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Resumo

O abuso sexual é um crime que afeta muitas crianças ao redor do mundo. Só no último ano
foram feitas mais de 32 milhões de denúncias de abuso sexual infantil foram feitas para o Cen-
tro Nacional para Crianças Desaparecidas e Exploradas. Infelizmente, o volume de material
multimídia produzido diariamente é muito maior do que a capacidade de análise visual feita
por profissionais da aplicação da lei. Nesse contexto, ter uma ferramenta confiável que classifi-
que automaticamente o material de abuso sexual infantil é essencial. Métodos de Aprendizado
Profundo, estado da arte para problemas de classificação de imagem, demandam grandes quan-
tidades de dados para treinamento. Mesmo com um grande volume de dados disponíveis, a
anotação dessas imagens é muito custosa. Além disso, devido a barreiras legais e éticas, esses
dados sensíveis só podem ser acessados por agentes da polícia. Para lidar com isso, alguns
métodos tentam ajudar as investigações resolvendo um problema computacional relacionado.
A classificação de cenas internas pode ajudar a detectar ambientes nos quais esse tipo de con-
teúdo é tipicamente composto. No entanto, nesses ambientes, a presença de um objeto pode
mudar completamente a classificação. Módulos de atenção da arquitetura Transformers podem
ajudar o modelo a focar nas partes essenciais dos dados para resolver algumas tarefas. Assim,
para focar em objetos presentes em cenas, esse trabalho utiliza modelos baseados em Transfor-
mers. Além disso, para lidar com o desafio de anotar os dados, utilizamos aprendizagem com
poucas amostras (few-shot learning), uma técnica de aprendizado supervisionado que aprende
utilizando poucas amostras anotadas. Nesta dissertação de mestrado analisamos alguns mo-
delos de few-shot learning clássicos e comparamos modelos baseados em Transformers para
classificação de cenas de ambientes internos. Observamos também que a maioria dos trabalhos
analisados utiliza um mesmo método de agrupamento de vetores de características, portanto,
nesse sentido investigamos o uso de diferentes métodos, concluindo que agregar os vetores uti-
lizando a média é o melhor para o conjunto de cenas internas. Nossos resultados indicam que
o uso de Transformers é benéfico no contexto de classificação de cenas internas. Além disso,
para o conjunto de dados de cenas internas utilizado, utilizar a média para agregar os vetores de
características levou aos melhores resultados, provavelmente porque no nosso contexto a média
foi uma boa representação. Nosso modelo final atingiu 73,50 ± 0,09% de acurácia com 95%
de confiança na tarefa de classificação de cenas internas utilizando apenas 5 amostras anotadas
por classe para a classificação. Em cooperação com especialistas da Polícia Federal Brasileira
pudemos avaliar nosso modelo em um conjunto de dados de abuso sexual infantil anotado para
cenas internas, nosso modelo atingiu uma acurácia balanceada com 95% de confiança de 63,38
± 0,09%, avaliamos que os resultados foram promissores, indicando que a utilização da técnica
proposta pode auxiliar em um processo de triagem.



Abstract

Sexual abuse is a crime that affects many children around the world. In just the past year, more
than 32 million reports of child sexual abuse were made to the National Center for Missing &
Exploited Children. Unfortunately, the volume of multimedia material produced daily is much
greater than the visual analysis capacity of law enforcement agents. In this context, having
a reliable tool that can automatically classify child sexual abuse material is essential. Deep
learning methods, state-of-the-art for image classification problems, require large amounts of
data for training. Even with a large volume of available data, annotating these images is very
costly. Additionally, law enforcement agents can only access this sensitive data due to legal and
ethical barriers. To address this, some methods try to assist investigations by solving a related
computational problem. The classification of indoor scenes can help detect environments where
this type of content is typically found. However, in these environments, the presence of an object
can completely change the classification. Attention modules of the Transformer architecture
can help the model focus on the essential parts of the data to solve some tasks. Thus, this work
utilizes Transformer-based models to focus on objects present in scenes. Also, to address the
challenge of annotating data, we use few-shot learning, a supervised learning technique that
learns using a few annotated samples. In this Master’s thesis, we analyze some classic few-
shot learning models and compare Transformer-based models for the classification of indoor
scenes. We also observe that most of the analyzed works use the same method for aggregating
feature vectors; therefore, in this regard, we investigate using different methods, concluding
that aggregating vectors using the mean is the best for the set of indoor scenes. Our results
indicate that using Transformers is beneficial in indoor scene classification. Furthermore, for
the dataset of indoor scenes used, using the mean to aggregate feature vectors led to the best
results, probably because, in our context, the mean was a good representation. Our final model
achieved an accuracy of 73.50 ± 0.09% with 95% confidence in classifying indoor scenes using
only 5 annotated samples per class for classification. In cooperation with experts from the
Brazilian Federal Police, we evaluated our model on a dataset of annotated child sexual abuse
for indoor scenes, and our model achieved a balanced accuracy of 63.38 ± 0.09% with 95%
confidence. We believe the results were promising, indicating that the proposed technique can
assist in screening.
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Chapter 1

Introduction

Child sexual abuse is a crime that affects about 9–19.7% of girls and 3–7.9% of boys [61,
82, 102], including indecent exposure, forced sex, and sex trafficking. Even after escaping
from abusers, victims face immediate and lasting consequences, such as an increased risk of
depression, substance abuse, and suicide [84]. Over the past decade, online sharing platforms
have been used to leverage the distribution of child sexual abuse images and videos [13].

According to the USA’s National Center for Missing & Exploited Children (NCMEC) [1],
in 2022, the number of reports of suspected child sexual exploitation was more than 32 million.
These reports included more than 87 million image/video files containing child sexual abuse.
From 2020 to 2022, there was an increase of more than 33% in the number of Child Sexual
Abuse Material (CSAM), verified by NCMEC’s CyberTipline (the USA’s centralized reporting
system for the online exploitation of children). From the images and videos analyzed last year,
more than 70 million were unique when compared to hash sources [50].

From 2012 to 2015, according to data from the National Criminalistics Management System
of the Federal Police of Brazil, forensic examinations were carried out on over 4,000 computer
storage devices, surpassing 500 TB of analyzed data [112]. Unfortunately, on a day-to-day
basis, it turns out that the volume of material produced is much greater than the capacity for
the visual analysis carried out by law enforcement professionals. In this context, intelligent and
continuous automatic classification of child sexual abuse material is paramount.

Due to legal and ethical barriers, such sensitive data cannot be accessed by anyone aside
from the police force. For this reason, most popular child sexual abuse detectors use hash
comparison [10, 23, 81]. Microsoft’s PhotoDNA [50] is the best-known tool based on hash
comparison, and big companies like Meta, X (formerly known as Twitter), and Google use it.
Even though this tool is key to identifying the reappearance of existing CSAM, those methods
are sensitive to minor modifications on the visual content, such as scaling or color changing [97],
in a way that the method can not match the hash of new content with existing ones. Therefore,
more robust techniques like Deep Neural Networks started to be used to classify CSAM [12,
71, 111, 115].

To deal with the inability to access the data, some methods try to help classify CSAM
without classifying sensitive data but solve a related problem. Anda et al. [4], Gangwar et al.
[34], Macedo et al. [71], for example, attempted this problem via automatic nudity detection
and age estimation. The reason is that Machine Learning models can be trained using external
data combining age estimation and nudity datasets and then use those models to help in the
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CSAM detection.
There are other ways to help CSAM investigation; scene classification, for example, can

also be helpful, detecting environments in which this type of content is typically recorded or
photographed [13]. Nonetheless, this approach is yet an underexplored dimension of CSAM
investigation and could be a great strategy to triage possible CSAM. From this perspective,
we investigate the triage of CSAM, classifying indoor scenes, since those contents are mostly
recorded on those environments [57].

Deep Learning methods are state-of-the-art to solve many problems, particularly image and
video classification problems [51, 74, 83]. However, the best methods demand massive amounts
of annotated data to achieve good results. Even if the methods to classify such sensitive data
run inside the police-restricted environments, annotating this kind of data is challenging, and
being exposed to it for an extended period can compromise mental well-being [55].

Therefore, to tackle both problems – the lack of access to data and the challenge of anno-
tating the data, we developed an indoor scene classifier through supervised learning techniques
from a few annotated samples (few-shot learning) [8, 114]. This line of research has attracted
attention since it answers the need to obtain models that generalize well for applications where
access to large sets of annotated images is impractical or costly. That is the case with the clas-
sification of CSAM.

1.1 Problem Description

Artificial Intelligence (AI) methods have achieved state-of-the-art results on several tasks. In
many fields, AI can even perform better than humans. For example, residual networks [42]
(ResNets) obtained better performance than humans classifying ImageNet [24]. Despite yield-
ing impressive results, these methods heavily depend on training with large-scale datasets and
often struggle to generalize when only a limited number of samples are accessible. In contrast,
Few-Shot Learning (FSL) [30, 31] was proposed to teach machines from a few samples, at
most 20 samples per class. Those methods are helpful when annotated examples, such as med-
ical applications, face recognition, and CSAM classification, are hard or impossible to acquire.
Many applications can apply FSL, such as image classification, object tracking, and video event
detection.

In this Master’s thesis, we use few-shot learning for indoor scene classification since most
visual material for child sexual abuse is recorded in those environments. Although there are
several datasets for scene recognition, and this kind of data is easy to annotate, FSL is still
relevant to our problem since no FSL work is proposed for this task. Also, our goal is to apply
the method to help CSAM investigation through the triage of possible CSAM based on the
scene. In this scenario, only a few samples are annotated, especially using scene labels. This
way, police agents will rapidly adjust the model using only a few annotated samples, considering
their data. As far as we know, scene recognition has yet to be explored by FSL methods.

In most works, outdoor and indoor classifications are considered together. However, these
environments have very different characteristics. Indoor environments are more complex; the
objects presented in the scene usually define the kind of room. For example, a room with a bed
and a desk is probably a bedroom, but if we remove the bed, it is probably an office [85]. In
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comparison, global information is more critical in outdoor scenes, and both local and global
information matters in indoor scenes. These vast differences can make models with impressive
results on outdoor scenes perform poorly in indoor scenes [125].

With that in mind, the models must focus on the objects in the scene to classify them cor-
rectly. Transformers-based models [108] can give attention to the most essential parts of the
data to solve some tasks. Figure 1.1 shows some examples of attention maps focusing on ob-
jects or people in an image. In addition, the technique recently outperformed ResNets results
for ImageNet classification [28]. In this work, we combine Transformer-based techniques with
few-shot learning.

Figure 1.1: Attention maps from the final model of this Master’s thesis. The patches of the
image with higher attention are represented in red, while the lower attention is represented in
blue.

1.2 Motivations and Challenges

It is easy for humans to identify sexually explicit material (“I know it when I see it”1), but
CSAM goes beyond that. According to Gillespie [35], all indecent content containing children
may be classified as CSAM, but it is difficult to determine whether an image is indecent or not.
Sometimes, it is difficult to determine the person’s age, mostly pre-teens and teenagers; in that
case, some children can appear older due to physical characteristics or clothes. Even though it
is easier to identify images or videos containing explicit sexual acts, exposure to such material
can compromise agents’ mental health [55]. Therefore, the smaller the number of CSAM an
agent needs to analyze, the better.

Therefore, the automatic detection of CSAM is crucial, and it can support police agents
to filter and review the material. However, in addition to the difficulty of defining people’s
ages and identifying the presence of indecency in the images, access to this extremely sensitive
content is illegal. Researchers must develop solutions that help police agents detect this material
without accessing such data. Bursztein et al. [13] argue that clustering scenes and recognizing
objects and landmarks could help investigations.

This work proposes using few-shot learning strategies to build generalized models that can
adapt to new tasks using only a little data. Traditionally, Deep Learning-based models need
a large amount of data to perform well; thus, working with only a few data is challenging.

1The phrase was used in 1964 by United States Supreme Court Justice Potter Stewart to describe his threshold
test for obscenity in Jacobellis vs. Ohio.
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Beyond that, we are tackling a very complex problem, and our model needs to have the ability
to recognize indoor environments in such sensitive data. To that, we focus on metric-learning
embedding-based few-shot learning [47, 101, 104, 122], an FSL category that works with non-
parametric learning, and this characteristic is something needed for CSAM, our final task.

Additionally, most metric-learning embedding-based few-shot works use the average to ag-
gregate the feature vectors extracted from their backbones without comparing this aggregator
with others. Improving this step would, in turn, improve the CSAM application. For that rea-
son, we want to understand the impact of the aggregation method in our work; therefore, we
investigate which aggregator(e.g., average pooling [58], max pooling [11], self-attention [94])
is the best for few-shot indoor classification.

1.3 Objectives

The main objective of this Master’s thesis is to use little data to train a model to classify indoor
scene images. We can summarize our objectives:

O1. To build a classification model for indoor scenes using only a few labeled samples.

O2. To compare the performance of classic few-shot learning models with Transformer-
based few-shot learning in indoor scene classification tasks.

O3. To support the CSAM investigation process with a reliable classifier.2

1.4 Research Questions

Considering few-shot learning scenarios, the research questions this project aims to answer are:

Q1. Do Transformers-based methods outperform convolutional neural network methods
for indoor scenes’ classification?

Q2. What is the more accurate way to use Transformers for indoor classification? As a
feature adapter or a feature extractor?

Q3. What are the impacts of feature vector aggregators on few-shot indoor classification
models?

Q4. How to develop an indoor classification model that generalizes for the CSAM envi-
ronment?

2Some members of our research group are agents of the Brazilian Federal Police who are pursuing Master’s or
Ph.D. degrees, and they can evaluate our methods in a CSAM environment.
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1.5 Contributions

This Master’s thesis is the first work that uses few-shot learning methods to classify indoor
scenes. We compared few-shot Transformer-based and purely convolutional approaches and
showed that Transformer-based approaches lead to better results for the target task.

