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Resumo

Uma Interface Cérebro-Computador (BCI) é um sistema que fornece um caminho alter-
nativo para que a informacao do cérebro de um individuo possa ser transmitida ao mundo
externo. Compreende, entre outros modulos, uma etapa de processamento de sinal que
é composta pelo pré-processamento, extracao de caracteristicas, e classificacao. Existem
muitos algoritmos possiveis que podem ser usados para implementar a BCI. Neste tra-
balho, avaliamos o desempenho de uma BCI baseada em imagética motora realizando um
estudo combinado de oito técnicas de Anélise de Componentes Independentes (ICA): Joint
Approzimate Diagonalization of Eigenmatrices (JADE), Second-Order Blind Identification
(SOBI), Picard, Picard-O, Infomax, Extended Infomax, FastICA e Online Recursive In-
dependent Component Analysis (ORICA) e sete algoritmos de classificagdo: Maquina de
Vetores de Suporte (SVM), Analise do Discriminante Linear (LDA), Naive bayes, Re-
gressdo logistica, Perceptron multi-camadas (MLP), Floresta aleatéria e EEGNet, um
modelo de aprendizagem profunda. Também avaliamos a robustez da BCI e o impacto
dos algoritmos de ICA entre sessoes, empregando bases de dados coletados em dias difer-
entes para os mesmos voluntarios. Nossos resultados mostram que pode haver diferencas
significativas entre o desempenho relativo dos métodos entre individuos e entre conjuntos
de dados. A BCI usando FastICA e Eztended Infomax apresentou maior kappa depen-
dendo do conjunto de dados, enquanto o classificador de regressao logistica se destacou,
apresentando as melhores métricas. Com a EEGNet, a ICA ajuda a reduzir o nimero de
épocas de treinamento necessarias, mas com reducao do desempenho do BCI. Por fim,
vemos que no protocolo de calibragao da BCI entre sessoes impacta no desempenho, mas

a técnica ORICA apresenta um desempenho consistente em ambos os casos.

Palavras-chaves: BCI; EEG; ICA; Reconhecimento de padroes.



Abstract

A Brain-Computer Interface (BCI) is a system that provides an alternative pathway to
the information of an individual brain to the external world. It comprises, among other
modules, a signal processing stage which is mainly composed of a preprocessing step,
a feature extraction step, and a classification step. There are many possible algorithms
that can be used in each step, and their choice can greatly impact the BCIL. In this
work we evaluate the combined use of eight Independent Component Analysis (ICA)
algorithms (Joint Approximate Diagonalization of Eigenmatrices (JADE), Second-Order
Blind Identification (SOBI), Picard, Picard-O, Infomax, Extended Infomax, FastICA and
Online Recursive Independent Component Analysis (ORICA)) and seven classification
algorithms (Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), Naive
Bayes, Logistic regression, Multi-layer perceptron (MLP), Random forest and EEGNet, a
deep learning model) in a Motor Imagery (MI) BCI. With the goal of also investigating the
performance of the ICA methods on different days, we perform another set of experiments
to evaluate between-session robustness. Our results show that there can be significant
differences between the relative performance of the methods between subjects and between
datasets. BCIs using FastICA and Extended Infomax showed the highest classification
kappa depending on the dataset, while the Logistic regression classifier stood out with the
best metrics. With EEGNet, ICA helps reduce the number of necessary training epochs,
but with a reduction to the BCI performance. Finally, we see that in the between-session
BCI calibration protocol results could highly vary between the two datasets, but ORICA

has consistent performance in both cases.

Keywords: BCI; EEG; ICA; Pattern Recognition.
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1 Introduction

Brain-Computer Interface (BCI) research has been of increasing interest during the
last two decades, going from 95 publications from 2000 to 2002 to 2224 publications from
2018 to 2020 (SAHA et al., 2021). A 2016 study used the 2013 US Paralysis Prevalence
& Health Disparities Survey to estimate that 5.3 million people in the United States
lived with paralysis, at the time (ARMOUR et al., 2016). The National Health Survey in
Brazil estimated that in 2013 there was more than 2.2 million stroke victims, resulting
in 580 thousand people with severe disabilities (BENSENOR et al., 2015). In 2021, the
World Health Organization estimated that there was almost 15.4 million people living
with spinal cord injury worldwide (World Health Organization, 2024). BCIs applications
are commonly focused on amyotrophic lateral sclerosis (ALS) or severe Central Nervous
System (CNS) injuries. ALS patients gradually lose motor skills and speech abilities, so
they are the ones who can most benefit from this area (CHAUDHARY et al., 2016). The
application of such technologies could mean new possibilities for people with impaired
mobility or motor control, effectively increasing quality of life. Non-medical applications
of BCI also include attention monitoring, mental state monitoring, cognition, mental
workload, games. The development of those technologies for both healthy and paralyzed
users can help with the social integration of the later group (BLANKERTZ et al., 2010).

