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Resumo

Um dos problemas mais complexos em Aprendizado de Méaquina é lidar com dados nao
rotulados. A maioria dos modelos com alto desempenho depende de massiva quantidade
de dados rotulados para obter os melhores resultados. No entanto, rotulacao nao é facil
nem confiavel por ser uma tarefa altamente demorada, custosa e propensa a erros. Além
disso, vieses nos dados rotulados podem ser propagados para o modelo, prejudicando seu
desempenho e generalizagao. Assim, é primordial desenvolver métodos que possam encon-
trar padroes em cenarios totalmente nao supervisionados, permitindo uma implementagao
rapida e menos propensa a vieses. Esses modelos podem ser usados em diversas aplicacoes,
como investigagoes forenses, biometria e compreensao de eventos. Esta pesquisa propoe
algoritmos de aprendizado auto-supervisionado para lidar com dados nao rotulados em
cendrios desafiadores. Um cenério desafiador pode conter alta disparidade intraclasse (re-
presentacoes da mesma classe estao distantes umas das outras no espago vetorial) e alta
similaridade interclasse (amostras de classes diferentes podem estar mais proximas umas
das outras). Para instanciar esse complexo requisito com os desafios mencionados, nossa
exploragao se concentra em duas aplicagoes: Reldentificagdo (RelD) Nao Supervisionada
de Pessoas e Objetos, devido a sua aplicabilidade em compreensao de eventos, e Atribui-
¢ao de Autoria em Texto. Considerando essas aplicagoes, nesta tese, propomos quatro
métodos que lidam com niveis variados de complexidade em cenérios nao supervisionados.
Nossas trés primeiras solugoes visam a tarefa de RelD Nao Supervisionado de Pessoas,
onde assumimos que nao temos a anotagao de identidade, ou seja, nao sabemos “quem” foi
detectado na imagem. A primeira solu¢ao considera meta-informagoes, como anotagao de
camera, para auxilio na resolucao da tarefa. Como existem cenarios onde informacao de
camera nao esta disponivel, nossa segunda solucao é totalmente nao supervisionada, ou
seja, nao requer nenhuma informacao adicional. Assim, pode-se aplici-la em outras tare-
fas, em diferentes modalidades, como Atribuicdo de Autoria em Texto em postagens em
redes sociais. O terceiro método também lida com cenarios de reidentificagao nao supervi-
sionada, mas com conjuntos de dados em grande escala. Mostramos também que podemos
estendé-la para reidentificacao de objetos, como, por exemplo, veiculos. A quarta solucao
considera o problema de reconhecimento de longo alcance por meio de treinamento super-
visionado. O modelo aprende com imagens distorcidas devido a turbuléncia atmosférica,
e alcanga resultados estado-da-arte em ambas as tarefas de RelD de Pessoas e Reconhe-
cimento Facial. As solugoes propostas nesta pesquisa podem ser acopladas em pipelines
de aplicacoes forenses e de biometria. Elas podem ser empregadas para compreensao de
eventos, em que as autoridades visam encontrar suspeitos e investigar o comportamento
das pessoas, bem como relagdes com objetos em uma cena. As solugoes podem ser usadas
para obter uma compreensao do que ocorreu e propor caminhos de investigacao. Elas
também podem ser empregadas em modelos de biometria baseados em IA para protecao
em lugares que exigem alta seguranca, como instalagoes governamentais, seguranca de
fronteiras, infraestrutura critica e anti-terrorismo.



Abstract

One of the most complex problems in Machine Learning is dealing with unlabeled data.
Most top-ranking models rely on massive labeled data to achieve state-of-art results. How-
ever, data labeling is not easy nor reliable to obtain due to the highly time-consuming,
costly, and error-prone task of annotation. Moreover, bias in the labeled data might be
propagated to the model, hindering its performance and generalization. It is paramount
to develop methods that can mine patterns in a fully-unsupervised scenario allowing a fast
and bias-alleviated deployment. These models could be used in a range of applications,
such as forensic investigations, biometrics, and event understanding. This research pro-
poses self-supervised learning algorithms to deal with unlabeled data for deployment in
challenging label-absent scenarios. A challenging setup might contain high intra-class dis-
parity (features from the same class are far away from each other in the feature space) and
high inter-class similarity (samples from different classes might be closer to each other).
To instantiate this complex requirement with applications that capture the mentioned
challenges, our exploration focuses on two applications: Unsupervised Re-Identification
(RelD) of People and Objects, due to their applicability to event understanding, and on
the Text Authorship Verification task. Considering these applications, in this thesis, we
propose four methods that deal with varied levels of complexity in unsupervised scenarios.
Our first three solutions target the Unsupervised Person RelD task where we assume we
do not have identity labeling, i.e., we do not know “who” is detected in the image. The first
solution considers meta-information, such as camera labels, to effectively address the task.
As there are scenarios where it is not applicable, our second solution is fully unsupervised,
i.e., it does not require any side information. Because of this, it can be applied to further
tasks than Person RelD in different modalities, such as Text Authorship Attribution in
social media posts. The third method also deals with fully unsupervised re-identification
scenarios but in large-scale datasets. We also show that this solution can be applied to
object re-identification, specifically vehicles. The fourth solution changes the setup by
considering supervised training, however targeting long-range recognition. It learns from
images mainly distorted by atmospheric turbulence and achieves state-of-the-art results
in both Person RelD and Face Recognition tasks. The proposed solutions can be imple-
mented as part of forensic and biometrics pipelines. For instance, they can be employed
for event understanding where authorities aim to find possible suspects and investigate
people’s behavior as well as their possible relationships with objects in a scene. They can
be used to get an understanding of what happened and possible investigation insights.
The solutions can be also employed in Al-powered biometrics for security-sensitive pro-
tection in places such as government facilities, border security, critical infrastructure, and
counterterrorism.
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Chapter 1

Introduction

Machine learning and Artificial Intelligence (AI) have been extensively applied in dif-
ferent contexts in society: face recognition, speech recognition, geo-localization, medical
diagnostics, activity recognition, credit score analysis, synthetic realities, among oth-
ers [36, 213, 11]. Most of the success relies on a careful annotation of the available data
to supervise the learning process. However, the labeling task is time-consuming, expen-
sive, and error-prone. Moreover, the annotation process is subject to the judgment of the
annotator to say if two or more samples belong to the same class or not, which might
introduce biases on the labels and hinder the generalization of the trained model.

In this context, increasing attention has been witnessed on Self-Supervised Learning
techniques due to their capacity to mine patterns and learn features from a dataset without
requiring human supervision. Recent works on image recognition, such as SimCLR [22],
CPC v2 [63], MoCo [57], and Dino [14], deal with this problem in a contrastive manner by
generating augmented versions of the same image by occlusion, cropping, color jittering,
to name a few. Other strategies are based on feature disentangling (Barlow Twins [222]),
and clustering (DeepCluster [12], SwAV [13], DinoV2 [135]). Despite the comparable
performance to the supervised counterparts, most works rely on the ImageNet dataset in
which the majority of the classes have significant differences in semantics (e.g., it contains
classes representing airplanes, animals, sports, etc.), allowing the models to rely more on
coarse details than on fine-grained details to distinguish classes. In this case, the mere use
of well-known augmentation strategies (such as cropping, blurring, erasing, and flipping)
provides sufficient variation for optimization. However, there are many real-case problems
where models need to strongly rely on fine-grained details for learning, for instance, Person
Re-Identification.

Person Re-Identification (PRelD) enables a broad range of applications in Computer
Vision, Forensic Science, and Biometrics, such as person tracking, crime investigation
and surveillance. PRelD aims to retrieve the same person seen in one camera from
all the other cameras present in a camera system. The same person might be seen by
many cameras located in different positions in an environment. From one camera to the
other, the same person might be under different illumination (from inside of a building to
outside), occlusions, points of view (in one camera his/her back is recorded while in the
other is his/her front), resolutions (cameras are at different distances from people or have
different pixel density), and background. Besides, people in the same environment (e.g.,
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at an airport) usually dress similarly (most people with backpacks, bags, and luggage),
making different classes semantically closer among themselves. For this reason, PRelD
usually faces a high intra-class discrepancy and high inter-class similarity, as depicted in
Figure 1.1.

Figure 1.1: Illustration of the high intra-class variance and inter-class disparity usually faced in Person
Re-Identification (PReID) scenarios. Each set of seven images belongs to the same identity. In the first
row we see that, for the same identity, their whole-body images are in different positions, resolutions,
backgrounds, and illumination conditions giving a high variation in the samples of the same class. In
the second row, we see three different identities wearing similar clothes. Just minor details in the image
make people distinguishable from each other, such as shoes, hair, backpacks, and, when available, their
faces.

Considering a similar task, Vehicle Re-Identification (VReID), in which the “identities”
are vehicles, the same challenges are faced. A vehicle can be recorded under different
environmental conditions and the license plate is not always visible. Image samples for
VRelD are shown in Figure 1.2.

Viewpoint Changes [llumina

-

tion Variations

Extreme Case (Across 46 Cameras)
#H2# HS#6#T

=] =

Figure 1.2: The Vehicle Re-Identification (VRelID) task faces similar challenges to PReID. Images show
the same vehicle in different positions, resolutions, illuminations, backgrounds, and sometimes under
occlusion, which hardens the re-identification task. Image reproduced from [119].

Besides the aforementioned challenges, PRelD and VRelD are intrinsically open-world
problems: identities on the test set (query and gallery sets) are disjointed from those on the
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training set, while the training and test sets of ImageNet [31] and many other datasets con-
tain the same classes. Moreover, the number of classes on PRelD datasets is also as large
as ImageNet: Market1501 [242] has 751 identities in the training set, DukeMTMC-ReID [151]
has 702, and MSMT17 [194] even surpasses ImageNet with 1,041 classes in the training set.
The same happens for large-scale VRelD datasets. VehicleID [108| comprises 13,164
vehicle identities in the training set in a total of 113,346 images, and Veri-Wild [119]
comprises 30,671 identities in the training set in a total of 277,797 images.

This clearly shows that PRelD and VRelD are more demanding tasks than ImageNet
classification, and general state-of-the-art self-supervised learning methods are not suit-
able for the task. These methods result in much less accurate models in comparison to
prior unsupervised learning methods tailored specifically to PRelD, even with ImageNet
weight initialization [230, 48]. Since on real deployment, the person and vehicle images
come from heterogeneous domains (surveillance, mobiles, or media cameras) and are un-
labeled (i.e., we do not know “who” or “what” is recorded by the cameras), it is paramount
to develop a system that can handle data from multiple domains in a fully-unsupervised
way, requiring a more robust feature learning.

The problem under investigation in this Ph.D. research holds significant societal appli-
cations and impacts. It has been faced, for example, by U.S. authorities after the Capitol
Invasion in January 2021 [127]. In that case, the main challenge was to find the rioters
at the event and identify people recorded by cameras inside and outside the Capitol. A
similar challenge was faced by the Federal Police of Brazil to identify rioters and people
that stormed and destroyed Brazil’s Congress, Supreme Court, and presidential offices [27|
on January 8 2023. The results presented in this thesis indicate that our solutions are
promising to assist in the resolution of these real-world tasks. Another example is the
2018 fire at the National Museum in Brazil, prompting Brazilian authorities to question
whether it was a criminal act or caused by negligence [159]. Our pipelines could be applied
to determine suspects around the museum, moments before the fire, to propose a possible
answer to that question and, even after the event, to check the dynamics of the firemen
to combat the fire.

In Biometrics, we could leverage our proposed solutions to assess how people behave
in public places (airports, banks, shopping centers) and identify the objects they interact
with. In this case, we can aid studies on crowd behavior to avoid possible tragedies, as
in 2013, when a Hindu festival in India faced a stampede leaving about 115 deaths. As
reported by BBC [178], “... better crowd management could have prevented the tragedy.”
Also, our solutions can be deployed in sensitive-security scenarios such as energy infras-
tructure security, surveillance systems, or counter-terrorism [74].

This thesis introduces four Unsupervised Re-Identification (U-RelD) solutions, each
evolving in performance, generalization, and the complexity of the considered scenario.
In summary, our solutions comprise the techniques to find possible people, or groups of
people, and objects involved in an event and to, ultimately, propose candidate suspects
for further investigation [137].

In the first proposed method, presented in Chapter 2, we aim at re-identifying people
in a camera system and we assume that we know from which camera each person has been
recorded, i.e., we do not know who is present in a given frame, but we know the camera
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label. We start only from a few (usually three) Deep Convolutional Neural Networks
(DCNN) models previously trained on another Re-ID dataset to learn initial features
related to the problem. We propose an Unsupervised Domain Adaptation algorithm
to train these networks over the target unlabeled data leveraging a novel Cross-Camera
Triplet creation strategy on training, a self-ensembling strategy, and backbone ensembling
on the evaluation phase. This setup has been published [7] in the IEEE Transaction
on Information Forensics and Security (T-IFS) in August 2021. This solution was also
presented in the 13" IEEE International Workshop on Information Forensics and Security
in December 2021, and in the Workshop of Long-Range Recognition! during the Winter
Application in Computer Vision (WACV) 2023.

The second solution, presented in Chapter 3, we approach a real deployment by disre-
garding the camera information and taking the same backbones but without pre-training
on any task-specific dataset. We only have the person’s bounding box without identity
or camera annotation, and the backbones have their weights initialized over ImageNet.
We propose a novel ensemble-based strategy to combine neighborhood-based distances
between samples from each manifold in a single distance matrix, ensembling different
knowledge from each backbone. Moreover, we also present a novel ensembled-based clus-
tering strategy that combines clustering results for different hyper-parameter values to
obtain clusters with lower false-positive rates.

This second solution does not consider any task-related meta information, being gen-
eralizable to further tasks than PRelD. To analyze this generalization ability, we consider
a second task in the Natural Language Processing (NLP) field. The task regards the
Text Authorship Attribution (TAA) for short messages. More specifically, the goal is to
group tweets (X2 - former Twitter - short messages) of the same author in a fully unsuper-
vised manner, considering raw texts as input. To the best of our knowledge, we are the
first ones to apply the same self-supervised learning pipeline to different modalities with
minor adjustments in two forensics tasks facing high intra-class disparity and inter-class
similarity.

This pipeline outperforms the state-of-the-art in U-RelD and obtained promising per-
formance on text analysis. The article proposing this pipeline has been published in IEEE
T-IFS [8] and also accepted in the journal track session of the IEEE International Joint
Conference on Biometrics (IJCB) 20233, Besides, the solution was also presented in the
InterForensics2023%, the largest Forensics conference in Latin America.

The third proposed method is presented in Chapter 4. We keep the same constraints
from the second solution, however with novel strategies to deal with large-scale scenarios
and with an extension for Unsupervised Vehicle Re-Identification (U-VReID). The solu-
tion presents some improved components: a self-supervised model pre-initialization over
the target data, a new sampling technique to reduce data size in each iteration, a more
efficient ReRanking technique to meet the large-scale learning requirements, a new cluster-
ing hyperparameter scheduling, and a novel co-training label method. It outperforms the

thttps:/ /sites.google.com /kitware.com /Irr-workshop-2023 /home
2https://twitter.com/?lang=en
3https://ijcb2023.ieee-biometrics.org/accepted-papers/
“https://interforensics.com /site/interforensics2023 /apresentacao
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state-of-art methods that use whole datasets to perform ReRanking and also test-selected
hyperparameters, i.e., they select the best hyperparameters for each dataset based on the
final query/gallery sets split. We argue this is unrealistic since the common assumption
is that the data is fully unlabeled, so it would be impossible to perform grid-searching to
find the optimal hyperparameters in a real-world scenario.

To summarize, our third pipeline aims to tackle large-scale learning with a local
ReRanking, with less sensibility to hyperparameter choices, and a novel co-training label
strategy to improve clustering performance. The current solution is under review in the
top-tier IEEE Transactions on Image Processing, and it was presented in InterForensics
2023. Finally, it was employed in a research consultancy for the Federal Police of Dubai
in December, 2023.

The fourth solution in this thesis, presented in Chapter 5, addresses an expanding
field in biometrics: long-range recognition. It was designed to perform Face Recognition
and Person Re-Identification with images under different distortion levels caused mainly
by atmospheric turbulence. The Ph.D. candidate was one of the designers of the solution
and performed all experiments, analyses, and conclusions regarding the method dealing
with the Person Re-Identification task. It is a co-authored work developed during his
internship at the University of Colorado Colorado Springs (UCCS), USA, when he was
member of the Biometric Recognition and Identification at Altitude and Range (BRIAR)
program®, a United States Government-supported project devoted to counterterrorism,
protection of critical infrastructure, and transportation facilities, military force protection,
and border security. The solution, despite not being as unsupervised as previous solutions,
is part of a larger solution that considers unsupervised techniques during evaluation to
improve the whole-body person matching performance. The article describing our solution
has been published in the IEEE Access journal [152], and it is also part of an end-to-end
identification method that has been published in a joint paper with other BRIAR members
in the IEEE 1JCB 2023 [39].

1.1 Research Questions

Our ultimate research goal was to develop self-supervised learning algorithms that perform
robust feature learning from data to effectively mine patterns on problems with a high
intra-class dissimilarity and inter-class similarity, focusing on Re-Identification. In this
research project, we aim to answer the following questions:

1. What are the constraints or meta-information that can help improving self-supervised
learning on RelD tasks?

2. How to design a general self-supervised learning algorithm, considering fully un-
labeled data, to deal with complex problems: high intra-class dissimilarity and
inter-class similarity, and identity-disjoint train and test sets?

3. How to scale self-supervised solutions to handle thousands of data samples?

Shttps://www.iarpa.gov /research-programs/briar
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4. Which strategies can potentially help to perform long-range re-identification?

1.2 Contributions of this thesis

We envision self-supervised learning algorithms that can group samples of the same class
on fully unlabeled scenarios on problems where the classes potentially have high inter-
class similarity and intra-class dissimilarity. Considering the Re-Identification as a case
study, the contributions of this research are:

e A method that effectively considers meta-information (e.g., camera label), when
available, and knowledge learned from a different source domain to adapt to an
unknown (unlabeled) target domain. More specifically, the designed model has:

1. A novel cross-camera triplet-based strategy to encourage camera-invariant fea-
ture learning.

2. A new self-ensembling strategy that combines checkpoints generated through-
out the training without human intervention nor a validation set to meet un-
supervised learning requirements.

3. A new ensembling strategy during validation that does not require complex
cross-supervision or hyperparameters but increases search performance.

e A fully unsupervised solution that deals in more complex scenarios where no meta-
information is available nor source domain to perform weight initialization. Under
these constraints, our model employs:

1. A novel neighborhood-based ensembling strategy that combines knowledge
from different architectures during training without complex cross-supervision,
co-training, weighting, hyperparameters, or human intervention.

2. A clustering fusing strategy that combines knowledge results from different
clustering runs with different parameter definitions. It avoids selecting spe-
cific hyperparameter values for each dataset, which is unrealistic in a fully
unsupervised scenario and can bring human biases to the model.

3. A final solution that can be employed in Computer Vision (Unsupervised RelD)
and NLP (Text Authorship Attribution) with minor adjustments.

e A large-scale fully-unsupervised solution to learn from large-scale unlabeled data
in different re-identification tasks, without human intervention for clustering hy-
perparameter definition or knowledge sharing among the backbones. The solution
has:

1. A new neighborhood-based sampling strategy to decrease dataset size and con-
sequently the training time in each epoch.

2. A novel neighborhood-based re-ranking strategy that does not rely on the entire
distance matrix among the datapoints for distance refinement.
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3. A new noise-aware scheduling for the clustering hyper-parameter definition
that follows the dynamic of the feature space, and alleviates the impact of
noisy labeling while keeping the diversity in the clusters. It also avoids dataset-
specific hyperparameters, which is unrealistic in a fully unsupervised scenario.

4. A co-training method that allows knowledge sharing among the architectures
without relying on complex cross-supervision, human intervention and hyper-
parameter tuning.

e A method that is able to learn from distorted data, mainly caused by atmospheric
turbulence, to improve the robustness of the model to distortions and its perfor-
mance in long-range recognition scenarios. The model employs:

1. A new atmospheric turbulence-based augmentation that better simulates real
distortions than the well-known Gaussian blur and down-sampling processing.

2. A distortion-adaptive training strategy where we dynamically weigh different
levels of distortions along the training in an easy-to-hard manner to encourage
better optimization.

3. A novel feature magnitude-based model ensembling to effectively combine knowl-
edge from two backbones trained with and without distorted data.
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Chapter 2

Unsupervised and Self-Adaptative
Techniques for Cross-Domain Person
Re-Identification

The labeling of massive datasets demanded by deep learning is time-consuming and error-
prone, especially when targeting forensic and biometric applications. In this context,
Unsupervised Domain Adaptation (UDA) aims to adapt a model trained on a source
dataset to a target domain without the need for identity information of the target sam-
ples. Most RelD methods that follow this approach are based on label proposing, in
which feature vectors of target images are extracted and clustered. Upon unsupervised
training, these clusters receive pseudo-labels for the adaptation to the target domain.
Prior works [42, 162, 45, 233, 224, 213| apply the pseudo-labeling principle by developing
different ways to propose and refine clusters on the target domain. The aim is to alleviate
noisy labels, which can harm feature learning.

In a high-level view, UDA methods first pre-train a model in some labeled domain
(i.e., a dataset that has identity annotation for detected people), and after that, they learn
from an unknown target domain (i.e., they assume the dataset does not have the identity
annotation for the detected people). To perform unsupervised learning, most methods
consider three steps iteratively: feature extraction, clustering, and fine-tuning. In the
feature extraction step, features for the unlabeled images are extracted. As image labels
are not available, the features are clustered and pseudo-labels are assigned to them, which
are employed for supervised-like learning in the fine-tuning step. Prior works propose novel
strategies in one, two, or all steps, to enhance performance over the target domain. The
first method proposed in this research, and presented in this chapter, follows this pipeline,
with novelties in each of the three steps.

As we are dealing with data from an unknown target domain, clusters can have differ-
ent degrees of reliability, i.e., contain different quantities of noisy labels. We need to select
the most reliable clusters to optimize the model at each iteration of the clustering process.
The trained model must also be camera-invariant to yield the same feature representa-
tion for an identity, regardless of the camera point of view. Based on these observations,
we hypothesize that clusters with more cameras might be more reliable to optimize the
model. Suppose that a cluster contains images of the same identity seen from two or more
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cameras. In this case, the model was able to embed these images close to each other in
the feature space, overcoming differences in illumination, pose, and occlusion, which are
inherently present in different camera vantage points.

We argue that the greater the number of different cameras in a cluster, the more
reliable this cluster is to optimize the model. Following this idea, we propose a new
way to create triplets of samples in an offline manner. We select one sample as an
anchor for each camera represented in a cluster and two others as positive and negative
examples. As a positive example, we choose a sample from one of the other represented
cameras. In contrast, the negative example is a sample from a different cluster but
with the same camera as the anchor. Consequently, the greater the number of cameras
in a cluster, the more diverse the triplets to train the model. With this approach, we
give more importance to the more reliable clusters, regularize the model, and alleviate
the dependency on hyperparameters by using a single-term and single-hyper-parameter
triplet loss function. This technique brings robustness and generability to the final model,
easing its adaptation to different scenarios.

Another important observation is that, at different points of the adaptation from
a source to a target domain, the model holds different levels of knowledge as different
portions of the target data are considered each time. Thus, we argue that the model
has complementary knowledge in different iterations during training. Based on this, we
propose a self-ensembling strategy to summarize the knowledge from various iterations
into a unique final model.

Finally, based on recent advances in ensemble-based methods for RelD [47, 226, we
propose to combine the knowledge acquired by different architectures. Unlike prior work,
we avoid complex training stages by simply assembling the results from different archi-
tectures only during evaluation time.

To summarize, the contributions of this first method are:

e A new approach to creating diverse triplets based on the variety of cameras repre-
sented in a cluster. This approach helps the model to be camera-invariant and more
robust in generating a person’s features from different perspectives. It also allows
us to leverage a single-term and single-hyper-parameter triplet loss function to be
optimized.

e A novel self-ensembling fusion method, which enables the final model to summarize
the complementary knowledge acquired during training. This method relies upon
the knowledge held by the model at different checkpoints of the adaptation process.

e A novel ensemble technique to take advantage of the complementary knowledge
from different backbones trained independently. Instead of applying the typical
knowledge distilling [65] or co-teaching [54, 18] methods, which add complexity to
the training process, we propose using an ensemble-based prediction.

This first solution was published [7] in the IEEE Transaction on Information Forensics
and Security (IEEE T-IFS) in August 2021. This solution was also presented in the
13" IEEE International Workshop on Information Forensics and Security in December



21

2021', and in the Workshop of Long-Range Recognition? during the Winter Conference
on Applications of Computer Vision (WACV) 2023.

2.1 Related Work

Prior works address Unsupervised Domain Adaptation for Person Re-Identification. They
can be roughly divided into three categories: generative, attribute alignment, and label-
proposing methods.

2.1.1 Generative Methods

RelID generative methods aim to synthesize data by translating images from a source to
a target domain. Once data from the source dataset is labeled, the translated images
in the target context receive the same labels as the corresponding original images. The
main idea is to transfer low- and mid-level characteristics from the target domain, such
as background, illumination, resolution, and even clothing, to the images in the source
domain. These methods create a synthetic dataset of labeled images with the same
conditions as the target domain. To adapt the model, they apply supervised training.
Some works in this category are SPGAN [33], PTGAN [194], AT-Net [109], CR-GAN [23],
PDA-Net [100], and HHL [246]. Besides transferring the characteristics from the source to
the target domain for image-level generation, DG-Net-++ [258] also applies label proposing
through clustering. The final loss is the aggregation of the GAN-based loss function to
generate images, along with the classification loss defined for the proposed labels. By
doing this, they perform the disentangling and adaptation of the features on the target
domain.

CCSE [105] performs camera mining and, using a GAN-based model, generates syn-
thetic data for an identity considering the point of view of each other camera, increasing
the number of images available for training. They leverage new clustering criteria to
avoid creating massive clusters comprising most of the dataset and potentially having two
or more true identities assigned to the same pseudo-label. Finally, they train directly
from ImageNet, without considering any specific source domain. In comparison, our so-
lution does not require synthetic images since we explore the cross-camera information
inside each cluster using only real images. This leads our method to outperform CCSE
considering the same training conditions (unsupervised scenario).

2.1.2 Attribute Alignment Methods

These methods seek to align common attributes in both domains to easily transfer knowl-
edge from source to target. Such features can be clothing items (backpacks, hats, shoes)
and other soft-biometric attributes that might be common to both domains. These works
align mid-level features and enable the learning of higher semantic features on the tar-
get domain. Works such as TJ-AIDL [184] consider a fixed set of attributes. However,

Thttps://wifs2021.lirmm.fr /session-spl-tifs-papers-1/
2https://sites.google.com /kitware.com /Irr-workshop-2023 /home
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source and target domains can have substantial context differences, leading to potentially
different attributes. For example, the source domain could be recorded in an airport and
the target domain in a shopping center. To obtain a better generalization, in [103], the
authors propose the Multi-task Mid-level Feature Alignment (MMFA) technique to enable
the method to learn attributes from both domains and align them for a better generaliza-
tion on the target domain. Other methods, such as UCDA [148] and CASCL [197], aim

to align attributes by considering images from different cameras on the target dataset.

2.1.3 Label Proposing Methods

Methods in this category predict possible labels for the unlabeled target domain by lever-
aging clustering methods (K-means [117], DBSCAN [41], among others). Once the target
data is pseudo-labeled, the next step is to train models to learn discriminative features in
the new domain. PUL [42] applies the Curriculum Learning technique to adapt a model
learned on a source domain to a target domain. However, as K-means is used to cluster
the features, it is not possible to account for camera variability. As K-means generates
only convex clusters, it cannot find more complex cluster structures, hindering the perfor-
mance. UDAP [162] and ISSDA-ReID [169] utilize DBSCAN as the clustering algorithm
along with labeling refinement. SSG [45] also applies DBSCAN to cluster features of the
whole, upper, and low-body parts of identities of interest. The final loss is the sum of
individual triplet losses in each feature space (body part). Similar to our work, they use
a source domain to pre-train the model and the target domain for adaptation. However,
they do not perform cross-camera mining, cluster filtering, or ensembling. These elements
of our solution allow it to outperform SSG in all adaptation scenarios.

ECN [247], ECN-GPP [248], MMCL [179], and Dual-Refinement [28] use a memory
bank to store features, which is updated along the training to avoid the direct use of
features generated by the model in further iterations. The authors aim to avoid prop-
agating noisy labels to future training steps, contributing to keeping and increasing the
discrimination of features during training.

PAST [233] applies HDBSCAN [10] as the clustering method, which is similar to
OPTICS [1] — the algorithm of choice in our work. However, the memory complexity of
OPTICS is O(n), while for HDBSCAN is O(n?), making our model more memory efficient
in the clustering stage.

MMT [47], MEB-Net [226], ACT [207], SSKD [111], and ABMT [18] are ensemble-
based methods. They consider two or more networks and leverage mutual teaching by
sharing one network’s outputs with the others, making the whole system more discrim-
inative on the target domain. However, training models in a mutual-teaching regime
increase the complexity of needed memory and the general training process. Besides that,
noisy labels can be propagated to other ensemble models, hindering the training pro-
cess. Nonetheless, ensemble-based learning provides the best performance among state-
of-the-art methods. We propose using ensembles only during inference to simultaneously
eliminate the complexity added to the training, still taking advantage of knowledge com-
plementary between the models.

Our first solution is also based on Curriculum Learning with Diversity 78], a schema
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whereby the model starts learning with easier examples, i.e., samples that are correctly
classified with a high score early in training. However, in a multi-class problem, one of the
classes might have more examples correctly classified early on, making it easier than the
other classes. Therefore, in Curriculum Learning with Diversity, the method selects the
most confident samples (easier samples) from the easier classes, including some examples
from the harder ones. In this way, it enables the model to learn in an easy-to-hard manner,
avoiding local minima and allowing better generalization.

Even though recent work achieves competitive performances, there are some limita-
tions that we aim to address in our work. First, generative methods bring complexity by
considering GANSs to translate images from one domain to the other. Second, attribute
Alignment methods only tackle the alignment of low and mid-level features. Third, meth-
ods in both categories need images from source and target domains during adaptation.
Finally, the last Label Proposing methods consider mutual learning or co-teaching, which
brings complexity to the training stage.

Similarly, we assume to have only camera-related information, i.e., we know from
which camera (viewpoint) an image was taken. In all steps, we use pseudo-identity infor-
mation exclusively given by the clustering algorithm without relying on any ground-truth
information. We differ from the prior art by using a new diversity learning scheme and
generating triplets based on each cluster’s diversity of points of view. As we train the
whole model, the method also learns high-level features on the target domain. We simplify
the training process by considering one backbone at a time, without mutual information
exchange during adaptation. Finally, we apply model ensembling for inference after the
training process.

2.2 Proposed Method

Our approach to Person RelD comprises two phases: training and inference. Figure 2.1
depicts the training process, while Table 2.1 shows the variables used in this work.

During training, we independently optimize n; different backbones to adapt the model
to the target domain. This phase is divided into five main stages that are performed
iteratively: feature extraction from all data; clustering; cluster selection; cross-camera
triplet creation and fine-tuning; and feature extraction from pseudo-labeled data.

After training, we perform the proposed self-ensembling phase to summarize the train-
ing parameters in a single final model based on the weighted average of model parameters
from each different checkpoint. We perform this step for each backbone independently
and, in the end, we have n; self-ensembled models.

During inference, for a pair query/gallery image, we calculate the distance between
them considering feature vectors extracted by each of the n, models. Hence, for each
query /gallery pair, we have n;, distances, one for each of the trained models. We then
apply our last ensemble technique: the n;, distances are averaged to obtain a final distance.
Finally, based on this final distance, we take the label of the closest gallery image as the
query label.
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Table 2.1: Variables’ meaning in this work

Variable | Meaning

o Number of different backbones in the Ensemble
M Model backbone

Ky Number of iterations of the blue flow in Figure 2.1
K, Number of iterations of the orange flow in Figure 2.1
& i-th cluster in the feature space

n; Number of cameras in cluster ¢;

cam J-th camera in a cluster

x5 i-th image in the source domain

! i-th image in the target domain

y; Label of the i-th image in the source domain

Ny Number of images in the source domain

N, Number of images in the target domain

m Number of anchors per camera in a cluster

a Margin parameter of the Triplet Loss

B Batch of triplets in an iteration

2.2.1 Training Stages 1 and 2: Feature Extraction from all data
and Clustering

Let D* = {(x%, )}, be a labeled dataset representing the source domain, formed by N,
images 27 and their respective identity labels y5; and let D* = {(2!)}~*, be an unlabeled
target dataset representing the target domain, formed by N, images z!. Before applying
the proposed pipeline, we first train a model M in a supervised way, with source dataset
D? and its labels. After training, assuming source dataset D® is not available anymore,
we perform transfer learning, updating M to the target domain, only considering samples
from unlabeled target dataset D?.

With model M trained on D?*, we first extract all feature vectors from images in D?
and create a new set of feature vectors {M(z%)}Y,. We remove possible duplicates by
checking if there is a replacement from one of them, which might be caused by duplicate
images on target data. The remaining feature vectors are L2-normalized to embed them
into a unit hypersphere. The normalized feature vectors are clustered using the OPTICS
algorithm to obtain pseudo labels.

The OPTICS algorithm [1] leverages the principle of dense neighborhood, similarly
to DBSCAN [41]. DBSCAN defines the neighborhood of a sample as being formed by
its closest feature vectors, with distances lower than a predefined threshold. Clusters
are created based on these neighborhoods, and samples not assigned to any cluster are
considered outliers. If the threshold changes, other clusters are discovered, and current
clusters can be split or combined to create new ones. In other words, if we change
the threshold, other clusters might appear, creating a different label proposing for the
samples. However, clusters that emerge from real labels often have different distributions
and densities, indicating that a generally fixed threshold might not be sufficient to detect
them. In this sense, OPTICS relaxes DBSCAN by ordering feature vectors in a manifold
based on the distances between them, which allows the construction of a reachability plot.
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Figure 2.1: Overview of the training phase. We assume to have camera-related information, i.e., we
know the camera used to acquire each image, and we do not rely on any ground-truth label information
about the identities on the target domain. The pipeline has two flows: the blue flow is executed every K3
times, and the orange flow is executed K5 times. Both flows share steps in green. In Stage 1, we initially
extract feature vectors for each training image in the target domain using model M, and cluster them
using the OPTICS algorithm in Stage 2 to propose pseudo-labels. Afterward, we perform cluster selection
in Stage 3, removing outliers and clusters with only one camera. Then, triplets are created based on each
cluster’s diversity in Stage 4a and used to train the model in Stage 4b. These steps are denoted by the
blue flow in which the Clustering and Cluster Selection are performed. Instead of going back to Stage
1, the method follows the orange flow. In Stage 5, we extract feature vectors of the samples selected in
Stage 3, and the process continues to Stages 4a and 4b again. The blue flow marks an iteration, while
the orange flow is called an epoch. Therefore, in each iteration, we have Ky epochs.

Probable clusters with different densities are revealed as valleys in this plot and can be
detected by their steepness. With this formulation, we are more likely to propose labels
closer to real label distribution on the target data.

2.2.2 Training Stage 3: Cluster Selection

After the first and second stages, feature vectors are either assigned to a cluster or con-
sidered outliers. As people can be captured by one or more cameras in a RelD system,
the produced clusters are naturally formed by samples acquired by different devices. We
hypothesize that clusters with samples obtained by two or more cameras are more reliable
than clusters with only one camera.

If an identity is well described by model M, its feature vectors should be closer in the
feature space regardless of the camera. Therefore, clusters with only one camera might be
created due to bias to a particular device or viewpoint, and different identities captured
by the same camera can be assigned to the same cluster. Besides, if a feature vector is
predicted as an outlier by the clustering algorithm, it means that it does not have a good
description of its image identity to be assigned to a cluster.
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Based on these observations and for optimization purposes, we filter the feature vec-
tors by discarding outliers and clusters with a single camera type. With camera-related
information, it is possible to count the number of images from each camera in a cluster. If
all samples in a cluster come from the same camera, it is removed from the feature space.
By doing this, we keep in the feature space only clusters with images from at least two
cameras. Figure 2.1 depicts this process, from Stage 2 to Stage 3, in which the outlier
samples (green points) and clusters with only one camera (magenta points) are removed
from the feature space.

