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Resumo

Os reservatórios carbonáticos têm a heterogeneidade como uma de suas principais ca-
racterísticas. Essa particularidade, quando vinculada à análise e à caracterização de
poços e reservatórios, agrega desafios à interpretação e à definição de um modelo geoló-
gico concreto. Além disso, todo o processo de conceitualização de um reservatório inclui
o enfrentamento de incertezas geológicas voltadas à sua estrutura física, bem como in-
certezas econômicas voltadas ao custo e investimento. No Brasil, a Bacia de Santos se
apresenta como grande produtora do ramo de óleo e gás, o que reúne grandes esforços
para a compreensão e modelagem do campo. Porém, sua formação geológica derivada
de rochas carbonáticas apresenta diversos desafios envolvendo sua constituição altamente
heterogênea. Assim, estratégias que permitem aprofundar e produzir generalizações des-
ses ambientes viabilizam a otimização e maior sucesso na exploração de um reservatório.
Para automatizar e aprimorar os procedimentos envolvidos nessa tarefa, diversas aborda-
gens no campo da visão computacional têm sido aplicadas ao longo dos anos, e podem
ser observadas desde a aquisição de dados até a modelagem final dos reservatórios. Meto-
dologias desenvolvidas para essa caracterização geológica demonstram uma forte sinergia
entre técnicas de processamento de imagens e aprendizado de máquina. Essa colaboração
mutualística contribui para o avanço de ambas as tecnologias, fornecendo coletivamente
uma variedade de soluções para os diversos desafios encontrados na modelagem geológica
de reservatórios. Dessa forma, por meio desta pesquisa, buscamos contextualizar o uso
de análise de imagens e aprendizado de máquina na caracterização de reservatórios, bem
como apresentar de forma prática a aplicação desse recurso em três tarefas importantes
da modelagem geológica: o tratamento de imagens de poço ruidosas para possibilitar a
análise dos dados, a classificação de fácies sísmicas por meio das redes convolucionais e a
identificação de falhas em dados sísmicos utilizando modelos Transformers. Na primeira
aplicação, foi desenvolvida uma metodologia que utiliza o algoritmo de Retinex Multies-
cala com preservação de cor para eliminar o ruído causado por sombreamento, seguida da
aplicação de um algoritmo de quantização dos canais de cor da imagem para segmentação
precisa das estruturas de interesse. Em relação à classificação de fácies, foi implementada
uma rede U-Net que alcançou uma média de IoU de 95,48% na classificação de cinco
diferentes tipos de fácies em dados sísmicos. Por fim, na tarefa de extração de falhas,
investigamos o uso de Transformers através da rede TransUnet, que superou redes convo-
lucionais tradicionais, obtendo um coeficiente Dice superior a 88% na identificação dessas
estruturas. Todos esses processos foram avaliados de forma quantitativa e qualitativa, e
corresponderam positivamente aos métodos aplicados. As abordagens utilizadas reforçam
o poder da computação visual como uma ferramenta aliada à caracterização de reservató-
rios, impulsionando a precisão, a automação e a eficiência, bem como promovendo avanços
significativos na exploração e modelagem geológica.



Abstract

Carbonate reservoirs feature heterogeneity as one of their main characteristics. This pe-
culiarity, when linked to well and reservoir analysis and characterization, adds challenges
to the interpretation and definition of a concrete geological model. Additionally, the
entire process of conceptualizing a reservoir involves addressing geological uncertainties
related to its physical structure, as well as economic uncertainties regarding cost and in-
vestment. In Brazil, the Santos Basin stands out as a major producer in the oil and gas
sector, which gathers significant efforts for field understanding and modeling. However,
its geological formation derived from carbonate rocks presents various challenges due to
its highly heterogeneous constitution. Therefore, strategies that enable deeper insights
and generalizations of these environments facilitate optimization and greater success in
reservoir exploration. To automate and enhance the procedures involved in this task,
various approaches in the field of computer vision have been applied over the years, ob-
servable from data acquisition to final reservoir modeling. Methodologies developed for
this geological characterization demonstrate a strong synergy between image processing
techniques and machine learning. This mutually beneficial collaboration contributes to
advancing both technologies, collectively providing a range of solutions to the diverse chal-
lenges encountered in geological reservoir modeling. Thus, through this research, we aim
to contextualize the use image analysis and machine learning in reservoir characterization,
as well as to practically demonstrate the application of this resource in three important
tasks of the geological modeling workflow: noise reduction in well images to enable pore
analysis, seismic facies classification through convolutional networks, and fault identifica-
tion in seismic data using Transformer models. In the first application, a methodology
was developed that employs the Multiscale Retinex algorithm with color preservation to
eliminate noise caused by fogging, followed by the application of a color channel quanti-
zation algorithm for precise segmentation of the structures of interest. Regarding facies
classification, a U-Net network was implemented, achieving an average IoU of 95.48%
in the classification of five different types of facies in seismic data. Finally, in the task
of fault extraction, we investigated the use of Transformers through the TransUnet net-
work, which outperformed traditional convolutional networks, obtaining a Dice coefficient
higher than 88% in the identification of these structures. All these processes were evalu-
ated quantitatively and qualitatively, yielding positive outcomes for the applied methods.
This approach reinforces visual computing as an essential and powerful tool in reservoir
characterization, driving precision, automation, and efficiency, and fostering significant
advancements in geological exploration and modeling.
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Chapter 1

Introduction

This chapter outlines the problem to be investigated, presents the main motivations of
the research topic, describes the main objectives, the expected contributions of the work,
and the research questions. Additionally, it provides an overview of the text organization
and a list of publications carried out during the execution of the research.

1.1 Problem Characterization

Oil is the most important raw material in the world, and its primary use today is as fuel,
with 97% of transportation relying on this resource [174]. In the petrochemical industry,
its use goes beyond energy generation; its derivatives enable the production of plastics,
synthetic rubbers, paints, dyes, adhesives, solvents, detergents, explosives, pharmaceuti-
cals, cosmetics, and other items [210]. However, the extraction of this resource requires a
lengthy process, beginning with the exploration of the raw material’s existence feasibility.
During this stage, geological studies and geophysical methods determine the conditions
for exploration, given the characteristics of sedimentary basins with the capacity to accu-
mulate hydrocarbons [156].

In the Brazilian context, we have the Pre-Salt, which has great exploration potential,
and reserve estimates indicate there are approximately 70 to 100 billion barrels of oil. A
significant portion of its location is in the Santos Basin, which, due to its production,
ranks among the five largest reserves globally [45]. However, despite these significant
qualities, the exploration of these reserves faces a series of challenges, both in terms of
the cost of the tools used in this process, and in the environment encountered post-
drilling (enormous pressures and temperatures, salt behavior, porosity, and heterogeneity
of carbonate reservoirs) [173].

Furthermore, the geological characterization of these reservoirs encompasses the un-
derstanding and the methods used to characterize their heterogeneity [131]. According
to Jia et al. [96], this task is a combined technology associated with geostatistics, geo-
physics, petrophysics, geology and reservoir engineering, where the main objective is to
describe the reservoir in sufficient detail. For this, realistic 3D/4D models are constructed
based on petrophysical properties to obtain greater chances of resource capture, through
an optimized process, where efforts are applied to reduce uncertainties and increase pro-



16

ductivity. This process presents numerous difficulties due to the different methods for the
construction of a reservoir framework, including the accurate representation of the reser-
voir geometry, the structural modeling and a detailed stratigraphic layers definition [96].

To provide the necessary geological information to deal with all the encountered bar-
riers, several technologies (Figure 1.1) have been used to understand the prospects of a
reservoir at a wide range of scales. Through the image acquisition process, different types
of data provide the visualization and comprehension necessary to explore the subsurface
region effectively. Moreover, this work encompasses the investigation of: (i) kilometer-
scale seismic images to resolve the volumetric distribution of reservoir layers and its geolog-
ical bodies within the sedimentary basin (for instance, [13, 25, 141, 233]); (ii) meter-scale
borehole wall image logs, core and sidewall core sample images to depict the vertical layer-
ing of different rock types throughout the reservoir interval (for instance, [148, 195]); and
(iii) thin sections, scanning electron microscope (SEM), and X-ray computed tomography
(CT) images derived from rock samples to further address their microscopic properties
such as porosity, permeability, and composition) (for instance, [15, 84]).

Figure 1.1: Representative examples of geological data types and their scales of analysis.

Consequently, to deal with this large range of data, computer vision emerges, with
the image processing and machine learning solutions, in this field, as an excellent tool
to help address the problems that arise when dealing with the inherent heterogeneity of
geological data.

1.2 Motivations and Challenges

After a detailed analysis of the issue presented in the introduction, fundamental motiva-
tions and challenges were identified for research in the field of computer vision and its
technologies applied to reservoir characterization.

These aspects underscore the importance of addressing specific issues that directly
impact the understanding of the problem. Therefore, this study outlines the main moti-
vations (M) and challenges (C) driving it:

• (M) The computer vision field encompasses techniques that range from the acqui-
sition, processing, analysis and understanding of complex higher-dimensional data
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from the environment of research and technical exploration [93]. Its range of appli-
cations can be found in different stages of reservoir characterization, mainly because
it acts as a tool capable of extracting descriptions of a geological nature through
images. According to Sebe [188], the computer vision field has evolved from the
traditional pattern recognition and image processing techniques, to more advanced
applications that encompass image comprehension, model-based vision, and systems
capable of learning.

• (M) Understanding and analyzing geological characteristics and their influence on
reservoir properties is crucial for the success of hydrocarbon exploration and pro-
duction. Moreover, automating these processes can result in the production of
deliverables that are useful in well planning optimization, reservoir modeling, and
risk analysis [260].

• (C) The carbonate rocks that make up a significant portion of the pre-salt reservoirs
are characterized by different types of porosity and have unimodal, bimodal, and
other complex pore size distributions. These variations present high heterogeneity
and complexity to the data, and make it difficult to make predictions related to its
productivity [217].

• (C/M) Manual interpretation has been the most direct and effective approach to
characterizing three-dimensional geological surfaces, in which an interpreter visually
analyzes seismic reflection patterns, identifies important patterns, and labels them
with distinct marks and/or colors. However, the dramatically increasing size of
3D seismic surveys has significantly challenged the efficiency and accuracy of such
manual interpretation [48].

• (C/M) According to Chang et al. [32], the vast dimension of the Santos Basin,
combined with the scarcity of data and information about its geology and petroleum
systems, gives it the status of a relatively unknown basin. However, it stands out
as a significant and promising oil exploration frontier in Brazil, given the abundant
discoveries of oil and gas.

• (M) Lastly, every technological advancement enables the exploration of well-
established basins. According to Suslick and Schiozer [202], these international ex-
ploration/production strategies based on technology combined with new elements,
represent important components of a series of investment decisions based on risk
analysis and decision models.

1.3 Objectives and Contributions

Machine learning and image processing has been a field of research with significant inter-
disciplinary character. Its evolution has enabled several areas to use its resources as tools
for manipulation and automation of activities where images are the main material. In the
geological field, particularly in reservoir characterization, this is no different.
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Throughout the reservoir modeling workflow, there are different activities that can be
performed to optimize and automate this process. Therefore, the main objective of this
thesis is to investigate the use of machine learning and image processing approaches in
the reservoir characterization process and, practically, to present solutions through the
application of this practices in several aspects of this workflow. To this end, we intend to
guide the research with the following specific objectives.

• Present the context of technologies that utilize different types of geological data
represented in image form within the field of reservoir characterization, as well as
the geological tasks that require greater academic attention.

• Introduce deep learning techniques and image processing methods into the context
of reservoir characterization to automate and optimize different tasks, such as fault
identification, facies classification, and well image enhancement for the segmentation
of pores structures.

• Discuss the benefits of integrating different technologies within the context of reser-
voir characterization.

By achieving these objectives, we have the following main contributions:

• A detailed study of the state of the art in computer vision methods for reservoir
characterization, covering techniques from image processing to machine/deep learn-
ing models. Identifying the recurring problems in this task, along with commonly
employed solutions, can provide valuable insights for this research field, promoting
a direction in the development of new technologies.

• A methodology for noise reduction in well images with low computational cost, opti-
mizing the analysis of geological structures present in the images, such as lithological
layers, fractures, and pores.

• A model for fault identification in seismic data using Transformers approaches to
abstract the heterogeneities presented by this type of data.

• A model for facies classification through convolutional models can improve the ef-
ficiency of identifying different facies in the reservoir. This is essential for under-
standing the distribution of different types of rocks and fluids in the reservoir. These
contributions can have a significant impact on the field of reservoir characterization,
providing improvements in accuracy, efficiency, and decision-making.

1.4 Research Questions

Our research was primarily guided by two main questions:

• How can computer vision and its techniques contribute across different stages of
reservoir characterization, from data acquisition to final modeling?
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• Which computational tools/techniques have been most relevant in the geological
context that encompasses the reservoir characterization?

To address these questions, we have defined three practical applications, which were
outlined in the objectives of this research, and some specific questions guide the investi-
gation of these activities:

• What are the benefits associated with the use of Transformers in fault identification?

• How can convolutional models enhance facies classification?

• What is the impact of applying image processing techniques on improving the quality
of noisy well images?

1.5 Publications

The following papers have been developed throughout the course of our research, listed in
chronological order by publication year. Paper 1, published during the doctoral period,
is an extension of the master’s dissertation. Paper 2 is detailed in Chapter 4, Paper 3
in Chapter 6, and Paper 6 in Chapter 5. Paper 5 is discussed in Chapter 2, providing
a literature review. The remaining two papers were co-authored and are not directly
addressed in this thesis.

1. L.S. Bomfim, G.D. Avansi, A.C. Vidal, H. Pedrini. A Computational Tool

for Geometric Characterization of Pores and Fractures in Microtomography Rock

Images. Revista Brasileira de Cartografia, v. 75, pp. 1-18, 2023. Avail-
able on: https://seer.ufu.br/index.php/revistabrasileiracartografia/

article/view/68352/37161.

2. L.S. Bomfim, H. Pedrini, A.C. Vidal. A Combined Noisy Borehole Image Log Seg-

mentation Method. 30th International Conference on Systems, Signals and Im-
age Processing (IWSSIP), pp. 1-5. IEEE, June 2023. Available on: https:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10180269.

3. L.S. Bomfim, O.R. Cunha, M.C.K. Kuroda, A.C. Vidal, H. Pedrini. Transformer

Model for Fault Detection from Brazilian Pre-Salt Seismic Data. Brazilian Con-
ference on Intelligent Systems, pp. 3-17. Cham: Springer Nature Switzerland,
September 2023.

4. M.V.T. Soares, L.S. Bomfim, A.C. Vidal, M.C.K. Avansi, O.R. Cunha, R.G.V.
García, R.S.P Medeiros. Pre-Salt Carbonate Cyclicity and Depositional Envi-

ronment: NMR Petrophysics and Markov Cyclicity of Lacustrine Acoustic Facies

(Santos Basin, Brazil). Marine and Petroleum Geology, v. 157, p. 106494,
2023. Available on: https://www.sciencedirect.com/science/article/pii/

S0264817223004002.
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5. L.S. Bomfim, M.V.T. Soares, A.C. Vidal, H. Pedrini. A Review on Computer Vision

Techniques for Geological Reservoir Characterization Tasks. Journal of Petroleum
Science and Engineering (Submitted), 2024.