A BCl is defined as a system that provides communication between the brain and the
external world through non-conventional means, i.e., not using the pathways of muscles
and nerves (WOLPAW et al., 2002). However, it still needs these pathways to generate
or carry this information, so it can be detected or measured. BCIs have five principal use

cases (WOLPAW et al., 2020):

o Replace muscle control: A person with a high-level spinal cord injury may be able

to control a locomotion device, such as a motorized wheelchair.

e Restore muscle control: For instance, it can help a person with spinal cord injury

that has been paralyzed to grasp objects, by stimulating muscles using electrodes.

o Enhance CNS output: Can be used for monitoring the attention of a person in a

attention required task, and alarm them when necessary.
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o Supplement the CNS output: A person that has healthy control of their both arms

can use it to control an additional robotic arm.

o Improve the natural CNS output: For a person that suffered stroke or has impaired
arm function, the BCI can be used to stimulate the muscles or even control an

orthotic device, improving the movement.

It also needs to generate feedback to the user, so they can learn, adapt and improve

control over the system through its usage.

Kubler et al. (2020) cite that although it exists (BRUNNER et al., 2015), a BCI
road-map lacks precise steps for bringing the technology to the final users (end-users at
home). As an assistive technology (AT), there are only a small number of applications that
can be used by end-users without the presence of researchers or outside AT centers. From
the user’s perspective, reasons for not using such technologies include discouragement
from the environment the user is in, embarrassment or self-consciousness about using
the device, discomfort/strain in its use and the perception that the device is obtrusive.
User reactions to the same stimuli suffer from high trial-to-trial variability and even
moment-to-moment variability in some tasks (BLANKERTZ et al., 2010). Additionally, a
non-negligible proportion of the population is unable to control (especially sensory-motor
rhythm-based) BCIs, either due to high session-to-session variability or to no significant

brain rhythm modulation during the performed tasks (VIDAURRE; BLANKERTZ, 2009).

BCI applications are not yet widely used, also mainly due to their reduced robustness
and reliability. For most current BCIs there is still a lot of needed time for calibration (in
some cases) and cumbersome setups (LOTTE, 2015). In this sense, sensory-motor rhythm-
based BCI offer several advantages over other approaches (for the population that can
control BCIs), as the use becomes automatized through extended operation and is less
likely to negatively affect the usual mental state of the user (MCFARLAND; WOLPAW,
2011). One example of such BClIs is the so called Motor Imagery (MI) paradigm, in which
the user thinks about the execution of a specific movement that is decoded, in the sequel,

through the processing of electrical signals of the brain.

In this scenario, we intend to analyze how certain processing techniques, namely
Independent Component Analysis (ICA), can be used within a BCI to enhance the per-

formance of such systems. The use of ICA is motivated by some works that have already
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demonstrated its utility in different stages of the BCI pipeline, and by the neurophysiologi-
cal interpretation of the technique, as it is theoretically able to uncover brain activity (RE-
JER; GORSKI, 2017; HAMANEH et al., 2014; WINKLER et al., 2011; KACHENOURA
et al., 2008). The measured Electroencephalography (EEG) is a mixture of the activity
that is elicited by the MI task and many other sources, such as line noise, background
noise, muscle electrical activity, and also other brain-related activities that are not re-
lated to the BCI, and the ICA is used to separate those independent signals as better as

possible, so we can only process the MI-related activity for better performance.

The choice of the ICA algorithm is one important design choice for the BCI, as many
works show that each technique may result in different performances (WU et al., 2020;
URIBE, 2018; BRUNNER et al., 2007). Each ICA algorithm method has slightly different
prior assumptions, objective functions or solutions to those functions, and naturally one
can be more fit to the current processing task than others. Source assumptions such as
temporal correlation, gaussianity, the sign of their marginal cumulants, or the characteris-
tics of the additive noise are important information for a correct choice (KACHENOURA
et al., 2008). The choice of the classifier can follow the same rationale. The classification
algorithm is also an important step of a MI-BCI as it is the one that outputs the decoded
imagined movement, and its choice is also important for the BCI pipeline (KHADEMI et
al., 2023; ALTAHERI et al., 2021).

The evaluation and comparison of different BCIs using those source extraction and
classification methods can yield important insights about how well the assumptions of
those methods hold for each protocol, subject and paradigm, and help us understand on
how to choose them and maximize the BCI’s robustness and correctness. In this work we
also evaluate the combined effect of the ICA preprocessing with a deep learning model
as the classifier. As this classifier does not directly use frequency features (which were
used with the more classical models), we intend to evaluate if using the extracted sources

instead of the raw EEG signals actually improve the system performance.

1.1 Objectives

In the context of a MI-based BCI system, we aim to compare the systems perfor-

mance when using any combination of ICA and classification method from a selected set
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of techniques, the use of ICA in tandem with a deep learning method, and the robustness

of the system to session-to-session calibration.

The general goals of this work are:

e To compare how different ICA methods and classification algorithms impact the

performance of a MI BCI system.

o To evaluate how ICA methods as preprocessing for a deep-learning-based classifier

affects the convergence speed and accuracy of the MI-based BCI.

The specific goals are:

o To identify, among the tested ICA methods and classifiers, which, on average, result

in the highest BCI accuracy for the analyzed dataset.

o For each classifier, to identify the ICA method that maximizes the MI-based BCI

accuracy.
o For each ICA, to identify the classifier that maximizes the MI-based BCI accuracy.

e To find the combination of ICA method and classifier that results in the highest
MI-based BCI accuracy.

o To analyze which ICA method leads to the highest accuracy with EEGNet.

o To analyze the impact of ICA on the number of iterations required to train EEGNet.

