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Resumo

Os modelos de aprendizado de máquina estão assumindo um papel cada vez maior na
tomada de decisões de pontuação de crédito devido à sua precisão na previsão do reem-
bolso do empréstimo. Contudo, uma crítica relativa à implementação destes modelos é a
dificuldade de explicar a tomada de decisão do algoritmo para indivíduos cujos pedidos
de crédito foram rejeitados. Estudos recentes revelam que explicações contrafactuais for-
necem aos usuários o feedback da decisão do modelo através de uma lista de mudanças
que eles podem fazer em seu perfil para orientar aplicações futuras. Portanto, forne-
cer explicações contrafactuais viáveis é um factor crucial para garantir que as alterações
propostas estejam ao alcance dos utilizadores. Propomos um método chamado Model-
Agnostic Pareto-Optimal Feasible Counterfactual Explanations Mining (MAPOFCEM)
para fornecer feedback viável e acionável sobre decisões tomadas por um algoritmo de
risco de crédito. Este método permite que indivíduos a quem foi negado um empréstimo
façam ajustes específicos em seus perfis, aumentando assim suas chances de aprovação de
empréstimos no futuro. Nossa abordagem integra um mecanismo de detecção de valo-
res discrepantes no processo de busca contrafactual para gerar explicações contrafactuais
viáveis. Os resultados experimentais demonstram que o MAPOFCEM fornece uma estru-
tura mais viável e robusta em comparação com os modelos de referência de código aberto
existentes na literatura, o que aumenta a usabilidade de tais ferramentas para avaliar
modelos de risco de crédito em aplicações do mundo real.

Palavras-chave: Pontuação de Crédito; Aprendizado de Máquina; Explicações Con-
trafactuais.



Abstract

Machine learning models are assuming an ever-expanding role in making credit score deci-
sions due to their accuracy in predicting loan repayment. However, a criticism concerning
the implementation of these models is the difficulty of explaining the algorithm’s decision-
making for individuals whose credit applications have been rejected. Recent studies reveal
that counterfactual explanations provide to users the model decision feedback through a
list of changes they can make to their profile to guide future applications. Therefore, pro-
viding feasible counterfactual explanations is a crucial factor in ensuring that proposed
changes are within the reach of users. We proposed a method called Model-Agnostic
Pareto-Optimal Feasible Counterfactual Explanations Mining (MAPOFCEM) to provide
feasible and actionable feedback regarding decisions made by a credit risk algorithm. This
method empowers individuals who have been denied a loan to make specific adjustments
to their profiles, thereby increasing their chances of loan approval in the future. Our ap-
proach integrates an outlier detection mechanism within the counterfactual search process
to generate feasible counterfactual explanations. The experimental results demonstrate
that MAPOFCEM provides a more feasible and robust framework compared to existing
open-source reference models in the literature, which enhances the usability of such tools
for evaluating credit risk models in real-world applications.

Keywords: Credit Scoring; Machine Learning; Counterfactual Explanations.
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Chapter 1

Introduction

Bank lending has become almost exclusively algorithmic in developed countries like the

United States [3]. Machine Learning approaches predict an individual’s willingness and

ability to repay a loan more accurately than older approaches [12]. Such techniques

support the classification of risk from patterns understood through data, such as personal

information, name restrictions, credit profile, and income of the candidate [15]. However,

one of the great points of criticism in applying these models is to explain the algorithm’s

decision-making process to the individuals who were credit denied. In this context, this

Master Dissertation aims to explain the decision made by a Credit Risk algorithm through

actionable feedback so the denied individual can make feasible changes to increase their

chances of obtaining a loan in the future.

1.1 Motivation and Problem Overview

Enhancing the interpretability of a Machine Learning algorithm boosts user confidence

in utilizing this powerful tool [13]. The comprehensive data science cycle illustrated in

Figure 1.1 provides a holistic view of the entire process, highlighting key stages where

interpretability can be integrated within the model learning stream [23] .

Figure 1.1: The generic cycle of a data science process.

The generic cycle of a data science process outlined by Murdoch et al. (2019) [23] em-

phasizes the importance of comprehensively understanding the problem, analyzing avail-

able data, and identifying the target audience to iteratively model a feasible solution.

In the realm of interpreting problem/data, interpretability techniques can be effectively

utilized both during the model development phase and in post-hoc analysis [23]. In the
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context of Credit Risk Assessment, although the inherent interpretability of model devel-

opment is valuable, delving into post-hoc analysis becomes essential due to the intricate

nature of certain black box algorithms. In this context, Counterfactual Explanations,

formalized by Wachter et al. (2017) [39], offer a solution to this challenge. These expla-

nations provide actionable insights by outlining the changes a denied individual should

make to their profile to secure credit approval. Several studies have employed counterfac-

tual explanations to enhance understanding and decision-making processes. For instance,

Ustun et al. (2019) [34] evaluated a linear classification model, focusing on implementing

user profile changes to facilitate credit approval. Additionally, Poyiadzi et al. (2020)

[27] introduced an algorithm that identifies feasible counterfactual paths incorporating

weighted data density metrics.

Despite popularizing counterfactual explanations usage in recent years, its feasibility

is a growing concern, since there is limited research dedicated to assessing the usability of

counterfactual explanations by end-users [37]. This underscores the potential for innova-

tion in developing solutions that enhance the user experience. Therefore, this project aims

to build a framework that addresses the feasibility concerns of counterfactual explanations

for Credit Risk Assessment models.

1.2 Contributions

We proposed a framework called Model-Agnostic Pareto-Optimal Feasible Counterfactual

Explanations Mining (MAPOFCEM) to offer feasible and actionable insights concerning

decisions made by a credit risk algorithm. This technique enables individuals with a denied

loan to make targeted adjustments to their profiles, thereby increasing their chances of

loan approval in the future. Our methodology incorporates an outlier detection mechanism

within the counterfactual search process to produce feasible counterfactual explanations,

thereby enhancing the practical applicability of such tools for assessing credit risk models

in real-world scenarios.

1.3 Dissertation Structure

This dissertation is organized as follows:

• Chapter 2. It introduces the concepts and literature of Interpretability and Coun-

terfactual explanations and identifies gaps that this research aims to address.

• Chapter 3. It covers the key concepts and theories that form the basis of the

proposed framework, including outlier detection and counterfactual search processes.

• Chapter 4. It explains the innovative contributions of the proposed framework.

• Chapter 5. It outlines the research methodology employed in the study.

• Chapter 6. It presents the findings from our experiments.

• Chapter 7. It summarizes the key findings and limitations of the research.
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Chapter 2

Interpretability and Literature Review

Integrating Machine Learning into various sectors of society has sparked numerous de-

bates regarding the reliability of decisions made by artificial intelligence algorithms. Un-

derstanding these intricate models poses a significant challenge in facilitating their ap-

plication across diverse scenarios. In this context, Interpretability and Explainability

emerge as areas of study that aims to develop techniques that can reveal insights about

the model’s predictions [23]. Another perspective introduced by Varshney (2022) [36] sug-

gests that interpretability can also guide developers in collaborating on model decisions

to mitigate and manage their impacts.

Definition 1 (Interpretability). Interpretability is the degree to which a human can un-

derstand the cause of a decision or the internal mechanics of a model. An interpretable

model allows users to see how inputs are transformed into outputs, making it easier to val-

idate, debug, and trust the model. Interpretability is crucial for ensuring accountability,

transparency, and fairness in AI systems.

Definition 2 (Explainability). In the context of artificial intelligence and machine learn-

ing, explicability involves the ability to provide clear, understandable explanations for the

behavior, decisions, or predictions made by a model. Explicability is important for building

trust and ensuring that users can comprehend and reason about the outcomes produced by

AI systems.

In Credit Scoring, the necessity for both Interpretability and Explainability in intelli-

gent algorithms becomes crucial, especially when decisions substantially impact users in

situations that influence social welfare and require transparency. Various techniques are

used to interpret machine learning models, and their relevance may vary according to the

target audience and the objectives [36]. Molnar (2022) [21] established a taxonomy to

determine the appropriate method to use, considering the following criteria:

• Intrinsic and Post hoc methods. In cases where the model exhibits simple

structures and allows for a comprehensive view of the learning process, Intrinsic

methods are suitable. For instance, Decision Trees with limited branches exemplify

models where intrinsic methods can be effectively utilized. Conversely, when the

model is highly complex, hindering direct comprehension, Post hoc methods are
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employed post-training. For instance, understanding the learning process of a Gra-

dient Boosting Tree individually can be challenging, requiring the creation of an

approximation with multiple trees to grasp the impact of each feature.

• Model-specific and Model-agnostic methods. Model-specific methods lever-

age the internal characteristics of the model to elucidate its decisions. For instance,

the gradient in a neural network can be utilized for a single example to identify the

most influential feature for that particular prediction. On the other hand, Model-

agnostic methods derive explanations from the correlation between the input data

and output response, devoid of insights into the model’s internal workings.

• Local and Global methods. Global methods facilitate the comprehension of

the entire model and its behavior by utilizing approximations or delving into its

internal workings, typically by elucidating the significance of features to the model

and establishing the relationship with the data. Conversely, Local methods focus

on explaining the behavior of a specific sample (individual) or a small subset of

samples.

2.1 Global Methods

The techniques presented in this section can enhance comprehension of how features and

samples impact algorithm predictions. Each approach employs various explanation tools,

including visual and statistical methods.

Partial Dependence Plot (PDP) was introduced by Friedman (2001) [10] and stands

as a prominent method for interpretability in research. PDPs analyze the impact of

individual features on the model’s average prediction through feature-specific plots. By

using synthetic data points, PDPs may present misleading trends in certain features due

to potential correlations among features.

Accumulated Local Effects (ALE) is a feature effect technique introduced by Apley

and Zhu (2020) [1], offering an alternative to the issue of dependent features in Partial

Dependence Plots (PDPs). ALE calculates the cumulative local effects on model predic-

tions instead of relying on artificial class variations like the PDP method. While ALE is

considered an unbiased PDP approach, its implementation is more intricate.

