3 model Brown et al. (2020), a decoder architecture with

175 billion parameters. Without fine-tuning to target data and performing a few-shot

with no gradient updates, it could improve over previous state-of-the-art models in more

than 10 points in accuracy for question-answering tasks, where previous models had an

accuracy with no difference of random chance Hendrycks et al. (2021a). Another observed

phenomenon for these large models was scaling laws. As we increase the model size,

dataset size, and amount of computation used for training, the effectiveness improves

continuously by a power-law Kaplan et al. (2020); Henighan et al. (2020).

These large models’ great generalization, transferability, and scaling properties boosted

the results in several NLP applications. In the following, we present the advantages of

LM in TODS.

2.4 Task-Oriented Dialog Systems

TODS are grouped in two methodologies: pipeline architectures and end-to-end architec-

tures Zhang et al. (2020d). Pipelines manage the dialog through a series of components

and decision steps that, in the end, produces actions and responses for the given utterance

and context. These components commonly are Belief State Tracking, Policy Optimiza-

tion, and Response Generation (cf. Figure 2.1a). On the order hand, the end-to-end

architecture has a single model that performs these three functionalities internally (cf.

Figure 2.1b).

Dialog State Tracking (DST) aims at each step to estimate the intents given last

and previous user’s messages. These intents are modeled similarly to a classification

task in which each utterance belongs to a known business issue. In a second level, each

business intent has information slots that should be filled to complete a task Mrkšić et al.

(2016). Similar to when you ask for a restaurant, the price range and the type of food are



23

Dialogue
Management

Belief State
Tracking

Response
Generation
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(b) End-to-End Architecture.

Figure 2.1: Taxonomy for Task-Oriented dialog systems organization.

examples of information that should be filled in to return restaurant options. In Zhang

et al. (2020d), they classify slot filling as free-form or fixed vocabulary; free-form consists

of predicting the intent given a selected range in the user’s message, for fixed vocabulary

aims to classify a message given a previous vocabulary.

Dialog Policy (DP) is similar to the concept in reinforcement learning literature. It

aims to decide which action the system should take given the actual state and belief Zhang

et al. (2019). Several techniques are applied to design and optimize policies, supervised

learning, simulations, and online reinforcement learning. Given the high costs of real-world

data, studies have addressed this problem through user simulation dialogues Schatzmann

et al. (2007); Li et al. (2016); Shi et al. (2019).

The Response Generation (RG) module comes in two forms: response selection, given

a list of predefined responses, should return the more suitable response to the user. The

second method, Natural Language Generation (NLG), synthesizes a unique response for

this combination of knowledge, given the question, context, and previous experience. The

NLG approach often applies a LM trained on large corpora to induce a conditioned se-

quential response. Although the NLG alternative prompts a better experience for the user

Foster (2019), it needs large amounts of textual data for high-quality response generation

Radford et al. (2019); in specific contexts, like oriented dialogues, this data is a scarce

resource Huang et al. (2019).

Pipeline methods produce complex models that need many engineering solutions to

address business specificities. As each module operates standalone, an improvement in

a single module does not necessarily translate into a better improvement for the whole

system Gao et al. (2018). In online environments, each module’s incorrect inference

propagates the error to subsequent ones Liu and Lane (2018).

The end-to-end architecture, inspired by multi-tasking NLP approaches (Hosseini-Asl

et al., 2020), applies a single architecture to solve the TODS task. As input, it first gets

the user utterance (and previous context) and models it as a sequence-to-sequence prob-

lem. The output is a sequence containing the belief state, system action, and generated

response, often done by maximizing the likelihood of previous dialog examples. Compared

to the pipeline method, the end-to-end can handle long dialogues through modern Trans-

formers implementations Tay et al. (2021). Language modeling has, in general, better

generalization Raffel et al. (2020). The last aspect to notice is that as the entire task is

encoded in the output sequence, the optimization of this modeling advances the whole

system’s operation.
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The first approach to solve TODS through end-to-end modeling was proposed by Wen

et al. Wen et al. (2017). Their work modeled the problem as a sequence-to-sequence

prediction and delexicalized the text to reduce language variability. Compared to previ-

ous models, this modeling enables the architecture to generalize to any domain without

needing handcrafted modules. This network architecture uses RNNs for encoding a latent

representation of the dialog; and has many blocks, each dealing with a part of the dialog.

Later, other proposals improved on these basic ideas. For instance: memory networks

Bordes et al. (2017); multi-task learning and reinforcement learning Liu and Lane (2018),

and multi-hop attention mechanisms Madotto et al. (2018).

Schuster et al. Schuster et al. (2019) proposed using attention mechanisms as part of

the architecture and cross-language techniques for transfer learning. Zhang et al. Zhang

et al. (2020b) suggested a technique of data augmented based on recurring states of the

dialog. It uses attention mechanisms using pre-trained word embedding as initialization.

Zhang et al. Zhang et al. (2020c) proposed a pre-trained model in Reddit and Twitter

conversations as a response generation alternative.

Peng (2020) Peng et al. (2020) used a pre-trained GPT-2 to decode the objective by

predicting the belief state, database state, and response. Hosseini et al. Hosseini-Asl

et al. (2020) developed the SimpleTOD, improving the previous work by adding a system

action to the decode objective. This encapsulated the states by a token, significantly

improving TODS in the MultiWoZ dataset. Based on SimpleTOD, Yang et al. Yang et al.

(2020) trained the GPT-2 at a session level instead of the turn level used in SimpleTOD,

improving the overall accuracy of the UBAR. SUMBT+LaRL Lee et al. (2020) and LAVA

Lubis et al. (2020) applied reinforcement learning for the response generation step. DoTS

Jeon and Lee (2021) used state tracking and only the current context to reduce memory

consumption and maintain good results. Liu et al. Liu et al. (2021a) used a clever

decoding technique that generates more specific responses.

2.5 Synthesis

In this Chapter, we presented the building blocks and key concepts that our investigation

relies on. We first explored the curriculum learning literature, which consists in sorting

instances of training examples concerning some measure of complexity. This approach

allows a smoother version of the original problem to be optimized earlier. Later, the

harder ones are optimized with a better starting point not to be stuck in local optima

and arrive at global optima.

The transfer learning literature focuses on using auxiliary learning. Sometimes using

more information from the same target task or another completely different task helps

acquire the right bias for the target task. In the case of NLP, most studies adopt language

modeling as the source task. By the distribution hypothesis, good representations are

learned for every word in the vocabulary, so the target task could use this rich information

and quickly adapt to a new task.

We introduced current approaches in the field of TODS describing belief tracking for

identifying user intent, dialog policy (management) to choose which action to take, and
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response generation to return textual feedback. State-of-the-art methods use end-to-end

architectures to reason over all components for better overall effectiveness. Lately, they

encoded the problem in a sequence-to-sequence task to enable LMs to solve this using its

boosted NLP skills.

In the next chapter, we explore related work to discuss and understand the latest

studies conducted in the literature that resembles our proposal. We review studies to

demonstrate how our work differs from existing literature.
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Chapter 3

Related Work

In this chapter, we discuss transfer learning and curriculum learning components in the

context of LM, TODS, Computer Vision, and RL. We describe how using knowledge

from a different distribution can help the learning process; and how ordering examples

can produce a smoother optimization. We relate how curriculum and transfer learning

are a prologue to our solution.

3.1 Curriculum Learning

In NLP, curriculum learning was initially proposed as a criterion for sorting sentences

given their vocabulary frequency (Bengio et al., 2009). It started with a window of 5000

most frequent words, and sentences that have words out of this window were discarded.

The vocabulary is expanded with more than 5000 words, and the same process is repeated

until the entire vocabulary is covered. This procedure allowed the LM to optimize for a

better loss with much more stability than random ordering samples.

Many studies are exploring curriculum in an instance-level (Wang et al., 2021), where

each example presented to the learner respects a complexity order. For a task-level cur-

riculum, fewer studies applied it to improve learning. Pentina et al. (2015) extended the

concept of curriculum for a task level, with a dataset of many feminine shoes; each pair of

shoes having many attributes, the curriculum was sorted based on the intuitive difficulty

of classifying the attribute. It first started by classifying if the shoes were shiny and

continuously evolved for harder classifications, like if the shoes had high heels, and later

if it was formal.

We found a few examples of studies exploring curriculum at a task level. In the RL

literature, which is heavily inspired by pedagogical principles, authors have explored the

usage of curriculum for learning agents. Narvekar et al. (2016) applied a curriculum for

learning to play chess. They got the data from the same generating process and posed

easier to hard versions of QuickChess. With this setting, the loss curve was better in its

trajectory compared to no curriculum.

Fang et al. (2019) used a curriculum for hand manipulation, where the robot’s final

achievement was to manipulate a pen; as an intermediate task, it learned to handle easier

objects, like blocks and eggs. Foglino and Leonetti (2019) increased the environment’s



27

complexity by extending steps, adding more elements, and changing the environment

objectively. Both approaches showed that the agent does not converge in some cases

without a curriculum, as the optimization surface is too noisy and it gets stuck in local

optima. Another relevant study that used curriculum at a task level was conducted by

Liu et al. (2020). The authors proposed adjusting the task gradually, transforming the

auto-regressive translation to a non-auto-regressive task using the same dataset.

In most recent studies for TODS and NLP in general, the curriculum is applied in

an instance-level (Soviany et al., 2021; Wang et al., 2021) to improve model convergence

and global optima. Most of them are based on pre-trained LMs. For example, Kim et al.

(2021) used a RoBERTa and BART model to predict slot values and generate responses,

respectively. Their study employed a teacher model to score examples (using F1-score

and BLEU) from easier to harder. This ordering was used for fine-tuning both models.

