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Resumo

A modelagem de sistemas complexos é útil para a predição de cenários em que há presença
de fenômenos emergentes. O uso de Modelagem e Simulação Baseada em Agentes (ABMS)
permite a previsão dos fenômenos emergentes de um sistema, a partir das interações dos
agentes do sistema entre si e com o ambiente em que estão inseridos. A análise de políticas
públicas requer a identi�cação, o estudo e a caracterização de fenômenos complexos
relacionados com sistemas complexos. No caso dos sistemas com Determinantes Sociais de
Saúde (SDoH) é necessário considerar o ambiente social no qual indivíduos e instituições
públicas e privadas interagem, e como essas interações impactam a saúde da população.
Portanto, o uso de ABMS na modelagem de cenários em saúde pública que consideram
fenômenos sociais pode resultar útil na identi�cação de como diferentes variáveis sociais
in�uenciam a saúde pública. Assim, o uso de ABMS resulta conveniente na tomada de
decisão em políticas públicas de saúde. Neste projeto, apresenta-se um método de
modelagem de cenários de saúde pública considerando SDoH. Inicialmente, foi criado um
modelo de regressão logística com variáveis clínicas e demográ�cas, a partir de dados da
Fundação Oncocentro e do SEADE. Essa regressão permitiu estabelecer uma relação
signi�cativa de algumas variáveis com a detecção do câncer de colo de útero em uma etapa
inicial. Dentre essas variáveis, destaca-se o Índice Paulista de Responsabilidade Social, um
indicador do Estado de São Paulo que toma em consideração escolaridade, riqueza e
longevidade na sua construção. O modelo de regressão logística foi utilizado para a
calibração do ABMS. Esses modelos foram criados replicando os resultados gerais a partir de
testar como a partir da capacidade de atendimento ou na disponibilidade de horários no �nal
de semana, indicando que poderiam ter algum impacto na detecção precoce do câncer de colo
de útero. Dessa maneira, a construção de ABMS para a análise do acesso ao rastreamento do
câncer permite a tomada de decisão em relação a políticas de prevenção e detecção precoce.
Todavia, a avaliação e de�nição dos cenários testados depende quase inteiramente da
intuição do modelador. O uso de técnicas de aprendizagem por reforço pode ajudar a fazer a
avaliação de cenários mais sistemática. O método proposto poderá ser utilizado para a
identi�cação de boas estratégias de melhoria das condições sociais que afetam a saúde na
esfera pública.



Abstract

Complex system modeling is a valuable tool for predicting scenarios involving emergent
phenomena. Agent-based modeling and simulation (ABMS) can be used to forecast these
phenomena by simulating the interactions of individual agents within a system and their
environment. Public policy analysis requires identifying, studying, and characterizing
complex phenomena related to complex systems. In systems with Social Determinants of
Health (SDoH), it is crucial to consider the social environment where individuals and public
and private institutions interact and how these interactions impact population health.
Therefore, ABMS can be a valuable tool for modeling public health scenarios that consider
social phenomena to identify how di�erent social variables in�uence health outcomes. This
makes ABMS a valuable tool for public health policy decision-making. This project presents
a method for modeling public health scenarios considering SDoH. A logistic regression
model was initially developed using clinical and demographic data from the Fundação
Oncocentro and SEADE. This regression established a signi�cant relationship between some
variables and early detection of cervical cancer. Among these variables, the Índice Paulista
de Responsabilidade Social (IPRS) stands out. This indicator, developed by the State of São
Paulo, considers education, wealth, and longevity in its construction. The logistic regression
model was used to calibrate the ABMS. These models were created by replicating general
results and testing how di�erent scenarios, such as changes in service capacity or weekend
appointment availability, could impact early detection of cervical cancer. The ABMS
constructed for the analysis of access to cancer screening allows decision-making regarding
prevention and early detection policies. However, the evaluation and de�nition of the tested
scenarios depend almost entirely on the modeler’s intuition. Reinforcement learning
techniques can help make scenario evaluation more systematic. The proposed method can be
used to identify e�ective strategies for improving social conditions that impact public health.
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Chapter 1

Introduction

In this chapter, the challenges present in this research are described and an overview of the

methodology used is presented.

1.1 Overview

Cervical cancer is the fourth most frequent cancer type among women, responsible for more

than 340,000 deaths in 2020, 90% in developing countries (WORLDHEALTHORGANIZATION,

2022). It is a treatable disease when detected at an early stage, yet most cases in developing

countries are detected at an advanced stage (FERLAY et al., 2013). For instance, around 80%

of cases in Brazil are detected at an advanced stage (VALE, D. B.; SAUVAGET, et al., 2019).

Policymakers must establish strategies to increase the proportion of detection at an early stage

to reduce mortality numbers.

Medical screening, that is, testing individuals or populations to detect unknown health

conditions, is a widely used practice for cervical cancer detection(WORLD HEALTH

ORGANIZATION, 2022). For cervical cancer detection, regular screening is recommended to

detect precursor lesions or early cancer and avoid further complications. It is recommended

to test women between the of ages 25 and 65 every three years. If there is a positive test, the

woman should be referred to a diagnostic test and managed properly (INCA, 2016).

The percentage of coverage of screening in the population is related to the reduction in

mortality. It is expected less than three deaths per 100 000 people for coverage above or equal

to 50% and less than two deaths per 100 000 people for coverage above or equal to 70% (INCA,
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2016). Though, socio-economical conditions are related to access to healthcare in general and

cervical cancer detection in particular (TEMKIN et al., 2018).

There is evidence that indicates the relationship between socio-economic status variables,

such as Human Development Index (HDI), gross domestic product (GDP) per capita, illiteracy

rate and fertility rate, and cervical cancer incidence and mortality (DENNY et al., 2016; VALE,

D. et al., 2019). It is also noticeable that socio-economic conditions a�ect access to healthcare

services (TEMKIN et al., 2018). This situation shows the need for considering these indicators

in a study to maximize the early detection of cervical cancer.

The Social Determinants of Health (SDoH) are social and economic elements that impact

how people live (BUSS; PELLEGRINI FILHO, 2007). As SDoH are helpful for the identi�cation

of the relationships between social conditions and diseases, they might be helpful as well for

the creation of models to reduce the impact of diseases on a population and, thus, to improve

active response in public health policy.

Some studies show SDoH are correlated to cervical cancer incidence and detection

(VALE, D. et al., 2019; TEMKIN et al., 2018). Yet, SDoH are usually highly interconnected

between them. For example, schooling level may in�uence income level. Also, policymakers

may be interested in knowing di�erent scenarios and the impact of di�erent strategies in

these scenarios, creating the need to consider complexity when modeling cervical cancer

detection within a population. Those challenges involve anticipation and harnessing of

relationships between diverse and changing entities with individual decisions (PAGE, 2010).

This shows SDoH may create a complex scenario.

Complex phenomena, studied in di�erent areas, such as physics, biology, and social

sciences, are hard to de�ne and quantify (LINEWEAVER; DAVIES; RUSE, 2013). To deal with

the lack of consensus on a formal de�nition, I used two core principles of complexity

established by Page (2010): �rst, the BOAR (complexity lies Between Order and Randomness)

principle relates to the intuition that complex outcomes are neither perfectly ordered nor

totally random; second, the DEEP (complexity cannot be easily Described, Evolved,

Engineered, and Predicted) principle in turn, establishes the di�culties when working with

complexity. Considering these principles, it is possible to consider complexity as an outcome

from a system hard to predict, yet prone to describe.

Complex systems (CS) are collections of diverse, interconnected, and independent actors

that behave according to rules that might adapt according to the environment in which those
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actors interact (PAGE, 2010). CS behavior is established by the interactions among its actors.

Those interactions allow the system to learn and evolve, making possible the presence of

emergent phenomena (FURTADO; SAKOWSKI; TÓVOLLI, 2015).

Thus, in order to deal with complexity, complex systems modeling must identify the

emergent phenomena from interactions among individuals present in the modeled system

and the e�ects of the environment in which the system takes place (WILENSKY; RAND,

2015).

One approach for emergent phenomena identi�cation in CS is based on modeling the

behavior of the constituent parts of the system and their interactions to determine the

overall system response. Di�erent names are found in literature for this approach. It can be

called Agent-Based Modeling and Simulation (KLÜGL; BAZZAN, 2012; CONTE; PAOLUCCI,

2014), Agent-Based Modeling (RAILSBACK; GRIMM, 2019), Agent-Based Simulation

(KIESLING et al., 2012), Agent-Based Models (GIABBANELLI; CRUTZEN, 2017),

Agent-Based Computer Modeling (EPSTEIN; AXTELL, 1996), or Multi-Agent-Based

Simulation (SICHMAN, 2015). I will use the name Agent-Based Modeling and Simulation

(ABMS) as it is the most broad-ranging.

This approach is based on modeling the interactions between agents - autonomous

individuals that have properties and actions - and the environment (WILENSKY; RAND,

2015). ABMS is derived from Thomas Schelling’s proposal to obtain emergent patterns from

simple spatially distributed models of individual behavior (SCHELLING, 1969). The basic

idea of ABMS is shown in Figure 1.1.

Figure 1.1: Basic ABMS

ABMS has gained popularity during the last decade, being used to model complex

systems in areas such as social sciences, combat scenarios, urban planning, food behaviors,
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evacuation scenarios, public policy, biology, and education among others (WEIMER;

MILLER; HILL, 2016; GIABBANELLI; CRUTZEN, 2017; KLÜGL; BAZZAN, 2012; FURTADO;

SAKOWSKI; TÓVOLLI, 2015). In general, ABMS of social processes can be called arti�cial

societies, as they are intended to create social structures from local interactions between

agents (EPSTEIN; AXTELL, 1996).

Public policy analysis compares and evaluates alternatives to identify and implement a

desired social change (GENTILE, J.; GLAZNER; KOEHLER, 2015; GIABBANELLI; CRUTZEN,

2017). In the context of public policy, modeling interactions among communities, citizens, and

public and private institutions is useful to determine the impact of public policies and make

better decisions (FURTADO; SAKOWSKI; TÓVOLLI, 2015).

Public policies usually need to consider citizens and organizations behavior to achieve a

desirable outcome. As each agent reacts di�erently, and interactions between them occur,

outcomes of public policy are emergent products of individual decisions and the in�uence of

those decisions with each other and with the policy (RAND, 2015).

Public policy analysis is bene�tted from the understanding and prediction of the possible

emergent phenomena present in social systems. Those systems are composed by

autonomous agents who behave with bounded rationality. That behavior and environmental

issues make social systems non-deterministic (GENTILE, J.; GLAZNER; KOEHLER, 2015).

Then, it is convenient to model each agent, its behavior, and its interactions with other

agents and the environment.

In public health policy, besides biological factors, it is necessary to considerate social

variables that may in�uence the emergence and spread of diseases and that may generate

inequity in health conditions among individuals or social groups within a society

(WHITEHEAD, 1991). In this context, Social Determinants of Health (SDoH) are the

conditions in which individuals within a population live and work (BUSS;

PELLEGRINI FILHO, 2007). The use of ABMS for public health models shows promising

results in identifying how SDoH impact public health policy (ALVAREZ-GALVEZ;

SUAREZ-LLEDO, 2019; OH et al., 2020).

As seen previously, ABMS is useful for modeling social phenomena in general, and public

health policy in particular. More importantly, ABMS is the only known modeling approach

in which heterogeneous actors behaviors and their interactions are modeled (CONTE;

PAOLUCCI, 2014). Yet, ABMS has to face challenges related to agent behavior modeling. One
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of the challenges is related to the generation of outcomes interpretable and helpful for

decision makers.

Policymakers need tools to help them make decisions based on models organizing

empirical, theoretical, and expert knowledge about the policy’s goal. These type of models,

called justi�ed stories, are intended for decision makers to answer their questions about

di�erent scenarios and the choices they can make (BADHAM et al., 2021). The value of these

models is the possibility of accessing the knowledge available to analyze di�erent strategies

in di�erent scenarios. Then, ABMS must include variables, parameters, and outcomes

re�ecting these scenarios.

Traditional ABMS needs that agent behavior rules are well established before running a

simulation (WEIMER; MILLER; HILL, 2016). Those rules are determined in the agent

architecture, that is, the software architecture that determines agents’ learning and actions

(CHIN et al., 2014). Yet, a rule-oriented instead of an agent-oriented approach limits models’

scope. This is because in a changing environment with bottom-up and top-down

interactions, agents behavior change. A generative approach based on a cognitive agent

theory is necessary to make a model in which learning and adaptation are incorporated

(CONTE; PAOLUCCI, 2014). That approach must be considered from the agent architecture.

In this thesis, the creation of a method for ABMS modeling is presented. In this method, a

logistic regression model is used for validation and calibration. This method should optimize

the model outcomes, according to the rewards given to the agents.

1.2 Research Questions

Q: How to systematically test di�erent scenarios for cervical cancer detection at an early stage,

considering SDoH and behavior issues?