Feature Interaction is a global method that mathematically assesses the strength of

interactions between features. It leverages Friedman’s H-statistic [11] to quantify this

strength and produces a plot that ranks interactions with other features and the target

variable. This approach is valuable for evaluating the relationships and impact of features.

Functional Decomposition is a fundamental global technique applied in regression

models. It visually illustrates the impact and interaction of features by breaking down

the total of individual contributions per feature. This method visually represents each

feature’s influence on the model’s prediction.
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Permutation Feature Importance is a global method introduced by Breiman (2001)

[5] and enhanced by Fisher et al. (2019) [8]. This method involves permuting feature

values to assess the increase in prediction errors, enabling the visualization of feature

influence on algorithm responses.

Global Surrogate is a technique commonly applied in engineering contexts to model

real-world phenomena [21]. In Machine Learning, it utilizes an interpretable model, like a

linear model or decision tree, to interpret predictions of a complex black box model. By

approximating the black box model’s predictions and leveraging its internal parameters,

Global Surrogate explains the black box model’s predictions.

Prototypes and Criticisms follow a distinct approach compared to other methods. It

identifies clusters of data with similar behavior as "Prototypes" [29], while data points not

well represented are termed "Criticisms". This method helps understand which features

characterize Prototype behaviors.

2.2 Local Methods

In contrast to Global methods, Local methods focus on explaining individual predictions

made by the model.

Individual Conditional Expectation (ICE) is a local method introduced by Gold-

stein (2015) [14] that functions similarly to a Global PDP method but for an individual

instance. ICE manipulates feature values to observe how the prediction of the instance

responds to the changes. Like the PDP method, it uses line plots to demonstrate the

variation in behavior.

Local Surrogate (LIME) is another local method developed by Ribeiro (2016) [30].

In contrast to Global Surrogate models, LIME does not train an interpretable model to

explain black box predictions. Instead, it generates perturbed samples around individual

predictions and trains an interpretable Machine Learning model using these samples to

understand the weights assigned by the interpretable model to that specific prediction

based on proximity. LIME provides a visual plot to display the strength and predicted

orientation of individual data point features.

Scoped Rules (Anchors) was developed by Ribeiro (2018) [31], the same author of

Local Surrogate. This technique identifies a decision point that sufficiently anchors the

model’s prediction explanation. It applies reinforcement learning and perturbed samples,

akin to LIME, to discover these anchors.

Shapley Values is a local method introduced by Shapley (1953) [33], utilizing the

Global PDP method approximation to calculate differences in class features of individual

instances compared to the model’s average predictions. Similar to the PDP method, this

technique employs plots for explanations.
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SHAP (SHapley Additive exPlanations) was developed by Lundberg and Lee

(2017) [19], incorporating the Shapley values technique. This method focuses on the

absolute differences in Shapley values to elucidate feature importance in individual pre-

dictions.

Counterfactual Explanations is a local method introduced by Wachter (2017) [39].

It uses the features of an individual instance as input to explain the model’s prediction

compared to another instance with different predictions. By comparing feature differences

using data points, it identifies adjustments needed in the original instance’s features to

alter its prediction.

2.3 Counterfactual Explanations

Using data points to explain a Machine Learning model’s prediction can be highly benefi-

cial in various scenarios, such as Credit Scoring. Consider a hypothetical individual who

approaches a bank for a loan to fund his mother’s cancer treatment. If the bank’s Credit

Risk Assessment Machine Learning algorithm denies the request without providing any

feedback, it can result in significant frustration for the customer and strain his relationship

with the bank. In such cases, Counterfactual Explanations can be employed to compare

the characteristics of an approved customer, thereby offering actionable feedback on what

changes the requestor could make to obtain the loan. For instance, suggestions might

include increasing the salary to over $1.000 or attaining a higher education level, such as

a graduate degree.

Although Counterfactual Explanations have a historical basis in social sciences, Wachter

et al. (2017) [39] were the first to formulate it as an optimization problem. Since then,

discussions have surfaced regarding the trade-off between enhancing the optimal method

to achieve a Pareto solution and delivering a feasible explanation to the customer. Verma

et al. (2022) [37] review several properties of Counterfactual Explanations that should be

considered to distinguish the proposed methods:

• Model Access. This property pertains to the extent of information that the

method can retrieve from the trained Machine Learning model. Methods can be

categorized into three groups: those that offer total access to the model internals,

such as linear models and decision trees, allowing a comprehensive understanding of

model decisions or tree branches; those that provide only access to the gradients,

enabling optimization of the counterfactual search by modifying the loss function;

and black box models, which restrict access to just the input and output data.

• Counterfactual Attributes. Counterfactual Explanation methods can be further

distinguished based on certain attributes. Sparsity involves how the model opti-

mizes feature values during the counterfactual search, e.g., it is not feasible to use

decreasing values for the age feature. Data Manifold or Feasibility solutions aim

to find explanations close to the data distribution, enhancing the method’s practi-

cality. Causality considers the interrelations between features in the counterfactual
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search, e.g., changing the educational level implies an increase in the customer’s age

due to the time required to achieve it.

• Counterfactual Optimization. Other Counterfactual Methods propose optimiz-

ing different attributes, such as Fairness by excluding features related to sex, race,

etc. in the counterfactual search. Additionally, some methods handle categorical

features by employing various techniques to measure the distance between values

and their impact on the counterfactual search.

2.4 Feasibility in Counterfactual Explanations

Counterfactual Explanation methods recently proposed in the literature have combined

different types of model access with various manipulation techniques to achieve feasibility.

Complete Access algorithms have been proposed to Linear Models, such as Artelt et

al. (2020) [2] that proposed a feasible solution using Gaussian Mixture to determine data

density through Kernel Density Estimation (KDE). Kanamori et al. (2020)[16] introduced

a framework employing Outlier Detection (LOF) to verify if the identified counterfactual is

an outlier, thereby enhancing feasibility. Parmentier et al. (2021)[25] presented an efficient

method using Isolation Forests to locate regions with low outlier scores in Ensemble Trees.

The majority of related works are trying to find optimal solutions using the Total

Model Access of Gradient Models. For example, Mahajan et al. (2019) [20] employed

Variational Autoencoders (VAEs) within a generative model, using loss functions to learn

feasibility based on user feedback. Pawelczyk et al. (2020) [26] proposed C-CHVAE,

an algorithm that leverages VAEs to measure the distance of an individual to the data

distribution. Shao et al. (2022) [32] also used VAEs as density estimators in Sum-product

Networks (SPNs), a "generative classifier" designed based on Bayes’ rules. Similarly,

Xiang et al. (2022) [40] utilized VAEs to measure counterfactual distances to k-nearest

neighbors (k-NN).

The current challenge is to develop an efficient and feasible method for Black Box

models. In this domain, most studies have employed density estimators to identify the

data distribution. For instance, Dandl et al. (2020) [7] used a loss function that calculates

the distance between the data point and the cluster using k-NN as a density estimator.

Poyiadzi et al. (2020) [27] introduced FACE, an efficient algorithm that uses Dijkstra’s

algorithm to compute the shortest path through the data density, employing k-NN, KDE,

and other density estimators. Studies by Nemirovsky et al. (2022) [24] and Van et al.

(2021) [35] utilized the global method class prototype to find data distribution clusters,

guiding the counterfactual search. Förster et al. (2021) [9] applied KDE with Gaussian

Kernel for numerical data and Wang-Ryzin kernel for categorical data. Yang et al. (2021)

[41] used Umbrella Sampling to allocate data distribution into "umbrella distributions"

to enhance feasibility. Verma (2022) [38] also employed k-NN to ensure that the identified

counterfactuals are close to the data distribution.
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2.5 Related Works

Regarding methods for achieving the feasibility of counterfactual explanations for black-

box models, Table 2.1 summarizes each method used by related works.

Table 2.1: Types of methods used to achieve feasibility in black box models.

Authors Methods Method Type
Dandl et al. (2020) k-NN Density Estimator

Poyiadzi et al. (2020) k-NN, KDE Density Estimator
Nemirovsky et al. (2022) Class Prototype Density Estimator

Förster et al. (2021) KDE with Gaussian Kernel Density Estimator
Verma (2022) k-NN Density Estimator

It is possible to see that the majority focus is on the use of density estimators to

identify the distribution of data to obtain feasibility. Although all of which aim to ensure

that the solutions they generate are representative of the underlying data distribution,

it is important to note that while these methods focus on finding solutions within the

kernel of the distribution, they often exclude many potential solutions at the edge of the

data distribution, which is closer to the individual. This exclusion can limit the scope of

solutions, potentially overlooking feasible explanations near the data point.

In the literature, some techniques applied to Full Access algorithms such as Kanamori

et al. (2020)[16] and Parmentier et al. (2021)[25] who employed Outlier Detection to

check counterfactual feasibility, explored solutions at the edge of data distribution without

limiting user options. It improved the user experience, by identifying solutions closer to

the user, that is, reducing the need for extensive modifications to the user profile. This

technique was not explored for black-box models, which is the main research topic for

this master’s work. Table 2.2 summarized the properties of Counterfactual Explanations

found in the work of Verma et al. (2022) [37] and shows the contribution of this work to

the literature.

Table 2.2: Counterfactual properties considered in the scope of this project.

Model access Sparsity Feasibility Causality Method Type
Black-Box X Outlier Detection

In contrast to the approaches taken by Dandl et al. (2020) [7], Poyiadzi et al. (2020)

[27], Nemirovsky et al. (2022) [24], Förster et al. (2021) [9], and Verma (2022) [38], which

primarily focus on leveraging data density to provide feasibility in proposed solutions, this

research innovates by employing outlier detection techniques to achieve a superior balance

between maintaining alignment with the data distribution and ensuring proximity to the

target instance, thereby enhancing the effectiveness and precision of the analysis.
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Chapter 3

Theoretical Foundations

3.1 Counterfactual Explanations

Molnar (2022) [21] explains that Counterfactual Explanations are an accessible method

for illustrating "what-if" scenarios. These explanations work by contrasting the features

of an instance with slight modifications, thereby generating hypotheses like "if this aspect

were different, then this outcome would occur".