The initial results of this work were presented in Viana et al. (2024) at the IX
Latin American Congress on Biomedical Engineering and XXVIII Brazilian Congress on
Biomedical Engineering (CLAIB & CBEB 2022). The within-session and between-session
study was first presented at the 9th BRAINN Congress (VIANA et al., 2023). This work
is also in the process of being published as a chapter of the book Advances in Neural

Engineering Volume 1.



18

2 Brain-Computer Interfaces

The beginning of the development of noninvasive BCIs dates back to 1924, when
Hans Berger was able to record electrical signals from a human brain (BERGER, 1929;
BAMDAD; AUAIS, 2015). In 1969, Kamiya and collaborators showed that healthy users
could learn to control alpha waves in their brain if given feedback, such as the rise and
fall of a tone (CHAUDHARY et al., 2016; NOWLIS; KAMIYA, 1970), in one of the first
BCI experiments with humans. In 1973, the term BCI was officially proposed by Jacques
Vidal when he presented a system that could translate EEG signals into control signals in
a computer (VIDAL, 1977). In this chapter, we present an introduction to BCI paradigms,
with emphasis on the MI paradigm, which is the object of study of this work, and a brief
presentation of aspects of the CNS physiology that are relevant to it.

2.1 BCI paradigms

The idea of BCI paradigm refers to how a subject interacts with the system and how
he/she controls it, and also to the main neurophysiological mechanism being employed
(URIBE, 2018). For EEG-based BClIs, for instance, the literature reports the use of sen-
sorymotor rhythms, whose generative and manifestative phenomena will be described
later on. The P300 paradigm, on the other hand, is based on an Event-Related Potential
(ERP), called P300 wave, which is elicited between 220 to 500 ms after the presentation
of a infrequently and awaited event using the "oddball paradigm". For instance, the P300
speller is a very popular application in which a grid of letters is presented to the subject,
who must focus on the letter that he/she wants to spell, while each row / column is
highlighted (PAN et al., 2022). The detection of the associated wave is used for decoding
which letter the subject was expecting to be selected. The Steady-State Visually Evoked
Potentials (SSVEP) paradigm relies on the spectral content of the EEG signals from the
visual cortex. Neurons in this region tend to fire at the same frequency of flickering lights
that are visually presented to the subjects. In the presentation of a set of different flick-
ering lights, the BCI can determine at which one the subject is looking to through the
EEG (LIU et al., 2021). A non-exhaustive review of different paradigms is presented at
Abiri et al. (2019).
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The paradigm based on imagination of movement execution in a BCI system is
known as Motor Imagery paradigm, in which the BCI discriminates activity related to
both the somatosensory and motor cortices. It generally relies on the decoding of move-
ment imagination of left and right hands, feet and tongue movements from measured brain
activity (in this case, EEG) (SINGH et al., 2021). During most motor behaviors, we can
detect an Event-Related Desynchronization (ERD) (suppression) of the low-mu rhythms
(8-10 Hz) over the whole somatosensory cortex, while high-mu (10-13 Hz) rhythms are
topographically located. The beta-rhythms (13-25 Hz) also exhibit desynchronization dur-
ing motor behaviors, succeeded by an Event-Related Synchronization (ERS) (enhance-
ment), which is called the beta rebound (WOLPAW; WOLPAW, 2012). Additionally, the
beta ERS can occur in slightly different bands than the ERD (HALDER et al., 2011;
PFURTSCHELLER; NEUPER, 2001).

Wolpaw and Wolpaw (2012) described BCI as "a system that measures CNS activity
and converts it into artificial output that replaces, restores, enhances, supplements, or
improves natural CNS output and thereby changes the ongoing interactions between the
CNS and its external or internal environment". The natural CNS activity output consists
of electrophysiological, neurochemical and metabolic phenomena. In our context, the CNS
activity is the measured EEG signals, which is captured and then fed to computational
systems with the goal of controlling other devices, i.e., replace and improve the natural

output.

Figure 2.1 shows a diagram for a conventional BCI system. The BCI starts and ends
at the user. Their CNS activity is acquired, digitized and stored or streamed to a com-
puting system. For instance, in EEG-based BCI, the electrical brain activity is recorded
via electrodes placed at the scalp. Commercially available EEG devices also amplify the
signals, apply analogical band-pass filters and notch filters (to remove powerline noise),
converts them to digital signals and transfers the data to a computational system, such as
a microcomputer (SANEI; CHAMBERS, 2007). The signal processing block is responsible
for translating raw EEG signals into commands that can be understood by an external
device or other computational system. The implementation of this block is highly depen-
dent on the source brain activity being acquired, the BCI paradigm and the command
space. It generally includes spatial and temporal filtering procedures, feature or charac-

teristics extraction, and their translation to commands. The target application, device
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Figure 2.1 — High-level diagram of a BCI system.

or actuator receives those commands, and executes the task as intended by the user. In
a BCI, the task may be required to provide a feedback to the user, e.g., an image on a
screen indicating which movement they imagined. The final component of the BCI is the
operating protocol, which relates to how the user commands the BCI, the commands that
the BCI provides to an application, how the BCI converts commands into application
actions, and the actions that are produced (SINGH et al., 2021; WOLPAW; WOLPAW,
2012).