Another example of an instance-based curriculum was proposed by Dai et al. (2021),

which defined a curriculum as the combination of both model difficulty, cross-entropy,

and human-selected metrics, following the “baby steps” scheduling method. As it ex-

plored previous knowledge of the schema, this approach improved DST performance by a

meaningful margin.

A set of studies focused on using the teacher-student setting to guide the curriculum.

Zhu et al. (2021b) combined knowledge distillation and curriculum learning for training

an agent. They used response length, utterance entropy, and coherence as the complexity

measure for scheduling a student’s training over the teacher. They evaluated the method

on open-dialog data where the task consists only of NLG.

Several studies in TODS used a curriculum to control environment complexity when

the problem is set as a RL task. Saito (2018) used a curriculum based on the number

of slots to improve the slot-filling ability. At each new episode, they allowed the model

to train on examples that required more slots. Liu et al. (2021b) used a curriculum to

sort dialogues and automatically computed reward information to measure environment

complexity. This approach boosted the effectiveness of DP learning by a reasonable

margin.

Zhu et al. (2021a) trained a Deep Q-Network agent where the teacher controlled the

environment complexity through a curriculum measuring sizes of informed and required

slots. This approach allowed the learning agent to acquire positive rewards faster than

other compared methods. Zhao et al. (2022) used the return reward from trajectories

in an experience replay grouped by user goal to compute the sample complexity. The

sample complexities were later used to schedule the adaptive training, and this approach

improved DP as it presented more stability in the learning curve.

Table 3.1 shows how our study compares to related literature. Most studies focus

on using curriculum learning at an instance level, improving the optimization process’s

convergence. However, they do not present meaningful gradual examples, as the same

grammar generates them. Studies based on a curriculum by task better resemble our

approach. As a distinct process generates data, we have two advantages: obtain data

from a cheaper source, and pre-trained data allows a more gradual adaptation. Our

proposal addresses an even more profound aspect of the target task because we directly

design easier examples for the target task. These easier examples are not restricted to
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costly data acquisition, e.g., our costs were marginally none.

Table 3.1: Comparative table for Curriculum Learning literature

Work by Instance by Task by Grammar
(Bengio et al., 2009) x
(Pentina et al., 2015) x
(Narvekar et al., 2016) x

(Saito, 2018) x
(Fang et al., 2019) x

(Foglino and Leonetti, 2019) x
(Liu et al., 2020) x
(Liu et al., 2021b) x
(Kim et al., 2021) x
(Dai et al., 2021) x

(Zhu et al., 2021b) x
(Zhao et al., 2022) x

CTL (ours) x x

3.2 Sequential Transfer Learning

In the previous section, we presented a series of studies where most of them were based on

pre-trained LMs on general text, and later they were fine-tuning following a curriculum.

Most modern approaches in general for TODS applied pre-trained LMs, for DST, RG,

DP or end-to-end, like GPT, T5, BART, or BERT. This section presents investigations

that non-trivially explore transfer learning to improve these systems’ effectiveness.

In modern NLP, researchers have transferred knowledge of large deep neural networks

in multiple contexts. A single model is trained once and then adapted to multiple tasks

with varying goals, such as question answering or natural language inference Devlin et al.

(2019). This process is called sequential transfer learning. This transfer learning approach

aims to train a model on one source task and then adopt the model for another final task

Ruder (2019).

Sequential transfer learning consists of two steps: 1) Pre-training: A model is trained

for the source task on a large dataset with high computational costs and long training

times. A common goal of the source task should be very generic and applicable to many

target tasks; 2) Fine-tuning: The pre-trained model is transferred to a downstream (tar-

get) task with much less data. This phase has a shorter period, and the target tasks can

benefit from learned representations from a primarily pre-trained source model.

The literature presents a set of studies that explore “conversation-biased” data for

improving the pre-trained capabilities of LMs. For example, Wu et al. (2020) proposed

pre-trains a BERT model in several TODS datasets, acquiring a considerable improvement

in recognizing entities, intents, and response selection compared to the standard approach,

it is, LMs trained on general text corpora.

Zhang et al. (2020c) proposed pre-trained a GPT-2 architecture in an unsupervised

Reddit corpus in which a conversational bias was presented. With this approach, human
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evaluators often preferred DIALOGPT answers compared to strong baselines for open-

domain response generation.

In Adiwardana et al. (2020), the Meena model was introduced for open-domain multi-

turn conversation. Its main appeal is an unprecedented scale for this kind of model; they

trained a 2.6B parameter model on context-response pairs extracted from social media

with 40B words. With the large-scale effects, Meena had a smaller gap between machine-

generated and human-generated responses compared to other chatbots.

The Thoppilan et al. (2022) work extended Meena by pre-training a super-massive

model near GPT-3 scale (137B). This model was trained on conversational data with a

simple utterance-response setting. In addition to the unsupervised pre-train, the authors

fine-tuned it on annotated data and allowed the model to query external sources to im-

prove safety and factual grounding. With this approach, the model acquired human-like

performance measured by the SSI metric.

For the computer vision domain, Liu and Ji (2021) applied multiple pre-training steps

to learn to classify images. For each pre-training step, the authors explored a differently

labeled dataset, starting with general image labeling, then training on medical images with

many available examples. Finally, they fine-tuned to target data where low examples were

available.

In Table 3.2, we present how our work relates to other works in transfer learning

literature. Many works explored corpora with strong conversational bias. Some of them

presented it in an utterance-response setting; however, none explored particular encoding

to match the grammar of the target task.

Table 3.2: Comparative table on how works explore transfer learning for pre-training
conversational models.

Work Conversational Bias Utterance Response Bias
Wu et al. (2020) x

Zhang et al. (2020c) x
Adiwardana et al. (2020) x
Thoppilan et al. (2022) x

CTL (ours) x x

3.3 Multi-task Learning

In the end-to-end TODS, recent studies focus on architectures for rapid adaptation or

learning with low resources. In Zhang et al. (2020a), the authors proposed applying

semi-supervised learning in a latent representation of the belief state through variational

inference. This could assign pseudo-labels for unlabeled examples, especially for the

MultiWoZ dataset (Budzianowski et al., 2018) only needs half the data set to be annotated

to get the same accuracy.

In Lin et al. (2020), instead of feeding the model with the complete running conver-

sation, they managed a copy mechanism that is responsible for just editing the last belief

state and encoding in a latent representation named Levenshtein belief spans. This latent
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representation improves dialog state tracking and boosts transferability between domains.

With only 20% of data, they matched the performance of strong baselines trained on full

MultiWoZ.

Peng et al. (2020) encoded the entire TODS task into a single concatenated sequence,

similar to Hosseini-Asl et al. (2020); Yang et al. (2020). However, the authors used end

tokens to segment tasks instead of beginning and ending tokens. In addition, the authors

applied multi-task learning in the sequence-to-sequence problem to a contrastive objective.

Each token also should classify as matching or mismatching the current token.

In Kulhánek et al. (2021), in addition to the sequence-to-sequence prediction, they

proposed an auxiliary task for the auto-regressive decoder. The last decoded token also

had to predict the inconsistencies similar to SOLOIST but used a more efficient corruption

strategy. This multi-task learning approach improved the model’s ability to generate

consistent answers.

Su et al. (2021) used multi-task learning to improve the model’s few-shot capabilities.

Instead of applying multiple optimization objectives, their work explored the sequence-

to-sequence multi-task setting as in T5. Another critical factor is that the authors trained

the model on multiple TODS data sets, like MetaLWOZ, CamRest676, and Taskmaster.

Lee (2021) proposed to multi-task learning both span based annotation, through NER

and the sequence-to-sequence TODS task. Empirically, the authors demonstrated that

this auxiliary task improved the model’s ability to recognize belief states.

Cholakov and Kolev (2022) proposed to use an auxiliary task to improve various met-

rics in MultiWoZ. The network uses a T5 architecture for sequence-to-sequence solving the

task and incorporates a binary classifier to select the correct response between distractive

responses, so it is trained with two objectives simultaneously.

In Sun et al. (2022), the authors used the Levenshtein belief to reduce inference time.

They proposed a denoising objective to reduce error propagation and boost belief track-

ing and response generation. The denoising objective is made by two objectives, back

reconstruction, which reconstructs the current dialog state from a latent representation,

and denoising reconstruction, where it has to predict masked tokens from the input.

He et al. (2022) added positional embedding for the role and turn tokens, included a

pre-training objective to semi-supervised data, and implemented a multi-task objective

where they had to predict the dialog act, response selection, minimize the consistency

regularization, and generate a response.

Table 3.3 demonstrates how studies in the literature relate to our work. We filtered

those that better could be related to ours. Generally, studies explored multi-objective

optimization, like editing distance plus binary cross-entropy or additional annotations

in data. For instance, they join TODS data sets created by other groups (MultiWoZ,

Frames, etc.).

3.4 Synthesis

We found that in the curriculum learning literature, no work employs a curriculum at a

dataset level for NLP. In RL and Computer Vision, some studies increased the difficulty
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Table 3.3: Comparative table on how works explore multi-task learning to improve model
prediction in TODS.

Work Multi-Task Optimization Sequence-to-Sequence
Peng et al. (2020) x -

Kulhánek et al. (2021) x -
Su et al. (2021) - Additional Data

Lee (2021) x -
Cholakov and Kolev (2022) x -

Sun et al. (2022) x -
He et al. (2022) x Pre-trained
CTL (ours) - Intermediate Tasks

of the environment to be solved as a means to smooth the target objective.

In the sequential transfer learning literature, earlier attempts employed pre-training on

strong conversational bias instead of default general language. Other more recent studies

encoded open-domain conversation in a simple question-answer setting. We showed no

work explored pre-training tasks directly addressing the grammar in the final TODS task.