Definition 3 (Counterfactual Explanations). Starting from a sample predicted as negative

(e.g., an individual with denied credit), a counterfactual explanation consists of changes

the individual with the denied resource should make to access the resource.

3.2 Mining Counterfactual Explanations

Each counterfactual offers a unique "story" of how a specific outcome was reached. There-

fore, mining counterfactual explanations involves exploring alternative instances within a

feature space to understand the factors behind a specific outcome and identify actionable

changes that could lead to a different result.

MAPOCAM

Model-agnostic Pareto-Optimal Counterfactual Antecedent Mining (MAPOCAM) is a

technique introduced by Raimundo et al. [28] (2022) that searches counterfactuals within

a feature space efficiently through a branch-and-bound search strategy.

Considering a binary classification problem, each sample consists of a feature vector

x ∈ R
d, where d comprises a vector of features, and a binary outcome y ∈ {0, 1}. The

classifier is denoted by a decision function r(·), which outputs 1 if r(x) g τ , where τ is

a predetermined threshold. For simplicity, we will consider 1 to be the target outcome.

An action a = [a1, ..., ad] applied to an observation x is defined as a list of changes

ai ∈ R, ∀i ∈ {1, ..., d} on the feature values, resulting in a new synthetic sample x + a.

Conterfactual Explanations are actions in which r(x) f τ and r(x+ a) g τ .

Definition 4 (Action). An action a ∈ R
d is a counterfactual explanation if and only if

it achieves the desired outcome r(x+ a) g τ .
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An action that follows the preferences of the decision maker is obtained from an

optimization process of an objective function c(·)∈ R. Thus, actions are sought with the

lowest value of the objective function. In this context, MAPOCAM proposes multiple

objective functions c1(·), . . . , cm(·) to address different options for users in the feature

space, where each objective function ci(·), i ∈ 1, . . . ,m, represents a specific goal defined

by the user. Nonetheless, it is possible to identify a dominant action — an action that

performs better across all objectives compared to other actions.

Definition 5 (Dominant Action). An action a : r(x+ a) g τ dominates a if and only if

c(a) ° c(a′).

The idea of dominant action in the context of multi-objective optimization leads us to

the definition of the concept of Pareto-optimal action.

Definition 6 (Pareto-Optimal Action). Given an objective function vector c(·) : Rd → R
m

that we want to minimize and a set of solutions A, an action a’ is Pareto-optimal iff there

is no action a ∈ A that dominates a’.

MAPOCAM Algorithm

Algorithm 1 presents the pseudocode for MAPOCAM. The algorithm functions as follows:

it iterates through the search grid by modifying one feature at a time (line 20). For each

potential feature value being changed, it evaluates the impact on secondary features,

continuing this process until the maximum number of changes is reached. The vector A

is used to record the solutions found (line 2); any value greater than 0 means a change.

In MAPOCAM’s branch-and-bound search strategy, each parameter call corresponds

to a decision node (line 1) that can generate additional nodes through a branching proce-

dure or stop the exploration of subsequent nodes through a pruning procedure (line 20).

Therefore, these nodes can serve as potential counterfactual explanations or endpoints in

the search process.

Definition 7 (Node). A node consists of an action a: ai g 0, ∀i ∈ {1, ..., d} and a set of

fixed features D.

Definition 8 (Branching Procedure). The branching procedure consists of selecting a

non-fixed feature i /∈ D, calling the recursive function with different actions’ values ai g 0

for that feature i that now is fixed D ≡ D ∪ i for the subsequent calls. All features with

no decision are considered null ai = 0, ∀i /∈ D and might have their value altered in the

subsequent branching.

MAPOCAM establishes that since every recursive call will always increase the mag-

nitude of the action ai g 0, the associated cost of creating an action increases. This

property is called monotonicity.

Definition 9 (Monotonicity). Given any two actions a, a′ ∈ R
d such that ai g a, ∀i ∈

{1, ..., d}, a function vector f(·): Rd → Rm is monotone if only if fj(a) g fj(a
′), ∀j ∈

{1, ...,m}.



23

Algorithm 1: MAPOCAM

Input: A sample x, an objective function c, an outlier detection function µ(·), a
decision rule r(·), a threshold τ and a number of allowed changes k.

1 procedure ENUMERATE(a,D,A)
2 if |i : ai ̸= 0∀i ∈ D| > k or ∃a′ ∈ A : c(a) ° c(a′) then
3 return;
4 end
5 if r < τ then
6 return;
7 end
8 if r(x+ a) g τ then
9 A = A ∪ {a} return;

10 end
11 i = SELECT_FEATURE(∀i : i /∈ D);
12 for ∀a′ : a′i g ai do
13 ENUMERATE(a′,D ∪ {i},A)
14 end

15 end procedure
16 Algorithm MAPOCAM(x, c, µ, r(·), τ, k)
17 D = {},A = {};
18 ai = 0 ∀ai ∈ {1,...,d};
2020 ENUMERATE(a,D,A);
2222 return A;

Since any recursive call will always increase the magnitude of the action ai g 0, the

monotonicity function stops the current call to make other recursive calls.

Definition 10 (Bounding Step). The bounding step consists of inspecting any branch that

will not improve the optimal set of solutions; thus, the node should not go deeper.

The bounding step can occur under some possible conditions:

• When the node has more than k changes: |i : ai ̸= 0∀i ∈ D| > k. Since any other

recursive call will increase the number of changes.

• When any subsequent bounding will not generate a feasible solution. Since any

other recursive call will increase the size of the action (line 5).

The second pruning condition employed in the MAPOCAM algorithm involves evalu-

ating the maximum probability that a partial counterfactual can achieve. This technique

first calculates the initial probability of the given sample. Then, it checks whether this

maximum probability is lower than τ . If this value is lower than the threshold, traversing

this branch is unnecessary since counterfactuals will not be found.

Definition 11 (Maximum Probability). Given a node with an action a and a set of fixed

features D. The model’s probability consists of the maximal probability max f(a′) where

a′ is an action with the same fixed features as a.
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MAPOCAM presents counterfactual explanations to the user by showcasing actionable

insights through alternative instances in the feature space. This multi-objective criteria

ability is one notable aspect of this algorithm. It allows the user to determine the optimal

trade-off of variable changes.

Despite his promising contributions, MAPOCAM faces limitations. One significant

constraint is its tendency to traverse a vast grid of feature values without ensuring they

align with the underlying data distribution. This can lead to the generation of coun-

terfactual explanations that, while technically valid, may not be practically feasible for

end-users, reducing their utility. Another notorious limitation is its dependence on model

monotonicity for computational efficiency. While it is effective for linear models, this

assumption may not apply to complex models like neural networks, possibly impacting

the algorithm’s effectiveness.

3.3 Feasible Counterfactual Explanations

Generating alternative scenarios or instances that are valid but also practical and useful

for end users improves the user experience and usability of counterfactual explanations.

Verma et al. (2022) [37] shows that the literature defines feasible counterfactual explana-

tions as instances that present data distribution behavior.

Definition 12 (Feasible Counterfactual Explanations). Feasible Counterfactual Explana-

tions are composed of instances that present the behavior of the data distribution, making

your actions more applicable and closer to reality.

3.3.1 Outlier Detection

An efficient technique used by Kanamori et al. (2020)[16] to verify the feasibility of coun-

terfactual explanations is Outlier Detection. Counterfactual explanations are assessed by

incorporating outlier detection techniques to ensure they do not deviate significantly from

the normal data distribution, thus enhancing their feasibility and relevance in decision-

making processes.

Definition 13 (Outlier Detection). Outlier Detection or Anomaly Detection, refers to

the process of identifying data points that significantly deviate from most of the dataset.

These outliers differ markedly from other observations, potentially indicating variability

in the data, errors, or novel insights.

3.3.2 Isolation Forest

Liu et al. (2008) [18] proposed the Isolation Forest algorithm to classify outliers by

analyzing the distance between regular and anomaly points. It creates random partitions

or splits in the data, which helps to isolate anomalies more quickly than normal data

points. The algorithm works by building an ensemble of isolation trees, where each tree is

constructed by randomly selecting a feature and a split value to isolate anomalies. Thus,

anomalies are identified as data points requiring fewer splits to isolate, indicating that
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they differ from most of the data. It offers efficient computational processing compared

to density estimation techniques because by replacing clusters of regular points with sub-

samples, the algorithm quickly identifies anomalies in a lower score sample space. This

approach makes Isolation Forests more scalable than traditional methods in anomaly

detection literature.

3.4 Model-Agnostic Counterfactual Explanations

Generating Model-Agnostic Counterfactual Explanations from a Machine Learning model

is a complex task, as the model operates like a black box - concealing its internal work-

ings. This process facilitates a deeper understanding of the decision-making process in an

independent and flexible manner, regardless of the type of Machine Learning algorithm

employed. Consequently, this approach broadens the applicability of counterfactual ex-

planations to any type of Machine Learning model, enhancing their utility across diverse

applications.

Definition 14 (Model-Agnostic Counterfactual Explanations). Model-Agnostic Counter-

factual Explanations refer to the application of Contrafactual Explanation techniques that

are independent of factors internal to the model to access its decision-making.

SHAP Values

SHAP (SHapley Additive exPlanations) values proposed by Lundberg and Lee (2017)

[19] serve as a crucial method in Machine Learning for elucidating the model’s output by

assigning significance to each feature’s contribution towards the final prediction. These

values are calculated by evaluating the model predictions with and without the inclusion

of a specific feature, to verify the contribution of each feature or sample in the dataset.

By incorporating the intricate relationships and dependencies between features in pre-

diction outcomes, SHAP offers a sophisticated and realistic assessment of feature im-

portance. Unlike conventional feature importance techniques, which often provide an

oversimplified view by considering features in isolation, SHAP accounts for the interac-

tion effects and the contextual influence of each feature on the model’s predictions. This

nuanced approach allows SHAP to distribute the contribution of each feature fairly and

consistently, based on cooperative game theory principles. As a result, it provides a more

accurate and interpretable measure of feature importance, which is particularly valuable

in complex models with interdependent features.