The sensitivity of the brain representations to motor imagery tasks makes the
paradigm viable for BCI, as it is associated with ERD and ERS of the respective ex-
ecuted movement, and there are many studies that show the similarities between brain
activity during motor execution and imagery (WOLPAW; WOLPAW, 2012; MCFAR-
LAND, 2000). As in motor execution, mu and beta ERDs occur during motor imagery
(which is also related to the movement planning phase of the execution), followed by
the beta rebound, which has been found to consistently appear in Cz during both foot
and hands movement imagination in different regions, but not during tongue motor im-
agery (PFURTSCHELLER et al., 2005). The activity of those bands/rhythms have been
used for the decoding of movement imagination in MI-based BCI (SAIBENE et al., 2023;
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URIBE, 2018). Rejer and Goérski (2017) used ICA for separating the Independent Com-
ponents (ICs), followed by extraction of power spectral features, using Lasso regression
(TIBSHIRANTI, 1996) for selecting features and a linear Support Vector Machine (SVM)
as classifier. Gouy-Pailler et al. (2010) used a non-stationary filter followed by Common
Spatial Patterns (CSP) as signal preprocessing, and calculated spectral power features
calibrate a logistic regression classifier. Safitri et al. (2020) used time-frequency wavelet
analysis, followed by dimensionality reduction with ICA as preprocessing and recurrent

neural networks for classification in an MI-BCI.

2.1.1 Feature extraction and selection for motor imagery

ERDs are attenuations in the brain activity during certain tasks, which can be spa-
tially localized depending on the excitatory stimulus. ERDs appear on the sensorimotor
cortex (parietal lobe) during motor imagination and execution, hence the possibility of
identifying whether a person is imagining the execution of certain tasks using captured
EEG activity (PFURTSCHELLER,; NEUPER, 2001). This activity is mainly detected
in the mu (8-13 Hz) and beta (13-25 Hz) frequency bands of the EEG signal. To isolate
certain frequency bands, we need to perform a frequency analysis of the signals to extract
its activity level in order to verify whether an ERD happened. In the context of mo-
tor imagery, the most used methods are the Short-Time Fourier Transform and Welch'’s
method (SAIBENE et al., 2023; PRIYATNO et al., 2022; SINGH et al., 2021; AGGAR-
WAL; CHUGH, 2019). We use the latter for the frequency analysis, within a setup based

on spectral power estimation by segmenting the signal into many pieces, and using:

S(w) = K]\}HU > i H(n)z(n + kD)e 7" (2.1)

k=1 |n=1

to compute an averaged estimate of the Power Spectral Density (PSD). In Equation
(2.1), S(w) is the power density of frequency w of a signal x(n). It is the averaged spectral
density over small, same-sized windows of the original signal, using K segments of length
Ny, each one shifted by D samples from the last segment (WELCH, 1967). We used a
Hamming window with D = 0.25s x f; and Ny = 1s x f,, defined by:

H(n) =ayp— (1 —ag)cos (%T:) (2.2)
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where f, is the sampling rate, ag = 0.53836 and 0 < n < Ny with U defined by:

1 Nu

U= [Hm)P (23)

H n=1

The analysis is typically done to each EEG channel after spatial filtering (LOTTE
et al., 2018). In the context of this work, we perform it after source separation for each
IC. We calculate PSD over the mu and beta bands for each IC, yielding 2 times the
number of channels values of spectral power that will be used as features for the classifier
(feature translator) training and inference. Since not every source is created in the motor
cortex, most of the independent components cannot be used for motor classification. This
creates the necessity of selecting the features that are specifically discriminative of motor
imagery classification and removing features that are not (BEKIRYAZICI et al., 2020), in
a process called feature selection. The wrapper method (KOHAVI; JOHN, 1997) greedily
builds a feature set that maximizes a determined performance metric score. It uses a hill-
climbing algorithm, starting from an empty set and adding features that mostly increase

a classifier’s score.

The wrapper algorithm employed in this work is outlined as follows:

1. Let S = {} be the selected feature set and F = {a1,as,...,an,} be the complete
feature set with Ny features, where each a; represents a feature (in this case, the

PSDs of the extracted ICs).

2. For each feature a; in F, calculate the score of the classifier via cross-validation

using features S U {a;} for the classification task.

3. Select the feature that most increased the score (comparing to using only S) for S

and remove it from F.

4. Repeat steps 2) and 3) until S reaches a desired cardinality or until there is no

improvement to the score.

Using this method, we jointly select the ICs and the respective mu and/or beta

rhythms that are beneficial to the classifier.

The feature translation (or classification) step uses an algorithm that interprets the

extracted features and decides which MI task the corresponding EEG signal was captured
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from. In MI-based BCI, one of the most common algorithms is the Linear Discriminant
Analysis (LDA), but there are works that used Support Vector Machines, Random Forests,
Hidden Markov Models, Naive Bayes and also adaptive approaches such as adaptive LDA,
and online passive-aggressive algorithms (LOTTE et al., 2018). Deep learning methods
have also been employed more recently (SANTAMARIA-VAZQUEZ et al., 2020; LAWH-
ERN et al., 2018; SCHIRRMEISTER et al., 2017), with the advantage that they may
not require the upstream feature extraction step, learning representations from raw EEG
signals. We present those methods in more detail in Chapter 4, including EEGNet, a deep

learning method for EEG classification.