6. L.S. Bomfim, M.V.T. Soares, O.R. Cunha, R.G. Vasconez, M.C.K. Avansi, A.C.
Vidal, H. Pedrini. Seismic Facies Analysis in Reservoir Characterization: Deep

Learning Approach for Robust Classification and Data Refinement. IEEE Transac-
tions on Geoscience and Remote Sensing (Submitted), 2024.

7. R.G.V. Garcia, S. Mohammadizadeh, M.C.K. Avansi, G. Basilici, L.S. Bomfim,
O.R. Cunha, M.V.T. Soares, A.F. Mesquita, S.K. Mahjour, A.C. Vidal. Geological

Insights from Porosity Analysis for Sustainable Development of Santos Basin’s Pre-

Salt Carbonate Reservoir. Sustainability, v. 16, n. 13, p. 5730, 2024. Available on:
https://www.mdpi.com/2071-1050/16/13/5730.

1.6 Text Organization

In this chapter, we provide the context for the main problem addressed in this work: the
use of computer vision in reservoir characterization. The remaining text is structured
as follows. In Chapter 2, we present an extensive literature review on our theme. In
Chapter 3, we introduce the datasets and metrics. In the subsequent three chapters,
we introduce three practical applications developed to enhance the workflow of reservoir
characterization based on Papers 2, 3, and 6 from the previous section. The detailed
chapters that follow are presented in order of increasing complexity of the methodologies
employed. Chapter 4 describes the proposed methodology for enhancing the quality of
noisy well images. Chapter 5 details the work on facies classification in seismic data.
Chapter 6 outlines the work on fault identification using Transformers. Finally, we present
our concluding remarks in Chapter 7.
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Chapter 2

Fundamentals

This chapter serves as the theoretical foundation for the central theme of this research,
presenting the concepts and framework of the related literature. It covers the main tasks
involved in the characterization of geological reservoirs, the various types of data asso-
ciated with this activity, as well as the widely employed techniques of computer vision
and the tools used in this context. This exploration of the fundamentals is essential for a
comprehensive understanding of the methodologies and approaches adopted throughout
this study, providing a broad overview of the key elements that shape the characterization
of geological reservoirs.

2.1 Geological Tasks

By collecting articles, it was possible to identify topics that have demanded great attention
from the academic community on addressing the geological features that characterize the
heterogeneities of reservoir rocks. These topics encompass the study of rock structures
(for example, pores, matrix, faults, fractures) that make up the reservoirs, parameters
that guide the evaluation of the reservoir’s properties and activities that control the oil
and gas exploration work.

In the search for characterization and understanding of reservoirs, one of the main
activities is the analysis of their pore spaces. In this environment, the pore spaces are
classified as primary porosity (i.e., rock’s original pore structure) and secondary porosity
(i.e., faults, fractures, vugs, and caverns) that originate from post-depositional processes
(sensu [38]). Therefore, understanding the rocks’ total porosity volume, their geometry,
degree of connection and spatial distribution is crucial not only for identifying their for-
mative geological environment, but also to evaluate the storage and flow capacity of the
reservoir. In addition, it facilitates critical processes in the context of water and resources,
including recovery of spilled hydrocarbons, enhanced oil recovery, and geological carbon
sequestration [244].

As a result, research has shown great interest in the quantitative characterization of
this porous space and its complex geometry in different types of unconventional reservoirs,
such as coal [79, 98, 255] and shale [55, 77, 100, 256].

Providing the accumulation and migration of hydrocarbons, the faults and fractures
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may act as pathways or barriers to the fluid flow estimation since they influence the rock’s
original properties of porosity and permeability [133]. In carbonate reservoirs, for example,
pore spaces may either increase in volume and connectivity (via dissolution and natural
fracturing) as well as decrease in porosity and permeability (via pore occlusion through
cementation) during post-depositional processes [119]. Therefore, the tasks of detecting or
extracting faults and fractures have received continuous attention over time, both due to
their importance and the challenge encountered in generalizing the environment in which
they are found.

To interpret faults and fractures, several deep learning models are applied. In the
literature analyzed several works seeks to provide the use of new methodologies, starting
from techniques with Gaussian beams [168] to the use of convolutional networks [52,
165, 191, 243] and adaptive segmentation methods [133] for fault detection proposals.
Furthermore, other works seek to provide a characterization of the fracture structure
using image processing [12, 79, 164], analyze the behavior of fractures and its implication
in the parameters of the reservoirs [59], model their distribution in reservoirs [184] and to
highlight fault images [234].

The structures that enable reservoir flow are just one part of the complete picture. The
analysis of lithological formation and the distribution of sedimentary facies also play a cru-
cial role in the characterization of reservoirs, as lithology represents the reservoirs’ petro-
physical characteristics [28] and the facies provide fundamental insights about the forma-
tion evaluation to identify and characterize suitable reservoir zones for exploration [138].

Predicting lithology according [250] is the fundamental process, since the properties of
the rocks affect the response of every tool used to measure formation properties. For this,
deep learning methods have been the main tool for an accurate response in the predic-
tion and classification of lithology, whether using well logs data [246], seismic [248], the
combination of both (seismic and well) [250], or even drilling string vibration data [33].
The use of facies has been presented in different approaches. The methodologies analyzed
present the use of (i) wavelet transform-based [14] and multiple point geostatistical simu-
lation [81] for facies mapping, (ii) generative models of facies modeling to consider more
realistic reservoir models [30, 247] and to generate reliable models with prior geological
knowledge [88], (iii) Bayesian deep learning models for classifying complex geological fa-
cies through uncertainty quantification [86], and (iv) image processing to analyze reservoir
microfacies [236].

When analyzing parameters, one of the most important is permeability, which evalu-
ates the physical properties of the reservoir and its quality [54]. According to Tang et al.
[208], permeability analysis plays an important role since it measures the ability of rocks
to transmit fluid. This important parameter is generally modeled in laboratory simula-
tions using Darcy’s Law [41]. However, due to the difficulties encountered in this process,
such as the destruction of the sample and the time spent on the task, alternative methods
have been used in estimation of this parameter. Studies show how an optimized tool,
for example, the use of convolutional networks fed by rock sample images [208, 209, 264]
and the use of Bayesian deep networks using borehole image logs [20] to predict the per-
meability. Furthermore, research also investigates the association of factors that provide
favorable permeability conditions, such as fault zones and fracture networks [72, 218] and
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pore tortuosity [54].
Another important activity that involves the reservoir exploration process is monitor-

ing Carbon Capture, Utilization and Storage (CCUS) of carbon dioxide [192] in order
to prevent the leakage of this substance into the atmosphere. This process is extremely
beneficial to mitigate climate change and, besides that, according to Bryant [27], CO2

is responsible for more than 64% of the enhanced greenhouse effect. Regarding the use
of CO2 in the exploration process, the analyzed works seek to understand the sandstone
fracturing process by supercritical CO2 [245] and also promote measurements of the CO2-
water-rock system [220] relationship.

Regarding the process of monitoring and carbon sequestration in order to reduce
damage to the environment, research focuses on promoting tools to detect CO2 plumes in
overlying aquifers [235, 257] and in the subsurface carbon storage reservoir [73], monitoring
CO2 geological migration and sequestration through the interpretation of 4D seismic [121,
192], and vertical seismic profiling data [109].

In conclusion, the characterization and understanding of reservoirs are crucial, involv-
ing the analysis of porous spaces, fractures, faults, and the distribution of sedimentary
facies. The primary and secondary porosity of rocks prove to be key elements in assessing
the storage and flow capacity of reservoirs, and the faults and fractures show a signifi-
cantly influence the permeability and porosity of rocks, acting as pathways or barriers to
fluid flow.

In terms of lithology, facies are essential for identifying and characterizing suitable
exploration zones. Advanced methods such as convolutional neural networks and image
processing are widely used for the detection and characterization of all these tasks, being
widely used for the detection and characterization of different features. These technologies
provide significant benefits, including improved accuracy, efficiency, and the ability to
handle large and complex datasets. A summary of these key points and methodologies is
provided in Table 2.1.

Table 2.1: Summary of the main geological tasks.

Topic Main Activities Methodologies Used

Porous Spaces Analysis of primary and sec-
ondary porosity

Geometric quantification, connec-
tivity studies

Faults and Fractures Detection and characterization of
faults and fractures

Convolutional neural networks,
Gaussian beams, image processing

Lithology and Facies Lithology prediction and facies
mapping

Deep learning with well log and seis-
mic data

Permeability Permeability estimation Bayesian neural networks, labora-
tory simulations

CO2 Monitoring Monitoring and storage of CO2 4D seismic interpretation, seismic
profiling



24

2.2 Data Types

In the field of geology, there are different types of data acquisition that make it possible
to understand reservoirs and build geological models from different perspectives. This
data, as presented by [85], is found on multiple scales, where each one provides a different
abstraction through its particles, texture, lithology, etc. On a micro-scale (< mm) the
textural and mineralogical characteristics of rock grains, the geometry and arrangement of
pores and the behavior of fluids can be analyzed through the various physical phenomena
that permeate them. In a laboratory environment, the meso-scale (< m) allows contact
with representative samples of rocks, in addition to enabling the determination of thermo-
and petrophysical properties of different lithotypes. In a larger context, the macro-scale
(> km) makes it possible to study different facies patterns and structural elements.

During the literature research, it was possible to find several data that permeate the
different scales discussed previously. Table 2.2 presents a summary of these highlighted
methods and shows their main characteristics and applications, providing a comprehensive
overview of the available tools. By understanding the capabilities and limitations of each
technique, professionals can make more informed decisions about which methods are best
suited for their specific geological analysis needs. Therefore, in this section, we present
each of these techniques and their particularities.

2.2.1 Rock Thin Sections

Rock thin-section is an important evaluation means of oil and gas exploration and devel-
opment. The traditional method of thin-section identification relies on experts visually
observing rocks through an optical microscope and its application aids in identifying the
petrographic characteristics of reservoirs and understanding the pore space structure [126].
However, analysis in digital media allows an even more accurate understanding of its com-
position, bringing the possibility of a complete description of flow properties, texture and
micromorphology [110].

As discussed by Berg et al. [16], it was more common to analyze the digital rocks
physics to reconstruct 3D structures from 2D electron microscopy images than to use 3D
X-ray tomography images directly due to the access to the structure and quality of the
X-ray acquisition. Nevertheless, with the advance of technology and the increase in the
quality and availability of this tool, its use is more frequent. However, there are situations
in which the other acquisition methods can be preferentially used.

The methods commonly employed for generating image rocks through thin sections
are described in the following subsections.

SEM Images

The scanning electron microscope (SEM) has the ability to magnify micro- to nanometric
features or objects otherwise unresolvable to the human sight. The images resulting
from this technique are obtained by scanning a beam of high-energy electrons on the
surface of the sample (e.g., cores, sidewall cores and cutting samples), where, due to their
shorter wavelength, the electrons highlight more subtle characteristics and details of the
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Table 2.2: Summary of the data types and their applications.

Method Scale Main Characteristics Main Applications

SEM Images Nano to Micro

- Magnification of micro
to nanometric features
- Analysis of rock struc-
ture and mineralogy at
the nanoscale

- Study of the structure
of porous rocks
- Analysis of fluid flow
properties and rock-fluid
interactions

Optical Microscopy Micro

- Visualization of mi-
crostructures
- Identification and quan-
tification of mineralogy
- Analysis of the mor-
phology of grains and
pore spaces

- Identification of miner-
alogy in thin sections of
rocks
- Study of pore distribu-
tion and connectivity

X-ray Images Micro to Macro

- Three-dimensional visu-
alization of samples
- Analysis of the geome-
try and texture of parti-
cles and pores

- Study of rock character-
istics in microscopic de-
tails
- Estimation of perme-
ability and fracture

Borehole Images Macro

- High-resolution images
of borehole walls
- Measurement of electri-
cal resistivity or acoustic
impedance

- Provide insights into
the features present in
the formations surround-
ing the borehole
- Description and char-
acterization of modern
reservoirs

Seismic Data Macro to Giga

- Data genera-
tion through reflec-
tion/refraction of seismic
waves
- Identification of struc-
tures and geological map-
ping

- Exploration of oil and
gas reservoirs
- Mapping of geological
horizons and structural
characteristics

materials, to a much greater extent when compared to the optical light in microscopes.
With the current technological capacity provided by a modern SEM, an image can outline
characteristics smaller than 1nm in size. Consequently, its utility is focused on material
characterization, delivering insights regarding their structure, surface morphology and
composition, thus enabling the analysis of material properties [211].

Another type of SEM, commonly used in the geological context, is field emission
scanning electron microscopy (FESEM). Compared to the traditional method, FESEM
yields clearer, less electrostatically distorted images with spatial resolution down to 1 1/2
nm—three to six times enhanced [136]. Its use is made primarily employed when SEM
characterization of a specific sample fails to provide a clear or satisfactory morphology
due to its superior resolution [153].

In the literature, the use of these tools is mostly linked to the analysis of porous
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medium [97, 100, 155, 255, 256] due to the ability to study their rock structure and
mineralogy on a nanoscale and also provide inferences fluid flow properties and rock-fluid
interactions [54]. Furthermore, the use of deep learning also makes it possible to segment
and extract information from images coming from SEM [19, 35, 71, 230, 244] further
improving the results already achieved due to its accuracy and automation.

Optical Microscopy

Optical microscopy is a material characterization tool that allows to visualize microstruc-
tures [151] and seeks to: (i) identify and quantify mineral assemblages, (ii) estimate the
size and morphology of grains, and (iii) quantify pore spaces, their morphology, distri-
bution and degree of connectivity [67]. Some of these characteristics are visible at a
macroscopic level, however, the use of a petrographic microscope, also known as a po-
larizing microscope, is typically common, where the technique is called transmitted light
microscopy or polarized light microscopy (PLM) [162].

According to Cady [29], the petrographic microscope technique differs in two ways
from the basic or biological microscope: (i) it incorporates devices for polarizing light,
one below the condenser and one above the objective; and (ii) it features a rotating
stage, graduated in degrees, for measuring angles. The choice to use a petrographic
microscope is motivated by the simple process of creating thin sections from a rock sample
(e.g., conventional core and sidewall core) and the examination when compared to other
analytical methods, such as X-ray diffraction analysis or scanning electron microscopy.
Thus, the focus of optical mineralogy is directed towards analyzing the interaction of
materials with light in thin sections, where each identified mineral has unique optics that
will allow its characterization [177].

Numerous applications utilizing thin-section petrographic images have been investi-
gated. Image processing techniques have served as a valuable tool for analyzing the
information conveyed in these images, including the generation of data for characterizing
fluids through fractal models [179]. Moreover, their application extends to deep and ma-
chine learning endeavors, as a pre-processing step, given the range of resolution provided
by microscopy acquisition, where recent efforts have explored the utilization of artificial
intelligence-based techniques for the segmentation and classification of mineralogy in thin
sections, as evidenced by studies [126, 129, 144, 177, 186, 207, 236, 242].

X-ray Images

X-ray computed tomography (CT) is an image acquisition technology that enables the
study of several important materials in geological characterization work. Its success and
wide application is mainly due to its rapid image acquisition process. Furthermore, it
also offers an internal view of the analyzed object without causing any damage. The
CT enables three-dimensional visualization through the generation of images that depict
the changes in X-ray attenuation within objects, which closely correlates with changes in
density [104].

As discussed by Ketcham and Carlson [104], the CT scanners can be generally grouped
into four categories, based on their spatial resolution and the size of objects, that are:
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1. Conventional type, with observation scale of meters and resolution of millimeters.