Although SHAP may incur slightly higher computational costs in terms of time, its

combination with branch-and-bound counterfactual search techniques can provide signif-

icant benefits that justify this investment. The branch-and-bound method systematically

explores the solution space, efficiently narrowing down potential counterfactuals by elim-

inating suboptimal branches. Consequently, the slightly increased computational time is

offset by the substantial gains in the precision and reliability of the outcomes, making

it a worthwhile trade-off in many applications where understanding and trust in model

predictions are paramount.
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Chapter 4

Proposed Framework

In this study, we introduce a novel framework that prioritizes the development of fea-

sible solutions and underscores model-agnosticism for black box models. We call this

framework Model-Agnostic Pareto-Optimal Feasible Counterfactual Explanations Min-

ing (MAPOFCEM). Its structure is based on the MAPOCAM methodology proposed by

Raimundo et al. (2022) [28] but ensures the feasibility of the solutions generated through

an approach similar to that of Axel Parmentier and Tribaut Videl (2021) [25], which

utilizes the Isolation Forest algorithm to identify outliers during the search for counter-

factuals. Additionally, MAPOFCEM improves MAPOCAM by removing the constraint

on model monotonicity necessary for an efficient search of counterfatuals. To this end,

it promotes the exploration of solutions by leveraging SHAP [19] to assess the impact of

each potential solution in the breach-and-bound search.

4.1 Excluding Outliers in the Counterfactual Search

One critical gap that MAPOFCEM aims to adress in MAPOCAM is its inability to

provide actionable insights due to detachment from real-world constraints. MAPOCAM

frequently explores an extensive range of feature values without ensuring alignment with

the underlying data distribution. Consequently, this results in counterfactual explanations

that may not be practically feasible for end-users, reducing their utility. To address

these shortcomings, MAPOFCEM aims to integrate domain-specific knowledge and data

distribution awareness by using Outlier Detection, in order to avoid proposing unfeasible

counterfactuals in the proposed solutions.

The formulation of the problem is as follow: with a observation x ∈ R
d, where d

comprises a vector of features, and a binary outcome y ∈ {0, 1} that is the output of

a decision function r : Rd → [0, 1]. The output of r is the probability of the positive

outcome, and is discretized with a threshold τ that y is 1 when r(x) g τ and 0 when

r(x) < τ . An action a = [a1, ..., ad] on an observation x is a list of changes ai ∈ R,

∀i ∈ {1, ..., d} on feature values that creates a new synthetic sample x+ a.

We are interested in actions x+ a where r(x) f τ and achieve r(x+ a) g τ . Thus, let

A′ = {a ∈ R | r(x+ a) g τ} be the set of solutions that are defined as conterfactual, and

µ(·) an outlier detection function (where µ(·) = 0 defines an inline sample and µ(·) = 1 an
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outline sample). If µ(x+a) ̸= 1, i.e, x+a is not an outlier, then a is a solution proposed by

MAPOFCEM. The algorithm search for solutions in the set A = {a ∈ A′ | µ(x+ a) ̸= 1}.

We illustrate this scenario in Figure 4.1, where the Isolation Forest algorithm was

applied to a set of data that has been classified by a Credit Risk Assessment algorithm

as good and bad payers based on the loan amount requested and age. The green items

refer to good payers, with approved credit analysis, and the red were credit denied. In

this 2D visualization, it is possible to observe that the data density increases near the

bottom left corner, that is, the majority of the data presents these characteristics. The

points marked with “x”, identified as outliers by the Isolation Forest algorithm, display

values outside this data density, where feature values are less frequent compared to the

majority of the data set, indicating sparser regions within the feature space.

Figure 4.1: Outliet Detection technique.

By incorporating the criteria for choosing solutions based on outlier detection, the

MAPOFCEM approach may restrict some of the solutions found by MAPOCAM. For

instance, consider that for a given instance, MAPOCAM identified 5 solutions, which 3

of them are discrepant. MAPOFCEM search will consider only the 2 feasible solutions

found by MAPOCAM and will continue the search if a number of solutions equal to 2 has

not been defined. Therefore, evaluating the impact of Isolation Forest’s Contamination

hyperparameter is necessary, as it adjusts the model’s sensitivity to anomaly detection.

A substantial increase in this parameter leads to heightened outlier identification, po-

tentially reducing the number of solutions yielded by MAPOFCEM. Given the necessity

for domain-specific insights, this parameter was incorporated as a user-input criterion to

enhance adaptability across different datasets, ensuring flexibility in application.

Furthermore, the outlier detection approach increases the efficiency of the counterfac-

tual search, as it works as a pruning mechanism with the MAPOCAM branch-and-bound

strategy. For instance, deeming a decision node non-viable can cascade to render subse-

quent nodes non-viable, streamlining the search process.
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4.2 Adapting the Maximum Probability Function

The pruning technique employed in MAPOCAM [28] involves assessing the maximum

probability that a partial counterfactual can achieve. This technique calculates the initial

probability of the given sample. Then it verifies if the maximum probability is lower

than τ . If this value is lower than the threshold, traversing through this branch becomes

unnecessary, as counterfactuals will not be found.

MAPOCAM estimates the maximum probability under the assumption of model

monotonicity. If a feature value increases and the probability increases, increasing this

feature value even more should only increase the probability (or at least keep the same

value). It is worth noting that many widely used Machine Learning models, including

KNN, Neural Networks, SVM, and others, do not adhere to this assumption.

Considering Feature and Sample Importances

To address this issue, SHAP values [19] were employed to estimate an upper bound on

the maximum probability in a node by considering the importance of features. In more

detail, we have a partial solution x with a set of features D that will not have their values

altered (a constraint set by the user fixes them or they are fixed because their values have

already been altered previously in the search process).

Let X(x,D) denote the space where all elements have the same values on the fixed

features as x, i.e. if x̃ ∈ X(x,D) =⇒ xi = x̃i, ∀i ∈ D. The goal is to determine

max
x̃∈X(x,D)

r(x̃), which represents the highest probability among observations with identical

feature values as x in the features of D. If max r(x̃) < τ , than there isn’t any valid

counterfactual in X(x,D) and a search is not necessary in this region.

SHAP obtains additive feature attributions, i.e., for each sample x, the feature contri-

bution value to the prediction can be calculated. For instance, r(x) = E[r(x)]+
∑d

i=0 φi(x),

where φi(x) represents the contribution of the i-th feature. Notice that
∑

i∈D φi(x) reflects

the contribution of fixed features, while
∑

i/∈D φi(x) pertains to the open ones. These fea-

ture attributions can be used to estimate the maximum effect of an open feature (not in

D) have on the final prediction.

With access to a dataset X ∈ R
n×d, feature attributions can be calculated for all

samples, resulting in a dataset of feature attributions Φ ∈ R
n×d, where φi,p denotes the

feature attribution of sample i for attribute p. Subsequently, the maximum contribution

of each feature can be determined as φp = maxi φi,p, ∀p ∈ {1, . . . , d}. This approach allows

establishing the upper limit for the initial problem:
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max
x̃∈X(x,D)

r(x̃) =E[r(x)] +
∑

i∈D

φi(x
⋆) +

∑

i/∈D

φi(x
⋆)

fE[r(x)] +
∑

i∈D

φi(x
⋆) +

∑

i/∈D

φi

=E[r(x)] +
∑

i∈D

φi(x) +
∑

i/∈D

φi +

(

∑

i∈D

φi(x
⋆)−

∑

i∈D

φi(x)

)

=E[r(x)] +
∑

i∈D

φi(x) +
∑

i/∈D

φi +R(x,D)

≈E[r(x)] +
∑

i∈D

φi(x) +
∑

i/∈D

φi

=r(x)−
∑

i/∈D

φi(x) +
∑

i/∈D

φi

(4.1)

where x⋆ solves the maximization problem, φi(x) and φi(x
⋆) are the SHAP values for the

i-th feature for the solutions x and x⋆ respectivelly. Notice that this upper bound has

a residual term R(x,D) that is the difference between features attributions of the initial

observation x and the solution x⋆ have on the set of fixed features D. We can show that

R(x,D) is bounded by the size X(x,D) when r has certain characteristics.

By leveraging an upper bound, the maximum probability of branches is overstated,

which could increase computational time. Nevertheless, this overestimation does not

compromise the quality of the solutions obtained, ensuring that unnecessary branches are

pruned effectively. Since determining the maximum (φ) SHAP values for samples in X is

not possible, we approximate these maximum SHAP values by selecting the highest value

from n random samples within X .

Considering the Number of Changes

We can make a small alteration to the previously formulated problem to further reduce

computing costs. This is done by considering that the generation of counterfactuals

is usually done with a constraint on how many features at max can be changed. Let

k be the number of features that can be further altered from the partial solution x.

X(x,D,k) = {x̃ ∈ X(x,D) |
∑n

i=1 I[xi ̸= x̃i] f k} i.e., is the set of elements that have at most

k open features different from x. Let be Ok ¦ DC be the set of k open features that have

the k-biggest φi, i.e., if i ∈ Ok =⇒ φi g φj∀j /∈ Ok. Using the same idea from the

previous proof, we can obtain a similar upper-bound:

max
x̃∈X(x,D,k)

r(x̃) f r(x)−
∑

i∈Ok

φi(x) +
∑

i∈Ok

φi (4.2)

As Ok ¦ D this formulation gives an upper bound that is lower than the previous one

obtained, and more frequently will result in values smaller than τ , reducing the number

of sets that need to be searched by the algorithm.
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4.3 Algorithm

Algorithm 2 presents the pseudocode for MAPOFCEM. Changes made to MAPOCAM

are colored blue within the code. The algorithm functions as follows: it iterates through

the search grid by modifying one feature at a time. For each potential feature value being

changed, it evaluates the impact on secondary features, continuing this process until the

maximum number of changes is reached. The vector A is used to record the solutions

found; any value greater than 0 means a change.

Algorithm 2: MAPOFCEM

Input: A sample x, an objective function c, an outlier detection function µ(·), a
decision rule r(·), a threshold τ and a number of allowed changes k.