ICA is also reported as a relevant tool in the construction of BCIs. ICA methods
can be applied to separate information-bearing signals from noise, interference and sev-
eral kinds of artifacts. Since different ICA methods use different assumptions and signal
properties to extract the ICs, they need to be chosen carefully, as well as the classification
model. In this work, we investigate the combinations of different methods for both steps,
aiming to find how well each ICA method suits with each classifier, and what is the best
possible choice for each scenario. We do not manually select the ICs, but use the wrapper
method, so that the components are chosen solely based on whether they are capable of
increasing BCI accuracy. Additionally, we also evaluate the use of ICA with deep neural
networks, training a model to learn the representations from the ICs instead of the raw
signals. The different ICA techniques will be presented in Chapter 3, and the classification
methods will be presented in Chapter 4.

2.2 Central nervous system

The central nervous system CNS comprises the brain and the spinal cord, and its
structures are distinguished by their locations, cell types and histology, and their func-
tion in processing sensory inputs to motor responses. CNS activity consists of electrical,
chemical and metabolic phenomena, and it can be quantified through different methods
(WOLPAW; WOLPAW, 2012). The CNS is mainly composed of neurons and glial cells.
Neurons are the principal functional components of the brain and are supported by glial
cells, which outnumber the neurons by approximately nine to one (THE NATIONAL IN-
STITUTE OF NEUROLOGICAL DISORDERS AND STROKE, NIH, 2023). Neurons

transport information through chemical signals and electrical impulses, allowing sensa-
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tions, feelings, thoughts, motor commands, limb localization and much more information
to be communicated within the brain and from the body to the brain (WOLPAW; WOL-
PAW, 2012).

The Primary Motor Cortex (M1) resides within the frontal lobe and is related to
the activation of muscles. It is organized in such that specific regions are responsible for
different muscles, with neighboring body parts typically represented by neighboring areas
of the cortex. The responsibilities include control of fingers, wrist, arms, facial movements,
tongue movements, chewing, vocalization, and more (GALLEGO et al., 2022; WOLPAW;
WOLPAW, 2012). The Premotor Cortex (PM) engages during abstract concepts about
the activation of the primary motor cortex, such as direction and target location of the
movement. The PM is more active during movement planning, while M1 has higher ac-
tivity during its execution. The Supplementary Motor Area (SMA) is essential for the
realization of complex or combination of movements, such as sequences or multiple move-
ments at the same time (KANDEL et al., 2021). Shima and Tanji (2000) observed that the
SMA is activated during a push and pull movement sequence, but is not activated during
individual movements. It is important to say that the higher responsibility of each region
for each dimension of the movement execution does not mean that the other regions are

inactive during them.

The Primary Somatosensory Cortex (S1) conveys sensations of touch, temperature,
pains, and limb position, playing a role in the execution of movements. It also conveys
the sense of limb movement, which is important for movement planning and guiding,
providing feedback to the M1 cortex while the movement is executed. It is located in the

parietal lobe. Activity in S1 occurs mostly during the movement execution, in relation to

movement planning (KANDEL et al., 2021; WOLPAW; WOLPAW, 2012).

Figure 2.2 shows a depiction of a human brain, with the approximate locations of

the mentioned areas.
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Figure 2.2 — Localization of the motor-related areas and the somatic sensory cortex,
adapted from (KANDEL et al., 2021).

Figure 2.3 depicts a sagittal section of the brain. Area A indicates the Premotor
cortex, Area B indicates the Motor cortex, and Area C indicates the somatosensory cortex.
Those motor-related areas are on the superior (dorsal) part of the brain, which will be

important for the goal of recording the electrical activity.
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Figure 2.3 — Sagittal section of the human brain, adapted from Kandel et al. (2021).

There is some insight on the somatotopic mapping of the motor and somatosensory
cortices. Figure 2.4 shows the dedicated areas for each part of the body in both the

Motor Cortex (A) and Somatosensory cortex (B). Note that the relative size of the areas
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dedicated to hand and facial expressions are significantly larger than the others, as the
motor control of hand and fingers is very fine and require a higher degree of control, as
well as the control and sensory information load of the face (especially the lips) is also

relatively rich (KANDEL et al., 2021)
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Figure 2.4 — Somatotopic map of the somatosensory cortex (A) and motor cortex (B) in
a coronal view, adapted from Kandel et al. (2021).

The activity in the CNS is predominantly related to the synaptic current between
neuron junctions (called synapses). Figure 2.5 shows the component parts of a neuron.
The neuron body (5) comprises the cell material and the nucleus (2), which contains the
genetic material. The dendrites (1) are terminations that receives impulses from other
neurons, and are connected to either dendrites or axons (8) of other cells. Axons (8) are
long cylindrical terminations that transmit impulses to other cells. The space between
two neurons through axons and dendrites is called, as already mentioned, synapse (10)

(SANEIL; CHAMBERS, 2007).
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Figure 2.5 — Parts of a neuron, adapted from THE NATIONAL INSTITUTE OF NEU-
ROLOGICAL DISORDERS AND STROKE, NIH (2023).