The remaining clusters (the ones with two or more cameras) are considered reliable
to fine-tune model M. Furthermore, different clusters have different degrees of reliability
based on the number of represented cameras. Suppose images captured by several cameras
form a cluster. In that case, it means model M can embed samples of the corresponding
identity captured by all of these cameras in the feature space, eliminating point-of-view
bias. In contrast, the fewer images from different points of view, the more complex the
identity definition. In this sense, we propose a new approach of creating cross-camera
triplets of samples to optimize the model by emphasizing cluster diversity and forcing
samples of the same identity to be closer in the feature space regardless of their acquisition
camera.

2.2.3 Training Stage 4: Cross-Camera Triplet Creation and Fine-
tuning

Figure 2.2 shows the triplet creation process. A triplet is formed by an anchor, a positive,
and a negative sample. During optimization, the distance from the anchor to the positive
sample should be minimized, while the distance to the negative sample should be maxi-
mized. Ideally, positive and negative samples should be hard-to-classify examples for the
current model M as easy examples do not bring diversity to the learning process.

We initially select, as the anchor, one random sample in cluster ¢ captured by camera
cam;. For each camera camy, # cam; in cluster ¢, we sort all feature vectors from camera
camy, based on their distance to the anchor. The positive sample is then selected as
the median feature vector. The median is considered instead of the farthest sample (the
hardest example) to avoid selecting a noisy example. We do not choose an easy example
(the closest one) to avoid slowing down the model convergence or even getting stuck on
a local minimum. To select the negative sample, we first sort all feature vectors from
camera cam; belonging to other clusters # ¢ based on their distance to the anchor. As
the negative sample, we pick the closest feature vector that has not been assigned yet to
a triplet. In this way, we avoid selecting the same negative sample, which brings diversity
to the triplets and alleviates the harmful impact if one of the negative samples shares the
anchor’s real identity.

For a cluster ¢; with n; cameras, we generate a total of n; — 1 triplets with the same
anchor. If we select m anchors for one camera in ¢;, a total of m(n; — 1) triplets are
created. Considering that this process is repeated for each camera in ¢;, we have a total
of nym(n; —1) triplets for cluster ¢;. Note that the triplets are created in an offline manner.
The offline creation enables us to choose triplets considering a global view of the target
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Figure 2.2: Cross-Camera Triplet Creation. For each selected cluster, we have at least two cameras.
Suppose the represented cluster ¢ has images from three cameras (represented with red, blue, and yellow
contours). For each camera, we select m anchors. For each anchor, we create triplets with a positive
sample from other cameras in the same cluster and a negative sample with the same camera in other
clusters. For instance, for camera red, we select an anchor and we sort, based on the distance, all
feature vectors from cameras yellow and blue. Then we select the median feature vector from each one
(represented by the arrows coming to the anchor). To select the negative sample, we sort all feature
vectors from the same camera but from a cluster # ¢, and we choose the closest and not previously
selected sample. For the triplet with a yellow median sample as positive, we select as negative the closest
sample to the red anchor from another cluster (represented by the yellow arrow leaving the anchor). For
the triplet with a blue median sample as positive, we select the second closest feature vector to the red
anchor from another cluster (since the first closest has already been picked). This explanation assumes
m =1 and is repeated for cameras yellow and blue.

data instead of creating them in a batch, which would bring a limited view of the target
feature space.

The number m of anchors of a camera is the same for all clusters. Consequently, the
number of triplets generated for a cluster ¢; is O(n?). The greater the diversity of cameras
in a cluster, the greater its representativeness on the triplets. By emphasizing the clusters
with more camera diversity during training, the model learns from easy-to-hard identities
and is more robust to different viewpoints. In our experiments, we set m = 2 for all
adaptation scenarios.

Due to this new approach of creating cross-camera triplets, we can optimize the model
by using the triplet loss [156] without the need for weight decay or any other regular-
ization term and hyper-parameters. This also suggests that cross-camera triplets help to
regularize the model during training.

After creating the triplets in an offline manner, we optimize the model using the
standard triplet loss function:

1
L= E( > [d(@a, ) = d(za, za) +al, (2.1)

ZTa,Tp,In)EDB

where B is a batch of triplets, x, is the anchor, z, is the positive sample and z,, is the
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negative one. « is the margin that is set to 0.3 and [.]; is the maz(0,.) function. This is
illustrated in Figure 2.1, Stage 4b.

2.2.4 Stage 5: Feature Extraction from Pseudo-Labeled Samples

This stage is part of the orange flow performed after Fine-tuning (Stage 4b). The main
idea is to keep the pseudo-labeled clusters from Stage 3, recreating a new set of triplets
based on the new distances between samples after the model update in Stage 4b, bringing
more diversity to the training phase. To do so, we extract feature vectors only for samples
of the pseudo-labeled clusters selected in Stage 3. The orange flow is performed K times,
and a complete cycle defines an epoch. The blue flow is performed every K; times and
a complete cycle defines an iteration. Therefore, in each iteration, we have K, epochs.
This concludes the training phase.

Unlike the five best state-of-the-art methods proposed in the prior art (DG-Net++,
MEB-Net, Dual-Refinement, SSKD, and ABMT), our solution is trained with a single-
term loss, which contains only one hyper-parameter. Even the weight decay has been
removed, as the proposed method can already calibrate the gradient to avoid overfitting,
as we show in Section 2.3. Moreover, prior work performs clustering on the training phase
through k-reciprocal Encoding [245], which is a more robust distance metric than Eu-
clidean distance. However, it has a higher computational footprint, as it is necessary to
check the neighborhood of each sample whenever distances are calculated. For training
simplicity, we opt for standard Euclidean distance to cluster the feature vectors. However,
as k-reciprocal encoding gives the model higher discrimination, we adopt it during infer-
ence time. Therefore, different from previous works, we calculate k-reciprocal encoding
only once during inference.

2.2.5 Self-ensembling

Our last contribution relies upon the curriculum learning theory. Different iterations of
the training phase consider different amounts of reliable data from the target domain,
as shown in Section 2.3. This property leads us to hypothesize that knowledge obtained
at different iterations is complementary. Therefore, we propose to summarize knowledge
from different moments of the optimization in a unique final model. However, as the
model discrimination ability increases as more iterations are performed (the model is able
to learn from more data), we propose combining the model weights of different iterations
by weighting their importance with the amount of reliable data used in the corresponding
iteration. We perform this weighted average of the model parameters as:

Z pi.0;

peP

efinal = Wa

peEP

(2.2)

where 6; represents the model parameters after the i-th iteration and p; is the weight
assigned to #;. Weight p; is obtained based on the reliability of the target domain; if
more data from the target domain is considered in an iteration, it means that the model
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is more confident, and then it can have more discrimination power on the target domain.
Hence, p; is equal to the percentage of reliable target data in the i-th iteration. Conse-
quently, a model that takes more data from the target to train will have a higher weight p;.
Self-Ensembling is illustrated in Figure 2.3. Note that we directly consider the mod-
els’ learned parameters and create a new model by averaging these weights.
Therefore, we could even delete all the checkpoints after performing self-ensembling, as
the combination is carried out at the parameters level.

We end up with a single model containing a combination of knowledge from different
adaptation moments, which significantly boosts performance, as shown in Section 2.4.

Weighted
Average

Figure 2.3: Self-Ensembling scheme after training. Different amounts of the target data (with no label
information whatsoever) are used to fine-tune the model during the adaptation process. Different models
created along the adaptation can be complementary. We create a new final model by weight averaging
the models’ parameters from different iterations. Weight p; is based on the amount of reliable data from
the target domain on the i-th iteration. We end up with a single model encoding knowledge from different
moments of the adaptation.

2.2.6 Ensemble-based prediction

After training and performing the self-ensemble fusion, we have a single model adapted
from the source to the target domain. However, due to the high performance of ensemble-
based methods in recent RelD literature [47, 226|, as a last measure, we leverage a com-
bination of n, different architectures to make a final prediction considering even more
learned knowledge, which improves performance on the target dataset. We apply the
ensemble technique only for inference, different from [47, 226| that leverage a mutual-
teaching regime on training time. In turn, we avoid bringing complexity to the training
but still take advantage of the complementarity from different architectures during infer-
ence.

To perform the ensemble-based prediction, we first calculate the feature distance of the
query to each image on the gallery for each of the ny, final models. Let fi(x) = Mg(z) be
the L2-normalized feature vector of image x obtained with model M}, and d(fx(q), fx(9:))
be the distance between the feature vectors of the query ¢ and of the i-th image gallery
g; extracted using the k-th model on ensemble. The final distance between query ¢ and
gallery image g; is given by:
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K
1
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where K is the number of models in the ensemble. In this way, we can incorporate
knowledge from different models encoded as the distance between two feature vectors.
After obtaining the distance between query ¢ and all images in the gallery, we take the
label of the closest gallery image as the query label.

We consider an equal contribution from each backbone. Without labels on the target
domain, it is impossible to evaluate the impact of the individual models and give them
proportional weights on the combination.

We picked three backbones that are commonly used in prior works. ResNet50 [58] and
Dense- Net121 [70] have been employed in a ensemble-based strategy in [47, 226, 225],
and OSNet [251] is a lightweight model commonly employed for Person Re-Identification.

2.3 Experiments and Results

This section presents the datasets we adopt in this work and compares the proposed
method with the prior art with a comprehensive set of experiments considering different,
and challenging, source/target domains.

2.3.1 Datasets

To validate our pipeline, we use three well-known large-scale datasets: Market1501,
DukeMTMC-ReID, and MSMT17, which are described in Appendix B. As done in previous
work in the literature, we remove from the gallery images with the same identity and cam-
era of the query to assess the model performance in a cross-camera matching. Feature
vectors are L2-normalized before calculating distances. For evaluation, we calculate the
Cumulative Matching Curve (CMC), from which we report Rank-1 (R1), Rank-5 (R5),
and Rank-10 (R10), and mean Average Precision (mAP).

2.3.2 Implementation details

In terms of deep-learning architectures, we adopt ResNet50 [58], OSNet [251], and Dense-
Net121 [70], i.e., n, = 3, all of them pre-trained on ImageNet [31]. To test them on an
adaptation scenario, we choose one of the datasets as the source and another as the tar-
get domain. We train the backbone over the source domain and the adaptation pipeline
over the target domain. We consider Market1501 and DukeMTMC-ReID as source domains,
leaving MSMT17 only as the target dataset (the hardest one in the prior art). This way,
we have four possible adaptation scenarios: Market — Duke, Duke — Market, Market
— MSMT17, and Duke — MSMT17. We keep those scenarios (without MSMT17 as a source)
to have a fair comparison with state-of-the-art methods. Besides, the most challenging
scenario is MSMT17 as the target dataset: we train backbones on simpler datasets (Market
and Duke) and adapt their knowledge to a harder dataset, with almost the double number
of cameras and with many more identities recorded in different moments of the day and
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the year. This enables us to test the generalization of our method in adaptation scenar-
ios where the source and target domains have substantial differences in the number of
identities, camera recording conditions, and environment.

We used the code available at [250] to train OSNet and at [226] to train ResNet50 and
DenseNet121 over the source domains. Our source code is based on PyTorch [142] and it
is freely available at https://github.com/Gabrielcb/Unsupervised_selfAdaptative_
ReID.

After training, we remove the last classification layer from all backbones and use the
last layer’s output as our feature embedding. We trained our pipeline using the three
backbones independently in all scenarios of adaptation. Considering the flows depicted in
Figure 2.1, we perform K; = 50 cycles of the blue flow (50 iterations), and, in each one,
we perform Ky = 5 cycles of the orange flow (5 epochs). We consider Adam [88] as the
network optimizer and set the learning rate to 0.0001 in the first 30 iterations. After the
30" iteration, we divided it by ten and kept it unchanged until reaching the maximum
number of iterations. As we show in our experiments, we can set the weight decay to
zero since our proposed Cross-Camera Triplet Creation can regularize the model without
extra hyperparameters. The triplet batch size is set to 30; batches with 30 triplets are
used to update the model in each epoch. The margin in Equation 2.1 is set to 0.3, and
the number of anchors is set to m = 2. We resize the images to 256 x 128 x 3 and apply
Random Flipping and Random FErasing as data augmentation strategies during training.

2.3.3 Comparison with the Prior Art

Tables 2.2 and 2.3 show results comparing the proposed method to the state of the art. The
proposed method outperforms the other methods regarding mAP and Rank-1 in Market
— Duke by improving those values in 1.8 and 1.7 percentage points (p.p.), respectively,
and without re-ranking. In the Duke — Market scenario, we obtain a solid competitive
performance by having values 0.1 p.p. lower only in Rank-1, also without re-ranking.

In turn, ABMT applies k-reciprocal encoding during training, which is more robust
than Euclidean distance. However, it is more expensive to calculate as it is necessary to
search for k-reciprocal neighbors of each feature vector in each iteration of the algorithm
before clustering. In our case, we only apply the standard Euclidean distance during
training, reducing the training time and complexity of adaptation, but still obtaining
performance gains. Moreover, we have a single-term and single-hyper-parameter loss
function, while ABMT depends on a loss with three terms and more hyper-parameters.
They apply a teacher-student strategy to their training while we perform ensembling only
for inference. Therefore, with a more direct pipeline and ensemble prediction, the proposed
method has a Rank-1 only 0.1 p.p. lower in the Duke — Market, while outperforming all
methods in all other adaptation scenarios.

However, to benefit from the k-reciprocal encoding, we also apply it during inference
to keep a simpler training process. In this case, the proposed method outperforms the
methods in the prior art regarding mAP and Rank-1 in all adaptation scenarios.

Compared to SSKD in Duke — Market scenario, we are below it by 0.3 and 0.4 p.p.
in Rank-5 and Rank-10, respectively. Considering the closest actual gallery match image
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to the query (R1), our ensemble retrieves more correct matches, as Table 2.2 shows,
with our method outperforming SSKD by 1.2 p.p. in Rank-1 without re-ranking. Even
with fewer hyper-parameters than SSKD and a more straightforward training process (no
co-teaching, simpler loss function, and late ensembling), our method shows competitive
results considering the training complexity trade-off.

Interestingly, the proposed method performs better under more difficult adaptation
scenarios. We measure the difficulty of a scenario based on the number of different cameras
it comprises. Market, Duke, and MSMT17 have 6, 8, and 15 cameras, respectively. Hence
the most challenging adaptation scenario is from Market to MSMT17. We adapt a model
from a simpler scenario (6 cameras, all videos recorded in the same day period and the
same season of the year) to a more complex target domain (15 cameras — 12 outdoors
and 3 indoors — recorded at 3 different day periods — morning, afternoon and noon — in 4
different days — each day on a different season of the year). Market — MSMT17 is the most
challenging adaptation and close to real-world conditions where we might have people
recorded throughout the day and in different locations (indoors and outdoors). In this
case, as shown in Table 2.3, we obtained the highest performance even without re-ranking
techniques. The proposed method outperforms the state of the art by 1.5 and 2.1 p.p. in
mAP and Rank-1, respectively, on Duke — MSMT17, and by 2.2 and 4.2 p.p. on the most
challenge scenario, Market — MSMT17.

There are several reasons why our method performs well. We explicitly designed a
model to deal with the diversity of cameras and viewpoints by creating a set of triplets
based on the different cameras in a cluster. We also keep a more straightforward training,
with only one hyper-parameter in our loss function (triplet loss margin). Most works in
the RelD literature optimize a loss function with many terms and hyperparameters. They
usually consider the Duke — Market or the Market — Duke scenarios (or both of them)
to perform grid-searching over hyper-parameter values. Once they find the best values,
they keep them unchanged for all adaptation setups.

In ABMT [18], the authors do not provide a clear explanation on how they define the
hyper-parameter values for their loss function. However, they perform an ablation study
over Duke — Market and Market — Duke scenarios, so their results might be biased to
those specific setups, which gives them one of the best performances. However, when
they keep the same values for different and more challenging scenarios, such as Market
— MSMT17 or Duke — MSMT17, they obtain worse results than ours by a large margin.
This shows that our method provides a better generalization capability brought by a
simpler loss function and more diverse training. It prevents us from choosing specific
hyper-parameter values and being biased to a specific adaptation setup. Consequently,
we achieve the best performances, especially in the most challenging scenarios.

LOMO [102], BOW [242]|, and UMDL [145] are hand-crafted-based methods. They
directly compute feature vectors over pixel values without using a neural network. UMDL
also learns a shared dictionary to mine meaningful attributes from the target dataset,
however, in a much simpler setup than any deep-learning method. They then calculate the
distance between query and gallery images. This makes them scalable and fast deployable.
However, since hand-crafted features usually do not describe high-level features from
images, the methods fail when used to match the same person from different camera
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Table 2.2: Results on Market1501 to DukeMTMC-ReID and DukeMTMCRe-ID to Market1501 adaptation
scenarios. We report mAP, Rank-1, Rank-5, and Rank-10, comparing different methods. The best result
is shown in blue, the second in green, and the third in . Works with (*) do not pre-train the

model in any source dataset before adaptation.

Duke — Market Market — Duke
Method reference mAP | R1 R5 R10 mAP | R1 R5 R10
LOMO [102] CVPR'15 | 8.0 27.2 41.6 49.1 4.8 12.3 21.3 26.6
BOW [242] ICCV’15 14.8 | 35.8 52.4 60.3 8.3 17.1 28.8 34.9
UMDL [145] CVPR'16 | 12.4 | 34.5 52.6 59.6 7.3 18.5 31.4 37.6
PTGAN [194] CVPR'18 | - 38.6 - 66.1 - 27.4 - 50.7
PUL [42] TOMM’18 | 20.5 | 45.5 60.7 66.7 16.4 | 30.0 43.4 48.5
MMFA [103] ArXiv’18 | 27.4 | 56.7 75.0 81.8 24.7 | 45.3 59.8 66.3
SPGAN [33] CVPR’18 | 22.8 | 51.5 70.1 76.8 22.3 | 41.1 56.6 63.0
TJ-AIDL [184] CVPR’18 | 26.5 | 58.2 74.8 81.1 23.0 | 44.3 59.6 65.0
SPG+LMP [33] CVPR’18 | 26.7 | 57.7 75.8 82.4 26.2 | 46.4 62.3 68.0
HHL [246] ECCV’18 | 31.4 | 62.2 78.8 84.0 27.2 | 46.9 61.0 66.7
ATNet [109] CVPR'19 | 25.6 | 55.7 73.2 79.4 249 | 45.1 59.5 64.2
CamStyle [249] TIP’19 27.4 | 58.8 78.2 84.3 25.1 | 48.4 62.5 68.9
MAR [217] CVPR’19 | 40.0 | 67.7 81.9 - 48.0 | 67.1 79.8 -
PAUL [209] CVPR'19 | 40.1 | 68.5 82.4 87.4 53.2 | 72.0 82.7 86.0
ECN [247] CVPR’19 | 43.0 | 75.1 87.6 91.6 404 | 63.3 75.8 80.4
ISSDA [169] CVPR’19 | 63.1 | 81.3 92.4 95.2 54.1 | 72.8 82.9 85.9
PDA-Net [100] ICCV’19 | 47.6 | 75.2 86.3 90.2 45.1 | 63.2 77.0 82.5
CR-GAN |[23] ICCV’19 54.0 | 77.7 89.7 92.7 48.6 | 68.9 80.2 84.7
PCB-PAST |[233] ICCV’19 54.6 | 78.4 - - 54.3 | 72.4 - -
UCDA [148] ICCV’19 30.9 | 60.4 - - 31.0 | 47.7 - -
SSG [45] ICCV’19 58.3 | 80.0 90.0 92.4 53.4 | 73.0 80.6 83.2
CASCL [197] ICCV’19 35.5 | 65.4 80.6 86.2 37.8 | 59.3 73.2 77.8
SSL [106]* CVPR20 | 37.8 | 71.7 83.8 87.4 28.6 | 52.5 63.5 68.9
CCSE [105]* TIP’20 38.0 | 73.7 84.0 87.9 30.6 | 56.1 66.7 71.5
UDAP [162] PR’20 53.7 | 75.8 89.5 93.2 49.0 | 68.4 80.1 83.5
MMCL [179] CVPR20 | 60.4 | 84.4 92.8 95.0 51.4 | 72.4 82.9 85.0
ACT [207] AAAT20 60.6 | 80.5 - - 54.5 | 72.4 - -
ECN-GPP [248] TPAMI'20 | 63.8 | 84.1 92.8 95.4 54.4 | 74.0 83.7 87.4
HCT [223]* CVPR’20 | 56.4 | 80.0 91.6 95.2 50.7 | 69.6 83.4 87.4
SNR [81] CVPR20 | 61.7 | 82.8 - - 58.1 | 76.3 - -
AD-Cluster [224] | CVPR’20 | 68.3 | 86.7 94.4 96.5 54.1 | 72.6 82.5 85.5
MMT [47] ICLR’20 71.2 | 87.7 94.9 96.9 65.1 | 78.0 88.8 92.5
CycAs [193]* ECCV’20 | 64.8 | 84.8 - - 60.1 | 77.9 - -
DG-Net++ [258] | ECCV’20 | 61.7 | 82.1 90.2 92.7 63.8 | 78.9 87.8 90.4
MEB-Net [226] ECCV’20 | 76.0 | 89.9 96.0 97.5 66.1 | 79.6 88.3 92.2
Dual-Ref [28] TIP’21 78.0 | 90.9 67.7 | 821 | 90.1
SSKD [111] NDIC’21 91.7 |97.2 |98.2 |67.2 |802 93.3
ABMT [18] WACV'20 | 80.4 | 93.0 |- - - -
Ours (w/o Re- | This 67.7 | 89.5 94.8 96.5 68.8 | 82.4
Ranking)* Work
Ours (W/o Re- | This 78.4 96.9 97.8 72.6 | 85.0 92.1 93.9
Ranking) Work
Ours (w/ Re- | This 88.0 | 93.8 97.4 82.7 | 87.2 92.5 93.9
Ranking) Work




34

Table 2.3: Results on Market1501 to MSMT17 and DukeMTMCRe-ID to MSMT17 adaptation scenarios. We
report mAP, Rank-1, Rank-5, and Rank-10, comparing different methods. The best result is shown in
blue, the second in green, and the third in . Works with (*) do not pre-train the model in any
source dataset before adaptation.

Duke — MSMT17 Market — MSMT17
Method reference mAP | R1 R5 R10 mAP | R1 R5 R10
PTGAN [194] CVPR’18 3.3 11.8 - 27.4 2.9 10.2 - 24.4
ECN [247] CVPR’19 10.2 | 30.2 41.5 46.8 8.5 25.3 36.3 42.1
CCSE [105]* TIP’20 9.9 31.4 41.4 45.7 9.9 314 41.4 45.7
SSG [45] ICCV'19 13.3 | 32.2 - 51.2 13.2 | 31.6 - 49.6
ECN-GPP [248] TPAMI'20 | 16.0 | 42.5 55.9 61.5 15.2 | 404 53.1 58.7
MMCL [179] CVPR’20 16.2 | 43.6 54.3 58.9 15.1 | 40.8 51.8 56.7
MMT [47] ICLR’20 23.3 | 50.1 63.9 69.8 22.9 | 49.2 63.1 68.8
CycAs [193]* ECCV’20 26.7 | 50.1 - - 26.7 | 50.1 - -
DG-Net++ [258] ECCV’20 22.1 | 48.8 60.9 65.9 22.1 | 484 60.9 66.1
Dual-Ref [28] TIP’21 26.9 | 55.0 68.4 73.2 25.1 | 53.3 66.1 71.5
SSKD [111] NDIC’21 26.0 | 53.8 23.8 | 49.6 63.1 68.8
ABMT [18] WACV’20 - - 27.8 | 55.5 - -
SpCL [48] NeurIPS’20 | - - - -
Ours (w/o Re- | This Work | 34.5 | 63.9 |75.3 | 79.6 |33.2|62.3 | 74.1 | 78.5
Ranking)
Ours (w/ Re- | This Work 46.6 | 69.6 77.1 80.4 45.2 | 68.1 76.0 79.2
Ranking)

views. The substantial differences caused by changes in illumination, resolution, and
pose of the identities bring a high non-linearity to the feature space that is not captured
by hand-crafted-based methods. We surpass UMDL by 65.3 and 66.5 percentage points
(p.p) on mAP and Rank-1 when considering Market — Duke scenario and by 66.0 and
58.4 p.p. considering Duke — Market. This shows the power of deep neural networks,
which effectively describe identities in a non-overlapping camera system under different
points of view.

MMFA [103] and TJ-AIDL [184] are methods based on low- and mid-level attribute
alignment by leveraging deep convolutional neural networks. Since they do not encourage
the networks to be robust to different points of view, their performance is lower than
more recent proposed pseudo-labeling methods (PCB-PAST [233|, SSG [45], UDAP [162],
AD-Cluster [224], among others) and ensemble-based methods (ACT [207], MMT [47],
MEB-Net [226], SSKD [111], ABMT [18]).

The same can be observed for PTGAN [194], SPGAN, and SPGAN-+LMP [33], which
are GAN-based methods that aim to transfer images from source to target domain, repli-
cating the same camera conditions of the target domain in the labeled source images.
However, transferring only camera-level features, such as color, contrast, and resolution,
is not enough. People in the source domain might be in different poses and contexts from
the ones in the target domain, and then those methods cannot fully describe images on
the target domain considering these constraints. In more recent works, researchers have
proposed further processing, such as pseudo-labeling (DG-Net++ [258]), pose alignment
(PDA-Net [100]), and context-alignment (CR-GAN [23]). Our method can surpass all
these GAN-based methods by a large margin. Compared to the most powerful of them,
DG-Net++, we outperform it by 16.7 and 10.8 p.p on mAP and Rank-1 in the Duke —
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Market scenario, and in Market — Duke by 8.8 and 6.1 p.p.

SpCL [48] is similar to ours in the sense that it increases the cluster reliability during
the clustering stage as the training progresses. However, it does not apply any strat-
egy considering diversity as we do by creating diverse triplets considering all cameras
comprised in a cluster. Besides, they leverage both source and target domain images on
adaptation stages and enable their model to use the source labeled identity to bring some
regularization to the adaptation process. Differently, our method does not use the source
domain images after fine-tuning and leverages the adaptation process relying only on tar-
get images. We outperform them by 1.2 and 4.2 p.p. in the most challenging Market —
MSMT17 in mAP and Rank-1, respectively.

2.3.4 Discussion

As we aim to re-identify people in a camera system in an unsupervised way, we must be
robust to hyper-parameters that require adjustments based on grid-searching using true
label information, keeping the training process (and adaptation to a target domain) as
simple as possible. If a pipeline is complex and too sensitive to hyper-parameters, it might
be challenging to train and deploy it on a real investigation/biometric scenario, where we
do not have prior knowledge about the people of interest. This complexity leads to sub-
optimal performance. This has already been pointed out in [40]. The authors claim that
most works rely on many hyper-parameters during the adaptation stage, which can help
or hinder the performance, depending on the value assigned to them and which adaptation
scenario is considered.

SSKD[111] is an ensemble-based method leveraging three deep models in a co-teaching
training regime with a four-term loss function with three hyper-parameters. One of the
terms of their final loss function is a multi-similarity loss [190], with three extra hyper-
parameters to train the model.

MEB-Net has complex training by relying on a co-training technique with three deep
neural networks in which each one learns with the others. Each of these three networks
has its separate loss function with six terms, and their overall loss function is a weighted
average of the individual loss functions from each model on the ensemble.

ABMT also leverages a teacher-student model where the teacher and student net-
works share the same architecture, increasing time and memory complexity during train-
ing. Moreover, they utilize a three-term loss function to optimize both models with three
hyper-parameters controlling the contribution of each term to the final loss. They up-
date the teacher weights based on the exponential moving average (EMA) of the student
weights, in order to avoid error label amplification on training. This also adds another
parameter to control the inertia in the teacher weights’ EMA. The authors do not perform
an ablation study regarding the hyper-parameter value variation to assess their impact
on final performance.

Based on these observations, our proposed model better captures the diversity of
real cases, by considering a loss function with a single term and that is less sensitive to
hyper-parameters (only margin « needs to be selected). In such setups, it is difficult
to select hyper-parameter values correctly, as we might not know any information about
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the identities on the target domain. The self-ensembling also summarizes the whole
training into a single model by using each checkpoint’s confidence values over the target
data, without using any hyper-parameter or human-defined value. Even adopting a more
straightforward formulation, we still obtain state-of-the-art performance on the Market
— Duke scenario and competitive performance on the Duke — Market scenario. Each
architecture in our work is trained in parallel without any co-teaching strategy. After self-
ensembling, the joint contribution from different backbones is applied only on evaluation
time, avoiding label propagation of noisy examples (e.g., potential outliers) but still taking
advantage of the complementarity between them.

Our assumptions are the same as recent prior art [224, 248, 105]. We assume to know
from which camera an image of a person was recorded but not the identity. We rely on
camera information to filter out cluster elements captured by only one camera and create
the cross-camera triplets.

We also assume that at least two cameras have captured most identities and all of
them have non-overlapping vantage points. All prior art holds this assumption as defined
by the datasets and train/test split division.

Finally, we assume that training on a source domain related to Person Re-Identification
gives the model basic knowledge to adapt to the target domain. This knowledge enables
the model to propose better initial clusters on early iterations, grouping feature vectors
from the same identity recorded from different cameras. The pipeline starts the adaptation
with more reliable pseudo-labels in the clustering step and progressively creates more
clusters representing more identities on the target domain. All works hold this assumption
in Table 2.2 that do not have the (*) after their name.

Section 2.3.5 shows that our pipeline still performs well even without pre-training in a
source dataset. In other words, we take the backbone trained over ImageNet and directly
apply it without any previous RelD-related knowledge. Even in this setup, we can achieve
competitive performance.

2.3.5 Results in the Unsupervised Scenario

This section explores the possibilities of our method when not performing any pre-training
on a source domain. The method starts with backbones trained over ImageNet directly.
This is a harder case as we eliminate the possibility of having prior knowledge of the
person re-identification problem. This requires the backbones to adapt to the target, not
relying on any identity-related annotation coming from the source domain. Table 2.2
%99

In this case, we keep & = 0.05
when Duke is the target, as in previous results, and £ = 0.03 when Market is the target.

shows the results denoted by “Ours(w/o Re-Ranking)

The value £ = 0.05 was too strict, leading to clusters with images from only one camera
for the Market dataset. Section 2.4 presents a deeper analysis of different choices of £ on
the clustering process.

However, when we consider Duke as the target domain, the model without source pre-
training is the third best. We lose 3.8 and 2.6 p.p. to the equivalent pre-trained model
in mAP and Rank-1, respectively, and we lose 2.0 and 0.9 p.p. compared to ABMT,
outperforming all other methods. This shows that, although our model is not completely



37

robust to the backbone initialization, it is still capable of mining discriminative features,
even without pre-training, proving comparative or better results when compared to the
state of the art.

The proposed method outperforms all others in the same conditions (no pre-training,
denoted with a star in Table 2.2). The difference to the best one (CycAs) is 2.9 and 4.7
p.p- on mAP and Rank-1 when Market is the target, and in 8.7 and 4.5 p.p. on mAP
and Rank-1 when Duke is the target.

We conclude that the previous training on a RelD source-related dataset is important
to achieve a better performance on the task. However, when no RelD source domain is
available, our methods can still provide competitive results, mainly in the more challenging
scenario (Duke as target). Inspired by these findings, in Chapters 3 and 4, we introduce
methods that do not employ any RelD source dataset or camera information.

2.3.6 Qualitative Analysis

We now provide qualitative analysis by highlighting regions of the top 10 gallery images
returned for a given query image. The redder the color of a region, the more important it is
to the ranking. As explained in Section 2.3.1, the correct matches always come from cam-
eras different from the query’s camera. The green contour denotes a true positive, the red
contour a false positive, and the blue color the query image. We present successful cases
(when the first gallery image is a true positive) and failure cases (when the first gallery
image is a false positive) for each camera on Market1501 and DukeMTMC-ReID datasets.
MSMT17 was not considered as the dataset agreement does not allow the reproduction of
the images in any format.

In Figures 2.4 and 2.6, we observe a subset of the successful cases with the activation
maps for the top-10 closest gallery images to the query. We adapted the implementation
from [163] to visualize the activation maps. In both scenarios, we see that our model is
able to find fine-grained details on the images, enabling it to correctly match the query
to the gallery images. For instance, Figures 2.4c and 2.6¢ depict two successful cases on
Market — Duke and Duke — Market scenarios, respectively. In both cases, we see that
our model finds fine-grained details on the image leading to a correct match. Figure 2.4c
shows the model focusing on the red jacket, even in a different pose and under occlusion
(7" and 10" image from left to right). Figure 2.6c shows that the model can overcome
pose changes of the query on a cross-view setup. The query only shows the person’s
back, but the closest image is a true match showing the person from the front. The
same happens on the second closest image, where the identity has its back recorded by
another camera; and on the fourth and fifth closest images, only the right side is captured.
The third closest image not only records a different position of the query but also has
a different resolution. As another example, in Figure 2.4d, the model tends to focus on
shoes and parts of the head, while in Figure 2.4a the focus is on regions depicting hair
and pants. There are some hard cases such as the ones in Figures 2.4h and 2.6f, where we
see they are mainly caused by similar clothes, but the method is still able to recover at
least the closest gallery image (Rank-1 image). We conclude that our method is able to
distinguish the semantic parts of the body and soft-biometric attributes which are vital to



38

Person Re-Identification. It is also important to remember that the query and the correct
matches are always from different cameras, which also confirms that our model is able
to overcome different camera conditions, such as identity pose changes and resolution on
Cross-view cameras.

Despite the state-of-the-art performance and most of the successful cases, our solution
is also prone to errors and mismatching under some circumstances. Figures 2.5 and 2.7
also depict some failure cases, showing the limitations of the method. The failures are
mainly related to similar clothes or soft-biometric attributes. There are scenarios where
people can have similar clothes, for instance in a school where the students have the
same uniform, or in a hospital where doctors and nurses usually dress similarly. However,
considering that Market1501 is composed of people in front of supermarket stores, it is
marginal the chance of them being dressed the same way, however, this is the situation
shown in Figure 2.7b.

Another source of errors is strong occlusion. Figure 2.5a is an example where the
person has been fully occluded by a car and an umbrella. As there is no person, the
method does not have any specific region to focus on and then the gallery images are
almost fully activated. In Figure 2.7d, the target identity is on a motorcycle together
with another person, which led them to be in the same bounding box. In this case, the
method erroneously retrieves images with no identity on them (distractor images on the
gallery) or images with parts of a bike.

Figure 2.7a shows an interesting failure case, where the model focuses uniquely on the
drawing on the person’s shirt in the query image. The method returns gallery images of
other identities with similar shirt drawings. Despite the failure, it is interesting to note
that our method was able to focus on fine-grained details to find matches, and not activate
the whole image or large parts of it.

2.4 Ablation Study

This section shows the contribution of each part of the pipeline to the final result. In each
experiment, we change one of the parts and keep the others unchanged. If not explicitly
mentioned, we consider ResNetb0 as the backbone, OPTICS with hyper-parameter & =
0.05, and self-ensembling applied after training.

2.4.1 Impact of the Clustering Hyper-parameter

Although we have only one hyperparameter in the loss function, we still need to set
hyperparameter £ of the OPTICS clustering algorithm, which is a threshold in the range
[0,1]. The closer £ is to 1, the stronger the criteria to define a cluster; that is, we might
have many samples not assigned to any cluster, which leads to several detected outliers
(if £ = 1, all feature vectors are detected as outliers). In contrast, the closer ¢ is to 0,
the more relaxed the criteria, and more samples are assigned to clusters (if £ = 0, all
feature vectors are grouped into a single cluster). In Figure 2.8, we show the impact of
the threshold ¢ for the Market — Duke and Duke — Market scenarios.
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Figure 2.4: Successful cases considering one query from each camera on Duke. These results are obtained
with the ResNet50 backbone after the Market — Duke adaptation.

The best value for ¢ changes according to the adaptation scenario. This is expected
when dealing with different unseen target domains. In both cases, Rank-1, Rank-5, and
Rank-10 curves are more stable than the mAP curve, showing that the parameter does
not impact the retrieval of true positive images. The best Rank-1 values are obtained
for ¢ between 0.04 and 0.08 considering both scenarios and, in the more challenging one
(Market — Duke), it achieves the second-best value when £ = 0.05, for both mAP and
Rank-1. Although the best performance is achieved when £ = 0.07 (best mAP and Rank-
1), it relies on an unstable point in the setup of Duke — Market, and it is only marginally
better than & = 0.05 for Market — Duke. Rank-5 and Rank-10 tend to be more stable in
both cases. Thus we adopt & = 0.05 in all scenarios.