We also compared different aggregation methods to understand the best way to aggregate
feature vectors of samples from the same class. The average – the most used method in few-shot
learning – is actually the best way to aggregate features for our target task. As far as we know,
this is the first work that compares aggregation methods in few-shot learning.

Furthermore, we present the results of our final model on a CSAM dataset. For the clas-
sification of indoor environments on the CSAM task, the model achieved a balanced accuracy
of 63.38 ± 0.09% for the few-shot evaluation pipeline, using only five samples per class to
classify the samples. Our results show that indoor scene features are relevant in the CSAM
classification.

1.6 Outline

We organized the remainder of this work as follows. In Chapter 2, we review the related
concepts of few-shot learning classification, aggregation methods, transductive and inductive
learning, and Transformers. In Chapter 3, we overview the literature on scene classification and
embedding learning, highlighting the usage of Transformers in few-shot learning. In Chapter 4,
we describe the datasets used for training and testing following the proposed methodology. In
Chapter 5, we introduce our methodology and how we train and validate the models. In Chap-
ter 6, we analyze the results of our experiments. Finally, in Chapter 7, we conclude our work,
presenting the main findings and future works.
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Chapter 2

Related Concepts

This chapter presents the concepts relevant to understanding this Master’s thesis. In Section 2.1,
we explain the concept of meta-learning, the techniques of this concept, and lastly, how it is
used in few-shot learning. In Section 2.2, we present the concept of few-shot learning and
its methods. In Section 2.2.1, we overview the aggregation methods since in many metric-
based few-shot learning approaches, which will be explained in the following sections, they
aggregate feature vectors to generate a unique vector per class; in this work, we investigate
what is the best function to aggregate those vectors. Few-shot learning can be tackled from two
different learning paradigms: inductive or transductive. So, in Section 2.2.2, we explain the
difference between those paradigms and why we chose inductive for our exploration. Besides
that, we focus on a specific FSL challenge, using Transformers in the learning process. Then,
in Section 2.3, we explain how Transformers works and its particularities. We aim to develop a
metric-based few-shot learning method trained inductively using Transformers techniques, such
as self-attention.

2.1 Meta-Learning

Unlike most Machine Learning methods, when learning a new task, humans often use the
knowledge acquired from prior experience—considering the vast background that humans have,
it becomes easier to learn new tasks [56]. So, learning from previous experience can also benefit
machine learning models in learning a new task faster. From that perspective, Meta-Learning
proposes learning from prior knowledge, learning how to learn and then applying this knowl-
edge to new tasks.

Finding one exact definition of meta-learning is difficult since different views of this paradigm
can be found in the literature [46]. For Thrun and Pratt [105], meta-learning is characterized by
an algorithm that improves performance with more training experience and several tasks. For
a more contemporary definition, meta-learning is learning an algorithm over several learning
episodes [46]. We follow the contemporary view of meta-learning.

In this contemporary view, meta-learning is a learning algorithm that can generalize across
tasks and can learn new tasks faster. For that in the meta-training phase we have Dmeta−test,
a dataset composed of N tasks, described as Dmeta−train = {(Dtrain

meta−train, D
val
meta−train)

(i)}Ni=1,
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From that, we want to learn meta-parameters that describe the meta-learning phase so that the
meta-learning problem can be defined as:

θ∗ = argmax
θ

log φ(θ|Dmeta−train) (2.1)

Now, in the meta-testing phase, Dmeta−test = {(Dtrain
meta−test, D

test
meta−test)

(i)}Qi=1 where Q is
the number of target tasks. In this stage, we use the learned meta-knowledge θ∗ to train the
model on the unseen tasks of Dmeta−test, defined in Equation 2.2. Then we can evaluate the ω∗

on Dtest
meta−test.

ω∗ = argmax
ω

log φ(ω|θ,Dtrain
meta−test) (2.2)

The learned θ∗ could be an optimization strategy, a learning model, or even the initial pa-
rameters of a learning model. From that, Yao et al. [121] categorize meta-learning in three main
research lines: (1) optimization-based, (2) model-based (black box), and (3) metric-learning.

Optimization-based methods aim to learn an optimized initialization for the model parame-
ters, such that the model could adapt to new tasks with only a few steps of the gradi-
ent [32, 60, 93].

Model-based (black-box) methods do not generate sample classification probabilities. In-
stead, the idea of those models is to update the network parameters fast [88, 95].

Metric-learning methods combine parametric and non-parametric learning in the meta-training
and meta-testing stage; the objective is to learn a distance metric that better generalizes
for new tasks [101, 104, 110].

There are several applications of meta-learning, some examples are: few-shot learning [32,
110], multi-task learning [33, 105], and meta-reinforcement [64, 92] learning. In this Master’s
thesis, we focus on FSL, where most works can be categorized as optimization-based or metric-
learning. We find it more interesting to investigate FSL methods based on metric learning.

2.2 Few-Shot Learning Classification

In traditional Machine Learning techniques, the models learn how to classify images using large
annotated datasets. However, for some real-world applications, this is unfeasible. FSL recently
gained attention in this scenario, as it aims to solve a task using a minimal number of labeled
examples. This technique aims to learn a good classifier given only limited samples of each
class; typically, the number of samples per class is between 0 and 20.

The idea behind FSL is to use prior knowledge to teach the model how to improve on the
target task. We usually have three sets [19, 27] to do that. The first set is called base set, a
large dataset containing multiple classes to pre-train the model. The second set is the support

set (also called novel set), which contains samples from the FSL task; the classes in this set and
the base set are disjointed. The last set is the query set, which contains the samples we want to
predict.
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The support set comprises K samples per class and N different classes. Based on that,
an FSL task can also be called N -way K-shot learning. There are two particular cases; first,
when the number of labeled samples per class is zero (K = 0), it is called zero-shot learning,
and when K = 1, it is called one-shot learning. Two main approaches are used to solve FSL
problems: transfer learning and meta-learning.

In solutions based on transfer learning, the idea is to train a feature extractor using the base
set to extract the features from the novel set. On top of the feature extractor, many approaches
can be taken to compare and classify the samples in the query set into the classes contained
in the support set. In this approach, the performance is related to the similarity between the
datasets [5, 63, 69].

In contrast, the model gradually learns generic information from the base set in solutions
based on meta-learning at training time. Then, at test time, the meta-learner for the FSL task is
generalized using the support set. To learn gradually, the training process is made by episodes.
Each episode is similar to the few-shot task, which contains K samples of N classes randomly
chosen from the base set and the same number of the query set in the validation set [101, 104,
110]. Figure 2.1 shows the separation of each of the used datasets, highlighting the episode on
episodic training.

Figure 2.1: Episodic training. Figure adapted from Bennequin [9].

The base set must be labeled to mimic the support and query sets during the meta-training
stage. Some works also have a pre-training stage, following a self-supervised approach [44, 62].
However, in those cases, it is crucial to guarantee that none of the sets used in pre-meta-testing
have intersectional classes.

General machine learning methods in the testing stage classify unseen samples from the
same classes seen during training based on what was learned from the training set. In contrast,
in meta-testing, the objective is to classify classes never seen during meta-training. So, during
meta-training, the model is trained using the base set, and then, on meta-testing, it uses the
support set to classify the samples in the query set.

Besides the training approaches, FSL can be classified into three categories [8]: optimization-
based, data-based, or metric-based. We explain each of these ways in the following.
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Optimization-Based

This method searches for the best optimization to have an initialization that better generalizes
the model. To learn these optimizations, first, it learns the parameters from other tasks (base set)
and then uses the support set to refine the parameters [114]. As the parameters are optimized
for the target task using the support set in meta-testing time, this method can sacrifice speed for
precision.

Data-Based

This method uses augmentation to increase the number of samples available in the support set.
Then, with a large train set, it is possible to use standard Machine Learning algorithms. This
method is usually applied as a pre-processing step in FSL. It is possible to use hand-crafted
techniques, such as flipping, rotation, cropping, or more advanced ones.

There are three main ways to use advanced techniques to augment the data set. First, we
can transform samples from the train set, transforming each sample into several samples with
variation [41, 98]. Another way to augment the train set is to use samples from a large data
set that is weakly labeled or unlabeled [29, 116]. Also, we can aggregate samples from similar
data sets that are larger or hallucinate samples using, for example, Generative Adversarial Net-
works [36]. The problem with data augmentation is that the rules are specific to each data set
and can not be easily applied to other data sets.

Metric-Based

This technique represents data using a lower dimension (embedding), then uses simple models
or distance functions to compare and classify the samples using their embedding [114].

This method can be classified into three types [114]. The first one is multitasking learning

that learns several tasks at the same time using task-specific and task-generic information; the
drawback is that every time a new task arrives, the model needs to be trained again [120, 128].
The second type is embedding learning, which embeds each sample in a smaller dimension
so that in the embedded space, semantically similar samples are closer to each other. The
embedding function is learned using the base set, and this method may not work when the FSL
task is not related to the task used to train the function [101, 104, 110]. The last one aims to
learn with external memory, which stores knowledge from the support set and then uses this to
represent the test samples, also called query samples, in a weighted way. As external memory
is limited, this method requires much external space and is computationally costly [75, 95].

Considering our final target, we found metric learning the most interesting few-shot ap-
proach; we believe that we can generalize better for CSAM. Also, those methods are non-
parametric, which is desirable for the final few-shot task. Thus, in this Master’s thesis, we
explore embedding-learning methods to classify indoor scene imagery.

2.2.1 Aggregation Methods in Few-Shot Learning

In embedding-learning FSL approaches, the idea is to generate embeddings for each sample
and then compare the query samples’ embeddings with the support images’ embeddings. The
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comparison one by one is time-consuming: for each image in the query set, it is necessary to
calculate the similarity between embeddings of all the images in the support set. To overcome
this problem, Prototypical Networks [101] proposed to aggregate these embeddings and gener-
ate prototypes for each class in the support set. The prototype is the mean of the embeddings of
all the samples in a class presented in the support set (Figure 2.2).

Figure 2.2: Representation of a prototype in few-shot learning.

Since then, many works have followed this idea and used prototypes to classify the query
samples and the mean to aggregate the embeddings. However, as far as we know, no work
investigates the impacts of the aggregation function on the prototypes. This can have a huge
impact on the classification task.

Aggregating feature vectors in this way is seldom used in machine learning, apart from few-
shot learning. However, this aggregation can also be seen as a pooling method, where we apply
global pooling through all sample embeddings for each class and generate a final prototype.
Thus, we explore pooling methods and aggregator functions to generate the prototypes.

Average [58] and max [11] pooling are the most used aggregation methods in the machine
learning fields. Even though both methods showed good results in some benchmarks in the
area, they have drawbacks. Average pooling (Equation 2.3) computes the mean of all elements
in a region. This method does not present good results when the region contains multiple zeros;
in an image, this would reduce the contrast of a region [126]. Max pooling (Equation 2.4) takes
the max value of a region. This method shows problems when there are noises, and in images,
sometimes the main element does not have the highest value; in those cases, the pooling would
ignore completely the element [3].

faverage =
1

N

N
∑

i

xi (2.3) fmax = max (xi, xi+ 1, ..., xN) (2.4)

To overcome the problems of average and max pooling, other works propose a method that
combines average and max pooling, trying to bring the best of those methods and suppress
the problems. Mixed pooling [123] is defined by Equation 2.5, when λ = 1, it performs max
pooling, and when λ = 0, the method performs average pooling. It showed superior results
over average and max pooling, but as λ is a fixed value, sometimes it can lose important fea-
tures [126]. Lp pooling [38] is also a method between max and average (Equation 2.6), when
p = ∞, it performs max pooling, and when p = 1, it performs average pooling. This method
can improve generalization, but its results depend greatly on the dataset.
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fmixed = λfmax + (1− λ)faverage (2.5)
flp =





1

N

N
∑

i

xi





1

p

(2.6)

Rank-based weighted pooling [100] is based on the probability of each value. It calculates
the probability of each activation, and then, using these probabilities as weights, a weighted
sum is performed over the activation values to take the aggregated value. Following the same
idea, Sampaio Ferraz Ribeiro et al. [94] propose an aggregator method that uses self-attention
to learn the better weights to aggregate the feature vectors, using a self-attention layer the atten-
tion values behave as a probability function that weights the activation values. The aggregator
method is defined in Equation 2.7. Unlike the other works, which propose pooling layers, this
work applies the aggregator the same way we are proposing.

fself−attn = σ

(

Q(x)K(x)T√
dk

)

V. (2.7)

In FewTure [44], an FSL Transformer-based method used a LogSumExp function to aggre-
gate vectors. Unlike our work, they do that for classification after comparing all the sample
feature vectors. The function is defined in Equation 2.8.

fLogSumExp = log
N
∑

i

exp (xi). (2.8)

In this Master’s thesis, we explore the usage of five of these aggregator methods: average
pooling, max pooling, Lp pooling, self-attention aggregator, and a LogSumExp function. We
compare those aggregators for the indoor scene classification task.

2.2.2 Inductive and Transductive Learning

Inductive learning is the most common scenario in supervised classification. Its goal is to train
a model using a labeled training dataset and then predict the labels of novel data. The idea is to
learn a function to map any new example into the seen classes. In contrast, in the transductive
setting, the model has access to the test set composed of unlabeled data and can extract statistical
information about the data. Here, the goal is to predict only the classes seen in the test set [80].
In FSL, transductive learning uses the query set to extract and use information at training time.
This approach has gained popularity since the publication of Liu et al. [66].

Recent FSL methods follow the transductive manner to deal with little data [7, 48, 49].
However, due to the sensitiveness of CSAM, it is desirable not to take parametrization into
account at test time. Therefore, in this Master’s thesis, we follow the inductive setting to learn
how to predict the labels of novel data without seeing the test set.