1 procedure ENUMERATE(a,D,A)
2 if |i : ai ̸= 0∀i ∈ D| > k or ∃a′ ∈ A : c(a) ° c(a′) then
3 return;
4 end
5 x′ ← copy of x stating unchanged values as missing D;
6 if µ(x′) = 1 then
7 return

8 end
9 r ← maximum probability of x+ a with fixed values D;

10 if r < τ then
11 return;
12 end
13 if r(x+ a) g τ then
14 if µ(x+ a) ̸= 1 then
15 A = A ∪ {a} return;
16 end

17 end
18 i = SELECT_FEATURE(∀i : i /∈ D);
19 for ∀a′ : a′i g ai do
20 ENUMERATE(a′,D ∪ {i},A)
21 end

22 end procedure
23 Algorithm MAPOFCEM(x, c, µ, r(·), τ, k)
24 D = {},A = {};
25 ai = 0 ∀ai ∈ {1,...,d};
2727 ENUMERATE(a,D,A);
2929 return A;

The search process begins by checking if the maximum allowable changes have been

reached or if the new solution surpasses the cost of a previous solution (lines 2-4). In the

following, the algorithm verifies if the partial solution is already an outlier; if it is, further

actions are not considered in this partial solution (lines 5-8). Not all outlier detection

algorithms can evaluate an observation with missing features. Our experiments utilized

the Isolation Forest algorithm, which, due to its modeling in a tree, can deal with missing

values by walking along multiple branches of the trees. The algorithm calculates the
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maximum probability of x + a and checks whether this value exceeds the threshold τ

established (lines 9-12). If τ has not been exceeded, it is unnecessary to continue the

search. Subsequently, the algorithm validates whether the current sample constitutes a

solution and, if so, whether it qualifies as a feasible solution (not an outlier). The current

solution is added to the collection of obtained solutions upon meeting these criteria (lines

13-17). In cases where none of the previous return commands has stopped the function,

the algorithm recursively selects the next feature for evaluation (lines 18-21).

Algorithm 3, called by Algorithm 2, presents the pseudocode for estimating the max-

imum probability of a partial solution based on the previous presentation. It starts by

calculating the model probability r(x) and the feature attributions of x. Then, features

are iterated for the decreasing ordering of φ (SHAP maximum feature attributions). If

such a feature is not fixed, the maximum probability is increased with the difference

(φi − φi). A counter j is utilized to consider only k features.

Algorithm 3: Estimate Maximum Probability

Input: Partial solution x, a decision rule r(·), fixed features D, number of
maximum allowed changes k, maximum feature attributions φ

1 r ← r(x);
2 φ← SHAP feature attributions of x and r;

3 S ← features index i in decreasing order of φ;
4 j ← 0;
5 for i ∈ S do
6 if i ∈ D then
7 continue;
8 end

9 r ← r + (φi − φi);
10 j ← j + 1;
11 if j g k then
12 break

13 end

14 end
15 return r
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Chapter 5

Material and Methodology

In this section, we will introduce the hardware, software, datasets, classifier algorithms,

and outlier detection algorithm utilized in the research. In addition, we will outline the

general experimental setup and the specific configurations of the experiments.

5.1 Hardware

In the course of this research, the primary computing device employed was a Dell Vostro

15 laptop whose specifications include an Intel Core i7 processor, 8GB of RAM and 256GB

SSD, which collectively ensured efficient processing and storage capabilities.

5.2 Software

The operating system installed on the Dell Vostro 15 was Linux Ubuntu, specifically the

latest version available at the time of the research, and the key programming language

used in the research was Python.

5.3 Datasets

Addressing the Credit Analysis challenge, experiments were conducted using two widely

recognized datasets commonly referenced in literature: German Credit Risk and Taiwan

Default of Credit Card Clients.

German Credit Risk

The German Credit Risk1 dataset (Appendix A - Table A.1) has a total of 1000 rows, and

it is composed by two targets, 1: good customers and -1: not good customers, in the Good

Customer column. In the data sample, 700 rows are related to good customers and 300 to

not good customers. The nature of this data is tabular, counting with 30 representative

features, where two of them are categorical.

1https://github.com/ustunb/actionable-recourse/tree/master/examples/paper/data/german
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Taiwan Default of Credit Card Clients

The Taiwan Default of Credit Card Clients2 dataset (Appendix B - Table B.1) has a total

of 30.000 rows, where the default.payment column has two labels, 1: Yes and 0: No. The

label 0 has a total of 23.364 samples and the label 1 has 6.636 samples. This is also a

tabular dataset, which has 25 columns of numerical data.

5.4 Classifier Algorithms

In the experiments, the Credit Risk Assessment Machine Learning Classifiers were con-

structed by employing two well-established algorithms, LightGBM and MLPClassifier.

LightGBM

The LightGBM3 (LGBM) algorithm is a high-performance gradient-boosting framework

developed by Microsoft, known for its efficiency, scalability, and accuracy [17].

The following LGBM hyperparameters were used in the experiments:

• n_estimators

• learning_rate

• max_depth

• colsample_bytree

• reg_alpha

• verbose

• random_state

MLPClassifier

The MLPClassifier4 algorithm is a neural network that optimizes the log-loss function [4].

The following MLPClassifier hyperparameters were used in the experiments:

• hidden_layer_sizes

• learning_rate_init

• epochs

• class_weight

• batch_size

• random_state
2https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-dataset
3https://lightgbm.readthedocs.io/en/latest/pythonapi/lightgbm.LGBMClassifier.html
4https://scikit-learn.org/stable/modules/generated/sklearn.neuralnetwork.MLPClassifier.html
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5.5 Outlier Detection Algorithm

Isolation Forest

The Isolation Forest5 algorithm returns the anomaly score of each sample requested [18].

The following Isolation Forest hyperparameters were used in the experiments:

• ndim

• sample_size

• sample_size

• max_depth

• ntrees

• missing_action

• contamination

5.6 General Setup

A set of experiments to evaluate MAPOFCEM were performed in different settings and

compared with baselines and competitors’ techniques.

Data Pre-Processing

For the German Credit Risk dataset, the Gender variable was changed to is_male, a

binary variable that checks whether the user is 1 −Male or 0− Not Male. The variable

Purpose Of Loan was excluded due to the inability to categorize it due to the wide range

of possibilities it has. For simplicity, the target was inverted, so Good− 1 represents that

the credit is lent and Bad− 0 that the individual is default.

For the Taiwan Default of Credit Card Clients dataset, the features that start with

"BILL_AMT", "PAY_AMT" and "LIMIT_BAL" have their values converted from NTD

to USD (1 USD - 32.75 NTD). Also, the target default.payment was inverted to No De-

fault, so No − 1 represents that the credit is lent and Y es − 0 that the individual is

default. The MARRIAGE feature was categorized by 1 − Married, 2 − Single and

3−Other. Also, the feature AGE was categorized by < 25, from 25 to 39, from 40 to 59

and >= 60. The categories of the feature EDUCATION were inverted to Graduate− 3,

University − 2 and HighSchool − 1. Also, new features were created, such as: MaxBil-

lAmountOverLast6Months, MaxPaymentAmountOverLast6Months, MonthsWithZeroBal-

anceOverLast6Months, MonthsWithLowBalanceOverLast6Months, MonthsWithHighBalan-

ceOverLast6Months, MostRecentBillAmount, MostRecentPaymentAmount, TotalOverdue-

Counts, TotalMonthsOverdue, HistoryOfOverduePayments.

5https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html



35

Classifier Model Training

To train classifiers with each data set, the data sets were divided into 40% for training,

50% for testing and 10% for validation. The hyperparameters described in the previous

section were tuned to obtain the best performance of each dataset and algorithm. The

hyperparams optimization of the LGBM model was performed with the validation set

using Optuna6.

Outlier Detection Model Training

Furthermore, two outlier detection algorithms were trained. The first one was trained with

the training subset, and the second one was trained on the testing data for evaluation.

Using two outlier detection models is important as MAPOFCEM utilizes one trained on

the training data subset. To prevent data leaking, counterfactual explanations will be

evaluated with an outlier detection model trained specifically on the test subset.

5.7 Evaluation Metrics

Outlier Detection Percentage (ODP) Metric

Definition 15 (The Outlier Detection Percentage). ODP is a quantitative metric used to

evaluate the effectiveness of different algorithms in detecting outliers within a dataset. It

measures the proportion of outliers identified by an algorithm relative to the total number

of solutions generated by that algorithm.

Let Noutliers be the number of outliers identified by the algorithm, and Ntotal_solutions

be the total number of solutions generated by the algorithm. The Outlier Detection

Percentage (ODP) is calculated using the formula:

ODP =

(

Noutliers

Ntotalsolutions

)

× 100

Score Samples Metric

Definition 16 (Score Samples). The Score Samples metric is a measure used to evaluate

the anomalousness of data points within a dataset using the Isolation Forest algorithm. It

provides a score indicating how isolated a data point is relative to others in the dataset,

with higher scores suggesting greater anomalies.

Let PathLength(x) be the average path length for a data point x across all trees in

the Isolation Forest. H(n) be the average path length of unsuccessful searches in Binary

Search Trees, which is approximately 2 · log(n − 1) + 0.5772156649 (Euler’s constant),

where n is the number of samples in the dataset. The anomaly score for a data point x,

denoted as Score(x), is calculated using the formula:

Score(x) = 2−
PathLength(x)

H(n)

6https://optuna.readthedocs.io/en/stable/
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Where:

• A score close to 1 indicates that the data point is an anomaly (more isolated).

• A score close to 0 indicates that the data point is not an anomaly (less isolated).

Execution Time (ET) Metric

Definition 17 (Execution Time). ET metric measures the duration required by a coun-

terfactual search algorithm to complete its task of exploring alternative scenarios.

Let: Tstart be the timestamp when the counterfactual search algorithm begins its exe-

cution, and Tend be the timestamp when the algorithm completes its task. The Execution

Time (ET) is calculated using the formula:

ET = Tend − Tstart

Where ET is expressed in seconds and represents the total duration taken by the

algorithm to perform its task.

Cost Metric

Definition 18 (Cost). The Cost metric quantifies the distance between the solutions

obtained and the original data point in terms of a percentile. This normalized measure

provides an interpretable assessment of how far the solutions deviate from the original

data point in the feature space.