2.4.2 Impact of Curriculum Learning

In our pipeline, Stage 3 is responsible for cluster selection. After running the clustering
algorithm, a feature vector can be an outlier, assigned to a cluster with only one camera,
or assigned to a cluster with two or more cameras. We argue that feature space cleaning
is essential for better adaptation, and that feature vectors in a cluster with at least two
cameras are more reliable than ones assigned as outliers or clusters with a single camera.
Then, we consider the curriculum learning principle to select the most confident samples
and learn in an easy-to-hard manner. To achieve this, we remove the outliers and the
clusters with only one camera. To check the impact of this removal, we performed four
experiments in which we alternated between keeping the outliers and the clusters with
only one camera. The results are summarized in Table 2.4.

We observe a performance gain on most metrics, especially on mAP and Rank-1,
when we apply our cluster selection strategy. If we keep the outliers in the feature space
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Figure 2.5: Failure cases considering one query from each camera on Duke. These results are obtained
with the ResNet50 backbone after the Market — Duke adaptation.

Table 2.4: Impact of curriculum learning, when considering different cluster selection criteria. We tested
our method with and without outliers and with and without clusters with only one camera in the feature
space. All experiments consider ResNet50 as the backbone with self-ensembling applied after training.

Duke — Market Market — Duke

w /o outliers w/o cluster with | mAP | RI1 R5 R10 | mAP| RI R5 R10
one camera
- - 50.9 | 79.2 89.5 92.8 | 32.7 | 56.7 68.5 72.9
v - 72.4 | 89.5 95.2 96.7 | 66.8 | 81.1 | 90.2 | 924

- v 49.1 | 79.8 89.5 92.6 | 32.7 | 57.2 68.4 72.3
v v 74.1 | 89.6 | 95.3 | 97.1 | 67.8 | 81.7 90.0 92.6

(first and third rows in Table 2.4), we face the most significant performance drop in both
adaptation scenarios. It shows the importance of removing outliers after the clustering
stage; otherwise, they can be considered in the creation of triplets, increasing the number
of false negatives (for instance, selecting negative samples of the same real class) and,
consequently, hindering performance. We see a lower performance drop by keeping clusters
with only one camera but without outliers (second row), indicating that those clusters do
not hinder the performance much, but might contain noisy samples for model updating.
It is more evident when we verify that the most gains were over mAP and lower gains
over Rank-1 in the last row. This demonstrates that if we keep one-camera clusters, the
model can still retrieve most of the gallery’s correct images but with lower confidence.
Hence, the cluster selection criteria effectively improves our model generalization and we
apply it in all adaptation scenarios.

With this strategy, we observe that the percentage of feature vectors from the target
domain kept in the feature space increases during the adaptation, as shown in Figures 2.9¢
and 2.10c. In fact, reliability, mAP and Rank-1 increase during training (Figures 2.9
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Figure 2.6: Successful cases considering one query from each camera on Market. These results are
obtained with the ResNet50 backbone after the Duke — Market adaptation.
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Figure 2.7: Failure cases considering one query from each camera on Market. These results are obtained
with the ResNet50 backbone after the Duke — Market adaptation.

and 2.10), which means that the model becomes more robust in the target domain as
more iterations are performed. This demonstrates the curriculum learning importance,
where easier examples at the beginning of the training (images whose feature vectors
are assigned to clusters with at least two cameras in early iterations) are used to give
initial knowledge about the unseen target domain and allow the model to increase its
performance gradually.

As a direct consequence, the number of clusters with only one camera removed from
the feature space decreases, as shown in Figure 2.11. This means that the model learns
to group cross-view images in the same cluster.

For the Market — Duke scenario, the initial percentage of removed clusters is higher
than on Duke — Market. This is expected as the former is a more complex case, so initial
clusters tend to have several images grouped due to the camera bias, which leads to a
higher number of clusters comprising images recorded from only one camera. For the same
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Figure 2.8: Impact of clustering hyper-parameter £. Results on (a) Market — Duke, and (b) Duke —
Market.

reason, the final percentage for Market — Duke is higher than Duke — Market. In this
last case, all backbones tend to stabilize between 20% and 30% of clusters removed in the
last iterations. What if all identities are captured by only one camera? In this extreme
case, we hypothesize that the model can still adapt to the target domain. However, the
performance will be limited, as different identities could be grouped in the same cluster,
increasing the false positive rate. This happens because one of our assumptions is that
each identity should be captured by at least two cameras. In fact, this is inherited directly
from the Person Re-Identification problem. Moreover, our method utilizes this assumption
to create the triplets, enabling a better adaptation to the target domain.

2.4.3 Impact of self-ensembling

To check the contribution of our proposed self-ensembling method explained in Sec-
tion 2.2.5, we take the best checkpoint of our model during adaptation in both scenarios,
considering all backbones, and compare it with the self-ensembled model. Note that we
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Figure 2.9: Progress on Rank-1, mean Average Precision and Reliability on target dataset, in the
Market1501 to DukeMTMC-ReID scenario.

select the best model only for reference. In practice, we do not know the best checkpoint
during training since we do not have any identity-label information. Our goal here is
merely to show that our self-ensembling method leads to a final model that outperforms
any checkpoint individually. Even if we do not have any label information to choose the
best one during training, the self-ensembling can summarize the whole training process
in a final model, which is better than all checkpoints. Table 2.5 shows these results.

Our proposed self-ensembling method can improve discriminative power over the target
domain by summarizing the whole training during adaptation. The method outperforms
the best models in mAP by 2.0, 4.5, and 4.3 p.p., on Duke — Market, for ResNet50, OSNet,
and DenseNet121, respectively. Similarly, for Market — Duke we achieve an improvement
of 1.6, 2.2, and 3.3 p.p. in mAP for ResNet50, OSNet, and DenseNet121, respectively. We
can also observe gains for all backbones in both scenarios considering Rank-1. Therefore,
our proposed self-ensembling strategy increases the number of correct examples retrieved
from the gallery and their confidence. It shows that different checkpoints trained with dif-
ferent percentages of the data from the target domain have complementary information.
Besides, as the self-ensembling is performed at the parameter level, without human super-
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Figure 2.10: Progress on Rank-1, mean Average Precision and Reliability on target dataset on
DukeMTMC-ReID to Market1501 scenario.

vision and considering each checkpoint’s confidence, it reduces the memory footprint by
eliminating all unnecessary checkpoints and keeping only the self-ensembled final model.

2.4.4 Impact of Ensemble-based prediction

To increase discrimination ability, we combine distances computed by all considered ar-
chitectures (Equation 2.3) for the final inference. Results are shown in Table 2.6.

The ensemble model outperforms the individual models by 3.3, 5.2, and 0.9 p.p. re-
garding Rank-1, on Duke — Market, for ResNet50, OSNet, and DenseNet, respectively.
The same can be observed for Market — Duke, in which Rank-1 is improved by 3.3, 2.9,
and 1.6 p.p. for ResNet50, OSNet, and DenseNet121, respectively. Results for all the
other metrics also increase for both adaptation scenarios. Therefore, we can effectively
combine knowledge encoded in models with different architectures. By performing it
only for inference, we keep a simpler training process and still can take advantage of the
ensembled knowledge from different backbones.
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Figure 2.11: Percentage of cluster removed along the training iterations on (a) Market — Duke and (b)
Duke — Market scenarios considering the three backbones trained independently.

Table 2.5: Impact of self-ensembling. We consider a weighted average of the parameters of the back-
bone in different moments of the adaptation. “Best” refers to results obtained with the checkpoint with
the highest Rank-1 during adaptation. “Fusion” is the final model created through the proposed self-
ensembling method. The best results are in blue.

Duke — Market Market — Duke

mAP | RI1 R5 R10 | mAP| RI1 R5 R10
ResNet (Best) 721 | 89.0 | 95.5 | 97.1 | 66.2 | 81.5 89.5 92.2
ResNet (Fusion) 74.1 | 89.6 95.3 97.1 | 67.8 | 81.7 | 90.0 | 92.6
OSNet (Best) 60.7 | 85.8 93.5 959 | 65.1 81.7 90.3 92.1
OSNet (Fusion) 65.2 | 87.7 94.8 96.6 | 67.3 | 82.1 90.5 92.4
DenseNet (Best) 72.6 | 90.1 95.6 97.1 | 66.0 | 81.7 | 90.1 92.4
DenseNet (Fusion) | 76.9 | 92.0 | 96.5 | 97.7 | 69.3 | 83.4 | 91.3 | 93.0

2.4.5 Processing footprint

To measure the processing footprint of our pipeline (training and inference), we consider
two representative adaptation scenarios: Market — Duke and Market — MSMT17. As
explained, the first setup represents a mildly difficult case and the second is the most
challenging one. Table 2.7 shows the time measurements.

The overall time to execute the pipeline and the whole training on Market — Duke
scenario is smaller than Market — MSMT17’s, as expected, given that the latter is a more
complex setup. As the number of training images is higher, the number of proposed
clusters is also higher on MSMT17. This leads to an increase in clustering, filtering, and
overall training times.

OSNet is the backbone that takes less time on both adaptation setups, because of
its feature embedding size. For ResNet50 and DenseNet121, the embeddings have 2,048
dimensions while OSNet has 512. This allows a faster clustering, as Table 2.7 shows.
Considering the same adaptation scenario, the clustering step is the most affected by the
backbone and its respective embedding size. This is why ResNet50 and DenseNet121
present more similar training times and OSNet is the fastest one.
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Table 2.6: Impact of ensemble-based prediction. Performance with and without model ensemble during
inference. The best values are in blue.

Duke — Market Market — Duke
mAP | RI1 R5 R10 | mAP| RI1 R5 R10
ResNet (Fusion) 74.1 | 89.6 95.3 97.1 | 67.8 | 81.7 | 90.0 92.6
OSNet (Fusion) 65.2 87.7 94.8 96.6 67.3 82.1 90.5 92.4
DenseNet (Fusion) | 76.9 92.0 96.5 97.7 | 69.3 83.4 91.3 93.0
Ensembled model | 78.4 | 92.9 96.9 97.8 | 72.6 | 85.0 92.1 93.9

Table 2.7: Time Evaluation. We calculate each time in HH:MM:SS for training, in MM:SS for each
step, and in milliseconds (ms) for inference. On training, we analyze the time taken to cluster and filter
(Stages 2 and 3), one round of fine-tuning (Finet. - Stage 4b), one epoch (time taken to perform Ky
iterations of orange flow), and the whole pipeline training. On inference (Infer.), we calculate the time
to predict the identity of a query image given the gallery feature vectors.

Market — Duke Market — MSMT17
Clustering | Finet. | Epoch | Whole Infer. | Clustering | Finet. | Epoch | Whole Infer.
+ Training + training
filtering Filtering

ResNet 03:55 08:55 13:34 | 11:31:19 5ms 16:45 09:36 28:08 | 23:00:55 | 13ms

OSNet 01:53 08:56 11:14 | 09:33:04 | 4ms 07:41 12:20 20:59 | 17:49:40 | 1lms

DenseNet 04:06 08:33 13:36 | 11:33:14 4ms 16:46 11:27 31:13 | 26:32:08 | 13ms
Ensemble - - - - 6ms - - - - 22ms

The inference time is calculated assuming that all gallery feature vectors have been
extracted and stored. It is the average time to predict the label of one query based on
the ranking of the gallery images, following the protocol presented in Section 2.3.2. The
difference between both adaptation scenarios is due to the gallery size. As explained in
Section 2.3.1, MSMT17 has a gallery size more than 4x bigger than Duke’s.

For all experiments, we used two GTX 1080 Ti GPUs. One of them is used exclusively
for clustering with an implementation based on [128], and the other for pipeline training,
for each backbone.

2.5 Final Remarks

In this chapter, we presented the first solution proposed in this research. We tackle the
problem of cross-domain Person Re-Identification (RelD) with non-overlapping cameras,
especially targeting forensic and biometric scenarios with fast deployment requirements.
We propose an Unsupervised Domain Adaptation (UDA) pipeline, with three novel tech-
niques: (1) cross-camera triplet creation aiming at increasing diversity during training;
(2) self-ensembling, to summarize complementary information acquired at different itera-
tions during training; and (3) an ensemble-based prediction technique to take advantage
of the complementary knowledge from different trained backbones.

Our cross-camera triplet creation technique increases invariance to different points
of view and types of cameras in the target domain, and increases the regularization of
the model, allowing the use of a single-term single-hyper-parameter triplet loss function.
Moreover, we showed the importance of having this more straightforward loss function.
It is less biased towards specific scenarios and helps us achieve state-of-the-art results in
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the most complex adaptation setups, surpassing prior art by a large margin in most cases.

The self-ensembling technique helps us increase the final performance by aggregating
information from different checkpoints throughout the training process, without human
or label supervision. This is inspired by the reliability measurement, which shows that
our models learn from more reliable data as more iterations are performed. Furthermore,
this process is done in an easy-to-hard manner to increase model confidence gradually.

Finally, our last ensemble technique takes advantage of the complementary knowledge
from different backbones, enabling us to achieve state-of-the-art results without adding
complexity to the training, differently from the mutual-learning strategies used in current
methods [226, 111, 18|. It is important to note that both ensembling strategies are done
after training to generate a final model and a final prediction.

Because the training process is more straightforward than other state-of-the-art meth-
ods and does not need information on the target domain’s identities, our work is easily
extendable to other adaptation scenarios and deployed in actual investigations and other
forensic and biometrics contexts, such as Vehicle Re-Identification.

A key aspect of our method also shared with other recent methods in the litera-
ture [197, 224, 248], is that it requires information about the camera used to acquire each
sample. That is, in the presented solution we suppose we know, a priori, the device that
captured each image. This information does not need to be the specific type of camera
but, at least, information about different camera models. Without this information, our
model could face suboptimal performance, as it would not be able to take advantage of
the diversity introduced by the cross-camera triplets.

To address this drawback, we designed our second solution presented in the next
chapter, which keeps the same three backbones employed in this first solution (ResNet50,
OSNet, and DenseNet121) but without considering any camera or point-of-view informa-
tion. In other words, our second solution relies solely on the bounding boxes without any
identity, camera, or side annotation.

Regarding the clustering process, our first solution presented in this chapter requires
that all selected samples are considered during this phase, which demands pairwise dis-
tance calculation between all feature vectors. Therefore, this approach may introduce
higher processing times to the pipeline if large-scale datasets are employed.

Both the large-scale limitation and applicability to other Re-Identification tasks were
addressed in the third solution proposed in this research (Chapter 4). It also relies solely
upon person and vehicle bounding boxes without further annotation, and it is more suit-
able for large-scale datasets.
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Chapter 3

Leveraging Ensembles and
Self-Supervised Learning for
Fully-Unsupervised Person
Re-Identification and Text Authorship
Attribution

In the previous chapter, we presented a method to tackle the Unsupervised Person Re-
Identification task that requires camera annotation for each person bounding box, that
is, we do not “who” is on a given bounding box but we assume we know which camera
captured that image. In addition, we also employ backbones (Deep Convolutional Neural
Networks) that have been trained in a supervised way in some labeled source datasets
in order to obtain initial knowledge about the Person Re-Identification task before adap-
tation to the unlabeled target domain. Despite the best performances among similar
competitors, it still faces limitations to realistic scenarios as it requires labeled source
datasets for initialization and camera annotation.

In some real-world forensic and biometrics applications, the camera annotation might
not be available, or we can have moving cameras such as smartphone cameras, cameras on
drones, and wearable devices, which results in different capturing conditions for the same
camera. In this situation, the camera annotation might be ambiguous since the same
camera can have different viewpoints, resolutions, and changes in the background. While
a camera identification method based on fingerprints in noise level could be employed,
this approach may not fully consider environmental characteristics relevant to Person
Re-Identification tasks, such as illumination, background variation, and viewpoints. Fur-
thermore, if the source dataset employed for model initialization is too different from the
target one, the model might face a cross-domain disparity, and the adaptation might be
suboptimal.

In this context, we designed our second solution to tackle the Unsupervised Person Re-
Identification (U-PRelD) task but without considering any task-related source dataset or
any camera annotation. In other words, our second solution relies on backbones initialized
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with general knowledge of ImageNet and trained solely with the people bounding boxes
without any further annotation. This solution has a broader application in real-world
scenarios and can be extended to other tasks beyond U-RelD, such as Text Authorship
Attribution.

Text Authorship Attribution (TAA) faces similar challenges as U-PReID. TAA aims
to recover, from a gallery, texts from the same author of a query text. Multiple authors
writing a social media post about the same topic (e.g., politics, sports, economics, etc.)
might use similar vocabulary, which can make the texts similar, resulting in high inter-
class similarity. Conversely, the same author can write about different topics, which leads
to high intra-class disparity. Moreover, we address a more challenging scenario than the
usual evaluation scenario for TAA, since we adopt the open-set scenario where training
and test sets are disjoint in terms of identities.

In this context, we propose a novel self-supervised learning approach to handling the
fully unsupervised Person RelD and Text Authorship Attribution tasks, which requires
a robust distance measure and a fine-grained analysis. We start by considering a com-
mon approach: clustering steps to propose pseudo-labels to unlabeled samples and
optimization steps to update the model supervised by those pseudo-labels [48, 18, 7].
However, prior methods that consider this approach often overlook two aspects: the qual-
ity of the features and the choice of hyper-parameters for the clustering algorithm. If the
features are not too descriptive, samples from different classes might end up closer in the
feature space, leading them to be clustered together, increasing the number of false pos-
itives and ultimately hindering model updates. Even when the features are adequate, a
bad choice of hyper-parameters for the clustering process might yield suboptimal groups.

To address these problems, we take inspiration from re-ranking techniques [245] to
filter out false-positive samples. The proposed method starts by calculating pairwise dis-
tances for unlabeled samples, considering features extracted by M Deep Neural Networks
(we refer to them as backbones). Those distances are normalized by considering the mutual
neighbors in each of the M feature spaces. As a second distance refinement, we average
the M distances between two samples, as each backbone can provide a complementary
description. As mentioned in Chapter 2, recent works consider ensemble techniques for
Unsupervised Domain Adaptation [47, 226]. These studies, however, apply mutual learn-
ing by leveraging complex loss functions with one backbone supervising the other, which
brings complexity to the training process. Our method, in turn, ensembles models by only
taking the average distances, allowing the amalgamation of complementary information
from each manifold, but with a much more straightforward setup.

The second aspect is the choice of hyper-parameters for the clustering process. We take
DBSCAN as our clustering algorithm and, instead of fixing a value for the ¢ parameter,
we scan different clustering densities — the lower the value, the denser the cluster. If a
sample is identified as an outlier in any of these levels, it is marked as an outlier in the
other levels. By tracking the state of each sample (inliers and outliers) through clustering
runs, we can produce clusters that connect different dense regions while disregarding noisy
samples.

Our method is designed for two critical applications that operate with different types
of data: Person re-identification (images) and Authorship Attribution for social media
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(texts). To the best of our knowledge, we are the first to apply the same self-supervised
learning method to different forensics task modalities (one in Computer Vision and an-
other in Natural Language Processing) with minor adjustments.

The main contributions of our work are:

e An effective distance averaging strategy to combine distances between feature vec-
tors generated by independent backbones, taking advantage of complementary in-
formation. This simplifies the training process, as previously proposed complex
techniques are unnecessary.

e An ensemble-based clustering strategy in which we scan a set of hyper-parameter
values and combine intermediate clustering results in a unique, more robust result.
By doing this, we can connect dense regions without the effect of noisy samples.

e A novel self-supervised learning formulation that can be applied to different prob-
lems such as fully-unsupervised Person RelD and Text Authorship Attribution with
minor adjustments.

Similarly to the first solution presented in the previous chapter, the second proposed
solution was published in the IEEE T-IFS [8]. It was also presented in the journal track
session of the IEEE International Joint Conference on Biometrics (IJCB) 2023, and in
the InterForensics 20232, the largest Forensics conference in Latin America.

3.1 Related Work

In this section, we describe related methods for self-supervised learning, with a more
detailed exploration of person re-identification and text analysis.

3.1.1 Self-Supervised Learning

Self-supervised learning is usually done by generating two or more views of the same
sample through augmentation techniques. A contrastive loss is minimized to pull together
different views of the same image while pushing original images of different classes apart.

MoCo [57] generates two random augmented versions for each image in a batch. One is
fed to a key encoder, and the other to a query encoder for feature extraction. The features
from the key encoder are added to a dictionary that stores features from previous batches.
The method minimizes a contrastive loss to pull together both augmented versions while
keeping other features in the dictionary apart. SimCLR [22] also adopts two augmented
versions of each image but without a dictionary of features. Instead, it minimizes a
contrastive loss by considering both augmented images as a positive pair and the other
images (and their augmented versions) as negative.

Thttps://ijcb2023.ieee-biometrics.org/accepted-papers/
Zhttps://interforensics.com /site/interforensics2023/apresentacao
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SWaV [13| applies a multi-cropping strategy by considering two standard-resolution
crops and several low-resolution crops for optimization, along with a clustering assign-
ment. Like SWaV, Dino [14] adopts different levels of cropping to optimize a teacher-
student loss function. They feed the global crops to the teacher network to get a final
probability distribution used to supervise the student network, which is fed with local
crops. For a deeper review of self-supervised learning models, we refer the reader to this
survey [83].

These methods obtain competitive performance when compared to their supervised
learning equivalents. However, as they are generally tested on ImageNet, they tend to fail
on problems with high intra-class dissimilarity and inter-class similarity, such as person
RelD and Text Authorship Attribution of short messages.

3.1.2 Unsupervised Person Re-Identification

To tackle unsupervised person re-identification, some methods rely on pre-training a model
on a source RelD dataset to acquire prior knowledge of the problem. This model is then
adapted to the unlabeled target domain. A review of those works was presented in Chap-
ter 2 in which we presented our first solution operating in the same scenario. We highlight
that, in our first solution, we considered ensembles only during evaluation. We generated
cross-camera triplets using camera information of samples in the generated clusters. We
also proposed a self-ensembling strategy in which the training of each backbone is sum-
marized by weight averaging the checkpoints.

Instead of considering pre-training in the RelD domain, another set of methods relies
on other pieces of information, such as camera labels (as we also did for our first solu-
tion). IICS [204] leverages intra-camera training by dividing samples into sets according
to their camera labels and performing clustering on each one. A backbone is trained in
a multi-task manner (one task per camera), and clustering is run for the whole dataset,
grouping samples of the same identity seen from different cameras. CAP [185] performs
global clustering by assigning pseudo-labels for each sample of the dataset. They obtain
camera proxies on each cluster for intra- and inter-camera training. ICE [17] has two
versions: camera-aware and camera-agnostic. The first one considers the camera proxy
features similar to CAP. The second considers only the cluster proxy, obtained by aver-
aging features regardless of the camera label. They use a proxy-based loss along with a
hard- and a soft-instance loss.

Instead of camera labels, some works rely on tracklets. CycAs [193]| aims to identify
the same person in frames of a video for intra-sampling. They also find the same person
in other videos by considering the overlapping field-of-view between two videos for inter-
sampling. With both intra- and inter-sampling, they optimize the backbone to match
the same person from different points of view. UGA [197]| averages the features of the
same person in the same tracklet and performs cross-camera feature association creating
a Cross-View-Graph (CVG) to encourage the matching of tracklets of the same person
from different points of view.

Other works assume that only person bounding boxes are available. These are con-
sidered fully unsupervised. ABMT [18] relies on source pre-training, but the authors also
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present results when no prior knowledge is considered. SpCL [48] proposes a self-paced
strategy that introduces metrics to measure cluster reliability: cluster independence and
cluster compactness. If both are higher than predefined thresholds, the cluster is kept
within the feature space. They also minimize the loss function considering cluster cen-
troids and samples stored in feature memory. RLCC [230] refines clusters by a consensus
among iterations. Pseudo-labels on a certain iteration are created by considering the ones
generated on a previous iteration, keeping the training stable. CACL [96] proposes a
strategy to suppress the dominant colors on images, providing a more robust feature de-
scription, and a novel pseudo-label refinement method. ISE [234] synthesizes novel feature
examples from real ones to refine the sample distribution, aiming to generate clusters with
a higher true positive rate, as well as avoiding subdivision of the samples from the same
identity in different clusters. PPLR [26] employs a part-based model that creates feature
spaces from different parts of the feature map. In each one, they calculate the nearest
neighbors of each sample and propose a cross-agreement metric to refine the proposed
pseudo-labels.

Compared to such methods, our method also does not rely on any extra information,
requiring only the bounding boxes of the people in the dataset; therefore, it best fits this
last category of methods. Nonetheless, prior art often relies on clustering methods with
manually chosen optimal hyper-parameter values, which might be impractical when work-
ing with unlabeled datasets. Our method differs from the rest by proposing a clustering
criterion, which alleviates the burden of choosing optimal hyper-parameters.

We summarize the pros and cons of the main Unsupervised Person Re-Identification
works in Table 3.1. The main advantage of our method is that it operates in a fully unsu-
pervised scenario without relying on dataset-specific clustering hyper-parameter tuning.
It leverages ensemble-based feature spaces and clustering, and it is the only one that has
been designed for multiple modalities (images and text).

3.1.3 Unsupervised Text Analysis

Text Analysis is another application that can be explored with unsupervised learning
methods. The Natural Language Processing (NLP) community witnessed a significant
development with the introduction of models based on Attention and the Transformer
architecture [177].

BERT [34] is one of the most successful models, applying an encoder-only architecture
to solve many NLP tasks. The authors propose a self-supervised pre-training regime using
masked language modeling and next-sequence prediction tasks, followed by a fine-tuning
step using supervised data. Several works followed BERT, proposing variations using
more targeted data. One example is BERTweet [131], in which the authors propose an
extension to deal with tweets (short messages from Twitter).

T5 [149] takes a step forward and proposes a single architecture to solve any NLP
problem that can be modeled as a text-to-text task. They apply the architecture presented
by Vaswani et al. [177] with small changes in the normalization, dropout, and embedding
layers.

More specifically, Text Authorship Attribution (TAA) is the task of finding the author
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of a text solely by analyzing the textual information. We can reframe the task similar
to RelD, in which we aim to recover, from a gallery, texts from the same author of a
query text. Despite most of the research in TAA being in a closet-set scenario, in this
work, we follow the more realistic and challenging scenario of open-set where the model
may have never seen texts from the actual author, like in RelD. Despite current methods
achieving good results for lengthy texts, authorship attribution is still challenging for
short texts [175].

Nowadays, Authorship Attribution over social media data is an extremely compelling
and relevant scenario involving textual information. Recently, Kirkpatrick [89] presented
an interesting episode that supports this statement and the problem’s relevance in this
paper’s context. The author shows how two teams of researchers applied Al techniques
over social media messages to find the authors of QAnon messages — an anonymous
creator of far-right political conspiracy theories. Despite the success of applying the
Authorship Attribution techniques, this episode also showed how difficult and challenging
the task is. The researchers dealt with a small set of 13 suspects, a considerable supervised
dataset of 100,000 words from QAnon, and at least 12,000 words from each suspect.
Furthermore, parallel investigations outside the textual universe reinforced the results
(e.g., messages’ timestamps from the suspects claiming they had discovered the QAnon
existence).

In this work, we target the Authorship Authorship task in a fully unsupervised way,
considering a dataset of tweets (short text messages from the X - former Twitter - social
media platform). We consider a challenging and less explored setup, in which the authors
from the training set are unlabeled and disjoint from those in the test set. As our base-
line, we consider AdHominem [9], an attention- and LSTM-based model for Authorship
Attribution originally trained in a supervised manner using social media posts. The
pros and cons of AdHominem are highlighted in Table 3.1.

3.2 Proposed Method

The training pipeline is composed of seven steps: feature extraction and neighborhood-
based distance computation, ensemble-based clustering, learning rate update, proxy se-
lection, batch creation, optimization, and Mean Teacher averaging. Figure 3.1 depicts an
overview of these steps.

In the first step, features are extracted for each sample, considering different back-
bones. We compute pairwise distances between samples based on their neighborhood for
each backbone and average them across backbones to obtain a more refined and unique
distance matrix. The second step is the application of our ensemble-based clustering tech-
nique to obtain pseudo-labels for the samples. We perform the learning rate calculation
in the third step. In the fourth step, a proxy feature vector is selected for each cluster
and, in the fifth step, sample batches are created. This information is used during the
sixth step, which is the optimization of each backbone, independently. In the last step, a
Mean Teacher technique is used to combine the weights of a backbone over training steps
in a momentum model, which is used later for inference.
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Table 3.1: Comparison of the prior art and our method in terms of pros and cons.

Method Pros Cons
SSL [106] Does not require clustering Requires camera labels and relies solely on the k-NN of each
image for positive samples mining
CCSE [105] Performs clustering regularization to balance the number of | Requires camera labels and artificial GAN-generated images
samples in each clustering that might include biases in model learning
MPRD |[76] Does not require clustering and explores the neighborhood | Requires camera labels for augmentation, and the optimiza-
of image features through Graph Convolutional Networks tion of two dependents networks (no decoupling)
DSCE- Leverages a symmetric and dynamic cross-entropy loss and | Requires the camera labels and nearest neighbors-based out-
MC [208] a camera-based meta training lier reassignment which might introduce noise
JVTC [95] Employs local and global view on loss function to regularize | Requires camera labels, artificial GAN-generated images
model learning that might include biases in the learning, and frame annota-
tion for temporal consistency calculation
JGCL [19] Generates images of the same person in different poses, which | Requires camera labels and the training of a GAN together
regularizes the model training with the main backbone, which brings complexity to the
training process
1ICS [204] Employs the AIBN to regularize model learning to achieve | Requires multi-task training per camera where the complex-
cross-view invariant features ity grows depending on the number of cameras and pseudo-
identities found per camera
CAP [185] Regularizes the model with intra- and inter-camera losses Requires camera labels and multiple proxies per cluster to
be constantly updated in an epoch
UST [7] Leverages a cross-camera triplet creation and self-ensembling | Requires camera labels and an offline generation of all the
technique for checkpoints summary triplets before training
ICE [17] Employs a soft consistency loss to be robust to augmentation | Leverages camera labels in its best version, presents a loss
and has a camera-agnostic version function with many hyper-parameters, and it shows results
with a specific clustering parameter e for each dataset
PPLR [26] Leverages a part-based guided label and loss refinement and | Requires camera labels in the best version, and the part-

presents a camera-agnostic version

based agreement and loss function are complex

Star-Dac [154]

Provides an analysis about the time each identity is recorded
by each camera and how they transit from one to another

Requires camera and timestamp annotation for each frame
and a high-complex spatiotemporal-based clustering

TAUDL [97] Does not require clustering and performs cross-tracklet as- | Requires camera labels and tracklet estimation, not consid-
sociation in batch level ering any global view of the feature space

TSSL [196] Does not require camera labels and leverages a distribution- | Assumes tracklet annotation but lacks the clustering for a
aware cluster distance for clustering global view

UTAL [98] Does not require clustering and leverages tracklet-based soft | Requires camera and tracklet annotations, and the training
labels for learning complexity grows linearly with the number of cameras

CycAs [193] Does not require clustering and leverages a self-adaptive tem- | Requires camera and timestamp annotation, and informa-
perature parameter tion if two or more camera fields of view overlap

UGA [197] Does not require clustering and leverages a Cross-View | Requires camera and tracking annotation, and a multi-task
Graph for inter-camera tracklet association training that grows linearly with the number of cameras

BUC [104] Does not require camera labels and leverages a diversity reg- | Evaluates and gets the best checkpoint in the test set, which

ularization term on clustering

is unrealistic

GPUFL [167]

Does not require clustering nor camera labels

Requires to keep m+1 memory banks, where m is the num-
ber of parts of the feature, and only local-neighborhood min-
ing is performed

MV- Does not require camera labels and leverages multi-patch | Requires calculating the feature distance for each extracted
RelD [216] optimization patch, and the best checkpoint over a validation set is se-
lected, which is unrealistic
MMCL [179] Does not require camera labels nor clustering Does not consider a global view of the feature space for pos-
itive and negative mining
HCT [223] Does not require camera labels The best checkpoint over a validation set is selected, which
is unrealistic, and the hyper-parameters might change for
different datasets
ABMT [18] Exploits both global average and max pooling for feature | The loss function is complex, with five terms
learning
SpCL [48] Does not require camera labels and reliable samples are se- | Introduces more clustering hyper-parameters which might be
lected through independence and compactness measures challenging to tune for different datasets
RLCC [230] Does not rely on camera labels for learning and leverages | Same as SpCL, and adds one more parameter for pseudo-
pseudo-label consensus across iterations label generation; however, it is sensitive to it
CACL [96] Does not rely on camera labels and performs ensemble learn- | The best checkpoint is selected, which is unrealistic, and the
ing clustering requires different optimal hyper-parameter values
for each dataset
ISE [234] Does not rely on camera labels and uses sample extension Leverages dataset-specific clustering hyper-parameters
AdHominem [9] | Predicts if the same author wrote two short-message posts | Relies on fully supervised training
in social media
Ours Does not rely on camera labels, nor tracklets, and no | Requires the training of more than one model, but

hyper-parameters need to be tuned for clustering. It
exploits ensembles and is the only one employed for
both image and text-based tasks

it can be performed in parallel.
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We use the term iteration to refer to one complete iteration of the pipeline (blue flow
in Figure 3.1), and epoch to refer to when the proposed clusters are used for optimization
in the current iteration (green flow in Figure 3.1). We perform K; iterations and K,
epochs per iteration.
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Figure 3.1: Overview of the proposed approach, comprising seven steps. Step 1: we extract feature
vectors from all samples in the target dataset for each backbone, perform distance calculation followed
by neighbor-based refinement, and combine the distances across backbones. Step 2: our ensemble-based
clustering algorithm is performed to propose pseudo-labels and filter outliers. Step 3: we update the
learning rate following a warm-up strategy [124]. Step 4: for each cluster obtained in Step 2, we randomly
select a sample as a proxy. Steps 5, 6, and 7: a set of batches are created to optimize the backbones,
each backbone is independently optimized and momentum models are updated based on the backbones’
weights using a Mean Teacher strategy [173]. The red flow is performed |C/P] times, where C is the
number of clusters in the current iteration, and P is the number of clusters per batch. The cluster proxies
are redefined K times (green flow), after the red flow. The blue flow (entire pipeline) is performed K;
times. Best viewed in color.

3.2.1 Step 1: Feature extraction and neighborhood-based dis-
tance computation

Consider a set X = {z;}Y, of unlabeled data points in the target domain, consisting of
N samples; and M backbones that generate feature representations for these samples.

In prior art for image representation, the output of the last global max or average
pooling layer is commonly used as the final feature vector. However, global max and
average pooling operations produce distinct and complementary descriptions and, when
used together, they can increase the quality of the representation [18]. Following this
idea, we perform both global max and average pooling after the last feature map and add
the resulting vectors element-wise for the final feature vector (Figure 3.2). It is important
to note that this is only done for images. For text representation, the output of the last
layer is directly used as the final representation.

After extracting features for all samples, we L2-normalize them so that they are pro-
jected onto a unit hyper-sphere. Therefore, we have a set F™ € RN*%m of normalized
feature vectors extracted by the m-th backbone, where d,, represents the dimension of
features in this set.
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Input image

Figure 3.2: The final feature vector (FV) is obtained by extracting both global max pooling (GMP) and
global average pooling (GAP) of the previous layer’s output and then adding the two resulting vectors
element-wise.

For each F™, we calculate pairwise distances for all samples in the set. Inspired by
re-ranking techniques [245], we refine these distances by considering the neighborhood of
the samples; i.e., we normalize the distance between two samples based exclusively on
the number of neighbors in common. Each distance is a number between 0 (no neighbors
in common) to 1 (all neighbors in common). Consequently, we have M refined distance
matrices { Dy, Ds, ..., Dy, ..., Dps }, one for each backbone. Distance matrix D,, is a general
representation of the knowledge obtained by the m-th backbone over the input data, as it
is calculated based on the samples’ feature vectors. To explore potential complementary
knowledge, we propose averaging all distance matrices:

1 M
D=—) D,. 3.1
MmZ:l (3.1)

The final distance matrix D is used as input to the proposed ensemble-based clustering
technique.