2.3 Transformers

The Transformer model [108] was introduced in 2017 for machine translation tasks. It is an
encoder-decoder architecture proposed to replace Recurrent Neural Networks (RNN) and Long
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Short Term Memory (LSTM) [45] with a model based mostly on Attention modules. Un-
til Transformers, RNNs, and LSTMs were state of the art for sequential tasks, these types of
networks processed data sequentially. With that, two problems appear: difficulty correlating
information that is distant in the sequence and inability to parallelize the training procedure.
Using self-attention modules, Transformers solves the problems with computational complex-
ity, parallelism, and long-range network dependencies. The usage of self-attention makes the
network not depend on sequential processing anymore. Since it was proposed, Transformers
and its variants have become state-of-the-art in several Natural Language Processing (NLP)
tasks.

The core concept of Transformers architecture is the usage of attention layers. Attention
was first introduced by Bahdanau et al. [6]. Their idea was to overcome the bottleneck of fixed-
length vector encoding vector; for that, they proposed attention as a way for the model to search
for relevant parts of the sentence to predict the target word. In their proposal, the attention is
computed as follows:

αij =
exp (f(si−1, hj))

∑K

k=0 exp(f(si−1, hk))
, (2.9)

where si−1 is the current decoder state, h0, ..., hk are the encoder hidden states and f is the
learnable function of the model. They use this attention to compute the context c that will serve
as input to the next decoder step:

ci =
K
∑

k=0

αikhk. (2.10)

After that, other attention designs were proposed [70, 103], but the usage of attention be-
came more popular with the design proposed by Vaswani et al. [108]. Their design is called
scaled-dot-product attention, or self-attention.

The idea of the attention is mainly to generate better embeddings for the words. In self-
attention, the environment context is used to generate better embeddings, so based on the con-
text, the attention mechanism uses the relation between tokens to give weights to the embed-
dings. This makes strongly related tokens closer (more similar), while tokens with a weak
relation receive low weights, putting them far from each other (less similar).

The self-attention mechanism is defined in Equation 2.11. Here, Q,K, V are matrices called
Query, Key and Value; they are generated by multiplying itself by the embedding input; and dk

is the key dimension. Together, Query and Key matrices generate a linear transformation of the
embeddings, for that they are compared through dot product (Q ·KT ), resulting in the attention
matrix, as the result can have high values, it is scaled dividing it by

√
dk. Then, these result

scores are multiplied by the vector V . This multiplication works as a weighted average of the
values with different weights for each position. This mechanism is what “feels like” attention
so that the model can focus on the right input [40]. Figure 2.3 shows a diagram of the attention
process.

Attention(Q,K, V ) = softmax(
Q ·KT

√
dk

) · V. (2.11)

In the Transformers architecture, the attention is implemented as a multi-head attention
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Figure 2.3: Attention mechanism architecture. First, Q,K, and V are taken as the input. Then,
the dot product of Q and K generates the attention matrix. This matrix is then used to generate
the weighted average of V . Figure from Ribeiro and Ponti [89].

layer, which is a layer composed of various self-attention layers working in parallel. This
enables the model to consider attention in multiple subspaces, generating several transformed
embeddings. The resulting attention matrix of each attention head is concatenated. Then, using
a linear layer, the result is projected to the original dimension. This linear layer defines the
weights to give to each attention matrix. This procedure helps the model to focus on several
relevant positions for a given input.

Transformers were first proposed for machine translation, and as other methods [45] is com-
posed of an encoder-decoder architecture. The encoder comprises a sequence of blocks with
multi-head attention, normalization, and feed-forward layers. The idea of the encoder is to learn
good embeddings to serve as input to the decoder. The decoder, on the other hand, is composed
of two multi-head attention followed by normalization blocks, then it goes to a feed-forward
layer; the difference is that in the decoder, the second multi-head layer receives the Query and
Key from the output of the encoder, combining it with the output of the first multi-head. This
procedure helps the model to generate the output based on the context learned from the encoder.
Figure 2.4 shows the architecture of a Transformer.

Transformers have been widely explored in NLP. Usually, the models based on Transformers
are pre-trained on extensive datasets. The Bidirectional Encoder Representations from Trans-
formers (BERT) [25], and its variations [52, 67], use only the encoder architecture and pre-train
the model using self-supervised learning. That way, the model does not need a large annotated
dataset. Another successful work is the Generative Pre-trained Transformer (GPT) [87] that
uses masked attention mechanisms and is based on Transformers’ decoder architecture.

Due to Transformers’ success in NLP, researchers have recently started exploring the us-
age of Transformers in Computer Vision. The first Transformers model proposed was Vision
Transformer (ViT) [28]. This architecture is entirely based on the original Transformer encoder.
However, instead of words, this model uses images as input. Since the original architecture was
designed to use sequence as inputs (to work with words in sentences), to adapt the network to
images, the authors proposed to split the images in patches of 16 × 16, Figure 2.5 shows this
procedure. Each image patch is treated the same way as a token in the original Transformer.

The model showed promising results, surpassing the state-of-the-art when trained on a vast
dataset (composed of 300M images). After that, several works were proposed to Computer Vi-
sion Transformers [14, 20, 106]. These techniques generally use the encoder of Transformers as
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Figure 2.4: Transformers architecture. Figure from Vaswani et al. [108].

Figure 2.5: Vision Transformers image patch generation. Figure from Dosovitskiy et al. [28].
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feature extractors. Furthermore, some works combine transformers with Convolutional Neural
Networks (CNNs).

These works show that self-attention mechanisms can benefit Computer Vision tasks, mainly
in fine-grained classification, because the model can focus only on parts of the image relevant
to the classification. Unlike CNNs, attention mechanisms are not rigid and converge the model
using fewer layers [21]. This process can benefit indoor scene classification, making the model
focus on the relevant parts of the image, such as objects present in the scene.

Even though it is promising, research in attention to Deep Learning is new [21], and pre-
training still requires a massive amount of data. The reason for that is the lack of inductive bias
in Transformers, which differs from CNNs, where locality, 2-D local structure, and translation
equivalence are present throughout the whole network. In ViT, we do not have this information
since self-attention layers are global, so the spatial relations between patches need to be learned
from scratch. This lack of inductive bias makes it very hard to train them with little data, but
solutions from DeiT [106] to the few-shot ones we will discuss [27, 43, 47, 62] have found ways
to work around this issue.

In this Master’s thesis, we explore the usage of Transformers as backbone and self-attention
modules as feature adapters to adapt the embeddings after extracting them using a CNN.
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Chapter 3

Related Work

In this chapter, we overview the literature for scene classification (Section 3.1) and CSAM
classification (Section 3.2). We also review the literature for embedding learning models (Sec-
tion 3.3), a type of metric-based few-shot learning focusing on Transformers-based models.

3.1 Scene Classification

Scene classification, or scene recognition, is a computer vision task to classify indoor and out-
door environments. This task has been studied for many years and can be used in surveillance,
autonomous driving, and robotics applications. Even though it is a well-studied task, recogniz-
ing indoor scenes remains a challenge [78]. In outdoor classification tasks, the model can focus
on global spatial properties, while in indoor scenes, the model needs to exploit local and global
properties [78]. Qiu et al. [85] show that some objects are essential to classify an indoor scene.
For example, if we remove the bed from the bedroom, the scene will probably be classified as a
living room or an office.

For Places365 dataset [129], InternImage [113] model reached 61.2% top-1 accuracy re-
sults (the state-of-the-art). The “FOS Fusion of Object and Scene Network” (FOSNet) [99],
a CNN network, reached 90.3% on MIT Indoor [86] and 77.3% on SUN-397 dataset [118].
On SUN-397, the “Semantic-Aware Scene Recognition” [68] reached 74.0%; both works are
supervised methods.

Regarding a Zero-Shot Learning (ZSL) scenario, one of the benchmarks was built on top
of SUN-397, adding attributes to the images; this dataset is called SUN Attribute [79]. For
that task, “Feature Transformation (T-Feature) Variational Autoencoder Generative Adversarial
Networks” (TF-VAEGAN) [76] reached 66.0% top-1 accuracy. Another VAEGAN architec-
ture feature-VAEGAN (f-VAEGAN) [117] achieved 64.7%; they claim to be a technique that
can be applied to any-shot learning. More recently, “Selection using Proximal OpTimization”
(SPOT) [37] proposed a model agnostic method that uses reinforcement learning to feature
selection, that combined with VEAGAN, achieves 66.0% of accuracy. As these works were
proposed to ZSL, they use semantic information from the dataset. Besides those works, as far
as we know, no work has been proposed for scene classification using FSL, especially evaluating
indoor scenes.

In “Leveraging Self-Supervised Learning for Scene Recognition in Child Sexual Abuse Im-
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agery” [107], the author compared several self-supervised approaches for indoor scene classifi-
cation, in particular, they proposed a dataset derived from Places [129] containing only indoor
scenes that are prone to appear in the context of child sexual abuse imagery; The self-supervised
approach reaches 71.6% balanced accuracy in the proposed dataset. In this work, we evaluate
our method in the same dataset proposed by Valois et al. [107]. This study is the closest we
have from the perspective of the final task.

From the perspective of few-shot learning, as far as we know, we are the first work to apply
those methods to indoor scene classification. For that, we are using two subsets of Places365,
one for indoor classes proposed by Valois et al. [107], and another with all the classes besides
those presented in the previous dataset.

3.2 CSAM Classification

Most CSAM detectors are based on hashes [10, 23, 50, 81]. Those methods are great for identi-
fying material reappearance but are sensitive to changes. To build more robust detectors, some
works focused on machine learning; the proposed methods find different strategies to tackle
CSAM detection since datasets for the task are not publicly available.

In this matter, Vitorino et al. [111] proposed the first deep neural network, where they used a
pre-trained network and performed a 2-tiered transfer learning. In the first step, they transferred
the learning for detecting pornography and then fine-tuned the CSAM detection model.

Other works proposed combining adult detection with age estimation. Macedo et al. [71]
use Yahoo’s open source pornography detector [72] and combine this network with a network
trained with faces to determine age group, gender, and if the face is from an adult or not. Fol-
lowing the same idea, some works also used neural networks to estimate age in combination
with adult content detection [4, 16, 34, 90, 91]. Chaves et al. [16] improved age estimation by
combining the input of original faces with occluded eyes; they argue that this training approach
improves the estimator’s performance. Moreover, to improve the performance of both classi-
fication tasks, Gangwar et al. [34] proposed a network with an attention mechanism. Besides
classifying images, Rondeau et al. [91] combines the model with a frame extractor; that way,
the network can automatically extract frames from a video and classify them for CSAM. In ad-
dition to combining adult content classification with child detector, Dalins et al. [22] implement
an additional method to determine CSAM level in ten categories, from no sexual activity to
different levels of child abuse, passing through adult content.

Focusing on videos, Westlake et al. [115] and Brewer et al. [12] use biometric features, face,
and voice, using them to link with other videos having the same faces or voices; this could be
used to find media associated with an investigation, identifying victims and offenders.

Even though most works focus on age estimation in combination with adult content detec-
tion, CSAM is complex enough to require combining more approaches for automatic detec-
tion [59]. To bring insights on what could be done to help CSAM detection, Laranjeira da Silva
et al. [57] proposed an analysis template to understand CSAM images without seeing them. In
their analysis, they show the distribution of some features such as age, gender, face detection,
ethnicity, scenes, and objects; the analysis was demonstrated on Region-based annotated Child
Pornography Dataset (RCPD) [71], which is a Brazilian CSAM benchmark proposed in collab-
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oration with the Federal Police. The analysis showed that context information from objects and
scenes is correlated with CSAM.

Unlike most of those works, in this Master’s thesis, we do not aim to classify CSAM directly.
Our objective is to help CSAM investigation with the triage of possible material candidates to
be analyzed. To do that, we classify indoor scenes, the environments where those materials are
mostly recorded.

3.3 Embedding Learning

As mentioned in Section 2, this Master’s thesis focuses on metric-based few-shot learning.
More specifically, we concentrate on embedding learning models. Embedding learning ap-
proaches aim to learn an embedding function so that the embedding for each sample is closer if
the samples are similar.

First, we need to learn an embedding function from the base set to classify the samples
with embedding learning models. Then, we use the learned embedding function in test time to
generate feature embedding for the support and query set. After embedding each sample, we
compare the query and support samples using a similarity function. If the samples are close,
they are from the same class. Figure 3.1 illustrates this process. Some works may use different
embedding functions for the support and query set.

Figure 3.1: Embedding learning process. Figure adapted from Wang et al. [114].

In Table 3.1, we summarize the most popular embedding learning methods, highlighting
with (*) the methods reproduced in this Master’s thesis. We categorize them as task-specific,
task-invariant, or hybrid, as in Wang et al. [114]:

• Task-specific models learn a specialized embedding function for each task. For that, these
models use only samples from that task.

• Task-invariant models learn a general embedding function from the base set and then use
this function on the few-shot task without retraining.

• Hybrid models adapt generic models, retraining the model using specific information
from the few-shot set.

Matching Networks [110] use two embedding functions g and f , one to embed support
samples and the other to embed query samples. Besides that, they introduce bidirectional
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LSTMs [45] (Long Short Term Memory networks) to embed each image depending on the
embedding of the others. The Prototypical Networks (ProtoNet) [101] introduce the idea of
using prototypes to represent the feature embedding of each class. These prototypes are the
average of all samples embedding in that class. In addition, this work’s embedding functions
for the support and query set are the same. ProtoNet is not a new network; it proposes a way
to classify the samples faster without comparing all samples. This pipeline can be used with
different backbones; the state-of-the-art method (P>M>F [47], a pre-training > meta-training >
fine-tuning pipeline) uses ProtoNet with a different backbone. The Relation Network [104] also
uses prototypes to represent each class. However, to classify the samples, they introduce the
relation module, a convolutional neural network, and its output is a relation score in the interval
[0, 1], where one indicates that the sample belongs to that class.