Let xorigin be the origin data point in the feature space, and xsolution be the solution

data point obtained by the algorithm. d(xorigin,xsolution) be the distance metric used to

quantify the difference between the original and solution data points. This could be a

Euclidean distance, Manhattan distance, or any other suitable distance measure. The

Cost metric is calculated using the formula:

Cost =
d(xorigin,xsolution)

Pd

× 100

Where Pd is a percentile threshold or normalization factor that represents the typical

range or spread of distances in the dataset.

Number of Changes (NC) Metric

Definition 19 (Number of Changes). The NC metric counts the number of feature mod-

ifications proposed by an algorithm to achieve a counterfactual solution. It serves as a

measure of the effort or complexity involved in transitioning from the original instance to

the counterfactual.

Let: xorigin = (x1, x2, . . . , xn) be the origin data point with n features. xsolution =

(x′
1, x

′
2, . . . , x

′
n) be the counterfactual solution data point.
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The Number of Changes (NC) is calculated using the formula:

NC =
n
∑

i=1

δ(xi, x
′

i)

Where δ(xi, x
′
i) is a function that returns 1 if the feature xi in the origin data point is

different from the feature x′
i in the solution, and 0 otherwise. It can be expressed as:

δ(xi, x
′

i) =

{

1, ifxi ̸= x′
i 0,

ifxi = x′
i

5.8 Experiments Setup

Baselines Comparison

In the experiments, the following open source strategies that seek counterfactual expla-

nations were used as benchmarking: NICE, DiCE, MAPOCAM and BruteForce. Related

works in the literary review did not have codes available for use in the experiments.

Experiment I - Outlier Detection 2D View

• Goal: The Experiment I was conducted in a 2D feature space to illustrate the

impact of MAPOFCEM on the feasibility of solutions compared to baselines.

• Dataset: German - Features: LoanAmount and Age.

• Algorithm: LGBM Classifier.

• Baselines: NICE, DiCE, MAPOCAM and BruteForce.

• Methodology: Two Isolation Forest algorithms were trained using contamination :

0.05. The first was trained using training data, and it was used inside MAPOFCEM’s

outlier detection function, while the second was trained using test data to identify

outliers in solutions from each baseline methodology.

• Metric: Visual Evaluation.

Experiment II - Outlier Detection Percentage

• Goal: The Experiment II was conducted to show the percentage of outliers detected

for each baseline compared to MAPOFCEM strategy.

• Datasets: German and Taiwan.

• Algorithm: LGBM and MLP Classifiers.

• Baselines: NICE, DiCE, MAPOCAM and BruteForce.
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• Methodology: This experiment also uses two Isolation Forest algorithms, one

trained with training data to be used within the MAPOFCEM outlier detection

function and other trained with test data to check outliers in the solutions proposed

by the baselines. The contamination hyperparameter used by the Isolation Forest

algorithms was set as 0.05 to German dataset and 0.01 to Taiwan dataset. The

percentage of outliers was calculated for the total number of solutions found by

each baseline. The simulations were performed to search for counterfactuals in 50

samples and the average results found were listed in tables with the maximum range

of variation found.

• Metric: Outlier Detection Percentage (ODP) and Score Samples.

Experiment III - Time, Cost and Number of Changes

• Goal: The Experiment III was conducted to show the time and cost calculated for

each baseline to obtain solutions compared to MAPOFCEM, and the number of

proposed changes considered.

• Datasets: German and Taiwan.

• Algorithm: LGBM and MLP Classifiers.

• Baselines: NICE, DiCE, MAPOCAM and BruteForce.

• Methodology: The simulations were performed to search for counterfactuals in 50

samples and the average results found were listed in tables with the maximum range

of variation found for execution time in seconds, cost and number of changes.

• Metric: Execution Time (ET), Cost and Number of Changes (NC).

Experiment IV - Multi-objective Analysis

• Goal: The Experiment IV was conducted with the aim of verifying the impact of

using multi-objectives compared to Experiments II and III.

• Datasets: German.

• Algorithm: LGBM and MLP Classifiers.

• Baselines: NICE, DiCE, MAPOCAM and BruteForce.

• Methodology: The same of Experiment II and Experiment III.

• Metric: Outlier Detection Percentage (ODP) and Score Samples, Execution Time

(ET), Cost and Number of Changes (NC).
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Experiment V - Analysis of Contamination Hyperparameter

• Goal: The Experiment V was conducted to show the impact of varying the contamination

hyperparameter of the Isolation Forest algorithm used in MAPOFCEM.

• Datasets: German and Taiwan.

• Algorithm: LGBM Classifier.

• Baselines: NICE, DiCE, MAPOCAM and BruteForce.

• Methodology: The simulations were performed to search for counterfactuals in

50 samples and the average results found were listed in tables with the maximum

range of variation found, using 5 contamination hyperparameters values: 0.005,

0.01, 0.05, 0.075 and 0.1.

• Metric: Execution Time (ET), Cost, Outlier Detection Percentage (ODP) and

Score Samples.
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Chapter 6

Results and Discussions

6.1 Experiment I - Outlier Detection 2D View

In this experiment, each strategy presents a 2D visualization in which the individual who

wants an explanation is represented by a black dot, individuals with accepted credit are

green, and individuals with rejected credit are red. The strategy identifies orange elements

as counterfactual solutions, and the individuals represented with an "x" are outliers found

by the Isolation Forest trained with the test data.

NICE. Figure 6.1 illustrates the results of Experiment I for the NICE algorithm. NICE

(Nearest Instance Counterfactual Explanations) is a cutting-edge algorithm developed

by Brughmans et al. (2023) [6] that typically offers a single solution for each selected

individual. In this case, the counterfactual solution identified by NICE was flagged as an

outlier despite the proximity of the identified counterfactual to the individual, as outliers

detected by Isolation Forest encompass its neighborhood.

Figure 6.1: NICE - Experiment I Results.
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NICE uses the nearest-neighbor strategy to find solutions closest to the individual.

For this particular example, the only solution found was detected as impractical by the

Isolation Forest, which could have been classified as a feasible solution if the contamination

hyperparameter used in the experiment was more flexible. Experiment IV will showcase

how the variation of this hyperparameter can impact the solutions found.

DiCE. Figure 6.2 illustrates the results of Experiment I for the DiCE algorithm. Diverse

Counterfactual Explanations (DiCE) is a framework introduced by Mothilal et al. (2020)

[22] that presents an approach that provides multiple solutions within the feature space for

each selected individual. In this case, three solutions were found and two were identified

as outliers by the Isolation Forest algorithm. For these solutions identified as outliers, it

is possible to verify whether both have a significant distance from the data distribution

while the inlier solution found is on the edge of the data distribution.

Figure 6.2: DiCE - Experiment I results.

DiCE uses the determinant of the kernel matrix to guarantee the diversity of counter-

factuals, but this experiment showed that this strategy also presents unfeasible solutions.

MAPOCAM. Figure 6.3 illustrates the results of Experiment I for the MAPOCAM

algorithm, which uses multiobjective analysis based on Pareto-optimal solutions. In this

case, MAPOCAM found 3 edge counterfactuals, where Isolation Forest recognized them

as outliers. As MAPOCAM uses branch-and-bound techniques that use the number

of changes as a criterion for stopping the search, the algorithm ended the search after

identifying 3 changes for the individual. This meant that potential solutions were not

found within the data distribution, which did not achieve the feasibility of its solutions.
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Figure 6.3: MAPOCAM - Experiment I Results.

BruteForce. Figure 6.4 illustrates the results of Experiment I for the BruteForce al-

gorithm. BF operates by iterating possible changes to selected features and evaluating

the impact of these changes on the outcome of interest. The strategy adopted by this

algorithm calculates all possible solutions during the counterfactual search. The result

found for this experiment is very similar to the result obtained by MAPOCAM but with

a processing time much higher than that of MAPOCAM, which uses cuts to optimize the

counterfactual search.

Figure 6.4: BruteForce - Experiment I Results.
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MAPOFCEM. Figure 6.5 illustrates the results of Experiment I for the MAPOFCEM

algorithm, where one inlier counterfactual was found at the edge of the data distribu-

tion. Analyzing this result, the breach-and-bound strategy used by MAPOCAM was

employed by MAPOFCEM to find the optimal solution. However, the search was not

interrupted after MAPOFCEM’s internal strategy that uses the Isolation Forest trained

with the training data identified that the first counterfactual search solutions were unfea-

sible. This is the main difference between the results of MAPOCAM and MAPOFCEM

in this experiment. The feasibility of the solutions found has a significant impact on the

strategies used by the algorithms. It is also possible to note that although the maxi-

mum number of solutions is up to 3 possible solutions, MAPOFCEM considered only

1, while MAPOCAM presented 3 solutions. This is also because this variable is part of

MAPOFCEM’s maximum probability function, where pruning will restrict the range of

other options considered in MAPOCAM.

Figure 6.5: MAPOFCEM - Experiment I Results.

Although MAPOFCEM found an inlier individual in this particular case, it could also

have found outlier individuals due to the detection being done by an Isolation Forest

algorithm that uses the test data. In contrast, the Isolation Forest used by MAPOFCEM

uses the training data. This variation in cases will depend on how much the training data

distribution is different from the distribution of the test data.

In summary, the results obtained in this experiment illustrated the impact of consid-

ering the feasibility of the solutions proposed for users. In the real world, algorithms are

trained with dozens or hundreds of features, increasing this 2D feature space even more.

Therefore, Experiment II was conducted to illustrate the scope of these impacts in a larger

feature space and with different databases.
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6.2 Experiment II - Outlier Detection Percentage

In this experiment, each strategy presents outlier percentage values and score samples,

which is the metric used by Isolation Forest to determine the probability of a sample

being an outlier. This parameter is calculated based on the number of partitions needed to

isolate a sample. Samples isolated quickly (with few partitions) are considered anomalous,

while those requiring more partitions are seen as normal. A threshold of 0.5 is commonly

used to differentiate between normal and anomalous samples, as the algorithm assumes

that half of the data is normal and the other half may contain anomalies. In this scenario,

individuals with a score above 0.5 are classified as outliers. The following tables present

the average values found in the search for counterfactuals from 50 samples.