3.2.2 Step 2: Ensemble-based Clustering

DBSCAN |[41] clustering is the basis for our ensemble-based clustering. It relies on two
hyper-parameters: minPts — the minimum number of samples on a point’s neighborhood
to consider it as a core point — and ¢ — the radius of the neighborhood. Two data points p
and ¢ are considered neighbors if the distance between them is less than . A data point
p is a core point if it has at least minPts neighbors. If it has less than minPts but is
neighbor to a core point, then p is a border point. Otherwise, it is considered an outlier.
Two points p and ¢ are within the same cluster if a path exists P = {po, p1, ..., pn}, where
Vi<i<n—1 Pi 1S a core point, p = py and q¢ = p,.

The performance impact of the two hyper-parameters has been studied [66, 18|, and
the conclusion is that DBSCAN is more sensitive to ¢ than to minPts. A wrong choice
of € can substantially hinder the performance, requiring domain knowledge to select its
optimal value. A dataset with high intra-class variability might yield non-convex and
sparse clusters, rendering the intra-class data points far away from each other while inter-
class samples are closer. To account for this, a higher € would be needed to group sparse
samples in the same cluster. In turn, datasets with lower intra-class variability might
require a lower ¢, as a larger value could introduce false positives in the same cluster.

The described problem is common to several Person ReID benchmarks. Market1501 [242]
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is a dataset that comprises 751 identities recorded from six different cameras in the train-
ing set, while MSMT17 [194] has 1,041 identities recorded from fifteen different cameras.
Identities on MSMT17 have larger intra-class variability than on Market1501 as the number
of different views of an identity is prone to be higher. Thus, different datasets require
different values of €, and this has also been pointed out in prior art. In [17], the authors
use a lower value for Market1501 (¢ = 0.5) and a larger value for MSMT17 (¢ = 0.6) to
account for dataset complexity. In [234], the authors adjust the value of £ to obtain better
results. However, in a fully unsupervised scenario, it is impossible to select an optimal
value for ¢ as there is no prior knowledge of the target data. Therefore, it is paramount
to develop a clustering algorithm that does not depend on hyperparameter tuning.

We propose an ensemble-based clustering algorithm. As different values of ¢ yield
different clusters, we run DBSCAN with different ¢ values and combine their results
into a single final result. The proposed method effectively deals with noisy cases, allowing
different but closer dense regions to be assigned to the same cluster, avoiding false positives
and alleviating the burden of choosing the proper value for ¢.

Considering the feature space defined by the refined distance matrix D from Step 1, we
perform DBSCAN with five ¢ values: 0.5, 0.55, 0.6, 0.65, and 0.7. As the neighborhood
increases, more samples are assigned to a cluster. This does not mean that all samples are
true positives and we need a way to detect false positives. If a sample has been detected
as an outlier with ¢ = 0.5, it is kept as an outlier on further runs. We then can better
filter out false positive samples while grouping closer dense true positive regions in the
same cluster.
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Figure 3.3: Comparison between our proposed ensemble-based clustering method and DBSCAN. The
data points are identities randomly sampled from the DukeMTMC-ReID dataset and projected into a 2D
space by T-SNE [176]. Data points of the same color represent an identity. Black points are outliers.
Circles highlight regions of interest to be analyzed. In our ensemble-based clustering, the results for an ¢
value intrinsically combine results from all previous runs by keeping the data points’ status if they were
previously assigned as outliers or inliers. The last run (¢ = 0.7) groups its results and all the previous
ones, and produces more robust clusters than DBSCAN when we compare them to the final generated
clusters with the ground truth. Best viewed in color.

Our ensemble-based clustering is illustrated and compared with the regular DBSCAN
in Figure 3.3, where different colors represent different clusters (black represents outliers),
and the circles highlight important regions to be analyzed. In the ground truth, the pink
and red circles present noisy data with two identities mixed, which would be hard to
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split with a single ¢ value. With € = 0.5, DBSCAN yields the highest true positive rate,
but it cannot group sparser identities such as the one within the green circle, which is
subdivided into two clusters (blue and yellow). The same happens within the blue circle:
most samples are from the same identity, but DBSCAN subdivides it into five clusters.
In turn, our method is able to group results from lower € values and create more robust
clusters, as shown in Figure 3.3, ¢ = 0.7. We employed T-SNE [176] just for feature
visualization in the lower dimensional space. The proposed solution works directly in the
distances between data points after distance ensembling (Section 3.2.1), without any kind
of dimensionality reduction.

One optimization is the reduction of DBSCAN runs. One must remember that if a
point is detected as an outlier for ¢ = 0.5, it is kept as an outlier in subsequent runs
with larger values. The same happens if a sample is an inlier for ¢ = 0.5; it will be
an inlier in further runs as the neighborhood always increases. However, inlier samples
assigned to different clusters can be put together in the same cluster due to the increasing
neighborhood. For this reason, we say that the results for the j-th run contain the results
for the i-th run, with ¢+ < j, as samples that are inliers or outliers keep their status in
subsequent runs. It becomes clear that it is enough to run DBSCAN with ¢ = 0.5 and
e = 0.7 only, as the last run implicitly combines all intermediate results.

The main reason for choosing DBSCAN as the clustering algorithm is that it has
the same or better resource consumption compared to other methods that have been
used in cluster-based Unsupervised Person Re-Identification. Some previous works have
employed Agglomerative Clustering, such as BUC [104], MV-ReID [216|, and HCT [223].
Other works considered K-Means, such as PUL [42|, MMT [47] MEB-Net [226]. We
justify our choice in terms of three aspects: memory consumption, time complexity, and
performance.

Memory consumption: Since our method relies on the Re-Ranking technique to refine
the distance between samples based on neighborhood similarity, it is necessary to store
a N x N distance matrix, where N is the number of data samples. This has memory
complexity of O(N?). All clustering methods require the full distance matrix, so all of
them are upper-bounded by the same complexity.

Time Complexity: The Agglomerative Clustering [195] with the single-linkage variant
has a time complexity of O(N?). The K-Means clustering is well-known by the time
complexity of O(NKT'), where K is the pre-defined number of clusters and 7' is the
number of iterations. As reported by [138], T' x N so its effective time complexity is
O(N?). The DBSCAN, on the other hand, as reported in the original paper [41], has
a complexity of O(NlogN) in an optimal implementation, which makes it more efficient
than Agglomerative Clustering and K-Means.

Performance: Agglomerative Clustering performance depends on the choice of the
linkage criteria to link the closest clusters. It is also sensible to outliers because a single
point can bridge two unrelated clusters and create large clusters with uncorrelated points.
K-Means does not detect outliers since it enforces each point to belong to a cluster. It is
also highly sensitive to the pre-definition of the number of clusters K and the selection of
the initial clusters centers [138]. DBSCAN can detect outliers automatically. It creates
clusters based on the reachability of the points, not depending on the number of clusters
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a priori. It is only sensitive to the selection of the € hyper-parameter, which is the main
motivation behind the proposed ensemble-based clustering.

3.2.3 Step 3: Learning rate update

To update the learning rate, we consider a warmup strategy [124], which is effective
mainly in the first training iterations, where the number of samples is lower than in
further iterations. In the first iterations, there is still little data available for training, as
the outliers detected by the clustering algorithm are in greater quantity and are discarded
as noisy samples. In this context, the model is more prone to overfitting, and a lower
learning rate can aid the training in such cases.

The warmup strategy consists of starting the training process with a small learning
rate value and gradually increasing it along the first iterations. Based on [124], we define
the learning rate at iteration ¢ as

Ir ase*Lv t < ]-07
l?"t = b 10 B (32)
lrbas& 10 <t S Kh

where [7p44 is a base value for the learning rate usually set to 3.5¢™*, and K; = 30. The
learning rate linearly increases in the first ten iterations and is constant for the remaining
ones.

3.2.4 Step 4: Proxy selection

Once pseudo-labels are assigned to unlabeled data samples based on the clustering results,
and the learning rate is adjusted, the backbones can be updated.

This process starts in Step 4, with the selection of cluster proxies, which are prototypes
that represent the clusters. For each cluster, its proxy is the feature vector of a randomly
selected sample within that cluster.

Although clusters tend to become more reliable as more iterations are performed,
there is still a chance they might contain false positive samples. Assuming that the
majority of samples are true positives, we hypothesize that a random selection is more
likely to return a true-positive proxy than, for instance, computing the mean vector from
all samples (true and false positives). We verify the impact of selecting a random or mean
proxy in Section 3.4.

3.2.5 Step 5: Batch creation

The next step is batch creation. We consider the PK strategy [64], where we randomly
select P out of C' clusters generated in the current iteration, and K samples per cluster,
creating batches of size P x K.

It is important that a cluster appears only once per epoch, exposing the optimization
to more diversity. For this, we create L%j batches, which can leave some clusters out
of the current epoch because of the rounding. However, as we perform K, epochs per
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iteration, the clusters not used in the current epoch will likely be selected in the next
epochs.

3.2.6 Step 6: Optimization

The created batches are forwarded to the backbones for optimization. The loss function
L to be minimized is composed of two other loss functions: L,y and Lpgrq-

For the m-th backbone, loss function Loy is based on cluster proxies pJ', 1 < j < C
and is defined as

mexy(B; em) _ _’_;| Z I 633p(fim-pT/T> ] : (33)

" [ch:l exp(fi".py"/7)

where B is the batch, |B] is the batch size, 6,, are the weights of the m-th backbone in
the current iteration, f™ is the feature vector of the i-th sample in B extracted by the
m-th backbone, p'' is the proxy of the same cluster as the i-th sample in B, and 7 is a
temperature hyper-parameter to regulate the sharpness of the distribution of distances
from the ¢-th sample to all proxies. The rationale is to approximate each sample in the
batch from its respective proxy and keep it apart from the other proxies.

As hard sample mining has shown promising results in prior art [18, 17|, we consider
it by utilizing a hard instance-based softmax-triplet loss defined as

Lhard(B; ‘gm) -
|B|

s exp(fi".f'/7) (3-4)
B 2 [emfr.fr/ﬂ Teap(frfin))

where f1" is the hardest positive sample in comparison to the i-th sample in B, i.e., it is the

most distant feature from f/* within the same cluster in the current batch. Analogously,
f is the hardest negative sample in comparison to f/" in the current batch, i.e., it is the
sample closest to f/” but from another cluster.

The Lparq loss provides a local view as it only considers samples in the current batch,
while L, .4, is a global loss since it considers all proxies from all clusters. The final loss
combines them into a single function:

L(B;0.,) = Lyroay(B; 0m) + ALpara(B; 0, (3.5)

where A is a hyper-parameter to control the impact of Ly..q. We provide the sensitivity
of our method to 7 and A values in Section 3.4.

Each backbone is trained independently but with the same set of pseudo-labels and
learning rate obtained in previous steps. That is, the green flow in Figure 3.1 is performed
for each of the M backbones, once at a time.
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3.2.7 Step 7: Mean Teacher average

In this step, we leverage the Mean Teacher strategy [173|, which averages model weights
over training steps to produce a final, more accurate model. It computes a teacher model
as the average of consecutive student models.

For each backbone (student model), we keep a teacher (or momentum) model with
the same architecture. After each optimization step, the weights of a backbone are used
to update the respective momentum model by Exponential Moving Average:

o) = 865V + (1 - 86y, (3.6)
where 3 controls the inertia of the momentum weights over training, ¢ represents the iter-

ation, and ©,, and 6,,, are the weights of the momentum and student models, respectively,
that correspond to the m-th backbone.

3.2.8 Inference

After the training pipeline, inference is done by ranking all gallery samples based on the
distance to a query sample. We extract feature vectors for all gallery and query sets using
the momentum models from each backbone, which we denote as F" and F", respectively,
with 1 < m < M. For each m, we calculate pairwise distances between samples of F"
and )", resulting in a distance matrix D3 € RI9XISl where |Q] and |G| are the number
of samples in the query and gallery sets.

A final distance matrix ﬁqgg is obtained by averaging all matrices element-wise:

1 M
D2y = 77 >, Dty (3.7)
m=1

Each row of qug holds the distances from a query to the gallery samples. We sort
these distances to infer the closest class to the query sample.

3.3 Experiments

We perform experiments to validate our self-supervised learning pipeline, considering two
applications: Person RelD and Text Authorship Attribution from short text messages.

3.3.1 Datasets

For Person RelD, we use three well-known large-scale datasets: Market1501, DukeMTMC
-ReID, and MSMT17, which are described in Appendix B. As done in previous RelD works,
we remove images from the gallery with the same identity and camera of the query to
assess performance in a true cross-camera scenario. For evaluation, we calculate the
Cumulative Matching Curve (CMC), from which we report Rank-1 (R1), Rank-5 (R5),
Rank-10 (R10), and mean Average Precision (mAP).
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For Authorship Attribution, we adopt two subsets of a dataset of tweets [174],
which is also described in Appendix B. Following the setup of the RelD validation, we
keep disjoint authors for training and testing to verify the generalization capacity of the
model. For evaluation, we compute mAP, R1, R5, and R10.

3.3.2 Implementation Details

We adopt M = 3 backbones. For person RelD, the backbones are well-known Deep
Convolutional Neural Network (DCNN) architectures: ResNet50 [58], OSNet [251], and
DenseNet121 [70], all of them previously trained over the ImageNet dataset [31]. For
Authorship Attribution, we consider BERT [34], BERTweet [131], and T5 [149] architec-
tures.

For optimization, we consider the Adam [88] optimizer with weight decay 0.00035.
The learning rate is set following the behavior in Equation 3.2 with lry,s. = 0.00035. We
implement the neighborhood-based distance with re-ranking [245|, which relies on two
parameters: k; which defines the k-reciprocal neighborhood size, and ky, which defines
the neighborhood size to average the distance representation. Following prior art, we set
them to k1 = 30 and ks = 6. For batch creation using the PK technique, we set P = 16
and K = 12, totaling 192 samples per batch.

The values for € in the proposed ensemble-based clustering are 0.5, 0.55, 0.6, 0.65,
and 0.7. We keep minPts = 4 in all DBSCAN runs as done in the prior art. For the
loss function, we set 7 = 0.04 and A = 0.5 in Equations 3.3, 3.4, and 3.5. We analyze the
sensitivity of our method to 7 and A in Section 3.4.

The pipeline (blue flow in Figure 3.1) is executed for K; = 30 iterations and the green
flow is executed for Ky = 7 epochs, for each set of proposed clusters, and g = 0.999 in
Equation 3.6.

The training pipeline is implemented using PyTorch [142|. The evaluation part and
the OSNet backbone are implemented on Torchreid [250]. We perform all experiments on
three RTX5000 GPUs, each with 16 GB of RAM. One is used to perform re-ranking while
the other is used to execute the whole training pipeline. The code is available at https://
github.com/Gabrielcb/Leveraging_ensembles_and_self_supervised_fully_ReID.

3.3.3 Person RelD

We compare our pipeline applied to the U-PReID problem with relevant methods in the
literature. The results are shown in Table 3.2, and the main pros and cons for each
method are presented in Table 3.1.

We outperform all methods in the fully-unsupervised setup in the most challenging
datasets, Duke and MSMT17, and obtain the second-best result in Market dataset, regarding
mAP and R1. More specifically, we outperform the recent CACL method by 3.1 and
1.3 percentage points (p.p.) in mAP and RI1, respectively, in the Duke dataset; and
outperform ISE by 7.6 and 3.5 p.p. on MSMT17, the most challenging unsupervised RelD
dataset. In the Market dataset, our results are the second best, considering mAP and
R1. As we designed our method to tackle general and complex fully-unlabeled scenarios
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Table 3.2: Comparison with relevant Person RelD methods considering three setups: camera-based,
tracklet-based, and fully-unsupervised methods. Our work fits in the last category, which is the most
challenging. We highlight the three best results in the fully unsupervised scenario: the best one in blue,

the second best in green, and the third in
result. Best viewed in color.

. For the other categories, we only highlight the best

Market Duke MSMT17
Method Reference mAP‘ R1 ‘ R5 ‘ R10 mAP‘ R1 ‘ R5 ‘ R10 mAP‘ R1 ‘ R5 ‘ R10
Camera-based
SSL [106] CVPR20 | 378 | 71.7 | 83.8 | 87.4 | 28.6 | 52.5 | 63.5 | 68.9 | - - - -
CCSE [105] | TIP20 38.0 | 73.7 | 84.0 | 87.9 | 30.6 | 56.1 | 66.7 | 71.5 | 9.9 | 31.4 | 41.4 | 45.7
MPRD [76] | ICCV’21 51.1 | 83.0 | 91.3 | 93.6 | 43.7 | 67.4 | 78.7 | 81.8 | 14.6 | 37.7 | 51.3 | 57.1
DSCE [208] | CVPR21 61.7 | 83.9 | 923 | - 53.8 | 73.8 | 84.2 | - 15.5 | 35.2 | 48.3 | -
JVTC [95] ECCV’20 | 47.5 | 79.5 | 89.2 | 91.9 | 50.7 | 74.6 | 82.9 | 85.3 | 17.3 | 43.1 | 53.8 | 59.4
JGCL [19] CVPR21 66.8 | 87.3 | 93.5 | 95.5 | 62.8 | 82.9 | 87.1 | 88.5 | 21.3 | 45.7 | 58.6 | 64.5
IICS [204] CVPR21 72.9 1 89.5 | 952 | 97.0 | 64.4 | 80.0 | 89.0 | 91.6 | 26.9 | 56.4 | 68.8 | 73.4
CAP [185] AAAT21 79.2 | 91.4 | 96.3 | 97.7 | 67.3 | 81.1 | 89.3 | 91.8 | 36.9 | 67.4 | 78.0 | 81.4
CCTSE [7] | TIFS’21 67.7 | 89.5 | 94.8 | 96.5 | 68.8 | 82.4 | 90.6 | 92.5 | - - - -
ICE [17] ICCV’21 82.3 193.8 | 97.6 | 98.4 | 69.9| 83.3|91.5|94.1| 389 | 70.2 | 80.5 | 84.4
PPLR [26] CVPR’22 84.4 | 94.3 | 97.8| 98.6 | - - - - 42.2 | 73.3 | 83.5 | 86.5
Tracklet-based
S-Dac [154] | PR’21 33.9 | 67.0 | 80.6 | 84.9 | 31.6 | 56.4 | 72.1 | 76.5 | - - - -
TAUDL [97] | ECCV’18 | 41.2 | 63.7 | - - 43.5 | 61.7 | - - - - - -
TSSL [196] AAAT20 43.3 | 71.2 | - - 38.5 | 62.2 | - - - - - -
UTAL [98] TPAMI'20 | 46.2 | 69.2 | - - 44.6 | 62.3 | - - 13.1 | 314 | - -
CycAs [193] | ECCV’20 | 64.8 | 84.8 | - - 60.1 | 77.9 - - 26.7 | 50.1 | - -
UGA [197] | ICCV’19 70.3 | 87.2 | - - 53.3 | 75.0 | - - 21.7 | 49.5 | - -
Fully Unsupervised
Market Duke MSMT17

Method Reference | mAP| R1 R5 R10 | mAP| R1 R5 R10 | mAP| R1 R5 R10
BUC [104] AAAT19 38.3 | 66.2 | 79.6 | 84.5 | 27.5 | 474 | 62.6 | 68.4 | - - - -
GPUFL [167]| ICIP’21 42.3 | 69.6 | - - 37.7 | 574 | - - - - - -
MV [216] SPL’21 45.6 | 73.3 | 85.3 | 89.1 | 31.7 | 54.5 | 67.5 | 72.1 | - - - -
MMCL [179] | CVPR20 | 45.5 | 80.3 | 89.4 | 92.3 | 40.2 | 65.2 | 75.9 | 80.0 | 11.2 | 35.4 | 44.8 | 49.8
HCT [223] CVPR20 | 56.4 | 80.0 | 91.6 | 95.2 | 50.7 | 69.6 | 83.4 - - - -
ABMT [18] | WACV’20 | 65.1 | 82.6 | - - 63.1 | 77.7 | - - - - - -
SpCL [48] NeurIPS’20| 73.1 | 88.1 | 95.1 | 97.0 | - - - - 19.1 | 42.3 | 55.6 | 61.2
RLCC [230] | CVPR21 77.7 190.8 | 96.3 | 97.5 83.2|191.6 | 93.8 (279 | 56.5 | 684 | 73.1
ICE [17] ICCV’21 79.5 | 92.0 | 97.0 67.2 | 81.3 | 90.1 | 93.0]29.8 | 59.0 | 71.7 | 77.0
CACL [96] | TIP’22 80.9 | 92.7 | 97.4| 98.5 | 69.6 91.2 | 93.8 | 23.0 | 48.9 | 61.2 | 66.4
PPLR [26] CVPR’22 - - - -

ISE [234] CVPR22 | 84.7|94.0 | 97.8 | 98.8 | - - - - 35.0 | 64.7 | 75.5 | 79.4
Ours 83.4| 92.9 97.8 | 72.7 | 83.9 93.0| 42.6 | 68.2| 77.9 | 81.4
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for multi-modal tasks, it achieves the best results in the most challenging datasets. The
other methods were designed specifically for Person RelD and, for this reason, they are
usually better in less complex datasets such as Market. This shows the effectiveness of
our method in the fully unsupervised scenario.

Other works assume metadata, such as camera labels and tracklets, but no identity
information. In Table 3.2, we can see that the most helpful metadata is camera informa-
tion. Person RelD is naturally a cross-camera retrieval task: a method must be able to
retrieve (from the gallery) images of the same identity used as a query but seen from other
cameras. In this sense, camera information provides a significant impact if it is leveraged
during training. This is evinced when we compare our results with the camera-based
method PPLR. It considers camera proxies per cluster and pulls images from different
cameras closer to overcome differences brought by different points of view. This seems
especially beneficial in more complex datasets (MSMT17), where PPLR outperforms our
method by 5.1 p.p. in R1. However, we still attain the best performance in mAP for this
dataset among all methods in any category. The same conclusion is drawn for the Duke
dataset where our method outperforms all prior art in all scenarios in terms of mAP and
R1.

Tracklet-based methods explore temporal information during training but are not as
competitive as camera-based ones. We outperform the state-of-the-art methods in all
datasets by a large margin.

Finally, our method is able to place most true positive samples from the gallery closer
to the query for most of the datasets, which is represented by the highest mAP for the
two most difficult datasets, Duke and MSMT17. Our method is thus able to achieve the best
performance among all methods even over those assuming strong camera information
as metadata. One should also note that, in general, our assumptions are even more
relaxed than other methods. Our clustering algorithm, for instance, does not require
hyper-parameter tuning, while ICE explicitly fixes a value for ¢ depending on the target
dataset.

In the following section, we also compare our pipeline to UDA methods that require a
source domain to provide initial task-related knowledge, which is the same setup as our
first solution. We outperform all these methods considering mAP, and obtain the best

or second-best ranking values considering other metrics without source domain and any
kind of labels.

Comparison to Unsupervised Domain Adaptation models

Now we extend our comparison to prior art considering the same experiment setup of the
first solution proposed in this Ph.D. and presented in chapter 2. Those works employ
supervised pre-training on a source domain and then leverage their pipelines on the tar-
get domain. Our pipeline, as explained in this chapter, does not require pre-training on
task-related source datasets and is applied directly over the target domain from weights
initialized over ImageNet. Therefore, our model operates under a more challenging sce-
nario with fewer constraints. The results are shown in Tables 3.3 and 3.4. Both tables
are subsets of Tables 2.2 and 2.3 presented in the previous chapter, and highlight the best
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prior art models compared to our solution.

Table 3.3: Results on Unsupervised Domain Adaptation. Our models do not require pre-training on
the source domain. Here we present Market1501 to DukeMTMC-ReID and DukeMTMC-ReID to Market1501
adaptation scenarios. We highlight the three best models with blue, green, and , respectively.
UST [7] is our first solution proposed in Chapter 2

Duke — Market Market — Duke

Method reference mAP | R1 R5 R10 | mAP | R1 R5 R10
MMT [47] ICLR’20 71.2 | 87.7 | 94.9 65.1 | 78.0 92.5
DG-Net++ [258] | ECCV’20 61.7 | 82.1 | 90.2 | 92.7 | 63.8 | 78.9 | 87.8 | 90.4
MEB-Net [226] ECCV’20 97.5 | 66.1 | 79.6 | 88.3
ABMT [18] WACV'20 | 80.4 | 93.0 | - - - -
UST [7] TIFS’21 78.4 192.9 | 96.9 | 97.8 | 72.6 | 85.0 | 92.1 | 93.9
Ours This work | 83.4 | 92.9 | 97.1 | 97.8 | 72.7 | 83.9 | 91.0 | 93.0

Despite not training on the source domain, we can see in Table 3.3 that our pipeline
yields the best mAP on both scenarios and the first or at least the second best value for
all other metrics. On the challenging MSMT17 (Table 3.4), we present an even better per-
formance by obtaining the best values for all metrics, surpassing the second-best method
by a margin in all metrics. Our first solution presented in chapter 2 is denoted by “UST".
We can see we have a competitive performance in Market and Duke dataset (Table 3.3),
and we outperform ourselves in all metrics considering the MSMT17 as the target.

This shows the strong ability of our model to learn in a fully unsupervised scenario
without requiring any meta-information, source domain, or manual definition of hyper-
parameter clustering.

Table 3.4: Results on Unsupervised Domain Adaptation. We present Market1501 to MSMT17 and
DukeMTMCRe-ID to MSMT17 adaptation scenarios. Our models do not require pre-training on the source
domain so we replicate our results for both considered scenarios. We highlight the three best models with

blue, green, and , respectively. UST [7] is our first solution proposed in Chapter 2

Duke — MSMT17 Market — MSMT17
Method reference mAP | R1 R5 R10 | mAP | R1 R5 R10
DG-Net++ [258] ECCV’20 22.1 | 48.8 22.1 | 484 | 60.9 | 66.1
ABMT [18] WACV’20 - - 27.8 | 555 | - -
SpCL [48] NeurIPS’20 | - - - -
UST [7] TIFS’21 34.5 |1 63.9 | 75.3 | 79.6 | 33.2 | 62.3 | 74.1 | 78.5
Ours This work | 42.6 | 68.2 | 77.9 | 81.4 | 42.6 | 68.2 | 77.9 | 81.4

Training time

We also analyze our pipeline in terms of execution time for training (Table 3.5). Clustering
(Step 2) time is negligible due to its optimized implementation. The fine-tuning process
(Steps 3 to 7) takes longer as it requires optimization using the generated clusters for
Ky = 7 epochs. The total time for the pipeline is in the order of a few hours, and it
depends on the size of the dataset. For MSMT17, the largest one with 32,621 images in the
training set and 1,041 identities (greater than the number of classes on ImageNet), the
method presents a reasonable time of around 19 hours.
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Table 3.5: Execution time. We report the average time taken by some steps and the total time to

execute the pipeline, for the three RelD datasets. The time format is HH:MM:SS.

Dataset Step 1 Step 2 Steps 3 to 7 Total Inference Time
Time (ms)

Market 00:01:29 | 00:00:07 00:08:27 05:10:35 41.4

Duke 00:01:53 | 00:00:10 00:15:13 08:47:37 59.1

MSMT17 00:04:25 | 00:00:38 00:30:12 19:06:05 80.2

Inference time also increases with the size of the gallery sets, as there are more samples
to compare to the query. Inference for a query on Market, the smallest one, takes 41.4
milliseconds, while for MSMT17, the largest dataset, it takes 80.2 milliseconds. All scenarios
present reasonable inference time under one second.

Qualitative Analysis

Similar to the previous chapter, we show the activated regions in the gallery images
given a query from each camera in each dataset, considering the ResNet50 backbone.
We provide some examples of success and some of failure, for DukeMTMCReID (Figures 3.4
and 3.5 respectively) and Market1501 (Figures 3.6 and 3.7 respectively) datasets. We do
not show examples for MSMT17 as reproducing this dataset’s images is not allowed in any
format. Blue frames indicate the query image, green indicates the true positive samples,
and red the false positive samples. We adapted the method from [163] to visualize the
results.

Figure 3.4 shows one success case for each one of the eight cameras present on the
Duke dataset. We see that the model is able to mine fine-grained details on all images,
regardless of the camera, and retrieve true positive samples in the top 10 images. The
only exception is for camera 8 (Figure 3.4h), where the last six images are false positive
samples. However, for all samples, the model still focuses on fine-grained details, and the
errors occur due to similar clothing of the identities. The same happens in the examples
in Figure 3.5. Despite being error cases, the model can focus on fine-grained details.
The errors occur when there are two or more identities in the query image (Figure 3.5f),
the background color is similar to an object held by the identity (in Figure 3.5¢ the
backpack is the same color of the background), or due to very similar clothing of different
identities. Since Duke was recorded at a university campus during winter, it is natural to
find individuals wearing similar (and dark) clothing.

Besides that, in Figure 3.5c, there are two people in the same bounding box, which
is ambiguous. The top seven images retrieved present another person walking with the
query identity, and the sixth and eighth images show the query identity. So despite being
a failure case, the model could help in cases where the goal is to find people walking
together or in groups. This can help in investigations and monitoring to locate where two
people were together in the environment.

Figure 3.6 shows one success case for each camera on the Market dataset. Following
the same previous conclusions, the model is able to identify fine-grained features in the
image to correctly retrieve the true positive samples among the top 10 images. The failure
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Figure 3.4: Success cases considering one query from each camera on Duke. These results are obtained
with the ResNet50 backbone after training on Duke.
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cases (Figure 3.7) are mainly due to the identities being similar (similar T-shirts, hair,
and skin tone), which is the case in Figures 3.7b, 3.7d, and 3.7f.

From the successful examples (Figures 3.4 and 3.6), we observe that our method can
identify several fine-grained details throughout the image in order to retrieve the correct
identity. This means it overcomes differences in point-of-view, pose, illumination, and
background.

3.3.4 Authorship Attribution

We now consider a second task — Text Authorship Attribution — with minor adjustments
mainly related to the nature of the problem. For the backbones, we consider BERT [34],
BERTweet [131], and T5 [149] as they were developed to deal with text. We apply
augmentation on tweets with more than 5 tokens by masking from 10% to 20% of the
tokens with a “mask” token on BERT and BERTweet, and with an “unknown” token on
T5. Even the base version of BERT is too complex for short signals (text tweets), making
the training more prone to overfitting. Hence, we freeze the first ten attention blocks of
BERT and BERTweet, leaving only the 11" block to be updated. For the same reason, we
set K1 = 15 as the number of iterations — half of the value used for the RelD experiments
— to alleviate the impact of over-training. We set P = 8 and K = 8 for batch creation.
All other parameters are the same as those used for RelD. The only difference in the
pipeline is that we do not apply the optimization shown in Figure 3.2, as it is only for
image representations.

We run comparative experiments considering the AdHominem method [9]. It employs
an attention-based model for Authorship Attribution on social media text. AdHominem
performs supervised training using Siamese networks to answer whether or not the same
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Figure 3.5: Failure cases considering one query from each camera on Duke. These results are obtained
with the ResNet50 backbone after training on Duke.

author wrote two tweets. To perform the ranking task, we take the Euclidean distance
between two tweets returned by the model and rank the gallery tweets given a query. The
results are shown in Table 3.6.

Table 3.6: Results for the Authorship Attribution task for two subsets of tweets: one with 50 authors
on training and 50 authors on the test, and the other with 500 authors on training and 500 authors on
the test. The best results are in blue.

15t subset (50 authors) 214 subset (500 authors)
Model mAP | RI1 R5 | R10 | mAP| R1 R5 | R10
AdHominem [9] | 7.3 | 25.5 | 50.9 | 61.5 2.4 10.8 | 23.5 | 31.6
Ours 14.3 | 50.0 | 73.0 | 80.3 | 5.0 | 22.5 | 37.0 | 44.8

Our method outperforms AdHominem in both subsets. More specifically, we outper-
form AdHominem by 7.0 and 24.5 p.p. in mAP and R1, respectively, in the first subset.
In the second one, we outperform it by 2.6 and 11.7 p.p.

One must note that AdHominem is trained in a supervised manner considering the
identity of each tweet, i.e., the method knows a priori “who” wrote the tweets to supervise
the training. However, our method relaxes this constraint by taking only the raw tweet
text without any labeling. Moreover, our training and test data are disjoint on the
identities, and since AdHominem is trained for a closed set of authors, it generalizes poorly
to unseen authors.

Although our method utilizes pre-initialized weights, these weights were trained for
other tasks, such as question answering, next sequence prediction, predicting missing
words, and so on, instead of Authorship Attribution.
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Figure 3.6: Success cases considering one query from each camera on Market. These results are obtained
with the ResNet50 backbone after training on Market.
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Figure 3.7: Failure cases considering one query from each camera on Market. These results are obtained
with the ResNet50 backbone after training on Market.

In Figure 3.8, we provide the evolution of Rank-1 during training to show the merits
of employing our pipeline. In the first subset (50 authors), we verify a Rank-1 oscillation
after the 10" iteration and a slight decrease until the last iteration. BERTweet provides
the greatest gain, followed by BERT and T5. In the second subset (500 authors), the
training process is more stable though it is numerically inferior as there are more authors.
The feature space is denser, securing more stability for the convergence of the models.

3.3.5 Further Analysis

Our applications are Unsupervised Person Re-Identification and Unsupervised Text Au-
thorship Attribution, which are related to event analysis in a forensic context. Thus,
it is important to understand how the performance of our approach is impacted when
we consider common forensics features used for other tasks, such as image manipulation
detection [5], or pre-processed inputs used in the GAN-generated image detection task [3].
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Figure 3.8: Rank-1 evolution over training iterations for the Authorship Attribution task considering a
test set with (a) 50 authors and (b) 500 authors. “Combined” is obtained by averaging the final distances
acquired with each backbone.

To test this, we apply the method proposed in [5] for manipulation detection to the
Unsupervised Person Re-Identification problem. It is an ensemble-based algorithm with
forensics features. We employ the same features—SPAM [146] and CRSPAM1372 [4]—,
which have also shown to achieve top-tier performance on the manipulation detection
task.

However, since Unsupervised Person Re-Identification differs in nature from manip-
ulation detection, SPAM and CRSPAM1372 features induce a huge performance drop
when employed in our setup. These hand-crafted features have not been designed to over-
come the non-linearity in Unsupervised Person Re-Identification problems caused by the
difference in illumination, resolution, pose, background, and occlusion.

We also consider pre-processing techniques employed in the GAN-generated image
detection task. We take the method proposed in [3]|, whose main goal is distinguishing
between GAN-generated and real images. The authors argue that it is harder for GANs to
reconstruct consistent relationships among the color bands, and they propose an approach
to detect these inconsistencies.

For a fair comparison, we keep our whole pipeline and change only the input of our
backbones to match the ones from [3]. Their method induces a huge performance drop
compared to ours with standard RGB images. Our performance is better than theirs in
all metrics in all evaluated datasets. Their method requires a signal analysis across color
bands to reconstruct inconsistencies and to detect the neighboring inconsistencies and
noise introduced by GAN-based models. However, this process might destroy the seman-
tics present in the images, which is fundamental in Unsupervised Person Re-Identification.
Our models, conversely, learn high-level semantic and camera-invariant features to match
the same person seen from different camera views and distinguish from other people by
looking at discriminant parts, such as clothes, shoes, bags, and faces (Figures 3.4 and 3.6).
In summary, the method proposed in [3] looks for fine-grained details at the noise level,
while ours looks for fine-grained details at the semantic level.
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3.4 Ablation Study

We validate each part of our pipeline by checking how these influence the performance,
considering the Market and Duke datasets. If not specified, we assume ensemble-based
clustering, and 7 = 0.04 and A = 0.5 in Equations 3.3, 3.4, and 3.5.

3.4.1 Step 1: impact of distance averaging

In the first step of the pipeline, we average the distance matrices obtained with each
backbone separately, computing a combined distance matrix D (Equation 3.1). This
allows complementary knowledge to be grouped together for training. To measure how
this impacts the final performance, we train each backbone separately, as expected, but
feed each distance matrix directly to Step 2, instead of averaging them together. We
present the results in Table 3.7, showing the impact of averaging the distances in Step 1
for each backbone separately and for the combined result (considering Equation 3.7).

Table 3.7: Impact when we remove the proposed backbones knowledge combination (Equation 3.1).
Results with (*) mean we do not apply our proposed fusion. The best results are in blue.