1.3 Research Hypotheses

H: By using ABMS with SDoH, it is possible to identify the in�uence of di�erent strategies in

early detection of cervical cancer.
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1.4 Research Objective

The general objective of this research is to develop a method to systematically model and

evaluate public health scenarios related to cervical cancer detection at an early stage,

considering SDoH and using ABMS.

According to the general objective, the following speci�c objectives were de�ned:

• To create a dataset with SDoH data related to cervical cancer.

• To develop a statistical model for calibration of cervical cancer scenarios.

• To model and simulate in ABMS for cervical cancer detection at an early stage, in which

biological and social variables are considered.

1.5 Methodology

In order to test the research hypothesis, the following steps were performed.

The �rst step is the creation of a dataset by joining cervical data records using data from

the São Paulo Oncological Foundation (FOSP) with demographic data published by the State

of São Paulo Statistics Portal (SEADE). All variables were reviewed and some pre-processing

techniques, such as data normalization, imputation, and selection, were applied (GALINDO;

FORMIGARI; VALE, D. B., et al., 2021).

The second step is the creation of a logistic regression (logit) model to select the variables

used in the SDoH. The logit model is used for calibration and validation of the ABMS model.

Finally, in the third step is the creation of a baseline ABMS model to check the proportion

of cervical cancer detection from di�erent strategies.

The rest of this work is shown as follows: in Chapter 2 the theoretical framework

supporting this thesis is presented. In Chapter 3, a literary review about ABMS with SDoH is

shown. Chapter 4 shows the Methodology followed to answer the research question. The

data preprocessing and the logit regression are presented in Chapter 5, and the base ABMS

results are shown in Chapter 6. Finally,conclusions and propose future works are shown in

Chapter 7.
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Chapter 2

Basic Concepts

In order to clarify some important concepts for the research taking place and determine its

boundaries, some basic concepts about SDoH, complexity, modeling, and simulation on public

policy are explored in this chapter. Concepts related to ABMS are emphasized, as it is the focus

of this research project.

2.1 Cervical Cancer and Social Determinants of Health

Even though cervical cancer causes, prevention, and treatment are well established, it is still

the fourth most frequent cancer among women in the world (WORLD HEALTH

ORGANIZATION, 2022) and most cases still develop into advanced stages in which

treatment is more complicated, painful, and costly (VALE, D. B.; SAUVAGET, et al., 2019).

Moreover, there are persistent inequalities in early detection of cervical cancer related to the

level of development of each country.

These inequalities are also present in Brazil, as the proportion of cervical cancer stages

detected at an early stage is higher in the Southeast Region and lower in the North and

Northeast regions (VALE, D. B.; SAUVAGET, et al., 2019). These disparities may be related to

regional variables, such as fertility rate and Human Development Index, as well as disparities

in access to healthcare services (VALE, D. B.; TEIXEIRA, et al., 2021). Considering this, it is

necessary to understand, not only the causes of cervical cancer, but also the social and

environmental issues related to its incidence. Also, the study of the incidence of Social

Determinants of Health (SDoH) in the proportion of cervical cancer cases at an advanced
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stage may suggest this proportion as an index to understand the general health conditions

within a population.

Cervical cancer is caused in virtually all cases by the Human Papillomavirus (HPV)

(SCHIFFMAN; CASTLE; JERONIMO, et al., 2007a). As it may take decades from HPV

infection to the presence of symptomatic cancer, a cervical cancer screening policy is

necessary for early detection of cases in apparently healthy women.

The International Federation of Gynecology and Obstetrics (FIGO in French) determined

four stages for the extent of cancer (SALIB et al., 2020). They go from I to IV, as follows:

• Stage I: Local tumor

• Stage II: Tumor invades surrounding organs or tissues

• Stage III: Tumor invades distant tissues within the pelvis

• Stage IV: Existence of distant metastasis

Precursor lesions to cancer can be considered stage 0, though they are not considered in

the FIGO classi�cation. Stage I corresponds to the early stage, in which the 5-year survival

rate goes between 79% and 96%, and treatment is easy and less costly. Stages II or higher

correspond to an advanced stage, in which survival rate goes from 70% to 14% and treatment

is expensive and painful (SALIB et al., 2020). At an early stage, cervical cancer is asymptomatic

and can only be detected though screening.

E�ective cervical cancer screening and treatment policies have reduced mortality �vefold

in the countries in which it is implemented (WORLD HEALTH ORGANIZATION, 2022). To

de�ne screening policies, it is necessary to de�ne the target population, the screening

method(s) and the screening periodicity. These considerations are interrelated, as depending

on the e�ectiveness of the screening method in the target population, di�erent screening

periods can be applied.

There are di�erent cervical cancer screening methods. Traditional cytological testing

(Papanicolau smear) has shown its e�ectiveness in identifying pre-cancer lesions or cancer at

the �rst stage. HPV testing has shown better results in screening than cytological testing and

is the preferred testing method according to the World Health Organization (2022), screening

policy in Brazil is still based on cytological testing (INCA, 2016).
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Considering this, the Brazilian Ministry of Health recommends testing healthy women in

ages between 25 and 64 using the traditional cytological procedure (INCA, 2016). There are

di�erent considerations regarding the results. Yet, they will be not considered in this work, as

it is focused on public policy as a whole instead of individual outcomes.

A successful screening policy depends on the screening rate. This rate is calculated as

the percentage of women in ages between 25 and 64 who live in a given area being tested

within the last three years (INCA, 2014). An 80% coverage rate was de�ned as a target in

Brazil (INCA, 2022). Yet, screening numbers have decreased in the last years and di�erences

in access between Brazilian regions are noticeable (SILVA, G. A. et al., 2022). This shows the

need to consider equity in cervical cancer screening policies.

In the context of health, equity must be understood as giving to all people the same

opportunities to achieve their full health potential (WHITEHEAD, 1991). That de�nition of

equity takes into consideration the existence of biological di�erences that make some people

more prone to develop a particular illness than others. Yet, some di�erences are related to

the conditions in which people live and work, health attention costs, and limitations to

healthy habits related to economical or social issues. Thus, in order to design, implement,

and evaluate health policy, it is necessary to consider both biological and social variables that

may interfere with health for di�erent groups and di�erent geographical locations.

Implementation of health policy requires, then, the inclusion of social variables that

a�ect health within communities. The concept of SDoH represent the e�orts in identifying,

understanding, and controlling those social variables. Even though there are several

de�nitions on SDoH, all of them relate to living and working conditions of individuals and

human groups and the incidence of those conditions on health (BUSS; PELLEGRINI FILHO,

2007). Variables as diverse as access to potable water, distance to the nearest health center or

language barriers for immigrants are examples of social conditions that a�ect health within a

population.

The understanding of SDoH, therefore, allows the creation of public policy focused on

minimizing the di�erentials between individuals and social groups to reduce health inequities.

It is necessary to consider the relationship between SDoH and macroscopic health indicators.

The greatest challenge to establishing that relationship consists in establishing a hierarchy

of determinants from general factors and the mechanisms by which those factors in�uence

groups and individuals’ health (BUSS; PELLEGRINI FILHO, 2007). Yet, those mechanisms are
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not linear and have several feedback relationships, being necessary a systemic approach to

these relationships (CAREY; CRAMMOND, 2015). Then, to study the incidence of SDoH on

health, it is convenient to understand public health as a complex system.

2.2 Complexity

Cells, ecosystems, a galaxy, the internet, the stock market, and politics have in common the

presence of complexity. Complex phenomena are present in both hard sciences and

humanities. Yet, it is in human sciences in which they create most challenges. Hard sciences

are built upon general, fundamental laws. Those laws are tested by experiments that can be

replicated and, given the same initial conditions, those fundamental laws are tested and

re�ned.

Social phenomena are di�erent. First, they are discrete by nature, Also, social phenomena

do not follow universal patterns and have to deal with uncertainties related to subjectivity

(FURTADO; SAKOWSKI; TÓVOLLI, 2015). Some subjectivity issues present in social sciences

are related to bounded rationality. Bounded rationality is the fact that human decisions for

complex problems is not fully rational, as it escapes human cognition abilities (ARTHUR, 1994).

Then, problems in public policy usually deal with complexity, as every individual in a group

reacts di�erently.

Interactions among individuals are also determinant in public policy. As individuals

interact and their reactions in�uence and feedback each other, interactions make the overall

result di�erent from the sum of all individual reactions. That makes the outcome of the

implementation an emergent product of individual decisions and the interactions of those

decisions between them and with the public policy (RAND, 2015). In this context, emergence

is understood as ”stable macroscopic patterns arising from the local interaction of agents”

(EPSTEIN; AXTELL, 1996, p. 35).

As seen previously, complexity is highly related to actors individual decisions and the e�ect

of those decisions on the system. Then, it is necessary to establish what constitutes a complex

system. There are multiple complex systems (CS) de�nitions, most of them focused on the

knowledge area or the particular characteristics of the model. Yet, it is possible to identify

some features most de�nitions have in common (FURTADO; SAKOWSKI; TÓVOLLI, 2015;

RAND, 2015; WILENSKY; RAND, 2015; FUENTES, 2015; SICHMAN, 2015; PAGE, 2010):
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• Multiple interactions among constituent parts of a system, from and across scales,

making it impossible to describe that system considering only the attributes of its parts

(RAND, 2015; PAGE, 2010).

• Multiple abstraction levels, from individuals to organizations.

• Self-organization of the system without the need of central control. For example, bird

�ocks form complex patterns without central coordination (WILENSKY, 1998).

• Presence of feedback. Interactions among parts of the system have e�ects in time,

making the system adaptive and evolutionary.

• Individuals’ behavior is determined by rules and may be adaptive (PAGE, 2010).

Rand (2015) identi�es some properties that characterize complex systems:

• Emergence: An emergent property is a property of a system that cannot be neither

understood nor predicted from the analysis of its individual agents. It results from the

interactions of the agents between them and with the environment.

• Leverage points: A place of a CS on which the system can be drastically altered or

changed.

• Tipping points: A point where a system suddenly changes states after a small change of

one parameter.

• Path dependence: Degree of dependence of the outcome of the system on the initial

conditions.

• Nonlinearity: Inputs do not a�ect outputs linearly.

• Robustness: How much a system maintains its behavior after a perturbation.

• Diversity and heterogeneity: Refer to the uniqueness of individuals. Complexity is also

a result of diversity and heterogeneity, as individuals react di�erently to interactions.

• Interconnectedness and interactions: Connection patterns between individuals can

determine the outcome of the system (BARABÁSI; ALBERT, 1999; GAO; BARZEL;

BARABÁSI, 2016).
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From those properties, it is possible to consider complexity, for the purpose of this work,

as an interesting outcome produced from a system composed by the interaction of its parts

(PAGE, 2010). Therefore, to deal with complexity, it is necessary to understand the underlying

systems that produce it.

2.3 Complex System Methods

CS features and properties make it impossible for a prede�ned algorithm to predict its

outcomes (SICHMAN, 2015). Then, it is necessary to use CS modeling tools being able to

explain and identify emergence properties from heterogeneity and diversity (RAND et al.,

2003). Diversity also increases robustness and drives innovation and productivity to CS

(PAGE, 2010), being desirable, yet hard to deal with.

To deal with CS, some computational and interdisciplinary methods have been proposed.

CS methods focus on identifying and predicting adaptive and evolutionary behavior. In these

predictions, it is important to understand how small individual decisions, in most cases

unaware of the global impact of those decisions, lead to �t and optimal responses for a

community (MITCHELL, 2011). This is necessary to understand how individuals adapt to

environmental changes, such as the ones made by public policy, and to see how their

response a�ect the overall outcome (RAND, 2015).

There are several methods proposed to model CS. They all consider the characteristics of

complexity, emphasizing on di�erent aspects and taking continuous or discrete approaches

(FUENTES, 2015). Yet, they di�er on their focus and on their nature, making the decision on

which method to use depending on the focus of the study of the CS. Table 2.1 shows some of

the most used CS methods.

Top-down approaches like macro-simulations based on mathematical models and

statistics are appropriate when central control is determinant or in which population

individual characteristics are homogeneous, being possible to average population behavior.

In opposition, bottom-up approaches, like cellular automata and ABMS have high degree of

localization and distribution. They are appropriate for models in which, even existing central

control, any component can in�uence the system.
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Table 2.1: Most Used Complex Systems Methods

Method Principle Nature

Nonlinear Science Nonlinear Equations Top-down

Bifurcation Theory Structural Changes in
Di�erential Equations

Top-down

Network Theory Connections between
elements of a system

Bottom-up

Game Theory Statistics Top-down

Information Theory Statistics Top-down

System Dynamics Di�erential equations
paired with causal loop
diagramming

Top-down

Cellular Automata Rules mediated Bottom-up

Agent-Based Modeling and
Simulation

Rules mediated Bottom-up

Data Mining Rules, Statistics, Di�erential
Geometry

Top-down / Bottom-up

Modeling is broadly used to predict and test di�erent scenarios in public policy

(GIABBANELLI; CRUTZEN, 2017). Modeling approaches can be grouped into three

categories:

• Qualitative aggregate models

• Quantitative aggregate models (macrosimulation), like di�erential equations and

macroeconomics.

• Quantitative individual models (microsimulation), like network modeling and ABMS.