“TAsk-Dependent Adaptive Metric” (TADAM) [77] is also based on prototypical networks,
but they add two complexity layers. The first layer is a pre-softmax scaling, which learns the
temperature coefficient to adapt softmax. The second is task conditioning, a network that learns
to choose the best parameters for the feature extractor from each task. In “Few-Shot Learning
with Graph Neural Network” (GNN) [96], the authors followed the idea of ProtoNet generating
prototypes for classes and to classify the samples, they proposed the usage of a GNN. The
“Simple Neural AttentIve Learner” (SNAIL) [73] combines temporal convolution and soft-
attention layers to overcome the problem of building a very specialized network. To do so, the
temporal convolution aggregates information from the base set, and the soft attention identifies
specific information from samples. The same network generates the embedding function and
classifies the samples.

In “A Closer Look at Few-Shot Classification” [19], the authors compare several works
and conclude that using more robust backbones reduces the performance gap between methods
when the base and support set domains are similar. Otherwise, they propose Baseline and
Baseline++, exploring a trainable classifier that continues to learn during the meta-testing stage.
Baseline uses a linear layer as a classifier, while Baseline++ uses a cosine distance.

Recent research focuses on task-invariant and hybrid embedding models because it is more
interesting to use larger datasets to train the model and then apply it to the few-shot task. Be-
sides, to train a task-specific model, more data from the task is required [114], and CSAM is
constrained on both the number of samples and access. For these reasons, we benefit from not
fitting parameters during the test. Therefore, this Master’s thesis explores both task-invariant
and task-hybrid. As most Transformers-based approaches are hybrid, we believe this is the best
model type for our problem.

Although this work focuses on metric-based few-shot learning, some optimization-based
models are relevant to the literature and showed good results. “Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks” (MAML) [32] proposes an algorithm that is task-
agnostic. Using a small amount of data, this algorithm learns a good parameter initialization
for a new task with only a few gradient steps. Rusu et al. [93] argue that it is difficult to have a
generalized model using only a few samples to compute the gradients, given that the gradients
are in a high-dimensional space. To solve this issue, they propose Latent Embedding Optimiza-
tion (LEO), which learns low-dimensional latent embedding parameters, and then the model
performs the optimization in this space.

All the metric-based works are relevant for indoor classification, but we select only a few
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to reproduce. As Matching Networks [110], TADAM [77], and SNAIL [73] do not have their
codes available, we did not reproduce them. One of our objectives is to compare purely convo-
lutional with Transformer-based networks; for that reason, graph neural networks [96] are not
the focus of this Master’s thesis. Finally, we were able to reproduce ProtoNet [101], Relation
Network [104], and Baseline++ [19] as CNNs-based few-shot learning. Those works are impor-
tant for understanding how purely convolutional networks perform for indoor scene tasks. Even
though optimization-based are parametric, which is not desirable for CSAM, we also reproduce
them for indoor scene classification, as they are relevant to the few-shot literature.

Transformers in Few-Shot Learning

In 2017, Transformers were first proposed for machine translation [108]. However, only in
2020 did the method begin to be applied to Computer Vision [28] and rapidly achieve state-of-
art results for several tasks. Based on the good results achieved by the architecture, some works
started to study the use of transformers in FSL vision tasks.

Transformers in FSL started being used to adapt the features that were extracted using a
CNN [17, 26, 65, 122]. More recently, Transformers started being explored as a feature ex-
tractor [18, 27, 43, 44, 47, 62], which is a challenge, since Transformers tend to overfit when
trained with a small dataset. The difference between these two approaches is that when using
Transformers as a feature adapter, we first extract the features from a purely convolutional neu-
ral network and then adapt those features using a Transformers-based network; in most cases,
self-attention mechanisms; this way, the model can be trained with fewer data and the CNN
bring the inductive bias needed; The other way is to use Transformers directly to extract the
features, without the need of a CNN. As Transformers lack inductive bias, the training process
needs to be adapted, or the pre-training stage needs to be done using a large dataset. Figure 3.2
exemplifies both approaches.
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Figure 3.2: Usage of Transformers in Few-Shot Learning models.

In Few-shot Embedding Adaptation with Transformer (FEAT) [122], the authors argue that
the embeddings of task-specific few-shot methods did not generate a good representation for
the target task based only on the learning representation from the base set. Thus, they were the
first to propose a set-to-set function to adapt the feature embedding for the few-shot task. The
idea is to separate the embedding spaces so that the visual features are most discriminative for a
given task. For that, they compared the usage of Transformers with Bidirectional LSTMs [45],



33

DeepSets [127] and Graph Convolutional Networks [54, 96]; Transformers-based adaptation
showed better results. CSAM classification could benefit from the set-to-set function since the
model is trained on an indoor scene dataset and needs to adapt the learned features for the indoor
scenes presented in CSAM.

The authors of CrossTransformers [26] argue that CNNs used as a backbone for ProtoNet
represent only the base set, losing information that could help transfer learning to the target task;
they called this phenomenon supervision collapse. To overcome this problem, they proposed
two methods. First, they used self-supervised learning to maintain intra-class variation and
then better transfer the knowledge to new tasks. Second, they proposed a Transformer-based
architecture to help the classification using local features that may be similar to the features from
the target task. We can benefit from using local features, as the Trasformer-based architecture
can help us focus on objects present in the scene, and the self-supervised model proposed can
be great for transferring the learned knowledge to the CSAM environment.

The “Universal Representation Transformers” (URT) [65] proposes using a universal repre-
sentation layer, which extracts features from several backbones pre-trained on different datasets.
They combine these embeddings using a multi-head self-attention layer to integrate represen-
tations from multiple domains and adapt it to generate a representative embedding from the
few-shot samples. Although using several backbones can be time-consuming, the embedding
representation from backbones pre-trained with different datasets can generate a great represen-
tation for our task.

In the “Sparse Spatial Transformers for Few-Shot Learning” [17], the authors argue that
most metric-learning works use global features, which lose local information in the represen-
tation, or dense feature representations, that lose contextual information. To solve that, they
propose Sparse Spatial Transformers (SSFormers). This network generates features that main-
tain local and contextual information and can find relevant features while suppressing irrelevant
features. They also propose a novel similarity function called patch matching. For indoor scene
classification, as mentioned before, it is important to keep local and contextual information; for
this reason, we can benefit from SSFormers for our task.

Hu et al. [47] starting from a ProtoNet pipeline, investigate three design choices: pre-
training data, backbone architecture, and fine-tuning during meta-testing. They conclude that
pre-training with a large dataset, such as ImageNet-1K [24], improves the results compared
to the conventional pipeline with no pre-training; we arrive at a similar conclusion for our
task. Also, Transformers outperforms other backbones when pre-trained in such large datasets.
Lastly, they observed that fine-tuning on the support set is more helpful in out-of-domain sce-
narios. Based on those conclusions, they proposed a pre-training > meta-training > fine-tuning
pipeline, which they named P>M>F. This pipeline is the same as ProtoNet, using a ViT as the
backbone. This is the first few-shot learning work to use ImageNet-1K [24] that we can gener-
ate more robust embeddings for indoor scene classification, and using a more robust pre-trained
backbone can also generate better embeddings for the CSAM. This work’s fine-tuning stage is
irrelevant since we do not want to use extra information during meta-testing.

Except for SSFormers [17], which calculates similarity from all sparse attention patches,
the other works presented until now generate a prototype to classify the samples. That makes
the model less computationally costly, allowing it to run in constrained environments like the
ones available for CSAM.
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The authors of “Rethinking Generalization in Few-Shot Classification” [44] proposed a few-
shot classification with Transformers Using Reweighted Embedding (FewTURE). A model that
uses as backbone a pre-trained self-supervised ViT, that learns how to weight the importance of
the tokens for a given task. They fine-tune the model during meta-testing to adapt the important
weights to the given task. They compute the cosine similarity between all the support tokens
and the query tokens; then, they correlate these similarities with the token importance weights
to determine which tokens are more relevant for the classification.

In Attribute Surrogates Learning and Spectral Tokens Pooling in Transformers for Few-shot
Learning [43], they propose HCTransformers, a hierarchically cascaded Transformers architec-
ture, this network is trained using a base set in a self-supervised manner. They also propose a
spectral token pooling that extracts intrinsic image structures and optimizes parameters via at-
tribute surrogates. Semantic Prompt for Few-Shot Image Recognition [18] uses extra semantic
information from the classes’ names to combine semantic and visual information to find token
regions’ class-specific features.

In “Self-Promoted Supervision for Few-Shot Transformer” (SUN) [27], they propose a
framework to train ViTs in a few-shot learning environment. The idea is that ViT needs lots of
training data to overcome the problem with a lack of inductive bias, but with their framework,
we can pre-train the ViT on the few-shot learning dataset. To that, they propose a meta-training
stage where they employ global supervision and location-specific supervision to generate token
pseudo labels; this tells the ViT which tokens are similar; this step is learned from the whole
base set. Then, they perform meta-finetuning, using the same weights learned in the pre-training
stage; they fine-tune the model using few-shot tasks, that is, n-way k-shot support samples, to
classify query samples. This classification is done the same way as in ProtoNet.

The Supervised Masked Knowledge Distillation for Few-Shot Transformers (SMKD) [62]
proposes the use of self-supervised learning combined with supervised self-distillation to be
able to train a ViT using small datasets.

The networks proposed by FewTURE [44], HCTransformers [43], SUN [104], and SMDK
[62] are heavy, needing robust GPUs, for this reason, we could not reproduce those works.
Even though these methods could achieve good results for indoor classification, running these
methods in a constrained environment, such as the environment for CSAM testing, would be
unfeasible.

In this Master’s thesis, we explore the usage of the Transformer architecture in feature em-
bedding models for indoor scene classification and compare it with purely convolutional ap-
proaches. To the best of our knowledge, no prior work in the field of few-shot learning is
dedicated to indoor scene classification.
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Chapter 4

Datasets

This chapter describes the datasets used in this Master’s thesis. In Section 4.1, we detail the
datasets to pre-train the backbones. In Section 4.2, we present the base dataset for fine-tuning
or training the network for the few-shot task. Then, in Section 4.3, we describe the datasets
used for evaluation. In Section 4.3.1, we present the dataset used for evaluating the network
in the indoor classification task. In Section 4.3.2, we describe the dataset used for the OOD
Scenes test, which evaluates the network’s ability in uncontrolled scenarios. In Section 4.3.3, we
present the CSAM dataset for indoor scenes’ classification, used to analyze the proposed model
on the CSAM task. Last, in Section 4.3.4, we present a benchmark for CSAM classification.
Table 4.1 summarizes all the datasets used in each step.

Table 4.1: Summarization of the datasets used for pre-training, meta-training, and evaluation.
Usage stands for the step we used in the dataset, and size is the total number of samples.

Usage Dataset Size # Classes Year

Pre-training
ImageNet-1K [24] 1,200,000 1000 2012
MiniImageNet [110] 60,000 600 2016

Base Dataset Places600 (ours) 160,800 268 2023

Evaluation

Places8 [107] 407,640 8 2022
OOD Scenes [107] 80 8 2022
CSAM (Brazilian Federal Police) 46,006 6 2022
RCPD [71] 2,138 2 2018

4.1 Pre-training Datasets

ImageNet-1K [24] was proposed in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 2012. It contains 1000 object classes from natural images. The training dataset
consists of more than 1.2M of images. This dataset was proposed for object classification
and localization. It is used in different machine-learning tasks. Therefore, it is easy to
find models pre-trained on this dataset. Figure 4.1a shows some samples.

MiniImageNet [110]: is a subset of ImageNet-1K. It contains 100 classes randomly selected
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from the ImageNet ILSVRC 2012, each class containing 600 images of size 84×84 pix-
els. The classes are split into 64 base classes, 16 validation classes, and 20 novel classes.
The dataset is a benchmark for few-shot learning. Figure 4.1b shows some samples.

(a) ImageNet-1K (b) MiniImageNet

Figure 4.1: Samples of the base datasets: ImageNet-1K and miniImageNet.

4.2 Base Dataset

The base dataset is used to train or fine-tune the model in the few-shot pipeline. Unfortu-
nately, there is no few-shot benchmark for scene classification, so we used Places365-Challenge
dataset [129] as our base dataset.

Different from standard machine-learning pipelines, in the few-shot the classes of the base
set need to be representative but disjointed from the classes used for evaluation (also named
support and query sets). For that reason, we could not use Places365 entirely since some of the
indoor classes presented in this dataset are used for evaluation.

We used a subset of the Places365 training split to deal with that. In that subset, we removed
all the classes presented in the evaluation dataset, explained in Section 4.3.1.

Beyond this restriction, we also want a comparable few-shot dataset, so we selected only
600 samples per class of the provided subset to have a dataset similar to miniImageNet in size.
Some of the classes of Places have less than 600 samples, so, in those cases, we decided not
to include this class in the resulting subsample. After filtering all samples, we ended up with a
dataset that contains 268 classes and 600 samples per class; we named this dataset Places600.
In Appendix A, there is a list containing all the classes’ names. Figure 4.2 shows some samples.
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Figure 4.2: Samples of Places600 dataset.

4.3 Evaluation Datasets

4.3.1 Places8

For evaluation, we used Places8 proposed by Valois et al. [107]. In this work, with the assistance
of police agents, they selected 23 indoor scenes from Places365-Challenge [129] and grouped
those scenes into 8 classes. These classes are: bathroom, bedroom, child’s room, classroom,
dressing room, living room, television studio, and swimming pool. Table 4.2 presents the number
of samples in each class and the original categories from Places365, and Figure 4.3 shows
some samples.