Market Duke
Model mAP | Rl R5 R10 | mAP | R1 R5 R10
ResNet50* 77.8 | 90.7 | 96.2 | 97.7 | 65.6 | 80.0 | 89.2 | 91.3
ResNet50 80.4 | 91.1 | 96.8 | 98.0 | 69.4 | 82.0 | 90.4 | 92.9
OSNet* 73.2 | 87.8 | 95.2 | 96.8 | 67.5 | 81.3 | 90.0 | 92.6
OSNet 78.6 | 90.5 | 96.1 | 97.2 | 68.9 | 82.9 | 90.2 | 92.0

DenseNet121* | 73.2 | 87.5 | 949 | 96.6 | 63.8 | 79.2 | 87.8 | 90.4
DenseNet121 78.9 | 90.3 | 95.9 | 97.4 | 67.7 | 82.1 | 90.0 | 92.2
Ours* 81.0 | 91.8 | 96.9 | 97.9 | 70.6 | 82.3 | 90.2 | 92.5
Ours 83.4 | 92.9 | 97.1 | 978 | 72.7 | 83.9 | 91.0 | 93.0

Distance averaging in Step 1 is important for training, and it positively impacts each
backbone individually, as well as their final combination, which allows for better grouping
in the clustering step. Considering the combination of backbones (Equation 3.7), the
gains are also considerable for both datasets. In Market, we achieve an improvement
of 2.4 p.p. and 1.1 p.p., in mAP and R1, respectively, and 2.1 p.p. and 1.6 p.p. on
Duke. These results show the effectiveness of our proposed approach without requiring
mutual training [47, 226] or co-teaching [207], which in turn promotes simpler training.
Moreover, from Table 3.7, it is possible to conclude that different backbones provide
complementary information, as there is an improvement for all metrics when they are
combined (Equation 3.7), for both setups (“Ours(*)” and “Ours”).

3.4.2 Step 2: impact of the ensemble-based clustering

We verify the effectiveness of our proposed ensemble-based clustering method. We replace
it with the standard DBSCAN algorithm in the second step of our pipeline, and keep the
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remaining parts unchanged. As we combine the results of DBSCAN runs with different
values into a single result, in Table 3.8, we present the separate results for each ¢ value.

Table 3.8: Impact of the ensemble-based clustering. We replace it with the standard DBSCAN by fixing
five € values. The best result for each metric is highlighted in blue.

Market Duke
DBSCAN ¢ | mAP| RI1 R5 R10 | mAP | R1 R5 R10
0.50 81.6 | 90.7 | 954 | 96.4 | 60.9 | 76.4 | 82.7 | 84.7
0.55 82.9 | 923 | 96.4 | 97.3 | 62.8 | 77.2 | 83.7 | 85.8
0.60 82.3 | 91.6 | 96.2 | 97.4 | 67.5 | 79.6 | 87.7 | 89.9
0.65 82.7 | 92.3 | 96.7 | 97.7 | 69.1 | 81.9 | 88.9 | 91.5
0.70 81.8 | 91.8 | 96.8 | 97.8 | 70.3 | 82.8 | 90.0 | 92.1
Ours 83.4 | 92.9 | 97.1 | 97.8 | 72.7 | 83.9 | 91.0 | 93.0

This experiment shows that the proposed ensemble-based clustering effectively com-
bines DBSCAN intermediate results into a final one, suggesting more robust clusters, and
outperforming all results in both datasets. Note that, as motivated in Section 3.2.2, if a
single € is employed for clustering, each dataset has different optimal values. In Table 3.8,
we see that the model achieves the best performance in mAP and R1 with ¢ = 0.55 for
Market and ¢ = 0.7 for Duke, which shows that the optimal values can change signif-
icantly from a dataset to another. In contrast, our proposed ensemble-based clustering
strategy obtains the best performance by grouping DBSCAN results using lower e val-
ues (denser clusters, lower false positive rate) and higher e values (more diverse clusters,
lower false negative rate), alleviating the burden of choosing a proper unique value for
this hyper-parameter.

3.4.3 Step 3: impact of proxy selection

In Step 4, we select a random sample per cluster as a proxy to aid the optimization as
in [29]. We validate this choice by replacing the random selection with the mean feature
vector of each cluster. The results are shown in Table 3.9.

Table 3.9: Impact of the proxy selection. We replace the random selection of samples to serve as cluster
proxies by the mean feature vector of the cluster. The best results are in blue.

Market Duke
mAP | Rl R5 | R10 | mAP| R1 R5 R10
Mean 82.0 | 91.8 | 96.2 | 97.5 | 70.7 | 81.8 | 90.0 | 92.2
Ours (random) | 83.4 | 92.9 | 97.1 | 97.8 | 72.7 | 83.9 | 91.0 | 93.0

Random selection improves the performance for all metrics, but mainly for mAP and
R1. More specifically, we obtain a gain of 1.4 and 1.1 p.p. in mAP and R1, respectively,
in the Market dataset, and 2.0 and 2.1 p.p. in the Duke dataset. This validates our
assumption that using a mean vector as a proxy hinders cluster representation and further
training, as it is affected by the false positive samples of the cluster.
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3.4.4 Step 4: impact of loss function hyper-parameters

We vary hyper-parameters 7 and A in the loss functions (Equations 3.3, 3.4, and 3.5) to
check how they impact the pipeline in both image- and text-based applications.

The 7 parameter, proposed in [65], is used to control the sharpness of the distribution
related to the distance of a sample to each cluster proxy in the current iteration. The
smaller the value, the greater the density towards the most confident value; while the
larger the value, the closer the distribution is to the Uniform. Prior Unsupervised Person
Re-Identification works usually tune it to control the gradients for a stable convergence.
Results with varying 7 are shown in Figures 3.9a and 3.9b for RelD, and in Figures 3.9¢
and 3.9d for Authorship Attribution. For both datasets in RelD, the best value is 0.04
as it provides the best mAP and R1, and top results for R5 and R10. For Authorship
Attribution, the results have a marginal improvement for 7 = 0.03 in both 50 and 500
authors datasets, but it provides slightly lower performance for ReID. The greater values
(7 = 0.07) increase the loss and the gradient magnitude, which leads to suboptimal opti-
mization for all datasets, mainly for RelD. Therefore, we set 7 = 0.04 for all experiments
in both applications.

Results with varying A (Equation 3.5) are shown in Figures 3.9e and 3.9f for RelD,
and in Figures 3.9g and 3.9h for Authorship Attribution. This hyper-parameter regulates
the influence of the hard instance-based softmax-triplet loss (Lpqrq) on the final loss. This
loss brings a local view by considering hard-positive and hard-negative mining triplets at
the batch level. When A = 0.0 (i.e., Lpqrq is not considered for optimization), we obtain
one of the worst performances for all datasets in both modalities, showing that a more
local view of the data is also important for model training. As we increase its value, the
performance increases. But for higher values (from 0.75 to 1.0), we verify a performance
drop as the local view starts dominating the global view, resulting in convergence issues.
We keep A = 0.5 in all experiments, as it yields the best or second-best mAP and R1
results for all datasets in both modalities.

3.5 Application with supervised learning: the BENTO
algorithm

In this section, we show a direct application of the solution presented in this chapter
in a context in which we have labeled and unlabeled data. We leverage our solution
as part of a method designed for the AGReID2023 competition during the IJCB 20233.
The goal of the competition was to perform the whole-body identity matching from an
image of the person of interest taken by a UAV (aerial device) to an image of the same
person recorded from a CCTV or wearable camera (ground devices). The organizers called
Aerial-to-Ground Person Re-Identification. One of the main challenges in this scenario is
the strong variation in the point of view.

Our approach named Biometric Ensemble Network Technique Optimization (BENTO
— Figure 3.10) is inspired by different strategies present in the literature |7, 186, 17|,

3https://www.kaggle.com /competitions/ag-reid2023 /leaderboard
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among them we highlight our first solution [7| presented in chapter 2, and the solution
proposed in this chapter. During training before each epoch, we extract all training
features and calculate the average feature vector per identity as a class-level proxy (cross
symbols in Figure 3.10), and average the feature vector per camera per identity as the
Camera—level proxies (points with darker border). Let denote the class-level proxies as
= {pNC Where N, is the number of training identities, and the camera-level proxies
as O = {( Cas wv cctv) zNzcl? where Cfl, Ciu and Ccctv
aerial, wearable and CCTV cameras respectively for the it identity. Given a batch B
of images, the losses are the proxy loss (Eq. 3.3), the batch-hard loss (Eq. 3.4), and the
camera-proxy loss calculate as follows:

are the average feature vector of the

|B| e b
b = IBI Yeap(fs /) + exp(Fc /7)
where f¢ is the feature of the b sample from aerial /ground camera e, cg is the camera-

proxy from ground/aerial camera g from the b sample class (e # g), and ¢, is the
hardest negative proxy from the same camera of the b sample but from another class.
The rationale of L., is to encourage the model to have camera-invariant features by
enforcing the sample from the aerial device to be close to the ground camera proxies and
vice-versa. The final loss function is defined as

LAG = Lproacy + )\chcp + AhardLhard (39)

Considering a real-world application where we can have labeled and unlabeled data, we
leverage our second solution proposed in this chapter for a self-supervised fine-tuning on
query and gallery images without any ground-truth labels from them after training
with the labeled data. In other words, we first train the models in a supervised manner
using training data, then we leverage our second solution proposed in this chapter on
query and gallery data, where we extract features from query and gallery, cluster them,
and use the pseudo-label to finetuning for one to three epochs.

On evaluation, we extract all feature vectors from the gallery set and average the ones
from the same identity (similar to the training). We use them to perform the match-
ing to query features and Re-Ranking [245]. We do that with four different backbones
(ResNet50-IBN, ResNet101-IBN, OSNet [251], and TransRelD [61]) and average them to
get the rank-1 prediction employing Eq. 3.7.

The results comparing our solution to other competitors’ solutions are shown in Ta-
ble 3.10. We can see that with our solution we obtained the third place in the com-
petition being one of the highlights ranked among the top-3 performers. For fairness, it
is important to note that the first place team also employed a similar strategy to us of
pseudo-labeling finetuning over the query and gallery data along with Re-Ranking [245].

A joint paper? with the organizers and other competitors was published and presented
as part of the competitions section during the IJCB 2023.

4https://ijcb2023.ieee-biometrics.org/accepted-papers/
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Figure 3.10: Pipeline overview. We first perform a supervised training and then a self-supervised
training with query and gallery images (no ground-truth labels are considered) with the solution
proposed in this chapter. The evaluation ensembles all backbones to retrieve Top-1 matching.

3.6 Final Remarks

In this chapter, we presented the second solution for Unsupervised Person Re-Identification
designed in this Ph.D. research. We proposed a novel self-supervised learning pipeline for
scenarios with high intra-class semantic disparity and inter-class similarity. General meth-
ods do not account for this problem as they are usually devised for less complex datasets,
such as Imagenet.

Our pipeline starts from a common concept — clustering steps to propose pseudo-
labels for unlabeled samples and optimization steps to update backbones supervised by
the pseudo-labels —, but we incorporate novel techniques to address more critical tasks
effectively.

We propose the use of a neighborhood-based distance refinement followed by distance
averaging to amalgamate complementary knowledge learned by different backbones. We
showed that this is highly effective when compared to using distances obtained from each
backbone directly. We provide a better distance measurement between samples, even
without task-related initialization, due to the joint contribution of neighborhood-based
distances and distance matrices ensemble.

Our second contribution is an ensemble-based clustering algorithm to provide pseudo-
labels for optimization. The advantages are twofold: our solution creates dense but diverse
clusters and does not need clustering hyperparameter tuning.

To show the generalizing ability of our pipeline, we applied it to two highly different
Multimedia Forensics tasks: Person Re-Identification and Authorship Attribution from
short text messages. To the best of our knowledge, this is the first self-supervised learning
method that can be applied to different forensics modalities with only minor adjustments.

For Person RelD, our method yields state-of-the-art performance in terms of mAP and
Rank-1 in the most challenging datasets. For Authorship Attribution, we obtained com-
petitive results when compared to a prominent method that was trained in a supervised
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Table 3.10: Final teams ranking in AGReID2023 competition held during the IJCB 2023. The methods
without reference were proposed during the competition.

Method R1

LENS-AG-Net 97.73
CentroidNet 94.28
BENTO 92.95
MFE 92.80
Swin [116] 83.45
SMTL 81.29
SwinV2 [115] 80.25
MGN (R50) [181] 79.28
BoT (R50) [122] 78.42
HRNet-18 [183] 78.38
SBS (R50) [60] 74.94

manner. Therefore ensemble-based clustering has a strong potential to find satisfactory
clusters for model training on the fully-unsupervised scenario. Our self-supervised tech-
nique can considerably help the task of Textual Authorship Attribution in this forensic
scenario since it opens the possibility of using a massive amount of unlabeled data to
foster the results.

We conclude that learning from complex fully-unlabeled data in different modalities
is possible. Still, the model requires a robust distance measurement (brought by the
ensemble of distance matrices) and a clustering strategy that tackles the unknown feature
distribution from different datasets. When both strategies are put together, the method
finds robust clusters for optimization.

One important aspect of the method that still needs optimization is memory usage.
Currently, it requires quadratic memory O(N?), where N is the total number of samples
available for training, due to the pairwise distance matrices. Nonetheless, all prior art
also faces the same issue. Besides, the Re-Ranking technique [245] employed in this
solution and widely used in the Unsupervised Person Re-Identification community has a
time complexity of O(N?), which turns more and more expensive as we increase N.

Moreover, despite alleviating the requirements of selecting a specific clustering hyper-
parameter for each dataset, our method still works in a small subset of five possible
clustering hyper-parameter values, and it does not account for the change in the distri-
bution of the data points in the feature space. At the beginning of the training, the
discrimination power of the models in the target dataset is weak since they do not have
any target-related knowledge to start the training. Moreover, the Person RelD problem,
as mentioned in this chapter, faces high intra-class disparity and inter-class similarity.
Consequently, features of different identities are close, and features from the same iden-
tity are farther apart, mainly at the beginning of the training. As the training progresses,
their discrimination ability increases which means that the feature distribution changes
by setting samples of the same identity closer, and samples from different identities apart.
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In this context, it might be more interesting to consider a clustering hyper-parameter
setting that considers this dynamic behavior of the feature space, instead of keeping the
same set of clustering hyper-parameter values during the whole training.

Motivated by these challenges and considering the large-scale dataset scenarios that
likely will appear in real-world applications, we propose our third solution, which is pre-
sented in the next chapter. This solution addresses large-scale scenarios, it considers the
dynamics of the feature space to define the clustering hyper-parameters, and it is tested
in Person and Vehicle Re-Identification tasks, opening the path for general application in
Re-Identification and beyond.
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Chapter 4

Large-scale Fully-Unsupervised
Re-Identification

As mentioned in previous chapters, clustering-based self-supervised learning for fully un-
supervised re-identification has attracted attention in the past years due to the capabil-
ity of learning from unlabeled datasets by performing clustering and finetuning with
pseudo-labels. However, one obstacle to the deployment of fully unsupervised RelD
state-of-art methods is that most of them have reached top-tier performance in small
datasets. The largest well-known Person Re-Identification benchmarks Market1501 [242],
DukeMTMC-ReID [151]*, and MSMT17 [194] have 12,936, 16,522, and 32,621 training images,
respectively. For Vehicle Re-Identification, the Veri [112| dataset has 37,778 training
images. Since the training sets are rather small, researchers could employ effective but
costly techniques to achieve top-tier performance, such as Re-Ranking [245] and Co-
Training [47, 226, 225].

The Re-Ranking technique [245] has memory complexity of O(n?) (where n is the
training set size) and time complexity of O(n® + nk?®) (where k is the number of re-
ciprocal neighbors — see Section 4.2.3 for further details). Co-Training usually involves
cross-supervision where the confidence level of the samples from one model is used to
weigh the loss functions from the other models in the ensemble, and all loss functions are
optimized at once with many hyperparameters to control the contribution for each term.
Furthermore, these hyperparameter values can be hard to tune, mainly in large-scale fully
unsupervised datasets without a validation set.

Aiming to deploy scalable and affordable solutions for large-scale Unsupervised Per-
son/Vehicle Re-Identification, we design a novel pipeline to alleviate the discussed chal-
lenges. We propose a novel Re-Ranking method that leverages the previously proposed
k-Reciprocal Encoding [245], but considering just a local neighborhood to calculate the
Jaccard distance, without relying on their set expansion nor in local query expansion.
This allows us to reduce the time complexity and keep the memory complexity in O(kn)

IDukeMTMC-ReID has been discontinued, and it must not be used for evaluation and benchmark-
ing anymore. For this reason and following the recent literature, we do not use it for evaluation.
More details in https: //www.dukechronicle.com/article/2019/06/duke-university-facial- recognition-data-
set-study-surveillance-video-students-china-uyghur. When this fact became known to us, we had already
proposed the first two solutions (Chapters 2 and 3), and, for this reason, we were still providing results
considering this dataset.
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where (k < n).

Moreover, we also propose a sampling method based on the local neighborhood for
a randomly chosen point. We have different local neighborhoods in each epoch, which
effectively reduces the training set size without violating the neighborhood properties of
the selected point. This preserves the hard-positive and hard-negative samples for effective
training and, at the same time, reduces memory and time complexities.

Since co-training has shown impressive performance in dealing with noisy data, we also
propose a simple co-training strategy based on the co-training theory but not requiring
any human supervision or hyperparameter tuning. During training, we generate pseudo-
labels for unlabeled training data using different convolutional neural network backbones.
Each backbone generates its own feature space and then its own set of pseudo-labels. We
propose switching the pseudo-labels among the backbones; thus, one backbone supervises
the other through pseudo-label predictions.

Beyond the discussed large-scale challenges, a fundamental aspect has been overlooked:
the choice of the clustering hyperparameter. Most methods employ DBSCAN [41], which
is controlled by the density parameter €, and some works consider an optimal value for
cach dataset. For instance, AdaMG [144] sets ¢ = 0.5 for Market1501 and ¢ = 0.7
for MSMT17. When they fix the same value for both datasets, the performance drops.
The recent ISE [234] and RTMem [215] also set different hyperparameters per dataset
to achieve their best performance. However, since there is no validation set in a fully
unsupervised scenario, we argue it is unrealistic to select a specific value per dataset.

Our first attempt to reduce the dependency on the clustering hyperparameter was
presented in the previous chapter, where we combined the clustering results for five dif-
ferent hyperparameter values in a final ensembled clustering result. We have shown, in
Table 3.8, that our proposed clustering combination yields better performance than using
each individual clustering result for each hyperparameter value. However, we always keep
the same hyperparameters’ values throughout the whole training without considering the
dynamic nature of the feature space. Since the backbones evolve their knowledge, getting
more discriminative over time, it is expected that the features change their distribution
in the feature space, so each epoch might require a different hyperparameter value. More-
over, even with some scheduling scheme to assign a clustering hyperparameter for each
training epoch, this scheme should be invariant to the dataset, since we are targeting fully
unsupervised scenarios. We must avoid specific choices per dataset.

To alleviate the burden of selecting an optimal hyperparameter per dataset, we analyze
the clustering problem from the perspective of noisy-labeling-robust learning. During
training, feature vectors are extracted and clustered, and pseudo-labels are assigned to
them, which are then used for finetuning. In the first training epochs, the backbones
have little knowledge about the dataset, so it is expected that the features are not too
discriminative. Therefore, there is more noisy pseudo labeling in the first iterations,
which can require a tighter density parameter ¢ in DBSCAN. As the model gets more
robust during training, generating better features, it allows the loosening of the density
parameter to include more hard-positive samples in the clusters. However, if we keep it
loose until the end of the training, it might include too many non-matching samples, so
we should decrease € after the feature space is reasonably tuned to allow final feature
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learning. Finally, in order to define a stopping criterion, it might be interesting to hold
the parameter constant at the end. This motivated us to design a new scheduling scheme
for £, which is used for all datasets without the need for hyperparameter tuning. We show
that it reaches state-of-the-art performance in all evaluation scenarios, even outperforming
the ones that select a dataset-specific hyperparameter for optimal performance.

To verify the performance of the proposed methods, we evaluate them not just in the
well-known benchmarks but also in the large-scale VehicleID [108] and Veri-wild [119]
datasets, which are 3x and 7.35x larger, respectively, than the Veri dataset (the largest
among well-known benchmarks).

Similar to the solution presented in the previous chapter, this third solution does not
rely on camera labels or side information. It requires only that the target object
(e.g., people or vehicles) be already detected in the images, which is defined by their
bounding boxes.

The key contributions of our work are:

e A neighborhood-based sampling method to decrease the dataset size in each epoch.
By preserving the neighborhood, it is able to keep hard-positive and hard-negative
samples for model learning.

e A Re-Ranking method that considers just the top-k nearest neighbors and does not
need set expansion nor local query expansion as previous methods. In this way, we
effectively reduce the time and memory complexities.

e A density parameter scheduling to deal with noisy data during training and, at the
same time, bring diverse samples together. We keep the scheduling scheme for all
datasets, avoiding hyperparameter tuning.

e A co-training method where we switch the predicted labels among the involved
backbones. This allows us to consider co-training without human intervention and
parameter tuning.

e We consider the large-scale VehicleID and Veri-Wild datasets, infrequently used
in the prior art, to verify the model’s performance in truly large-scale scenarios.

This third solution has been already presented in the InterForensics 20232, the largest
Forensics conference in Latin America, and it is currently under review in the top-tier
IEEE Transactions on Image Processing (IEEE TIP).

4.1 Related Work

4.1.1 Re-Ranking-based approaches

Most Re-Ranking techniques are designed to address rank retrieval during the evaluation
phase. Given a query image and the set of gallery images, the initial ranking list is

Zhttps://interforensics.com /site/interforensics2023 /apresentacao
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obtained. Usually, methods take this initial list and rank the samples again based on
some strategy to enhance the retrieval.

In [46], the authors define the content and context sets. Given a probe image, they
calculate its ranking list with the gallery images. The set with the closest images to the
probe is called the content set, which is used with the original ranking list to create the
context set and improve the ranking performance.

In [2], the authors use a graph-based on-the-fly affinity learning considering the labeled
training, gallery, and probe sets to refine the ranking of the probe to the gallery set.
In [155], the authors employ the probe-to-neighbor and neighbor-to-neighbor distances to
refine the ranking list by considering an expanded neighborhood from each gallery sample
retrieved in the top matches to the probe.

The authors in [121] propose the Spectral Feature Transformation (SFT), where they
optimize the model to generate feature representation that optimizes the Min-Cut problem
considering the labeled samples at batch level. During the evaluation, given a query
sample, they perform SFT in the top-ranked gallery features to improve the retrieval
performance.

The most well-known Re-Ranking method is the k-Reciprocal Encoding [245] which
has been extensively used for unsupervised re-identification. It improves the feature dis-
tances during training and generates clusters with high diversity and true-positive rate.
The k-Reciprocal nearest neighbors are calculated for each training sample and respective
expanded set. Then Jaccard distances are computed between training points considering
each expanded set, and these distances are averaged in the Local Query Expansion step.
However, it is time- and memory-consuming |75, 121].

In this context, we propose Local Re-Ranking, which redesigns the neighborhood-based
distance calculation to decrease time complexity and keep state-of-the-art performance.

4.1.2 Noise-robust Feature Learning

Large-scale datasets are prone to annotation error due to their size or to the complexity in
identifying the positive samples even with human supervision [44]. This introduces noise
in the learning process, hindering generalization.

Several works have tackled model learning with noisy labels [44, 54, 53, 161]. They
usually estimate the Transition Matrix, which reflects the probability of the samples from
one class being misclassified as other classes present in the dataset. With the estimated
Transition Matrix, some works [164] propose to change the probability distribution on the
final softmax layer or to reweight the final loss function [143| to alleviate the influence
of noisy samples. Based on the memorization effect in which Deep Neural Networks first
learn from clean samples and then from noisy samples [54, 221, 188], some works have
proposed robust regularization through implicit or explicit regularization [49, 200] and co-
training methods [54, 188|. The fundamental idea of co-training in noisy-label scenarios is
to have two (or more) backbones and select the small-loss samples from one peer backbone
to train the other. Usually, the same batch of images is fed to both peers, and just the
top-r% small-loss samples are kept from each one. Then one peer optimizes its weights
with the small-loss samples from another. Rate r is decreased along the training to keep
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fewer samples to train the peers as they start learning from noisy samples due to the
memorization effect.

Based on the memorization effect, we propose to control the tightness of the generated
clusters by changing the density criteria in a novel manner. But instead of selecting small-
loss samples as done previously, we consider the presence of noisy labeling in the feature
space.

4.1.3 Co-training for Person Re-Identification

Despite the progress in noise-robust feature learning, most methods assume data is an-
notated. Instead, we consider unlabeled data and propose a clustering-based solution to
generate pseudo-labels for model fine-tuning. Since the backbones have not been pre-
trained in any other RelD-related dataset (just in ImageNet), the features are naturally
noisy, which results in imperfect clustering and noisy labels.

As already mentioned in chapter 2, prior Unsupervised Person RelD (UPRelD) art
also faces the same problem, and some works apply co-training to deal with noisy labeling.
MMT [47], MEB-Net [226], and PEG [225] share the same principle of multiple models
learning from each other’s hard and soft labels at the batch level to encourage knowledge
decoupling and robustness to noise. These methods employ complex co-training strategies
with a lot of terms and hyperparameters in their loss functions or in the selection of the
peer networks, which might be challenging to tune and deploy in large-scale unlabeled
scenarios.

We propose a simpler co-training strategy, by permuting the predicted labels among
the peers instead of performing soft/hard cross-supervision. We take advantage of co-
training, but with a hyperparameter-free strategy that does not require any manual or
grid-searching-based parameter selection.

4.1.4 Unsupervised Re-Identification

We have already reviewed some prior art in Chapter 3 for fully unsupervised RelD. Here
we recap some of them and include new methods that, by the time the second solution
was proposed, had not been proposed.

To tackle unsupervised re-identification, some methods rely on pre-training using a
source RelD dataset [18, 7, 47, 226 to acquire prior knowledge. Other methods, like
IICS [204], CAP [186], CASTOR [202], and PPSL [198], rely on other information, such
as camera labels. Since our method is fully unsupervised, i.e., it does not rely on camera
labels, we focus on methods operating in the same setup. We present in Appendix C a
comparison table to methods considering camera labels or any other side information.

ICE [17] has two versions: camera-aware and camera-agnostic. The first considers
camera proxies for each cluster. The second considers only a cluster proxy, which is a
feature average regardless of camera labels. They use a proxy-based loss, and hard- and
soft-instance losses. SpCL [48] uses a self-paced strategy that introduces some metrics to
measure cluster reliability: cluster independence and compactness. If both are higher than
predefined thresholds, the cluster is kept within the feature space. RLCC [230] refines
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clusters by a consensus among iterations. Pseudo-labels are created by considering the
ones generated in previous iterations, keeping the training stable. CACL [96] proposes
to suppress the dominant colors in images, providing a more robust feature description,
and a novel pseudo-label refinement method. CCons [30] uses contrastive learning, with
which they select the hardest cluster sample in the batch to update the cluster centroid.
ISE [234] synthesizes novel feature examples from real ones to refine sample distribution,
aiming to generate clusters with a higher true positive rate, as well as avoiding subdivision
of the samples from the same class in different clusters. PPLR [26] employs a part-based
model that creates feature spaces from different parts of the feature map. In each one,
they calculate the nearest neighbors of the samples and propose a cross-agreement metric
to refine the proposed pseudo-labels. GRACL [229] keeps two memory banks where one
holds the sample, from each cluster, most dissimilar from other clusters, and the other
holds the sample most dissimilar from the positive samples. This approach encourages
compactness and separability. AdaMG [144] performs clustering with different density
parameters to generate multiple pseudo-labels. Then a teacher-student model is trained
considering each set of pseudo-labels, and the cluster feature memory bank is updated
based on sample reliability, alleviating noisy labeling impact.

For Unsupervised Vehicle Re-Identification (UVReID), MLPL [62] adopts a multi-level
feature description by extracting a global feature and four local features for clustering and
feature learning. They also propose converging and promoting stages to learn from global
and local features separately and jointly, based on the consistency score of the global- and
local-based clustering results. RLCC [230] and PPLR [26] are also evaluated under the
UVRelD scenario. Our method differs from the others by proposing a regime to adapt
a noise-robust density parameter over time, alleviating the burden of choosing optimal
hyperparameters, and a co-training strategy to avoid error amplification by the backbones.

4.2 Proposed Method

In this section, we provide the rationale for each part of the proposed pipeline (Figure 4.1)
to tackle large-scale unlabeled Re-Identification under noisy labeling. We assume we have
m = 3 backbones, but it can be extended to any m > 2.

4.2.1 Self-supervised Initialization

Usually, previous methods adopt ResNet50 [58] pre-trained on ImageNet [31] for model
initialization. Despite ImageNet being a general dataset for classification, the pre-trained
backbone might not produce discriminant features for clustering in the UPRelID and
UVRelD scenarios. More recently, self-supervised pretext tasks have been widely explored
for initialization [13, 57, 22, 14, 222] and further application in downstream tasks. In
this context, we propose pre-training the model on the target unlabeled dataset before
applying our pipeline. Since we assume a fully unlabeled scenario, we leverage a self-
supervised pre-training based on Barlow Twins [222]|. We perform this initialization step
for all backbones.
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Figure 4.1: Overview of our solution. In Stage 1, we first extract features for the entire unlabeled
training set utilizing one randomly selected backbone. Then we randomly select a sample and obtain
the top-p% closest neighbors to define the local neighborhood. In Stage 2, features are extracted for the
selected samples, with all backbones. In Stage 3, we employ Local Re-Ranking to refine the distances
based on the local neighborhood of the samples, keeping a low memory and time footprint. In Stage 4,
we select the current density parameter € based on the proposed noise-robust density scheduling scheme.
Then clustering is performed in Stage 5. Once we have the pseudo-labels predicted by each backbone
in the pipeline, we permute the pseudo-labels set among the backbones to allow cross-supervision (Stage
6). The illustrated permutation (Yl/ =Ys, YQ/ =Y, YS/ =Y5) is an example, and other permutations are
possible as long as a backbone is not supervised by its own pseudo-labels. Finally, in Stage 7, the loss
function is optimized. Best viewed in color.

Given a batch of randomly selected images B € X, the algorithm generates two aug-
mentation views for each image through some common image transformations, resulting
in two new augmented batches B! and B2 In our case, some image transformations
might degrade Re-Identification performance, so we consider just random cropping, hor-
izontal flipping, and shifts in brightness, contrast, and saturation. After that, we feed
both batches to the backbone f and get the feature representations Z', 72 € RV*? re-
spectively, for each batch, where d is the feature dimension. The features are normalized
by mean subtraction and diving by the standard deviation per dimension. After that, we
train the model to achieve maximum decorrelation between the dimensions to encourage
the model to learn complementary features and, at the same time, be robust among differ-
ent augmentations. To do so, the algorithm performs the multiplication of batch features,
C = (ZYHY!'Z% € R4, to calculate the cross-correlation among the different dimensions
of the feature vectors. The next step is to maximize the agreement between features in
the same dimension (represented by values in the main diagonal of C') and minimize it
between features from different dimensions through the following loss function:

Lpr=>Y» (1=Ci)+Xpr Y > C}, (4.1)

7 i jF#AL

where the first term aims to increase the invariance representation between different aug-
mentation views of the same image, and the second decouples feature representation
considering the dimensions; and Ay weights the contribution of the second term in the
loss. For further details, we refer to the original article [222].
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4.2.2 Local Neighborhood Sampling (LNS)

It is a common requirement that the entire distance matrix, with all training feature
vectors, be loaded into memory. However, as the number of considered samples grows,
memory and time complexity increase which might lead to a costly deployment in a large-
scale scenario. For instance, in [69], the authors reported that a distance matrix of size
n x n, with n = 109, takes up 7450.58 GB of memory. The largest datasets used in prior
Unsupervised RelD works are MSMT17 for Person and Veri for Vehicle Re-Identification.
Since they have fewer than 40K training samples, previous methods might not have faced
significant memory and time issues. However, there are several practical scenarios in which
larger datasets are required [137]. In these cases, a more efficient solution is required.

To tackle this, given an unlabeled dataset X = {2z} with n images, we propose a
novel neighborhood-based approach for sampling a subset X; C X (Stage 1, Figure 4.1).
More specifically, we first select a backbone f,, (1 < m < 3) randomly from the available
backbones to perform feature extraction and obtain the feature vector set F},, (blue points
in Stage 1, Figure 4.1). Then we randomly select a feature vector v € F),, and calculate
its top-p% (0 < p < 100) nearest neighbors set in F,,,, which defines X, C X (blue points
in Stage 1, Figure 4.1). That is, X, comprises the elements of the whole dataset that are
closer to v. The computational cost is related to computing the distances from v to every
other vector in F), and sorting the distance vector. Since cosine distance is used, the
complexity is O(nd + nlgn), where d is the feature dimension. In a practical scenario, we
usually have d < n, and the distance computation is performed in parallel, so the actual
complexity is O(nlgn). Once the set X is defined, it is used by all backbones to perform
feature extraction and Local Re-Ranking in Stages 2 and 3, respectively (blue points in
Figure 4.1). The set X is redefined every three pipeline iterations by another randomly
selected backbone, which brings diversity to the training.

It is important to note that the nearest neighbors calculation is applied in the feature
space for each backbone independently, in different rounds. Therefore, the solution can
employ backbones that output features in varied dimensionality, allowing the use of any set
of backbones without any alignment. In Section 4.3.2, we show the impact of p employed
in the calculation of the top-p% nearest neighbors in terms of performance and speedup.

4.2.3 Local Re-Ranking

Prior art usually employs the k-Reciprocal Encoding algorithm [245] (Full Re-Ranking —
FRR) to account for the context (neighborhood) of each sample. This helps to compute a
more robust distance measure and allows hard positive samples to be closer in the feature
space. Despite its effectiveness, we argue it might not be efficient, in terms of memory
and space, when considering large-scale scenarios.

To improve efficiency when dealing with large-scale datasets while keeping the advan-
tages of neighborhood-based distance refinement, we propose a new Local Re-Ranking
(LRR) algorithm. At a given step, it only considers the local neighborhood of two sam-
ples. The idea is to consider samples in common in given neighborhoods, avoiding the full
comparison between all samples in the training set. Without loss of generality, consider
a feature vector set F,,, (1 < m < 3) created after feature extraction by one of the back-
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bones in Stage 2. We first calculate the k-Nearest Neighbors set N(x;, k) for each sample
z; € F,,, and the local distance matrix D;,, € R™** where the i-th line is the distance
between x; and each element in N(xz;, k) after applying the exponential decay function.
That is, Djo.(i,j) = e~ 4®%) where z; € N(z;,k) and d(.,.) is the Euclidean distance.
The lower (or greater) the distance, the closer to one (or zero) they are after the expo-
nential decay transformation. After that, we employ our neighborhood calculation based
on the Jaccard distance to refine the distance between each x; and its nearest neighbors.
For each sample x; € N(z;, k) we calculate the following sets:

I(zi, x5) = {plp € N(xi,k) Ap € N(x;,k)}, (4.2)

Bz, x5) = Nz, k)\I (2, 25). (4.3)

I(z;, ;) is the Inclusion set, which contains the common neighbor elements, and E(x;) is
the Exclusion set, which contains elements in N (z;, k) but not in N(z;, k). Following [245],
we assume the greater the cardinality of I(x;, z;), the more likely z; and z; are samples
from the same class. In light of this, we propose the following to refine the distance:

Smin = Z min(Dloc(iyp)u Dloc(j;p))a (44>
pGI(mi,:c]-)
Smaz = > maz(Diee(i,p), Diel, ), (4.5)
PGI(.’EZ',:L‘]‘)
(@i, xj) = sij = Z Dioe(t, p), (4.6)
pEE(xi,acj)
s(xj,zi) = 8j: = Z Dioc(3: p), (4.7)
pEE(a:j,asi)
Smin
DIoU(xiaxj) = (4-8)

Smaz + Sij + Sji
where s, is the sum of the minimum values when comparing the distances of x; and z;
to a common neighbor p (the same for s,,q, but considering maximum values), and s;
(or s;,) is the sum of the distances between sample x; (or z;) and its neighbors that are
not in the intersection I(z;, ;).

