

UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://econtents.bc.unicamp.br/eventos/index.php/pibic/article/view/1283

DOI: https://doi.org/10.20396/revpibic2620181283

Direitos autorais / Publisher's copyright statement:

©2019 by UNICAMP. All rights reserved.

XXVI Congresso de Iniciação Científica Unicamp

17 a 19 de outubro

Campinas | Brasil

Sensor de temperatura chipless baseado nas propriedades de retrodifusão de uma antena.

Tathiane Cabreira Ungari, Gilberto T. Santos-Souza e Prof. Dr. Leonardo L. Bravo-Roger.

Resumo

Este projeto visa a implementação de um sensor de radiofrequência capaz de monitorar a temperatura ambiente. O dispositivo a ser implementado não precisa de bateria nem de nenhum circuito integrado para funcionar e pode ser integrado a uma etiqueta passiva de sistemas de RFID. Seu princípio de funcionamento baseia-se na retro-dispersão de uma antena, isto traz a vantagem de que a medição pode ser realizada a distância.

Palavras-chave:

tag chipless, sensores de RF e RFID time domain .

Introdução

Foi concebido um sensor em forma de tag de RFID chipless, acoplando uma antena planar a uma linha de transmissão de impedância Z0, terminada em uma resistência de carga que varia com temperatura, ou seja um termistor. O nível de reflexão na carga depende do descasamento entre o valor da resistência do termistor (que é uma função de temperatura) e a impedância característica da linha. A temperatura é medida a certa distância da tag, a partir do nível de amplitude do sinal retro-difundido

Resultados e Discussão

O primeiro resultado obtido foi a realização no HFSS do projeto e simulação de uma antena monopolo circular, Figura 1. [1] Essa antena foi ligada a uma linha de demora terminada num termistor, Figura 2, cuja resistência varia com temperatura. Medindo-se o sinal retro-dispersado pela antena é possível estimar a temperatura do ambiente. O excelente desempenho da antena foi avaliado através da perda de retorno S₁₁ (deve ser menor que -10 dB) e de seu padrão de radiação [2], como mostra Figura 3. Espera-se que os resultados experimentais estejam de acordo com as simulações.

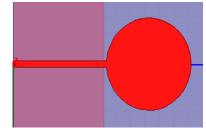


Figura 1. Antena monopolo circular projetada

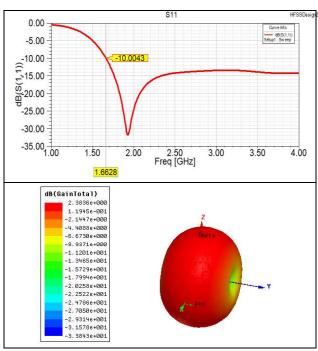



Figura 2.Linha de demora terminada em um termistor

Figura 3.Análise da perda de retorno e Padrão de radiação para 1.6628 GHz na antena monopolo circular.

Conclusões

Um sensor de temperatura baseado em radiofrequência foi concebido. Seu funcionamento não precisa de baterias nem de nenhum circuito integrado. Rigorosas simulações eletromagnéticas mostraram sua viabilidade. O nível de sinal recebido proveniente da antena sensora a uma distância remota, permite estimar a temperatura do ambiente no local onde o sensor está situado.

Agradecimentos

Agradeço ao meu orientador Leonardo L. Bravo-Roger, ao meu co-orientador Gilberto T. Santos-Souza, ao Julio César Avelino pela parceria, à Unicamp e ao CNPq.

¹Schantz, H. G., "Introduction to ultra-wideband antennas", 4811 Cove Creek Drive, Brownsboro, AL

²Gilberto T. SantosSouza, Andreia Ap. de C. Alves, Hugo E. Hernandez-Figue roa, Leonardo L. Bravo

Roger, "Numerical Determination of Frequency Guard Band Resonances for C hipless RFID Tags", IEEE RFID Brasil , 2014