In fields like RL and Computer Vision, the authors used multiple steps of transference

but without any formal definition for the ordering. To the best of our knowledge, no

literature for TODS uses a sequence of data sets for gradual adaptation.

For the multi-task learning literature, several studies explored extra annotation. Addi-

tional annotated data that follows the same generating process or optimizing for multiple

objectives. This dependence on over-annotated data does not transfer to other languages,

as they depend on English datasets or do not generalize for domains out of scope.

The next chapter presents our solution for reducing data dependency in a language-

agnostic methodology.
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Chapter 4

Grammar Acquisition with Curricular

Transfer Learning

Our proposed CTL methodology aims to reduce the requirements for annotated data in

training sequence-to-sequence tasks. We manipulate the structure of existing abundant

data, by exploring the present structure in web-data, to create intermediate tasks to

help the target task, which we call “data hacking”. We create data that simulates a

simplified version of the grammar, so our model can acquire properties of this grammar

and later generalize to more complex ones. In this chapter, we present a general theory

for complex grammar acquisition by grammar decomposition and instantiate the solution

for the problem of TODS.

4.1 Framing the Problem

The classical transfer learning framework, using sequential induction, allows us to use out-

of-distribution data from a source task to leverage the knowledge in this data for another

correlated target task. By learning the proper bias for the problem to be modeled, the

learner model can rapidly adapt to the target hypothesis, demanding fewer examples to

acquire a good generalization point in the target domain. In computer vision, transfer

learning is mainly conducted by classification in massive labeled image/video datasets.

In the context of NLP, transfer learning is achieved by pre-training an LM, with self-

supervision, in general texts sampled from indexed pages on the web (Devlin et al., 2019;

Radford et al., 2019; Raffel et al., 2020), generally with miscellaneous and diverse contents.

Although evidence shows that language modeling acquires high generalization capa-

bilities for the out-of-distribution data (Hendrycks et al., 2020), some specialized and

complex tasks that diverge from the general distribution of random web text are less

benefited (Thoppilan et al., 2022). In low-resource contexts, those pre-trained models

tend to overfit or underfit the target task, failing to arrive at a desirable optimum and

presenting poor generalization. Figure 4.1 presents a pre-trained LM failing to arrive in

global optima because it could not seek a good optimization path described by the dashed

line. The lack of data conditions to the wrong path, a continuous line.

Some text sequences have a non-trivial structure to learn (Mielke et al., 2019; Cotterell
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Language Modeling

Parameter Space

Target Task

Figure 4.1: Learning a target task from language modeling. With insufficient data, the
learning process fails to arrive at a global optimum for the target task.

et al., 2018; Zellers et al., 2019; Delétang et al., 2022), or have a distribution of symbols

that is context-dependent (Zhang et al., 2020c; Thoppilan et al., 2022; Lewkowycz et al.,

2022; Cobbe et al., 2021). In the case of TODS, the sequence the task aims to learn

has a conversation-biased distribution of words, many unique marking tokens for the

classification, named entity recognition, and parsing. This drift between pre-training and

fine-tuning could be sub-optimal. Exploring other pre-training data that resemble the

same properties present in the TODS task could significantly improve the learner.

While LMs parameters are overgrowing, motivated by Moore’s and scaling (Hutter,

2021; Hernandez et al., 2021; Bahri et al., 2021; Henighan et al., 2020; Kaplan et al.,

2020) laws, the same does not happen for data annotation. The cost of labeling data does

not drop every 18 months. And the more complex the dataset, the more costly it is to

annotate it (Hendrycks et al., 2021b). Given a fixed budget, fewer examples from this

complex data are usually available. We illustrate this observation in Figure 4.2.

Figure 4.2: Hypothetical supply curve for data complexity versus availability in public
datasets. We observe that datasets with higher complexity are more expensive to obtain.
In general, we have fewer examples to teach a learning agent.
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An alternative to costly datasets is the construction of pseudo-labeled ones, silver-

standard datasets. In these solutions, data are artificially labeled by an automatic pro-

cedure (Jaderberg et al., 2014), reducing the overall cost of annotation. Although it has

derisive costs to build, the level of noise and inaccuracy in such fabricated data could not

benefit the learner, as the generalization from an induced learner tends to decrease.

Meta-learning is a capability that LMs have which enables them to learn many tasks

indirectly and without any specification. By exploring this ability, we can use naturally

annotated data as additional pre-training steps for a more gradual fit to the target task.

In this approach, we have a few available examples (cf. Figure 4.3).

Language Modeling

Parameter Space

Target Task

Intermetiate Task

Figure 4.3: Learning a target task from gradual adaptation. With a better initialization,
the model needs less data to arrive at the global optima.

4.2 Approaching the Solution

We can view the problem of training a model from two perspectives: 1) the learning

perspective, where we aim to obtain the model to acquire the skills to recognize patterns

in data; 2) the optimization aspect, where we aim to reach a model to minimize some

loss function. As posed by (Bengio et al., 2009), a curriculum approach has a beautiful

interpretation for both perspectives. We teach a model in the same way humans learn by

gradually increasing the task’s difficulty. Relying on this curriculum approach, we might

minimize a less noisy version of the original problem to arrive at the global optima, a

continuation method.

In the language acquisition process, the generative grammar theory assumes that a

learner has an innate universal grammar that restricts what kind of grammar a learner

could acquire (White, 2003). The process starts by recognizing simple structures in a

grammar; instead of memorizing, the learner identifies syntactic structures they encounter

and evaluates the feedback in an environment to determine precisely the grammar being

used (Guasti, 2017).

In the early stages, the learner only recognizes simple grammatical structures; the

initial process is crucial for complete grammar acquisition, as many possible candidate

grammars are filtered in this search step (Komarova et al., 2001). This behavior is ex-

plored in formal education. Whereas most of a child’s primary language is obtained
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culturally, without directed control, the process is almost entirely performed in a con-

trolled environment for second language acquisition. In our developed solution, we first

present the learner with basic phrases with simple composition, to later extend for more

complex sentences (Davies, 1980; Guasti, 2017).

Several approaches in AI explore the advantages of posing easier instances of the

problem or addressing sequentially surrogate objectives to achieve more complex goals.

In RL, robotic hand manipulation is an example. Instead of directly training the robot

to put a red box over a blue box, it’s easier first to teach the arm to recognize which color

to pick, then how to hold the box correctly, and later how to place it over the blue box

Manela and Biess (2022). This decomposition of complexity allows agents to learn the

final task faster than directly attempting to perform the final task.

The optimization we described above could be interpreted from two distinct perspec-

tives. The first is the sequential transfer learning approach, in which we have multiple

steps of knowledge transfer. In the second interpretation, we have the curriculum ap-

proach. In this approach, we order more complex instances of the problem. Still, we have

different tasks encoded as sequences, so the ordering respects the task complexity instead

of the instance complexity. For our context, we need to find intermediate tasks that help

the learner acquire the skills needed for the final task.

The original curriculum approach stands for organizing the curriculum by example;

the TODS can organize it at a task level. We introduce an additional task in the en-

coded sequence of each step in the curriculum. The problem of TODS, and other related

conversational problems, presents many sub-tasks that should be addressed to interact

in a dialog. In end-to-end models, the tasks are natural language generation, NER, and

parsing. When we conduct training by task level, we are not restricted to the same data-

generating process as the original problem, as in transfer learning literature, a more broad

task is inserted in the pre-training. So we can explore another source or even fabricate

examples with reduced costs to address each task.

4.3 Proposed Solution

Figure 4.4 illustrates our proposal for the task decomposition of TODS in the context of

pizza ordering. Through a curriculum of sequential transfer learning, we teach the model

to learn concepts essential to the final task being addressed gradually.

The solution starts with a) training a general language model. This model is trained

in massive crawled data from the web. In the case of GPT-2, it uses the Common Crawl

corpus (Radford et al., 2019). This corpus has a corpus ranging from articles, news, blogs,

etc., so many kinds of bias are acquired in this step.

In phase b) the solution trains an intermediate sequence-to-sequence task, artificially

constructed by exploring the structure of online forums. In this step, we are simply

learning conversational biased text, a structure for the task of TODS, and classifying the

discussed topic. We want our model to acquire the abstractions needed for the final task

in an intuitive sense.

In phase c) we use comprehensive annotated data to teach the model more complex
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tasks, like named entity recognition and parsing. This could be performed by manually

annotating data for general purposes or bootstrapping from a specialized annotator model.

Based on this approach, we can transfer the knowledge from the specialized model to our

end-to-end model.

In phase d), we train the model for business-specific usage. For example, in step c),

we train a model for general pizza delivery, and in phase d), we specialize this model for

unique toppings of a specific brand or how to handle payments for a specific region.

a) General 
Language

Random Weights

b) Focused 
Dialog 

Trained Weights Trained Weights

c)
Classification
and NER skills 

Trained Weights

d) Business
Needs 

Trained Weights

Business

Figure 4.4: Detailed view of a proposed curriculum for conversational environments. From
left to right, we start with a general model, and at each step, we gradually adapt the
learning agent by retraining on more specialized tasks. This curriculum of tasks allows
one to learn complex behavior in context with many examples available and rapidly adapt
to domains with low data available.

4.4 Formalization

Here, We informally described our approach. We extend the model of Pan and Yang

(2009) for the multi-sequential case presented in this M.Sc. thesis. First, given a domain

D = {X , P (X)} consisting in a feature space X and a probability distribution P (X),

where X = {x1, x2, ..., xn} ∈ X . Consider a task T = {Y , f(·)}, where Y is the label

space, and f(·) is the objective predictive function, which is not observed but could be

learned from the data, where f : X → Y .