In extreme cases, when x; and z; have all their neighbors in common, we have
I(zi,x;) = N(xj, k) = N(zj,k), E(x;, ;) = E(zj,2;) = 0, s;; = 0 and s;; = 0,
and Equation 4.8 becomes 0 < Dyopy(%i, ;) = Smin/Smaz < 1. Conversely, when they
do not have any neighbors in common, we have I(z;,x;) = 0, E(z;,x;) = N(x;, k),
E(zj,x;) = N(xj, k), Smin = 0, Smaz = 0, s;; # 0 and s;; # 0, then Doy (x4, ;) = 0.
Therefore, we see that 0 < Dy, (x;,2;) < 1, and the closer it is to 1, the more likely it is
for x; and x; to be from the same class. Finally, to convert Dy, into a distance measure,
we define the refined distance matrix R as

1-— DIOU(xi7$j)7 if z; € N(xj, k)

(4.9)
1, otherwise,

R(xh xj) = {
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for each z; € N(z;, k). Note that R € R™* is used to perform clustering in further steps.

In terms of complexity, we compare LRR and FRR theoretically. In FRR, the authors
first compute the k-Nearest Neighbors set for each training sample in O(n?logn). Then,
they calculate the k-reciprocal nearest neighbor set in O(nk?), and the incremental set
in O(nk3/2). The full distance matrix is created based on the incremental set in O(n?),
and the final Jaccard distances are computed in O(n?/2). Finally, they perform the local
query expansion in O(n?k). Therefore, FRR’s complexity is O(n® +n?logn + n?k +n? +
nk® +nk*) = O(n?). For LRR, we also calculate the k-Nearest Neighbors in O(n?logn)
and distance matrix Dj,. in O(nk). The intersection set I(z;,z;) and the sets E(x;)
and E(x;) are computed in O(3k?). Equations 4.4 and 4.5 can be calculated in a single
pass in O(k). Equations 4.6 and 4.7 are computed in O(k), so the final complexity is
O(3k* + 3k) for a single pair z; and z;. Considering all possible pairs in Dj,. and the
whole training set, the complexity is O(3nk?® + 3nk?). Therefore, LRR’s total complexity
is O(n?logn + nk® + nk? + nk) = O(n*logn) with k& < n. Our model is more efficient
and applicable to large-scale datasets, which is also corroborated by the practical time
analysis (Section 2.4).

4.2.4 Noise-Robust Density Scheduling

Previous clustering-based methods often assume strong assumptions. For instance, when
using DBSCAN, it is common to use some side information to define ¢, such as holding it
fixed or calculating it using extra information. As the backbone’s weights are constantly
changing, creating different feature spaces, a fixed clustering hyperparameter is likely
suboptimal. In early iterations, the backbones are strongly biased by the camera view,
i.e., feature vectors from images from the same identity and the same camera tend to be
grouped together. Conversely, images from the same person from different cameras are
farther away than images from different identities but with the same camera. So, if €
is too high, clusters might include false-positive samples from the same camera. As the
training progresses, the backbones start to learn camera-invariant representations, and
more cross-view images from the same class are included in the clusters, but € might not
be large enough to include diverse examples from different cameras. Hence, methods that
consider a fixed e face a noise/diversity trade-off.

Other unsupervised methods set an optimal ¢ per dataset [234, 144, 215] because each
dataset has a different complexity level. For instance, previous research has reported a
lower ¢ for the Market1501 dataset, as it has less variability in terms of cameras and
identities, and a greater € for MSMT17 due to a higher camera diversity. However, this
selection is unrealistic since the main assumption is the full absence of labels or any
other side information. It is not trivial to find an optimal value when assuming no prior
knowledge about the dataset complexity [66, 157]. Aiming to propose a more general
approach, closer to a real deployment scenario, we introduce an ¢ scheduling scheme to
address the diversity /noise trade-off during training, without requiring per-dataset tuning.

We employ DBSCAN for clustering samples given their distances in matrix R (Equa-
tion 4.9). As distances are normalized between 0.0 and 1.0, the £ value must be selected
within this range. We propose a novel ¢ scheduling scheme, in which it starts from a
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low value and gradually increases, following a cosine scheduling, until half of the training
epochs, as shown in Figure 4.2. We call this first phase the warmup. As € is progres-
sively increased, we allow the clustering algorithm to consider more cross-view images
in a smoother manner. As previously reported by noise-robust feature learning meth-
ods [54, 221, 161], the method first learns from clean examples before starting to learn
from the noisy ones. Since we start with high true-positive rate clusters in early iterations
and smoothly increase the margin, the effect of noisy samples is alleviated even if the noise
ratio starts to increase.

If we keep ¢ in its highest value until the end of the training, the noisy samples
are overemphasized, and the backbone overfits [54, 221, 53, 161]. To tackle this, we
gradually decrease ¢ to avoid adding too many noisy samples to the clusters. We call
this the annealing phase. After the model reaches 75% of training epochs, ¢ is kept in
a plateau until the end of the training, in a steady state phase. As the backbone learns
to group the cross-view images in the first half of the training, the cross-view image
representations tend to be closer at this stage. Thus, the backbone can keep learning
from diverse samples as ¢ is gradually decreased, alleviating the impact of the noisy
samples. While our experiments use a fixed number of epochs, the scheduling would also
allow a temporal stopping criterion. We consider 40 training epochs for fair comparison
to prior works that usually employ around this number of epochs for training.
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Figure 4.2: Noise-Robust Density Scheduling during training for the € parameter. First, a warmup is
performed to address the diversity/noise trade-off. In the annealing phase, we decrease ¢ to reduce the
influence of noisy data while keeping the diversity within the clusters. In the last phase, the steady state,
we keep the same ¢ value until the end to encourage a stable behavior.

4.2.5 Co-training

After defining e for the current epoch and performing clustering for each of the M back-

bones, we have a sequence Y of M pseudo-label sets. It is defined as Y = (Y;,)*_,, where

m=1>

Y, is the set of pseudo-labels generated by clustering the features extracted by the m-th
backbone.

In previous Person Re-Identification works [47, 226, 225|, co-training is considered

but with a mechanism involving hard and soft supervision among the backbones, often
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leading to a complex loss function and optimization process. In our case, we propose a
parameter-free co-training strategy by permuting the generated pseudo-labels among the
backbones. Formally, we generate a random permutation Y of the sequence Y, giving
that Yr/n # Yo, i.e., a backbone should never be supervised by its own pseudo-label set.
After that, each backbone f,, is trained with a permuted pseudo-label set Y, (Stage 6,
Figure 4.1). As an illustrative example, let Y; = (—1,0, 1) be the pseudo-labels generated
by fi and Yy = (0,0, 1) by fo. If they are permuted, then Y; = (0,0,1) and Y, = (—1,0, 1)
are the sets carried on to the next stage for f; and f,, respectively. This encourages
complementary knowledge sharing among the backbones and alleviates error amplification
since a backbone is supervised by one of other M — 1 pseudo-labels sets. In this manner,
one model has the chance to learn from each other’s knowledge. This solution outperforms
all co-training techniques used in PRelD methods, in the most complex scenarios. The
permuted labeling is employed in the next stage to optimize the loss functions.

4.2.6 Optimization and self-ensembling

The loss function (Stage 7, Figure 4.1) comprises two terms: the proxy loss L., and
the hard loss Lj..q. For one backbone f,,, we first randomly select one sample per cluster
in Y, to be the proxy of the cluster. As Y, contains samples from c,, different clusters,
we have the set P,, = {p! ,...,p"} with ¢,, proxies. Given a batch B of norm-1 image
feature vectors, we calculate the proxy loss as follows:

L

exp(v-pt /T
prozy — Zl / ) (41())

| = 7 X gep,, cxp(v-q/T)

where p;! is the proxy of the cluster of feature vector v, v - ¢ is the dot product between
v and ¢, and 7 is a temperature hyperparameter to control the shape of the distribution.

Moreover, we consider the hard-positive and hard-negative samples in the batch [64]
to increase feature representation:

1 exP(V - Vpos/T)
Lhara = ——= > 1 : 4.11
hard = 1B 2" cip(v - Vpos/T) + €xp(V - Uneg/T) (411)

where v, is the furthest sample in v’s cluster and in B, and v,4 is the closest sample to
v in B from a different cluster.

Lprozy is @ more global loss because it considers all proxies in the calculation, while
Lparq enforces a more local view by considering just in-batch samples. The final loss
function is

Linat = Lprozy + ALnard, (4.12)

where A\ controls the contributions of Lj..q. Our solution’s sensibility to parameters 7
and A is shown in Section 4.4.5.

To avoid noise amplification during training, we also perform the self-ensembling of
cach model’s weights as usually done in previous methods [57, 14| and in our second
solution. For each backbone f,,, we keep a self-ensembled model with parameters ©¢ .
They are updated as ©f := fO!1 + (1 — )6 | where 6! are the parameters of backbone
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fm optimized by Equation 4.12, and £ is an inertia hyperparameter set to 0.999 as in [57].

4.2.7 Inference

After the training pipeline, the inference is made by ranking all gallery samples based on
the distance to a query sample. We extract feature vectors for all query and gallery sets
using the self-ensembled models. These sets are denoted by F;" and F",
with 1 < m < M. We calculate pairwise distances between samples of FJ" and F}",

respectively,

resulting in a distance matrix Dy, € RIFG" X 1Fg" ]
A final distance matrix ﬁqgg is obtained by averaging all matrices element-wise:

M

— 1 m

Dng - M E Dng' (4.]_3)
m=1

Each row of qug holds the distances from a query to the gallery samples. We sort these
distances to get the closest class to the query sample. As done in previous works, we
remove gallery images with the same class and camera of the query to assess performance
in a true cross-camera scenario.

4.3 Experiments and Results

In this section, we present the datasets, metrics, and results of our proposed pipeline
compared to the prior art in the fully unsupervised Person and Vehicle RelD problem.

4.3.1 Datasets and Implementation Details

We evaluate our method in two Person RelD datasets, Market1501 [242] and MSMT17 [194],
and three Vehicle RelD datasets, Veri [112], VehicleID [108], and Veri-Wild [119], which
are described in Appendix B. The last two are large-scale datasets with more than 100K
images in the training set and with three evaluation scenarios. Veri-wild [119] is the most
challenging one compressing 174 cameras while Market1501, MSMT17, and Veri compress
six, fifiteen and twenty cameras respectively. The number of cameras in VehicleID is not
informed.

For evaluation, we calculate the Cumulative Matching Curve (CMC), from which we
report Rank-1 (R1), Rank-5 (R5), Rank-10 (R10), and mean Average Precision (mAP).

We adopt ResNet50 [58], DenseNet121 [70], and OSNet [251] pre-trained in Ima-
geNet [31] as our backbones. We use Pytorch [142], Torchreid [250], and FAISS [84] as
supporting libraries. We first pre-train all backbones in each Person/Vehicle RelD dataset
using the self-supervised Barlow Twins strategy. We randomly select one backbone to ex-
tract features and obtain the top-p% (p can be 25%, 50%, 75% or 100%) samples in LNS,
every three epochs. We linearly warm up the learning rate from 3.5¢7° to 3.5¢™* in the
first 10 epochs and keep it fixed for the remaining training in a total of 40 epochs. We
use the Adam [88| optimizer with weight decay set to 5¢=*. The batches are created by
randomly sampling 16 pseudo-identities (clusters) and 12 images from each. We sample
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batches until all pseudo-identities are covered, then we repeat this process five times before
going to the next epoch. Before each epoch, we renew the class proxies. The parameter
7 is set to 0.04 and A to 0.5 in all experiments.

We trained the models in five TITAN RTX GPUs with 24GB of memory each. One
GPU is left just for Local Re-Ranking and clustering, and the others are used for training.

We perform the self-supervised initialization with Barlow Twins for three epochs.
The setup for each experiment may vary due to the availability of GPUs and memory
constraints, as the datasets have different sizes. For MSMT17, Veri776, and Veri-Wild,
we used five NVIDIA RTX A6000 with 49GB of RAM, and a batch size of 1024. For
Market and VehicleID, we keep the same setup, except that for Market, we train OSNet
in three Quadro RTX 8000 with a batch size of 768, and for VehicleID, we set the batch
size to 768 for OSNet and DenseNet121. The Adam [88| optimizer was employed with a
learning rate set to 3.5e — 5 for the Person RelD datasets and 3.5e¢ — 6 for Vehicle RelD
datasets. The weight decay was set to 1.5e — 6, and the Agr in Equation 4.1 was set to
5e — 3 for all datasets following the original implementation [222].

4.3.2 Comparison to State-of-The-Art methods

Table 4.1 shows our method compared to prior fully-unsupervised Person RelD models
that, like ours, do not consider camera labels. Results for other methods that use
side information are in Appendix C. We flag the methods that tune the clustering pa-
rameter per dataset because they cannot be used in a realistic fully unsupervised scenario
(column CPD).

AdaMG [144] achieves good results in Market and MSMT17 by setting ¢ = 0.5 and
e = 0.7, respectively. But for the same ¢ for both datasets, they face a huge performance
drop [144]. With our e scheduling scheme, we outperformed AdaMG by 1.2 and 0.1
percentage points (p.p.) in mAP and R1, respectively, in Market, and by 5.2 and 4.6 p.p.
in the challenging MSMT17. Regarding the other metrics, we rank in the third place in R5
being marginally below AdaMG by 0.2 p.p., and by 0.4 p.p. in R10. However, AdaMG
adopts an unrealistic scenario where the clustering hyperparameter is tuned per dataset.
Moreover, AdaMG adopts a more memory- and time-complex Re-Ranking strategy.

Due to the proposed Local Re-Ranking, our model has a lower Re-Ranking memory
footprint (O(kN) with k& < N) compared to the best methods HHCL, GRACL, and
AdaMG (O(N?)). Our method also outperforms all other methods [133, 244, 37, 167,
216, 139, 179, 134, 220, 170, 223, 171, 172, 238, 214, 158, 165, 99, 140, 231, 80, 232, 189
by a large margin. Therefore, with a less complex method and without requiring any
per-dataset hyperparameter tuning, we achieve state-of-the-art performance in Market in
mAP and R1, rank in the top-3 best performances in R5 and R10, and outperform prior
art in all metrics in MSMT17 with 100% and 75% of the data.

Since our method is based on three different architectures, we also compare it to prior
ensemble-based methods (Table 4.2). We obtain the second-best performance in Market.
However, the best method, PEG [225], utilizes 8 backbones, which include ResNet50
and DenseNet121, like ours. Our third backbone, OSNet, has a lower memory footprint
compared to the other backbones. They also employ a complex evolutionary-based strat-
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Table 4.1: Comparison with relevant fully-unsupervised Person RelD methods. The best result is
highlighted in blue, the second best in green, and the third in . RRMC means Re-Ranking
Memory Complexity and CPD (Cluster Parameter per Dataset) indicates if the method relies on specific
clustering parameters per dataset. (p%) means that p% of all data points are sampled in the Local
Neighborhood Sampling and used in the current epoch.

Market MSMT17

Method Reference RRMC | CPD | mAP| R1 R5 R10 | mAP| R1 R5 R10
ABMT [18§] WACV20 | O(N?) | No |65.1 | 82.6 | - - - - - -
SpCL [48] NewrIPS'20| O(N?) | No | 73.1 | 88.1 | 95.1 | 97.0 | 19.1 | 42.3 | 55.6 | 61.2
GCL+ [20] TPAMI22 | O(N?) | No | 69.3 | 89.0 | 94.6 | 96.0 | 22.0 | 47.9 | 61.3 | 67.1
GSam [56] TIP’22 O(N?) | No | 792|923 |96.6 | 97.8 | 24.6 | 56.2 | 67.3 | 71.5
RLCC [230] CVPR21 O(N?) | No | 77.7 | 90.8 | 96.3 | 97.5 | 27.9 | 56.5 | 68.4 | 73.1
HCLP [243] ICCV’21 - No | 781 |91.1 | 96.4 | 97.7 | 26.9 | 53.7 | 65.3 | 70.2
ICE [17] ICCV’21 O(N?) | No | 795 |92.0|97.0 | 98.1|29.8 | 59.0 | 71.7 | 77.0
CACL [96] TIP’22 - No | 809|927 | 974 | 985 | 23.0 | 489 | 61.2 | 66.4
HDCRL [24] TIP’22 - No | 81.7]1924 |97.4 | 98.1 | 246 | 50.2 | 61.4 | 65.7
PPLR [26] CVPR'22 | O(N?) | No | 815|928 | 97.1 | 98.1 | 31.4 | 61.1 | 73.4 | 77.8
RTMem [215] | TIP’23 - Yes | 83.0 | 92.8 | 97.4 | 98.3 | 32.8 | 57.1 | 70.0 | 74.9
CCons [30] ACCV’22 O(N?) | No |83.0 929|972 |980 |33.0|620 | 71.8 | 76.7
ISE [234] CVPR’22 - Yes | 84.7| 94.0| 97.8| 98.8 | 35.0 | 64.7 | 75.5 | 79.4
HHCL [68] NIDC21 | O(N?) | No | 842 98.5 | - - - -
GRACL [229] | TCSVT22 | O(N?) | No | 83.7 | 93.2 | 97.6 34.6 | 64.0 | 75.0 | 79.3
AdaMG [144] | TCSVT’23 | O(N?) | Yes 93.9(97.9| 98.9

Ours (25%) O(kN) | No |- - - - 32.0 | 60.5 | 71.0 | 75.2
Ours (50%) O(kN) | No |- - - - 24.3 | 50.4 | 60.6 | 65.4
Ours (75%) O(kN) | No | 829 |92.6 | 97.0 | 97.8 | 39.3| 67.3| 77.3 | 80.8
Ours (100%) O(kN) | No | 85.8| 94.0 98.5 | 43.2| 70.9| 80.8 | 84.2

egy and co-training where the backbones are selected at different moments with different
losses supervising each other. Our results were achieved with just three backbones and a
simpler and parameter-free co-training. In MSMT17, which is more complex than Market,
we outperform PEG by 1.4 and 1.8 p.p. in mAP and R1, respectively. Therefore, with
a simpler strategy, we can still take advantage of the complementary knowledge from
different backbones and outperform prior art in more complex scenarios.

In the Veri dataset (Table 4.3), we have the best R1 among all methods. Although
we obtained the second-best result considering mAP, MSCL has a much lower R1 score,
and they present a higher memory footprint for Re-Ranking. We are also a margin better
than BUC [104], MMCL [179], and SSML [219].

In the large-scale and challenging VehicleID (Table 4.4), we scored first in R1 in the
most difficult scenario (TS = 2400) along with CCons [30]. However, CCons leverages a
more memory-complex Re-Ranking. In the other metrics and scenarios, we scored first
or, at least, second place.

The Veri-Wild dataset has been less employed in the fully unsupervised scenario.
Usually, prior art utilizes camera labels, as shown in Appendix C. Considering the few
methods that, like ours, do not consider camera labels, we outperform them in the three
evaluation scenarios in all metrics (Table 4.5). More specifically, in the most challenging
setup (VW-Large), we outperform prior art by 4.5, 1.7, and 0.6 p.p., in mAP, R1, and
R5 respectively, with 75% of the data. Furthermore, we provide the second- and third-
best results with 100% and 50% of the data, respectively for all metrics and evaluation
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Table 4.2: Comparison with relevant ensemble-based Person RelD methods. “# BB” shows the number
of backbones used in training or evaluation, “Src” means if a labeled dataset has been used to initialize the
model before training: “M” for Market1501 and “D” for DukeMTMC-ReID. The best result is highlighted
in blue and the second best in green.

Market MSMT17
Method Reference| # BB | Src¢ | mAP | RI1 Src | mAP | Rl
ACT [207] AAAT20 2 D 60.6 | 80.5 - - -
MMT [47] ICLR’20 2 D 71.2 | 87.7 M 22.9 | 49.2
MEB [226] ECCV’20 3 D 76.0 | 89.9 - - -
UST [7] TIFS’21 3 D 78.4 | 92.9 M 33.2 | 62.3
ESSL [§] TIFS23 3 - 83.4 | 92.9 - 42.6 | 68.2
PEG [225] 1JCV’22 8 - 87.1 | 94.6 - 41.8 | 69.1
Ours 3 - 85.8 | 94.0 - 43.2 | 70.9
scenarios.

Table 4.3: Comparison with relevant fully-unsupervised Vehicle ReID methods in Veri776. The best
result is highlighted in blue, the second best in green, and the third in
Ranking Memory Complexity and CPD (Cluster Parameter per Dataset) indicates if the method relies
on specific clustering parameters per dataset. (p%) means that p% of all data points are sampled in LNS

at each epoch.

. RRMC means Re-

Veri
Method Reference RRMC | CPD | mAP | Rl R5
SpCL [48] NeurIPS'20 | O(N?) | No | 36.9 | 79.9 | 86.8
GRACL [229] | TCSVT™22 | O(N?) | No | 39.4 | 82.9 -
RLCC [230] CVPR21 O(N?) | No | 39.6 | 83.4 | 88.8
CCons [30] ACCV’22 O(N?) | No | 40.8 | 86.2 | 90.5
AdaMG [144] | TCSVT’23 | O(N?) | Yes | 41.0 | 86.2 | 90.6
RTMem [215] | TIP’23 - Yes | 41.8 | 81.6 | 87.0
MSCL [191] SVIP22 O(N?) | No | 45.9 | 81.2 | -
Ours (25%) O(kN) | No | 28.0 | 66.8 | 72.2
Ours (50%) O(kN) | No | 40.8 88.6
Ours (75%) O(kN) | No 86.2
Ours (100%) O(kN) | No | 41.3 | 86.3

4.3.3 Results and Speedup with LNS

We evaluate our proposed LNS, for which we can take different percentages from the

whole data at each iteration. In Table 4.1, we show our results for fully-unsupervised
Person RelD with different amounts of data.

With 75% of the data, we obtain the second-best result for MSMT17 against other meth-
ods that use the whole dataset. When we reduce it to 50% we face a natural performance
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Table 4.4: Comparison with relevant fully-unsupervised Vehicle ReID methods in VehicleID. The best
result is highlighted in blue, the second best in green, and the third in . RRMC means Re-
Ranking Memory Complexity and CPD (Cluster Parameter per Dataset) indicates if the method relies
on specific clustering parameters per dataset. Methods with * were reproduced from [62], which seems
to follow the same evaluation protocol as ours. (p%) means that p% of all data points are sampled in
the Local Neighborhood Sampling and used in the current epoch.

Test size — 800 Test size — 1600 | Test size — 2400
Method Reference RRMC | CPD| mAP| Rl R5 | mAP| RI1 R5 | mAP| RI1 R5
BUC [104]* AAAT'19 - No | 51.8 | 49.5 | 62.6 | 46.2 | 45.9 | 59.8 | 42.4 | 39.7 | 57.3
MAC [256] KBS’22 - No | 56.2 | 54.3 | 71.1 | 51.9 | 47.5 | 66.8 | 47.4 | 444 | 65.9
SpCL [48]* NeurIPS’20 O(N?) No | 60.2 | 55.4 | 67.5 | 58.7 | 53.1 | 67.1 | 54.3 64.8
CCons [30]* ACCV’22 O(N?) No | 62.6 | 57.7 60.3 | 54.0 | 67.9 | 57.1 | 50.1 | 65.9

Speedup

Ours (25%) 4.97x O(kN) No | 61.0 | 55.1 | 68.0 | 59.0 | 52.3 | 67.2 | 55.6 | 48.5 | 64.3
Ours (50%) 2.44 % O(kN) No | 61.0 | 55.0 | 68.1 52.8 | 67.1 | 56.0 64.5
Ours (75%) 1.31x O(kN) | No 68.6 | 59.7 49.6
Ours (100%) 1.00x O(kN) No | 61.7 | 56.0 | 68.6 | 59.7 | 53.4 | 67.7 | 56.9 | 50.1 | 65.2

Table 4.5: Comparison with relevant fully-unsupervised Vehicle ReID methods in Veri-Wild. The best
result is highlighted in blue, the second best in green, and the third in . RRMC means Re-
Ranking Memory Complexity and CPD (Cluster Parameter per Dataset) indicates if the method relies
on specific clustering parameters per dataset. Speedup values are measured in comparison to the version
with 100% of the data. (p%) means that p% of all data points are sampled in the Local Neighborhood
Sampling and used in the current epoch.

Veri-Wild (Small) | Veri-Wild (Medium) | Veri-Wild (Large)
Method Reference| RR-MC | CPD| mAP | RI1 R5 mAP | Rl R5 mAP | R1 R5
BUC [104] AAAT19 - No | 15.2 | 37.5 | 53.0 14.8 | 33.8 | 51.1 9.2 25.2 | 41.6
MMCL [179] CVPR’20 - No | 159 | 40.1 | 63.5 19.2 | 39.1 | 60.4 14.1 | 33.1 | 504
SSML [219] IROS21 - No | 23.7 | 496 | 71.0 204 | 439 | 64.9 15.8 | 34.7 | 554

Speedup

Ours (25%) 7.60x | O(kN) | No | 28.0 | 50.4 | 74.4 | 23.6 | 422 | 66.5 18.0 | 32.2 | 55.1
Ours (50%) 2.62x O(kN) | No
Ours (75%) 148x | O(kN) | No | 30.2 | 54.6 | 77.1 | 26.0 | 46.8 | 70.0 20.3 | 36.4 | 59.2
Ours (100%) 1.00x O(kN) No | 29.9 | 54.1 | 76.6 25.8 | 46.4 | 69.2 20.0 | 36.2 | 59.0

drop, but even with 25% of the data, we are still on par or even better than top-tier
methods. This shows our method can mine useful patterns even with a reduced amount
of data.

In Veri (Table 4.3), the performance drops when considering fewer data, but the
difference is small even with 50% of the data. We still achieve competitive performance
in comparison to previous methods using the whole dataset, and we use a more memory-
efficient Re-Ranking.

In VehicleID, performance is stable across all percentages (Table 4.4). In the most
challenging evaluation scenario (T'S = 2400), the drop in mAP and R1 is 1.3 and 1.6 p.p.,
respectively, when going from 100% to 25% of the data. This is significantly lower than
we observe in smaller datasets, such as Veri and MSMT17. We expect this to happen since
our method was tailored to large-scale scenarios.

In Veri-wWild (Table 4.5), our method outperforms the prior art in most metrics with
different amounts of data. With 50%, we perform better in all scenarios. With only 25%,
we still outperform prior art by 2.2 p.p. in mAP, in a harder scenario (Large), and in all
metrics in the other scenarios. With this reduced amount of data, the speedup is 7.6x
in comparison to training with the whole dataset. With such a high speedup, it can be
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a good trade-off for fast training and deployment. This shows our Local Neighborhood
Sampling can effectively reduce the dataset size while keeping superior results in large-
scale datasets.

4.3.4 Visualization of Results

Figures 4.3 and 4.4 depict the activated regions for the top-5 retrieved images from the
gallery given a query image in Veri and Market datasets, respectively. In the correct
matches, we can see that our model is able to learn fine-grained and point-of-view invariant
features. In all images for both Vehicle and Person Re-Identification, just a few regions
of the image are strongly activated over the identity (redder regions of the activation
maps), showing that our model focuses on specific discriminant parts and is invariant to
the background (no activation in any background region). In the failure matches, we see
that our model retrieves images with high visual similarity to the query. It would be hard

even for a human to tell they are from different identities.

Figure 4.3: Activation maps for the top-5 images retrieved from the gallery, given a query image (blue
border) in the Veri dataset. Images (a), (b) and (c) show successful cases, and images (d), (e) and (f)
show failure cases. The visualizations were generated considering the ResNet50 backbone.

4.4 Ablation Study

We evaluate the impact of each contribution. For more controlled experimentation, when
we change one factor of the method, the others remain unchanged.

4.4.1 Impact of Pre-training with Barlow Twins

The impact of employing the self-supervised pre-training with Barlow Twins (BT) is shown
in Table 4.6. We compare this initialization against simple pre-training with ImageNet.
Pre-training with BT has proved crucial. For Market, our method produces state-of-the-
art results when the self-supervised initialization is used, but yields degenerated clusters in
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(d)

Figure 4.4: Activation maps for the top-5 images retrieved from the gallery, given a query image (blue
border) in the Market dataset. Images (a) and (b) show successful cases, and images (c¢) and (d) show
failure cases. The visualizations were generated considering the ResNet50 backbone.

the first epochs when BT is not used. For Veri776, results are similar in both scenarios;
however, for MSMT17, mAP and R1 increase by 4.7 and 4.2, respectively, when BT is
considered.

Table 4.6: Comparison between our model with and without pre-training with Barlow Twins (BT). The
best results are highlighted in blue.

Market MSMT17 Veri776
BT | mAP| R1 | mAP| R1 | mAP| Rl
- - 38.5 | 66.7 | 41.3 | 86.8
v | 8.8 | 94.0 | 43.2 | 70.9 | 41.3 | 86.3

4.4.2 Comparison between Local and Full Re-Ranking

We compare our proposed LRR to FRR in terms of accuracy and time when applied in
our proposed pipeline. For fairness, we run both methods on the same machine.

Table 4.7 shows the comparison between LRR and FRR when our contributions are
considered: Noise-Robust Density Scheduling (NR-¢), and Co-Training (CT). Our LRR
is even more advantageous as the complexity of the dataset increases. When NR-¢ and
CT are not used (Line #1 vs. line #4 in Table 4.7), we assume we know the best ¢ per
dataset. In this case, for Market and MSMT17, our LRR is below FRR just by a small
margin and surpasses it in the complex Veri776 dataset. Considering all contributions
(line #3 vs. line #6), our LRR surpasses FRR in MSMT17 and Veri776. This shows
that we keep a faster and better re-ranking strategy with marginal looses in the Market
dataset (the smallest one), but better performance for larger datasets such as MSMT17 and
Veri776.

We also compare re-ranking execution time when considering LRR vs. FRR (Fig-
ure 4.5a). Corroborated by the theoretical time analysis presented in Section 4.2.3, our
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Table 4.7: Ablation study. We compare the proposed Local Re-Ranking (LRR) with the Full Re-
Ranking (FRR) as well as the influence of the noise-robust & scheduling (NR-¢) and Co-Training (CT).
The underlined results assume an oracle where the best € for DBSCAN is selected per dataset.

Market MSMT17 Veri776

NR-« CT | mAP| R1 | mAP| R1 | mAP| Rl

41 86.8 | 94.4 | 42.7 | 69.7 | 39.7 | 84.6

FRR| #2 v 872 | 944 | 344 | 649 | 36.5 | 81.1
#3 v v | 87.8 | 948 | 39.1 | 68.3 | 39.5 | 84.7

+#4 86.4 | 94.1 | 42.5 | 69.3 | 41.6 | 85.1

LRR 45 v 84.8 | 93.3 | 38.8 | 67.1 | 39.8 | 82.8
#6 v v | 8.8 | 94.0 | 43.2 | 709 | 41.3 | 86.3

LRR is faster in all datasets, which becomes more evident in the large-scale datasets
VehicleID and Veri-Wild, with a Python implementation (LRR-P). LRR-P is approxi-
mately 3.14x and 40x faster in VehicleID and Veri-Wild, respectively.

Targeting practical scenarios, we also developed a Cython implementation of LRR
(LRR-C), which boosts, even more, the time efficiency, as shown in Figure 4.5b. This
implementation is an improvement over our own Python implementation of LRR and is
25x and 257x faster than FRR in VehicleID and Veri-Wild, respectively. This analysis
shows LRR is more time-efficient, theoretically and in practice, which is more suitable for
large-scale scenarios.
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Figure 4.5: (a) Time comparison between Full Re-Ranking (FRR) and the proposed Local Re-Ranking
(LRR) in datasets with increasing complexities. LRR is implemented in Python (LRR-P) and Cython
(LRR-C). The time is an average of three runs over the three backbones. For better visualization, (b)
shows only LRR-P and LRR-C.

Finally, in Figure 4.6, we show the impact of the nearest neighbors parameter k£ in
Market and Veri, which display contrasting behaviors when £ is changed. For Market,
performance decreases for k£ > 20 but, in Veri, performance increases with k. Since our
method is fully unsupervised, we keep k = 20 for all other experiments and datasets.
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Figure 4.6: Sensibility of our model to parameter k in the proposed Local Re-Ranking, for datasets (a)
Market and (b) Veri.

4.4.3 Impact of the Noise-Robust Density Scheduling

We verify the impact of the proposed Noise-Robust Density Scheduling. Figure 4.7 shows
mAP and R1 in three datasets when using our scheme and with a fixed ¢ during training.
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Figure 4.7: Our method’s performance for three datasets, with the Noise-Robust Density Scheduling
(Scheduling) and when a fixed density parameter (Fixed ¢) is used during training, considering two
metrics: (a) mAP and (b) R1.

The performance of our proposed scheduling scheme is better than considering fixed &
values for the majority of the tested values. For MSMT17 and Veri, € = 0.65 or ¢ = (0.7 are
optimal values; however, directly setting those values is unrealistic in fully unsupervised
scenarios. Indeed, when we compare our pipeline with and without the Noise-Robust
Density Scheduling (line #1 vs. line #2, and line #4 vs. line #5 in Table 4.7), there
is a small performance drop since our method does not have oracle knowledge about the
optimal clustering parameter for each dataset. Even so, our proposed scheme does not
require any grid-searching or manual selection of hyperparameters.
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To compare our Noise-Robust Density Scheduling with other possible schemes, we
test four alternatives: only the warm-up stage (Figure 4.8a); only the annealing stage
(Figure 4.8b); and two adaptations of the cosine learning rate scheduling [118] but applied
to the density parameter (Figures 4.8c and 4.8d). The results are reported in Table 4.8.
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Figure 4.8: Four alternative e scheduling schemes: (a) only the warmup phase, (b) only the annealing
phase, (c) one cycle of the cosine scheduling, and (d) one and a half cycle of the cosine scheduling.

Despite the fourth alternative (One + half cosine cycle) being better in Market and
Veri, it is possible to verify that the cosine scheduling is sensible to the number of cycles.
Our proposed scheduling outperforms the one-cycle cosine scheduling in all metrics in
MSMT17 and Veri776, and it is marginally inferior in Market. The first two strategies
(Figures 4.8a and 4.8b) can be interpreted as part of the cosine scheduling with just a
single half cycle (only warmup or only annealing). Our strategy performs better in most
metrics in comparison to them. Therefore, to achieve the best performance with cosine
scheduling, tuning the number of cycles is necessary, which is hard to do in a large-scale
fully unsupervised scenario. Our scheduling, on the other hand, does not require the
number of cycles to be set. Based on the noise-robust learning theory, we designed our
scheduling to be directly employed in large-scale fully unsupervised setups.
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Table 4.8: Our method’s performance with different ¢ scheduling schemes. The best results are in blue.

Market MSMT17 Veri776

mAP| R1 | mAP| R1 | mAP| R1
Only warm up (Fig. 4.8a) 85.3 | 93.7 | 41.8 | 70.0 | 42.0 | 86.0
Only annealing (Fig. 4.8b) 86.5 | 94.2 | 359 | 66.1 | 39.1 | 83.7
One cosine cycle (Fig. 4.8c) 86.0 | 94.1 | 40.0 | 69.3 | 40.2 | 85.5
One -+ half cosine cycle (Fig. 4.8d) | 86.8 | 94.4 | 43.1 | 70.7 | 42.0 | 87.0
Ours 85.8 | 94.0 | 43.2 | 70.9 | 41.3 | 86.3

4.4.4 Impact of Co-Training

The impact of the proposed Co-Training strategy is shown in Table 4.7. When we re-
move the Co-Training strategy (lines #2 and #5) all backbones are supervised by their
own generated pseudo-labels, and there is no knowledge sharing among them. We see
a performance drop for all metrics in all datasets. The main reason is that a backbone
does not have a chance to correct itself based on the knowledge of others. In this case,
any noise is propagated and amplified during training without the possibility of recover-
ing. When co-training is in place, this problem is mitigated as discussed in Sections 4.1.3
and 4.2.5. Therefore, our proposed Co-Training yields performance gains for both Re-
Ranking strategies without any hyperparameter tuning or human intervention.

4.4.5 Impact of loss hyperparameters

In this section, we verify the impact of the hyperparameters 7 and A in the loss function
and its terms (Equations 4.10, 4.11, and 4.12).

The 7 parameter has the goal of changing the distribution of the scores, which allows
smoother gradients to aid the optimization. Its impact is verified in Figure 4.9 for the
Market and Veri776 datasets. We see that mAP and R1 reach their maximum when
7 = 0.04. After that, performance starts to decrease rapidly, for both datasets. This hap-
pens because the gradients increase together with 7, causing instability during training.
Therefore, we set 7 = 0.04 for all datasets.