ABMS is usually de�ned in opposition to Equation-Based Modeling and Simulation

(EBMS) (CONTE; PAOLUCCI, 2014). Because of its nature, ABMS di�ers from EBMS in that

ABMS is able to represent heteronomous populations in discrete space and time and

considering individual characteristics (EPSTEIN; AXTELL, 1996). Other approaches divide

individuals into groups of homogeneous characteristics (Di�erential Equations) or use

representative agents (macroeconomics). Data mining approaches also consider heteronomy

by working with outliers within the systems. Yet, ABMS describes and tests causal

relationships from model designing stages, whereas data mining only discovers and tests

correlations (GENTILE, J.; GLAZNER; KOEHLER, 2015).
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Another di�erence between ABMS and EBMS is its focus on dynamics. Mathematical

social science approaches like macroeconomics tend to focus on equilibrium states.

Di�erential Equations approaches are able to represent dynamics, yet they separate transient

and equilibrium states. Finally, ABMS is a top-down approach, di�erently from most EBMS

that take bottom-up approaches (RAND, 2015). That approach also re�ects a di�erence in the

understanding of simulations as problem-solving techniques or as descriptions of patterns of

behavior (DURÁN, 2018).

2.4 Agent-based Modeling and Simulation

ABMS is a bottom-up approach that models emergent phenomena from individual agent

behavior. ABMS consider boundedly rational agents, including outliers and their e�ects on

the system, something most statistical approaches are not able to do (GENTILE, J.;

GLAZNER; KOEHLER, 2015). Because of its descriptive capability, ABMS captures individual

decision-making processes, as well as the macro e�ect of interactions between individuals

and the environment (GIABBANELLI; CRUTZEN, 2017).

As an interdisciplinary approach in social sciences, ABMS can be described as part of a

broader area that studies agents’ computational technology to simulate social phenomena,

called Agent-Based Social Simulation (ABSS). Sichman (2015) establishes ABSS as the

intersection of three disciplines. ABMS is composed by Computer Simulation, and

Agent-Based Computing — focused on the study, design, and implementation of arti�cial

agents. The Venn Diagram of those three disciplines is shown in Figure 2.1.

Figure 2.1: ABMS Interdisciplinary Venn Diagram. Source: Adapted from Sichman et al. (2015)
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Besides ABMS and ABSS, other elements appear as interdisciplinary intersections in

Figure 2.1. Social Aspects of Agent Systems (SAAS) is the study of social constructs present

in societies that can be used as an inspiration for computational models used in the analysis

and implementation of norms, institutions, and other social relationships. Social Simulation

(SocSim), in turn, is the study of computer simulations of social phenomena. Then, ABSS can

be understood as the intersection of ABMS with SocSim or SAAS, or as the application of

ABMS in Social Sciences. Another view from Conte and Paolucci (2014) puts ABMS as an

intersection between Agent Theory, Systems and Architectures and Social Sciences. Both

approaches coincide in putting ABMS as an interdisciplinary approach in which

computational resources are used to model and simulate social phenomena.

From the interdisciplinary relationships previously presented, it is possible to conclude

that ABMS is prone to simulate emergent social phenomena from individual agent behavior

descriptive models. ABMS is used mainly for arti�cial social models to test ideas, and for

socio-cognitive and social models to simulate system outcomes from individual cognitive

decisions. By simulating those models, it is possible to prototype public policies and analyze

di�erent scenarios (DAVID et al., 2004). Then, ABMS is used for comprehension of social

complex phenomena, for helping stakeholders to make decisions from predictive

simulations, and even for participatory simulations among stakeholders in a common

complex environment (SICHMAN, 2015).

As said before, ABMS is focused on modeling agents’ individual behavior and their

interactions among them and with the environment in order to analyze emergent

phenomena (RAILSBACK; GRIMM, 2019). To understand the principles of ABMS, it is

necessary to consider some basic de�nitions.

To begin, it is necessary to establish what constitutes an agent. An agent is an

autonomous entity that operates in transitions between states of the world based on

mechanisms and representations somehow incorporated into them (CONTE; PAOLUCCI,

2014). The degree of autonomy is important to establish the use of agents. Most models use

agents in a "weak" sense, that is, they are not able to sense, manipulate, and reason in their

environment, being limited to follow the rules they were programmed to. In opposition,

when an agent has sensing, reaction, and learning capabilities, it is an agent in a "strong"

sense (CONTE; PAOLUCCI, 2014).
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Symbolic representations of agents and environment characteristics are used to allow an

agent to actively interact and take decisions. The environment is the medium in which the

agents are inserted in (RAILSBACK; GRIMM, 2019). The environment has its own properties.

Those properties usually vary in space and time.

Agents have a relationship full of feedback loops with the environment, in which, agents’

actions may a�ect the environment and the environment, in turn, a�ects agents. In order to

understand those relationships, and the emergent phenomena they produce, ABMS considers

both individual and systemic behavior, connecting di�erent disciplines in one model

(EPSTEIN; AXTELL, 1996), like psychology (individual) and sociology (systemic), or biology

(individual) and epidemiology (systemic).

Time in ABMS is divided into steps. In each time step, an iteration occurs. During that

iteration, all interactions between agents and with the environment occur. Then, time steps

represent the timescale in which interactions happen (seconds, hours, days, years, etc.). Then,

the de�nition of a timescale indicates the speed in which those changes happen (RAILSBACK;

GRIMM, 2019).

Interactions between agents and the environment on a large scale generate emergent

phenomena. Yet, that phenomena is usually non-deterministic. As described earlier, social

systems have stochastic behavior. Open and stochastic systems are not well described by

deductive reasoning (GENTILE, J.; GLAZNER; KOEHLER, 2015). ABMS models require

abduction logic. It is necessary to execute the model multiple times. Each execution is a

deduction of a particular scenario, and its outcomes correspond to that scenario. Small

changes in parameter values may lead to totally di�erent outcomes. Therefore, it is

necessary to execute a model multiple times considering di�erent parameters to cover

multiple scenarios. Then, from those multiple executions it is possible to produce and test

multiple hypotheses, and infer the best explanation.

By summarizing the outcomes from ABMS executions, it is possible to analyze the results

of public policy. Outcomes from ABMS in public policy can be categorized into three

categories when compared to expectations (GENTILE, J.; GLAZNER; KOEHLER, 2015;

KOEHLER; BARRY; MEYER, 2006). This categorization is relevant for decision-making in

public policy The �rst category is expected valid outcomes, that is, expected input values

create desired outcomes. The second category is expected invalid outcomes, that is, expected

input values create undesired outcomes. Finally, the third category is unexpected outcomes,
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and is in those outcomes in which insight about a system is created (KOEHLER; BARRY;

MEYER, 2006). By using abduction logic, comprehension of the modeled system increases

and hypotheses are re�ned and tested.

From ABMS outcomes, public managers can take decisions that support their intended

outcomes. Yet, they need to be conscious of the empirical relevance of the model they used.

Model relevance should be de�ned considering the level of detail and the �delity to a referent.

That referent can be real data or a previously tested model used as reference. Axtell de�ned

four levels of empirical relevance for modeling and simulation (AXTELL, 2005; KOEHLER;

BARRY; MEYER, 2006):

• Level 0: Micro-level qualitative correspondence-agents that behave plausibly for a given

system.

• Level 1: Macro-level qualitative correspondence to the referent.

• Level 2: Macro-level quantitative correspondence to the referent.

• Level 3: Micro-level quantitative correspondence-agents that behave identically to real

world.

To better understand these levels, let’s see a �ocking bird example present in Figure 2.2.

In this example, the modeled phenomenon is related to how, as each bird follows the closest

bird to it, the �ock creates a determined pattern, being this pattern an emergent

phenomenon (STONEDAHL; WILENSKY, 2011). In a model with level 0 relevance,

qualitative correspondence in individual movements is ensured, that is, each bird follows the

bird closest to it. Going into Level 1 relevance, the birds are creating a pattern that somewhat

resembles patterns found in real life. For Level 2 relevance, it is necessary to have

quantitative parameters, such as velocity, time, or distance, similar to the referent, for the

�ock as a whole. Finally, for Level 3 relevance, each bird behavior should result in similar

parameters found in real life.

Level 0 models correspond to thought experiments. ABMS should minimally achieve Level

1, and preferably Level 2. Level 3 may be considered ideal, though, as the goal of ABMS and

to modeling in general is not to reproduce reality exactly as it is but to represent, describe and

predict particular phenomena (RAND, 2015), the cost of achieving Level 3 is seldom worthy

(GENTILE, J.; GLAZNER; KOEHLER, 2015).
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Figure 2.2: ABMS Relevance Model example. Source: Adapted from (AXTELL, 2005)

Axtell et al. (1996) proposed a Docking Framework composed by three levels of

correspondence to de�ne the validity of a model, comparing it to a model of reference:

• Identity: identical results to the referent.

• Distributional: Statistically indistinguishable results from the referent.

• Relational: Statistically distinguishable results from the referent, yet qualitatively

similar.

For thought experiments, relational level is enough. For decision-making, in turn, it is

necessary to achieve at least a distributional level (GENTILE, J.; GLAZNER; KOEHLER, 2015).

Modeling is an iterative process. In each iteration, model relevance and correspondence

are improved. Gentile et al. (2015) propose an iterative process, presented in Figure 2.3. That

process begins by de�ning the research question from real world observations. From that

research question, a conceptual model is de�ned. A simulation is built to test that model. To

test the simulation and the model, two subprocesses are made. Veri�cation, which compares

the simulation with the conceptual model to test its internal validity, and validation, which

compares the simulation and external data and checks if the research question is satisfactorily

answered, testing the model’s external validity.

Model validation consists on testing how good a model represents the system being

modeled. In other words, a valid model is a model that correctly satis�es the modeling
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Figure 2.3: Modeling Iteration. Source: Adapted from Gentile et al. (2015)

questions. Because of initial conditions and path dependence, validation is critical in CS.

Particularly in ABMS, agents adaptability make model validation harder, as replication of all

micro-details present in a model is hardly impossible (GENTILE, J. E.; DAVIS, G. J.; RUND,

2012).

Rand et al. (2003) propose an approach to ABMS validation focused on matching model

components and processes to real-world components and processes and matching macro-level

patterns, statistics and dynamics found across a variety of cases. Validation can be performed

through linear regression using modeling data and comparing it with real-world data. When

no real-world data is available, validation can be done by comparing overall behavior of the

model with well-known phenomena found in literature.

In most ABMS research, the emergent phenomena are unknown. Also, exploratory

research usually lacks of access to real-world data, being impossible to validate the proposed

ABMS (GENTILE, J. E.; DAVIS, G. J.; RUND, 2012). A step before model validation is called

model veri�cation, in which the simulation is aligned with the conceptual model. Once the

conceptual model is considered valid, it is necessary to guarantee that implementation and

simulation correspond to that model.

A �rst step in model veri�cation consists of visually inspecting the inputs and outcomes

and compare results with expectation according to the conceptual model. Yet, that type of

veri�cation depends entirely on researchers’ expertise and ability to detect any deviation. To

make veri�cation more systematic, the use of steady-state analysis techniques is useful

(GENTILE, J. E.; DAVIS, G. J.; RUND, 2012). Steady-state analysis is made by analyzing the

population or distribution of agents in the simulation and parameter calibration. For

oscillating systems, Fourier analysis can be done. Yet, this type of veri�cation needs model
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behavior to have a steady-state, that is, constant or oscillating behavior. That condition is not

always achieved, especially in larger systems. To deal with models for larger systems,

Gentile et al. (2015) propose to disassemble the model into components and verify each

component. This process is called unit testing. When components are reassembled, it is

possible to validate a portion of the system by bringing it to known steady-state phases.

According to Cooley and Solano (2011), there are three model validation stages: model

veri�cation (the code does what it is intended to do), model validation (the model re�ects the

phenomena) and sensitivity analysis (the model is robust enough to accept parameter

changes).

Sensitivity analysis is performed by varying initial conditions and parameters and check

how these changes a�ect the outcomes of the model. In most cases, as randomness is added

in the construction of the model, sensitivity analysis can be done by running the model

several times varying these conditions. Yet, as there are lots of non-linearities, multiple levels

of interactions, and emergent properties, and as the mathematical model in most ABMS is

unknown, the One-factor-at-a-time (OFAT) method is recommended, as it shows the e�ect of

individual parameter variations in the model and the robustness of the model to these

changes, even though, it is not as good as variance sensitivity analysis methods to robustness

of patterns (TEN BROEKE; VAN VOORN; LIGTENBERG, 2016).

Cooley and Solano (2011) also make some considerations on the limitations on model

validation. The most important is the fact that both the model outputs and real data outputs

are stochastic, making exact correspondence virtually unattainable. Another factors, such as

path-dependence on ABMS, and the di�culties on the model to reproduce some phenomena,

are also highlighted by the authors.

2.5 ABMS Advantages and Limitations

Because of its nature, ABMS have several advantages. First, compared to EBMS and other

approaches, ABMS greatest advantage is related to its nature, as it is the only approach in

which states of heterogeneous agents, their decisions, interactions, and communications are

modeled (CONTE; PAOLUCCI, 2014).