We define transfer learning as, given a source domain DS, a source task TS, and target

domain DT with a target task TT . Transfer learning aims to help improve the learning

of the target predictive function f(·)T in DT using the knowledge in DS and TS, where

DS ̸= DT or TS ̸= TT .

Although most studies in NLP literature apply a single step of sequential transfer

learning, we propose many steps of transference in the CTL. It is a curriculum of trans-

ference, i.e., T = {TS0 , TS1 , ..., TSn
, TT}, where we have n pre-training source tasks TS.

By this approach, the TSk
source task helps optimizing for TSk+1

task, acquiring a bet-

ter generalization for the following task and, consequently, the general curriculum as an
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accumulation of improvements.

This formulation can be interpreted as a curriculum learning approach. Consider the

instances from TSk
as smoothed objectives of TT . The cost function CS0 is easier to

optimize as it does not compass the entire TODS objective, and we have more available

instances in this set. After optimizing for this objective, we gradually increase the task

complexity by passing tasks with more linguistic features to extract from CS0 to CSn
; and

finally CT , fewer instances are presented for more complex sets.

Posing the problem in this manner is similar to a continuation method. Continuation

methods attempt to minimize a cost function C0 that resembles some other target cost

function C1 for some family Cλ(¹) of cost functions. We can easily optimize C0. The

target function is a noisier version of that one. In the language modeling problem, the

cost function we aim to minimize is the cross-entropy for the next word. The ¼ family is

composed of languages with increasingly complex grammar. For the problem addressed

in this investigation, the more complex grammar is composed of simpler grammar learned

through language modeling in previous steps. Extending the Bengio et al. definition

(Bengio et al., 2009), the ¼ factor varies between instances according to each data set.

In the case of auto-regressive language modeling, the optimization is performed by

next token prediction. Suppose a serialized decoding is learned to a specific pattern. In

that case, e.g., the regular grammar of starting and ending fields, adapting to a new

grammar that shares the same pattern, will be more straightforward. Figure 4.5, presents

this observation; the probability of the token to come after <eos_u> is previously learned

in a more manageable task, so the optimization in this phase should only focus on learning

the classification task.

... department <eos_u> <sos_b> [hospital]  #department ... 

Figure 4.5: Auto-regressively decoding of a sentence in MultiWoZ.

Considering that our final task is composed of formal grammar. Suppose another data

source could simulate some derivation nodes in the target grammar without loss in the

global structure, e.g. the first production rule. In that case, we can pose this simpler

version of the grammar as a step in the pre-training curriculum and recursively append

more simplified grammars that simulate previous ones.

We formally call it a curricular transfer learning if, given an ordered set of sequence-to-

sequence tasks T = {TS, TI1 , ..., TIn , TT}, some complexity ordering <C, and some gram-

matical similarity ∼G. Every task in T respects the order

Ta <C Tb ∀a, b : a < b (4.1)

where a and b are indexes for tasks in T and

Ta ∼G Tb ∀a, b. (4.2)
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The main appeal of this method is that more accessible instances of the problem have

a derisive cost to obtain, while final instances have a considerable cost. The artificially

created intermediate tasks should help the LM to meta-learn the final task, like learning

unique tokens to classify, perform a name entity recognition, or generate a response.

We describe the method for complex grammar acquisition in the following manner:

1. Describe the desired grammar formally to be learned, listing the expected types of

text distribution and meta-structure.

2. Find text and structures that can be morphed to simulate this behavior. For the

same kind of word distribution in the environment (formal, conversational, etc.),

some NLP tasks are present in the problem, like classification or NER, etc.

3. Recursively proposes (1) that address the subsequent grammar as another pre-

training step.

In the next chapter, we present how we perform these steps for the case of MultiWoZ.

4.5 Synthesis

A general intuition for creating intermediate tasks is to find textual corpora or data sets

that we can transform into a form that resembles our final grammar. In the next chapter,

we demonstrate how we apply this methodology to improve the optimization and overall

effectiveness of MultiWoZ data. We present a simple curriculum decomposition with a

meta-structure and a single additional task surpassing previous pre-training approaches.
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Chapter 5

Experimental Evaluation

We report on our evaluation to experimentally understand the influences of a curriculum in

a learning strategy. Given the substantial computational costs required by all curriculum

variations, we suppress the detailed exploration by qualitatively analyzing the resulting

models.

We evaluate the CTL in a standard way, using the entire dataset and in a low-resource

setting, varying the fraction of data for training. We observe that the loss curve for

our approach is always better compared to other pre-training, and overall we obtained

improved metrics for BLEU, INFORM, and SUCCESS.

5.1 Objectives

A complete curriculum for TODS might involve several pre-training steps. For this ex-

periment, we analyze a single intermediate training step. We proposed to compare the

insertion of a pre-training step that simulates TODS data but is obtained in an unsu-

pervised way. This intermediate task is performed for acquiring regular grammar, and

a simple classification task, where we try to classify which topic is being discussed to

simulate intent detection. We compare our experiments with a standard language model,

and a curriculum with just a conversation distribution, without any particular encoding.

5.2 Data sets

For the conversation-oriented curriculum, we consider a diverse corpus for the first stage of

learning to meta-learn general language skills; a corpus that simulates the conversational

patterns and distributions of words; and finally, the data set for the target task.

We use the following text data sets as pre-training steps:

1. Common Crawl (General Language Modeling) To reduce computational costs

for the experiments, we count with HuggingFace1 for downloading the pre-trained

weights for GPT-2 architecture. This dataset was proposed as the unsupervised

1https://huggingface.co/



40

auto-regressive pre-train for the proposed architecture Radford et al. (2019). Al-

though we do not train the GPT-2 from scratch in this dataset, we describe it here

to illustrate the CTL approach.

2. Tripadvisor (dialog Modeling) We built this data set by crawling major cities

discussed in Tripadvisor2 (Paris, Rome, Istanbul, Barcelona, Madrid, Amsterdam,

Lisbon, and London), for each thread we encoded the thread creator with user

utterance tokens, the city as the belief tokens, and thread replies as system response.

We replicate each pseudo-user utterance for each pseudo-system response. The

crawler is available in Github3.

3. Multi-Domain Wizard-of-Oz (General Task-Oriented Modeling) The Mul-

tiWOZ is a general domain task-oriented dialogues data set collected in a Wizard-

of-Oz setting. It comprises 10000 dialogues in domains like ‘restaurant,’ ‘train,’ and

‘hotel booking.’ We selected the latest official data set for our evaluation, version

2.2.

5.3 Architecture

The architecture used for modeling TODS is the autoregressive GPT-2 Radford et al.

(2019) based on the decoder module of a Transformer, replicating the same setting in

UBAR Yang et al. (2020). Given a sentence of n tokens in I, we assign for each token

an embedding vector in R
d, and a sinusoidal positional embedding vector in R

d given

his index. Each embedding and respective positional embedding are summed up and

stacked in a matrix X0 ∈ R
n×d. Then, we process this X0 matrix by applying a layer

normalization resulting in X0 and then applying multi-head attention in the normalized

matrix given in Equation 5.1, outputting M0.

MultiHead(X, k) = [h1; ...;hk]Wo

where hj = Attention(XW 1
j , XW 2

j , XW 3
j )

and

Attention(X, Y, Z) = softmax

(

mask(XY ¦)√
d

)

Z

(5.1)

Now, we sum the normalized matrix with the transformed matrix H0 = X0+M0, and

apply a layer normalization, getting H0, now we apply a feed-forward block with a ReLU

activation and sum to H0 as a residual, getting X1 = FF(H0) +H0.

We repeat the above procedure l times until we arrive at the Xl. Finally, we apply the

last layer normalization and multiply by an W n×vocab, given that vocab is the vocabulary

size, where we apply a softmax function. Optimizing this with cross-entropy loss, we

could maximize the likelihood of predicting the next word given the previous sequence of

words. Figure 5.1 presents the representation of this network.

2https://www.tripadvisor.com/
3https://github.com/jadermcs/tripadvisor-dialogues
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Figure 5.1: GPT-2 architecture (Radford et al., 2019)

5.4 Procedure

To formally illustrate the process of task decomposition, we analyze the case of MultiWoZ

encoded as a sequence-to-sequence grammar as in UBAR (Yang et al., 2020). We present

the target grammar we aim to learn, how to decompose it into more straightforward tasks,

and how to generate intermediate data that resembles the same process as TODS.

We evaluate our methodology under the UBAR setting interacting with MultiWoZ.

First, we start with a user prompting an utterance to the system. Then, the system

identifies the belief state and queries some external knowledge with this information,

then with a response from a database or API, which is turned into an action, it generates

a delexicalized response to the user, a response where slot values are replaced with place

holders, these placeholders in the response is then replaced with the lexicalized information

extracted from the database. Figure 5.2 presents a high-level view of this interaction.

To our LM learn how to solve this problem, we need to encode this problem as a

sequence-to-sequence prediction problem. To this end, we use the special <sos_X>4 tokens.

The example below represents the first interaction in the dialog as in Figure 5.2, encoded

as a sequence-to-sequence problem.

<sos_u>I am looking for a cheap restaurant in the center of

the city.<eos_u> <sos_b> [restaurant] pricerange cheap area

centre<eos_b><sos_a> [inform] choice [request] food <eos_a>

<sos_r> There are [value_count] restaurants that meet your

4where X ∈ u, b, a, r for the start and end of string in utterance, belief, action, and response



42

criteria. What type of food do you like? <eos_r> <sos_u>...

First, we formalize the target grammar to acquire and enlist known properties of this

grammar. The training example is the concatenation of the entire dialog session, so the

language of this grammar could be any form in L = {ϵ, UBAR,UBARUBAR, ...}. Table

5.1 illustrates the grammar our model aims to acquire.