2. High-resolution type, with observation scale of decimeters and resolution of 100
micrometers.

3. Ultra-high-resolution type, with an observation scale of centimeters and a resolution
of 10 micrometers.

4. Microtomography type, with observation scale of millimeters and resolution of 1
micrometer.

Each of these categories allows, for instance, the examination of distinct attributes of
the material being analyzed. In the literature, it is possible to find several demonstrations
of the usability of these classes. This acquisition method made it possible to begin internal
and non-destructive analysis of the rocks using the conventional method [94, 122, 125, 200]
and high resolution [201]. However, with the evolution and popularization of technology,
it was then possible to undertake an analysis in high detail, promoted by Micro-CT, of
a range of characteristics present in these rocks, such as: (i) the geometry and textures
of particles and pores [56, 57, 139, 180, 198, 249], (ii) contact angle between surfaces
and fluids [220], (iii) fractures and microfractures [59, 72, 218], and (iv) permeability
estimation [209].

Therefore, to acquire these images, three elements are generally required: an X-ray
source, the object to be imaged and a series of detectors that measure the extent to which
the X-ray signal has been attenuated by the object [104]. The difference between conven-
tional CT and micro-CT data acquisition is in the rotational movement. In the case of
conventional CT, the object remains stationary while the system rotates around it, as most
X-ray CT studies of geological materials are carried out using medical scanners of differ-
ent generations [137]. In the case of micro-CT systems, the object under investigation is
rotated, allowing for better mechanical stability which is required at high resolutions [39].
By these processes, two-dimensional images called slices are created corresponding to the
view of the object throughout the scanning process.

2.2.2 Borehole Image Logs

Wirelogging data are a crucial type of reservoir data obtained through the deployment
of various imaging tools, enabling the characterization of the physical properties (such as
electrical resistivity or acoustic impedance) of a borehole throughout its depth. Specifi-
cally, borehole images are a special category of wirelog data, as they capture multidimen-
sional distributions of these properties [115, 212]. Their use plays a central role in the
description and characterization of modern reservoirs, upon which successful exploration
and production strategies depend [166].

As explained by [68], in generating images that represent resistivity-based properties,
specialized tools directly measure the formation’s micro-conductivity using an array of
resistivity buttons mounted on pads that are pressed against the borehole wall. These
tools typically provide the highest-resolution borehole images in conductive (water-based)
muds. Notable examples include the Schlumberger Formation MicroScanner (FMS) and
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Fullbore Formation MicroImager (FMI). On the other hand, the generation of images
using acoustic tools involves sending sound pulses into the formation and measuring both
the amplitude and travel time of the returning signals. This method is more successful in
resistive (oil-based) muds, where electrical conductivity is poor. A prominent example of
this technology is the Schlumberger Ultrasonic Borehole Imager (UBI).

Some of the primary applications for borehole imaging derived from their inherent
ability to provide detailed insights into the features present in the formations surrounding
the borehole. As analyzed by [167], these applications can be categorized as follows:
(1) fracture identification and evaluation (both natural and induced through drilling or
formation stimulation), (2) diagnosing completion and production problems, (3) analysis
of sedimentology, bedforms, and depositional structures, (4) net pay counts in thinly
bedded formations, and (5) identification of wellbore faults such as borehole breakouts,
tensile wall cracks, and shear surfaces.

Therefore, image analysis techniques are employed for both the qualitative recognition
and quantitative extraction of various of these geological features [167]. The reviewed lit-
erature demonstrates the active presence and effectiveness of computational tools in tasks
that utilize the BHI, such as: the estimation of uncertainty quantification for permeability
and porosity [20], the detection of gravels using semantic segmentation techniques for im-
proved characterization of glutenite reservoirs [101], lithology identification through the
extraction of multi-scale feature information [190], the classification of facies in carbonate
rocks [239], and the prediction of geological features such as induced fractures, natural
fractures, and sedimentary surfaces [80].

2.2.3 Seismic Data

Seismic method is by far the most widely applied method in exploration of oil and gas
deposits [6]. This type of data provides support for several activities that involve the
characterization of reservoirs and, its methodology, according to [237], permeates three
main applications: (i) engineering seismology, for engineering studies to explore features
within a depth up to 1 km, (ii) exploration seismology, to explore oil and gas fields up
to 10 km deep, and (iii) earthquake seismology, to investigate earth crustal structure
within a depth of up to 100 km. Furthermore, the interpretations carried out on seismic
data allow the identification of morphological (e.g., shelf, slope, mound, slump, etc.) and
structural features (e.g., faults) as also mapping geological horizons [216].

The seismic data is generated through the time course of reflection (or refraction)
of seismic waves produced by a mechanical energy source that are emitted through a
surface. In the case of the exploration of oil and gas, this acquisition can be carried out
by different ways from continental to shore, shallow marine and marine environments.
According to [145], the wave generation process is generally formed by putting a source of
impulse such as dynamite, air-gun or vibrator that sends acoustic energy into the Earth.
Thus, sensors or geophones placed on the surface are capable of capturing the reflected
acoustic energy, converting it into an electrical signal that is displayed as a trace seismic
signal.

In the specific case of maritime acquisition, the acquisition environment contains the



29

main tool large ships with air-guns that are located behind this vessel. In this way,
the seismic signal is formed by forcing highly pressurized air into the water at a given
interval. Marine receivers with piezoelectric hydrophones, also located on the back of the
ship and streamers, capture information about the change in pressure in the water. For
this acquisition, the vessels follow predetermined patterns of parallel circuits.

In terrestrial acquisition, geophones can be organized in different ways and unlike
marine acquisition, the seismic line will rarely be in a straight line. This type of acquisition
becomes more complicated due to the nature of the terrestrial environment which contains,
in most cases, natural and artificial structures (e.g., lakes, buildings, roads and irregular
soil). Thus, as described by Mondol [145], groups of geophones tend to be grouped on a
line with shot points at the end or in the middle of the receiver array and to capture the
generated waves the shot points are gradually moved along a line of geophones.

After the acquisition process, the processing stage aims to transform the acquired
seismic data into a representation of the geology, for which geometric corrections are
usually made to generate data consistent with the source reference system. The main
objective in this processing stage is to enhance the signal and suppress the coherent
and non-coherent noises and multiples. To deal with it, numerical analysis (such as
Fourier Analysis, Convolution and Deconvolution, Equalization, Correlation functions)
are applied to the input seismic traces [6].

With the seismic data processed and containing information regarding the amplitude
of the signal initially propagated, it is also possible to compute attributes that high-
light characteristics of the seismic signal. With this it is possible to more easily identify
structures as geological layers, faults, caves, horizons, etc. These attributes can be com-
puted by a mathematical manipulation of the original seismic and evaluate the shape or
other characteristic of one or more seismic traces and their correlation at specific time
intervals [8].

However, it is also important to point out that the processing of seismic data for the
most part also depends on the quality of the environment in which the data were acquired.
Characteristics of the surface analyzed in this way such as the environment, weather
conditions and demographic restrictions have a significant impact on field data quality,
this is because these conditions interfere with the generating energy that penetrates into
the surface and also during data recording [237]. Likewise, ultradeep reservoirs in the
Brazilian pre-salt reservoirs illustrate how the subsurface environment may also decrease
the quality of seismic images due to distortion and attenuation on the seismic waves path
when crossing thick (i.e., 2 km) and highly-deformed salt layers [146].

2.3 Computer Vision Techniques

Several computer vision techniques are applied to characterize reservoirs, and through
a literature review, the type of operations found can be divided into two groups: those
based on image processing and those based on deep learning. These methods currently
work together, presenting a mutualistic relationship, where deep learning models mostly
require pre-processing steps involving traditional image processing techniques, and these
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techniques are increasingly adding artificial intelligence concepts to improve the resolution
of users’ proposals.

As a tool to identify and understand the use of these techniques, we use the word cloud
approach that produces a visual representation of a set of words, presenting different sizes
according to their frequency or importance [46]. As shown in Figure 2.1, a word cloud
was generated with the computer vision methods and targets, used in selected articles
for each of the last 10 years. Through it, it was possible to perceive the transition from
a purely problem-solving approach through image processing techniques, to 2018, with
the beginning of the popularity of neural networks, where deep learning techniques also
became a target for the characterization of reservoirs. Therefore, in this section, the main
approaches of both groups and their relationship in the geological analysis workflow will
be described.

Figure 2.1: Word cloud of computer vision methods and target research areas from the
last ten years of selected literature.

2.3.1 Image Processing

As described by Gonzalez and Woods [74], the utilization of image processing methods
comes from two main areas of application: Improvement of visual elements for human
interpretation and processing of image data for storage, transmission, and representation.
Within these areas of application, processes may exist that range from low-level activities
involving primitive operations such as pre-processing for noise reduction, surpassing more
complex activities such as segmentation and classification of objects, up to high-level
activities involving the process of assigning meaning to the elements identified in these
images. Thus, in this section, we address which of these tasks are commonly identified in
reservoir characterization and how their application process occurs.

Image Denoising

As previously presented, the reservoir characterization process includes the manipulation
of different types of images that are acquired by different sensors. During this acquisition
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process, it is very common for data to be contaminated with noise, whether due to the
quality of the equipment, a problem with the data being analyzed or even interference from
the environment in which the data was acquired. Furthermore, noise can be introduced
due to transmission errors and compression. Consequently, denoising frequently becomes
a crucial step to be taken before the images data is analyzed and compensate any data
corruption [147].

It was possible to notice the prominent presence of three main algorithms for this task:
(i) the median filter, (ii) the mean filter and (iii) Gaussian smoothing. These filters act
locally, as they are restricted to a spatial distance, and makes use of low pass filtering on
pixel groups with the statement that the noise occupies a higher region of the frequency
spectrum [60]. Therefore, its application differs due to the operation carried out in these
filters, the Gaussian filter and the mean filter have linear approaches, while the median
filter operates in a non-linear way.

The linear filtering is based on linear combinations of input values, while non-linear
filtering allows for more complex and adaptable operations, often being preferable in
situations where specific features of the information need to be preserved. The median
filter, for example, is a case of a non-linear filter. The medial pixel value among all
the neighbors in a window are generally used to reduce noise in an image, preserving
the smoothness in the resulting image [23]. On the other hand, the mean filter acts
linearly, smoothing the pixels with a weighted average of the neighbors with the specified
parameters. For this set of neighbor pixels, the new spatial center is calculated and it will
serve as the center for the next iteration until the values stop changing or the maximum
number of iterations is achieved.

In the same class, the linear one, the Gaussian filter can be consider as a non-uniform
low-pass filter that preserves low spatial frequency and reduces image noise and unnec-
essary details in an image. The Gaussian function assigns higher weights to the pixels
closest to the center pixel, gradually decreasing the weights as the distance increases. This
is commonly achieved through the convolution of an image with a Gaussian kernel. The
2D form of this Gaussian kernel is expressed as:

G2D(x, y, σ) =
1

2πσ2
e
−

x2 + y2

2σ2 (2.1)

where σ is the standard deviation of the distribution and x and y are the locations
indices and controls the variance around a mean value of the Gaussian distribution, which
influences the degree of blurring around a pixel [230].

Image Segmentation

Image segmentation is one of the preponderant tasks in the area of visual computing
given its relevance in feature extraction, object localization and image classification. In the
specific context of reservoir characterization, its use is highly linked to work on identifying
and extracting regions of interest in rock images (e.g., pore spaces, fractures and seismic
data (e.g., seismic facies, faults, fractures, caverns) [19, 35, 52, 86, 132, 133, 186, 207, 220].
This information, when extracted, plays a significant role in analyzing the data present
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in the images, providing insights into rock mineralogy, porosity, permeability, fluid flow,
location and geometry of pores and fractures.

A great variety of segmentation algorithms have been developed in the last few decades
and this number continually increases each year [254]. Their approaches can be divided
into three main groups: (i) those based on the principle of similarity, which groups image
pixels based on a common property, (ii) those based on the principle of discontinuity,
which extracts regions that differ, in properties such as intensity, color, texture or other
statistics [113] and (iii) the neural network based, that combine both approaches. Among
these categories, the technique that stands out in the group of similarity between the
works evaluated are thresholding methods. This method is one of the most used for
image segmentation and is useful in discriminating between foreground and background
by the selection of a suitable T (threshold) value. The gray tones in an image can be
converted to binary values, where the choice of T can be made by manually, choosing an
arbitrary value, or by analyzing the histogram of the image to be segmented. In the case
of histogram analysis, the ideal case is presented when there is a bimodal distribution
of the data and the T value can be defined as the valley point between the two regions,
however in more complex regions other image characteristics can be taken into account [3].

In discontinuity-based techniques, we have methodologies based on edges and con-
tours that identify discontinuities in the image and highlight abrupt transitions in inten-
sity, color or texture. There are three different types of discontinuities in the grey level:
point, lines and edges. In these cases, spatial masks can be used to detect all the three
types of discontinuities in an image. They are based on 1st order derivative operations
(Prewitt operator, Sobel operator, Test operator) and second-order derivative operations
(e.g., Laplacian operator, zero-crossings) [181]. Another method in this category is the
watershed segmentation; this technique is based on a “flooding” and segments an image
into regions that can be interpreted as “height fields” and “landscapes”. As discussed
by Szeliski [204] computing such regions involves initiating a flooding process across all
local minimum in the landscape and marking ridges wherever differently evolving compo-
nents meet, which are points of higher intensity or gradient where different components
of the image meet. This results in a partitioning of the image into distinct areas based
on the intensity or gradient characteristics, with watershed lines marking the boundaries
between these regions.

Finally, we have neural networks that, with their emergence, made it possible to build
complex models for segmenting images that have a deviation from the normal situation,
also reducing the requirements of expert intervention during the image segmentation pro-
cess [113]. In this methodology, features are initially extracted from images and then the
image is segmented based on this features.

Data Augmentation

The use of data augmentation is quite common as a data pre-processing step for machine
learning models. This constantly occurs due to insufficient data or cases of sample imbal-
ance. The first case mainly becomes common in the geological study of reservoirs due to
privacy concerns of the oil and gas industries that acquire this information. The second
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case is directly related to the population of the datasets, where a sample and/or group
that will be extracted or classified has less representation.

In both cases, the majority of transformations applied are geometric, following by color
transformations and based on Generative Adversarial Networks (GANs) [75]. In geometric
transformations, affine operations are applied to manipulate the input data. Thus, for
each image, its duplication is generated through operations such as flipping, distortion,
zoom in/out, shift, or shading with a hue [161]. However, in geometric operations, it is
necessary to analyze the characteristic of the data to avoid applying an operation that
creates an erroneous representation of the information. This is particularly crucial in
seismic images where the orientation of the image is of paramount importance for its
conceptualization.

Given that seismic images are always interpreted horizontally, any operation that
distorts this characteristic, such as rotation or horizontal flipping, will introduce errors
into the model’s learning. Therefore, in this specific case, it is common to use only the
vertical flipping operation. In color space transformation, simple operations involving
the R, G, B channels can be applied to enhance the images. For example, an image
can quickly be converted into a representation of a single color channel by isolating one
color channel and nullifying the content of the others. Additionally, RGB values can be
manipulated through matrix operations that can increase or decrease the brightness of an
image. In the case of more complex operations, the image histogram can be assessed and
altered to produce transformations with variations in brightness [194].