Initially, the neuron is at a rest state and has an intracellular potential of approxi-
mately —70 mV. When the dendrites receive a chemical stimulus, Na+ (sodium cation)
channels in the cell membrane open, creating a Na+ influx. This causes the neuron poten-
tial to rise to about +30 mV', which is called depolarization. The Na+ channels close, and
K+ (potassium cation) channels open, leading to a decrease in the cell’s potential, which
slowly polarizes to its rest state. The repolarization typically overshoots to —90 mV, a
process called hyperpolarization, then returns to —70 mV. The whole process lasts be-

tween 5 and 10 ms. This information flux is called the action potential and represents the

information carried by the neuron (SANEI; CHAMBERS, 2007).

There are approximately 10! neurons in a brain at birth, a number that gradually
decreases in the course of life (KANDEL et al., 2021; SANEI; CHAMBERS, 2007). The
sum of the action potential of millions of neurons in the brain creates electrical currents
that are measurable through one person’s scalp, even though this potential is largely
attenuated, being measured with an amplitude varying between 10 and 100 pV', even
though the neuron internal potential can vary about 100 mV. This method of measur-
ing brain waves is called Electroencephalography. Figures 2.6a and 2.6b show the Inter-
national 10-20 and 10-10 Systems for EEG setup, which defines some skull landmarks
(nasion, preauricular points, inion) and position the EEG electrodes at 10 or 20% the
distance of the landmarks (SANEI; CHAMBERS, 2007; TEPLAN, 2002; KLEM et al.,
1999). It is important to cite that EEG is actually one of many non-invasive brain sig-

nal acquisition techniques, other examples include Near-Infrared Spectroscopy (NIRS);
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Magnetoencephalography (MEG); Functional Magnetic Resonance Imaging (fMRI) and
Positron Emission Tomography (PET) (YEN et al., 2023; PASZKIEL, 2019; RAMADAN;
VASILAKOS, 2017).

.ﬁﬂ.

e 68
C>C>(D~.rll
C).i.lb.
@@

INION INION
(a) 10-20 system. (b) 10-10 system

Figure 2.6 — International 10-20 and 10-10 EEG montages. Electrodes A1l and A2 are
placed at the ear lobes.

&
.@@
() (F19
P @o '
O 2 @@@

@boooooooo@

HEEEEEEE )
(bs) .\. . @ ... &

The motor and sensory cortex becomes stimulated during the execution or imagi-
nation of a motor task. This is reflected in the oscillatory rhythms of this region, which
can be captured through EEG. Additionally, as the neurons from the motor cortex are
crossed in the medulla the imagination or execution of hand or foot movement results
in ERD/ERS at the contralateral hemisphere of the brain (PFURTSCHELLER et al.,
1997).
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3 Independent Component Analysis

Blind Source Separation (BSS) concerns the problem of separating information
sources from an observed mixture thereof using a minimum of prior knowledge about
their characteristics. A classical example is given by the so-called cocktail party problem:
consider a room with N (number of sources) individuals speaking simultaneously and N,
(number of mixed signals) microphones scattered across the room at different locations.
Different microphones will receive all voices at all times, but with distinct magnitudes and
time delays - hence, the observed signals can be modeled as a linear mixture of the unseen
sources, where the mixing system is unknown. The challenge is to recover the individual
speech signals from those mixtures, using, whenever possible, only the hypothesis that the
sources are statistically independent. This hypothesis establishes a relationship between
source separation and the technique known as ICA. The linear mixing process can be

mathematically represented as:

N
T; = Q; iS; 3.1
J9]
j=1

where z; is the i-th observed source, s; is the j-th source signal, and a; ; is the weight of
the j-th source contribution to the i-th observed signal (HYVARINEN et al., 2001). This

can be written in matrix notation as:

x = As (3.2)

where s = [sq,...,sn,]T is the source vector, x = [xy,...,2y,]|T is the observed signal
vector and A is the mixing matrix, composed by the weights a; ;. The statistical inde-
pendence assumption implies that no source conveys information about any other source.
These two properties (linear mixing and source independence) are the main assumptions
underlying the classical ICA framework, translating successful separation into finding the
mixing weights and recovering the sources (HYVARINEN et al., 2001). It will be seen
that, in general, the estimated amplitude of the sources and the order in which they are
recovered are arbitrary. This is generally done by finding the N, x N, unmixing matrix

W such that
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y = Wx (3.3)

where y vector contains the extracted sources.

ICA has a very rich and interesting history. Hérault and Jutten presented one of
the first works that informally used the concept, in 1983, and, a few years later, Comon
presented a more rigorous mathematical formulation and a solution to the problem using
higher-order cumulants (KACHENOURA et al., 2008; HYVARINEN, 1997). In paral-
lel, Cardoso and Souloumiac (1993) developed the Joint Approximate Diagonalization
of Eigenmatrices (JADE) algorithm, which used fourth-order cumulants. Solutions using
only second-order statistics were also studied, such as Second-Order Blind Identification
(SOBI), by Belouchrani et al. (1997), which considers the source time-lagged covariance
matrices. The Fast ICA method (HYVARINEN, 1999) differs from all of those approaches
by extracting one source at a time from the signal mixture, which is known as deflation,
but it has a symmetric variant that allows us to extract all sources at once. Bell and
Sejnowski (1995) explored how to directly use the independence assumption to develop
the Information Maximization algorithm, which was later improved by Lee et al. (1999).
Picard, a recently proposed approach, takes into account the real distribution and charac-
teristics of the signals and improves ICA robustness and convergence speed on real data
(ABLIN et al., 2018). A simple addition to the technique, which constrains the sources

to be orthogonal, was proposed under the name of Picard-O.