Table 5.1: Regular grammar for TODS encoding in a language modeling problem. We
have that string w in U is sampled from u(w) an utterance distribution. The string w in
R is sampled from a response distribution of words r(w). <se*> are delimiter tokens for
each segment.

S → UBARS | ϵ
U → <su>wu ∼ u(wu)<eu>
B → <sb>k ¢ Kb; i ¢ Ib<eb>
A → <sa>k ¢ Ka; i ¢ Ia<ea>
R → <sr>wr ∼ r(wr)<er>

Nodes U and R follow a dialog act distribution (Traum and Hinkelman, 1992; Bunt,

2006), and the literature presents many examples of corpora presenting this utterance-

response structure. In the B node, we have a classification task. It is, the model should

classify an intent given an utterance. A possible approach to simulate this behavior is

assigning a pseudo-label for this utterance-response pair. In A we want our model to learn

a policy optimization (Williams et al., 2016).

If we simulate nodes U , B, and R we have an excellent candidate grammar for an inter-

mediate task. Table 5.2 illustrates our fabricated grammar that simulates an intermediate

transfer step.

Table 5.2: Regular grammar for simulating the distribution of the target grammar. In Kc

are the set of possible classes the model should classify for a given utterance. In red are
removed elements, and in blue edited elements

S → UBARS | ϵ
U → <su>wu ∼ u(wu)<eu>
B → <sb>k ¢ Kc; i ¢ Ib<eb>
A → <sa>k ¢ Ka; i ¢ Ia<ea>
R → <sr>wr ∼ r(wr)<er>

We use the data obtained from online forums to simulate this simplified grammar.

First, we set the message that creates the thread as an utterance and the topic presented

as the classification problem. We put an empty string for action and replicate this pattern

for every message replying to the original thread message as response. Finally, we append

the unique tokens to encode it as shown below:

<sos_u>i’ll be in amsterdam for a week , what would be the most

reliable sim card for data usage ?<eos_u><sos_b>amsterdam north

holland province<eos_b><sos_a> <eos_a><sos_r>take your pick .

vodafone and tmobile for starters . not all those who wander

are lost<eos_r>
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We evaluate the introduction of this step in the curriculum and compare it with

previous approaches. Below we list three different curriculum strategies for the Multi-

WoZ data:

1. The first curriculum named “gpt-*/multiwoz,” begins by inheriting the weights from

a GPT-2 pre-trained in data set 1 from HuggingFace.

2. The second curriculum named “gpt-*/noencode/multiwoz,” begins by inheriting the

weights from a GPT-2 pre-trained in data set 1 from HuggingFace. We train it

on TripAdvisor data, with the random ordering of the messages and no special

encoding.

3. The third curriculum named “gpt-*/encode/multiwoz,” begins by inheriting the

weights from a GPT-2 pre-trained in data set 1 from HuggingFace. We train it

on TripAdvisor data encoded as TODS, shown below.

For both curricula that include TripAdvisor, we pre-process using the same script for

Multi-WoZ.

Figure 5.3 presents the curriculum and how we encode each instance. We shuffle all

messages and merge them to replicate the regular recursion. In the last phase, we train

on MultiWoZ without any data augmentation.

We train this architecture in the same strategy as Yang et al. (2020), where all the

dialog session is presented to the model in a single sequence. The training sequence

should contain at most 512 tokens, sessions with more than this maximum length we split

into the following sequence. For the inference stage, we decode tokens until we reach an

end-of-response token. We train on the pseudo-tods with the hyper-parameters described

in Table 5.3. For all other hyper-parameters, we keep the default configuration from HF

Trainer. We optimize small, medium, and large for 60k, 120k, and 240k steps, respectively,

and we set these values to match our computational constraints.

Given the restrictions of GPU memory, a Quadro RTX 6000 with 24GB, we trained

the small model with a batch size of 8, the medium with 4, and the large with 2. We

used a gradient accumulation for all sizes, to sum up to 32 examples for the update. The

training time for TripAdvisor data was 1 week, 2 weeks, and 1 month for each size, and

Multiwoz was 9 hours, 2 days, and 1 week.

Parameter Value
Learning Rate 2e-5
Weight Decay 0.1
Token Length 512

Adam ´1 0.9
Adam ´2 0.999
Adam ϵ 1e-8

Table 5.3: Hyper-parameters for training GPT-2.

We observe significant improvements from this pre-training approach. Finally, with

the same configurations described in Table 5.3, we train the model on MultiWoZ data
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until convergence, using early stopping with the tolerance of five steps. The evaluations

are performed without belief state or database interaction. We only generate responses

based on belief state and system action.

5.5 Metrics

We evaluate the proposed curriculum under two perspectives: (i) the running loss for

each curriculum variation; and (ii) the standard metrics for the MultiWoZ data sets,

computed by Nekvinda and Dušek (2021) library. The first analysis investigates how the

initialization proposed by each curriculum helps in the optimization process for minimizing

the empirical loss for the target grammar. The second analysis measure, given each

curriculum, how this improved minimization translates into better agent performance for

the TODS task. In this step, we compute using BLUE, INFORM, and SUCCESS.

In the running loss, we optimize for the cross-entropy loss over the next token with

teacher enforcing. For each token in the sentence of size N , we compute the loss between

sentence pairs x, y as described in the equation below,

ℓ(x, y) = L = {l1, . . . , lN}¦, ln = −
C
∑

c=1

wc log
exp(xn,c)

∑C
i=1 exp(xn,i)

yn,c (5.2)

where C is the vocabulary size, and xn,c is the difference in softmax for predicted token

from xn and real yn.

For the high-level metrics, BLEU, INFORM, and SUCCESS, we use the Nekvinda and Dušek

(2021) implementation. The BLEU, a metric originally proposed for machine-translation

that decomposes sentences in n-grams to measure the fluency of original and machine-

generated sentences. As in Papineni et al. (2002), we compute BLEU by first taking the

modified precision score pn as

pn(Ŝ;S) :=

∑M
i=1

∑

s∈Gn(ŷ(i))
min(C(s, ŷ(i)),maxy∈Si

C(s, y))
∑M

i=1

∑

s∈Gn(ŷ(i))
C(s, ŷ(i))

(5.3)

where C(s, y) is the count of n-substrings in y that appear in ŷ. And now, we compute

the brevity penalty as

BP(Ŝ;S) := e−(r/c−1)+ (5.4)

where c is the candidate string length, r is the effective reference corpus length and

(r/c− 1)+ = max(0, r/c− 1) is the positive part of r/c− 1. So we have

BLEUw(Ŝ;S) := BP(Ŝ;S) · exp
(

∞
∑

n=1

wn ln pn(Ŝ;S)

)

. (5.5)

The INFORM metric measures if the last offered entity matches the goal constraints given

the delexicalized version of the response. The SUCCESS rate measures the proportion of

entirely successful dialogues. It is, given provided constraints for the task at the end of

the dialogue, every utterance, slot, and action is precisely selected in each turn. These
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metrics are measured in the test set and held out of training. The MultiWoz data is, by

default, divided into three sets, the train set, the dev (or validation) set, and the test set.

After training on the train set, we evaluate the cross-entropy for 512 tokens in the dev

set, which is held out of training.

5.6 Results

Our evaluation consists of two experimental evaluations, the curriculum convergence time

and optimality. And a direct comparison with the select base methodology (Yang et al.,

2020). For convergence, we vary the model size and evaluate the scalability properties of

the curriculum. In this phase, we do not use any data augmentation techniques. In the

base method, we directly compare standard metrics with the default curriculum using the

UBAR training script, which also applies the Multi-Action Data Augmentation technique.

We also compare the training under low-resource settings, training on 5, 10, 20, and 50%

of the data, to evaluate the generalization capabilities provided by the curriculum.

We trained the curriculum targeting the MultiWoZ as described in previous sections

for all three curriculums. In Figure 5.4, we present the loss for the validation split over

time. We can observe that the curriculum with the pseudo-tods task has a significantly

better starting point for the MultiWoZ task and converges to a lower loss than the other

curriculums. For the small architecture, it converges faster.

In Table 5.4, we present the TODS metrics computed for the test split. We can observe

that the pseudo-tods curriculum performs better than other curricula. The COMBINED score

is given by (INFORM+ SUCCESS) ∗ 0.5 + BLEU.

Table 5.4: Standard metrics for the test split.

Curriculum Model Size BLEU INFORM SUCCESS COMBINED

No 31.3 93.4 90.4 123.2
No-encode Small 31.3 93.3 90.4 123.2

CTL (ours) 31.3 93.6 90.4 123.3
No 31.7 93.2 90.3 123.5

No-encode Medium 31.8 93.3 90.2 123.6
CTL (ours) 31.7 93.5 90.5 123.7

No 31.5 93.3 89.6 123.0
No-encode Large 31.0 93.0 89.3 122.2

CTL (ours) 31.6 93.3 89.9 123.2

The faster adaptation and overall loss observed during training also translated to the

high-level metrics, and the larger the model, the more consistent the gain. Our approach

is also appealing to low-resource settings. We present the evaluation over reduced training

sets in Table 5.5. We vary from 5 to 50% of the training data. We can observe that, in

general, the CTL approach produces better BLEU, and in the case of larger models, better

INFORM.
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Table 5.5: Standard metrics for the test split in a low-resource setting.