With the GANs, the strategy is creating synthetic images, enabling the expansion and
enhancement of datasets through artificial instances. These instances are generated based
on original data, with features extracted to serve as a foundation for generating new im-
ages [75]. This approach allows for enriching and diversifying datasets, promoting greater
robustness and variety in analyses and model training. In addition to these methods,
the literature also presents more sophisticated data augmentation applications, which use
traditional techniques (such as those mentioned above) with more advanced ones (CutOut
and CutMix). Koeshidayatullah [111], for example, applied this combination to deal with
class imbalance in its database. The developed workflow applied methods such as flip,
zoom and add Gaussian blur and also the CutOut method, where black squares are added
to the images, and CutMix, where the input image of a given class is superimposed with
a small image of a different class. Thus, the association of these methods improves the
model’s robustness against input corruption and its out-of-distribution detection perfor-
mances.

Geometry Analysis

The use of visual computing is present through the application of image processing tech-
niques for the geometric characterization of two important structures: pores and fractures.
These structures, as previously discussed, are of utmost importance in defining reservoir
modeling. Thus, quantifying their presence in this environment has proven to be a funda-
mental task in the study of reservoirs, which involves several steps, including the imaging
techniques already described previously.
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To carry out this analysis of geometry, researchers use different approaches and tools.
In the work developed by Wu et al. [231], the effect of micropore geometry on pore
systems was discussed, where through image processing, parameters such as the pore
radius, throat (i.e., small interpores linkage) and shape were measured to also create a
pore network model.

Jia et al. [98] sought in their work to analyze different aspects of the pore structure
through SEM images using MATLAB programs; for this, these images were binarized
through an adaptive threshold and through language functions, such as “label”, “region-
props” and “bwlabel”, the pores are identified and divided into units that will be measured.
With information about the distribution of pixels in each unit relative to the pores and
functions such as “area” and “sum”, the measurements of porosity, radius, pore-throat
radius, the pore network and the location are calculated.

Similar characteristics were previously studied by Jiao et al. [100]. However, the
analysis carried out on the nanopores was guided by the use of the PCAS software (Pores
(Particles) and Cracks Analysis System) in FESEM image, in which a threshold was
defined for the segmentation of the images and various geometric parameters of the pores
including their perimeter, area, length, width, and form factor, as well as statistical
parameters of the pore system, including probability entropy and fractal dimension were
also measured.

In the work described by Pal et al. [155], the main tool used was ImageJ; through
it, FESEM images are smoothed and segmented by the Otsu threshold and only then
can porosity and permeability be calculated through well-defined pore structures based
on characteristic length, constriction, and tortuosity, measurements that are extracted
through the skeletonization technique and the calculation of the Euclidean distance be-
tween extremes. Other approaches analyzed also make use of more than one tool, such as
in [180], which in addition to using the Avizo software, also used the Python programming
language. With this, filtering and segmentation (by the software) were applied so that,
through Skeletonization, a distance map was calculated and the diameter of the pores was
extracted (by Python). Using these image processing techniques to extract the morphol-
ogy of these structures also allows machine learning models to be used to automate the
classification of these structures.

In the work developed by Mollajan et al. [144], geological parameters (such as round-
ness, diameter, rectangularity, solidity, among others) were extracted from rock sections
segmented images to feed a pore type classification model. This type of hybrid workflow,
with image processing and machine learning model, was also proposed by Li et al. [122]
for the classification of rock types through the extraction of some key characteristic pa-
rameters as area, perimeter, effective length, equivalent width, equivalent circle diameter,
and azimuth. Finally, in research that seeks to purely analyze faults and fractures, it is
possible to note the importance of quantitative characterization of the fractal dimension
of a rock fracture network system [12, 79, 164]. In these works, techniques such as Canny
edge detection, box- counting methodology and segmentation tools guide the main task
of its extraction so that its dimensions are calculated.
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2.3.2 Deep Learning

With the advance of technology and the increase in the complexity of problems presented
in the field of visual computing, the use of deep learning has been applied as a powerful
tool to deal with tasks involving segmentation, classification and image generation. This
technological tool known as Deep Learning (DL) acts as a subset of machine learning
characterized by a series of operations that systematically extract complex features by
utilizing the results of previous operations as input [76], and its principals keys components
are the training set, network architectures and the parameter optimization.

Over time, the DL use have increasingly been applied in geological analysis applica-
tions, primarily in tasks for reservoir characterization that require a powerful ability to
extract deep features and manipulate complex data. In this section, it will be presented
in details the mostly used deep learning architectures resulting from the literature re-
search, namely (i) Convolutional Neural Networks and the deep generative models, more
specifically, (ii) the Generative Adversarial Networks.

Convolutional Neural Networks

The Convolutional Neural Networks (CNNs) have proven to be one of the most famous
and powerful deep neural networks, especially in the field of image data linked to chal-
lenges encountered in the field of computer vision. The input data for this model usually
has a matrix format and can be presented as time-series data (1D data), grayscale im-
ages (as the rock thin sections), color images (three-channel data with 2D inputs), and
multidimensional time-varying data (as 3D seismic data) [206].

The CNN takes this name based on the mathematical linear operations between matri-
ces, namely convolution [4] and, it is composed of three types of layers: (i) convolutional
layers, (ii) pooling layers, and (iii) fully connected layers, where each one has a different
objective.

In the convolutional layers, the CNN uses the concept of kernels, which is a matrix
used in the convolution operation. The kernel is always smaller in size than the image
and has values that are learned during network training. Its application to an image acts
as filtering, which seeks to extract information such as edges, textures or more complex
patterns. The convolution operation is constituted by the multiplication of the kernel by
the elements of the same position that overlap in the image (input), where the result of
the multiplication is added in order to produce a single value in an output image (also
known as a feature map). Generally in convolutional layers there is more than one filter,
and each of them traverses the image based on a stride that controls the distance between
the path of its application, and generates a series of feature maps. In this process there
is also a need to pay attention to the information present at the edges of the images, for
this, another parameter used is the padding, which when used adds a border of zeros in
order to control the spatial size of the output. At the end, an activation function performs
the nonlinear transformation to extract this features.

In the pooling layers, the main objective is to reduce the spatial dimension of the input
volume in order to extract key features for the next convolutional layer. This process is
known as downsampling and can be applied through operations such as max pooling,
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that reports the maximum output within a rectangular neighborhood or average pooling,
that calculates the average of this neighborhood. Thus, this layer seeks to make the
representation invariant to small translations in the input and be able to preserve the
locality of a feature [76].

At the end of the process, the fully-connected layers aim to understand and utilize the
extracted high-level features. Neurons within a fully connected layer establish complete
connections with all activations in the preceding layer where their activation can hence
be computed with a matrix multiplication followed by a bias offset converting the 2D
feature maps into a 1D feature vector to complete the reasoning tasks, such as regression
or classification [206, 219].

When building a typical convolutional network architecture, the initial layers will
mainly consist of convolution and pooling layers. At the output of a convolutional layer,
an activation function such as sigmoid or hyperbolic tangent will be applied to introduce
non-linearity to the data and adjust or limit the generated output. Subsequently, the
fully connected layers will consolidate the extracted features for final decision making.

The network training process occurs through backpropagation, a technique that uses
gradient descent to adjust the network weights present in the kernel. During training, the
input data along with the corresponding desired outputs (labels) are fed to the network.
The difference between the outputs predicted by the network and the actual outputs is
calculated using a loss function. This error is then back-propagated through the network,
adjusting the weights for a set number of epochs to minimize loss until the network reaches
acceptable performance.

CNNs have played an important role in reservoir characterization, their applications
mainly play a role in the segmentation and classification of geological structures. Ta-
ble 2.3 summarizes the different convolutional networks, in addition to the conventional
ones, identified in the analyzed state of the art. Through it, it is possible to perceive
the wide variety of data types that feed different convolutional models used in reservoir
characterization, as well as the diversity of tasks that can be solved through this type of
network.

Generative Adversarial Networks

The Generative Adversarial Networks (GANs) [75] belongs to the class of generative
models, in which through training data the main objective is to generate similar data.
For this, GANs consist of two neural networks: one is the generator G, that has to learn
to generate fake sample distributions, and the other is the discriminator D, that needs to
learn how to distinguish the real and fake distribution generated by the Generator [43].

As explained by Wu et al. [226], G will capture the distribution of the input sample
data, and an image will be generated using a noise z that obeys a certain distribution; The
discriminative model D works estimating the probability of a sample which came from
the training data rather than G, in the training process and this probability is used as the
error metric to improve the generator capability. Over the epochs the generator and the
discriminator tries to compete against each other in a process of optimization based on
the minimax game problem, giving meaning to the term “adversarial”, and its parameters
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Table 2.3: CNN-based methods for reservoir characterization tasks and their approaches.

Models Data Types Objectives References

Multiscale Convolu-
tional Neural Network
model (MsNet)

Simulated Images - Predict the equivalent permeability [264]

Super Resolution
Convolutional Neural
Network model (SR-
CNN)

Seismic Data - A method for fault enhancement [243]

Continuous Wavelet
Transforms CNN
(CWT-CNN)

Seismic Data - Seismic lithology prediction [248]

3D Scattering Wavelet
Transform Convolu-
tional Neural Network
(3-D SCWT)

Seismic Data - Fault detection through SCWT multiscale and
multidirection characteristics

[191]

PoreFlow-Net 3D Digital Rock Images - Fluid flow predictions [183]

AlexNet SEM Images - Characterizing clay textures [71]

Active Attention Module
(AAM U-Net)

Seismic Data - Attention module based on the characteristics of
seismic faults for faults detection

[52]

ConvNet Laser Scanning Flu-
orescence Microscopy
(LSFM)

- Automated characterization of pore-scale wetta-
bility

[244]

CNN Phys 3D digital rock images - Predicting permeability [208]

LGCNN Micro-CT Images - Reconstruction of the porous media [249]

Theory-guided Convolu-
tional Neural Network
(TgCNN)

Permeability map - Well placement optimization. [221]

Spectral Decomposition
via Inversion Strategies
(ISD-CNN)

Seismic Data - Calculate the probability distribution of occur-
rence of lithology/fluid

[250]

Mask R-CNN Digital photos (Out-
crops) and Rock Thin
Sections

- Intelligent image recognition technology to study
the microscopic remaining oil occurrence into four
categories
- Determination of pore space characteristics
- Construct a particle segmentation model

[126, 222,
227]

U-Net Rock Thin Sections,
Seismic Data, GPR
data, SEM Images

- Inversion of surface gravity data to predict 2-D
high-resolution subsurface CO2 distribution
- Grain segmentation
- CO2 Interpretation From 4D Sleipner Seismic
Images
- Classify the rock types
- Salt domes and faults identification
- Mapping of karstified zones imaged through GPR
surveys
- Effective discrimination of clay aggregates mixed
with matrix mineral particles and organic matter

[5, 35, 92,
121, 132,
207, 235]

CNNs Rock Thin Sections,
Seismic Data, Per-
meability map, X-ray
Micro-CT

- Lithology classification models
- Automatic classification of subsurface hydrocar-
bon
regions from 2D seismic images
- Carbonate petrography characterization
- Determining the placement of an oil production
well
- Facies classification
- Characterizing Paleokarst Collapse Features
- Detect and classify intact and non-intact cores
- Estimating the permeability of complex carbon-
ate

[7, 112, 114,
157, 197,
209, 229]
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will be updated by the back propagation process. At the end the generator must be able
to generate realistic looking images while the Discriminator aims to continually improve
its ability to distinguish between generated fake images and real ones [43].

Reservoir characterization work that involves the use of GANs is mostly linked to the
generation of synthetic image datasets for model training. However, in Table 2.4, it is
also possible to see the variety of models and simulations process that can be developed
by the use of generative models.

Table 2.4: GAN-based methods for reservoir characterization tasks and their approaches.

Models Objectives References

Conditional Deep Convolutional Gen-
erative Neural Network (cDC-GAN)

- Predict the reservoir fluid distribu-
tion at any time by considering reser-
voir properties

[261]

Wasserstein GAN with Gradient
Penalty (WGAN-GP)

- Seismic inverse modeling [232]

Conditional Generative Adversarial
Networks (CGAN)

- Simulate multiple geological mod-
els generating realizations that respect
spatial observations

[88]

Generative Adversarial Network-based
Geomodeling Simulation Approach
(GANSim)

- Stochastic Conditional Geomodeling [196]

Deep Convolutional Generative Adver-
sarial Networks (DCGAN)

- Model regeneration scheme for reli-
able uncertainty quantification of chan-
nel reservoirs without conventional
model inversion methods

[120]

Relativistic Average GANs (RAGANs) - Enhance the resolution of thin sec-
tions images

[129]

Spatially Assembled GANs (SAGANs) - Fast and scalable earth texture syn-
thesis

[107]

U-Net GAN - Create unconditional and conditional
facies models.

[247]

Generative Adversarial Network based
on a Single Image (SinGAN)

- Simulation of Complex Geological Ar-
chitectures

[128]

2.4 Computational Tools

Several tools have been used to manipulate the different types of images involved in the
reservoir characterization process, depending on the type of analysis carried out with the
image or the computational domain. Three main tools were identified in the literature
papers that are used in this domain: (i) Python programming language, (ii) Matlab, and
(iii) ImageJ, which are briefly described as follows.
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2.4.1 Python Programming Language

Python [214] is a high-level, open source, object-oriented language, with an extensive
library of pre-built modules. Its user-friendly nature, and the growing of users community
have contributed to its popularity and continuous improvement. Furthermore, Python has
proven to be an excellent tool when it comes to massive data processing improved by the
advent of machine and deep learning, forming part of several works identified in the
literature.

There are many applications involving Python in terms of visual computing, ranging
from modules that work in image processing to the implementation of deep learning
models. Regarding the first field, image processing, one of the main modules used is
the OpenCV library, which has powerful image manipulation capabilities. This library
can help explore solutions to the needs presented through standardized data format that
is interoperable with scientific libraries such as NumPy and SciPy [87]. Furthermore,
its use can be linked to different types of functions, such as image processing, structure
analysis, movement and object analysis, pattern recognition and camera calibration and
3D reconstruction.

In the field of artificial intelligence, Python scripts have increasingly enabled research
to advance. This is mainly due to the development of Theano and then TensorFlow [1],
two symbolic tensor manipulation frameworks that support autodifferentiation, greatly
simplifying the process of implementing new models, and by the rise of libraries such
as Keras [36] and PyTorch [158], that enables the straightforward construction of deep
learning models [37].

2.4.2 Matlab

Matlab [135] is also a high-level language with control flow statements, functions, data
structures, input/output, and object-oriented programming features. This language in-
cludes commands for 2D and 3D data visualization, image processing, animations and
graphic presentations, in addition to having a vast collection of computational algorithms
that implement everything from basic mathematics to complex arithmetic and trans-
formed functions.

In the literature, it is possible to find its use mainly linked to the activity of character-
izing geological structures such as pores and fractures, where its application involves the
analysis of images to measure the geometry of such structures and provide mathematical
analysis [98, 178, 255, 256], in addition, it also enables analyzes of the textures present in
the images [71].

2.4.3 ImageJ

ImageJ [2] is a public domain Java image processing and analysis program that can read
many image formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and ‘raw’. Its
processing power and multi-threaded capacity allows the execution of a series of tasks with
excellent performance, being able to support several application open simultaneously and
perform time-consuming tasks in parallel with other operations. Through this tool, it
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is possible to extract statistical analysis of pixels, measure distance and angles, create
density graphs, apply geometric transformations (e.g., scaling, rotating and flipping),
manipulate contrast, apply filters and several other image processing functions.