The possibility to represent agents’ behavior and connection eases the expression of

experimental hypotheses at individual label, making systems easier to model, implement and
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visualize. The possibility of considering di�erent types of agents eases separation of

processes and entities, as well allows the evaluation and explanation of the e�ects of

individual behavior in simulation �nal outcomes (RAND et al., 2003).

The establishment of interaction rules is also simple, easing modeling of complex patterns

in higher levels. Also, as models themselves are experimental objects, ABMS increases the

understanding of those models, making themmore prone to inspection and re�nement. Those

advantages allow the creation of arti�cial agent societies, in which di�erent hypotheses can

be tested, macro-level phenomena can be discovered and characterized, and unforeseen e�ects

can be detected (CONTE; PAOLUCCI, 2014).

The greatest advantage of ABMS is the possibility of modeling both individual behavior

and interactions to allow representation, analysis, and prediction of CS for which modeling

from equations results virtually impossible (RAILSBACK; GRIMM, 2019). Also, ABMS

multi-realizability makes ABMS models generate a higher-level e�ect from multiple paths

(CONTE; PAOLUCCI, 2014). Those advantages create the possibility to create and evaluate

more scenarios than EBMS.

All those advantages make ABMS a useful tool for modeling social phenomena, able for

models considering SDoH. Yet, there are some limitations in ABMS. The �rst one is the high

computational cost resulting from simulations and data analysis. Designing large-scale ABMS

and real-time big data simulations with ABMS require processing of huge amounts of data

(CONTE; PAOLUCCI, 2014).

Another limitation, not just for ABMS, but for all CS techniques, is the presence of

numerous free parameters. This large number of parameters make model reproduction

harder (SICHMAN, 2015). Those parameters are related to path dependence, making is

necessary to ensure that model outcomes are robust enough to a wide parameter value

distribution (RAND, 2015).

Parameter determination and other modeling tasks need to use knowledge about the

topics covered. Though, another limitation is the lack of strong knowledge in the individual

level, required to consider heterogeneity and diversity. Sometimes, individual-level data is

not necessary, as modeling can be done from theories about individual behavior (RAND,

2015). Another feasible approach can be done by using machine learning, yet it needs a

�ne-tuned data acquisition strategy.
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In order to deal with high computational cost and parameter adjusting, some authors

recommend to keep models simple and focus modeling on the relationships of interest for a

particular study (WILENSKY; RAND, 2015) Simplify a model surely makes sense, yet it

comes at a cost: in order to simplify a model, it is necessary to ignore some elements present

in reality, making the model less accurate.

Dealing with simplicity and accuracy is one of the hardest decisions in ABMS. The usual

trend is to emphasize in a particular aspect when modeling and to sacri�ce those parts that

are not considered relevant for the study (WILENSKY; RAND, 2015). Yet, making a model too

adjusted for a particular situation may a�ect the understanding of the CS studied

(GIABBANELLI; CRUTZEN, 2017). Also, the higher the interactions in di�erent levels of

abstraction, the harder to understand the model (SICHMAN, 2015).

Oversimplifying a model may lead to model inconsistencies as well. Minimality in

modeling happens when only the minimum micro-level rules to obtain a known macro-level

e�ect are added to the model. Minimality happens when models are built using backward

engineering from known e�ects, modeling is rule-oriented rather than agent-oriented, model

rules are ad-hoc, or when the overall model is inspired by the minimal conditions logic

(CONTE; PAOLUCCI, 2014).

Modeling minimality reduces ABMS validity with two possible outcomes. The �rst one

is theory-based ABMS resulting in agent models that distort real agent behavior. The other

possible outcome is arbitrarymodels from ad-hoc rules, only valid for a tightly limited number

of cases (CONTE; PAOLUCCI, 2014).

In order to deal with this validity issue, models based on cognitive theories of agency may

be applied to ABMS. Yet, using cognitive agent models such as BDI architectures or models

using neural networks increasemodel complexity, making it harder to guarantee inner validity

and calibration.

Even though cognitive ABMS has to deal with increased validity and calibration issues,

cognitive modeling is a generative behavioral theory, that is, it describes social phenomena

in terms of the external —environmental— and internal —behavioral— mechanisms of the

given CS (CONTE; PAOLUCCI, 2014). Generative models allow modeling adaptation to

change in environmental conditions or in individual preferences, as the general mechanisms

are considered from the beginning. A generative explanation is necessary for modeling
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complex social dynamics, in which emergent phenomena retro-act and agents react to

environmental changes (CONTE; PAOLUCCI, 2014).

Parameter determination and validation di�culties may a�ect model readability and

repeatability. The ODD (overview, design concepts, and details) protocol was created to

improve ABMS documentation readability and repeatability. (GRIMM; BERGER;

BASTIANSEN, et al., 2006).

The ODD protocol consists of three blocks, each block composed of di�erent elements, as

presented in Figure 2.4. The �rst block, Overview, gives information about the purpose, the

state variables and scales, and process overview and scheduling. The second block, Design

Concepts, provides information about the basic principles, emergence, adaptation, objectives,

learning, prediction, sensing, interaction, stochasticity, collectives, and observation of the

model. Finally, the third block, Details, gives information about initialization, input data, and

existing submodels.

Figure 2.4: ODD Protocol. Source: Adapted from Grimm et al. (2020)

The original protocol was �rst updated in 2010 to overcome some confusion related to

terminology (GRIMM; BERGER; DEANGELIS, et al., 2010; GRIMM; POLHILL; TOUZA, 2017).

Yet, the 2010 version of the ODD protocol still had some issues (GRIMM; RAILSBACK, et al.,

2020). It was not simple to use, as modelers were not required to describe the structure and

processes of the model implementation. Model rationality also was not explicitly required,

reducing model credibility. Another issues were the di�culty to reuse an existing model and

the tendency to create long documents when using the protocol.
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To solve those problems by improving clarity, model repeatability, and structural realism,

a new version of the protocol was created (RAILSBACK; GRIMM, 2019; GRIMM;

RAILSBACK, et al., 2020). The solution to those issues comes in the form of supplements to

ODD. Those supplements, ease ABMS documentation in order to increase model readability

and repeatability.

As presented before, two of the greatest advantages of ABMS are the possibility of

considering individual behaviors and interactions between individuals and organizations,

and ABMS multi-realizability, allowing the analysis of multiple scenarios. Those advantages

allow testing several strategies and comparing the results of these strategies, as a support

tool for decision-making. However, the process of de�ning and testing di�erent strategies

done manually is limited (CONTE; PAOLUCCI, 2014).
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Chapter 3

Bibliographic Reviews

For the purpose of this research, a bibliographic review focused on the use of ABMS including

SDoH for public health policy was performed.

3.1 Use of ABMS including SDoH for public health policy

A narrative review of ABMS works including SDoH in public health from 2017 to 2022 using

PubMed, Scopus, and Web of Science databases was performed. The �ve-year interval was

de�ned as a �lter to get recent works only. We found 272 results containing agent-based

modeling and social determinants of health, considering both journal and conference papers

in some part of the text. Yet, when reducing to title and abstract, the number of papers went

to 16, focusing on AIDS/HIV, COVID-19, food behavior, and access to healthcare, as shown on

Table 3.1. The process can be summarized as follows:

• Search for: (Agent-Based Models) OR (Agent Based Models) OR (Agent-Based Modeling

OR Agent Based Modeling) OR (Agent-Based Simulation) OR (Agent Based Simulation)

AND (Social Determinants of Health) OR (SDoH).

• Limit the search for years between 2017 and 2022.

• Limit the search for terms appearing in the Abstract.

• Eliminate works that correspond to a previous stage of the same research.

We found that interest in using ABMS to consider SDoH for analyzing di�erent scenarios

is quite big, even though, there are few examples in the area. Moreover, there were no results



Chapter 3. Bibliographic Reviews 38

Table 3.1: Main topic of papers regarding ABMS and SDoH

Main Topic Conference Journal Total

General 2 2 4

COVID-19 2 1 3

HIV/AIDS 1 2 3

Food behavior 0 3 3

Access to healthcare 2 1 3

Total 7 9 16

related to cervical cancer. To explain this lack of novel results publishing, we detected some

concerns in model documentation, validation, and reproducibility.

From these 16 works, eleven were chosen by choosing the most recent work from the ones

detected.

Tracy, Cerdá, and Keyes (2018) made a review paper to identify the level of adoption of

ABMS in public health. Most ABMS are focused on infectious disease epidemiology, as this

area is one of the �rst in which computational models were applied. ABMS has also been

applied in social epidemiology to understand phenomena like urban violence or social

segregation. ABMS use is also growing in noncommunicable (noninfectious) disease control,

for medical conditions such as diabetes or obesity in children and minorities. Another area in

which ABMS has also been used is the analysis of health behaviors that increase disease risk,

like smoking, sedentarism, alcohol consumption, and unhealthy eating habits.

That review showed ABMS growth in popularity is related to its capacity to give insight for

public health policies. Yet, the use of ABMS in public health needs to deal with reproducibility

and validation. The authors pointed out the use of the ODD protocol in ABMS for public health

to increase reproducibility and use of empirical data for model validation and parametrization.

Another review explored two limitations in ABMS of food behaviors (GIABBANELLI;

CRUTZEN, 2017). The �rst one is the lack of details about the roles played by peers and

environment in the models. The second one is the lack of expertise using large amounts of

data. To overcome both limitations, the authors of that review recommend an

interdisciplinary approach and the use of machine learning.

An example of ABMS of food behaviors is the work of Langellier, Lê-Scherban, and Purtle

(2017). The authors built an ABMS to study the e�ects of the creation of a sugary drink tax

on pre-kindergarten attendance, educational achievement and sugar-sweetened drinks

consumption in children. Their model, built upon a geographic information system (GIS) of
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Philadelphia, allowed the researchers to measure the impact of tax in di�erent populations of

children, according to characteristics such as age, gender, race, or the income of their

families.

Another example of ABMS of food behaviors is a study to identify the spread of healthy

eating habits and its implications on hypertension (KHADEMI et al., 2018). The authors of

that study focused on agents’ preferences for fruits and vegetables based on their initial

preferences, social pressure, and individual characteristics, such as age or gender. The

authors used probit regression to estimate the parameters for taste and healthy food

preferences.

Thework done byHogan, Galai, andDavis (2021) analyzes the impact of di�erentmodeling

approaches for HIV incidence and prevalence using SDoH. This paper indicates the importance

of ABMS for detecting global trends from individual variables. Yet, it indicates the limitations

of this approach depending on the availability of data.

A remarkable work related to HIV/AIDS is the one Rasella and others are currently

performing (RASELLA et al., 2022). These authors are analyzing the impact of the Bolsa

Família Program and the Family Health Strategy on HIV incidence and treatment in Brazil.

They are using data from 2000 to 2018 on HIV/AIDS incidence to perform Regression

Discontinuity Design (RDD), Random Administrative Delays (RAD) and Propensity Score

Matching (PSM), combined with multivariable Poisson regressions for cohort analyses. With

these results, they are planning to perform ABMS to evaluate policies to prevent and treat

HIV/AIDS.

A review made by Morshed et al. (2019) found 38 papers on ABMS and System Dynamics.

The authors found that most works focused on social network-based in�uences on obesity,

physiology and disease state mechanics, and how food and physical activity environments

in�uence obesity. The authors identi�ed limitations in synthesizing scienti�c knowledge using

the current models due to di�erences in both temporal and geographical scale, as well as

variability both in calibration and validation of models. Those limitations reduce models’

realism and validity. Also, lack of documentation a�ected repeatability of most models. In

the same line, Vermeer and others (2022), recommend the use of good practices to encourage

modeling validation with local data when possible, as well as making model documentation

available to support recommendation and increase adoption of model-based decision-making.
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Related to access to health services, two works stand out. In the �rst one, an ABMS was

created to study the mechanisms of reproduction of health inequalities (ALVAREZ-GALVEZ;

SUAREZ-LLEDO, 2019). The authors used neural networks to calibrate the model In the

second one, the authors studied access to healthcare services in the Latino community of the

United States (OH et al., 2020). They made an ABMS in which a percentage of Latinos from a

population of 10.000 got sick and needed medical attention. In their model, the authors

studied the e�ects of having Spanish-speaking health professionals and English pro�ciency

in patients in improving medical attention. Regarding the spread of diseases, a work done by

Starr and Kain (2022) tested the e�ectiveness of three policies, mask mandate, testing and

isolating, and lockdown, to control the spread of COVID-19 at a municipal level in the United

States. The SDoH considered for this work were access to vaccination, population density

and size, racial pro�le, and age demographics. Starr and Kain found that there were di�erent

e�ectiveness depending on age demographics, vaccination rates, and the proportion of Black

and Latino populations. This work showed how municipal SDoH need to be considered for

the de�nition of health policies.