Table 4.2: Description of Places8 dataset. The table presents the classes and the number of
samples in each dataset split: test, training, and validation; also, it shows the original categories
of the samples from Places365. Table reproduced from Valois et al. [107].

Class Test Training Validation % Original Categories

bathroom 5,740 51,655 200 13.4 bathroom, shower
bedroom 11,112 100,012 600 25.9 bedchamber, bedroom, hotel room, berth,

dorm room, youth hostel
child’s room 4,650 41,849 300 10.8 child’s room, nursery, playroom
classroom 3,751 33,763 200 8.7 classroom, kindergarten classroom
dressing room 2,432 21,889 200 5.7 closet, dressing room
living room 9,940 89,458 500 28.7 home theater, living room, recreation

room, television room, waiting room
studio 1,404 12,633 100 3.3 television studio
swimming pool 1,505 13,547 200 3.5 jacuzzi, swimming pool

Total 40,534 364,806 2300 100

This dataset is used for validation and test. We wanted more samples than were available
by the validation split for validation. For that reason, we used the train split for validation. We
randomly sampled 600 samples from each class of the train split. The number of samples was
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Bathroom Bedroom Child's room Classroom Dressing room Living room Studio Swimming pool

Figure 4.3: Samples of Places8 dataset.

selected based on miniImageNet. For testing purposes, the split used was the same test split
proposed by Valois et al. [107].

4.3.2 OOD Scenes

To understand the generalization ability of the chosen model, we evaluate our model in OOD
Scenes dataset. The purpose of this evaluation is to use images from the same classes, but that
came from a non-controlled environment, as in Places8.

We use the same dataset proposed by Valois et al. [107] for the evaluation. That way, we can
compare the generalization of the model. The dataset comprises 10 images per class, with the
eight classes from Places8: bathroom, bedroom, child’s room, classroom, dressing room, living

room, television studio, and swimming pool. The images were collected from Google Images,
Bing Images, and the Dollar Street dataset.

Even though this is a small dataset, their images represent different scenarios than Places8.
Figure 4.4 shows some samples.

4.3.3 CSAM Dataset

To evaluate our model in a CSAM environment, in collaboration with the Brazilian Federal
Police, a forensic expert created a scene-labeled dataset from CSAM Imagery. This dataset
is only accessed by agents from the Federal Police, so we only used this dataset as a final
evaluation of the best model. This dataset is under construction and has not yet been published,
so it is not available for testing outside the research group.

Originally, this dataset contained 46,006 samples, 45,970 samples for training, and 4,592
for testing. Those samples are classified into CSAM, suspected CSAM, drawing, people, porn,
and other. From the test set, 615 samples were randomly selected from manual labeling across
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Bathroom Bedroom Child's room Classroom Dressing room Living room Studio Swimming pool

Figure 4.4: Samples of OOD Scenes dataset.

the eight classes from Places8 (Section 4.3.1. From those, only 374 samples did contain indoor
scenes; unfortunately, the classes found were from six of the eight indoor classes: bathroom,
bedroom, child’s room, living room, studio, and swimming pool.

4.3.4 Region-based Annotated Child Pornography

To understand the importance of the features of indoor scenes to the CSAM classification, we
evaluate our method on Region-based Annotated Child Pornography (RCPD) [71], a dataset
focused on the direct CSAM classification from the Brazilian Federal Police. This is not our
main task, as we aim to classify indoor scenes, but we want to understand the behavior of
the proposed model on this task. This dataset is also only accessed through agents from the
Federal Police.

Computer forensic experts labeled the samples in this dataset. The images can have multiple
labels, such as gender, age, and level of nudity. The binary classification of CSAM is based on
the combination of those labels. The dataset contains 2138 samples, 837 are CSAM, and 1301
are not CSAM. This dataset allows researchers to submit their algorithms through a website1.

1http://www.patreo.dcc.ufmg.br/rcpd
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Chapter 5

Methodology

In this chapter, we explain our proposed methodology. The following sections describe the
training and evaluation pipelines focusing on research reproducibility, which enables future
extensions. In Section 5.1, we define the problem we are tackling, focusing on FSL embedding
learning. In Section 5.2, we present the experiment design in the leans of the research questions.
In Section 5.3, we describe the methodology followed in the evaluation stage of the model.
Finally, in Section 5.4, we present the metrics used in this work. Our main goal is to build a
few-shot learning model trained on indoor scene images to help classify CSAM.

5.1 Problem Definition

This Master’s thesis is focused on using FSL for indoor scene classification. In FSL, we
aim to classify unseen samples using only a few labeled data, which is called N -way K-
shot classification, where N is the number of classes to be classified and K is the number
of labeled samples per class available for the classification. For that, FSL methods generalize
the knowledge learned from the base set Dtrain to unseen test data Dtest, where the classes
Ctrain ∩ Ctest = ∅. We employed the episodic meta-learning protocol for training and test-
ing strategies, where episodes do training and testing. One episode E is composed of the
support set Ssup = {Snk

sup = {xnk
sup, y

nk
sup} | n = 1, ..., N ; k = 1, ..., K} and the query set

Sqry = {Si
qry = {xn

qry, y
n
qry} | n = 1, ..., N}. The idea of episodic training is that each episode

mimics one few-shot task entirely; each episode is then composed of support (training set within
an episode) and query (test set within an episode) set. First, we train the model through episodes,
where each episode represents a task; for that, Dtrain is randomly sampled into E; this training
process is called meta-train. During the test, our goal is to classify several tasks (episodes) from
the test set to generate those episodes randomly sampled Dtest into E; this testing process is
called meta-testing.

More specifically, we follow the embedding learning approach (see Section 3.3) because
those approaches employ non-parametric learning, which is very desirable to avoid fitting pa-
rameters to sensitive data. The idea of those methods is to embed each sample xi ∈ S ⊆ Rd

in a new space dimension zi ∈ Z ⊆ Re, where d and e are different dimensions, in a way that
in the new dimension Z similar samples are closer, while dissimilar samples are distant. To do
that, those methods are composed of three components: a function g, which embeds the support
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samples xsup ∈ S to a smaller dimension zsup ∈ Z, a function f , which embeds the query
samples xqry ∈ S to a smaller dimension zqry ∈ Z, and a similarity function s, that measure the
distance g(xsup) and f(xqry). Then, the sample xn

qry is classified as the same class of xsup that
resulted in the minimum distance [114] (see Figure 3.1). As said in Section 3.3, the function f

and g can be the same function.
To solve indoor scene classification with few-shot learning, we first compared existing

embedding-learning few-shot methods applied to our task. Then, with the best model in hands,
we thoroughly studied the method’s hyperparameters and tested different backbone options
aligned with our research questions (see Section 1.4) and final indoor scene classification task,
which will be expanded in Section 5.2.

5.2 Experimental Design

Figure 5.1 illustrates the pipeline followed in our experiments. As Section 5.1 mentioned, re-
producing existing FSL approaches was a big part of our efforts. One of our objectives (O2)
is to compare two different few-shot learning approaches for indoor scene classification; these
approaches are purely convolutional networks and models based on Transformers. We fol-
lowed the training methodology proposed by each work, but their pipelines also fit the one
presented in this section. They differ mainly on the backbone used, training protocol, and
how they compare the features. For a comprehensive comparison, we also reproduced two
optimization-based methods (see Section 3.3 for details on those methods): “Latent Embedding
Optimization” (LEO) [93], and “Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks” (MAML) [32], but those methods performed poorly compared to the embedding-
learning models.

Figure 5.1: Experimental pipeline followed in this Master’s thesis. The dotted line arrows
represent the possibilities for the experiments, and the solid line arrows represent fixed steps in
the experiments.

For all the methods reproduced, we only considered pre-trained models; most of the net-
works were pre-trained on miniImageNet, except for P>M>F [47] (a pre-training > meta-
training > fine-tuning pipeline), which was pre-trained on ImageNet-1K [24]. We also com-
pared the pre-trained models with those fine-tuned on Places600 (Section 4.2).

This first experiment across the methods gave us answers for research question Q1, compar-
ing purely convolutional methods with Transformers-based ones. Then, comparing the models
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using Transformers-based approaches, they use Transformers in two ways: as the backbone of
the model to extract the features [47], or to adapt feature extracted from a purely convolutional
network, as ResNet [42] to a new task [17, 26, 122]. So, comparing those methods, we can
answer the research question Q2.

After comparing the indoor scene classification methods, we focused on improving the re-
sults obtained following P>M>F [47], which gave us the best result. From this model, we
defined our methodology from the lenses of our research questions.

Q1. Do Transformers-based methods outperform convolutional neural network meth-

ods for indoor classification? In addition to comparing the methods described
above, we further explore this research question for P>M>F. For that, we need to ex-
periment with changes in the backbone, comparing feature extractors that are purely
convolutional with Transformers-based networks to evaluate what type of network
can generalize better for the target task. For that, we considered two backbones:
ResNet50 [42], which is a purely convolutional network, and Vision Transform-
ers [28], both pre-trained on the same dataset. By comparing the previous methods,
we can answer this question.

Q3. What are the impacts of feature vector aggregators on few-shot models for in-

door classification? Except for MAML [32] and LEO [93], which did not lead to
great results, all the embedding learning methods we are interested in are derivations
of ProtoNet [101]. So, all these methods depend on aggregating the feature vectors
extracted by class and distance computation of the features from the query set and
those prototypes. Following ProtoNet [101], all these works aggregate those features
using the mean. We investigate five different feature aggregators: Average [58],
Max [11], LogSumExp, Lp Pooling [38], and Self Attention [94].

Q4. How to develop an indoor classification model that generalizes for the CSAM

environment? With the best model for the indoor scene classification method, in
collaboration with law-enforcement agents, we evaluate our model in a real CSAM
dataset. For that, we send the model with the learned weights to agents, who evaluate
our method and return the results obtained.

5.3 Evaluation

We defined two pipelines for evaluation: a few-shot evaluation and a general comparison. The
former follows the evaluation protocol for few-shot learning so that we can compare our work
with other FSL methods. The latter compares our results with general models (non-FSL) applied
to the same dataset. In both pipelines, we evaluate the methods through episodes composed of
a support and a query set.

Few-Shot Evaluation

This pipeline uses only the test set. We need to build our support and query set from each
evaluation episode using this set. We randomly sample N -way K-shot samples to compose the
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support set. Then, we randomly select x samples per class to compose the query set, where x is
a parameter that determines the number of samples per class we want to classify. The samples
in the query set need to be disjointed from those in the support set.

General Evaluation

Instead of using the test set to generate both the support and the query set, we use the validation
and the test set in this pipeline. From the validation set, we randomly select N -way K-shot
samples to compose the support set in each episode. Then, in each episode, evaluate all the
samples in the test set, which means that the query set will be composed of all the samples in
this set. When we follow the few-shot evaluation, the query set in each epoch is balanced, but
we can not assume that for the general evaluation.

When following this evaluation pipeline, we can compare our work with other works that
do not follow the FSL paradigm. Because we use the support set to classify the samples in the
query set, it would not be a fair comparison if we followed the Few-Shot Evaluation pipeline
since the test set is never used for training other machine learning paradigms. So we can make
a fair comparison using the general evaluation pipeline.

This pipeline does not invalidate the FSL protocol; we use only a few samples in the support
set. The difference is that the support and the query sets can have samples from different
domains.

5.4 Metrics

Accuracy is a metric widely used in machine learning classification problems to determine how
a model performs across the classes of a dataset, that is, the percentage of correct predictions of
a model. This metric calculates a ratio between the number of samples predicted correctly and
the total number of samples predicted. The formula can be seen in Equation 5.1.

Accuracy =
Number of correct predictions
Total number of predictions

. (5.1)

The accuracy is a metric that only works if the number of samples predicted is the same for
all classes. Otherwise, the value will not be representative. For example, imagine we have two
classes; for one class, we have x samples, and for the other, we have 100x samples. Suppose
the model is good at classifying the second class but could be better at classifying the first
one. In that case, the accuracy in Equation 5.1 would be high, but it does not mean the model
is good at classifying both classes. Therefore, when the number of samples in each class is
imbalanced, it is essential to use a balanced accuracy, considering the mean of the accuracies
by class (Equation 5.2).

Balanced Accuracy =
1

N

N∑

1

AccuracyN . (5.2)

Our query set, the samples we want to classify, is balanced; we have the same number of
samples for each class. Therefore, we do not need to use balanced accuracy, and the simple
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accuracy is representative of our dataset. The accuracy is a good metric for understanding the
average performance of the model, but it does not show how the model is performing across each
class. To also understand that, we use a confusion matrix. Figure 5.2 shows how a confusion
matrix works. In the main diagonal, we have all the model’s correct predictions, and the other
fields represent how much the model confused the correct class with other classes presented in
the dataset. Both metrics will help us understand how a model performs on our dataset.

Figure 5.2: Illustration of a confusion matrix.
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Chapter 6

Results and Discussion

In this chapter, we present the experiments performed and the results obtained. In Section 6.1,
we present the implementation details, such as the few-shot protocol and the experimental de-
signs. Next, in Section 6.2, we present the results obtained in our experiments, divided into
four subsections. In Section 6.2.1, we compare few-shot methods. First, we compare purely
convolutional methods with Transformers-based ones. Then, we compare the usage of Trans-
formers with feature adapter and feature extractor. Based on these comparisons, we chose the
best model to perform the following experiments. In Section 6.2.3, we compare different aggre-
gation methods from the chosen model to understand the best one for our problem. Following,
we present the evaluation results, divided into three sections. In Section 6.2.4, we evaluate
the indoor scenes’ dataset. In Section 6.2.5, we report the model’s results on the OOD Scenes
dataset. Last, in Section 6.2.6, we present the final results in the CSAM dataset. Figure 6.1
summarizes the experiments.