ImageJ exhibits numerous attributes that make it an outstanding tool for acquiring
proficiency in computational techniques aimed at extracting information from images in
the context of reservoir characterization. Its use can be seen in the works developed by Pal
et al. [155], Ellamey and Attia [56], and Strzelecki et al. [198] that extract information
through pixels, such as porosity from high-resolution images.
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Chapter 3

Materials

This chapter provides an overview of the materials used in this study, including databases,
evaluation metrics, and computational resources. Understanding these components is cru-
cial for comprehending the methodologies and results presented in the following chapters.

3.1 Database

For the research development, our study area is located in the Santos Basin. In this
region, six wells have been drilled, of which three are the focus of our research due to
their formation and location. These wells are identified as X, Y , and Z. Extracted from
this region, we have a seismic amplitude cube in depth with dimensions of 1480×1080×301

pixels, with resolution of 12.5× 12.5× 5 meters (inline/crossline/depth) representing an
area of approximately 240 km2.

For the creation of the datasets used in Chapters 6 and 5, two different seismic volumes
representing the mapping of faults and facies were also generated. These volumes were
modeled by geologists with expertise in classifying these geological structures. Thus, the
models can be trained with reliable information, allowing for their refinement based on
the results obtained from deep neural networks.

Figure 3.1: Illustration of the field at three different levels: (A) field representation, (B)
seismic scale, and (C) well scale.
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The borehole logs data provides detailed visual information of the well’s interior and
it has a scale corresponding to an area of 500 meters. The regions depicted in these
images are also present in the seismic data, as evidenced in Figure 3.1, which illustrates
the transition from the broader scale of the field to the more detailed scale of the well
images.

3.2 Metrics

A poorly defined metric can lead to inaccurate conclusions, such as selecting suboptimal
models when comparing the effectiveness of classifiers [70]. Therefore, we will describe
two classes of metrics below that seek to provide a more precise evaluation of our results
within their respective contexts.

3.2.1 Metrics Based on Classification

Since semantic segmentation can also be understood as pixel-wise classification, some
metrics used in this task can also be applied in our context. These metrics focus on eval-
uating the prediction performance of positive samples, based on the concept of confusion
matrix, which provides a representation to measure the effectiveness of the classification
model by presenting the predictions made for each class. For example, in the application
of identifying geological faults, positive samples indicate faults and their locations in a
seismic volume [89].

Table 3.1: Structure of a confusion matrix.

True Classes

Positive Negative

Predicted Values
Positive TP FP
Negative FN TN

An illustration of the confusion matrix structure is presented in Table 3.1. From it,
we can describe the following metrics:

1. Precision: It can be defined as the ratio of true positives to the sum of true positives
and false positives, analyzing among all positive classifications made by the model,
how many are correct.

P =
TP

TP + FP
(3.1)

2. Recall: Defined as the ratio of true positives to the sum of true positives and false
negatives, analyzing among all situations of positive class as the expected value,
how many are correct.

R =
TP

TP + FN
(3.2)
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3. Accuracy: Consists of the quantity of elements that were correctly predicted, pos-
itively or negatively, divided by the total number of samples. Accuracy aims to
indicate how often the classifier is correct.

A =
TP + TN

Total
(3.3)

4. F1 Score: Consists of the combination (harmonic mean) between precision and re-
call, which measures the effectiveness of the analysis when considering both precision
and recall in a single metric.

F1 = 2 · (
P · R
P + R

) (3.4)

3.2.2 Metrics Based on Semantic Segmentation

For a segmentation system to be useful and produce efficient contributions, its effectiveness
must be rigorously evaluated. Thus, we selected two functions for evaluating semantic
segmentation methods, which is the main task of our objectives.

1. The Intersection over Union (IoU) metric, also known as the Jaccard index [193],
quantifies the percentage overlap between the input mask (i.e., the segmentation
target) and the predicted output. It calculates a ratio by comparing the intersection
and union of two sets (ground truth and prediction). This ratio can be expressed as
the number of true positives (intersection) divided by the sum of true positives, false
negatives, and false positives (union). In multi class problems the IoU is calculated
individually for each class and then averaged across all classes.

IoU =
TP

TP + FP + FN
(3.5)

2. Dice Coefficient: This metric is widely used in the computer vision community to
calculate the similarity between two images A and B [40] and is very similar to IoU.
Its value is calculated as twice the overlap area divided by the total number of pixels
in both images.

Dice =
2 |A ∩B|

|A|+ |B|
(3.6)

3.3 Computational Resources

For conducting this research, we utilized the Python programming language version 3.
Python is widely adopted in the academic community and boasts numerous libraries that
provide access to various resources. Therefore, we will describe the environment used for
implementing and executing the research both with this language and additional resources.
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3.3.1 Libraries

Among the libraries used in this work, we can divide their applications into four categories.
For data manipulation, NumPy [152] is used for reading and mathematical manipulation of
the data, while segyio [58] version 1.9.7 facilitates interaction with seismic data formatted
in the SEG-Y standard. For image manipulation, the OpenCV library [24] (Open Source
Computer Vision Library) version 2 is employed for object identification and manipulation
in images, while Scikit-Image [213] is used for image pre-processing and segmentation.

For developing deep learning-based solutions, the TensorFlow package [1] version 2 is
one of the main open-source libraries for developing and creating machine learning models.
Another widely used library, in conjunction with TensorFlow, is Keras, an open-source
neural network library written in Python and designed to enable rapid experimentation
with deep neural networks [36]. Finally, for image visualization, the Matplotlib library [91]
is primarily focused on displaying images and 2D graphics.

3.3.2 Equipment

The experiments in this work were conducted locally on a personal machine equipped with
an AMD Ryzen Threadripper PRO 5975WX CPU (32 cores, 3600 MHz), an NVIDIA
GeForce RTX 4090 graphics card, and the Windows 11 Pro operating system. Addition-
ally, Google Colab Pro was utilized, a paid cloud service that enables the implementation
of Python code via the browser using notebooks. Colab Pro provides access to two types
of graphics processing units, T4 or P100, with 25GB of memory each.



45

Chapter 4

A Combined Noisy Borehole Image Log

Segmentation Method

In this chapter, a methodology was developed for segmenting noisy well images [42]. This
type of data are a valuable tool for studying and characterizing reservoirs. However, the
quality of these images is often compromised by various types of noise due to the environ-
ment in which they are acquired. Additionally, extracting the relevant information from
these images can be a challenging task, as the existing noise can impede data segmen-
tation even after improvement. Therefore, we investigate the best combined strategy for
enhancing these images using Equalization and Retinex methods, as well as segmenting
them using threshold and quantization techniques to achieve better extraction of regions
of interest.

4.1 Contextualization

Borehole image logs are widely used in the geological context to understand and charac-
terize the reservoir environment in oil and gas wells [44, 117, 149, 187, 205, 241, 252, 265].
These images provide crucial data for extracting sedimentary and structural information
in a millimeter scale, offering important insights into structural, fracture, and depositional
features [21, 61, 116, 167].

Machine learning models and image processing algorithms can be applied to these
images to assist in the characterization process of the attributes present in the logs [63, 64,
80, 95, 99, 189, 225, 240]. Obtaining good-quality and high-resolution images has become
a crucial step in utilizing these resources in technology, as well as their segmentation to
generate datasets and enable more detailed analysis of their geological components.

However, as these images are generated at the bottom of wells, several problems can oc-
cur in their acquisition process, such as the noise generated in the images due to obstacles
in the operating environment and hardware restrictions that result in images with little
contrast and color distortion. The loss of details makes it difficult to identify important
attributes for a precise geological characterization.

To address this problem, efforts have been made to eliminate noise in these images us-
ing convolutional networks [124], contrast enhancement approaches [65], or defogging [50]
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and super-resolution [170] algorithms. However, segmentation is also important for iden-
tifying geological structures, and conventional approaches may not provide a satisfactory
result.

In this work, we aim to identify the best approach for enhancing and segmenting
these images to extract information effectively. Based on the type of noise found in the
images, we analyze the effectiveness of combining contrast and defogging enhancement
with conventional image segmentation and quantization methods.

Our approach contributes to efficient segmentation of noised borehole log images,
providing a more accurate evaluation of the pore geometry present in the log samples, as
well as allowing for labeling of these images to apply to machine learning models.

4.2 Background

This section presents and discusses each step of the proposed borehole image log segmen-
tation method.

4.2.1 Histogram Equalization

The purpose of an image histogram is to provide a graphical representation of the proba-
bility occurrences of intensity values versus their intensity levels in the image. Histogram
equalization (HE) is a method used to equalize the probability distribution of intensity
occurrence values in an image [159].

HE is one of the simplest and most widely used methods for enhancing contrast in
images. There are two types of HE methods: global and local. The global method takes
into account the overall appearance of the image, distributing the pixels over the entire
dynamic intensity range by calculating a linear cumulative histogram of the original image
and spreading the intensity values over its dynamic intensity range. The local method,
on the other hand, considers the histogram intensity statistics of neighboring pixels [47].

However, HE can introduce undesirable visual artifacts and over-enhancement caused
by large peaks in the histogram. Adaptive methods seek to avoid these issues, such
as block-based processing of histogram equalization, which performs the equalization on
each sub-image or block of the original image. One well-known method that uses this
approach is Contrast Limited Adaptive Histogram Equalization (CLAHE) [266], which
limits the amplification by clipping the histogram at a predefined value before computing
the cumulative distribution function (CDF) [140].

4.2.2 Retinex Algorithm

The Retinex theory, originally proposed by Land and McCann [118], is centered around
human perception of objects with regard to color and brightness. Its goal is to develop a
model of the human visual system that can recognize and match colors across a diverse
range of lighting conditions. The core of the Retinex algorithm leverages this property
to separate the illumination image, L(x, y), from the reflected image, R(x, y), as both
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together form an image, S(x, y), expressed in Equation 4.1.

S(x, y) = L(x, y) ∗R(x, y) (4.1)

The complexity of the multiplication in Equation 4.1 can be simplified into a basic
addition operation from a mathematical standpoint. Thus, the first step in most Retinex
algorithms is to convert the input image into the logarithmic domain, as shown in Equa-
tion 4.2.

log S(x, y) = logL(x, y) + logR(x, y) (4.2)

By applying this equation, the logarithm of the reflectance can be computed by sub-
tracting the logarithm of the illumination from the logarithm of the image, as shown in
Equation 4.3.

logR = logS − logL (4.3)

The reflectance, in comparison to the illumination, has a low-frequency component. To
estimate this illumination, the Retinex algorithm uses a Gaussian low-pass filter. There-
fore, to obtain the estimated value of the high frequency information in the reflected
image, the illumination image L(x, y) is first obtained by Gaussian filtering, expressed in
Equation 4.4.

L(x, y) = F (x, y) ∗ S(x, y) (4.4)

The Single-Scale Retinex (SSR) approach estimates the illumination by convolving the
original image with a Gaussian filter and then subtracting it from the original image to
obtain an illumination-invariant description, expressed in Equation 4.5.

Rssr(x, y) = log(S(x, y)))− log(S(x, y)»G(x, y)) (4.5)

where G(x, y) is the Gaussian filter and the symbol » denotes the convolution.
In contrast, the Multi-Scale Retinex (MSR) [103] method is calculated as a weighted

sum of different SSR outputs at multiple scales, which can be expressed in Equation 4.6.

Rmsr(x, y) =
N∑

n=1

ωnRssrn
(4.6)

In this formula, N denotes the number of scales, Rssrn
represents the output of the

n-th scale component, ωn denotes the weighting factor for the n-th scale, where ω1+ω2+

. . .+ ωn = 1, and Rmsr represents the output of the MSR algorithm.

4.2.3 Image Quantization

According to Heckbert [83], color image quantization involves selecting a set of colors to
represent the color gamut of an image, along with computing the appropriate mapping of
the color space.

Typically, this process involves two phases: first, selecting a small set of colors that
represent the original image, and second, mapping each pixel of the image to one of the
colors in this palette [134].
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Therefore, segmentation of images using this method can be achieved by defining a
color sample of the region of interest, represented by the “average” color value to be seg-
mented. The objective of this segmentation is to classify the RGB pixels of an image
as belonging or not to a particular class. This determination can be mathematically
expressed through a similarity metric, with one of the simplest being the Euclidean dis-
tance [74].

Thus, considering p(R,G,B) as an arbitrary pixel composed of RGB values, it is simi-
lar to the point a(R,G,B) if the distance between them is less than a specified threshold,
as demonstrated by Equation 4.7.

d(p, a) = ((Rp −Ra)
2 + (Gp −Ga)

2 + (Bp − Ba)
2)

1

2 ) (4.7)

where (Rp, Gp, Bp) refers to the RGB value of pixel p and (Ra, Ga, Ba) to pixel a. The
set of points p that satisfy d(p, a) f d0 forms a solid sphere of radius d0, where the points
contained in it are those that satisfy the specified color criterion, while the points outside
do not. The coding of the image points in binary form is performed by assigning black
and white to these two classes.

4.3 Experimental Results

We began our experiments on the segmentation problem of noisy borehole images by
applying traditional algorithms from the field of image segmentation. We used two types
of approaches: algorithms for uniform background images (minimum [108], local [17] and
Otsu [154] Threshold) and non-uniform (Niblack [150] and Sauvola [185]).

However, as shown in Figure 4.1, we found that even after applying several approaches
to address the problem of this type of image, none of them were able to provide satisfactory
results for the feature extraction task. Therefore, it was necessary to investigate the origin
of the noise and explore alternative approaches to deal with the situation.

After analyzing the characteristics of the acquisition process of images in high-
temperature, high-pressure environments under oil wells, we found that the noise present
in these images is mostly due to effects such as blurring and fogging. Histogram Equaliza-
tion algorithms are a well-known method for enhancing blurred images, and are often used
as the first step in pre-processing tasks in this domain. Therefore, we evaluated the effec-
tiveness of these methods by applying HE and CLAHE, followed by an efficient approach
for the defogging problem found in the literature, the Retinex algorithms: Multi-Scale
Retinex with Color Preservation (MSRCP) and Multi-Scale Retinex with Color Restora-
tion (MSRCR).

According to Zhang et al. [251], both MSRCR and MSRCP amplify noise as enhancing
images, and the noise will affect the efficiency of image retrieval or target recognition. The
MSRCR [103] estimates the illuminance of the image using Gaussian filters of different
scales and conduct enhancement by multiplying it by a color restoration function of the
chromaticity, and the MSRCP [163] will perform color preservation by applying Multi-
scale Retinex on intensity image-channel.

To assess the quality of the enhanced images by means of the concepts discussed
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Figure 4.1: Description of seismic facies classes.

Figure 4.2: Result of applying enhancement algorithms.

previously, we analyzed the results illustrated in Figure 4.2. In addition to subjective
evaluation, we applied three Image Quality Assessment (IQA) metrics: (i) mean square
error (MSE), which provides a quantitative measure of similarity between the reference
and distorted images (lower values indicate higher similarity), (ii) structural similarity
index measure (SSIM), which measures the similarity between two images in the human
visual system (SSIM index varies between -1 and 1, with 1 indicating perfect similarity and
0 indicating no similarity), and (iii) peak signal to noise ratio (PSNR), which measures



50

the power of peak signal (higher values indicate better quality) [182]. The results are
reported in Table 4.1.