From the literature, it is possible to see that ABMS is gaining popularity in di�erent �elds

of public health policy studies. The inclusion of SDoH in those ABMS is present in several

studies. Yet, there are some concerns in validation, reproducibility, and generalization of those

studies.
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Chapter 4

Proposed Approach

In this chapter, the approach performed in this thesis is described, including the dataset

search, pré-processing, imputation, and selection, the creation of a logistic regression model

for validation, and the creation, validation, and re�nement of the ABMS>

4.1 Proposed Method

In order to achieve the objectives of this research, the following methodology was performed:

1. Searching for datasets with cervical cancer and demographic data.

2. Data pre-processing.

3. Building of a logistic regression as a basis for ABMS validation.

4. Construction of a ABMS according to literature and secondary or primary data (if

necessary). Simulation of the model with agent ruled behavior.

5. Veri�cation and validation of the ABMS model with the logit model.

For the �rst step, a dataset was created by joining cervical cancer incidence data records

from Oncocentro Foundation (FOSP), available at

http://www.fosp.saude.sp.gov.br/fosp/diretoria-adjunta-de-informacao-e-epidemiologia/rhc-

registro-hospitalar-de-cancer/banco-de-dados-do-rhc/ (accessed on March 13, 2022), and

cities’ demographic records from State of São Paulo Statistics Portal (SEADE), available at
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http://catalogo.governoaberto.sp.gov.br/dataset/20-indice-paulista-de-responsabilidade-

social-iprs, (accessed on March 13,

2022).

We chose the FOSP dataset, as it is a reliable dataset for cancer in the State of São Paulo.

The data from SEADE also includes the Index of Social Responsibility of the State of São Paulo

(ISR), a social index whose creation is based on the HDI, but considering local realities (SEADE,

2016).

ISR is an ordinal index, going from level 1 to level 5. Figure 4.1 shows how the ISR is

de�ned, based on city’s wellness, longevity and schooling. For level 1 (vulnerable), all

wellness, longevity, and schooling are on a low level. A Low level in wellness and a low level

in longevity and schooling results in level 2 (in transition). Low wellness and medium

longevity and schooling results in level 3 (equitable). High wellness and low longevity or low

schooling results in level 4 (unequal). Finally, high wellness, longevity and schooling results

in level 5 (dynamic).

Figure 4.1: Index of Social Responsibility of São Paulo. Source: Adapted from (SEADE, 2016)

After the creation and descriptive analysis of the data, data pre-processing techniques were

required. It was necessary to perform data normalization, data imputation, and data selection

(GALINDO; FORMIGARI; VALE, D. B., et al., 2021).

With the re�ned data, we performed a logistic regression using R v4.2.2. For this regression,

the dependent variable was the patient’s cervical cancer stage, and the independent variables,

the other pre-processed and selected data corresponding. More details about the �rst three

items are described in Chapter 5.
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For steps 4 and 5, we considered the fact that di�erent types of agents usually have di�erent

goals and �tness functions, and also agents goals not necessarily correspond to the desired

global outcomes. For that reason, in this work, we �rst built a ABMS. Then, we validated

the model and worked on de�ning how to expand it. In future models, it may be possible to

incorporate machine learning algorithms.

This project was approved by the ‘Ethics and Research Committee of UNICAMP, under

the number CAAE: 42657020.1.0000.5404. According to the Committee, there was no need

for informed consent, as the data used is secondary and patients’ identi�cation could not be

accessed.

4.2 ABMS Environment

For ABMS coding, implementation, and testing, we used Netlogo v6.2.2. Netlogo is both an

open source programming language and a multi-agent programmable environment to ease

ABMS design, programming, testing, and running (TISUE; WILENSKY, 2004). Netlogo

environment, shown in Figure 4.2 is composed by three tabs: the Interface tab, selected in

Figure 4.2, in which the user interacts with the model; the Info tab, containing the model’s

documentation; and the Code tab, which contains the underlying code used in the model.

Figure 4.2: Basic Netlogo Environment. Source: (TISUE; WILENSKY, 2004)
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As shown in Figure 4.2, most simulations have two buttons on their Interface tab. One is

the Setup Button, used to make the model take the initial conditions de�ned by the code and

by the user. The other one is the Run button, which runs the simulation.

4.3 An ABMS for Cervical Cancer Detection

In this research, we built an ABMS for Cervical Cancer. The model used to test the proposed

methodology is made to analyze the clinical, social, economic, and behavioral factors that

in�uence women to present cervical cancer in advanced stages, that is, stages in which the

carcinoma is extended beyond the cervix (Stages II, III, and IV according to the International

Federation of Gynecology and Obstetrics, FIGO). We built this model with the collaboration

of the Women’s hospital of the University of Campinas (CAISM).

As mentioned in Section 2.1, Cervical cancer is associated to social and economic

conditions of countries and regions (BRAY et al., 2012). In Brazil, cancer is the second-largest

cause of death (SAÚDE BRASIL, 2019). The expectation for 2020 is 16,4 cervical cancer cases

for each 100.000 women in Brazil and 9,6 for each 100.000 women in the state of São Paulo

(CÂNCER, 2020).

Cervical cancer is caused mainly by Human Papillomavirus (HPV) (WALBOOMERS et al.,

1999). Even though, most HPV infections are quickly cured (SCHIFFMAN; CASTLE;

MAUCORT-BOULCH, et al., 2007), persistent infections may increase the risk of precursor

lesions that may lead into cervical cancer if not properly treated (SCHIFFMAN; CASTLE;

JERONIMO, et al., 2007b).

There are also some clinical co-factors related to cervical cancer, such as the number of

sexual partners, smoking, and immunode�ciency (CASTELLSAGUE; BOSCH; MUNOZ, 2002).

Another variables, such as fertility and the number of gestation and births, are also associated

to a higher risk, even though they are not o�cially recognized as cofactors (MUÑOZ et al.,

2002; LIAO et al., 2012).

A study performed by Vale et al. (2019) showed that states with higher Human

Development Index (HDI) , places in which the density of health centers, hospitals, and

facilities is higher, more cases are diagnosed at early stage. Cervical cancer can be detected at

asymptomatic women at early stage through cervical cancer screening. As public cervical

cancer programs increase screening, the proportion of cases at advanced stage tend to fall.



Chapter 4. Proposed Approach 45

As described earlier, SDoH such as the HDI of the place of residence a�ect the proportion

of cases at advanced stage. Other factors as age (MR, 2016), level of schooling (FRANCESCHI

et al., 2009; GYENWALI; PARIYAR; ONTA, 2013), income level, being member of a minority,

commuting di�culties or lack of access to a private health plan (POWELL et al., 2018) are also

associated to late detection of cervical cancer.

In order to study the incidence of SDoH in the proportion of cases of cervical cancer

detected at advanced stage, we designed our ABMS. This ABMS will allow the estimation of

the proportion of women diagnosed with cervical cancer at an early stage.

The de�nition of the variables used in our ABMS depend on the data available. From the

datasets, we evaluated the following variables. From the SEADE dataset, having data from all

645 cities in the state of São Paulo, 16 variables were initially considered: city, Municipal HDI

(mHDI), Index of Social Responsibility of the State of São Paulo (ISR) for 2014, 2016, and 2018

(ordinal from 1 to 5), fecundity rate for 2010, 2017, and 2018, beds per 1000 people for 2010 and

2017, illiteracy rate, elementary school completion rate, income rate, access to water service

rate, access to garbage collection service rate, and access to sewage rate.

For the validation of the model, an ecological study of demographic and socio-economical

indicators related to cervical cancer at an advanced stage, from the Hospital Record of the

State of São Paulo and from SEADE foundation. This process led to the creation of a logit

model, which is used for validation of the ABMS. The resulting logit model has some of these

variables as the independent variables and the stage of detection, being 1 the detection at an

early stage, and 0, the detection at an advanced stage, as the dependent variable. This logit

model was used to determine some variables present in the ABMS and for its validation.

An initial model was built to work as a baseline model. Two entities are present in that

model: Women and health facilities of cities. Women can develop symptoms related to

cervical cancer and decide whether they go to health facilities. Health facilities, in turn,

represent the health system response in the model (hospitals, health centers, etc.). They

attend women according to their capacity or to the attention time (working vs non-working

hours). Both women and health facilities are located in speci�c space units (cities). Cities

contain speci�c environmental conditions that determine access to health facilities. In this

version, a population from 100 to 3000 women is created into a 8x8 grid. In this version, each

city has one health facility.
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The state variables for women are shown in Table 4.1. Women’s ages range according to

Brazilian recommendations for cervical cancer screening. Some clinical co-factors, such as

immunode�ciency, sexual initiation age, pregnancy, and number of children are not

considered in this project, as we want to keep it as simple as possible. Yet, those factors

might be added in future versions.

Table 4.1: State variables for women

Variable name Variable type Units Range Meaning

age discrete-dynamic years 25 or more woman’s age

cancer discrete - dynamic None No cancer

early

advanced

Whether there is

cervical cancer and, if

positive, its stage.

lastScreening discrete-dynamic years 0 or more Last time the woman

was tested

womanLocation continuous-dynamic (x; y) (0; 0) - (7; 7) Woman’s location

Schooling Level ordinal None 1-5 Schooling level, being

1 the lowest and 5 the

highest

The state variables for health facilities are shown in Table 4.2. In this model, the number

of women attended is used as a state variable, as it cannot be calculated from other variables.

Also, the health center location is placed at the city’s geographical center.

Table 4.2: State variables for health facilities

Variable name Variable type Units Range Meaning

ISR discrete - static None 1 - 5 City’s ISR

womenAttended discrete-dynamic None 0-No

limit

Number of women

attended at the health

center at a given time step

cityLocation discrete-dynamic (x; y) (0; 0) -

(7; 7)

City location
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In ABMS, time is discrete. In this model, each time step represents one year, as cervical

cancer takes several years to grow and screening procedures are recommended each three

to �ve years. In this version of the model, space has no speci�c units, as it represents an

area belonging to each city, and it is not related to physical dimensions of the real world. No

dimensions di�erent from space and time are represented in this model.

The environment created for this model is shown in Figure 4.3. Each square of the model

represents a city. The lighter the square, the higher its ISR. Also, women are represented as

shapes in their exact location.

Figure 4.3: Basic Netlogo Environment

Women interact within them in their city by going to the health facility. When one

woman decides to go to the health facility, she restricts the number of other women screened
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and treated. Health facilities’ occupation rate becomes a scarce good women compete for,

depending on their intention for having screening. In those mediated interactions,

overscreening may be a critical issue. Each health facility interacts with women living in

their city by performing screening and treatment.

The objective for facilities consists of detecting cancer at an early stage. Their success

is measured by dividing the number of cancer cases detected at an early stage and the total

number of cancer cases in the city.

The resulting ABMS is documented following the last version of the ODD protocol

(GRIMM; RAILSBACK, et al., 2020). A summary of the ODD protocol for this research

project is available at Appendix B.
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Chapter 5

Dataset Creation, Preprocessing, and

Logistic Regression Results

In this chapter, the dataset creation, the data preprocessing, and the logistic regression results

are described.

5.1 Dataset Creation and Data Preprocessing

As mentioned in Chapter 4, two datasets were used to compose a single dataset (FOSP and

SEADE datasets). From the SEADE dataset, having data from all 645 cities in the state of São

Paulo, 16 variables were initially considered: city, Municipal HDI (mHDI), ISR for 2014, 2016,

and 2018 (ordinal from 1 to 5), fecundity rate for 2010, 2017, and 2018, beds per 1000 people for

2010 and 2017, illiteracy rate, elementary school completion rate, income rate, access to water

service rate, access to garbage collection service rate, and access to sewage rate.

In order to avoid collinearity issues, and as these variables were highly correlated, for all

variables with records for di�erent years, only one year was selected. Considering that cervical

cancer stage is developed through time, we chose the oldest record for each case.

From the FOSP dataset, 9502 records of women diagnosed with cervical cancer in the State

of São Paulo, from 2010 to 2017, were extracted, to match with the SEADE dataset. It was

composed by variables: age, city, schooling level (ordinal from 1 to 5), cervical cancer stage

(ordinal from I to IV), and type of lesion (categorical). As data were in di�erent ranges, we

performed Z-score normalization (HAN; PEI; TONG, 2022).
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Both datasets had missing values. For the SEADE dataset, hospital beds per 1000 people

had 287 missing values. For the FOSP dataset, there were two variables with missing data:

cervical cancer stage, with 406 values, and schooling level, with 2258 missing values. For the

cervical cancer stage, as the number is considerably low, the records with missing data were

discarded.

In order to perform the imputation, it is necessary to check if the data are Missing

Completely at Random (MCAR), Missing at Random (MAR), or Missing Not at Random

(MNAR). For data being MCAR, the observed data distribution needs to be similar to missing

data distribution. For data being MAR, an observed data variable distribution needs to

indicate the missing data distribution. Finally, when data is MNAR, the missing data

behavior cannot be de�ned from observed data and corresponds to a latent phenomenon.

A graphic explanation of the three types of data is shown in Figure 5.1. Even thoughMCAR

and MAR data seem similar, the di�erence is that in the MCAR case, the relationship between

data distributions persists for all variables, whereas in the MAR case, this relationship exists

for one or more variables (not all). In the MNAR case, there is no relationship present.