Figure 6.1: Pipeline for the experiments in this Master’s thesis. In purple, we have the section
name where we present the experiment’s results. In aquamarine, we show the dataset used for
each experiment.
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6.1 Implementation Details

We followed the pipelines presented in Chapter 5 for all the experiments. In order to find the
best model for our task, we performed experiments with pre-trained and fine-tuned models.

The target task is classifying indoor scene images from the classes in Places8 (see Sec-
tion 4.3.1). For that, we used a few-shot protocol of 8-way 5-shot, meaning that we have only
five samples per class to classify in the meta-testing stage. We applied this few-shot protocol in
all the experiments performed.

We compared nine few-shot works, and all follow the few-shot protocol, but they are quite
different in the model. Because of that, we did not use the same parameters for all the experi-
ments for fine-tuning. In this case, we followed the parameters as suggested in the works. Ta-
ble 6.1 details each experiment’s parameters. Most of the works are pre-trained on miniImageNet
(Section 4.1), except for P>M>F [47], pre-trained on ImageNet-1K [24]. For fine-tuning, we
used Places600 (Section 4.2).

Table 6.1: Parameters used during training for reproducing few-shot learning works. “LR”
stands for learning rate.

Method
Model Training Parameters

Backbone Classifier Initial LR Scheduler Optimizer #Epochs #Episodes

Baseline++ [19] ResNet-18 Linear 0.001 - Adam 400 100
ProtoNet [101] ResNet-12 Euclidean

Distance
0.001 Step LR Adam 100 2000

RelationNet [104] Conv-64 Custom 0.001 Step LR Adam 100 2000
MAML [32] ResNet-12 Linear 0.001 Step LR Adam 100 2000
LEO [93] Linear Encoder-

Decoder
Linear 0.001 Cosine Anneal-

ing LR
Adam 100 2000

FEAT [122] ResNet-12 Euclidean
Distance

0.002 Step LR Stochastic Gra-
dient Descent

200 100

SSFormers [17] ResNet-12 Cosine
Similarity

0.001 Step LR Adam 40 200

CrossTransformers [26] ResNet-34 Euclidean
Distance

0.0006 Exponential LR Adam 40 200

P>M>F (ProtoNet) [47] ViT Cosine
Similarity

0.00001 Step LR Stochastic Gra-
dient Descent

100 2000

Most of the work in this Master’s thesis employed ProtoNet with ViT as the backbone. For
those experiments, we trained the model for 100 steps (or epochs); in each step, we performed
2,000 episodes. The metrics are updated after each epoch.

In order to compare the works, during the testing phase, we followed the same protocol
adopted in most few-shot works. We evaluate the model for 10,000 episodes, an episode being
an 8-way 5-shot setup. In each episode, we have 15 samples per class to be classified, so we
aim to classify 120 samples (8 classes × 15 samples). We report the mean of top-1 accuracy
and 95% confidence interval in the episodes.

We used a single Nvidia Tesla T4 with 14GB to perform those experiments. The training
time was close to 1 day and 20 hours, and the inference time was about 37 minutes following
the few-shot testing parameters explained.
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6.2 Experimental Results

We conducted a series of experiments using pre-trained backbones to extract feature vectors,
and we also fine-tuned those networks on the Places600 dataset. We compared those models
and chose the best one for the research testing aggregator methods. After that, we tested the
model on the evaluation datasets. First, we evaluate the model on the Places8 test set. Then,
to understand the model’s generalization ability, we evaluate it on the OOD Scenes dataset.
Lastly, through agents from the Federal Police, we evaluated our model on the CSAM and
RCPD datasets.

6.2.1 Comparison of Few-Shot Methods

First, we apply existing models to our dataset, evaluating the pre-trained model and fine-tuning
the model for indoor scenes using Places600. We classified the methods into purely convo-
lutional and Transformers-based. The Transformers-based methods can be used to adapt the
feature vectors (or embedding) or to extract the features themselves. Table 6.2 reports the re-
sults of FSL methods pre-trained and fine-tuned.

Table 6.2: Results of few-shot methods on Places8 validation set. We report the results of the
model without fine-tuning and fine-tuning. We report top-1 accuracy and a 95% confidence
interval.

Classification Model Backbone
Pre-trained Pre-trained Fine-tuning

Dataset Accuracy (%) Accuracy (%)

Pure CNN

Baseline++ [19] ResNet-18 – – 38.36 ± 0.090

ProtoNet [101] ResNet-12 miniImageNet 37.48 ± 0.095 43.13 ± 0.097

RelationNet [104] ResNet-12 miniImageNet 30.49 ± 0.086 38.69 ± 0.094

MAML [32] Conv-64 miniImageNet 34.42 ± 0.092 36.42 ± 0.095

LEO [93] ResNet-18 miniImageNet 31.09 ± 0.093 32.66 ± 0.910

Transformers

FEAT [122] ResNet-18 miniImageNet 45.43 ± 0.090 45.34 ± 0.100

SSFormers [17] ResNet-12 miniImageNet 41.20 ± 0.110 46.27 ± 0.120

CrossTransformers [26] ResNet-34 miniImageNet 46.67 ± 0.095 45.07 ± 0.216

ProtoNet (P>M) [47]
ViT Small ImageNet-1K 68.76 ± 0.091 71.86 ± 0.097

ViT Small miniImageNet 45.49 ± 0.096 52.86 ± 0.095

We could only evaluate some Transformers-based methods in Section 3.3 for different rea-
sons. We were able to reproduce URT [65] using the same datasets used in the paper, but we
could not adapt the code for our dataset due to some coding restrictions. For FewTURE [44],
SUN [27], HCTransformers [43], and SMKD [62], we could not even reproduce the papers
because those networks are too heavy, needing more robust GPUs than the ones we had in our
research environment. HCFormers [43] and SMKD [62] used 8 Nvidia RTX 3090 for training,
each one having 40GB of memory; FewTure [19] used 4 Nvidia A100, which has at least 40GB
of memory each one. In this Master’s thesis, we used a single Tesla T4 GPU with 14GB of
memory. Also, the environment for testing CSAM is resource-constrained (in Federal Police),
so we should choose models that can be reproduced in such an environment.

We performed part of their proposed work for the experiments with P>M>F [47]. As Sec-
tion 3.3 states, P>M>F has three stages: pre-training, meta-training, and fine-tuning. Their
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fine-tuning stage occurs during meta-testing, using part of the support set to fine-tune the model
for the target task. In this Master’s thesis, we do not want to use any extra information from
the dataset in testing time because CSAM is too constrained. So, in all the experiments with
P>M>F, we only use the first two stages of the network, i.e., pre-training and meta-training; we
call this model P>M.

The authors of Baseline++ do not provide their checkpoints. So, as we could not use their
pre-trained backbone, we could only train the network from scratch.

We understand that comparing ProtoNet (P>M) pre-trained on ImageNet-1K is not compa-
rable with other methods since it was pre-trained on a much larger dataset. For that reason,
we implemented an experiment that uses ProtoNet with the backbone from Supervised Masked
Knowledge Distillation (SMKD) [62], as they pre-trained a ViT on miniImageNet, the same
network used for P>M. The difference is that their pre-training was done in a self-supervised
manner.

Comparing the pure convolutional methods with those based on Transformers, the models
purely convolutional performed worse. The best purely convolutional model was ProtoNet,
fine-tuned using ResNet as the backbone, with an accuracy of 43.13 ± 0.097%, while the worst
pre-trained Transformers-based model showed an accuracy of 45.07 ± 0.216%. Comparing it
with the best results, the Purely Convolutional model performed more than 9 percentage points
worse than the Transformers-based model based on ProtoNet. However, one uses ResNet-12 as
the backbone, and the other uses a ViT. We believe this result is because of the self-attention
property that gives weights to the patches that are more important to the classification. This
experiment answers our first research question Q1, showing that Transformers-based methods
outperform purely convolutional ones.

Now, comparing the Transformers-based models, we have two types of methods: the ones
that use self-attention to adapt the embeddings generated from a convolutional backbone, and
ProtoNet using a Transformers’ architecture as the backbone (P>M). To make a fair comparison,
we compare P>M pre-trained on miniImageNet. We can see that P>M reaches an accuracy of
52.86 ± 0.095%, six percentage points superior to CrossTransformers, the second-best method.
This result suggests that using Transformers as a feature extractor can yield great results. This
answers our second research question Q2, showing that using Transformers as a feature extrac-
tor leads to better results.

This backbone must be trained using self-supervised learning to use ViT pre-trained on
miniImageNet. This is because ViT does not have an inductive bias like CNNs. SMKD [62] try
to overcome that problem using self-supervised pre-training, following the training framework
proposed on image BERT pre-training with Online Tokenizer (iBOT) [130].

We can also compare the two P>M experiments, one using a Transformer network pre-
trained on miniImageNet and the other pre-trained on ImageNet-1K. Not surprisingly, pre-
training Transformers with more data leads to better results, suppressing results of the net-
work pre-trained with miniImageNet by more than 19 percentage points. P>M>F also reached
the same conclusion, showing that using extra data in the pre-training stage reaches better re-
sults [47], but they did not compare the usage of a small dataset in the pre-training stage.

According to the authors of P>M>F [47], extra data may violate the definition of FSL.
In their words, “external data violates definitions of the FSL problem that insist on a specific
limited meta-train set”. In this Master’s thesis, we do not follow that definition. We should take
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advantage of the advanced literature in other Computer Vision tasks and use it to improve FSL.
Therefore, we chose P>M pre-trained on ImageNet-1K to continue experimenting, as they

led to the best result on the validation set of Places8.

6.2.2 Experiments with P>M

Given that P>M performed better than other FSL methods, we explored some changes in their
network: the learning rate scheduler, the temperature scale, and two robust backbones, ViT and
ResNet-50, pre-trained on a supervised and self-supervised manner.

Learning Rate Scheduler

The initial learning rate (LR) in the P>M>F meta-training stage is set to 5e-5. We followed
our experiments using the same learning rate. However, we aimed to check the impact of the
learning rate scheduler on the model for our task. To do that, we evaluated the cosine scheduler,
the same scheduler used in the original work, and the step decay scheduler. We evaluate two
decay steps for the step scheduler: 10 and 30 epochs. Figure 6.2 shows the curve for each
scheduler when using cosine. We also followed P>M>F and used warm-up.

(a) Cosine w/ warmup (b) Step w/ 30 epochs decay (c) Step w/ 10 epochs decay

Figure 6.2: Curves of learning rate scheduler with an initial learning rate of 5e-5.

Table 6.3 shows the results of this experiment. All schedulers performed closely, and none
can be considered better than others for our task. Our hypothesis for these results being so close
is that our training set is too small. For simplicity, we continued the experiments using a step
learning rate with a decay of 10 epochs.

Table 6.3: Results of the impact of learning rate scheduler on the model on Places8 validation
set. We report top-1 accuracy with 95% of confidence.

Scheduler Accuracy (%)

Cosine 71.98 ± 0.196

Step w/ 30 epochs decay 71.95 ± 0.195

Step w/ 10 epochs decay 72.06 ± 0.196

Temperature

The temperature (τ ) is a hyperparameter that scales the logits before passing it through soft-
max [39], following Equation 6.1. The temperature scale can increase probabilities entropy as



50

τ → ∞ and decrease the entropy as τ → 0. Therefore, with small τ , the high probabilities
become higher while the small probabilities become smaller. It was first proposed to be used
only at test time to control the randomness of predictions. However, now, the scale is being
used in the training step, so the softmax entropy impacts the loss; for cross-entropy loss, the
temperature can impact the generalization of the model [2].

σ(zi) =
exp(zi/τ)∑N

j=1
exp(zj/τ)

. (6.1)

We aimed to understand the effect of the temperature on our results, so we considered six
temperature values: 1, 0.1, 0.07, 0.03, 0.01, and P>M>F’s temperature, a trainable temperature
initialized as 0.1. Those experiments were done under the same parameters as the best model
by now, that is, we are using P>M>F with ViT Small as the backbone. Table 6.4 shows the
results of these experiments.

Table 6.4: Impact of temperature on P>M>F with ViT Small as backbone on Places8 validation
set. We report top-1 accuracy and 95% confidence.

Temperature Accuracy (%)

1 63.78 ± 0.097

0.1 71.78 ± 0.087

0.07 72.50 ± 0.086

0.03 72.37 ± 0.087

0.01 70.95 ± 0.089

P>M>F 71.86 ± 0.087

Although P>M>F uses a learnable temperature, fixed temperatures such as 0.1, 0.007, and
0.003 achieved competitive or outperformed P>M>F’s temperature results. As the temperature
of 0.007 showed the best performance and did not add any trainable parameter to the model, we
chose this value to be the temperature hyperparameter of our model.

Backbone

We also wanted to understand the impact of the backbone in the model, so we tested two back-
bones: ViT Small, a Vision Transformer model, and ResNet-50, a fully convolutional model.
We also explored the backbones with different pre-training strategies: supervised and using
knowledge “DIstillation with NO labels” (DINO) [15], a self-supervised strategy. Results are
in Table 6.5.

Self-supervised pre-trained backbones performed worse than the supervised strategies. These
results go in the same direction observed by Kim et al. [53]. They observed that in most tasks,
supervised pre-training performs better than self-supervised for domain transfer. For ResNet-
50, the supervised approach outperformed self-supervised by more than 5 percentage points
without fine-tuning, but when fine-tuning the model the results are more than 9 percentage
points higher. ViT results for supervised and self-supervised strategies are closer, but the self-
supervised approach still underperformed the supervised. So, we follow with a backbone pre-
trained in a supervised manner.
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Table 6.5: Results of backbone selection on Places8 validation set. We report top-1 accuracy
and 95% confidence.