5% 10% 20% 50%
Curriculum Size BLEU INFORM SUCCESS BLEU INFORM SUCCESS BLEU INFORM SUCCESS BLEU INFORM SUCCESS

No 20.0 86.6 66.7 26.0 90.6 80.7 28.5 92.8 88.2 30.7 93.4 89.9
No-encode S 21.7 86.2 72.6 25.3 91.7 82.0 28.2 92.4 84.8 30.5 93.6 90.0

CTL (ours) 22.7 85.3 69.1 26.8 91.4 81.9 28.8 92.3 85.7 30.6 93.3 89.5
No 22.2 82.7 59.0 27.0 92.2 82.7 28.8 92.4 87.2 30.6 93.1 89.9

No-encode M 23.2 87.5 75.0 26.5 92.6 82.6 29.0 92.1 86.8 30.8 93.1 89.4
CTL (ours) 24.2 87.5 72.9 27.3 90.5 81.0 29.0 92.6 87.8 30.9 93.4 89.9

No 24.8 88.7 77.7 27.0 90.9 81.9 29.2 92.2 86.0 30.8 93.2 88.6
No-encode L 23.8 87.2 76.3 26.3 92.2 83.9 29.8 92.4 87.6 30.7 93.3 89.6

CTL (ours) 24.7 91.9 76.5 27.0 92.3 83.4 29.2 92.6 84.7 31.0 93.5 90.0

5.7 Discussion

In the loss analysis during training, we observed that our proposal has a better initializa-

tion for all model sizes and converges to a lower minimum in the validation data concerning

another pre-training approach. This loss reduction also translates for the high-level met-

rics, BLEU, INFORM, and SUCCESS, which in most cases, the CTL presents a better score

than known alternatives.

For the low-resource setting, we observed that our BLEU is better or equivalent to

other approaches for every configuration. Other metrics seem to oscillate. Our proposal

resembles the response generation aspect with high quality. It does not encompass the

NER skills required in MultiWoZ, so it could lose some generality during the fine-tuning

phase.

To investigate the generalization capabilities of the curriculum, we explored an as-

sisted zero-shot classification for the topic under discussion. Without ever being trained

to classify the topic “Rio de Janeiro,” we explored if our model could complete the clas-

sification only by passing rio as the initial token. Figure 5.5 and Figure 5.6 show the

auto-regressive generated belief and response for a sentence out of the training data for

medium and large models, respectively.

Although the small model deviates a lot in syntax and semantics, the large model

correctly infers our expected output. This example is evidence of the robust capabilities

of LMs. This reveals that the curriculum guides the nature of our generating process.

While we only explored a single step in the curriculum, with encoding and classifica-

tion, we can further improve for NER and parsing, which could result in higher gains for

the TODS metrics.

5.8 Synthesis

In this chapter, we investigated our CTL approach through a low-level and high-level

perspective. The cross-entropy presented a better initialization and arrived at better

optima. The chatbot metrics improved in the final evaluation, so we observed a general

gain for low- and high-level analysis through this methodology.

There are many possible configurations of the curriculum. We narrowed and better

controlled our analysis by varying the classification task. This would lead to increased

usage in computational costs, which would exceed our budget. To counter this limitation
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in analysis, we proposed to qualitatively analyze the generalization capabilities by care-

fully prompting our model with out-of-scope queries, which presented a strong ability to

infer tokens in our grammar.

We believe this behavior is possible by the meta-learning skill in the massive interme-

diate data, which our curriculum hugely benefits.
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I am looking for a
cheap restaurant in

the center of the city.

There are 6 restaurants
that meet your criteria.

What type of food do you
like?

Domain: restaurant
Price range: cheap
Area: center 

Response

There are [value_count]
restaurants that meet

your criteria. What type of
food do you like?

Belief State

Generate

inform choice
request food 

System Act

User UBAR Query

SELECT count(*)
FROM restaurant

WHERE
pricerange=cheap
AND area=center

SQL Query

value_count = 6

Query Result

No, I am not picky as
long as the prices are

low.

Domain: restaurant
Price range: cheap
Area: center
Food: don't care 

[name] is a [food] in the
[area] of town. Would you

like me to book that for
you?

Belief State

Generate

inform name,
inform food, inform area, 

offer booking 

System Act

SELECT * FROM
restaurant WHERE
pricerange=cheap
AND area=center

SQL Query

name=Papito's
food=italian
area=center 

Query Result

Papito's is a italian in the
center of town. Would

you like me to book that
for you?

Response

Yes please, for 8
people at 18:30 on

Tuesday.

Figure 5.2: dialog interaction in the UBAR framework. The user starts a dialog, then
UBAR infers intents and slot values for utterance. This belief state is then parsed for
communicating with external knowledge. Then the resultant query is translated into a
system action which UBAR transcribes as a response to the user.
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CommonCrawl TripAdvisor MultiWoZ

Random Text Conversation and Topic 
Oriented Task-Oriented Dialogue

 

skepticism of Hume regarding
knowledge of the relation of
cause and effect and that of
René Descartes regarding
knowledge of the external ... 

<sos_u> i’ll be in amsterdam for a week
, what would be the most  reliable sim
card for data usage ? <eos_u><sos_b>
amsterdam north holland province<eos_b>
<sos_a><eos_a>sos_r> take your pick
.  vodafone and tmobile for starters .
not all those who wander  are lost
<eos_r>

<sos_u> i am looking for the
addenbrookes hospital with hepatology
department <eos_u> <sos_b> [hospital] 
#department hepatology <eos_b> <sos_a>
[hospital-inform] phone 01223217712
<eos_a> <sos_r>the telephone number is
[phone]<eos_r> 

Figure 5.3: Curriculum for MultiWoZ experiments.
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Figure 5.4: Loss in validation split for each curriculum configuration with varying model
size.

Figure 5.5: Generalization capabilities of the curriculum for GPT2 (small).

Figure 5.6: Generalization capabilities of the curriculum for GPT2 (large).
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Chapter 6

Case Study

In this chapter, we present our solution on applying the CTL methodology in a simulated

“real-world” scenario. We illustrate the process from the ground, starting from posing the

problem, generating the data, training, and evaluating the model. This case evaluation

enlighted several other aspects that should be considered when designing a real-world

solution.

6.1 Context

This research was in a wider context of a project whose initiative was to research and

develop new state-of-the-art tools for chatbot creation. Ci&T sponsored the project to

enable the deployment of high-quality Portuguese-speaking chatbots and further improve

online business in Brazil. The group comprised undergraduate and graduate students

from UNICAMP. The research was carried out in many aspects for a complete chatbot

creation, ranging from data generation and annotation. We studied LMs for fully end-to-

end conversations.

Chatbots are an omnipresent technology in several companies in Brazil. However,

they usually still use first-generation chatbots. This considers predefined menus, and the

navigation is performed by the input of numerical indexes that the client wants to follow.

This technology is restricted and tends not to provide a good user experience. The object

of the study was to advance a more flexible and humanized chatbot solution.

The academy provides several state-of-the-art solutions for conversational agents based

entirely on natural dialogs. However, there is still a gap between well-founded research

datasets curated and improved by research groups and a dataset generated directly for

a real-world application. Great uncertainty arises when dealing with bleeding-edge tech-

nology.

6.2 Objective

To evaluate our methodology and bridge the gap between research and implementation,

we developed a real-world scenario in the Portuguese language for a complete evaluation

of our methodology. We designed an experiment and implemented a fully functional
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chatbot for pizza ordering. The chatbot has the same objective as a human attendant in

this dialog. It should guide and request the client for the ordering and requires operational

information, like the delivery address and payment method. For deploying an agent with

this purpose, we needed a series of solutions to create a reproducible methodology for the

framework.

After concluding the dataset generation process, we evaluated our curricular method-

ology, which enables us to acquire a conversational agent in a low-resource setting. In

this context, with only a few dozen dialogs, our solution can produce a feasible chatbot.

6.3 Protocol

Stakeholders suggested the scenario for evaluating our methodology in the project. We

considered a common business in Brazil to reflect properties to investigate in a chat-

bot. The pizza ordering problem allows us to explore entity extraction, parsing, Natural

Language Understanding (NLU), and NLG. We could explore a complete scenario with

variations on pizza configuration. Nevertheless, it would only increase the data depen-

dence without contributing to the evaluation. In this sense, we restricted topping and

half separation regarding pizza. We set our scenario in the following way:

A pizza-ordering business has three possible toppings: Pepperoni, Moz-

zarella, and Calabrese. When ordering, the client could choose between a

pizza of one kind of topping or split, half one topping, half the other. The

client could ask for any number of pizzas and combinations. The operational

procedure to deliver the pizza is performed by first asking for the address,

which is used to calculate the delivery fee. Then it should provide the pay-

ment method.

To generate the real-world conversational data, we developed and executed a method-

ology named “Teatro”, which is heavily inspired by the Wizard-of-Oz approach Kelley

(1984). In this framework, a human plays the role of a user, and another plays the role

of an intelligent robot; the user knows that (s)he is speaking with an intelligent machine

and aims to accomplish some task. By attempting to dialog with a machine, the hu-

man behaves more predictably, as it restricts the tone and the conversation model. Our

methodology was composed of the following steps:

1. Schema Modeling

2. Stories Generation

3. Dialog Interaction

4. Annotation

5. Training

6. Test and Improvement
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Figure 6.1 presents the overview of our method. First, we start by designing the schema

in the Schema Modeling phase, which formally describes the lexical center’s aspects of

our conversation. A specialist in the domain lists known previous client intents when a

client appeals to an attendant, the possible slot values in each intent, and how an agent

should act for each kind of scenario. This initial schema, continuously updated, gives us

the bootstrap to formulate possible dialog flows at a high level for Stories Generation,

which is described by a Markov Decision Process (MDP).

Schema Modeling Stories Generation

Schema

Dialog Interaction

AnnotationTrainingTest and
Improvement

Dialogs

MDP

Annotated 
Dialogs

Model

Feedback

Feedback Feedback

Figure 6.1: Diagram for Teatro methodology.