Figure 5.1: Types of Missing Data. Source: Adapted from (GALINDO; FORMIGARI; VALE,
D. B., et al., 2021)

For both datasets, we executed the following process. First, we performed a descriptive

analysis of missing and observable data to determine if data are MCAR, MAR, or MNAR. We

then performed multiple imputation with m = 20, using Predictive Mean Matching (PMM),

Classi�cation and Regression Trees (CART), and Random Forest (RF) (GALINDO;

FORMIGARI; VALE, D. B., et al., 2021).

In order to accept a data imputation algorithm, three parameters, Ą, riv, and ā are used.The

ratios are calculated considering how large is the amount of the total variance, T, is related
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to variance due to imputed data (V), the variance due to sampling (U) and the number of

imputations, as shown in Figure 5.2.

Figure 5.2: Variance ratios for imputation evaluation. Source: Adapted from (GALINDO;
FORMIGARI; VALE, D. B., et al., 2021)

The �rst variance ratio, Ą, is the ratio of variance attributable to missing data. It is

calculated using equation 5.1:

Ą =
Ē + Ē/ă

Đ
(5.1)

The second variance ratio, riv, is the relative increase in variance due to nonresponse. It is

calculated using equation 5.3:

ĈÿČ =
Ē + Ē/ă

đ
(5.2)

Finally, the third variance ratio, ā , is the proportion of information about the variable to be

imputed being missing due to nonresponse. It is calculated using equation 5.3, wirh df being

the degrees of freedom present in the data:

ā =
ĈÿČ + 2/ĂĄ + 3

1 + ĂĄ
(5.3)
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These values for all variance ratios are considered modest around 0.2, moderately large

around 0.3, and high if above 0.5. In this work, imputations are considered acceptable if they

are below 0.2 for all ratios (VAN BUUREN, 2018).

For the FOSP dataset, this process goes as follows. Fig. 5.3 shows the distribution ofmissing

and complete data in Schooling according to age. Missing data distribution appears in red,

whereas observed data appears in blue. The lines closer to the edges represent the 75% of

the distributions for missing and observed data. According to the relationship between these

distributions, there is a clear relationship betweenmissing data and complete data according to

patients’ age. As the distribution of missing and observable data according to age are similar,

it is possible to assume data behavior as MAR.

Figure 5.3: Distribution of missing and complete data in patient’s schooling level vs patient’s
age. Source: (GALINDO; FORMIGARI; VALE, D. B., et al., 2021)

Three algorithms were compared for FOSP dataset: PMM, CART, and RF, with m = 20 in

all cases. Then, a logit model was performed, with the cervical cancer stage as the dependent

variable, and schooling level, patient’s age, and cancer morphological description as

independent variables. We compared these algorithms using the riv, Ą, and ā variance ratios

(Table 5.1). PMM is the only algorithm for which all variance ratios are below 0.2, making it

acceptable.
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Table 5.1: Data Imputation Comparison for FOSP Dataset

Algorithm Variance Ratios

riv Ą ā

PMM 0.1860334 0.1551585 0.1575775

CART 0.2618193 0.20578635 0.2095631

RF 0.2280557 0.1841833 0.1873557

We followed a similar process for the SEADE dataset. Fig. 5.4 shows the distribution of

missing and observed data for hospital beds per 1000 people according to sewage collection

rate. It is also possible to see a relationship between missing and observed data, thus allowing

the MAR assumption.

Figure 5.4: Distribution of missing and complete data in hospital beds per 1000 people vs
sewage collection rate (z-normal scale). Source: (GALINDO; FORMIGARI; VALE, D. B., et al.,
2021)

Four contrasting algorithms were compared: PMM, BayesMI, BootMI, and RF. In all cases,

multiple imputation with m = 20 was performed and a linear regression with mHDI as the

dependent variable was used to compare them. Results for the riv, Ą, and ā variance ratios

appear in Table 5.2. In this case, the only algorithm with acceptable results is BootMI.
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Table 5.2: Data Imputation Comparison for FOSP Dataset

Algorithm Variance Ratios

riv Ą ā

PMM 1.174148739 0.540049868 0.556453610

BayesMI 0.988183078 0.497028211 0.512562989

BootMI 1.727693e-05 1.727663e-05 0.005899985

RF 0.748178682 0.427976093 0.441717055

As data were imputed for detecting the impact of SDoH in cervical cancer, both datasets

were combined after imputation using PMM for the FOSP dataset and BootMI for the SEADE

dataset. A logit regression was performed using beds per 1000 people as the independent

variable and the stage of illness as the dependent variable. A p-value of 0,037 was obtained,

showing a signi�cant relationship greater than 95%. This is also relevant for the data

imputation process itself, as proper data imputation should be useful for general purposes.

5.2 Logistic Regression Modeling

We created two training models. The �rst model used the Stage as the dependent variable and

the second model used the ISR as the dependent variable.

For the �rst model, 70% of the data was selected for model training and 30% was reserved

for testing. Yet, as around 70% of the data corresponds to advanced stage cases, it was necessary

to perform some data balancing. Table 5.3 shows the numbers of balanced data.

Table 5.3: Data Balancing

Dataset Number of Records

Total Records 9095

Unbalanced Training data 6366 (1840 Stage I; 4526 Stage II+)

Balanced Training Data 3413 (1722 Stage I; 1691 Stage II+)

Testing Data 2729

To compare the results, we used the following metrics: p-value, chi-square, Akaike

Information Criterion (AIC), Sensitivity (TPR), Speci�city (TNR), ROC Area under the Curve

(ROC-AUC), and �nally, Error Rate (ZHENG, 2015). These metrics are de�ned as follows:
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• chi-square(X2): For a given signi�cance value, X2must be higher than a minimum level,

depending on the number of degrees of freedom. In this case, for a 0,05 p-value, and 15

degrees of freedom, X2 must be greater than 25.

• Akaike Information Criterion (AIC): AIC indicates the level of adjustment of the model

to the data. Given two models with similar p-values, the lower the AIC the higher the

capacity of themodel to explain the phenomenon using fewer data, being thereforemore

appropriate.

• Sensitivity (True Positive Rate - TPR): Capacity of themodel to identify correctly positive

values of the variable of interest. The closer to 1, the better.

• Speci�city (True Negative Rate - TNR): Capacity of the model to identify correctly

negative values of the variable of interest. The closer to 1, the better.

• ROCArea under the Curve (AUC): AUC allows summing up the development of a model

in terms of the sensitivity and speci�city curve, between the values 0.5 and 1. Values

closer to 1 indicate higher capacity to identify the values the dependent variable may

take.

• Error rate: Classi�cation error rate. The closer to 0, the better.

The comparison between the unbalanced and balanced data is shown in Table 5.4.

Table 5.4: Comparison Between Models Using Unbalanced and Balanced Data

Metric Unbalanced Data Balanced Data

X2 243.3 219.1

p-value 1.234998e-50 7.674849e-43

AIC 7415 4521.8

AUC 0.6314 0.654

TPR 0.002522068 0.6368222

TNR 1 0.6027893

Error rate 0.2891 0.2833

According to Table 5.4, by balancing data, the value for TPR has a considerable

improvement. Also, the overall error rate and AUC are slightly improved. Even though TNR

decreased, the objective of this model is to maximize the early detection, making the model
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using balanced data more appropriate. Also, a value of TNR equal to 1 and a value of TPR

close to 0 show over�tting in the model using unbalanced data. Finally, even though the data

balancing a�ected the other metrics, they are still good metrics to work with. Considering

this, and the fact that logit models are widely known and easy to interpret (GUJARATI,

2021), we decided to use the logit model for calibration of the ABMS.

For the balanced model, Table 5.5 shows the individual p-values for all variables,

considering a signi�cance level of 5% (Ć ≤ 0.05). Variables, such as mHDI did not add

signi�cance to the regression and were excluded from the �nal model. According to the

results shown in this table, the ISR was signi�cant for a transition from level 1 to level 2

(ISR1−2) and for level 4 to level 5 (ISR4−5), and obtained a value close to signi�cance for level 3

to level 4(ISR3−4). This result shows the importance of an indicator tuned for the local level as

the ISR instead of an indicator used for global comparisons like mHDI. Other signi�cant

variables were Elementary School Rate (ElemSchool), and Schooling going above level 2.

Table 5.5: Individual p-values for �nal logit model

Variable Age ISR1−2 ISR2−3 ISR3−4 ISR4−5

p-value < 2e-16 0.02408 0.09108 0.06383 0.02997

Variable IncomeRate Water Garbage ElemSchool Fecundity

p-value 0.93463 0.56033 0.27951 0.02558 0.11402

Variable Schooling1−2 Schooling2−3 Schooling3−4 Schooling4−5 Beds

p-value 0.12184 0.00493 2.06e-06 1.15e-09 0.18648

5.3 Index of Social Responsibility as the dependent

variable

Considering the results for the ISR level, we decided to perform an additional logistic

regression to test if it is possible to establish the stage of cervical cancer as an indicator of

the ISR of the city, and therefore, to consider the proportion of the cervical cancer cases in an

early stage as a general indicator of the city’s general health scenario. To do this, we

performed a logistic regression (GALINDO; FORMIGARI; ZEFERINO, et al., 2023).

For this regression, we also considered the variables, Stage and morphology of the lesion.

For analysis, we divided age in two categories: women younger than 50 years old (<50 years
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old) and 50 years old or older (>=50 years old). For morphology, we considered three

categories: tumors with squamous morphology (SCC) or others (adenocarcinomas,

adenosquamous carcinomas, and other types).

The ISR summarizes the situation of each municipality regarding wealth, education and

longevity. When combined, these dimensions create a typology that classi�es cities into �ve

groups: Dynamic, cities with a high level of wealth and good in social indicators (ISR 5);

Unequal, cities that, despite having high levels of wealth, don’t achieve good indicators in

social dimensions (ISR 4); Equitable, cities with low levels of wealth, but good social

indicators (ISR 3); In transition, cities with low levels of wealth and intermediate levels of

longevity and/or education (ISR 2); and Vulnerable, the most disadvantaged cities, both in

terms of wealth and social indicators (ISR 1).

Table 5.6 shows the distribution of cervical cancer cases among the �ve ISR groups as a

function of the Stage, age and morphology groups, as well as the results of univariate ordinal

logistic regressions performed using the ISR as the dependent variable, and the Stage of the

disease, the age group (under or over 50), and the tumor morphology, as independent variables

in each case. The proportion of cases in Stage 1 (less advanced) increases signi�cantly as the

ISR increases, ranging from 24,9% in the group of ISR 1 to 30,0% in the group of cities with ISR

5 (p=0,040). There was no variation in the age group as a function of the ISR, ranging from

54.0% to 60.2% the proportion of cases in women aged 50 years or older (p=0.117). Squamous

were the most frequent types of tumors. Yet, their proportion decreased when related to the

ISR (p=0.117).

According to the results shown in Table 5.6, the only signi�cant variable for 95% is the

stage of cervical cancer. This may indicate that the proportion of cases detected at an early

stage could be used as an indicator of the general living conditions of a population in a given

city.

To determine how an order increase in ISR may indicate an increase in the chances of

detecting cervical cancer in Stage I, we performed a univariate and a multivariate logit models,

being the other variables the age-group (divided into lower and higher than 50) and the tumor

morphology. Then, we checked at the p-value, the odds-ratio (OR), and the 95% con�dence

interval (CI). The results are presented in Table 5.7.

Table 5.7 shows that, for each ISR increase, the risk of presenting cervical cancer in Stage

I was at least 30% higher than in the immediately previous ISR. In the multivariate analysis,
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Table 5.6: Distribution of cervical cancer cases by ISR of the place the women live

ISR ISR 1 ISR 2 ISR 3 ISR 4 ISR 5

n (%) n (%) n (%) n (%) n (%) p-value

Total Number of Patients

354 839 1101 4137 2664

Stage of Cervical Cancer

Stage 1 88 (24.9) 233 (27.8) 305 (27.7) 1209 (29.2) 798 (30.0)
0.040

Stage 2+ 266 (75.1) 606 (72.2) 796 (72.3) 2928 (70.8) 1866 (70.0)

Age-group

<50 years 152 (42.9) 334 (39.8) 481 (43.7) 1904 (46.0) 1132 (42.5)
0.117

≥ 50 years 202 (57.1) 505 (60.2) 620 (56.3) 2233 (54.0) 1532 (57.5)

Morphology

SCC 264 (74,6) 628 (74,9) 799 (72,6) 3113 (75,3) 1780 (66,8)
0,117

Others 90 (25,4) 211 (25,1) 302 (27,4) 1024 (24,7) 884 (33,2)

Table 5.7: Results of Univariate and Multivariate Regressions for Cervical Cancer Stage

Univariate Multivariate

Stage

ISR Stage 1 Stage 2+ p-value OR 95% CI p-value OR 95% CI

1 88 266 - - - - - -

1 vs 2 233 606 0.025 1.36 1.04-1.77 0.016 1.40 1.07-1.84

2 vs 3 305 796 0.027 1.33 1.04-1.71 0.037 1.31 1.02-1.70

3 vs 4 1209 2928 0.006 1.37 1.10-1.72 0.011 1.35 1.07-1.70

4 vs 5 798 1866 0.002 1.43 1.14-1.80 0.006 1.39 1.10-1.76
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the risk was more signi�cant when comparing ISR 1 and 2, as women living in cities with ISR

2 had a 1.4 times higher risk of being diagnosed in Stage 1 than those living in cities with ISR

1. These results show how the ISR and the Stage of diagnosis are highly related, and then, the

ISR can be used as the basis for the ABMS model.
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Chapter 6

ABMS Results

In this chapter, the creation and re�nement of the ABMS is shown.