ICA is one of many tools that are used for pre-processing and feature extraction
in BCIs. Ideally, it may allow information-bearing brain signals to be separated from
independent noise, interference and artifacts. This strategy has been applied with success
(BAI et al., 2014; WINKLER et al., 2011; DELORME et al., 2007), and the mitigation of
Electrocardiography (ECG) artifacts, line noise, blinks and muscular activity is reported
in works like Hamaneh et al. (2014). There are also works that use it in the contexts of
spatial filtering (WANG et al., 2012), source extraction for MI-related activity patterns
(WU et al., 2020), and also as a preprocessing step for neural networks (HAN et al.,
2022). ICA has shown to be useful for separating the interesting somatosensory activity
in the desired bands (beta and mu rhythms) from other unwanted rhythms and regions,

ultimately improving the performance of MI-based BCIs (KACHENOURA et al., 2008).

Some ICA methods require the whitening of the observed signals prior to source
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extraction. It refers to a linear transformation such that the resulting signals are uncorre-
lated, effectively removing first and second-order interactions between the signals without
losing information. Orthogonalization techniques and Principal Component Analysis also
are techniques that remove those interactions and can be used in substitution to achieve
the same goal. This step is sometimes mandatory (for instance, in SOBI and JADE), but it
is always useful to better pose the data to the source extraction algorithms (HY VARINEN
et al., 2001).

In this chapter, we present the characteristics, assumptions, and goals of classical

ICA methods.

3.1 Infomax

The Infomax (Information Mazimization) algorithm was originally designed to max-
imize the mutual information between the output y and the input z of a neural network
(NN). The idea is translated into the ICA domain by assuming that y and x represent the
recovered ICA sources and the mixtures, respectively. The mutual information between

them is defined as:

I(y,z) = H(y) — H(y|z) (3.4)

with
(o @)

H(y) = B, ()] = = [ pu()in(p,(v)dy (3.5)

where H is the entropy function and H (y|x) is the parcel of the entropy of y that does not
come from the input (e.g. a noise parcel). The derivative of I(y,z) w.r.t. to a parameter
w of the Neural Network (NN) can be written as:

O(y,x) _ OH(y)
ow ow

since H (y|z) does not depend on the network.

For a single-input / single-output network, with y = f(wz + b), where w is the
network weight, b is the bias, and f(.) is a nonlinearity, I(y, z) is maximized by aligning
high density parts of the probability density function (pdf) p, of z with high varying
parts of y, as small changes in the most probable values of the input will cause the

highest changes in the output, causing the highest information flow possible. If f(.) is
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monotonically increasing or decreasing it has a unique inverse and p, (the pdf of y) can

be written as a function of p, (AMARI, 1998) as:

-1

Jy
py(y) = pa(2) | 5= (3.6)
Substituting Equation (3.6) into Equation (3.5) yields:
y
Hy) = B |in| 52| ~ Blp.(o) (37

where the first term of the right-hand side is the average of the logarithm of the derivative
of y w.r.t. x. If we assume that we have a dataset of realizations of x that represents the

distribution p,, the derivative of H(y) w.r.t. w can be written as ':

For a multi-input / multi-output network with output y = f(W%x + b), similar

Oy

ox

= —In

ow ow

0H(y) _ 0 <

reasoning can be used. The determinant of the Jacobian of y represents the volume of
the space in y into which x is mapped (AMARI, 1998; PAPOULIS, 1991). Equation (3.6)

can be rewritten in matrix form as:

Px(x)
pyly) = 3.9
where V is the vector differential operator, with Vy = [%, ceey agfj] By following the
same steps as in the one-input one-output case, we arrive at:

W = gwln (1V¥]) = (Wh) "+ (1 -2y)x (3.10)

where 1 is a N,-sized vector of ones. Differentiating H w.r.t. b yields

0H (y) 0

= =1-2 A1
o = s in (Vyl) =12y (3.11)

For an individual weight w; ; of W, the rule is equivalent to

9g

L This derivative can be calculated using the chain rule g—i = %%8%7 with g =In

9y
ox

,u = In(x) and

t = x|
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cof Wi

detW

where cof w; ; is the cofactor of w; ;, which is (—1)""7 times the determinant of the matrix
obtained by removing the i-th row and j-th column from W (BELL; SEJNOWSKI, 1995).

This gradient can then be used for an iterative update of the network weights.

Infomax is one of the most used ICA algorithms due to its implementation in com-
mon computational frameworks (DELORME; MAKEIG, 2004), and has been applied as
a preprocessing step in BCIs (URIBE, 2018; URIBE et al., 2016). It has been also found
to be an effective method in minimizing the mutual information between the recovered
sources (DELORME et al., 2012). It is also reportedly, among compared ICA methods, the
one that most improves MI-BCI accuracy when used in EEG preprocessing (BRUNNER
et al., 2007, NAEEM et al., 2006).