Model Backbone Pre-training Strategy
Accuracy Accuracy

w/o Fine-tuning (%) w/ Fine-tuning (%)

ProtoNet
ViT Small

Supervised 68.76 ± 0.091 72.50 ± 0.086

DINO 66.02 ± 0.094 68.95 ± 0.091

ResNet-50
Supervised 65.15 ± 0.097 70.55 ± 0.088

DINO 59.63 ± 0.099 61.29 ± 0.095

Comparing both supervised pre-trained models, ViT Small performed better than ResNet-50.
This reinforces that even for more robust models, pre-trained with larger datasets, Transformer-
based approaches are a better option for our task. This experiment reinforces the answers from
research question Q1 by comparing existing methods.

6.2.3 Comparison of Aggregation Methods

Most few-shot learning works that follow the ProtoNet approach – meaning to generate a pro-
totype for each class in the support set – use the average to aggregate the feature vectors of the
samples of the classes. As far as we know, no work explains why the average is the chosen
aggregation method for metric-learning few-shot, so we do not know how other aggregators
would perform in our task. Because this is so underexplored, we made it one of our core re-
search questions (Q4).

To understand the impact of the aggregation method in our few-shot task, we investigated
five aggregators (Section 2.2.1) commonly used in pooling operations: Average pooling, Max
pooling, LogSumExp, Lp pooling, and Self-attention.

We perform the experiments using a ProtoNet with two backbones: ViT Small and ResNet-
18. We used those backbones to understand the impact of the aggregators in our best model,
which uses ViT Small as the backbone. However, we also aimed to understand the behavior of
the aggregator in a simpler network, that is, using a small backbone, for example, a ResNet-18.
We kept other network parameters the same as previously; the only changes are the backbone
and the aggregation method. Results are in Table 6.6.

Table 6.6: Results for the aggregation methods on Places8 validation set. We report top-1
accuracy and 95% confidence.

Model Backbone Pre-trained
Aggregation Method (%)

Dataset Average Max LogSumExp Lp Pooling Self Attention

ProtoNet
ViT Small ImageNet-1K 72.50 ± 0.086 65.80 ± 0.095 64.05 ± 0.096 55.21 ± 0.099 52.90 ± 0.133

ResNet-18 ImageNet-1K 59.05 ± 0.096 52.61 ± 0.101 51.63 ± 0.101 50.50 ± 0.099 36.24 ± 0.124

Using average as the aggregator method led to our task’s best result; it beat the second-best
result by 6 percentage points. We also observed that all aggregators had the same behavior for
both backbones. The best was average, followed by max, LogSumExp, Lp pooling, and then
self-attention.
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The performance of the self-attention aggregator was surprising. We expected it would per-
form better, given the results of the method on scene designer task [94], where the method was
used to aggregate representation vectors instead of pooling operation. As a trainable method, it
may need to be tuned more for the target task.

Moreover, to understand why average pooling was the best method, we plot the “t-Distributed
Stochastic Neighbor Embedding” (t-SNE) [109] for the samples in the validation dataset with
the t-SNE for the aggregated vectors of each class (Figure 6.3). We could see that the aver-
age prototype of each class is close to the cluster’s center for all the classes. This indicates
that the average is a good representation, given that we use the minimum distance between the
sample and the class prototypes for classification. Corroborating with our findings, Xu et al.
[119] investigated aggregation methods for Graph Neural Networks, concluding that the mean
aggregator may perform well for tasks where the statistical and distributional information of the
graph is more important than the structure and also can capture the distribution of elements in a
multiset.

Figure 6.3: t-SNE plot of the samples from Places8 validation split (represented by the points)
and the average prototype for each class (represented by stars).

With all the decisions made, we have the best model in our hands. Our final model is a
P>M, pre-trained in ImageNet-1K. Table 6.7 shows the model parameters and design choices.
The final accuracy of this model on the validation set was 72.504 ± 0.086%, reporting top-1
accuracy with 95% of confidence.

Figure 6.4 exhibits the confusion matrix of the model on the validation set. We can see that
the fine-tuned model is able to classify more accurately bathroom, swimming pool, and studio.
Even though the worst prediction of the model is on child’s room, the most desirable class for
the CSAM classification, we can see that the confusion is between this class, bedroom, and
classroom. We can observe the same confusion pattern for the model without fine-tuning; these
confusions make sense, as sometimes it can be challenging to differentiate a regular bedroom
from a children’s bedroom; in some cases, the samples from child’s room could show some
kids playing, or toys with a playing table, which can be easily confused with a classroom.
In Figure 6.5, we plot some misclassified samples by most episodes. We can see that some
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Table 6.7: Final model parameters and design choices.

Model ProtoNet
Backbone ViT Small

Pre-trained dataset ImageNet-1K
Initial learning rate 1e-5

Scheduler Step decay
Decay step 10 Epochs
Decay rate 0.5

Temperature 0.07
Optimizer Stochastic Gradient Descent

Aggregator Average
# Epochs of fine-tuning 100

# Training episodes per epoch 2000
# Evaluation episodes 10,000

child’s bedroom looks like a regular bedroom, without clear child elements, such as toys. As
for the confusion with classroom, we also can observe that some samples seem labeled wrong,
making it even more difficult for the network to differentiate the classes. The network also
confused living room and bedroom, which is understandable since some samples of those classes
are similar.
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Figure 6.4: Confusion matrix with the results of the model on Places8 validation set. The
confusion matrix presents the accuracy of the predicted classes.

Comparing the model without fine-tuning (Figure 6.4b) and the fine-tuned model on Places600
(Figure 6.4a), we observed that the fine-tuned model performed better on almost all classes, ex-
cept for living room samples. We highlight, however, the 17% gain for the child’s room class.
The overall accuracy for the model without fine-tuning was 68.76 ± 0.091%, 3.74 percentage
points lower than that for the fine-tuned model. While the absolute difference is not large, the
performance on child’s room is more relevant to our use case, so we considered the fine-tuned
model superior.
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Figure 6.5: Samples from the Places8 dataset that belong to the class child’s room, and in each
row, the predicted class by most of the episodes for those samples.

6.2.4 Final Results on Places8

For the Places8 test set (Section 4.3.1), we evaluate the model in both evaluation protocols –
few-shot and general – to make our model comparable for indoor scene classification.

In the few-shot protocol, we followed the few-shot learning standard evaluation protocol,
as stated in the methodology (Section 5). We evaluate the method for 10,000 epochs. In each
epoch, we selected 5 samples per class (following the 8-way 5-shot setting) for the support set
and 15 samples per class (120 samples in total) for the query set. Those samples were randomly
chosen from the test set.

For the general protocol, instead of sampling the support sample from the test set, we used
the validation set, the same dataset used for making training decisions. This is not a leak since
the support set is also considered training. In this protocol, we also evaluate the method for
10,000 epochs. In each epoch, we randomly sample 5 samples per class (8-way 5-shot) from
the validation set to compose the support set and for the query set we used the whole test set
(40,534 samples). That way, the result can be comparable with other methods that classify
indoor scenes, even if the methods do not follow the few-shot protocol.

In both protocols, we report the average balanced accuracy from the 10,000 episodes and
95% of confidence. We also show the confusion matrix containing all the predicted samples
from all epochs.

Figure 6.6 shows the confusion matrix for the few-shot evaluation protocol. We can observe
that the confusion matrix pattern corresponds with the confusion matrix obtained from the re-
sults on the validation set, which shows us that the model is consistent in classifying indoor
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Figure 6.6: Confusion matrix with the results of the model on the Places8 test set. The confusion
matrix presents the accuracy of the predicted classes following the few-shot evaluation protocol.

scenes. The main confusion was among bedroom with living room and child’s room, also there
is a huge confusion between child’s room with bedroom and classroom. The average accuracy
with 96% confidence of the model on the test set was of 73.50 ± 0.086%.

Figure 6.7 shows the confusion matrix for the general protocol. The model got more con-
fused for child’s room, predicting the samples as bedroom. The average balanced accuracy with
95% of confidence of the model following this test protocol was 69.25 ± 0.049%.

To understand the confusion between bedroom, child’s room, living room, and classroom,
we plot the t-SNE [109] reduction of the embeddings of the samples from the test set obtained
by our backbone, as this dataset has many samples, we randomly selected a subsample of the
test set of 600 samples per class to represent the dataset distribution. In Figure 6.8, we can see
that the classes with confusion are overlapped. So, it is understandable that the network got
confused for those classes.

Comparing our results obtained with the general evaluation protocol with the results ob-
tained by Valois et al. [107], which is the work that proposed the Places8 dataset, and, as far
as we know, the only work that reports on this dataset. Valois et al. [107] used a pre-trained
self-supervised model fine-tuned on Places8. The result reported is 71.6% of balanced accu-
racy, only 2.35 percentage points above our results. Considering that we only used 5 samples
per class to classify all the samples in each epoch, the results obtained were surprisingly good
after training the model on Places600 to compare the samples.
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Figure 6.7: Confusion matrix with the results of the model on the Places8 test set. The confusion
matrix presents the accuracy of the predicted classes following the general evaluation protocol.

Figure 6.8: t-SNE on two dimensions for the Places8 test set.

6.2.5 OOD Scenes

Due to the small dataset size, we only followed the general evaluation pipeline in this evaluation,
meaning we used the Places600 validation set to sample the support set and used all the samples
in the OOD Scenes dataset as the query set (samples to be evaluated). We report the average
accuracy of 10,000 epochs and 95% of confidence.

The model resulted in a 65.42 ± 0.090% of accuracy, and the accuracy by class can be
seen in Figure 6.9. The confusion matrix shows that the model’s behavior in this restricted
dataset follows the same behavior on the Places8 validation and test dataset. That is, the model
got confused on the same classes, and the most correct samples are also the same for all the
datasets. For the child’s room class, we could observe a significant drop in the performance.
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Figure 6.9: Confusion matrix with the results of the model on the OOD Scenes dataset.

Comparing this result with the results obtained by Valois et al. [107], they reported 77.5%,
which is 12.08 percentage points higher than the accuracy obtained from our model.

Figure 6.10 contains the predictions through all the episodes for the OOD Scenes dataset.
It shows how many episodes the model predicted the image correctly and how many episodes
it was misclassified. From this figure, we can observe that most episodes get wrong 8 out of
10 images in the child’s room subset. In the two images that most episodes got right, one has a
child in a bedroom, and the other has toys on the floor. This probably happened because most
of the pictures in Places600 for this class have kids and toys in their image, and in each episode,
the model only have 5 samples of this class to compare and classify the query samples. For the
studio samples, the most wrongly predicted class has a child, so this image is probably classified
as child’s room.

These predictions through all episodes also show us that the images presented in the support
set are crucial for classification. Therefore, it is essential to use samples representative of the
images we want to classify.

6.2.6 CSAM Final Tests

For the final tests on CSAM datasets, we collaborated with a Brazilian Federal Police agent. We
developed a script for running our method in both evaluation protocols (few-shot and general).
The script outputs a CSV with the predicted class for each image in all episodes. In this step,
we only performed evaluation, and the training stage was done only with non-CSAM-related
datasets.

In this final experimental tests, we assessed three datasets: CSAM indoor, CSAM (Sec-
tion 4.3.3), and RCPD (Section 4.3.4). CSAM and RCPD are datasets labeled for CSAM clas-
sification, while CSAM indoor is a subset of the CSAM dataset but labeled with indoor scene
environments.
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Figure 6.10: Prediction on OOD Scenes dataset through 10,000 episodes. The frame color
emphasizes whether most predictions were correct (green) or wrong (red).

We emphasize that this Master’s thesis focuses on few-shot indoor scene classification.
However, in few-shot learning, it is possible to perform inference on classes that were not
trained during training time. This way, we evaluate the final model on CSAM datasets to under-
stand the generalization capability of our model and the importance of the indoor scene features
to the CSAM classification.

CSAM Indoor

For the CSAM Indoor dataset, we performed both evaluation protocols. In both, we evaluated
the model for 10,000 episodes. For the few-shot evaluation protocol, for each episode, we
randomly selected 5 samples per class to compose our support set. However, instead of selecting
fifteen samples per class to compose the query set, we used all the samples in the dataset that
were not on the support set. The reason is that there are only eight samples for swimming
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pool class, making it impossible for us to select fifteen samples, and other classes also have
just a little annotated data. For the general protocol, in every episode, we randomly selected 5
samples per class from the Places8 validation set to compose the support set, and the query set
is composed of all samples in the CSAM indoor dataset (374 samples). Figure 6.11 shows the
confusion matrix for both experiments.
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(a) Few-shot protocol.
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(b) General protocol.

Figure 6.11: Confusion matrix with the model’s results on the CSAM indoor dataset.

For the few-shot protocol, we have only six classes in the confusion matrix (Figure 6.11a)
because only those classes are presented on the dataset. As we sample the classes from the
datasets to compose the support set, the model can only classify the query samples into these
classes since it classifies them by comparing them to the support samples. The average accuracy
from the episodes with 95% confidence is 63.38 ± 0.094%. From the confusion matrix, the
major confusion occurs among bedroom, child’s room, and living room, a similar behavior
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observed in the evaluation on Places8 and the OOD Scenes. The model was good at classifying
bathroom and studio. Given those results, answering research question Q4, we believe the
few-shot proposed model is generalized for the CSAM environment from only a few samples.

For the general protocol, we have the eight indoor classes in the confusion matrix (Fig-
ure 6.11b). However, the lines for classroom and dressing room do not have information be-
cause there is no sample in the CSAM indoor dataset classified into those classes. Nevertheless,
as we are using Places8 validation to select the samples for the support set, the model can clas-
sify query samples into any of the eight indoor classes in Places8. That is why we present those
classes in the confusion matrix. We can observe that the model could classify well swimming

pool and bathroom; there was also a huge confusion between bedroom and child’s room, which
was expected given the results on Places8. The model could not classify living room, classify-
ing most of the samples as bedroom and child’s room. For the samples from studio, the model
also confused with swimming pool and child’s room. A similar behavior was observed by Val-
ois et al. [107], who obtained a balanced accuracy of 36.7%. Our model achieved a balanced
accuracy of 43.43 ± 0.093% with 95% confidence.