6.2.1 LGBM

The Table 6.1 presents the results found by using the LBGM Classifier.

Table 6.1: Percentage of outliers detected by each strategy using LGBM classifier

Datasets German Taiwan
Algorithm Outliers Score Samples Outliers Score Samples
NICE 12% 0.481 6% 0.457
DiCE 14% 0.502 20% 0.504
MAPOCAM 22% 0.521 6% 0.454
BruteForce 20% 0.523 6% 0.461
MAPOFCEM 6% 0.509 4% 0.450

Upon analyzing the results for the German dataset, it is possible to see that the

MAPOFCEM strategy of using an Isolation Forest trained on the training data achieved

the best outlier percentage ratio of just 6%. In contrast, the MAPOCAM strategy ex-

hibited the highest outlier percentage of 22%. This disparity arises because MAPOCAM

employs a strategy that identifies Pareto optimal values without considering the underly-

ing data distribution.

Similarly, when analyzing the results for the Taiwan dataset, it is possible to see that

the strategy used by MAPOFCEM achieved the lowest percentage of outliers. Mean-

while, NICE, MAPOCAM, and BruteForce exhibited comparable outlier percentages,

also closely aligning with MAPOFCEM. A noticeable general decrease in the percentage

of outliers is observed compared with the German dataset. This is attributed to the

different contamination values used for the German (0.05) and Taiwan (0.01) datasets.

The lower contamination index for the Taiwan dataset is justified by the optimal perfor-

mance of MAPOFCEM with this value in Experiment V. This Experiment underscores

the significant impact of the contamination hyperparameter across these datasets.

Another noteworthy aspect is that, ideally, the strategy employed by MAPOFCEM

should yield outlier percentages very close to 0%. However, the reason these values are

higher is due to the Isolation Forest used in the counterfactual search, which considers the

distribution of the training data, whereas the experiment relies on the distribution of the
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test data. The degree of divergence between these distributions influences the number of

outliers identified by the MAPOFCEM strategy.

6.2.2 MLP

Table 6.2: Percentage of outliers detected by each strategy using MLP classifier

Datasets German Taiwan
Algorithm Outliers Score Samples Outliers Score Samples
NICE 4% 0.468 0% 0.441
DiCE 20% 0.519 4% 0.483
MAPOCAM 24% 0.524 2% 0.437
BruteForce 24% 0.526 4% 0.462
MAPOFCEM 15% 0.514 2% 0.437

Table 6.2 presents the results found using the MLP Classifier. The results obtained

for the German dataset showed that the NICE strategy achieved the best percentage of

detected outliers with just 4%, while MAPOFCEM, the second best, presented a per-

centage of 15%. It is interesting to note the impact of changing the type of classifier

on MAPOFCEM’s performance. However, in general, the other algorithms also present

higher percentages of outliers than with LGBM, highlighting the advantage of NICE when

used with MLP models. For the Taiwan dataset, the contamination index of 0.01 sig-

nificantly contributed to reducing outlier identification across all strategies. However,

NICE identified no outliers, and MAPOFCEM exhibited the same outlier percentage as

MAPOCAM.

6.3 Experiment III - Time, Cost and Number of Changes

In this experiment, each strategy presents values for time, cost and number of proposed

changes. The cost measure was proposed to represent the distance, in percentile, of the

solutions obtained from the individual. The following tables present the average values

found in the search for counterfactuals from 50 samples.

6.3.1 LGBM

Table 6.3: Time, cost and number of changes for each strategy using LGBM classifier

Datasets German Taiwan
Algorithm Time Cost Changes Time Cost Changes
NICE 0.01 (± 0.00) 0.385 1.42 0.02 (± 0.00) 0.238 2.22
DiCE 0.20 (± 0.04) 0.520 1.72 0.24 (± 0.01) 0.608 1.64
MAPOCAM 0.46 (± 1.26) 0.065 2.14 7.66 (± 21.23) 0.054 2.56
BruteForce 46.92 (± 1.30) 0.064 1.56 313.27 (± 22.82) 0.322 1.64
MAPOFCEM 0.36 (± 0.60) 0.099 2.08 4.37 (± 25.37) 0.065 2.49
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Table 6.3 presents the results found by using the LGBM Classifier. Evaluating the first

variable, time (seconds), for the German dataset showed that NICE and DiCE exhibited

the best computational times, while BruteForce showed the worst. This is because the

counterfactual search employed by NICE and DiCE does not require exhaustive mining

of the entire feature space to find a solution. However, the solutions identified by these

methods may not align closely with the data distribution, indicating a necessary trade-

off between search time and the feasibility of the results. Additionally, MAPOFCEM

demonstrated better computational times than MAPOCAM, despite utilizing a SHAP-

based feature importance strategy, which is typically more computationally expensive.

This improvement is due to the adaptation of the maximum probability calculation, which

was modified to optimize the counterfactual search further. For the Taiwan dataset,

it is possible to see that the computational times for MAPOFCEM and MAPOCAM

significantly increase. This can be attributed to the complexity of this dataset, which

contains a substantially more significant number of samples than the German dataset.

MAPOCAM and MAPOFCEM strategies demonstrated the best average costs for the

German and Taiwan datasets, with values of 0.065 and 0.099 for the German dataset and

0.054 and 0.065 for the Taiwan dataset, respectively. In other words, these strategies yield

solutions closest to the individual in terms of percentile. This is because these strategies

perform a thorough grid search to find optimal solutions for individuals, aiming for the

lowest implementation cost. Additionally, it can be observed that MAPOCAM achieves

lower costs compared to MAPOFCEM. This difference is related to the Outlier Detection

strategy used in MAPOFCEM, which discards samples closer to the individual but distant

from the data distribution.

The other variable considered is the number of changes proposed by each algorithm.

DiCE and BruteForce demonstrated favorable results for both datasets, proposing fewer

changes across more variables than the other strategies. Notably, MAPOCAM presents

more changes than MAPOFCEM for both datasets. This difference arises from one of the

adaptations made to the MAPOFCEM maximum probability function, which incorporates

the number of changes.

6.3.2 MLP

The Table 6.4 presents the results found by using the MLP Classifier.

Table 6.4: Time, cost and number of changes for each strategy using the MLP classifier

Datasets German Taiwan
Algorithm Time Cost Changes Time Cost Changes
NICE 0.01 (± 0.00) 0.486 2.10 0.02 (± 0.01) 0.510 5.48
DiCE 0.21 (± 0.04) 0.460 2.04 0.27 (± 0.18) 0.662 1.48
MAPOCAM 1.44 (± 6.38) 0.082 1.78 121.68 (± 275.44) 0.202 2.96
BruteForce 57.60 (± 0.83) 0.082 1.42 381.81 (± 32.81) 0.674 2.06
MAPOFCEM 0.41 (± 0.63) 0.081 1.73 60.23 (± 60.41) 0.204 2.96

With MLP, it is possible to see that the computational time for both MAPOCAM

and MAPOFCEM increases considerably for the Taiwan dataset. MAPOCAM’s time is
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twice that of MAPOFCEM. This occurs due to the principle of monotonicity employed by

MAPOCAM, which does not constrain the counterfactual search for black-box algorithms.

Despite this, both strategies continue to offer low-cost solutions that are closely aligned

with the individuals in both datasets. Meanwhile, NICE and DiCE are the strategies that

require the most effort from the user. The DiCE and BruteForce strategies remain the

most stable regarding the number of changes. For the Taiwan dataset, the number of

changes proposed by NICE increased significantly.

6.4 Experiment IV - Multi-objective Analysis

Each strategy presents outlier percentage values, score samples, time, cost, changes,

and many counterfactual solutions found (CFs) in this experiment. The following ta-

bles present the average values found in the search for counterfactuals from 50 sam-

ples. Only strategies that present multiple solutions were considered, and MAPOCAM2

and MAPOFCEM2 are versions of MAPOCAM and MAPOFCEM that present multi-

objective analysis, respectively.

6.4.1 LGBM

Table 6.5: Multi-objective results for LGBM algorithm in German Dataset

Algorithm Outliers Score Samples Time Cost Changes CFs
DiCE 19% 0.508 0.30 (± 0.07) 0.508 1.77 22
MAPOCAM 19% 0.511 0.93 (± 2.67) 0.112 1.29 1
MAPOCAM2 21% 0.514 15.14 (± 13.88) 0.436 2.09 36
MAPOFCEM 1% 0.496 0.51 (± 0.77) 0.150 1.36 1
MAPOFCEM2 7% 0.503 2.12 (± 1.92) 0.434 2.05 23

Table 6.5 presents the results found using the LGBM Classifier. It can be observed

in Table 6.5 that MAPOCAM2’s computational time grows exponentially compared to

MAPOCAM when employing the multi-objective strategy, whereas MAPOFCEM2 demon-

strates control over this effect. This is due to the set of new innovations adopted, specif-

ically the changes within the calculation of the maximum probability function. Further-

more, the implementation of the outlier detection approach significantly contributes to

the results, as MAPOCAM2 presented approximately 36 changes, whereas MAPOFCEM2

presented only 23 changes, and MAPOFCEM2 presented 14% fewer outliers compared to

MAPOCAM2.

6.4.2 MLP

Table 6.6 presents the results found using the MLP Classifier. From Table 6.6, it can be

seen that unlike LGBM, with MLP, the computational time of MAPOFCEM2 grows signif-

icantly, similar to MAPOCAM2, but to a lesser extent than MAPOCAM2. Additionally, it

is interesting to note that the percentage of outliers decreased for both the MAPOFCEM2
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Table 6.6: Multi-objective results for MLP algorithm in German Dataset

Algorithm Outliers Score Samples Time Cost Changes CFs
DiCE 18% 0.509 0.42 (± 0.11) 0.516 1.89 41
MAPOCAM 23% 0.524 2.00 (± 7.00) 0.087 1.37 1
MAPOCAM2 18% 0.509 38.97 (± 20.56) 0.514 2.29 47
MAPOFCEM 14% 0.514 1.94 (± 3.71) 0.094 1.38 1
MAPOFCEM2 6% 0.499 25.89 (± 15.41) 0.517 2.30 40

and MAPOCAM2 multi-objective strategies. However, the MAPOFCEM2 strategy still

showed the best performance with just 6%.