6.1 Agent-Based Model for Cervical Cancer

The base Agent-Based Model for cervical cancer follows the process shown in Algorithm 1.

This algorithm has two special functions. The �rst one is cancer_evolution, made to

calculate the pass of cancer from stage 0 (no cancer) to stage 1 (early) and from stage 1 to

stage 2+ (advanced), depending on the SDoH de�ned by the logit function modeling and in

the time passed since last screening. The second function is cancer_testing, which controls

the screening process in each city for all women.

For the �rst testing of the algorithm, the run cancer evolution was de�ned as shown in

Algorithm 2. It can be seen that in this �rst version, the chance of cancer evolving from

initial to advanced stage, given the patient did not get tested in one year, is 50%. This is an

exaggeration, created to test the concept of cancer evolution more easily.

The cancer testing algorithm, for this initial model, was de�ned as shown in Algorithm 3.

In this initial algorithm, as capacity is related to city’s ISR, this algorithm makes that women

in city’s with low ISR may have fewer chances of being diagnosed (GALINDO JARAMILLO

et al., 2023).

This algorithm was tested 20000 times. After 20 iterations, for 300 women, the algorithm

stabilizes in around 67% of all women with cervical cancer, this cancer being detected at an

early stage. The number of women was modi�ed to �nd the algorithm that best �ts the results
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Algorithm 1: Cervical Cancer Baseline ABMS

Output: Number of women with cervical cancer at stage 1 and stage 2
Initial Conditions Setting
create 64 cities;

for each city do
ąďĎ ← ĈÿĄĂąăÿĄĊăąăĈ(1, 5);
āÿĆÿāÿĊď ← 1 + ĈÿĄĂąăÿĄĊăąăĈ(1, ą ďĎ);

create X women;
for each woman do

ÿąă ← ĈÿĄĂąăÿĄĊăąăĈ(25, 60);
āÿĄāăĈ ← 0;
location in a city at random;

Simulation Running
while ăÿĄ − ÿąăąĄ čąăăĄ < 65 do

increase age of all women by 1;
set all facilities’ womenAttended to 0;
run cancer_evolution;
run cancer_testing;

generate-output;

Algorithm 2: Initial Cancer Evolution Algorithm

for each women do
SwitchCancer case 0 do

āÿĄāăĈ ← ĈÿĄĂąăÿĄĊăąăĈ(0, 1);

case 1 do
if lastScreening = 0 then

āÿĄāăĈ ← 1;
else

āÿĄāăĈ ← ĈÿĄĂąăÿĄĊăąăĈ(1, 2);

āÿĄāăĈ ← ĈÿĄĂąăÿĄĊăąăĈ(0, 1) case 2 do
No Operation

Algorithm 3: Initial Cervical Cancer Testing Algorithm

if womenAttended ≤ āÿĆÿāÿĊď then
ĂÿĉĊďāĈăăĄÿĄą ← 0;

For the city, čąăăĄýĊĊăĄĂăĂ ← čąăăĄýĊĊăĄĂăĂ + 1;

else
ĂÿĉĊďāĈăăĄÿĄą ← ĂÿĉĊďāĈăăĄÿĄą + 1;
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in general and for each value of ISR. As shown in Figure 6.1, the proportion change is minimum

after 1000 women.

Figure 6.1: Variation of the proportion of Early and Total detected cases according to women
population. Source: (GALINDO JARAMILLO et al., 2023)

The results for 1500 womenwere satisfactory for levels 2 to 5, and also for the total number

of cases, as shown in 6.1. These results show that the higher the ISR, the higher the chances

of not detecting cervical cancer at an early stage. This represents a macro-level quantitative

correspondence between the ABMS and the logit model, being at Level 2 according to Axtell

(2005), as there is correspondence with the empirical data for this case.

Stage1/Total ISR 1 ISR 2 ISR 3 ISR 4 ISR 5 General

300 women 0.380 0.802 0.781 0.667 0.721 0.674

1500 women 0.142 0.205 0.307 0.295 0.316 0.280

Dataset 0.258 0.270 0.290 0.289 0.303 0.289

Table 6.1: Mean Cervical Cancer Cases in Stage 1 divided by Total Cases in for each ISR. Source:
(GALINDO JARAMILLO et al., 2023)

As the schooling level was a signi�cant variable, and it may be considered a variable in

which municipal e�orts may have some e�ect, we created a random ordinal variable called

Schooling, going from 1 to 5, being 1 the lowest level and 5 the highest level. From the

dataset, the Pearson correlation level between city’s ISR and Schooling is 0.062, instead of

considering ISR. Then, we created it considering only the proportion of Schooling level in
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population according to the dataset, making women have time to go for screening at

working hours, following a study performed in a city of the State of São Paulo, speci�cally

São Jose do Rio Preto, that pointed lack of time as one of the causes for poor participation in

cervical cancer screening (IGLESIAS et al., 2019).

To re�ect the lack of time to get screened, we created a binary variable for women called

working-hours-availability. When working-hours-availability is 1, women can be attended on

working hours. When working-hours-availability is 0, in turn, women can only be attended

on non-working hours, such as in the evening or in the weekend. At each time step, working-

hours-availability is recalculated.

In order to determine the impact of the availability of attention-time for facilities, we

created a variable created nonworking-attention-time. Its value can be 0, if there is no

nonworking-hours attention time, or 1, if there is. This variable is calculated at the

simulation setup, according to the ISR level.

The parameters for working-hours-availability, according to women’s schooling level,

and nonworking-attention-time were calibrated considering the proportion of early stage

cases detected. To do this, we performed 68 rounds of 1021 simulations, varying these two

parameters. To select the parameter values, we consider the error rate for each individual

stage. The �nal values for working-hours-availability are shown in Table 6.2. The �nal

nonworking-attention-time values, in turn, are shown in Table 6.3.

Schooling Level working-hours-availability probability

5 13.0%

4 12.9%

3 12.8%

2 12.5%

1 12.4%

Table 6.2: Women’s probability to go for cervical cancer screening in working hours

The results for mean Cervical Cancer Cases in Stage 1 divided by Total Cases for each ISR

with the selected parameter values are shown in Table 6.4 For all ISR values except ISR1, and

in the general case, the error rate is below 10%, and the higher proportion as the ISR increases,

show the model considering Schooling is validated at level 2, according to to Axtell (2005).

These results show the viability of using ABMS for recreating the impact of SDoH within

a population. Yet, this work still has some limitations. One of these limitations is the access



Chapter 6. ABMS Results 64

ISR Level Probability of nonworking-attention-time

5 22.0%

4 21.6%

3 21.2%

2 20.8%

1 14.4%

Table 6.3: Attention-time at non-working hours probability according to the ISR level

Stage1/Total ISR 1 ISR 2 ISR 3 ISR 4 ISR 5 General

Simulations 0.216 0.270 0.276 0.273 0.287 0.272

Logit model 0.258 0.270 0.290 0.289 0,303 0.289

% Err 0.163 0.000 0.048 0.055 0.083 0.059

Table 6.4: Mean Cervical Cancer Cases in Stage 1 divided by Total Cases in for each ISR with
selected parameters

to patient data related to working-hours-availability and to cities’ attention hours, necessary

to achieve level three validation. These values may a�ect the results of the overall model.

One thing to notice about this model is that small variations in probability of being

available for testing on working hours for women and in attention-time at non-working

hours probability for facilities lead to changes in the proportion of cervical cancer cases

detected at an early stage. This is due to the complexity of the model and lead space for

improvement in early detection through few changes in the long run. This makes this model

�t to analyze through Reinforcement Learning for facilities.

As a �nal form of validation, and in order to see how our model behaves in presence of

further parameter variations, we run one factor at a time (OFAT) sensitivity analysis, including

two parameters: women-population, going from 500 to 3000 in intervals of 50 women, and

nonworking-attention-facilities, going from 0 to 64 in intervals of 1. The default values for

women-population and for nonworking-attention-facilities are 1500 and 12, respectively.

The results for the distribution of the proportion between Early and total detected cases

for women population analysis are shown in Figure 6.2. The mean value and the variance for

the proportion of Early/Total detected cases are 0.263 and

1.68 ∗ 10−5
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respectively. These results show that the model has little variation regarding the number of

women.

Figure 6.2: Variation of the proportion of Early and Total detected cases according to women
population

The results for the distribution of the proportion between Early and total detected cases

for the number of facilities with nonworking-hours attention are shown in Figure 6.3. The

mean value and the variance for the proportion of Early/Total detected cases are 0.583 and

6.88 ∗ 10−2

respectively. It is possible to see that the results are highly a�ected by the availability of non-

working hours attention. For example, the proportion goes from 0.299 at 14 facilities with non-

working attention to 0.360 at 15 facilities. These abrupt changes show that this parameter is

prone to increase women’s early detection. Then, changes in this parameter show promising

results for machine learning approaches, such as Reinforcement Learning. Yet, because of the

high variance resulting on increasing this value for the overall model, these changesmay a�ect

the model’s stability.

These results show that ourmodel is able to quantify the incidence of SDoH in the detection

of cervical cancer at an early stage. This result might be useful to point out possible policies
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Figure 6.3: Variation of the proportion of Early and Total detected cases according to the
number of nonworking facilities

to maximize early stage detection. Yet, testing and validating these policies is limited by the

lack of access to data on the receptiveness of patients to di�erent measures. With these data,

the use of machine learning techniques to recreate patient behavior may be possible, allowing

the testing of several scenarios.
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Chapter 7

Conclusions

The general objective of this research was to develop a method to systematically model and

evaluate public health scenarios related to cervical cancer detection at an early stage,

considering SDoH and using ABMS. The results obtained show that a method consisting in

creating a reference model, create a baseline ABMS, and validate and expand the ABMS

using the reference model is a valid framework for early detection of cervical cancer within a

population.

One of the main contributions of this work was the quanti�cation of the incidence of

SDoH in the detection of cervical cancer at an early stage. The signi�cance of ISR in the logit

model shows the importance of environmental and social conditions for prevention and early

detection of diseases. Further understanding of the incidence of SDoH in cervical cancer and

other diseases is necessary for better public policy de�nition, monitoring, and execution.

Another contribution is the ABMS itself. Thismodel allows the quanti�cation of the impact

of the actions taken by decision-makers at a city level and the possible responses from patients

considering the social conditions in which they are inserted. Further re�ning of this ABMS

may be useful for practitioners in decision-making processes for public health policy.

There are some key considerations for each step on this method. For the use of the

reference model, we made some choices that helped to achieve this goal. First, we created the

reference model using real and trustable data. This is a key advantage, yet this might not be

possible for all cases. Second, we decided to use a classic, simple, and easy-to-explain

method, the logistic regression. There are more complex models that may result in better

performance. Considering the scope of this project, we preferred explainability over

performance. Yet, we obtained signi�cant results using a logit model.
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For the creation of the baseline ABMS, we decided to keep our model as simple as

possible. By doing this, we were able to understand the responses of agents to di�erent

scenarios (occupation and schedule availability). For the last stage, model validation and

calibration, having few parameters helped to understand their incidence in our model. Yet,

for future use of the model, it may be necessary to add more variables and parameters.

There were some limitations for our model. The main limitation is intrinsic to

interdisciplinary work, and it is related to the fact that in model creation, it is necessary to

make assumptions. Even though our ABMS shows internal consistency and the use of the

logit model gave external validation, it needs further testing with real data, especially with

policymakers insights and data from patient behaviors. This may be necessary for the

implementation of policies using our model.

Another limitation is the time it takes to make changes and test di�erent scenarios in the

current version of our ABMS. Future versions of the model may include arti�cial intelligence

algorithms to de�ne agent behavior. Yet, the inclusion of these techniques may a�ect model

performance, as the number of agents with these algorithms increase.