Table 4.1: Quantitative results for image enhancement.

Methods
Metrics

PSNR SSIM MSE

HE 23.99 0.90 259.45
CLAHE 16.03 0.62 1620.05
MSRCP 14.68 0.58 2208.43
MSRCR 19.57 0.84 717.73

The results obtained from applying the HE and MSRCP methods showed a better
qualitative response. However, upon further visual analysis, it became apparent that the
MSRCP method was able to preserve the original colors and textures of the image better
than the HE method. This provided better conditions for the application of segmenta-
tion algorithms, which were applied again to evaluate their effectiveness after the data
improvement.

In Figure 4.3, the segmentation results for both the HE and MSRCP images are shown.
It is evident that the MSRCP approach led to better performance in feature extraction,
particularly with the minimum threshold algorithm, which was able to extract regions
such as pores and fractures (empty spaces in black) more accurately.

Despite the good results shown by the minimum threshold method compared to the
other methods, there is still noise present around some structures with greater shading.
Therefore, considering the presence of this noise and the contrast between the pore tone
and the orange tone of the background, we decided to apply RGB image quantization
(RGBQ) as a means of segmenting the images, aiming to extract only the pixels close to
the black value that indicates the actual region of interest.

To obtain the quantized image, we used the RGB tone corresponding to black (0, 0, 0)

as the target for quantization, and set the threshold at 127 to allow for color approximation
that corresponds to half of the RGB values (0 − 255). Figure 4.4 presents a comparison
between the segmentation obtained by the minimum threshold and RGBQ methods.

In this image, it is noticeable that image quantization was able to effectively segment
the structures of interest by capturing both the overexplored regions and the regions
ignored by the minimum threshold. This was possible by combining it with the enhance-
ment provided by the MSRCP algorithm. Figure 4.5 illustrates the definition of the best
model analyzed for the segmentation of these images.

4.4 Considerations

We proposed a combined method for extracting information from borehole log images
using image enhancement and quantization. The investigation into the best approach for
this task was guided by the origin of noise in the image acquisition process, which led to
lighting problems such as shading and fogging. Thus, through the research carried out,
two algorithms were used as the primary approach for image processing: the Multi-Scale
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Figure 4.3: Result of applying segmentation algorithms to HE and MSRCP images.

Retinex with Color Preservation and RGB image quantization. These methods enabled
the defogging of the image by preserving the structure present in the predominant texture
of the data, and the extraction of the region of interest by analyzing the distance between
the tones of its pixels.

Compared to other approaches presented in this work, the combination of these tech-
niques resulted in an efficient solution to the problem. This approach enables accurate and
improved analysis of the geological structures of interest and labeling of these structures,
facilitating their application in machine learning models.
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Figure 4.4: Comparisons between two samples segmented by the RGBQ method and the
minimum threshold.

Figure 4.5: Definition of the final methodology for extracting features from noisy borehole
log images.
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Chapter 5

Deep Learning Method for

Classification and Refinement of

Seismic Facies

In this chapter, we present a method for classifying and refining facies in seismic data. The
seismic facies analysis is a crucial task in the process of reservoir characterization. Tra-
ditional seismic facies labeling often require exhaustive manual analysis and rely heavily
on the expertise of professionals to classify extremely complex data. With the emergence
of deep learning techniques, several applications have been developed to assist and auto-
mate manual and repetitive tasks. In order to construct a refined seismic facies model for
pre-salt carbonates of the Barra Velha Formation (Santos Basin, Brazil), we developed a
seismic facies model consisting of 5 classes (Mounds 1 and 2, Trough, Wedge, and Chaotic)
by mapping the amplitude present in seismic data. We then applied a convolutional neu-
ral network based on the U-Net architecture to refine the results and provide a robust
classification model for the heterogeneous context of the pre-salt carbonate reservoirs.

5.1 Contextualization

In geology, the term facies (sensu lato) is applied to categorize rock units presenting
similar geological characteristics (e.g., lithology, sedimentary features, biological content,
genesis, seismic patterns) that are defined according to the specific goal. In this regard,
the goal of seismic facies analysis (sensu stricto) is to identify units of similar seismic
reflection patterns that are distinguishable from adjacent units and carry petrophysical
(e.g., reservoir interval), depositional (e.g., depositional environment, system tract) or
post-depositional (e.g., hydrothermal vent, karst) significance [26, 175, 233]. Therefore,
the interpretation of the seismic facies aims at understanding not only the stratigraphic
organization of the rock record (e.g., lithology, stratification patterns, depositional bodies)
and its potential reservoirs, but also at providing valuable insights about the paleoenvi-
ronment and formative depositional processes throughout the geological evolution. In
this approach, each seismic facies is characterized in terms of its geometry (e.g., exter-
nal and internal reflectors morphology), reflectors configuration (e.g., smoothness, lateral
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continuity), reflectors termination (e.g., onlap, downlap, toplap, offlap), and their stack-
ing patterns (e.g., progradation, retrogradation, aggradation), as also the properties of
seismic waves (e.g., dominant amplitude and frequency) (sensu [31, 142, 143, 233]).

However, interpreting large amounts of data, as seismic volumes usually present them-
selves, is a time-consuming and laborious task. When performed manually, the interpreter
identifies seismic reflection patterns and delimit the regions with color marker labels [49].

The manual labeling is usually conducted at regularly-spaced control seismic images
(e.g., cross-line or in-lines) using straight polyline segments. In this process, the inter-
mediary seismic slices between labelled images are left uninterpreted or with unprecise
correlation between adjacent labeled slices, producing either gaps or geologically inaccu-
rate label boundaries (e.g., serrated outlines) in the interpretation dataset.

Several works have been following the advancement of computer vision techniques
and make use of them throughout their evolution. When applied, these methods can
enhance the visibility of features that characterize significant structures within seismic
data, facilitating the comprehension of structures and patterns that might otherwise go
unnoticed by interpreters in the mapping task.

The literature on technologies that assist in this characterization illustrates how var-
ious approaches and tools can be employed in this endeavor. In recent years, with the
advancement of machine learning methods, there has been a noticeable evolution in tech-
nology’s domain and its application in the task of classifying seismic facies. Initially,
the facies analysis process could be approached through the concept of a self-organizing
map, one of the most widely used algorithms for seismic facies analysis, to cluster classes
effectively [53, 259].

Therefore, with the demonstrated power of machine learning-based methods, re-
cent works have explored semi-supervised, unsupervised, and supervised approaches.
In the first case, methodologies employ pseudo-labeling techniques to predict seismic
facies, especially when obtaining a significant amount of labeled data is not feasi-
ble [10, 123, 127, 169, 199]. When no labeled data is available, unsupervised methods
are applied, such as those mentioned in the work developed by Ferreira et al. [62], which
perform the classification of seismic facies in a specific region of the Santos Basin using
the k-means clustering method. However, the methods that have been receiving more at-
tention are convolutional networks based on supervised learning, which, through a dataset
with labels, seek to map regions of interest in seismic data. The pre-processing of these
data is shown to be a fundamental part for the network’s performance, requiring refine-
ment of labels [253] and diversification of techniques involving dataset construction [102]
before the network application.

Linked to the training process, explainability techniques have proven to be a new and
effective tool in understanding the behavior of networks in this automatic classification
task [92, 172, 238]. In addition to the established use of CNNs, new lines of research
are also exploring the potential of Transformers and their self-attention mechanism to
optimize the facies segmentation process [223], as well as automatically optimizing the
development of network architecture [69].

Therefore, the present research aims to create a robust model, with low complexity
and high efficiency, trained with a large amount of data to classify 5 different types of
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facies that are deposited in a region of Santos Basin in the Brazilian Pre-Salt. This region
is extremely important in the context of Brazilian oil and gas exploration, as it emerges as
one of the main oil producing basins. However, its heterogeneous and particular formation,
since it represents the largest nonmarine carbonate reservoirs in the world [203], introduces
complexities to the task of modeling and classifying attributes, such as facies, within fields
having such a structure.

To deal with it, we developed a massive database derived from a seismic volume,
originating from a region of the Santos Basin, which was entirely labeled with the main
geological facies found. Consequently, the automatic classification of this target can be
done using deep learning resources, such as convolutional networks, through the use of
the segmentation technique based on U-Net. By training this network, it is possible to:
(i) produce more accurate and precise prediction of uninterpreted seismic images between
manually-labelled slices, (ii) correct gaps and outline artifacts of labels to better depict
lateral and vertical boundaries between facies, and (iii) optimize the time on future seismic
facies analysis in highly heterogeneous reservoirs.

5.2 Methodology

To achieve the creation of a model capable of refining and classifying data pertaining
to seismic facies within a pre-salt region, a systematic approach was undertaken. This
encompassed a step-by-step process, beginning with the assembly of a original dataset
and concluding with a comprehensive assessment of the model’s efficacy. In Figure 5.1,
there is a representation of a detailed workflow describing the stages of this process, which
will be elaborated on in the subsequent sections.

Identification of 
the Region of 

Interest

Seismic Pattern
Observation

Seismic Facies 
Analysis

Dataset 
Preparation

Model Training

SF 1B - Mound  2 

SF 2 - Trough 

SF 3 - Chaotic

SF 4 - Wedge

0 - Background

SF 1A -  Mound 1

Normalization

Gaussian Filter

Crop Data

Split SamplesEvaluation

Target Generation

CNN

Quantitative and 
Qualitative 
Analysis

Field Definition

Augmentation

Figure 5.1: Detailed workflow for building a seismic facies classification model.

These stages include: (i) the definition of a region of interest, where the geological
formation of interest was delimited, as well as its reservoirs, (ii) the observation of the
seismic patterns of greatest influence and importance in the present lithology and geology,
(iii) the analysis of facies in the seismic data through the 3D mapping of the defined
facies, aiming at creating the target of the model, (iv) preparation of the seismic data
to feed the network; for this purpose, image processing techniques were used to improve
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the quality of the seismic data, normalize its values, and select the sections for training,
validation, and testing, (v) training the network using a convolutional neural network
model, and (vi) the evaluation of the results through classification and similarity metrics
for a quantitative analysis and the comparison of the obtained prediction results for a
final qualitative analysis.

5.2.1 Seismic Facies Analysis

In this work, we conducted a seismic facies analysis using a seismic volume (20.5×12.5×0.9
km) of pre-salt carbonate reservoirs of the Barra Velha Formation in the Santos Basin,
Brazil. A total of five seismic facies were mapped and classified as: (i) chaotic, (ii) mound
type 1, (iii) mound type 2, (iv) wedge, and (v) trough seismic facies, as illustrated in
Figure 5.2.

1 km

1 km

1 km

1 km

1 km

Figure 5.2: Description of seismic facies classes.

The facies were manually picked along seismic cross-lines oriented in the direction of
maximum geological variability; their mapping followed regular (5 or 10 steps) intervals.
By using the multi-z tool in the PaleoScan software (version 2023 1.0), the intermediary
cross-lines between the mapped images were automatically mapped and merged to com-
pose three-dimensional geobodies containing seismic facies volumes. Finally, each seismic
facies geobody was assigned to an integer value (from 1 to 5) to produce the classificatory
facies mask of the original seismic volume, leaving unclassified volumes with null value.

The chaotic seismic facies display flat and irregular base and top, composing an ap-
proximately 4.82 km3 plateau positioned at high stratigraphic intervals (lower seismic
depth) with a 0.004 average seismic amplitude. Internally, the seismic facies show chaotic
pattern with laterally discontinuous subhorizontal reflectors due to the presence of pairs
of subvertical small-scale normal faults marked by bright spot cores. The chaotic facies
is laterally bounded by the trough and the mound type 1 seismic facies.
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Types 1 and 2 mound seismic facies resemble ridges enclosed by an irregular flat base
and a convex-upward top that laterally tappers the bottom horizon, occupying volumes of
approximately 1.85 km3 and 12.8 km3, respectively. Both mound types are characterized
by the presence of large-scale inverse faults. However, they differ in terms of internal
seismic reflectors configuration and lateral boundaries. Type 1 mound facies displays an
internal seismic pattern of small-scale chaotic reflectors that are laterally discontinuous,
with random angular orientation, and approximately 0.0042 in average seismic amplitude.
Moreover, the mound type 1 is bounded by the chaotic and the trough seismic facies on
opposite sides. Alternatively, Type 2 mound is internally organized into conformable and
parallel convex-upward reflectors with an approximately -0.04 average seismic amplitude.
Finally, the type 2 mound is bounded by the trough and the wedge seismic facies.

The wedge seismic facies occurs partially enclosed between the type 2 mound seismic
facies. It resembles an approximately 2.2 km3 wedge-shaped body limited by a concave-
up base and a flat and horizontal top horizon. Its major axis is aligned with the mound
type 2 ridges at both sides. Internally, the seismic reflectors (approximately -0.0027 aver-
age amplitude) are organized into clinoforms that downlap the concave-up lower horizon
parallel to the wedge’s major axis. Furthermore, the wedge seismic facies is bounded on
both sides by type 2 mound facies.

The trough seismic facies appear as a bowl-shaped geobody limited at the base and
the top by concave-upward horizons; it displays a major axis parallel to the mound ridges
and occupies a total volume of approximately 17.2 km3. Internally, the trough facies
is composed of high-amplitude (approximately 0.0027) conformable and parallel seismic
reflectors displaying concave-up geometry. Additionally, large-scale normal faults are
depicted at both margins of the geobody. The trough seismic facies is laterally bounded
and onlaps the mound (types 1 and 2) and the chaotic seismic facies.

From the mapping of the previously defined seismic characteristics, a seismic cube
was built to serve as the basis for creating the seismic facies dataset. In this cube, as
illustrated in Figure 5.3, there are the presence of the 5 seismic facies and a background
region that surrounds the region of interest.

Figure 5.3: Seismic cube containing the results of mapping the seismic facies of interest.
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5.2.2 Dataset Preparation

From the mapping of the facies defined in the previous section, a seismic cube of dimension
1050×1073×194 pixels, which refers to the dimensions of inlines, crosslines, and depth,
was generated to feed the machine learning model for facies prediction. This wealth
of data can facilitate the incorporation of heterogeneity within the model, enabling an
investigation into its learning capabilities across a diverse carbonate reservoir scenarios.

For the classification task, this target cube presents five distinct geological facies and
a background region. Figure 5.4 illustrates a seismic inline containing labels denoting
its presence. As discussed, the geological facies were categorized to represent regions
sharing similar characteristics, whether attributed to their chaotic shapes, generally asso-
ciated with non-reservoir areas, or from their mound-like geometries, indicative of their
association with reservoir regions.

Figure 5.4: Example of a mask section with class labeling.

To train the model, the data preparation process begins with the pre-processing of
the data that will be used as input for the network, which in this case will be a seismic
cube related to the seismic amplitude of the same facies region. Given the wide range of
amplitudes, the initial step involved data normalization to improve input consistency and
prevent errors during gradient updating and other training processes. Subsequently, a
Gaussian filter it was also utilized with a 5×5 kernel to reduce noise and enhance details.

As the model needs to be fed with images of specific sizes to perform convolutions
and upsampling processes, both input and target were cropped, as shown in Figure 5.5
(A), into data slices of 194×194 pixels extracted by a sliding window of size 194 with no
overlaps, traversing each 1050 inline, creating a dataset of 3987 pairs of images.