6.5 Experiment V - Analysis of Contamination Hyper-

parameter

In this experiment, each strategy presents values for time, cost, outlier percentage values,

score samples and the index of contamination, which represents the Isolation Forest’s

sensitivity to anomaly detection. The following tables present the average values found

in the search for counterfactuals from 50 samples.

6.5.1 German

Table 6.7: Contamination Hyperparameter results for German Dataset

Algorithm Time Cost Outliers Score Samples Contamination
0.19 (± 0.25) 0.077 18% 0.519 0.0
0.27 (± 0.35) 0.091 20% 0.517 0.005

MAPOFCEM 0.28 (± 0.37) 0.095 12% 0.511 0.01
0.35 (± 0.51) 0.105 4% 0.507 0.05
0.60 (± 1.46) 0.136 0% 0.499 0.075
0.59 (± 1.41) 0.140 0% 0.493 0.1

Table 6.7 presents the results found for the German dataset. It shows that the compu-

tational time also rises as the contamination index increases from 0.0 to 0.1. This occurs

because MAPOFCEM must consider more samples during the counterfactual search, as

those closest to the individual may be outliers. Consequently, the cost of solutions also

increases for the same reason.

Furthermore, it is observable that as the contamination index increases, the percent-

age of outliers identified by MAPOFCEM decreases, eventually reaching 0%. This occurs

because MAPOFCEM becomes progressively less flexible towards values at the edge of

the distribution, increasingly focusing on the core of the distribution. Therefore, it is cru-

cial to study the flexibility of the contamination hyperparameter used, as an excessively

high value may unnecessarily disregard feasible samples. Because of this, in previous

experiments the value of 0.05 was used for German dataset, which is the default value
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of this hyperparameter, as it does not increase the computational time considerably, but

manages to establish a percentage of 4% outliers found.

6.5.2 Taiwan

Table 6.8: Contamination Hyperparameter results for Taiwan Dataset

Algorithm Time Cost Outliers Score Samples Contamination
0.72 (± 0.87) 0.062 6% 0.453 0.0
4.58 (± 24.91) 0.059 6% 0.454 0.005

MAPOFCEM 4.63 (± 25.37) 0.060 4% 0.450 0.01
7.08 (± 30.62) 0.064 4% 0.449 0.05
9.50 (± 34.45) 0.065 0% 0.446 0.075
13.41 (± 42.90) 0.073 0% 0.444 0.1

Table 6.8 presents the results found for the Taiwan dataset. It can be observed that

the computational time grows significanlty compared to the German experiment, as the

Taiwan dataset exhibits greater complexity due to the higher number of features present.

Due to the increase observed between the indices 0.01 and 0.05, the value 0.01 was selected

for the contamination index in the previous experiments. It was also observed that

the cost of the solutions found remains relatively more stable compared to the German

dataset and that the percentage of outliers found for this database is slightly lower than

in German’s experiment.

6.6 Discussion

The findings of this thesis demonstrate that integrating counterfactual explanations with

an outlier detection mechanism considerably improves the feasibility and usability of these

explanations for end users. The experimental results underscore the superiority of the pro-

posed method over existing techniques in producing feasible counterfactual explanations.

As illustrated in Figures 6.1 to 6.5 and detailed in Tables 6.1, 6.5, and 6.6, the strategy

employed by MAPOFCEM consistently results in a lower percentage of outliers com-

pared to other methods. This is true across both single and multi-objective verification

scenarios, highlighting MAPOFCEM’s effectiveness in maintaining solution integrity.

Furthermore, Tables 6.3, 6.4, 6.5, and 6.6 illustrate that the MAPOFCEM approach

significantly improved execution time compared to MAPOCAM by implementing inno-

vative bound strategies. These strategies are designed to be more agnostic, making them

particularly effective for complex models. Despite these improvements in execution time,

MAPOFCEM maintained the proximity of the generated solutions to the origin data

points, ensuring that the quality and relevance of the counterfactuals were not compro-

mised. This balance between efficiency and solution proximity highlights the versatility

of MAPOFCEM in handling intricate modeling scenarios.
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Chapter 7

Conclusion and Next Steps

In this work, the framework Model-Agnostic Pareto-Optimal Feasible Counterfactual Ex-

planations Mining (MAPOFCEM) was presented. Aspects related to the feasibility of

counterfactual solutions found by counterfactual search algorithms were investigated. To

this end, a strategy based on Outlier Detection was proposed, utilizing the Isolation For-

est algorithm trained with the training dataset to refine the feasibility of the solutions

proposed. Additionally, the base algorithm of this study, Model-Agnostic Pareto-Optimal

Counterfactual Antecedent Mining (MAPOCAM), was optimized to consider agnostic

models such as LGBM and MLP, along with updating the maximum probability calcu-

lation function using the number of changes and a limit based on feature importance

with SHAP values. It was found that MAPOFCEM presents a lower percentage of iden-

tified outliers compared to open-source algorithms in the literature, and a lower cost

of implementing the proposed solutions, despite higher computational time. Moreover,

MAPOFCEM demonstrated the following advantages over the MAPOCAM strategy: so-

lutions closer to data distribution and shorter computing time. Furthermore, the impor-

tance of considering the contamination index of the Isolation Forest algorithm for the

performance of MAPOFCEM was analyzed. This hyperparameter needs to be considered

and evaluated when applying outlier detection strategies in the counterfactual search.

The results presented in this work contribute to a better understanding of the feasibility

of counterfactual solutions proposed, aiming to enhance the adoption of this type of tool

by users with solutions that are more applicable and consistent with the real world.

We found throughout this research that exploring causality in counterfactual expla-

nations presents a promising avenue for future research. Current studies increasingly

focus on understanding causal relationships between variables to provide more meaning-

ful and actionable counterfactual explanations. This approach not only improves the

interpretability of models, but also ensures that explanations are based on underlying

causal mechanisms, thus improving their reliability and usefulness in real-world applica-

tions. Despite these opportunities, significant challenges remain, particularly in dealing

with categorical data during the counterfactual search process. Categorical data often

introduce complexities due to their discrete nature and the lack of inherent order among

categories. Proposing a robust method for handling categorical data in counterfactual

explanations is crucial for ensuring that the generated explanations are both feasible and

interpretable.
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Appendix A

German Credit Dataset

Table A.1: German Credit Risk Dataset.

Feature Possible Values Description
Gender Male or Female Sex

ForeignWorker Y es = 1 or No = 0 Foreign Worker
Single Y es = 1 or No = 0 Single Status
Age Age

LoanDuration Loan Duration
PurposeOfLoan Education,NewCar, etc. Purpose Of Loan
LoanAmount Loan Amount

LoanRateAsPercentOfIncome Loan Rate
YearsAtCurrentHome Years At Current Home

NumberOfOtherLoansAtBank Other Loans At Bank
NumberOfLiableIndividuals Liable Individuals

HasTelephone Y es = 1 or No = 0 Has Telephone
CheckingAccountBalance_geq_0 Y es = 1 or No = 0 Account Balance

CheckingAccountBalance_geq_200 Y es = 1 or No = 0 Account Balance
SavingsAccountBalance_geq_100 Y es = 1 or No = 0 Account Balance
SavingsAccountBalance_geq_500 Y es = 1 or No = 0 Account Balance

MissedPayments Y es = 1 or No = 0 Missed Payments
NoCurrentLoan Y es = 1 or No = 0 No Current Loan

CriticalAccountOrLoansElsewhere Y es = 1 or No = 0 Critical Account
OtherLoansAtBank Y es = 1 or No = 0 Other Loans

HasCoapplicant Y es = 1 or No = 0 Has Coapplicant
HasGuarantor Y es = 1 or No = 0 Has Guarantor
OwnsHouse Y es = 1 or No = 0 Owns House
RentsHouse Y es = 1 or No = 0 Rents House
Unemployed Y es = 1 or No = 0 Unemployed

YearsAtCurrentJob_lt_1 Y es = 1 or No = 0 Years At Current Job
YearsAtCurrentJob_geq_4 Y es = 1 or No = 0 Years At Current Job

JobClassIsSkilled Y es = 1 or No = 0 Job Class Is Skilled
Good Customer Good = 1 or Bad = −1 Target
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Appendix B

Taiwan Credit Dataset

Table B.1: Taiwan Default of Credit Card Clients Dataset.

Feature Possible Values Description
ID ID of Each Client

LIMIT_BAL Amount of Given Credit
SEX Male− 1 or Female− 2 Gender

EDUCATION Graduate− 1, University − 2, etc. Educational Level
MARRIAGE Married− 1, Single− 2, etc. Marital Status

AGE Age in Years
PAY_0 PayDuly − 1, PaymentDelay − 2, etc. Repayment Status
PAY_2 PayDuly − 1, PaymentDelay − 2, etc. Repayment Status
PAY_3 PayDuly − 1, PaymentDelay − 2, etc. Repayment Status
PAY_4 PayDuly − 1, PaymentDelay − 2, etc. Repayment Status
PAY_5 PayDuly − 1, PaymentDelay − 2, etc. Repayment Status
PAY_6 PayDuly − 1, PaymentDelay − 2, etc. Repayment Status

BILL_AMT1 Amount of Bill Statement
BILL_AMT2 Amount of Bill Statement
BILL_AMT3 Amount of Bill Statement
BILL_AMT4 Amount of Bill Statement
BILL_AMT5 Amount of Bill Statement
BILL_AMT6 Amount of Bill Statement
PAY_AMT1 Amount of Previous Payment
PAY_AMT2 Amount of Previous Payment
PAY_AMT3 Amount of Previous Payment
PAY_AMT4 Amount of Previous Payment
PAY_AMT5 Amount of Previous Payment
PAY_AMT6 Amount of Previous Payment

default.payment Y es = 1 or No = 0 Default Payment
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