Finally, future works include the collection of patient data and policymaker insights to

expand this ABMS. This may imply the creation of more reference models for validation and

calibration. The use of arti�cial intelligence, especially reinforcement learning techniques,

sees promising to recreate agent behaviors. As the inclusion of more variables, more

reference models and arti�cial intelligence techniques may a�ect model performance, future

model architecture may include parallelization. Finally, our methodology may be adapted to

other diseases, for which public datasets are available.
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Introdução: O câncer do colo de útero é uma importante causa de morte entre as mulheres em todo o

mundo, e sua ocorrência está associada às condições de desenvolvimento dos países e suas regiões1. No

Brasil, desde o ano 2000, o câncer é a segunda maior causa de morte, atrás apenas das doenças

cardiovasculares2. Para 2020 são esperados cerca de 16,4 casos a cada 100.000 mulheres no Brasil, e 9,6

casos a cada 100.000 mulheres no estado de São Paulo3.O desenvolvimento do câncer do colo do útero é

resultado de infecções persistentes de tipos oncogênicos do papiloma vírus humano (HPV)4, ainda que a

maioria das infecções por HPV sejam curadas rapidamente5. A infecção persistente de um dos

aproximadamente 15 genótipos oncogênicos aumenta significativamente o risco de lesões precursoras, que

se não tratadas podem evoluir para o câncer invasivo6. Cofatores clínicos importantes são alto número de

parceiros sexuais, início da vida sexual em idades mais jovens, tabagismo e infecção por HIV ou outra

imunodeficiência7. A fertilidade e/ou número de gestações e partos também foram associados a um maior

risco. Entretanto nenhum desses é reconhecido como fator independente para a progressão mais acelerada

do câncer8–10. Um estudo que reuniu 51.158 casos de câncer de colo
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Appendix B

ODD Protocol for the First ABMS

This document describes the Cervical Cancer in society ABM according to the ODD protocol

(Grimm et al., 2020).

B.1 Purpose and patterns

he purpose of this speci�c model is to test the impact of socio-economic factors in cervical

cancer in advanced stages, that is, stages in which the carcinoma is extended beyond the

cervix (Stages II, III, and IV according to the International Federation of Gynecology and

Obstetrics, FIGO). As cervical cancer can be easily treated when detected at Stage I, the

existence of a relationship between Social Determinants of Health (SDoH) and the stage of

detection of cervical cancer is proposed as an indicator of wellbeing within the population.

In this version of the model, the Index of Social Responsibility (ISR) of the State of São Paulo,

Brazil, is used as an independent variable. Also, the age and the fertility rate of the patient

are used as control variables. Then, the criterion for evaluating the model’s suitability for its

purpose is the existence or not of a direct relationship between the ISR of the city of

residence of women and the proportion of cases in advanced stages. The model will be

assumed useful if it can reproduce the existence of that relationship. If that pattern is not

reproduced, it may indicate that some important variables are missing or inadequately

represented, indicating a necessity of model expansion.
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B.2 Entities, state variables, and scales

The state variables for women are shown in Table B.1. Women’s ages range according to

Brazilian recommendations for cervical cancer screening. Some clinical co-factors, such as

immunode�ciency, sexual initiation age, pregnancy, and number of children are not

considered in this version, as we want to keep it as simple as possible. Yet, those factors

might be added in future versions.

Table B.1: State variables for women

Variable name Variable type Units Range Meaning

age discrete - dynamic years 25-65 Woman’s age.

cancer discrete - dynamic – 0 - No
cancer; 1 -
Early; 2 -
Advanced

Whether there is
cervical cancer
and if that cancer
is at an early or
advanced stage.

lastScreening discrete - dynamic years 0 - no limit Last time the
patient was
screened

womanLocation discrete - dynamic (x; y) (0; 0) - (7;
7)

Woman’s location.

The state variables for cities are shown in Table 2. In this model, the number of women

attended is used as a state variable, as it cannot be calculated from other variables. Cities’

occupancy level and capacity are also used in this model, but they are calculated from other

variables, as shown in Elements 3 and 5 of this document, respectively. For cities location,

each square of the grid in which the simulation happens represents a di�erent city. Each city

has a speci�c ISR that goes from 1 to 5, the higher, the better. In this model, the number of

women attended is used as a state variable, as it cannot be calculated from other variables
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Table B.2: State variables for health facilities

Variable name Variable type Units Range Meaning

ISR discrete - static None 1 - 5 City’s ISR

womenAttended discrete-dynamic None 0-No

limit

Number of women

attended at the health

center at a given time step

cityLocation discrete-dynamic (x; y) (0; 0) -

(7; 7)

City location

Scales: In this model, time is discrete. Each time step represents one year, as cervical cancer

takes several years to grow, and screening procedures are recommended each three to �ve

years. In this version of the model, space has no speci�c units, as it is not related to physical

dimensions of the real world. No dimensions di�erent from space and time are represented in

this model.

B.3 Process overview and scheduling

The main process for this model goes as follows: Each time step, women’s variables age and

lastScreening are increased by one year, and cities’ womenAttended and occupancy level are

set to 0. After that, for each city from (0; 0) to (7; 7), each woman runs the following actions

in a random order:

a. Determine if the woman has cervical cancer and, if positive, its stage. In this model,

disease remission is not considered. If her prior cancer level is 0, a random number

between 0 and 1 is set. If her prior cancer level is 1 and

b. If occupancy level is below 100%, the woman is tested through the following steps.

(a) LastScreening is set to 0.

(b) Cities’ womenAttended is increased by 1.

After each woman makes the actions listed above, the occupancy level for the

corresponding health center is calculated by using equation (1): occupancyLevel =

womenAttended/capacity (1)
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In this version of the model, the main process consists of determining the impact of

determinants of health in the occurrence of cervical cancer in advanced stages. Speci�cally,

the impact of ISR in that occurrence. Even though ISR is not explicitly present in the process

described above, it determines the capacity of the cities to attend women, as shown in model

initialization (Element 5). That capacity also a�ects the occupancy level, which, in turn,

determines if screening occurs. The order for women to perform the actions described in the

process is random and determined each time step to avoid order for being a determinant for

the occurrence of advanced stage cancer. Also, a woman can only access the health facility

located in her city to avoid distortion on the impact of ISR into advanced stage detection.

B.4 Design concepts

is model is made to incorporate clinical factors and Social Determinants of Health into cervical

cancer modeling. This is the �rst version of the model, making necessary to use ground-based

evidence for further testing. Regarding SDoH, this model is made to identify how the ISR

of the place of residence of women and the proportion of cases in advanced stages. There

is evidence showing that regions with low ISR have a higher proportion of cases of cervical

cancer in advanced stages. That may be explained by lower density of facilities for diagnosis

and treatment in areas with lower ISR and by the in�uence of human development in human

behavior (Vale et al. 2018). As this is the �rst model for cervical cancer, of the density of

facilities, it is focused on testing the incidence. The incidence of HDI in the density of facilities

is considered by de�ning facilities’ capacity as a function of the HDI for each city.

It is expected to emerge an inverse relationship between a city’s ISR and the proportion

between cases in advanced stages and all cases in that city. Another expected result (acting as

a validation of the model) is a direct relationship between women’s age and the presence of

cancer.

Cities decide whether they receive a woman for cervical screening depending on their

capacity. Health facilities objectives are to diagnose and women without exceeding capacity

(Element 3); Capacity is decided as a simpli�cation of the relationship between the density of

health facilities and the ISR of the city (Element 5).

For women, the �tness function consists of the number of years without cervical cancer

in late state. For each woman, of the variable HealthyTime is made by the following
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condition: if cancer = no, then increase HealthyTime by 1 Regarding cities, the �tness

function consists of being as e�cient as possible, attending the most women they can, as fast

as they can, and attending all women requiring the service. The rationale behind this

subprocess is health facilities need to attend all women they need, avoiding overscreening,

that is, screening women more times than necessary and e�ectively screening all women in

their area (Vale et al. 2019b). Yet, the �nal outcome is to minimize the proportion of women’s

cancer detected at stage 2.

Learning is not considered in this model as it is the base for studies of impact of SDoH in

cervical cancer, and then we intend to keep it as simple as possible. Yet, it is built in order to

implement learning techniques for both women and health facilities in future models.

Cities can sense their own occupation rate and the presence of HPV and cancer for all

women are attended. Bounded rationality appears as women cannot sense facilities’

occupation rate and health facilities cannot sense if a speci�c woman has cancer to prioritize

her. As this model shows the reality of Brazilian health system, health facilities also cannot

sense women’s last screening.

Women interact within them in their city by going to the health facility. When one woman

decides to go to the health facility, she restricts the number of other women screened and

treated. Health facilities’ occupation rate becomes a scarce good women compete for. Each

health facility interactswithwomen living in their city by performing screening and treatment.

Stochasticity is present in the following processes during model initialization: (a) women’s

distribution over the environment and age, and also cities SRI are completely random; (b) each

health facility’s capacity is based on a random number depending on city’s SRI, as it is expected

that cities with higher SRI have a greater capacity in their health facilities, but there is no

direct relationship between those two variables, and; (c) cancer level is also de�ned randomly,

as explained in Element 3.

To test the impact of the ISR of the city in the proportion of cases of cancer in advanced

stages, a histogram considering those variables is the main output. The proportion of cases

will also be shown graphically by using a color scale, in which the darker the tone in a speci�c

city, the higher the proportion of cases, allowing for the inspection of speci�c places. For those

outputs, it is necessary to collect the number of cases of cancer in early and advanced stages

for each city.
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B.5 Initialization

At the beginning of the simulation, the space is divided into a 8x8 grid, being each square of

the grid a city. The static variables are assigned to each city, recreating the scenario in the

state of São Paulo, according to SEADE data. Each city also holds the capacity of attending a

determined quantity of women using a logit function with a maximum number equal to the

city’s ISR.

Women are created and distributed in the environment randomly. Their variables are

initialized according to Table B.3. No variations related to cancer are considered to reduce

the dependence on initial conditions during simulation.

Variable name Value

age Random (25,40)

cancer 0

lastScreening 0

womanLocation (random; random)

Table B.3: Initial conditions for women

B.6 Input data

This version of the model does not use input data to represent time-varying processes. Yet, it

uses the results of a logistic regression using data from São Paulo Oncocentro Foundation and

the SEADE Foundation.

B.7 Submodels

This model does not consider submodels, as it is intended as a base model.
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Appendix C

Publications Related to this Thesis

As a consequence of this thesis, we published one journal paper, one conference full paper,

three conference extended abstracts, and one conference short abstract. As a means to get

access to these works, in this Appendix, I will give some information about the paper, and

show its �rst page as an image.

C.1 Missing Data: Comparison of Multiple-Imputation

Algorithms for Social Determinants of Health in

Cervical Cancer Stage Detection

Type: Conference papYear: 2021Authors: Juan Fernando Galindo Jaramillo, GiovanaMoura

Formigari; Diama Bhadra Vale; Edson L. Ursini; Paulo Martins. Conference: IEMCON 2021.

Available at: https://ieeexplore.ieee.org/document/9623097

C.2 Fatores Relacionados com o Diagnóstico Tardio do

Câncer de Colo de Útero

Type: Extended Abstract. Year: 2021 Authors: Giovana Moura Formigari; Juan Fernando

Galindo Jaramillo; Edson L. Ursini; Diama Bhadra Vale. Conference: XXIX Congresso de

Iniciação Cientí�ca da UNICAMP. Available at:

https://www.prp.unicamp.br/inscricao-congresso/resumos/2021P18106A35826O5329.pdf
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Figure C.1: Missing Data

Figure C.2: Cervical Cancer Related Factors Paper

C.3 ANÁLISE DO ÍNDICE DE RESPONSABILIDADE

SOCIAL E DIAGÓSTICO TARDIO DO CÂNCER DO

COLO DO ÚTERO NO ESTADO DE SÃO PAULO: UM

ESTUDO ECOLÓGICO

Type: Abstract. Year: 2022 Authors: Giovana Moura Formigari; Juan Fernando Galindo

Jaramillo; Luis Carlos Zeferino; Carla Fabrine Carvalho; Edson L. Ursini; Diama Bhadra Vale.
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Conference: 13º Congresso Brasileiro de Saúde Coletiva Available at:

https://proceedings.science/abrascao-2022/trabalhos/analise-do-indice-de-responsabilidade-

social-e-diagostico-tardio-do-cancer-do-co?lang=pt-br

Figure C.3: Index of Social Responsibility Abstract

C.4 Use of Social Determinants of Health in Agent-based

Models for Early Detection of Cervical Cancer

Type: Extended Abstract. Year: 2022 Authors: Juan Fernando Galindo Jaramillo

Conference: Winter Simulation Conference 2022. Available at:

https://informs-sim.org/wsc22papers/doc115.pdf

C.5 Social determinants in�uencing cervical cancer

diagnosis: an ecological study

Type: Paper published in Journal. Year: 2023 Authors: Juan Fernando Galindo Jaramillo,

Giovana Moura Formigari; Luiz Carlos Zeferino; Carla Fabrine Carvalho; Edson Luiz Ursini;

Diama Bhadra Vale Journal: International Journal for Equity in Health Available at:

https://equityhealthj.biomedcentral.com/articles/10.1186/s12939-023-01912-8
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Figure C.4: Use of Social Determinants of Health in Agent-based Models Abstract

Figure C.5: Social determinants in�uencing cervical cancer diagnosis: an ecological study

C.6 AGENT-BASED MODEL FOR ANALYSIS OF

CERVICAL CANCER DETECTION

Type: Extended Abstract. Year: 2023 Authors: Juan Fernando Galindo Jaramillo; Leonardo

Grando; Jose Roberto Emiliano Leite; Diama Bhadra Vale; Edson Luiz Ursini. Conference:

Winter Simulation Conference 2023. Available at: https://informs-sim.org/
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Figure C.6: AGENT-BASED MODEL FOR ANALYSIS OF CERVICAL CANCER DETECTION
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