M
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N
INPUT
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(A) CROP DATA

(B) FLIP DATA AUGMENTATION

Figure 5.5: Process of dataset building through the crop and augmentation steps.

For a proper evaluation of the model, we divided the dataset into 75% for training and
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15% for blind testing. However, as shown in the graph in Figure 5.6, the complete dataset
exhibits an imbalance in the number of pixels representing each facies class. Therefore,
to increase the presence of the classes with fewer instances (SF 1B, SF 3, SF 4) and to
improve the quality of the training dataset, a vertical flip operation was applied, as shown
in Figure 5.5 (B), to all slices containing these classes. This approach augmented the
number of images composing the training process, and we further divided them to obtain
15% of this data for the validation process. This validation set serves as an independent
sample to assess the model’s performance on unseen data, ensuring that the learning
process can generalize beyond the training set.

Figure 5.6: Distribution of pixel quantity for each facies class.

5.2.3 Model Architecture

The constructed model, as illustrated in Figure 5.7, was developed based on the encoder-
decoder architecture of the U-Net network. This architecture is particularly suited for
tasks such as image segmentation, where the goal is to assign a class label to each pixel
in an input image. In this specific implementation:

• Encoder: The encoder portion of the network consists of several layers, each com-
posed of two convolutional layers with a 3×3 kernel, followed by a ReLU activation
function, and a 2×2 max-pooling operation for downsampling. This architecture
allows for the extraction of hierarchical features from the input seismic image.

• Decoder: The decoder portion of the network performs the upsampling of the feature
maps to reconstruct the segmentation map. At each upsampling step, the upsam-
pled output from the previous layer (obtained through 2×2 transposed convolution)
is concatenated with the corresponding cropped feature maps copied from the en-
coder path. This mechanism helps in recovering spatial information lost during the
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downsampling process. Subsequently, two convolutional layers with a 5×5 kernel
are applied to refine the feature representation before producing the final output.

Overall, this architecture facilitates the translation of the input seismic image into a
class map representing different facies at each sampling point, leveraging both local and
global contextual information captured through the encoder-decoder framework.
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32 32

64 64

128 128

256 256

256 128 128

64 64128

64 32 32

16 1632

conv + ReLU

max-pooling (2x2)
6

softmax
 copied feature maps

copy and concatenate

input output

upsampling (2x2) with deconvolution

Figure 5.7: Network architecture. Purple blocks represent multichannel feature maps
with the number of input channels for each layer at the bottom of the block.

5.3 Results and Discussion

After implementing the aforementioned methodology, the network underwent training for
100 epochs, during which its performance was evaluated using key metrics: dice coefficient,
accuracy, precision, and recall.

In the training phase, the model achieved a dice coefficient of 0.9935, an accuracy of
0.9955, a precision score of 0.9955, and a recall of 0.9954. Subsequently, during validation,
these metrics were slightly lower but still impressive, with a dice coefficient of 0.9924, an
accuracy of 0.9941, a precision of 0.9942, and a recall of 0.9941. These results indicate
the robustness and effectiveness of the trained model across both training and validation
datasets. Additionally, Figure 5.8 presents a graphical representation of the model’s
performance in terms of its gain and error throughout the training process.

Following these initial results, the next step was the application of the final model
to the test set, consisting of 598 images of the same dimensions as the training. In this
dataset, the model achieved an accuracy of 99.24% and a Mean Intersection over Union
(MIoU) value of 95.48%. Furthermore, we analyzed the IoU value for each class, obtaining
99.42% for the background class, 94.83% for the Chaotic class, 92.84% for Mound 1,
96.03% for the Trough class, 95.21% for Mound 2, and 94.54% for the Wedge class. To
understand the values presented in the IoU metric, which acts as a metric measuring the
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(a)

(b)

Figure 5.8: Progress of the evaluation metrics comparing the values on the training and
validation datasets throughout the learning process. Learning performance through (a)
dice loss metrics and (b) error rate representation.

proportion of overlap between the prediction and its ground truth, we plot the confusion
matrix to understand how the model is performing in different classes.

The confusion matrix (Figure 5.9) discloses how the pixels were labeled and which
classes were mismatched by the model. From the observed outcome, it is evident that
the majority of confusion between classes is associated with boundary regions between
the classes and the background (according to line 0 in Figure 9), and to a minor extent,
between neighboring classes. The high value observed in this relation to other classes
suggests a transition between the background and the beginning of the facies, which, as
visually perceived, does not represent a drastic difference. Naturally, boundary confusions
are also expected due to the degree of similarity shared between adjacent seismic facies
(e.g., similar seismic patterns or amplitude values). It is important to note, however,
that the boundary confusions depicted in the model do not necessarily imply significant
distortions in the facies region, especially when analyzing the predicted images.

Because the goal of the model’s prediction extends beyond the sole classification of
amplitude data values, the prediction outcomes require validation not only through quan-
titative approach (i.e., metrics), but also through the qualitative visual analysis to grasp
the geological significance of the predicted seismic facies.
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Figure 5.9: Confusion matrix resulting from the prediction in the blind test set.

In fact, the blind test predictions (Figure 5.10 (a)) demonstrates that the model not
only offered effective classification of the seismic facies, but further refined their outline
by: (i) correctly filling the gaps in the original labels, (ii) smoothed serrated boundaries to
become geologically more accurate, (iii) and preserved geologically complex lateral bound-
aries between seismic facies (e.g., concave, convex, and embedded boundaries) (Figure 5.10
(b)). Therefore, the few observed boundary confusions in the model can be partially ac-
counted to enhancements performed by the model on ensuring coherent continuity at
places of target discontinuities due to inherent morphological limitations in the labeling
process.

SEISMIC TARGET PREDICTION SEISMIC TARGET PREDICTION

Figure 5.10: Results of facies classification and refinement in test data. (a) Improvement
in facies classification; (b) Improvement and smoothing of edges.

After testing the model’s performance on the blind test set, we applied the trained
model to the entire seismic dataset to truly assess its ability to refine the data generated
through manual labeling. In Figure 5.11, it is possible to see, through the reconstruction
of predicted sections in inlines, that the model has developed the capacity for general-
ization in its learning, predicting the region in line with the ground truth, providing a
suitable delineation of the structures, and improving contact relationships. Furthermore,
the results obtained also demonstrate the effectiveness of less complex convolutional net-
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works for accurate data classification. The depth and number of filters in the layers of the
networks used were sufficient to promote an understanding of the data characteristics.

SF - 1A MOUND 1

SF - 4 WEDGE

SF - 3 CHAOTIC

SF - 2 TROUGH

SF - 1B MOUND 2

SEISMIC
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PREDICTION

INLINE 449 INLINE 581 INLINE 661

Figure 5.11: Samples of seismic inlines resulting from the application of the trained model
across the entire seismic volume.

5.4 Considerations

Mapping seismic data has long been a challenging task, requiring both meticulous atten-
tion to detail and software performance to generate accurate final surfaces. The expertise
of the professional conducting the task also plays a crucial role in the quality of the
mapping results. In such scenarios, deep learning architectures such as CNNs prove to
be among the most effective tools for semantic segmentation tasks, dividing images into
classes with distinct meanings.

In this framework, we utilized amplitude seismic data to create a dataset comprising
5 distinct seismic facies from pre-salt reservoir intervals of the Barra Velha Formation in
the Santos Basin, Brazil. This region, known for its geological complexity and importance
in hydrocarbon exploration, presents a unique set of challenges for facies classification.

To enhance the results of the manual labeling process, we also applied a U-Net-based
convolutional neural network, which has been widely recognized as an excellent tool for
semantic segmentation tasks in complex geological settings. This powerful architecture is
particularly well-suited for capturing intricate patterns and features within seismic data,
allowing for more precise and efficient facies classification. By integrating the capabilities
of the U-Net model with our manual labeling efforts, we aimed to improve the accuracy
and reliability of the seismic facies analysis process in this challenging geological context.
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Chapter 6

Transformer Model for Fault Detection

From Brazilian Pre-Salt Seismic Data

In this chapter, we present a methodology for identifying faults in seismic data [22]. The
Brazilian reservoirs are formed mostly in highly faulted and fractured carbonate rocks,
which can increase hydrocarbon transport and storage capacity. Strategies that permit the
identification of these structures allow the optimization in the exploration of a reservoir.
To fulfill this task, machine learning models have been able to provide an understanding
of these environments through the use of data obtained by seismic method. The use of
convolutional neural networks has shown to be able to provide excellent abstractions in
the field of semantic segmentation, including its use in seismic data. However, due to the
highly heterogeneous formation of this type of data, the work of extracting information
from these images remains challenging. From this, we investigate the potential of using
Transformer models in this geological context focusing on the faults identification.

6.1 Background

The analysis of seismic data is crucial for the progress of hydrocarbon exploration, and
it is commonly done through the study of geological structures. Various techniques have
been employed to analyze seismic data, including machine learning and image processing,
which aim to automate and facilitate the interpretation process, using seismic data in the
form of an image.

Pepper and Bejarano [160], for example, presented case studies on automatic fault
interpretation using only seismic attributes that highlight faults. These attributes work
similarly to filtering techniques used in image processing, and two of them, dip and az-
imuth, showed the best results in identifying fault regions that were extracted as connected
components. Zhao and Mukhopadhyay [258] explored the task of fault detection in syn-
thetic and field data by using convolutional neural networks to develop prediction models.
In particular, Zhao and Mukhopadhyay [258] improved the final result by adding image
processing algorithms, such as smoothing and sharpening, after the prediction step.

As the need for more robust models for seismic interpretation has become evident,
researchers have turned to deep machine learning models for performing these tasks. Wu
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et al. [228] developed several models with a primary focus on fault prediction, includ-
ing FaultNet3D and FaultSeg3D. Using a single CNN, the FaultNet3D model aimed to
estimate the probability of faults, cracks, and dips. Meanwhile, the FaultSeg3D model
focused on fault delineation, with its output being a binary mask representing the seismic
data, where 1 denotes the presence of faults and 0 represents the absence of faults.

Research on fault identification remains crucial in the geological context, as seismic
data acquisition has significantly increased and deep convolutional neural networks have
been successfully applied. Recent approaches, including [9], have created a large database
labeled by experts to supplement synthetic data. A deep CNN based on edge detection
has been proposed, producing a pixel-by-pixel binary classification of faults with superior
results compared to commonly used CNNs.

6.2 Data Preparation

The dataset utilized in this study comprises two seismic volumes: the input and the target.
The dimensions of both volumes are 1401×1481×241 pixels, and they cover an area of
approximately 240 km2, encompassing two pre-salt Santos basin fields. The vertical limit
of the volumes is around 2000 m within the area of interest.

The input volume represents the amplitude seismic values of the area, while the target
volume contains the faults interpreted from the amplitude seismic. The target volume
was generated from 94 interpreted faults, as depicted in Figure 6.1, and used to create a
binary model of fault (1) and no-fault (0) scenarios, based on the proximity to faults.

Figure 6.1: Target seismic definition.

From these data, a process of preparing the seismic volumes is carried out. Figure 6.2
shows the four main parts of this phase: data section, data split, data augmentation, and
data normalization. Initially, two seismic cubes representing the input and target will be
used to generate subsamples that will be augmented to provide the model with a diverse
set of inputs.

6.2.1 Pre-Processing

We start by converting the seismic cube and mask into a NumPy array, which are struc-
tured in a three-dimensional form. Then, the data is manipulated in 2D sections to
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Figure 6.2: Pre-processing diagram.

generate 2D sub-images that can be used to train the model. For this purpose, we extract
smaller patches with dimensions p × p pixels from the seismic inlines, where p = M .
This method provides a large image dataset with samples that have a conventional square
dimensionality suitable for convolutional models.

To avoid repetition of information, the inline region is sectioned into subimages with a
stride = M , without overlapping, as shown in Figure 6.3. This process generates +(n/p),
subimages from each of the treated inline images.

Figure 6.3: Process of data sectioning.

Once the seismic data, input, and target have been prepared, the entire image dataset
is randomized and divided into three separate sets: training, validation, and testing.
These subsets are partitioned into a ratio of 75%, 15%, and 15% accordingly.

The correspondence between the original seismic and the fault mask is maintained
throughout the entire process. Therefore, once the data had been cropped and separated,
we opted to apply data augmentation to the images that displayed fault presence. This
was necessary since, in this type of task, the majority of the dataset contains images
without faults, and classifying pixels one by one tends to be more unbalanced, with more
pixels labeled as 0 than as 1 (non-fault/fault) [224].

The augmentation technique applied to the database was the flip transformation.
Although there are various geometric transformations that can be used for augmentation,
it’s important to consider the data domain to ensure that the operations do not introduce
errors in the learning process. In this case, flipping was chosen as it preserves the original
orientation of faults, which is typically subvertical. By rotating on the vertical axis, the
flip operation doubles the number of images, as illustrated in Figure 6.4.

Using the described procedure, we initially generated a database of 9369 sub-
images from our seismic dataset, which had a dimension of 1401×1481×160 pixels (in-
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Figure 6.4: Vertical flipping transformation.

line/xlines/crossline). This was achieved by generating +(n/p), = 9 images per inline,
where p = 160. The resulting images were split into 6558 for training, 1405 for validation,
and 1406 for testing.

To increase the training and validation sets, data augmentation was applied to all
images containing faults, resulting in a 29% increase in the training data and a 36%
increase in the test data. As a result, the total number of images in the respective groups
became 9242 and 1914.

Finally, all 2D image sections referring to seismic are normalized between -1 and 1,
using the following equation:

img = 2 ·
img[:, :]−min

max−min
− 1 (6.1)

where img is the 2D image resulting from the normalization, min is the minimum image
value, and max is the maximum image value.

6.3 Methods

The TransUNet model, which uses Transformers, is utilized in this work. Given the
success of this architecture in the realm of visual computing, our aim is to evaluate its
efficacy for fault extraction in heterogeneous seismic fields and compare it with traditional
models such as convolutional neural networks. Figure 6.5 shows the training input and
the models used in this process.

Figure 6.5: Models used in the training process.
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6.3.1 CNN Models

Image classification, a fundamental problem in computer vision, involves categorizing
images into predefined classes and serves as the basis for other tasks such as region local-
ization, detection, and segmentation.

The CNNs are one of the most commonly used deep learning networks for this task,
named after the linear mathematical operation called convolution between matrices [4].
CNNs are a type of feedforward neural networks, meaning that the information flows only
in one direction, from the input to the output. Inspired by biological neural networks [171],
CNNs differ from regular neural networks in that each unit in a CNN layer is a two-
dimensional filter that is convolved with the input of that layer, enabling them to extract
local features from images [105].

The convolutional layer of a CNN consists of a two-dimensional filter that convolves
with the input feature map. The filter is an array of discrete numbers, where each element
is a weight, learned during the training phase. In the beginning, these weights are ran-
domly assigned until the learning process updates them. The CNN architecture includes
layers for convolution, pooling to reduce the feature map size, and fully connected layers
where each neuron is directly connected to the neurons in the previous and next layers. To
gain an understanding of how convolutional networks can be constructed, we will explore
three models from the U-Net family and subsequently utilize them to draw comparisons
with the Transformer architecture.

U-Net

The original purpose of the U-Net network was to perform segmentation of medical images,
and its architecture was an update and extension of the fully connected network. U-
Net aimed to improve segmentation accuracy while minimizing the required amount of
data [130].