The results obtained are lower than the results obtained on Places8. This shows us a domain
shift from Places8 and CSAM indoor, making it hard for the model to generalize for CSAM
indoor. On the other hand, even with only five samples per class in each episode, our model
performed slightly better than the self-supervised model proposed by Valois et al. [107]. This
suggested that our model is less specialized for Places8 and more capable of generalization.

CSAM

The CSAM dataset consists of six classes: CSAM, Suspected CSAM, Porn, People, Drawing,
and Other; none of those classes are present in Places8. Therefore, we only performed the
FSL evaluation protocol on this dataset. We evaluated 10,000 episodes, where in each episode,
we randomly sampled five samples per class (30 samples) to compose the support set. We
randomly selected fifteen samples per class (90 samples) for the support set. Figure 6.12 shows
the confusion matrix of the experiment.

From the confusion matrix, we can observe confusion among CSAM, Suspected CSAM, and
Porn. It makes sense, given that those samples are probably visually similar, making it difficult
even for police agents to differentiate those classes. The model classified the Drawing samples
well, probably because the images from this class are from a different domain, so the samples
can be easily classified. There was a small confusion between Other and Drawing, probably
because the class Other contains images of documents, banknotes, and handwritten documents,
so the model probably understood some drawings as documents and vice versa. The model was
not able to classify samples from People; the model confused the samples from this class with
CSAM, Suspected CSAM, and Porn. We believe that the reason for this confusion is the presence
of people without clothes or not completely dressed but that do not have sexual connotations.
The accuracy through all the episodes for the CSAM dataset with 95% confidence was 50.82
± 0.109%. Considering only CSAM and Suspected CSAM classes, and mapping all the others
to Not CSAM, the balanced accuracy increases to 53.44 ± 0.156%, almost 3 percentage points
higher.
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Figure 6.12: Confusion matrix with the model’s results on the CSAM dataset. Values reported
are the accuracy for prediction per class.

RCPD

For RCPD, we also performed only the FSL evaluation protocol since the dataset only has a
binary annotation for CSAM. We also followed the same parameters for evaluation, so for each
episode, we randomly sampled five samples per class to compose the support set (10 samples
per episode) and 15 samples per class to compose the query set (30 samples per episode).

For this experiment, the model achieved an average accuracy with 95% confidence of 65.40
± 0.158%. In Figure 6.13, we can see that the model was good at classifying CSAM samples,
but when we look at the samples that are not CSAM, the model was not good, classifying
more than half into CSAM. This behavior is probably due to the porn images contained in the
category, and images containing nudity or seminudity that were not CSAM.
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Figure 6.13: Confusion matrix with the model’s results on the RCPD dataset. Values reported
are the accuracy for prediction per class.

The results obtained from the experiments in CSAM and RCPD datasets showed that even
with little data in the support set, the model could classify the samples quite well, given that
it was trained on samples of scenes. That is indicative that it is possible to use indoor scene
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classification to help in the CSAM investigation. Combined with other complementary features,
it could build a robust CSAM classifier. The analysis made by Laranjeira da Silva et al. [57]
also corroborates that scene features are relevant for CSAM classification.
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Chapter 7

Conclusions and Future Work

This Master’s thesis investigated how to improve indoor scene classification by applying metric-
based few-shot learning for indoor scene classification. The objective is to help analyze Child
Sexual Abuse Material, making a pre-selection of imagery of indoor scenes since these types of
content are generally recorded in those environments.

We compared Transformers-based and purely convolutional few-shot learning models for
indoor scenes. We analyzed the usage of Transformers-like models in two steps: in the feature
extraction step or in adapting the features extracted by a convolutional neural network.

Moreover, we examined the impact of the aggregator method that generated the prototype
for ProtoNet, since all the works use the average to aggregate the feature vectors. We compared
several widely used pooling methods as aggregators and methods that showed promising results
in a similar task.

Our results on the indoor scene dataset showed that using a Transformers-based few-shot
learning method as a feature extractor leads to better results. The experiments on aggrega-
tor methods showed that using the average suppresses other methods by a large margin. The
distribution of the dataset could explain this.

In the end, we evaluated the best model in the CSAM environment. The results showed
that classifying indoor scenes in the CSAM environment using only a few samples can be a
good triage. Also, we observed that the indoor scene is a complementary feature for CSAM
classification and, combined with other features, could generate a powerful classification model.

7.1 Answers to Research Questions

The experiments performed in this Master’s thesis answered the research questions as follows:

Q1. Do Transformers-based methods outperform convolutional neural network meth-

ods for indoor classification? Yes, for Places8, the indoor scenes dataset used for
evaluation, we could observe that the methods based on Transformers were con-
sistently better than those purely convolutional. Comparing the best purely convo-
lutional work with the worst Transformers-based network, the latter outperformed
the first by more than 2 percentage points (see Table 6.2). Also, comparing Vision
Transformers and ResNet-50, a purely convolutional, used as a backbone for Pro-
toNet, both pre-trained on ImageNet-1K, we could observe that Vision Transform-
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ers outperformed ResNet-50 by 1.95 percentage points for a supervised pre-training
strategy. For a self-supervised strategy, it suppressed the convolutional backbone by
7.66 percentage points (see Table 6.5).

Q2. What is the more accurate way to use Transformers for indoor classification?

As a feature adapter or a feature extractor? We compared four methods that are
based on Transformers on Places8; three of them use Transformers as feature extrac-
tor: FEAT [122], SSFormers [17], and CrossTransformers [26], while P>M>F [47]
uses a ProtoNet with Vision Transformers as backbone to extract the features. Even
when trained on miniImageNet, a small dataset from ImageNet [24], the ProtoNet
with Vision Transformers as feature extractor outperformed SSFormers, the second-
best result by more than 25 percentage points, when both models fine-tuned on
Places [129]. When we only used the pre-trained models without fine-tuning, the
second-best result is CrossTransformers with 46.67 ± 0.095%, while ProtoNet with
Vision Transformers achieved 68.76 ± 0.091% (see Table 6.2).

Q3. What are the impacts of feature vector aggregators on few-shot models for in-

door classification? We found that for Places8, the indoor scene dataset used for
evaluation in this work, aggregating the embeddings using the average is better. We
compared five aggregation methods: average, max, LogSumExp, Lp pooling, and
self-attention. Average outperformed the second-best result, max aggregator, by 7.45
percentage points (see Table 6.6). We believe that the average was the best aggrega-
tor, given the distribution of the dataset. Plotting the t-SNE of the samples in Places8
and the prototype generated for each class, we could see that the prototype seems to
be a good representation of the class (see Figure 6.3).

Q4. Can we develop an indoor classification model that generalizes for the CSAM

environment? Our results showed prominent results on applying few-shot learn-
ing in the CSAM environment; with only five classes per class in the support set,
the model reached a balanced accuracy of 63.38 ± 0.094% with 95% confidence.
There was an expected confusion between bedroom, child’s room, and living room,
since those classes have similar visual attributes. The experiments with two CSAM
datasets (CSAM and RCPD) indicated that indoor scene features are essential to
classify CSAM. Combining these features with other relevant ones may lead to a
significant CSAM classification, even when using only a few samples.

7.2 Challenges and Future Work

Our models performed well on few-shot indoor scene classification, given the restrictions on
the number of samples and computational cost. However, some additional experiments could
be done to reach better results.

First, we only performed experiments using Transformers-like architectures as feature adapters
with models pre-trained on miniImageNet. We could have a more fair comparison between the
usage of Transformers as feature adapters or extractors if we had tested with models also pre-



65

trained on ImageNet-1K. Unfortunately, no work that applied Transformers-like architecture as
a feature adapter trained their model on ImageNet-1K.

Most of our work was based on P>M>F [47], a ProtoNet with pre-trained Transformers on
ImageNet-1K as a backbone. We explored some changes in their model pipeline and hyperpa-
rameter, but we did not investigate other classifiers, using only the cosine similarity. However,
some works achieved good results using other classifiers ([17, 26, 73, 77, 96, 104]). We could
try using other simple classifiers, such as Euclidean distance or linear classifier, but we could
also try even more complex classifiers, like a neural network with some layers.

Moreover, our discussion on feature aggregators could be more deep. For that, it would be
essential to understand the impacts of other aggregator methods ([100, 123, 124]). Some of
them would have to be implemented from scratch. Also, as the average leads to good results,
we could experiment with cross-attention as the aggregator. To understand the impacts of the
aggregators, we could understand the data distribution of our dataset, since, depending on the
distribution, some aggregators would perform better. Additionally, we could better perceive
the aggregators’ impact on few-shot learning in general, not only for our task, if we test the
aggregator on other few-shot benchmarks.

A future direction is to employ few-shot learning generalization methods trained for indoor
scene classification. Several works proposed generalization models for few-shot learning since
the final task is from a different domain compared with Places, meaning the images from the
final task are CSAM. We believe we could have better results applying those models in a way
that makes them less sensitive to domain shift and tend to perform better in those scenarios.

We could also vary the number of samples in the support set. We used five samples per class
since most works use this number of samples to compare this work with others. However, we
could experiment with more samples for our application and investigate the optimal number of
samples needed to compose the support set.

We could also use different metrics to evaluate our model. First, we could evaluate the model
by episode, having a variation of the support and query set to understand the model’s capability.
Besides, as we have classes more relevant to the problem, like bedroom and child’s room, and in
those classes, the model lacks performance, we could investigate a way of employing restriction
to those classes.

Finally, research on CSAM is challenging. Building a method that will be applied to a
dataset never seen is quite difficult experimentally; not only that, but creating a classifier that
will be applied to data that sometimes does not have a precise classification is also difficult.
Nonetheless, we believe that the proposed work is essential to help investigations, and we en-
courage more researchers to follow this path. One next step in this work for CSAM would be
combining more relevant features to CSAM to train the few-shot model.
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Appendix A

Classes of Places600 Dataset

In this appendix, we present the classes filtered from Places365 [129] in the base dataset used in
this Master’s thesis. To have a comparable few-shot base dataset, we selected only 600 samples
per class and excluded from the dataset the classes that had less than 600 samples, resulting
in the classes presented in Table A.1 and Table A.2. In total, we have 268 classes, 200 in the
training split and 68 in the validation split. The samples from the train split were used to train
our few-shot model through the episodes. After 2,000 episodes of training, which is considered
one epoch, we evaluate the model using the validation set and update the metrics.

Table A.1: Validation classes filtered from Places365, presented in the custom dataset
Places600.

Validation Classes from Places600

Airfield Bus interior Fountain pond
Amusement arcade Cafeteria Galley sandbox

Aqueduct Campsite Home office shopfront
Arcade Castle Hospital skyscraper
Archive Chalet Igloo snowfield

Army base Chemistry lab Jail cell soccer field
Artists loft Cliff Japanese garden street

Assembly line Clothing store Jewelry shop toyshop
Attic Coast Landfill tundra

Auto factory Cockpit Marsh utility room
Ball pit Coffee shop Office cubicles village

Bamboo forest Computer room Orchard vineyard
Banquet hall Conference room Park volcano

Beer hall Construction site Patio water tower
Boathouse Crosswalk Phone booth watering hole
Bookstore Discotheque Playground wet bar

Botanical garden Downtown Plaza yard
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Table A.2: Training classes filtered from Places365, presented in the custom dataset Places600.

Train Classes from Places600

Airplane cabin Courtyard Kitchen rainforest
Airport terminal Creek Lagoon reception

Alley Crevasse Landing deck repair shop
Amphitheater Dam Laundromat residential neighborhood

Amusement park Delicatessen Lawn restaurant
Aquarium Department store Lecture room restaurant kitchen

Arch Desert road Legislative chamber restaurant patio
Archaelogical excavation Dining hall Lighthouse rice paddy

Art gallery Dining room Loading dock river
Art school Driveway Lobby rock arch
Art studio Drugstore Lock chamber roof garden

Auditorium Elevator lobby Locker room rope bridge
Auto showroom Elevator shaft Mansion ruin

Badlands Embassy Manufactured home runway
Ballroom Engine room Martial arts gym sauna

Bank vault Entrance hall Mausoleum schoolhouse
Bar Excavation Medina science museum

Barn Fabric store Mezzanine server room
Barndoor Farm Motel shed

Baseball field Fastfood restaurant Mountain shoe shop
Basement Field road Mountain path ski resort

Beach Fire escape Mountain snowy ski slope
Beach house Fire station Music studio sky
Beauty salon Fishpond Natural history museum slum
Beer garden Food court Nursing home stable

Biology laboratory Football field Oast house staircase
Boardwalk Forest path Ocean storage room
Boat deck Forest road Office supermarket

Bowling alley Formal garden Office building sushi bar
Boxing ring Gas station Oilrig swamp

Bridge Gift shop Operating room swimming hole
Building facade Glacier Orchestra pit throne room

Bullring Golf course Pagoda ticket booth
Burial chamber Grotto Palace topiary garden
Butchers shop Harbor Pantry tower

Butte Hardware store Parking lot train interior
Campus Hayfield Pasture tree farm

Candy store Heliport Pavilion tree house
Canyon Highway Pet shop trench

Car interior Hospital room Pharmacy valley
Carrousel Hot spring Physics laboratory vegetable garden
Catacomb House Picnic area veterinarians office
Cemetery Ice cream parlor Pier viaduct

Clean room Ice floe Pizzeria water park
Conference center Ice shelf Porch waterfall

Corn field Iceberg Promenade wave
Corral Industrial area Racecourse wheat field

Corridor Islet Raceway wind farm
Cottage Junkyard Raft windmill

Courthouse Kasbah Railroad track zen garden