The A value weights the contribution of the batch-hard triplet loss (Lpa.q) in the final
loss function. While L,, ., is a more global loss term since it considers all class proxies
for optimization, Ljq.q enforces a more local view since the hard triplets are mined at the
batch level. That is, A = 0.0 means that there is no local contribution, while a too-large
value might make Ljq,q dominant over L,, ., and hinder model optimization. The impact
of the A value is shown in Figure 4.10.

When A = 0.0 (i.e., n0 Lpsq), the performance is among the worst for both datasets,
which shows the importance of having a local view during optimization. Higher values
negatively impact the performance in the Market dataset, but it does not affect results in
Veri776. To achieve a trade-off we keep A = 0.5 for all datasets.
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4.5 Final Remarks

We presented a novel method for fully unsupervised Person and Vehicle Re-identification
in large-scale scenarios. Most prior works rely upon costly techniques or consider un-

realistic assumptions, making them infeasible for real-world deployment. For instance,
they might select dataset-specific hyperparameters, use re-ranking techniques that scale
cubically, or adopt ensemble methods that harden the training.

We provide contributions that enable the deployment of re-identification models in
large-scale real-world applications, without the necessity for label or dataset-specific
information: Local Neighborhood Sampling, Local Re-Ranking, Noise-Robust Density

Scheduling, and simple Co-Training.

LNS selects a neighborhood around a random point, reducing the dataset size at each
iteration. Local Re-Ranking reduces the memory and time complexities of re-ranking,
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by decreasing the amount of data necessary at each step, while still producing superior
results. Noise-robust density Scheduling provides parameter-free clustering, taking into
consideration the evolution of the backbones during training, which positively impacts
the ability of the clustering step to deal with noisy labeling. Finally, our Co-Training
technique enables inexpensive knowledge sharing among the backbones.

Our experiments consider datasets that are often not used by other works due to their
high complexity. We provide an extensive ablation study showing that our third solution
oftentimes provides the best results with fewer assumptions. It also offers a good trade-
off between execution time, memory consumption, and accuracy, especially in large-scale
datasets.

We apply our method to two different domains—person and vehicle re-identification—
which are distinct in terms of the target objects and prominent features. This indicates
that our contributions can be applied to other domains with similar characteristics, broad-
ening their application.

One aspect that was only superficially explored is the number of backbones and the
considered architectures. Our model relies on ResNet50 and DenseNet121 which could be
replaced by lighter models, bringing even more gains in terms of memory and execution
time. Another interesting exploration relates to knowledge-distilling techniques, aiming
to transfer the knowledge from the ensemble to a single backbone.

As a more advanced future study, to employ our solution in event understanding, lever-
aging its power also to produce contextual information. This can be done by correlating
different types of targets, like people, vehicles, and even places. As these targets are re-
identified within an event, we can understand how they are correlated to each other and
in time. This is important, for instance, in forensic investigations and in some biometrics
applications.

This third solution concludes our trilogy of contributions to the fully unsupervised
re-identification task. In the subsequent chapter, we explore a related line of research and
delve into the Person Re-Identification task within the expanding domain of long-range
recognition in the biometric field.
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Chapter 5

DalilD: Distortion-Adaptive Learned
Invariance for Identification

Humans can recognize faces or objects before and after considerable distortions. Con-
sider Dali’s renowned works Persistence of Memory and Lincoln in Dalivision shown in
part I of 5.1 where the reader will have no trouble recognizing multiple clocks or Lincoln,
despite the distorted presentation. Comparatively, neural networks are brittle when pre-
sented with even mildly distorted images. Within the field of biometrics, the tasks of Face
Recognition and Person Re-Identification can be subject to distortions at inference time,
such as atmospheric turbulence, motion blur, and artifacts from upsampling. Such dis-
tortions are common in security-sensitive settings such as energy infrastructure security,
surveillance systems, or counter-terrorism [74|. Thus, there is a significant social need for
models that are robust in these conditions.

I1.b)

,L Distortion- ﬁ;
\ Adaptive | Clean
|\ Model | | Model

ILa) Aggressive Distorion]
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Figure 5.1: To overcome realistic distortions encountered by biometric models operating in uncon-
strained scenarios, we propose II.a) a novel training procedure for distortion-robust models and I1.b)
magnitude-weighted feature-fusion from high- and low-quality training domains. To supplement evalu-
ations on realistic distortions, ITI) we collect and provide an IRB-approved academic-use dataset at a
range of 750+ meters.
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In this chapter, we presented a co-authored solution to deal with distortions mainly
caused by atmospheric turbulence. The work has practical novel updates to training
and inference to improve model performance in challenging test-time scenarios. Addi-
tionally, to aid evaluation in such scenarios, we collect and provide an IRB (Institutional
Review Board)-approved long-distance recognition dataset from over 750+ meters (Ap-
pendix D). To demonstrate the generality of the proposed method, we perform exper-
iments with benchmarks for Face Recognition and Person Re-Identification. However,
since Face Recognition is not the scope of this thesis, we present the method, discussions,
and experiments focusing just on Person Re-Identification. We refer to our article [152]
for the full analysis also considering Face Recognition.

The first contribution of this work is a novel distortion augmentation, which combines
spatial distortion and blur. While prior work [87] has used augmentations such as cropping
and down-sampling for Face Recognition and Person Re-Identification, our augmentation
contains a more complex transformation that is more closely matched to scenarios with
motion blur, atmospheric turbulence, and even upsampling artifacts. Thus, by introduc-
ing our distortion-based augmentation in training, test-time domain shift is decreased
in challenging scenarios. Our augmentation is performed by leveraging the atmospheric
turbulence image simulator proposed in [125|. It is important to note that the authors
of the simulator proposed an algorithm to generate simulated data under different levels
of atmospheric turbulence, however, they have not employed it as augmentation in any
model training. Conversely, we propose to use the simulated atmospheric turbulence data
for training employing our designed architecture.

To integrate the augmentation during training, we propose an adaptive weighting
mechanism that trains the model in an easy-to-hard manner. Each sample in every batch
is reweighted as a function of the training iteration number and the strength of the aug-
mentation. The augmentation’s strength (severity) on any given image is sampled from an
empirically tuned distribution. In early training iterations, images with higher distortion
are assigned lower weighting, and images with lower or no distortion are assigned greater
weighting. The weighting of distorted samples is increased throughout training such that
by the end of training, all samples have equal weighting. We show that the proposed
weighting strategy is highly effective in combination with our distortion augmentation.
We refer to a backbone trained with the distortion augmentation and the adaptive weight-
ing schedule as a distortion-adaptive model. For Person Re-Identification, we additionally
propose to use class centers and multiple class proxies that allow the model to better adapt
to training distortions. The corresponding proxy loss (see Section 5.2.2) also follows the
adaptive weighting schedule.

To further improve robustness at inference, two backbones are run in parallel: a
distortion-adaptive backbone and a standard (or ‘clean’) backbone. The clean one is
trained with images without atmospheric-turbulence simulated data. The final distance
between samples for open-set evaluations is calculated with a magnitude-weighted combi-
nation of feature distances from each backbone, respectively. Feature magnitude is used
since it reflects the response of the learned features at the final layer, which is known to be
correlated with sample quality [87, 129, 35]. Maybe surprisingly, this fusion approach is
more robust than more complicated learned fusions such as an attention layer or full trans-
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former encoder. Relative to a single distortion-adaptive backbone, the parallel backbone
fusion improves performance on all person re-identification benchmarks used for evalua-
tion. The final result is a method that is highly robust across evaluation scenarios for both
face recognition and Person Re-Identification. We refer to the entirety of our proposed
strategy as DalilD: Distortion-Adaptive Learned Invariance for Identification. It has the
Face Recognition version (DaliFace) and the Person Re-Identification version (DaliReID).
Since the focus of the research is PRelD, we present the method, experiments, and dis-
cussions based on DaliRelD. The effectiveness of DaliRelD is demonstrated empirically,
showing it achieves the best performances compared to prior works on two RelD bench-
marks already presented in previous chapters (Market1501 and MSMT17), and another
RelID benchmark (DeepChange [203]) that considers clothing changing in the identities,
i.e., the same person can wear different clothes when recorded by different cameras or in
different moments in time.

The last contribution of this work is the recapture of face recognition data over long
distances with high-end imaging equipment and displays. At 750+ meters, our proposed
datasets have the longest range of any academic-use dataset available. We will not go into
deeper details since most of the experiments with the recaptured data were conducted for
Face Recognition. We refer to our article [152] for further details about the experiments
and discussions, and to Appendix D for details about the capturing setup.

In summary, the contribution of this work includes:

e Distortion augmentation, which contains physically realistic spatial distortion and

blur.

e Novel distortion-adaptive training strategy in which we leverage the construction of
distortion augmentation for an easy-to-hard weighting scheme.

e Novel weighted combination strategy based on the feature magnitudes from both
backbones from the training phase, allowing us to exploit complementary knowl-
edge and reach the best performances compared to prior works across evaluation
scenarios.

e Identification datasets for long-distance (750-+ meters) face recognition, to provide
an assessment of the impact of significant atmospheric turbulence (detailed in our
published paper [152] and Appendix D).

The method was designed during the international internship of the Ph.D. candidate
at the University of Colorado Colorado Springs (UCCS), USA, under the supervision of
Prof. Dr. Terrance E. Boult and in partnership with his former master’s student (and
my friend) Wes Robbins. In this internship, the Ph.D. candidate was a member of the
Biometric Recognition and Identification at Altitude and Range (BRIAR) program!, a
United States Government-supported project devoted to counterterrorism, protection of
critical infrastructure, and transportation facilities, military force protection, and border
security. The article regarding the solution proposed in this chapter has been published
in IEEE Access [152], and is also part of an end-to-end identification method that has
been published in a joint paper with other BRIAR members in the IEEE IJCB 2023 [39].

thttps:/ /www.iarpa.gov /research-programs /briar
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5.1 Related Work

So far we have reviewed and compared our designed solutions to the Unsupervised Person
Re-Identification models. In this chapter, we briefly review the supervised Person Re-
Identification works most related to our evaluation scenario, works that have studied
image quality assessment for model designing, and the atmospheric turbulence effects in
recognition models.

Most of image quality-aware models have been proposed for Face Recognition. Cur-
riculumFace 73] changes the margin of the loss throughout training, and MagFace [129]
and AdaFace [87] loss functions use adaptive margins that are a function of feature mag-
nitude, which is a proxy for quality. Controllable Face Synthesis Model (CFSM) [107]
is a method that learns the style of a test environment and uses a latent style model to
modify training samples.

In [153], the effects of atmospheric turbulence on face recognition are studied, where
atmospheric distortions are found to significantly affect face recognition performance.
Other works have developed upstream image restoration for atmospheric turbulence [212,
211, 92|. Image restoration methods focus on image-based metrics such as PNSR, not
recognition. Besides, image restoration tends to insert artifacts [210, 130, 183| and are
challenging to train [50, 210, 25, 183| which can hinder the recognition performance.
Inspired by the studies of quality based on feature magnitude, we are the first to employ
it for model ensembling for both Face Recognition and Person Re-Identification tasks
(Section 5.2.3). Given that we do not know a prior the quality level of the images in
real-world applications, we use the magnitudes of the features output by each model to
weigh the distance calculation between images in query and gallery sets. As each model
is trained with images in different qualities they tend to yield different features for the
same input image.

For Person Re-Identification (PReID), CBDB-Net [168] proposes the Batch Drop-
Block to encourage the model to focus on complementary parts of the input image.
CDNet [94] improves architecture search for PReID. FIDI [206] proposes a novel loss
function to give different penalizations based on distances between images to encour-
age fine-grained feature learning. To deal with clothes-changing, CAL [51| regularizes
the model learning with respect to the clothes labels to learn clothes-invariant features.
There are many other prior art that leverage attention models [21, 236, 43, 213, 67,
15, 150, 237, 235, 72, 182, 252, 101, 38| neighborhood-based analysis [182], auxiliary
data [61, 77|, segmentation-based [85|, semantics-based [82, 160] and part-based learn-
ing [166, 241, 180, 181, 192, 254, 236, 213, 255, 254, 160]. To directly deal with different
resolutions and points of view, some work leverages the camera information associated
with each identity [257], super-resolution strategies [79, 25|, and attention and multi-level
mechanisms for cross-resolution feature alignment [227, 130]. There is insufficient space
to compare orthogonally to all combinations of the described methods above for PRelD.
We limit our scope comparison to the global feature representation learning models as
described in the taxonomy of the recent survey from Ye et al. [213] mostly focusing on
supervised Person Re-Identification, in which we just perform global pooling operations
over the last feature map of a CNN without further mechanisms. The core contributions
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of this solution are focused on learning distortion-invariant feature spaces and a method-
ology for dealing with distortion, which is demonstrated to apply to both face recognition
and person re-identification.

5.2 Approach

We propose DalilD for learning models robust to realistic test-time distortions such as
motion blur, upsampling artifacts, and atmospheric turbulence. We use strong levels of
distortion augmentation ( 5.2.1), which serves the purpose of supervising the model to
learn a feature space that is invariant to distortions that have been shown to considerably
degrade model performance [211, 153]. To allow the model to adapt to strong levels of
augmentation, we propose an adaptive-weighting distortion-aware strategy ( 5.2.2) where
we dynamically change the weights of different distortion levels throughout training. To
get the highest performance across the range of evaluation scenarios, we train two models
in parallel: one with clean images and the other with clean and distorted images ( 5.2.3).
Then, we perform a weighted combination of the feature spaces from both models based
on the magnitude of the feature vectors from each, which yields the highest performance.
DalilD methodology is designed for general identification scenarios such as face recognition
and person re-identification tasks. Figure 5.2 shows an overview of the approach.
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Figure 5.2: An overview of the DalilD pipeline for face recognition (DaliFace) and person re-
identification (DaliReID). Steps 1,2 and 3 are performed for training without distorted images, while
steps 3,4,5,6 are distortion-adaptive training. In Step 4, we create a batch of clean and distorted im-
ages, then a dynamically varied weight is assigned as a function of the distortion level (DL) (Step 5).
Then we extract the features and optimize the distortion loss (Laistortion). Step 7 is applied just for
DaliRelID training due to the high intra-class variation faced in the whole-body recognition task. On
evaluation, both clean and distortion-adaptive backbone decisions are weighted and combined based on
the magnitudes of the query and gallery feature vectors to obtain the final decision (distance) for retrieval.
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5.2.1 Distortion Augmentations

Image augmentations allow better generalization by adding variance to training data. A
vast space of augmentations can be performed on an image; many have been success-
ful for computer vision tasks. However, there is a bias-variance trade-off. In this work,
we leverage a new augmentation for PRelD training (and Face Recognition) based on
atmospheric turbulence to generate the different distortion levels for the images. Atmo-
spheric turbulence contains random temporally and spatially variable distortions, which
are absent in Gaussian blur or down-sampling augmentations. Atmospheric turbulence
simulation code [125] is used to implement the augmentation, which generates physically
realistic distortions. It is important to note that the author of [125] proposed an algorithm
to generate simulated data under different levels of atmospheric turbulence, however, they
have not employed it in any training or evaluation. Conversely, we propose to use the
simulated atmospheric turbulence data for training in order to achieve distortion-invariant
feature representation, which has not been done before by any prior work. Our approach
of simulated distortions is of practical interest because it is not tractable to collect real
labeled data through atmospherics at a scale suitable for training deep learning models.
Experimentally, we find training with our distortion augmentation yields the best perfor-
mances compared to prior works on long-distance and low-resolution test sets. Distortion
levels used herein are based on different atmospheric turbulence conditions to train our
models.

5.2.2 Adaptive Weighting

Different levels of distortion compress different degrees of difficulty during training. Ran-
domly sampling images from different distortion levels can result in sub-optimal perfor-
mance since higher distortion levels (i.e., lower-quality samples) dominate the gradient
during training. In other words, the mere use of atmospheric turbulence data as an
augmentation might deteriorate the performance in standard (high-quality) datasets and
cross-quality datasets (Table 5.3). Therefore a strategy needs to be designed to effectively
employ the distorted data based on simulated atmospheric turbulence. In this context, we
propose an easy-to-hard training regime in which we start by assigning higher weights for
lower levels of distortion and lower weights for higher levels of distortion. Different than
prior works, we directly leverage the construction of the augmentation to assign weights.
Weighting the loss as a function of the distortion level allows the model to focus on easier
examples (by giving them higher weights). By lowering the weighting of high-distortion
samples, the model becomes distortion-aware without allowing them to dominate the loss
in early epochs. As the training progresses, the weights for all distortion levels increase
according to a cosine schedule. Step 5 of Figure 5.2 illustrates the weighting for each
distortion level and is formally described below.

The distortion-aware training considers a batch of images B = {X?}*, that is com-
posed by a mix of clean images X7, and distorted images X, with distortion level randomly
sampled from five possible values (di € {1,2,3,4,5}), where N, is the batch size. A higher
dl value indicates a stronger distortion. We keep the same number of clean and distorted
images in the batch. Then features f{, with ¢ € {cl,dl} are extracted from the backbone
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(044). During the loss calculation, the respective weight w! is assigned to each image
according to the cosine weighting schedule. These steps are shown in Steps 4, 5, and
6 in Figure 5.2. For the same distortion level, the weights increase along the training
following a cosine schedule (Step 5). Then, with the centers obtained for each class (Step
3), and if we are performing PRelD training we also take the classes’ proxies in Step 7,
the distortion loss is calculated as follows:

ecos((wfq+m1)/7)+m2
Ece(‘f’ 9 P> - _log[ecos((wfq+m1)/7)+m2 + Z e(coswfp)/‘r] (51)
pEPp#q
1 A _
£distortion = W Z Z wéﬁce(ftlap-‘rv P) (52)

i=1 te{cl,dl}

where p, is the positive class-center (i.e., proxy) of the feature f/, P is the set of all
class-centers, wy, is the angle between vectors f and ¢ (same definition for wy,), and W =

ii'l D ote (cl.dl} w!. For hyperparameters, 7 is the temperature to regulate the probability
distribution, m; is the angular margin, and ms is the additive margin. For PRelD,

mqi,mo = 0 and 7 = 0.05.

The class proxies

In this subsection, we present how we calculate the class proxies. To better adapt to
distortions, we extend the use of multiples proxies[186] to the supervised case. This is
necessary due to limited training samples and high intra-class variance, which occurs
since the whole-body images are captured from different cameras resulting in views of
the same person in different poses, illumination conditions, backgrounds, occlusions, and
resolutions leading to high intra-class variance and low inter-class distances [180, 213| as
already explained in this thesis. Step 7 of Figure 5.2 shows the multiple proxies with the
circles with dark outlines.

Without loss of generality, consider a class C' = {cy,...,cn.} in the dataset with N¢
examples. To calculate the proxies set, we start by randomly selecting a sample ¢; € C
(1 <4 < Ng) to be the first proxy, and we calculate the distance between ¢; and each
element in C' and store these distances in a cumulative vector Vi € RN¢. We call the first
proxy as pg. = ¢; . To calculate the second proxy, we consider the element with the furthest
distance to the first proxy (the sample with maximum distance value in V). Formally,

P2 = argmax V. (5.3)

After that, we calculate the distance of p? to all samples in C' to obtain the distance
vector D(p%) € RMe. Then we update V¢ considering its current values (the distances of
the class samples to the first proxy) and D(pZ) (the distance of the class samples to the
second proxy) following the formulation:

Ve = min(Ve, D(pZ)), (5.4)

where min(.,.) is the element-wise minimum operation between two vectors. More specif-
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ically, the j™ position of Vi will hold the minimum distance of the sample ¢; € C' con-
sidering the first and second proxies. So the j position holds the distance of ¢; to the
closest proxy, and the maximum value in Vi is from the sample most apart from both
proxies. We consider this sample as the next proxy pg. To obtain p}, we apply again
Eq. 5.3 but considering the updated Vi calculated from Eq. 5.4, and repeat the whole
process for the new proxy. We write both equations in their general formats:

Pl = argmax V4. (5.5)

Vi = min(VE, D(ph)). (5.6)

As explained before, we initialize V/} := D(p}) where p{ has been randomly selected
from C to be the first proxy. We keep alternating between Equations 5.5 and 5.6 until
t =5 to get five proxies per class. During training, for a sample X; € B (where B is the
batch), we call P; by the proxies set of its class and N; by the set of the top-50 closest
negative proxies and use them to calculate £, in Eq. 5.7.

Ny

Eprogcy - % Z Z wiw%l Z Lce(ftia% Pz ) Nz) (57>

i=1 te{cl,dl} q€P;

After that, £,,,qy loss is added in Eq. 5.2, obtaining the final loss function in Eq 5.8
for PRelD:

Ny
1 4 .
Edistorti(m - W § E wgﬁce(f;7p+v P) + )\Epro:mﬁ (58)
1=1 te{cl,dl}

where A\ controls the contribution of £,,,4, to the final loss. Lygjstortion is applied for both
distortion-adaptive and clean backbones training. To train the clean backbone, we have
w; = 1 for all samples because no distortion augmentations are applied. The class proxy
calculation is used just for PRelD training.

To improve the performance, we adopt the Mean-Teacher [173] to self-ensemble the
weights of the backbones along the training. Considering both Clean and Domain-
Adaptive backbones with parameters 6, and 64, (which are initialized with weights pre-
trained on Imagenet), respectively, we keep another backbone for each one with parame-
ters ©, and ©4, with the same architecture to self-ensemble their weights along training
through the following formula:

O = O, + (1 - B0, (5.9)

where s € {cl,da}, f is a hyper-parameter to control the inertia of the weights, and ¢ is
the instant of time. We set § = 0.999 for all models following prior PRelD works [47, 226].
We use the backbones O, and ©4 for the final evaluation.
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5.2.3 Cross-Domain Fusion

After training, we have the self-ensembled weights for the distortion-adaptive and clean
backbones, ©4, and O, respectively. Since the first is trained with clean and distorted
images, it is more invariant to distortions than the second model trained just with clean
images. To leverage and combine knowledge from both backbones, we apply magnitude-
weighted fusion between the backbones as shown in Figure 5.2. This idea is inspired by
recent studies in magnitude-based training [87] and the effects of atmospheric turbulence
in Face Recognition [153|, where usually features with higher magnitudes mean an input
image in higher resolution.

The main rationale is that since we do not know the distortion level of images in
the testing scenario, we can use the magnitude of the feature vectors generated by each
backbone as a proxy for it. In other words, the stronger the distortion we expect a lower
magnitude for the output feature vector from the clean model (since it has not been
trained with distorted data), and the higher will be the magnitude of the output feature
vector from the distortion-adaptive backbone. Conversely, the higher the resolution of
the input image, we expect a higher magnitude for the feature vector output by the
clean model, and a lower one for the feature vector output by the distortion-adaptive
backbone. Then we use the magnitude of the feature vectors to weigh the decision from
each backbone. The advantage of this approach is evident in 5.3. At inference, for a query
and gallery image pair, we extract both feature vectors g, = 04(X?) and gy = O4(X9)
from the query and gallery images pair considering the clean model with parameters ©,
and the feature vectors g, = O4q(X?) and g4y = Oge(X?) from the distortion-adaptive
backbone. We calculate the distance between the query and gallery considering each
backbone to obtain distances D(qu, g94) and D(qga, gaa), Which are weighted combined
considering the maximum feature magnitude for each pair before L2 normalization as
shown in the equation on the lower half of Figure 5.2. We use that distance to rank all
gallery images given a query and calculate the metrics.

5.3 Experiments and Results

In our paper [152|, our experiments are performed on face recognition and person re-
identification tasks with an emphasis on low-image-quality scenarios. Common training
and evaluation procedures are followed for each task, respectively. Since Face Recognition
is out of the scope of this research, we focus our analysis just on Person Re-Identification.

5.3.1 Datasets

For Person Re-Identification, we used two same-clothes datasets: Market1501 and MSMT17,
and one clothes-changing dataset: DeepChange (described in Appendix B). For evaluation,
following prior work, experiments are run with predefined train-test splits, and mAP and
CMC metrics are reported.
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5.3.2 Implementation details

For fair comparison to the prior person re-identification work, we adopt the ResNet50 [58|
as the model backbone. Following previous works [124, 130], we change the stride of
the last residual block to 1 to increase the feature map size. Then we insert a global
average pooling and global max pooling layer after the last feature map and sum their
outputs element-wise [130]. After that, we add batch normalization and perform the L2-
normalization to project them to the unit hyper-sphere. To train the clean and distortion
models, we employ the Adam [88] optimizer with weight decay of 5e~* and initial learning
rate of 3.5¢7%. We train both models for 250 epochs and divide the learning rate by
10 every 100 epochs. As explained, the number of proxies per class is fixed in 5 (i.e.,
V| P;| = 5) for all datasets. To create the batch to optimize the clean model, we adopt a
similar approach to the PK batch strategy [64] in which we randomly choose P identities
and, for each identity, K clean images (without distortion). To train the distortion model,
we sample K clean images and K distorted images randomly sampled from five different
levels of distortion strength. We also apply Random Crop, Random Horizontal Flipping,
Random Erasing, and random changes in brightness, contrast, and saturation as data
augmentation.

5.3.3 Comparison to the state of the art

DaliRelD is compared with state-of-the-art methods in PRelD for both the same-clothes
scenario and the clothes-changing scenario. For the same-clothes scenario, results are
reported in Table 5.1. Our method is orthogonal to the backbone, and we show results
with two backbones used in prior works: ResNet50 and OSNet [251]. DALIReID achieves
the highest performance on the Market1501 dataset, outperforming FIDI [206] by 0.8 in
mAP, and the second position (along with FIDI) with R1 = 94.5. In MSMT17, the most
challenging PRelD benchmark, we reach the best performance by outperforming CDNet
by a margin of 5.9 and 3.2 in mAP and R1, respectively, with ResNet50. With OSNet,
we achieve the best performance in both datasets for both metrics. Our method is able to
rank ground-truth gallery images closer to the query and outperforms prior art in mAP
in all setups.

To show our model generalization ability, we trained DaliReID for DeepChange, in
which subjects’ clothes differ among views, and the results are shown in Table 5.2. We
outperformed the recent CAL [51] by 2.9 and 6.8 in mAP and R1, respectively. Besides
the clothes changing, DeepChange has more distortions and low-quality data than Market
and MSMT17. We obtain the highest gain on it for R1 and the second highest gain for
mAP (after MSMT17), showing our method can better improve performance in low-quality
datasets. For fair comparison, we do not employ any kind of part-based, alignment,
segmentation mask, or pose variation strategies, in order to verify the performance im-
provement brought just by our DaliReID model. For this reason, prior methods that
employ one of those strategies are not mentioned in the table.
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Market MSMT17

Method Venue mAP Rl | mAP Rl
OSNet-based models
OSNet [251] ICCV’19 849 948 | 529 787

DaliReID (OSNet) | This work | 87.2 95.0 | 59.5 82.6
ResNet50-based models

GCS [16] CVPR'18 | 81.6 935 | - -
SFT [121] ICCV'19 | 827 934 | 476 736
CBN [257] ECCV'20 | 83.6 943 | - -
STNRelID [123] TMM20 | 849 938 | - -
CBDB-Net [168] TCSVT'21 | 85.0 944 | - -
BAT-Net [43] ICCV'19 | 855 94.1 | 504 74.1
CDNet(*) [94] CVPR21 | 86.0 95.1 | 54.7 78.9
FIDI [206] TMM21 | 86.8 94.5 | - -

DaliReID (R50) This work | 87.6 94.5 | 60.6 82.1

Table 5.1: Comparison to the state-of-the-art models in same-clothes Person Re-Identification setup.
Blue and Green indicate the best and second-best values. *CD-Net is not based on ResNet50, but
the authors of that paper mostly compared to ResNet50-based models, so we leave it here for a fair
comparison.

DeepChange
Method Venue mAP R1
ReIDCaps |71] TCSVT20 | 11.3 39.5
ViT [203] ArXiv20 15.0 49.8
ViT (with Grayscale) [203] | ArXiv20 | 152  48.0
CAL [51] CVPR22 | 19.0 54.0
DaliReID (R50) This work | 21.9  60.8

Table 5.2: Comparison to the state-of-the-art models in clothes-changing person re-identification setup.
Blue and Green indicate the best second-best values. All methods, except ViT, consider ResNet50
(R50) as the backbone.

5.4 Ablation Study

We perform a set of ablation studies over the PRelD datasets to measure the impact
of different components. In Table 5.3, we ablate the different components of DaliRelD.
When we use distorted images as augmentations without our adaptive-weighting strategy
(second line), we see a performance drop in 2.9 p.p. and 2.8 p.p. for mAP and R1 respec-
tively in MSMT17 compared to our proposed Distortion-adaptive strategy (third line). For
DeepChange we also see a suitable performance drop of 0.5 p.p. and 0.6 in mAP and R1
respectively. For Market, R1 is slightly better, but the mAP is below 1.3 p.p. The main
reason is that just using the distortion augmentation as a regular augmentation without
any further treatment, the varied distortions images have the same importance for train-
ing, then the model does not effectively learn from distorted data. It is interesting to see
that, for MSMT17 and DeepChange, the results are also worse than the baseline (first line)
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Market MSMT17  DeepChange
ReID Ablation mAP R1 mAP Rl mAP RI1
Clean (O) 86.6 942 576 80.3 20.5 59.3
Distortion Aug 86.3 94.7 554 785 20.2 58.6
Distortion-Adaptive (O4,) 86.6 943 583 81.3 20.7 59.2
Distortion-Adaptive w/o Lprozy | 824 929 479 729 192 55.6
DaliRelID 87.6 945 60.6 82.1 21.9 60.8

Table 5.3: Ablation study for PReID. The first line shows the performance of the clean model (trained
without simulated distorted data). The second and third lines are for backbones trained with distortion
as augmentation and our adaptive weighting strategy, respectively. The fourth line ablates the proxy
loss, and the final line is the proposed DaliReID model.

supporting that just employing distortion as augmentations in fact might hinder model
performance. This shows the potential of the distortion-adaptive strategy in effectively
learning useful patterns from distorted data and improving the model’s robustness to at-
mospheric turbulence and distortions, which increases the metrics in standard evaluation
scenarios.

When we check the impact of the proxy loss we see a performance dropping when
we take it out (A = 0 in Eq. 5.8), as shown in the fourth line of Table 5.3. Indeed the
results show that when we remove our proxy loss we obtain the worst results in all metrics
and datasets, showing its importance for effective learning in PReID. Our final DaliRelD
model (last line) combines both clean and distortion-adaptive backbones (first and fourth
lines), which leads to the best performance for MSMT17 (an increase of 5.2 and 3.6 p.p.
for mAP and R1, respectively, compared to just employing the Distortion Augmentation
in the second line) and DeepChange (an increase of 1.7 and 2.2 p.p. for mAP and R1,
respectively, compared to the second line). For Market we see a slight performance drop
in R1, but an increase of 1.3 p.p. in mAP. It is important to recall that MSMT17 and
DeepChange are more challenging than Market, since they have more cameras in different
moments of the day and of the year. In the case of DeepChange the identities still have
different clothing. This shows that DaliRelD can effectively combine knowledge from both
backbones and improve the model’s performance with distorted data.

Impact of the distortion augmentation

A key contribution of this solution is the use of distortion augmentation inspired by atmo-
spheric turbulence. So one natural question would be "Why not use Gaussian Blur and
Down-sampling operations to create distortions?". In this ablation study, we show a com-
parison of our model trained with the proposed atmospheric turbulence simulated data
to those well-known image processing operations. Gaussian blur and down-sampling are
applied at equally challenging levels as atmospheric turbulence distortion augmentation.
In 5.4, it can be seen that distortion augmentation performs better than data augmenta-
tion Gaussian blur and down-sampling on all PReID benchmarks (first and second lines).
But DaliRelD still retains the best performances.
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Market MSMT17  DeepChange

mAP R1 mAP Rl mAP RI1

DS+GB 780 91.2 447 695 16.2 51.5
Distortion Aug (ours) | 86.3 94.7 554 785 20.2 58.6
DaliRelID (ours) 87.6 945 60.6 82.1 21.9 60.8

Table 5.4: A comparison between training augmentations. The distortion augmentation performs better
than using Gaussian blur and down-sampling. “DS” holds for Down-Sampling, and “GB” for Gaussian
Blur.

Parameter Analysis

There are two hyper-parameters on the final loss function (Eq. 5.8): 7 value to control
the sharpening of the probability distribution in its both terms, and A value to weight the
contribution of £z, term. The impact of these parameters on the performance of the
Distortion-Adaptive Backbone is shown in Figure 5.3.
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Figure 5.3: Analysis of the impact of the parameters 7 and A on the final loss function considering the
training of the Distortion-Adaptive Backbone for PRelD.

For X in Figure 5.3a, we see stable performance for Market along different values after
A = 0.1, while for MSMT17 we see a peak at A = 0.4, then a suitable decrease after this
value. For both datasets, we see a performance drop for A = 0.0 (no Ly0zy), showing
again the proxy-based loss term has a positive impact on training. In contrast, an equal
contribution of both terms A = 1.0 hurts the performance mainly for MSMT17. Since
MSMT17 is more challenging, we select A = 0.4 as the operational value. Further analysis
of the impact of L,y is presented in Table 5.3.

The impact of 7 is shown on Figure 5.3b. The performance drops when 7 is lower
than 0.04 for MSMT17 but a stable behavior for Market, while values greater than 0.06
deteriorate the performance for both datasets. To achieve a good trade-off considering
the dataset complexities, we choose 7 = 0.05.

Impact of pooling operations

As shown in Fig. 5.2, the inference is performed by a weighted combination of the decisions
from Clean and Distortion-Adaptive backbones. The weights Wi a0, and Wy;sortion are the
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maximum magnitudes of the feature vectors for each query and gallery image pair for each
backbone. Among the different pooling strategies to get the final feature representation,
we choose Global Average Pooling (GAP), Global Max Pooling (GMP), and a combination
of both (GAP+GMP) to check the impact on final performance. The performances are
reported in Table 5.5. Note that in this case, the pooling operations are just to calculate
the magnitudes, since the final representation is always obtained by the element-wise
sum of the output of the GAP and GMP layers for PRelD.

Market MSMT17 DeepChange
Setup mAP Rl | mAP Rl | mAP RI1
GMP 876 944 | 60.5 82.1 | 219 60.7
GMP+GAP 87.6 944 | 60.6 82.1 | 21.8 60.8
DaliReID (GAP) | 87.6 94.5 | 60.6 82.1 | 21.9 60.8

Table 5.5: Ablation of the pooling operation to calculate the magnitudes for fusion in PRelD.

We see among GAP, GMP, and GAP+GMP, we have a similar performance in evalua-
tion, with a slighter improvement for GAP. All of them have similar performances over the
final result showing our proposed fusion strategy is robust to different pooling operations.

5.5 BRIAR Results

The BRIAR dataset has been proposed to tackle the long-range recognition problem.
It has images of the same identity recorded in controlled and field conditions. In the
controlled conditions, the person walks in a well-illuminated indoor environment close to
the cameras, resulting in high-resolution data, and there are still images of the person
in different poses and angles with arms up and down. The field condition is cameras
capturing the identities from 100m to 1,000m, including a UAV which brings changes
in the pitch angle, yielding to an increased impact of the atmospheric turbulence effect.
Moreover, each identity has two different outfits (called “set1” and “set2”), so the clothing-
change challenge is also present. In the evaluation setup, the gallery is composed of just
controlled videos and images with the identities wearing their respective “set2” clothes,
and the probe set is in-field videos of the identities wearing the “set1” clothes. Therefore,
the BRIAR data comprises both long-range and clothing change challenges. An example
is shown in Figure 5.4.

The BRIAR training set has around 14 million whole-body bounding boxes from
577 identities in controlled and field conditions across different cameras and long-range
distances. In the training set both “set1” and “set2” of clothing are considered to encourage
the model to learn clothing-invariant features.

The BRIAR evaluation protocol considers two gallery sets, Gallery 1 (G1) and Gallery
2 (G2), and two probe sets, Face Included (FI) and Face Restricted (FR).