The MDP is now sampled to generate plots of dialogs, in which two connected agents

should play each role, generating natural language dialogs. These dialogs are now anno-

tated for missing intents and slot values for later being used in training a conversational

model. To reduce the costs of annotated data, we proposed the curriculum described in

Figure 6.2. The trained model is now evaluated on offline data and through interactions

in a web interface, which allows us to capture misbehaviors. Finally, we deploy to clients

and keep monitoring for continuous improvement.

BrWaC Adrenaline PizzaOrder

Random Text Conversation and Topic 
Oriented Task-Oriented Dialogue

 

... nomeada classificação, pois
queremos atribuir uma classe ao
vinho. Para que o agente
aprenda... 

<sos_u> qual é atualmente a gpu com
melhor custo beneficio do mercado?
<eos_u><sos_b> hardware  <eos_b><sos_a>
<eos_a>sos_r> recomendo a gtx
1660 <eos_r>

<sos_u> eu gostaria de uma pizza de
calabresa . <eos_u> <sos_b>
[info_pedido]   #topping calabresa
<eos_b> <sos_a> [pergunta_endereco]
<eos_a> <sos_r> qual é o endereçco da
entrega ? <eos_r> 

Figure 6.2: Curriculum adopted for the Case Study experiment.

In the following, we describe how each step was carried out. Note that this is not a

linear flow; the steps could occur in parallel or cycle between one another to improve the

modeling.
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Schema Modeling

The first step into implementing a TODS in a business context is to formalize initial com-

munication means through dialog acts. It models the conversation with clients with topics

of conversation, possible user intents, keywords to track, and how we should respond to

each interaction. We begin by modeling a conversation by clearly defining these concepts:

intents, slot values, and actions. These entities allow us to construct possible dialog flows

and recognize additional needs to be modeled to match essential business needs.

Intents are defined as user intention with an utterance. For example, when the client

says “I want to order a pizza.” or “I would like to buy a pizza”. Although they are not

written with the exact words, they share the same intent, e.g., order_pizza. Slot values

are the specification of user intent. For example, “I want a pizza of pepperoni” in this

context, pepperoni is an important lexical entity we should save for generating an order,

so topping:pepperoni is a slot value that we should save. Actions are what decisions the

system takes given a policy. For example, if the client correctly described the ordering, a

possible action to take is ask_for_delivery_address.

The set of intents, slot values, and actions a conversation could assume, we call it

schema. Designing an adequate schema is fundamental in constructing conversational

data because it allows us to reduce complexity and predict most aspects to implement the

final TODS. A note is to keep the schema as simple as possible. In this manner, we cover

enough of the conversation to correctly perform the task and get a less complex problem

to learn, not to increase data dependency.

To handle basic pizza ordering, we start by constructing an initial schema follow-

ing basic intuition from a client who knows what to expect from this dialog. We first

enable to inform an order with an intent to “inform_order”, a slot value for toppings

“topping:pepperoni”, and an action to get client address “ask_delivery_address”.

Then we model a MDP, described in the next section, for this schema and interactively

update both MDP and schema to match an expected behavior.

By continuously interacting with the dialog MDP and the schema and reviewing real-

world pizza order conversations, we updated until arriving at a flow that could handle

many expected interactions. In Tables 6.1, and 6.2 below, we show the final schema.

Intents Actions

pergunta_sabor, informa_pedido,
confirmar, informa_endereco,

informa_pagamento, agradecimento,
fazer_pedido, confirma_pix,
cumprimenta, altera_pedido,

sem_troco, pergunta_endereco,
informa_valor, pergunta_pagamento,
confirma_pedido, informa_bandeira,

via_pagamento

resposta_sabor, confirma_pedido,
informa_valor, pergunta_endereco,

pergunta_pagamento, informa_tempo,
pergunta_pedido, informa_pix,

como_ajudar, confirma_alteracao,
informa_pagamento, pergunta_precisa_troco,

confirma_pix, informa_pedido,
cumprimenta, confirmar,

pergunta_entrega, pergunta_bandeira,
agradecimento, confirmar,

pergunta_itens

Table 6.1: Possible intents and actions that utterances and responses for user interactions.
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The resulting utterances could be grouped into four groups, general intents for han-

dling greetings, confirmations, and usual phrases. Payment intents to handle payment

information, values, etc. Operational intents to handle delivery addresses, and the last is

Pizza intents to handle toppings, sizes, and models.

Slot Description Type Example
type Pizza format. categorical Inteira, Meia
topping Selected pizza topping. categorical Calabresa, Muçarela, ...
address The address to deliver the pizza. textual Rua Bragança Lote 143
payment Payment method. categorical Pix, Dinheiro, ...

Table 6.2: Proposed schema model for slot values in the problem of pizza ordering.

This simplified schema has just a few slot values compared to other data sets of the

exact nature. We are attempting to explore the complexity of parsing untrivial properties,

like monetary values freely written in natural language, and also address where the order

of elements in the address is not guaranteed.

Stories Generation

Parallel to the schema modeling iteration, we model possible dialog flows through an

MDP based on past conversations. We force the user to explore many variations of the

designed schema and suggest to the user many social-communication approaches to start

and conduct the conversation to generate more dialogue variability. On the agent side, we

orient the worker always to bring the conversation back to an expected state. This MDP

is both modeled using the intuition of consumers of this kind of service and by analyzing

real-world human-to-human data.

In Figure 6.3, we present the final MDP obtained in this process. Initially, we had

unmerged paths that followed each kind of flow. Then on the system side, we added nodes

that could merge those paths to the same cycle. In the payment path of the dialog, we

attempted to ask directly for as much information as possible to simplify the resulting

path.

Table 6.3 describes each node agent that should perform the interaction and the sug-

gested utterance. We base the names and descriptions in the universal schema model on

inform-request acts (Paul et al., 2019). By describing acts in an inform-request schema,

we could clearly define many slots and simplify the reasoning for the general dialog flow.

After modeling the MDP, we sample stories enriched by the schema to present to the

pair of workers and assign each one a role in the play. A probability is associated with

each transition, so we randomly navigate the graph until reaching the final node to end

the conversation. For each node with an inform-type intent, we sample the respective

value from the schema shown in Table 6.2.

Dialog Interaction

The stories sampled act as a high-level screenplay, so the user has a general intuition

as to what to do in the conversation but is free to express himself in the way he wants
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Figure 6.3: Markov Decision process for estimated dialog flows in a pizza ordering context.

to generate linguistic variability. The improvisation and interpretation aspect of this

approach gives the name of the methodology, “Teatro,” which is the Portuguese word for

theater.

To create real-world human-to-human conversational data, we had to develop software

tools to monitor and guide the conversation in a manner that covered our schema and

sounded natural. This process is assisted by the Mephisto framework to handle interface,

backend, and storage.

In Figure 6.4, we show our tool for data acquisition. This online interface was deployed

for 20 allocated volunteers, and the system randomly assigned a screenplay and another

volunteer to start the conversation. The upper-left box describes which role the volunteer

should play. The lower-left window provides the “plot”. It describes the information that

should be exchanged in the dialog, like intents for each utterance and slot values that

should be informed. After the dialog is completed, we have to annotate these dialogues.

Annotation

After the conversation ends, the framework already gives us all the slot values, as they

were sampled in the previous method and most of the intents in the conversation, so a

minor additional annotation for the missing intents is needed. To assist and speed up

the annotation process, we also developed a web interface with a point-and-click visual

interface to help workers. Figure 6.5 shows our approach for annotating dialogues. By

loading the dialogues in a web interface, the user is prompted with each conversation,

with clicks, and selects the user marks intents and slot values for each turn.

After the annotation process is finalized, the Web interface enables to download of a

JSON that could be directly converted to training data for the learner. This is the final

step to deploying the model.
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Table 6.3: Nodes description for the dialog flow.

Node Agent Description
[A] Control Start
[B] [Client] Greet
[C] [System] Ask order
[D] [Client] Inform intent
[E] [System] Ask itens
[F] [Client] Ask available toppings
[G] [System] Inform toppings
[H] [Client] Inform itens
[I] [System] Confirm itens
[J] Control Flow for product modify
[K] [Client] Ask to modify
[L] [System] Confirm modify
[M] [Client] Inform modify
[N] [Client] Confirm
[O] [System] Inform value
[P] [System] Ask address
[Q] [Client] Inform address
[R] [System] Ask for payment method
[S] [Client] Inform type:pix
[T] [Client] Inform type:card
[U] [Client] Inform type:cash
[V] [System] Ask if needs change
[W] [Client] Inform change needed
[X] [System] Inform order status
[Y] [Client] Confirm
[Z] [System] Inform pix code

Training

Alternatively to traditional studies where English is the targeted language, we are solving

a problem in the context of Brazil, so Portuguese is the targeted language. We start with

general language modeling by next token prediction in Portuguese following the same

approach as Generative Pre-Training (GPT-2) (Radford et al., 2019).

For the general language modeling, we used an improved version of Wagner Filho et al.

(2018), in which we included many more data sources. This model is trained on these

diverse corpora until convergence, which is an initialization for the next training phase.

Based on Sanches et al. (2022), we model two major Brazilian forums as pseudo-TODS.

These forums encompass a wide range of topics, so their application has a general bias

toward technology, entertainment, science, culture, etc. We then feed this model to the

next training phase.

We train for generalized TODS on a machine-translate MultiWoZ dataset to Por-

tuguese. In this phase, the LM acquire many near skills for address handling, which

improves the in the final training phase.
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Figure 6.4: The MDC tool that implements the Teatro methodology, upper-left we have
the role to be played, lower-left we have the screenplay, and in the right the message
exchanging interface.

Finally, we fine-tune the model in the annotated pizza ordering data. We trained

on an augmented version of the pizza ordering data for each epoch to improve address

recognition capabilities. We randomly replace slot values with new values based on Zhang

et al. (2020b). We use the same hyperparameters as shown in Chapter 5.