The U-Net architecture, proposed by Ronneberger et al. [176], consists of a contraction
path (left side) and an expanding path (right side) for accurate segmentation of medical
images. The contraction path has a typical convolutional network architecture, comprising
two 3×3 convolutions, each followed by a rectified linear unit (ReLU), and a max-pooling
operation with a 2×2 filter and stride 2 for downsampling.

The number of feature channels is doubled at each downsampling step. The expansive
path, on the other hand, involves increasing the resolution of the feature map, followed by
a 2×2 convolution (half the number of channels), concatenation with the corresponding
feature map of the contraction path, and two 3×3 convolutions (each followed by a ReLU).
The last layer uses a 1×1 convolution to map the output to the desired number of classes.

U-Net++

[262] developed the U-Net++ architecture with the goal of improving the accuracy of
medical image segmentation. This architecture is based on dense and nested skip connec-
tions, which provide a new approach to the segmentation task. The U-Net++ architecture
was developed to enhance the performance of medical image segmentation by addressing



69

limitations in previous models.
Zhou et al. [263] proposed an approach that employs multiple U-Nets with different

depths, where the encoders and decoders are connected by dense and nested skip connec-
tions. The U-Net models share an encoder, while their decoders are interconnected, and
deep supervision is used during training to simultaneously train all the constituent U-Nets
while benefiting from a shared image representation. The redesigned skip connections in
U-Net++ allow for variable-scale feature maps at a decoder node, enabling the aggregation
layer to decide how attribute maps carried over the skip connections should be merged
with the decoder feature maps.

SegNet

The SegNet [11] is a convolutional neural network architecture designed for semantic pixel
segmentation, comprising of an encoder network, a corresponding decoder network, and
a pixel-wise classification layer.

The encoder network architecture is similar to that of VGG-16 with 13 convolutional
layers. The decoder network also has 13 layers, each corresponding to an encoder layer.
The final output of the decoder is fed into a multiclass softmax classifier to generate class
probabilities for each pixel. Unlike U-Net, SegNet does not reuse pooling indices but
transfers the entire attribute map to the corresponding decoder and concatenates them
into upsampled decoder feature maps through deconvolution.

6.3.2 Transformer Models

The Transformer [106, 215] is a recent neural network that utilizes attention operations
and was originally developed for Natural Language Processing (NLP), where it has demon-
strated remarkable success [90]. In the field of computer vision, the Transformer has
been increasingly employed to replace traditional techniques, resulting in various advan-
tages [18].

The Transformer architecture includes an encoder and a decoder, both containing
multiple attention blocks with the same architecture. The encoder produces encodings of
the input, while the decoder takes these encodings and utilizes its contextual information
to generate the output sequence [82]. Specifically, the Transformer encoder is composed
of L layers of Multihead Self-Attention (MSA) and Multi-Layer Perceptron (MLP) blocks,
alternating between the two. Before each block, Layer Normalization (LN) is applied, and
residual connections are used after every block. Finally, the encoded feature representation
is upsampled to full resolution to predict the dense output.

The success of the transformer in NLP has encouraged researchers to explore its poten-
tial in other areas. Consequently, similar models have been developed to learn useful image
representations using the Transformer’s concept. The Vision Transformer (ViT) [51], for
instance, has proven to be highly effective in several benchmarks, drawing inspiration
from the self-attention mechanism in NLP, where word embeddings are substituted by
patch embeddings [66].

ViT has paved the way for the development of several other models based on at-
tention mechanisms, which have brought about significant advances in various fields of
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computer vision. Surveys conducted by Guo et al. [78] and Han et al. [82] have shown that
attention-based methods have been beneficial for tasks such as image classification, se-
mantic segmentation, face recognition, few-shot learning, medical image processing, image
resolution, 3D vision, among others.

TransUNet [34] is a model that harnesses the power of Transformers for medical image
segmentation. By combining CNN architectures, such as U-Net, which can extract low-
level visual features to preserve fine spatial details, and Transformers, which excel in
modeling global context, TransUNet creates a powerful hybrid architecture for accurate
and efficient medical image segmentation.

TransUNet Architecture

TransUNet combines CNN and Transformer architectures to leverage the spatial details of
CNN features and the global context captured by Transformers for medical image segmen-
tation. The model follows a U-shape design, where Transformers establish self-attention
mechanisms to encode the features in a sequence-by-sequence prediction perspective. The
resulting self-attentive feature is upsampled and combined with high-resolution CNN fea-
tures that were skipped during encoding, enabling precise localization.

Transformer is used as an encoder by transforming the input image into a sequence of
flattened 2D patches through tokenization. To achieve this, the input image x is reshaped
into N patches of size P ×P , where N is determined by the image’s height and width (H
and W ) and the patch size (P ), such that N = HW

P 2 . A unique marker is assigned to each
patch to preserve its positional information in the sequence, and the resulting sequence
is fed as input to the encoder.

To recover the spatial order during upsampling, the encoded feature size is reshaped
from HW

P 2 to H

P
×W

P
, while the number of channels is reduced to the number of classes using

1×1 convolutions. Finally, the feature map is bilinearly upsampled to the full resolution
of H ×W to generate the final segmentation output.

To address the issue of partial information loss resulting from using Transformer solely
as an encoder, TransUNet utilizes a hybrid CNN-Transformer architecture that first lever-
ages CNN to extract features from the input, followed by patch embedding of 1×1 patches
extracted from the CNN feature map instead of the raw images. Therefore, the sequence
of hidden features is reshaped to achieve full resolution from H

P
×W

P
to H×W by applying

multiple cascades of upsampling blocks. Each block includes a 2× upsampling operator,
a 3×3 convolution layer, and a ReLU layer in sequence. This enables the aggregation of
features at different resolution levels through skip connections.

6.4 Results and Discussions

The presentation and discussion of the results obtained from the trained models, seis-
mic areas reconstruction, and performance metrics are presented using the previously
described model.
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6.4.1 Experiments

To assess the effectiveness of applying Transformer on seismic data, we utilized the Tran-
sUNet model on the database outlined in Section 6.3. Moreover, we employed three
additional models that employ the convolutional neural network approach to compare the
attained results.

The architectures used were parameterized with identical settings for the loss function,
learning rate, and number of epochs to enable comparison of outcomes with the same
initialization. An empirical value of 1e − 4 was chosen for the learning rate based on
previous evaluations of different values. For the loss function, binary cross-entropy was
chosen as it is commonly used for classification purposes and semantic segmentation is
a pixel-level classification task. The number of epochs was set to 100 for all models,
except for TransUNet where the batch size was reduced to 16 due to its higher memory
complexity compared to the other networks.

The results obtained from the execution of all methods are presented in Table 6.1,
where it can be observed that the TransUNet network surpasses the other architectures
(U-Net, U-Net++, and SegNet) by 2.35%, 4.93%, and 5.03%, respectively, achieving an
overall Dice score of 88.34%. Considering the IoU metric, this difference increases to
4.86%, 6.73%, and 7.23%, with TransUNet obtaining a value of 84.34%.

Table 6.1: Quantitative comparison of the segmentation performance in fault detection
task.

Models
Metrics

Dice IoU Accuracy Precision Recall F1-Score

U-Net 0.8599 0.7948 0.9781 0.9258 0.9204 0.9230
U-Net++ 0.8341 0.7761 0.9682 0.8852 0.8934 0.8892
SegNet 0.8331 0.7711 0.9570 0.9266 0.8312 0.8763
TransUNet 0.8834 0.8434 0.9785 0.9303 0.9174 0.9238

It is worth noting that the difference between the values obtained by these two metrics
is mainly due to the high penalty imposed by the IoU in cases where the classification
results are poor. The evaluation of the other metrics confirms the superior performance
of the TransUNet network.

The comparisons between the predictions made by the previously presented models are
illustrated in Figure 6.6. The results indicate that U-Net and TransUNet produced images
that are more similar to the target, while SegNet and U-Net++ exhibit a considerable
amount of noise in their outputs. When comparing U-Net and TransUNet, a slightly
more accurate border delimitation can be observed in U-Net. This may be due to the
greater abstraction of global context extraction in the initial layers of TransUNet.

To conduct a more comprehensive analysis of the performance of the two networks,
we reconstructed the slices that were formed by each predicted sub-image. This recon-
struction was made possible by the fact that each input image to the network has a
corresponding nomenclature that corresponds to the seismic inline and its cut order.
Consequently, the training images were predicted in sequential order and their results
were concatenated, as illustrated in an example shown in Figure 6.7.
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Figure 6.6: Qualitative comparison of different models applied to seismic segmentation.

Figure 6.7: Image prediction and concatenation process.

By applying this approach, we can reconstruct the entire seismic volume and examine
the output of the two models. Figure 6.8 presents a comparison of the predictions made
for two different slices, indicating that both models were able to detect the structures
highlighted in the target, as well as some smaller regions, with TransUNet providing a
more significant representation of them.

Figure 6.8: Comparison between U-Net and TransUNet predictions.

Upon analyzing the overall result by visualizing the seismic cube prediction, as pre-
sented in Figure 6.9, it is evident that both models were able to identify most of the
structures present in the target. However, some additional small regions were also de-
tected, which require detailed analysis when viewed in two dimensions, as depicted in
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Figure 6.10.

Figure 6.9: Comparison between U-Net and TransUNet prediction in full 3D field.

Figure 6.10: Analysis of predicted failures in two different regions, A and B.

The TransUNet prediction achieved slightly better results, with more indicated faults
and greater vertical continuity of faults outside the regions present in the target binary
cube. Nevertheless, the overall difference between the two methods was minimal.

6.5 Final Considerations

We investigated the use of a hybrid model, TransUNet, which combines the strengths of
convolutional networks and Transformer’s content abstraction in the geological context.
The results demonstrate the effectiveness of this approach in segmenting seismic images
from a heterogeneous environment, such as the pre-salt layer, indicating potential applica-
tions of this architecture in various configurations for identifying and extracting geological
structures in the field of seismic imaging.

The effectiveness of TransUNet in fault identification on seismic data was demon-
strated by comparing it to conventional state-of-the-art methods. This study concludes
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that the incorporation of Transformer in this context has the potential to extract valu-
able information from seismic databases. The evaluation included both qualitative and
quantitative approaches, suggesting that this new type of architecture could serve as a
benchmark for other databases considering the use of TransUNet in the field of visual
computing.
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Chapter 7

Conclusions and Future Work

The increasing prevalence of computer vision techniques, in specific machine learning and
image processing, in reservoir characterization is a response to the manifold challenges
inherent in manual analysis. The efficiency and agility afforded by these techniques have
proven to be valuable allies to analyses previously conducted in laboratories.

Through this research, it was possible to perceive the various difficulties that re-
searchers faced, such as: the large amount of data to be analyzed, the difficulty of dis-
tinguishing structures in rocks, obstructions in the sample preventing the replication of
experiments and also the generation of a subjective result given the interpreter experi-
ence. In this way, the use of images has enabled a new approach to research, where the
computer vision field serves as the means of interaction with this data, facilitating the
provision of effective tools to handle diverse information across various data scales.

In this research, we contextualize both, computer techniques and the challenges as-
sociated with reservoir characterization, providing an overview of the state of the art in
this field. Additionally, we present practical methodologies developed to address some of
the key challenges encountered in the routine of geological analysis and interpretation. In
this way, through the work carried out, it was possible to answer the research questions
listed in Chapter 1:

• How can computer vision and its techniques contribute across different

stages of reservoir characterization, from data acquisition to final mod-

eling?

The use of computer vision in reservoir characterization brings, as its main contribu-
tion, the possibility of optimizing and automating various activities of the geological
workflow. As demonstrated in the extensive literature review presented in Chap-
ter 2, computational methods promote the manipulation of different types of data
where the required complexity can be adapted to the available resources, making
it possible to gain efficiency through the application of simple image processing
algorithms to elaborate deep learning models. Furthermore, its use enables the ma-
nipulation of large volumes of data, the identification of complex patterns, and the
reduction of the time required for analysis.

• Which computational tools/techniques have been most relevant in the

geological context that encompasses the characterization of reservoirs?
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During the course of the research, it became evident that the Python programming
language has emerged as a fundamental tool in some computational tasks of the
characterization of geological reservoirs. Python offers a wide range of libraries for
data manipulation, such as Pandas and NumPy, and for image processing, such as
OpenCV and Pillow. Additionally, Python facilitates the construction and training
of machine learning models through libraries like TensorFlow, Keras, and PyTorch.

Besides that, one technique that particularly stands out in the analysis of geological
images is the convolutional neural networks. These networks have shown great ver-
satility and effectiveness. For example, models based on U-Net are widely used due
to their ability to perform precise segmentations, which are essential for identifying
specific geological features, and, models like ResNet have been successfully applied
to the classification of different types of rocks and structures. Furthermore, other
architectures that incorporate advanced techniques such as attention, transformers,
and GANs have been developed to enhance the abstraction and understanding of
complex geological data.

In Chapters 6 and 5, we used convolutional neural networks to address two criti-
cal problems in reservoir characterization: fault detection and facies classification.
We made use of transformers and a U-Net based architecture, known for their ad-
vanced semantic understanding capabilities. The application of these techniques
demonstrated high effectiveness in the analysis and interpretation of geological data,
underscoring the importance of modern computational tools in the field of geology.

• What are the benefits associated with the use of Transformers in fault

identification?

Through the results presented in Chapter 6, it was possible to perceive that the
insertion of Transformers in convolutional networks enabled a step forward in the
identification of complex structures due to its ability to capture long-range relation-
ships between data and dynamically adapt to the context of the problem.

• How can convolutional models enhance facies classification?

Convolutional networks already have a great recognition in their ability to abstract
data and segment images. In the multi-class classification task presented in Chap-
ter 5, the power of this technology proved capable of providing an accurate facies
model, further enhancing the manual labeling performed for dataset construction
even with fewer filters and depth architecture, allowing the objective to be achieved
quickly and still effectively.

• What is the impact of applying image processing techniques on improving

the quality of noisy well images?

A high-quality image enables a more precise evaluation of metrics such as porosity
and permeability, and facilitates accurate mapping of features such as pores, cav-
erns, and fractures. Consequently, enhancing image quality empowers professionals
to conduct analyses with greater speed and accuracy. Furthermore, these improved
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images can serve as input for intelligent models capable of extracting valuable in-
sights from well-processed data.

In summary, the applications outlined here play a pivotal role in the comprehen-
sive lifecycle of image utilization – from capturing by diverse sources, to enhancing their
quality, extracting features, analyzing parameters, estimating properties, generating in-
formation, and classifying attributes. All these steps were distributed across two major
pillars of visual computing: image processing and deep learning models.

The integration of these techniques represents a substantial leap forward in geologi-
cal research, providing a comprehensive approach to reservoir characterization, but also
highlights the importance of computational techniques as a tool for optimizing the pro-
cesses described here. The persistent challenges and the evolving collaboration between
these two major fields underscore the continual significance and vast potential of com-
puter vision techniques, where this progression continues to reshape our understanding
and management of geological reservoirs.

In the future, this work can be extended in several ways. In the following, we outline
some potential directions for future research:

• Investigation of a way to integrate data from different sources, such as seismic data,
well data, and surface images, to obtain a more comprehensive and accurate view
of reservoirs.

• Transformation of the developed practical applications into software tools for appli-
cation in other datasets.

• Development and enhancement of computer vision algorithms to handle more com-
plex and heterogeneous geological data, enabling transfer learning to other geological
systems such as basins from other formations.

• Incorporation of machine learning applications into other routines of reservoir char-
acterization.
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