G1 has 485 subjects where 351 are distractors with a total of 43,728 images and
4,197 videos. The recordings sum up to 23.7 hours. G2 has 481 subjects where 351 are
distractors with a total of 43,242 images and 4,171 videos. The recordings sum up to 23.5
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Figure 5.4: Example of different recording conditions for an identity in the BRIAR dataset. All images
are from the same identity. The first and second rows represent clothing from sets 1 and 2 respectively.
Permission granted by subjects for use of imagery in public presentations (G00430).

hours. Both galleries were recorded under indoor controlled conditions. All media in both
galleries belong to the “set2” of clothing of the identities.

FI has 5,435 videos of 260 subjects in the field conditions with face-visible views. It
sums up to 11.6 hours of video. FR has 2,078 videos of the same 260 subjects in the field
conditions, however, with low-resolution or unusable faces. It sums up to 4.3 hours of
video. All media in both probe sets belong to the “set1” of clothing of the identities. The
rationale is to check model robustness to atmospheric turbulence and clothing.

To address this task we first trained our backbones with the solution presented in
this chapter in a supervised manner. Then, in evaluation, we employ our proposed un-
supervised method. More specifically, for each identity in the gallery set, we extract
features from all of their still images and video frames and perform clustering with the
hyper-parameter-free clustering approach PEACH [93]. PEACH is based on the Extreme
Value Theory (EVT) to design a hyper-parameter clustering value definition for the ag-
glomerative clustering [91|. To illustrate the results, four sampled clusters are depicted
in Figure 5.5.

For each cluster, we take the average feature vector as a representative (proxy) for it.
So, suppose that N? clusters are found for the i gallery identity, we will have a set F!
with N feature vectors. This is done for all gallery identities, then we will have the set
F.={F g}f\’;l with Ny set of features where N, is the number of identities in the gallery.

The same process is done for the query input video. If NP clusters are found in the
probe video p we will have the set F? with N? feature vectors. All the feature vectors are
normalized to have norm one. After that, for each F' € F, we calculate the similarities
between all features in F? and F?, which will result in a similarity matrix S,; € RNE*Ne,
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Figure 5.5: Subset of the clusters obtained after clustering all features from still images and video
frames from identity G02078 in the BRIAR dataset. We can see that each cluster effectively captures
different aspects of the capturing conditions of the identity. Permission granted by subjects for use of
imagery in public presentations (G02078).

To avoid the impact of outliers in out-of-distribution similarities, we take the top 10
highest similarities and average them to get the final score between the input probe video
and the i identity in the gallery. We evaluated with different numbers (top-5, top-10,
top-15, etc.) and also with the average of all similarities, and we saw that top-10 resulted
in the best performance. After that, we sorted all the results and calculated the average
Rank-20 (R20) across all probes.

As one of the metrics of the BRIAR program, we also calculate the TPRQF PR =
1% considering each probe-gallery-ID pair a binary output (same or different class) and
average them over all probes. This solution has been initially proposed for Phase 1 and
its results are shown in the first line of Table 5.6. We see that the model has a better
performance when evaluated in Face Included (where faces usually are visible) than in
Face Restricted (where the face is in low resolution or not visible).

Table 5.6: Results on BRIAR dataset. “R507, “OSN” and “DEN” are for ResNet50, OSNet and
DenseNet121. “FI”, “FR”, “G1” and “G2” are for Face Included, Face Restricted, Gallery 1 and Gallery 2.
“1:1” means TPRAQFPR = 1%. “CL” and “DA” hold for Clean and Distortion-Adaptive backbones.

FI to G1 FR to G1 FI to G2 FR to G2

Backbones R20 1:1 R20 1:1 R20 1:1 R20 1:1
Phase 1 R50/R50 (CL/DA) 56.29 | 35.29 | 53.98 | 34.30 | 50.15 | 26.58 | 46.57 | 24.18
TransReID/R50 (CL/DA) 60.33 | 40.00 | 58.71 | 39.89 | 57.91 | 32.85 | 54.78 | 31.61
Phase 2 R50/DEN (DA/DA) 80.98 | 46.32 | 80.89| 44.77 | 82.90 | 46.53 | 81.03 | 38.34
OSN/DEN (DA/DA) 82.03 | 48.06 | 80.80 | 45.91 | 86.91 | 48.07| 84.19| 40.02

We extend our solution to consider a second setup where the clean and the distortion-
adaptive backbones have different architectures, and the results are shown in the second
line of Table 5.6. In this case, the clean model is a Transformer model [61]. We see
improvement in more than 4.0 p.p. in all metrics, with the highest gains in the Face
Restricted scenario, which follows previous conclusions in this thesis that diversity brings
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gain in the performance with ensemble.

Finally, Phase 2 started in June of 2023 and the DaliReID has been extended and
modified to increase its performance. The main modifications are the inclusion of the
center loss [124] and other triplet-based loss functions to consider the clothing changing
and the atmospheric turbulence. Moreover, we have also evaluated models where both
backbones are distortion-adaptive. Phase 2 is still ongoing, so preliminary results are
added in the third and fourth lines of Table 5.6, showing promising performance with
high gains in all metrics, mainly for R20, across different evaluation scenarios.

5.6 Final Remarks

Image distortions are frequently encountered in real-world unconstrained forensics and
biometrics scenarios. Among them, atmospheric turbulence is the most often in surveil-
lance systems and border security [74], which can deploy long-range cameras to capture
possible people around facilities from long distances.

In this chapter, the DalilD is presented as a methodology for improving robustness
to such distortions mainly targeting atmospheric turbulence. The proposed components
include distortion augmentation, distortion-adaptive weighting, and a parallel-backbone
magnitude-weighted feature fusion. While face recognition and person re-identification
have considerable differences, DalilD is applicable in both tasks with state-of-the-art
performance on benchmarks in both tasks. The proposed LD datasets (Appendix D),
captured over the longest distance of any academic dataset, allow for further evaluation
of realistic distortions.

Another common challenge the researchers find in Person Re-Identification is the cloth-
ing changing of the identities when the analysis spans over hours, days, or months. To
show that the designed solution also has potential for this scenario, we evaluate our so-
lution in the DeepChange dataset which compresses people changing their clothes since it
was created by matching the same person seen in different months of the year. Therefore
we show our designed solution can tackle one of the most challenging scenarios in PRelD
where both atmospheric turbulence distortion and clothing changing of the identities hap-
pen.

We also point out that the proposed weighting strategy could be redesigned and extend
to consider a selective criteria, where, instead of keeping all samples with varying weights,
some of them could be discarded, for instance, the ones with low resolution and unusable
biometric features. This could make the training more stable. Furthermore, the model
could be extended to also consider the loss function values for each sample as a way to
measure hardness. With the loss values, a selective or weighting criteria, besides the
adaptive weighting, could be employed to boost performance in a data-driven manner.

Differently from previous chapters, we have not considered a fully unsupervised sce-
nario. However, in the context of the BRIAR program, which has its own dataset for
benchmarking, the solution has been extended and a fully unsupervised methodology was
proposed to create clusters in the gallery set and in the query input video to improve the
matching performance. The solution helped our team to reach the top positions compared
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to other BRIAR teams considering the program metrics.

This research is also based upon work supported in part by the Office of the Direc-
tor of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via 2022-21102100003. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official poli-
cies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein. We also thank UCCS VAST Lab for
the hardware infrastructure support.
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Chapter 6

Conclusions

In this research, we present three fully unsupervised methods and one supervised method,
which target a common task: Person Re-Identification (PReID). We have designed the
first three solutions to deal with the fully unsupervised re-identification task, where the
primary goal is to learn how to find the same identity in a camera system with varying
recording conditions. Some of these conditions can be changes in illumination, resolution,
identity pose, background, and occlusions. We also explore an even harder setup where
we assume fully unlabeled data, i.e., we do not have the identity of the people in the
images. In this case, the solutions should be able to overcome the challenges present in
different recording conditions without any identity labeling.

The first solution (Chapter 2) addresses the Unsupervised Person Re-Identification
task under two assumptions: we assume we know the camera label, that is, we know
which camera recorded each image in the dataset, and we assume all of our backbones
have been initialized through supervised training in a source dataset. For this reason,
it is an Unsupervised Domain Adaptation (UDA) model. The solution achieves state-
of-the-art performance and the qualitative analysis shows that our model addresses the
main challenges to match the same identity under different recording conditions. This
answers our first research question: “Which constraints or meta-information can improve
the self-supervised learning performance on this kind of task?”, wherein we have found
that the proper creation of triplets based on camera labels, ensembling on evaluation, and
supervised source dataset pre-training can be helpful and a promising path to increase
performance. Moreover, the proposed self-ensembling solution was designed considering
an unsupervised scenario without validation set. In this context, other strategies from
different research fields could be explored to evaluate the training quality for selection and
combination of checkpoints. For instance, in Reinforcement Learning there are strategies
to evaluate safe behaviors of the agent during the learning process [126, 147]. This can
be an interesting research direction to explore in future works.

The second solution (Chapter 3) extends the applicability and is more general than
the first one. Different from the first one, we assume a more realistic setup: no side infor-
mation (such as the camera label) and no pre-training in the labeled source dataset. This
method is fully unsupervised because it relies solely on detected bounding boxes without
further annotation or side information. Our solution presents two novel ensembling-based
approaches to amalgamate knowledge from different backbones and obtain a clustering
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result derived from clustering runs with different hyperparameters. There is no need to
tune the cluster hyperparameter for each dataset. The obtained results outperform prior
art and are on pair to UDA models that require a source dataset for model initializa-
tion. Since our solution does not rely upon task-related side information or annotation,
it can be deployed in tasks beyond U-PRelID. We validate this hypothesis by employing
the model in an NLP task: Text Authorship Attribution (TAA) for social media short
messages. We assume all social media texts (posts from X - former Twitter) do not have
the authorship information, i.e., we do not know “who” wrote that tweet. Our solution
provides better results than a supervised method tailored to this task, and the ablation
studies show that, indeed, the model can provide increased performance in fully unlabeled
social media posts. This answers our second research question: “How to design a gen-
eral self-supervised learning algorithm to deal with problems with fully unlabeled data
comprising high intra-class dissimilarity and inter-class similarity with a set of classes not
seen on training during the evaluation phase?”. Our findings show that the ensembling
of knowledge from different architectures, and the combination of different clustering re-
sults allow the model to tackle challenging scenarios with high intra-class variation and
inter-class similarity.

Our second solution was also extended to be part of a model that combines both
supervised and self-supervised training. This model was designed to address the aerial-
to-ground PRelD task in the AGReID2023 competition in IEEE IJCB 2023, obtaining
the third place in the competition, being one of its highlights.

The third solution (Chapter 4) operates under the same conditions as the second one:
it relies only on people bounding boxes without any further side information. However, it
employs new strategies we designed to address large-scale scenarios. With a novel Local
Neighborhood-based sampling, a Local Re-Ranking, new scheduling schemes for cluster-
ing hyperparameters, and simple co-training, we reach the state-of-the-art performance
in standard benchmarks in PRelD and large-scale datasets in Vehicle Re-Identification
(VReID). The qualitative results also show our model can address the cross-recording
condition in the camera environment to match the same person/vehicle from different
points of view. The solution opens the path for studies in further re-identification tasks
(e.g., places) that can be employed to help in investigations and surveillance systems.
This helps to answer the third research question: “How to scale those solutions to handle
thousands of data samples?”. Our proposed Local Neighborhood Sampling and Local Re-
Ranking directly address this question by reducing the number of samples to train and
by proposing a lower time complexity upper bound, which is more suitable for large-scale
scenarios.

The third solution was also presented during the research and training consultancy to
the Police of Dubai in December 2023. It was considered as part of a set of methods to
help with multimedia investigations in suspect searching and event understanding.

The last solution (Chapter 5), differently from the previous ones, targets a supervised
scenario within the context of an evolving interest setup: long-range recognition. It
allows the learned model to overcome image distortions mainly caused by atmospheric
turbulence in an easy-to-hard manner. It also allows the backbones to effectively learn
discriminative features from distorted images, achieving state-of-the-art performance in
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cross-resolution scenarios. Besides that, we consider another challenge in PRelD: the
clothing-change identities. In one of the evaluated benchmarks and the BRIAR dataset,
the identities change their clothes from one camera to the other, hardening the task as
the models cannot rely upon clothing features anymore. Even so, our method achieves
the best performance in this scenario compared to prior art and methods proposed for the
BRIAR program. Finally, this answers the fourth research question: “Which strategies
can potentially help to perform long-range Person Re-Identification?”. We show that the
proposed techniques — easy-to-hard scheme to progressively consider distorted images
and magnitude-based ensembling — effectively allow the model to mine useful patterns
and increase the performance in long-range and cross-resolution benchmarks.

In summary, our methods address important challenges in re-identification consider-
ing fully unsupervised scenarios under varied constraints. Besides, we also present an ap-
proach to learn from distorted data caused by atmospheric turbulence with cloth-changing
identities. The list of all published and under-review papers produced along this Ph.D.
is shown in Appendix A. We argue that our solutions can be employed and extended
in further re-identification scenarios and further forensics and biometrics tasks, with the
proper modifications. One of those extensions can be the joint analysis of the main pieces
of an event during an investigation. More specifically, the solutions can be incorporated
into a broader pipeline to mine and group people, vehicles (or other objects), and places
in an event. This would allow the proposing of possible relationships between people and
objects in a scene, helping investigations and event understanding.

For instance, suppose the illustrative case depicted in Figure 6.1. After employing
our pipeline, the red and blue lines, indicating images from different classes and the
same class, respectively, could be discovered. Then a later step is taken to find possible
relations between the elements (people and vehicles). Suppose that the model found the
green line, that is, a positive relation between that person and the car in the event. Based
on this, could we infer possible relations between the other people and cars (represented
by the dashed yellow lines with question marks)? The authors in [253] propose a similar
idea, however considering just a group of people spatially close to each other, and not
accounting for other target objects (e.g., vehicles). This shows that joint analysis has not
been deeply studied yet being a promising future research step, and can help to perform
event understanding.

Moreover, recent advances in Large Language Models and Large Vision Models based
on Transformers [177, 55] have shown a promising research direction by employing ad-
vanced models for feature extraction based on attention. Given that they are usually
trained in large-scale datasets, they provide useful image feature descriptions that can
be employed for downstream tasks. These features can be explored to extend the solu-
tions proposed in this Ph.D. research, enhancing feature representation and extension to
further re-identification tasks. Additionally, attention mechanisms in large models could
also be employed to explain the cluster structures and relations between their elements,
as proposed in [132].

However, employing large models can also bring more challenges related to the required
time and memory to work with them. In this way, our first solution (Chapter 2), for
instance, would face limitations since it requires that all checkpoints are saved during the
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Figure 6.1: Illustrative example of joint analysis. Blue lines mean that the connected images are from
the same class, red lines mean they are from different classes, the green line means that there is a relation
between the person and the vehicle (that could be discovered by a model or inserted by the expert
analyzing the event). The dashed yellow lines with question marks show possible questions to the model
which might help find other relations between identities and vehicles.
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training for late self-ensembling. In this case, we suggest keeping most of the large model
weights frozen, fine-tuning just part of its weights, and saving only these learnable weights
instead of the whole model. This could allow us to leverage the power of large models
and limit the number of saved parameters, saving time and memory for self-ensembling
(Chapter 2), and momentum ensembling (Chapters 3 and 4).

Additionally, for the first, second and third proposed solutions (Chapters 2, 3, 4,
respectively), we show the XAI activation maps for some images to highlight which parts
the models mostly focus on to rank the images. The activation maps have been utilized
throughout this research solely for visual and qualitative analysis, without employing
any feedback to enhance the models. Moreover, we suggest, as possible future work,
the design of a feedback strategy considering which parts of the identities have been (or
not) activated by the models, aiming to improve feature learning [136]. This process could
involve training a model focusing on other parts of the images to learn from complementary
features, or human intervention by manually removing noisy images and images with non-
biometric activations (e.g., in the background).

Another limitation that has not been deeply studied is the camera failures. Most
outdoor cameras, which are present in all datasets employed in this research, are exposed
to weather and environmental conditions. This exposes them to various failure scenarios,
such as broken lens, fog, malfunctions, interferences, etc. A deeper study about how
to deal with these challenges could be valuable for effective learning and deployment in
unconstrained real-world scenarios.

We expect that the proposed methods can aid future advancements in the forensic and
biometrics research domains. Moreover, these innovations have the potential to assist
authorities in conducting thorough investigations, gaining deeper insights into various
events, and fostering enhancements in surveillance system technologies.
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Appendix B

Datasets

In this appendix, we present all datasets employed in this research to evaluate our models.
They are described below and summarized in Table B.1. We compare our methods to
prior work under the same evaluation setup, i.e., same query and gallery sets described in
this section. Furthermore, all results were directly taken from the respective papers, or
from other accepted papers. All backbones employed along this thesis are fully finetuned
without layer freezing.

Market1501 [242] has 12,936 images of 751 identities in the training set and 19,732
images in the test set. The test set is divided into 3,368 images for the query set and
15,913 images for the gallery set. We removed “junk” images from the gallery set as done
by all previous works, so 451 images were discarded. It has six non-overlapping cameras;
each identity is captured by at least two.

DukeMTMC-ReID [151] has 16,522 images of 702 identities in the training set and
19,889 images in the test set. The test set is divided into 2,228 query images and
17,661 gallery images of 702 other identities plus 408 distractors. It has eight cam-
eras, and each identity is captured by at least two. This dataset has been discon-
tinued, and it must not be used for evaluation and benchmarking anymore. When
this fact became known to us, we had already proposed the first two solutions (Chap-
ters 2 and 3), and, for this reason, we are still providing results considering this dataset.
However, following recent literature, we do not use it for evaluation in the third and
fourth solutions (Chapters 4 and 5), which are the most recently designed in the re-
search. More details in https://www.dukechronicle.com/article/2019/06/duke-university-
facial-recognition-data-set-study-surveillance-video-students-china-uyghur.

MSMT17 [194] has 32,621 images of 1,401 identities in the training set and 93,820 images
of 3,060 identities in the test set. The test set is divided into 11,659 images for the query
set and 82,161 images for the gallery. It has 15 cameras recording three-day periods
(morning, afternoon, and night) on four different days. Out of the 15 cameras, 12 are
outdoor, and 3 are indoor. Each identity is captured by at least two cameras. It is one of
the most challenging datasets.

DeepChange [203] has 75,083 images of 450 identities in the training set. It has a
validation and a test set. There are 150 identities on the validation set, which is divided
into 4,976 images for the query set and 17,865 images for the gallery. For the test set,
there are 521 identities, which are divided into 17,527 images for the query set and 62,956
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images for the gallery. It has a total of 17 cameras and each identity is captured by at
least two cameras. Differently from previous RelD datasets, DeepChange is a clothing-
changing dataset, which means that a person can change their clothes when recorded in
different locations and moments in time. The dataset has the same person appearing in
different moments of the year in different seasons varying their clothes and in, some cases,
hairstyles.

Veri776 [112] has 37,778 images of 576 identities in the training set and 13,257 images
of 200 identities in the test set. The test set is divided into 1,678 images for the query set
and 11,579 images for the gallery. It has 20 cameras.

VehicleID [108] has 113,346 images of 13,164 identities in the training set. It has three
evaluation scenarios. The smallest has 800 identities on the test set, which is divided into
5,693 images for the query set and 800 images for the gallery. The middle has 1,600
identities, which is divided into 11,777 images for the query set and 1,600 for the gallery.
The largest has 2,400 identities, which is divided into 17,377 images for the query set and
2,400 images to the gallery. The number of cameras is not specified, but all the vehicles
have two views: the front and back views.

Veri-Wild [119] has 277,797 images of 30,671 identities in the training set. It has
three evaluation scenarios. The smallest has 3,000 identities on the test set, which is
divided into 3,000 images for the query set and 38,861 images for the gallery. The middle
has 5,000 identities, which is divided into 5,000 images for the query set and 64,389 for
the gallery. The largest has 10,000 identities, which is divided into 10,000 images for the
query set and 128,517 images to the gallery. It has 174 cameras being one of the most
challenging re-identification datasets.

Subset of tweets are two subsets of the dataset of tweets [174]. The first subset
contains messages from 100 authors, which we randomly split into two sets: 50 authors
for training and 50 for testing. In the training set, there are 400 tweets per author. We
divide the test set into query and gallery sets, with 20 tweets per author in the query
set and 300 tweets per author in the gallery set. There are 1000 authors in the second
subset, with 500 for training and another 500 for testing. We select 70 tweets per author
for the training and gallery sets and 20 tweets per author for the query. The rationale is
to verify the capacity for generalization in two scenarios with different complexities. The
smallest subset comprises fewer identities and more tweets per author; the other has 10
times more authors and fewer tweets per author.
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train gallery query

#IDs | #Images | #IDs | #Images | #IDs | #Images

Market1501 [242] 751 12,936 751 15,913 750 3,368

DukeMTMC-ReID [15]1] 702 16,522 1,110 17,661 702 2,228
MSMT17 [194] 1,041 32,621 3,060 82,161 3,060 11,659

150 | 17,865 | 150 1,976

DeepChange [203] 450 75,083 k91 62.956 £l 17.527

Veri776 [112] 576 37,778 200 11,579 200 1,678
800 800 800 5,693

VehicleID [108| 13,164 | 113,346 1,600 1,600 1,600 11,777
2,400 2,400 2,400 17,377

3,000 38,861 3,000 3,000

Veri-Wild [119] 30,671 | 277,797 5,000 64,389 5,000 5,000
10,000 | 128,517 | 10,000 10,000

50 20,000 50 15,000 50 1,000

Subset of tweets [IT4]| 0\ | 4500 | 500 | 35000 | 500 | 10,000
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Appendix C

Comparison of the third solution to
models considering meta information

We compare, in Table C.1, our third proposed method to not-fully unsupervised re-
identification methods, i.e., the ones that leverage camera labels or tracklets to help
the optimization. Particularly, the camera labels provide strong regularization since they
enable the model to train in the same scenario of the cross-camera evaluation. For this
reason, methods that consider camera labels have usually higher performance. However,
they are not fully unsupervised.

Even though our model does not use camera labels, we still have competitive per-
formance, and the best mAP for Market. Considering the tracklet-based models, we
outperform them in all metrics. Despite the tracklets being a meta-information about the
pedestrian motion, which enables the possibility to leverage temporal information, our
method better mines the discriminant information just relying upon people’s still images.

Similar conclusions can be reached for the Veri dataset, as shown in Table C.2. Con-
sidering mAP, the best method is MLPL [62] which relies on multi-part analysis that
improves feature description but adds complexity to the training process. Our method
relies solely on the feature map extracted from the bounding boxes, without any kind
of sub-part analysis. The same conclusions can be drawn from Table C.3 where we
compare our method to MLPL in VehicleID dataset. Other methods employ camera
or viewpoint labeling, making the task easier. Indeed, the best R1 is achieved by Di-
DAL [114], which employs camera labels for optimization. Some methods employ seg-
mentation (MAPLD [120]) or color information (VRPRD [6]) to help optimization, but
our model performs better than both without any kind of supervision or side information.

In Veri-Wild (Table C.4), following previous conclusions, the inclusion of camera and
viewpoint labeling demonstrates a robust potential to enhance model learning capabili-
ties. Different from Veri, the segmentation-based model MAPLD [120] achieves higher
performance than ours. Since Veri-Wild is the most challenging dataset, any side in-
formation has the potential to aid model learning. As our model operates in the fully
unsupervised scenario, it sometimes faces performance drops compared to other methods
that rely upon meta-information or labeling.
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Table C.1: Comparison with relevant Person RelD methods considering some meta-information or
camera/viewpoint labeling. The best result is highlighted in blue.
Market MSMT17
Method Reference | mAP[ R1 | R5 | R10 | mAP| R1 | R5 | R10
Camera-based
SSL [106] CVPR’20 378 | 71.7 | 83.8 | 87.4 - - - -
CCSE [105] TIP’20 38.0 | 73.7 | 84.0 | 879 | 9.9 | 31.4 | 41.4 | 45.7
MPRD [76](*) ICCV’21 51.1 | 83.0 | 91.3 | 93.6 | 14.6 | 37.7 | 51.3 | b7.1
Xie et. al. [201] [JMLC’21 | 54.1 | 82.6 | 91.3 | 94.5 | 13.4 | 37.5 | 48.5 | 52.0
DSCE-MC [208] CVPR’21 61.7 | 83.9 | 92.3 - 15.5 | 35.2 | 48.3 -
JVTC [95] ECCV’20 47.5 1 795 | 89.2 | 91.9 | 17.3 | 43.1 | 53.8 | 59.4
JGCL [19] CVPR21 66.8 | 87.3 | 93.5 | 95.5 | 21.3 | 45.7 | 58.6 | 64.5
IICS [204] CVPR’21 72.9 | 89.5 | 95.2 | 97.0 | 26.9 | 56.4 | 68.8 | 73.4
IIDS [205] TPAMI’22 | 78.0 | 91.2 | 96.2 | 97.7 | 35.1 | 64.4 | 76.2 | 80.5
CAP [186] AAAT21 79.2 | 91.4 | 96.3 | 97.7 | 36.9 | 67.4 | 78.0 | 81.4
CCTSE |7] TIFS’21 67.7 | 89.5 | 94.8 | 96.5 - - - -
CAPL [113] NCA’23 80.4 | 92.8 | 97.3 - 40.7 | 71.2 | 814 -
MGH [199] ICM’21 81.7 1 93.2 | 96.8 | 98.1 | 40.6 | 70.2 | 81.2 | 84.5
ICE [17] ICCV’21 82.3 | 93.8 |1 97.6 | 98.4 | 38.9 | 70.2 | 80.5 | 84.4
O2CAP [187] TIP’22 82.7 19251 96.9 | 98.0 | 42.4 | 72.0 | 81.9 | 854
O2CAP-IBN [187] TIP’22 83.7193.1 | 974 | 98.1 | 46.9| 75.5| 84.8 | 87.7
CASTOR-ICE [202] | TITS22 82.8 | 93.6 | 97.5 | 98.5 | 41.7 | 72.3 | 82.3 | 85.8
CASTOR-CCL [202] | TITS’22 84.5 1 93.0 | 97.8 | 98.6 | 33.2 | 61.9 | 74.0 | 78.2
Liu et. al. [110] TIP’22 82.4 | 93.0 - - 38.4 | 68.6 - -
Liu et. al-IBN [110] | TIP’22 82.0 | 92.8 - - 42.4 | 71.6 - -
CIFL [141] TMM’22 82.4 1939|979 | 98.1 | 38.8 | 70.1 | 80.7 | 83.9
RTMem [215] TIP’23 83.1 | 939 | 97.7 | 98.4 | 40.8 | 72.0 | 81.5 | 84.6
MCSL [59] OPTIK’23 | 83.5 | 93.7 | 97.5 | 98.4 | 38.7 | 71.1 | 80.8 | 84.3
PPLR [26] CVPR’22 84.4 | 94.3 | 97.8 | 98.6 | 42.2 | 73.3 | 83.5 | 86.5
PPSL [198] TIP’22 68.7 | 88.6 | 95.2 | 96.6 | 40.9 | 71.1 | 83.3 | 87.0
PPSL(Concat) [198] | TIP’22 82.3 | 94.1 | 97.4 | 98.8| 43.1 | 73.2 | 89.4 | 90.8
PEG [225] 1JCV’22 84.5 | 94.3 | 98.0 | 98.5 | 44.9 | 73.9 | 83.2 | 86.3
PPCL+CAP [240| TCSVT’22 | 82.4 | 94.0 | 98.1 - 37.8 | 70.8 | 80.7 -
PPCL+ICE [240] TCSVT’22 | 82.8 | 93.9 | 97.6 - 39.8 | 70.8 | 81.2 -
DiDAL [114] TMM’23 84.8 | 94.2 | 98.2 - 45.4 | 74.0 | 84.3 -
CCL [228] TCSVT’23 | 85.3 | 94.1 | 97.8 | 98.8 | 41.8 | 71.4 - -
Multi-part based models
PPLR [26] CVPR’22 81.5 928 | 97.1 | 98.1 | 31.4 | 61.1 | 73.4 | 77.8
LPur [90] TIP’23 85.8| 94.5| 97.8 | 98.7 | 39.5 | 67.9 | 78.0 | 81.6
Tracklet-based
Star-Dac [154] PR’21 33.9 | 67.0 | 80.6 | 84.9 - - - -
TSSL [196] AAAT20 43.3 | 71.2 - - - - - -
UTAL [98] TPAMI’20 | 46.2 | 69.2 - - 13.1 | 314 - -
CycAs [193] ECCV’20 64.8 | 84.8 - - 26.7 | 50.1 - -
UGA [197] ICCV’19 70.3 | 87.2 - - 21.7 | 49.5 - -
Fully-Unsupervised
Ours | 85.8|94.0 | 97.7 [ 98.5 | 43.2 | 70.9 | 80.8 | 84.2
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Table C.2: Comparison with relevant Vehicle ReID methods in the Veri776 dataset considering some
meta-information or camera/viewpoint labeling. The best results are highlighted in blue.

Veri
Method Reference mAP| R1 | R5
Camera/ Viewpoint-based
SSL [106] CVPR’20 23.8 1 69.3 | 72.1
VAPC [239] TITS 21 304 | 76.2 | 81.2
CAPL [113] NCA’23 41.1 | 87.3 | 91.3
O2CAP [187] TIP’22 419 | 87.5 | 92.7
O2CAP-IBN [187] TIP’22 42.4 | 89.6 | 93.5
CCL [22§] TCSVT23 | 42.6 | 87.0 | -
Liu et. al. [110] TIP’22 43.2 | 87.0 | -
Liu et. al.-IBN [110] TIP’22 43.9 | 88.9 | -
PPLR [26] CVPR’22 43.5 | 88.3 | 92.7
DiDAL [114] TMM’23 43.5 | 89.0 | 93.5
CTACL |218] ICRA22 44.2 | 81.6 | 89.5
Segmentation-based
MAPLD [120] | TITS23 [ 334 | 787 | 835
Multi-part-based models
PPLR [26] CVPR’22 41.6 | 85.6 | 91.1
MLPL [62] TVT 22 45.1 | 88.3 | 91.1
Attribute-based Models
Method Reference mAP | R1 R5
VRPRD |[6] PR’19 40.1 | 83.2 | 91.1
Fully-Unsupervised
Ours | | 41.3 | 86.3 | 89.9

Table C.3: Comparison with relevant fully-unsupervised Vehicle ReID methods in VehicleID. The best
result is highlighted in blue.

| TS =800 | TS = 1600 | TS = 2400
Part-based Models
Method Reference| mAP| R1 | mAP| R1 | mAP| Rl
MLPL [62] | TVT22 | 65.3 | 61.1 | 62.7 | 57.3 | 59.6 | 52.4
Fully Unsupervised
Method Reference| mAP| R1 | mAP| R1 | mAP| Rl
Ours 61.7 | 56.0 | 59.7 | 53.4 | 56.9 | 50.1
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Table C.4: Comparison with relevant Vehicle RelD methods in Veri-Wild dataset considering some
meta-information or camera/viewpoint labeling. The best result is highlighted in blue.

Veri-Wild (Small) | Veri-Wild (Medium)

Veri-Wild (Large)

Method Reference mAP‘ R1 ‘ R5 mAP‘ R1 ‘ R5 mAP‘ R1 ‘ R5
Camera/ Viewpoint-based

SSL [106] CVPR’20 16.1 | 38.5 | 58.1 17.9 | 36.4 | 56.0 13.6 | 32.7 | 48.2

VAPC [239] | TITS’21 33.0 | 72.1 | 87.7 | 281 | 64.3 | 83.0 22.6 | 55.9 | 75.9

CTACL [218] | ICRA’22 58.2 | 71.1 | 86.6 | 49.2 | 69.2 | 83.7 41.2 | 60.1 | 81.5
Segmentation-based

MAPLD [120][ TITS23 [ 36.6 [ 72.1 | 87.6 | 334 | 662 | 84.5 | 27.7 | 559 | 77.3
Fully- Unsupervised

Ours | 209 [ 54.1 [ 76.6 | 25.8 | 46.4 | 69.2 [ 20.0 [ 362 [ 59.0
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Appendix D

Long Distance Recapture Data

Long-range recognition is relevant in many applications. However, the collection of bio-
metric data is extremely expensive and time-consuming. Currently, the most related
dataset, IJB-S [86], is not available for common academic use, and an earlier dataset at
100M [52] was withdrawn from public use. Furthermore, IJB-S is not a strictly long-
range dataset. To overcome the lack of available long-range data, some prior works have
used simulated atmospheric turbulence as a proxy for real data [212, 211, 153]. However,
the effectiveness of simulated atmospherics for face recognition has not been validated
because, as mentioned before, there is no real data for validation.

We recapture datasets through the atmosphere to facilitate academic research on bio-
metric recognition over long distances. To perform the capture, we use three 4k outdoor
televisions, a 4k Basler camera, and an 800mm lens with a 1.4x adapter. Custom capture
and display software are developed for the collection, and custom mounting hardware is
built for stable capture. The displays are mounted to avoid direct sunlight on the screens.
The camera is directed at the displays from a structure at a distance of 770 meters, and
videos of the displays are captured at 30 frames per second. A video of the displays run-
ning is provided on the GitHub site of the data, where considerable atmospheric effects
can be seen. Our collection setup yields significant atmospheric distortions, which can
even be noticed between sequential frames. D.1 shows two examples. The data collection
process went through IRB approval and is being distributed for non-commercial use.

We refer to our recapture datasets as the original dataset name followed by “-LD" (“the
LD datasets"), where LD stands for long-distance. The evaluation datasets provided are
LFW-LD and CFP-LD. Twelve recaptured samples are provided for each image in the
original dataset because atmospheric turbulence is temporally variable. For CFP-LD
and LFW-LD, two protocols are proposed: clean-to-long-distance (C-to-LD) and long-
distance-to-long-distance (LD-to-LD). C-to-LD uses verification pairs where one image is
standard (and thus higher quality). For LD-to-LD, all samples are recaptured over long
distances. The LD datasets expand the evaluation of our methods in the following section,
where evaluations are made with a single frame for each image. However, future work
should consider new protocols allowing frame fusion or frame selection across frames.
Previous unconstrained evaluation datasets (e.g., IJB-S) have been distributed over a
terabyte of raw video, which is burdensome to process. In contrast, the LD datasets
are pre-processed and pre-aligned in the same format as the original datasets, which
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Figure D.1: Top. Recapture specifications and a raw frame from our recollection. Lower Left. Two
consecutive frames (33.3ms apart) for two different identities from LEW-LD. Differences can be observed
between sequential frames, such as around the eyes or face outline. Lower Right. Distribution of feature
distances in degrees between sequential frames of the same display image from LFW-LD and CFP-LD.
Surprisingly, the distances are not 0 — the effects of atmospherics from frame to frame are considerable!

streamlines evaluation and comparison. The final release will include the recapture of
person re-identification datasets, plus a WebFace4M recapture for training.

The collection setup went through IRB approval, and both the LEW and CFP dataset
licenses allow redistribution. Specifications of imaging equipment and collection con-
ditions are shown in Table D.1. Figure D.2 shows the display and Figure D.3 shows
the camera used for recapture. The LD datasets contain twelve recaptured face chips
for each original face as the capture occurs continuously over time, and atmospheric
turbulence is temporally variable (atmospheric effects are shown in Figure D.4 and at
https://youtu.be/cBcik5U7kfM). The nature of the data allows for research uses such
as frame selection, frame aggregation, distortion robustness, quality prediction, and direct
feature comparisons to the same image with and without real atmospheric turbulence.

To post-process the images, fixed regions from the screens are cropped, and then
RetinaFace [32| face detector is used to detect landmarks and re-align the images. Non-
local mean denoising algorithm is used to reduce noise in the recaptured images. D.4
shows samples from the LD datasets.

Parameter Value

Camera Basler acA2440-35uc
Lens focal length 800mm +1.4x Extender
Capture distance 770 meters

Integration time 30us

Capture rate 30 fps

Wind speed 5-15mph

Temperature 15°C

Table D.1: camera, weather condition, and display settings for the collection of LFW-LDand CFP-LD.
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Figure D.2: 3x 75" 4k OLED 2,000 nit outdoor displays mounted in containers for recapture.

Figure D.3: Lens and camera with custom mounting hardware for recapture.
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Figure D.4: Sample images from the LD datasets. It can be seen that our recapture setup yielded
significant atmospheric turbulence effects (also see video at https: //youtu. be/ cBcik5UTkfH). These
datasets can facilitate research into 1) quality/confidence-aware models, 2) models that are robust to
face-feature distortion, and 3) frame aggregation under atmospheric turbulence (12 frames are provided
per display image).
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