Test and Improvement

Human interaction generally is highly unpredictable and could have more variability than

expected. As the conversation driven-development, we also suggest delivering the model

as soon as possible for initial tests. By direct interaction with the model, we could measure

the model confidence for many different types of interactions, so we could diagnose which

kind of data to generate in the next batch of the Teatro. We could reanalyze our MDP

to cover unexpected branching in conversation.

Some agents deviated from the expected schema during the chatting generation pro-

cess, so we needed to develop different mechanisms to ensure they would not commit the

same error. This was performed by a more emphatic story signaling expected behaviors,

and the schema was more visually appealing.

To acquire better generalization on intent recognition and detecting slot values, we
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Figure 6.5: Annotation tool for TODS. With a visual interface, Assis allows one to quickly
annotate dialogues without specialized knowledge.

used some techniques on data augmentation. For the intent, we explored the Zhang et al.

(2020b) approach. We swapped actions that could be inferred from the same state to

generate new dialog flows. For the NER augmentation, we created a natural language

address generation that could be sampled for more variations of valid addresses.

Implementation

We implemented an API for ordering communication to test our solution in real-world

environments. It accesses a database for prices, topping options, transactions, etc. This is

suited to sending the final order as well. We implemented an interface through Telegram

API so we could quickly test the agent with multiple users 1.

1https://github.com/ZeCariocaUnicamp/zecarioca/blob/master/telegrambot.py
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6.4 Evaluation Results

To generate a reasonable amount of data, we counted the collaboration of volunteers from

the project. This included direct participants from the project and other stakeholders by

including Ci&T collaborators and other company Mutant (as a stakeholder from Ci&T).

After a series of interactions with Teatro, we generated 70 dialogs with a mean of 15

turns between client and system, with a minimum of 9 and a maximum of 30 turns. Each

utterance has an average of 8 words, totaling 8263 words for the entire set.

We first evaluate our model’s ability to recognize intents and extract intents by parsing

the generated response and computing the precision, recall, and F1 metrics. Table 6.4

presents the confusion matrix for the intent classification. We observe that the models

correctly recognize every intent, with an adequate score in the validation data.

Table 6.4: Metrics for intent recognition.

slot precision recall f1-score support
informa_pagamento 1.0 1.0 1.0 28

sem_troco 1.0 1.0 1.0 7
informa_troco 1.0 1.0 1.0 3
fazer_pedido 1.0 1.0 1.0 46

informa_endereco 1.0 1.0 1.0 41
informa_pedido 1.0 1.0 1.0 64
cumprimenta 1.0 1.0 1.0 17

pergunta_sabor 1.0 1.0 1.0 7
confirmar 1.0 1.0 1.0 93

Table 6.5 demonstrates the model’s ability to extract slot values for the test data. The

model could ideally recognize addresses and monetary values given the data augmentation

technique and a controlled process to generate slot values.

Table 6.5: Metrics for slot values.

slot precision recall f1-score support
itens 1.0 1.0 1.0 100

via pagamento 1.0 1.0 1.0 34
endereco 1.0 1.0 1.0 188

6.5 Discussion

We successfully developed and applied a methodology to create a pizza delivery agent

from scratch based on fourth-generation dialog agents. We trained a curriculum model

in a small amount of annotated examples, given its high cost to produce specialized data

from scratch, as in a real-world setting.

Even with the low-resource setting, our model could always identify the desired slot

values and intents in our toy data set.



60

We acknowledge that our generated data has a strong bias in the generation process,

given the limited set of agents generating the data and the limited scope (intents and

slot values). When dealing with unknown users in the data generation process, we expect

much more noise and, consequently, less predictability.

6.6 Synthesis

We started this chapter by investigating the feasibility of applying the curricular transfer

learning methodology to a specific context (pizza ordering) in the Portuguese language.

Albeit we simplified our scope by restricting the possibilities of what kind of pizza a

customer could order, we verified high quality through quantitative and qualitative testing.

Our agent, in this scope, could handle many possible conversations correctly, identifying

addresses and toppings.

Parallel to this, we developed a methodology that allowed a complete creation of an

end-to-end TODS, following best practices and state-of-the-art tools in significant aspects

of development. This allowed us to evaluate the CTL methodology in an experimental

data set and provided many methodologies, tools, and empirical knowledge on chatbot

creation.
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Chapter 7

Conclusion

This chapter summarizes our conclusions from this research. We present our remarks,

discussions, open questions, and contributions from this M.Sc. dissertation.

7.1 Overall Discussion

Differing from traditional language modeling, where the task is to predict sequences of

words given a context, in a task-oriented dialog, we have a structured sequence prediction

problem with three NLP sub-tasks: (i) a classification task to recognize intents; (ii) a

NER to recognize entities; and (iii) a natural language generation task to predict the

adequate response for a given utterance and system actions. LMs are general multi-task

learners for NLP, which overfit on specific contexts with a nonstandard distribution of

tokens.

In this MS.c. dissertation, we defended that having a general language modeling task

as a starting point is not ideal for the problem of TODS. As our problem has a strong

grammar dependency, the model should always predict the same tokens even if the dialog

session has a hundred interactions.

We must construct gradual datasets to better initialize the LM and guarantee it does

not degenerate in predicting the grammar for long sequences. The proposed solution,

CTL, a sequence of transfer learning steps, helps to balance the trade-off between the

right bias in the data and annotation costs.

We presented a theory on how this approach is not only a multi-step sequential transfer

learning. Our solution can be viewed as a form of curriculum learning when considering

the overall ordering within all tasks. We optimize order through the same data-generating

process in the original curriculum learning approach. Our CTL approach allows us to use

out-of-distribution data, which is central to learning scalability and generality for modern

NLP.

Our approach only explored the CTL on a very narrow case, given that sequence-to-

sequence task encoding is a relatively new proposal (Hosseini-Asl et al., 2020). However,

prompt-based methods are a recent trending topic in NLP. These methods allow a pre-

trained LM to perform out-of-the-box several tasks they were not explicitly trained for

(also called zero-shot learning). Although those models perform pretty well in classic NLP
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tasks, those with a complex morphological structure still need additional learning. We

could extend those models with CTL to other complex applications by creating pseudo-

labeled datasets in a super-scale.

7.2 Contributions

In this research, we developed a methodology to train LMs for complex grammar acqui-

sition. This was accomplished by training the model in intermediate datasets following

the grammar simplification method. This allows external data sources to encode as an

intermediate task to improve the general optima.

Unlike earlier attempts to use additional data depending on annotated data, which

is expensive and not feasible for many business models, our approach used unsupervised

data to structure pseudo-supervised data and model sharing to significantly reduce the

costs of maintaining this kind of system. Another essential aspect of our proposal is

that the data sources are not English-dependent (the default for this literature). In this

sense, we could crawl unsupervised data from forums in most languages. In our case

study, we successfully applied the method for the Portuguese language based on Brazilian

conversational forums.

Training costs of domain-specific models are expensive, and sharing specialized pre-

trained models allows many businesses to perform cheaper fine-tuning. We can fine-tune

a general pizza ordering model for specific address handling in a small city in Brazil, so

many small businesses could use the same pre-trained model. We summarize our direct

scientific contribution as follows:

• The CTL framework for gradual grammar adaptation. We explored its grammar ac-

quisition capabilities and experimentally evaluated them for two different contexts.

Additionally, to make this research possible, we developed several auxiliary method-

ologies and software tools:

• We crawled and cleaned the TripAdvisor data, publicly providing the processed

data and crawling scripts. This was relevant for evaluating our proposal against

MultiWoZ.

• A pizza ordering dataset in Portuguese is freely available for extending and future

research.

• A methodology, named “Teatro”, to generate human-to-human conversational data

based on best pratices from literature.

• To evaluate our methodology in the Portuguese context, we contributed with a web

interface that implements the Teatro methodology. The software tool was built

upon the Mephisto framework.

• Produced unsupervised, conversational-based data extracted from Adrenaline and

Outerspace for evaluation in Portuguese.
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• We created “Assis”, a web-interface to quickly annotate conversational data for

TODS.

• A paraphrasing methodology based on a linguistic reward used in the Teatro method-

ology.

• Several pre-trained models in English and Portuguese for general and conversational

applications.

All methodology, tools, and models are available at https://www.notion.so/unicamp-cit/

CI-T-Unicamp-ca7a3fc10d9a43f09a14c5dd4d31e554

7.3 Future Studies

Recent studies Delétang et al. (2022) demonstrated that Transformers are inefficient for

learning regular grammar. Memory-augmented networks could almost perfectly learn any

regular grammar. A possible research path is to evaluate modern augmented memory

networks trained in this curriculum if it better generalizes for unknown cases, e.g., and

zero-shot learning.

The CTL approach enriches models’ capabilities and generalization and exposes the

model to out-of-scope domains inside the same meta-structure. This may lead to failure

in more diverse ways. Further investigations are necessary to understand how to reduce

variability and control TODS based on LMs given that they do not “clearly fail” as pipeline

approaches.

Large LM are known for their capabilities of meta-learning complex tasks through

unsupervised training. The CTL approach, by design, meta-teaches desired properties for

a TODS agent. Our empirical results demonstrate that the larger the model, the better

it learns the pseudo-tasks in the curriculum. In this sense, a Large LM could generalize,

allowing few-shot, a fundamental property for agents in low-setting environments.

We applied our curriculum approach specifically for the task of TODS. We believe it

is extendable for any sequence-to-sequence task based on complex grammar. The field of

sequence-to-sequence modeling is relatively new. To our knowledge, no other approach

uses particular encoding grammar. Still, we expect to extend our study to other domains

and tasks.
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