3.2 Extended infomax

The Information Maximization method proposed by Bell and Sejnowski (1995) is
shown to fail in extracting sources that have subgaussian distributions (negative kurtosis).
This is described in their work and is due to the use of the logistic function as the activation
function in the neural network that performs the calculation. As we mentioned, the most
probable values of the sources p.d.f. must match the high slope parts of the nonlinearity.
For this to happen, the activation function must approximate the cumulative distribution
function (c.d.f.) of the source signals (up to a constant value, as in practice, only the
derivative of the function is used), i.e., f(v) =~ [Y fo(y)dy. In the same work, it is
proposed to use the generalized sigmoid function as a nonlinearity, first optimizing the

parameters of this function and then adjusting the network weights (LEE et al., 1999).

Let s(t) = [s1(t), ..., sn,(t)] be independent signal sources, such that the observed
data vector is x(t) = [x1(¢),...,zn,(t)] = As(t), where A is a full rank N, x N, scalar

matrix. Since the sources are independent, we can write its multivariate p.d.f. as

p(s) = [Ilpsi(sz‘) (3.13)

The mutual information of the observed vector can be written as the Kullback-
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Leibler (KL) divergence of the multivariate density p(s) from the product of the marginal
densities, as

_ [y, P
I(X>_/—Ool Hz‘N:1psz-($z’)d

The goal is to find an unmixing matrix W such that the unmixed signals y(t) =

(3.14)

Wx(t) are independent. We saw that the p.d.f. of the unmixed signals can be expressed

as a function of the p.d.f. of the mixed observations by using Equation (3.9), which yields
Equation (3.15), where p(y)

1Y, ps, (i) is also the distribution of the sources.

p(x) = ply)|det(W)] (3.15)

The original algorithm has a learning rule of the form AW o {(VVT)_1 — qb(y)XT},
where

p(y) (319

is the score function. It is also possible to use the natural gradient (AMARI, 1998) to

improve the convergence speed of this algorithm, which results in

OH (y)

AW o~ WIW = [ - o(y)y"| W (3.17)

The natural gradient is employed to better guide the search through the actual landscape

of the objective function, taking into account the manifold that is spanned by it (AMARI,
1998).

In the formulation of Equation (3.17), if we choose f(y) = tanh(y) as the network
nonlinearity, the learning rule reduces to

OH (y)

T _ T
AW o~ o m WIW = |1 —2tanh(y)y” | W (3.18)

The Extended Infomax aims to use different nonlinearities for both subgaussian and
supergaussian distributions, which is desired since the original Infomax ICA cannot deal

with subgaussian sources. We can create a strictly subgaussian distribution by a mixture
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of normal distributions, as in Equation (3.19), where y and —p are the means and o2 is

the variance of the mixed distributions:

p) = 5 (N, 0%) + N(=p1.0%)) (3.19)

The kurtosis of this distribution is written in Equation (3.20), varying between —2 and 0

depending on the values of y and o2:

—2M4

T (3.20)

kurt(p(y)) =

For this choice of p(y), if we further set u = 1 and o = 1, the function ¢(y) takes

the form of

¢-(y) =y — tanh(y) (3.21)

Y Y

where the ’—’ subscript denotes that it is the scoring function for the subgaussian case.
Note that this function is strictly for subgaussian sources. To describe supergaussian

sources we can model their distribution as:

p(y) = po(y)sech?(y) (3.22)

where sech(.) is the hyperbolic secant function and py(y) = N(0,1). The function ¢(y)

takes the form of

¢+ (y) = y + tanh(y) (3.23)

for this distribution, where '+’ denotes the supergaussian case. Those choices of prior
assumptions for the distributions of the sources are interesting because they yield the

learning rules of Equation (3.24), which only differ by a sign, as follows:

I — tanh(y)y? — yy?|W if supergaussian assumption
AW o 4 ) | (3.24)

I+ tanh(y)y? — yy?]W if subgaussian assumption
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The learning rule can be written in a single equation, as:

AW o [I — Ktanh(y)y’ —yy'|W (3.25)

where K is a N, x N, diagonal matrix and k; € {—1,1} are the elements of its diagonal

(at the ¢-th row and i-th column).

The number of subgaussian sources can be assumed or approximated. If we assume
Ngu, subgaussian sources, the k; values are such that k; = —1 for ¢ < Ny, and k; = 1
for i > Ny Lee et al. (1999) presented a switching strategy that is guaranteed to be

asymptotically stable, where k; is calculated using

ki = sign (E[sech® ()] E[y?] — Eltanh(y;)y] ) (3.26)

The computational framework MNE (GRAMFORT et al., 2013) uses the following

heuristic calculation:

k; = sign (kurt(y;)) (3.27)

as empirical estimates of the recovered sources kurtosis in order to switch the values of

k;. In this equation, kurt represents the empirical kurtosis calculation.

3.3 Fast ICA

The Fast ICA is a fixed-point iterative method that uses the projection pursuit
approach with the goal of finding an informative projection of the observed EEG signals.
The method uses the notion of negentropy of a random vector x, J(x), which is calculated
as the difference of the entropy of x and that of a Gaussian random variable X 4,5 With

the same covariance matrix as x (HYVARINEN, 1999), as follows:

J(x) = H(Xgauss) — H(x) (3.28)

The mutual information can be written in terms of negentropy, as in Equation (3.29).
It is used as the metric of independence in Fast ICA, so the goal will be to minimize the

mutual information of the recovered sources.
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M
I(x) = J(x) = > J(x;) (3.29)
i=1
Hyvarinen (1997) has shown that J(x;) can be approximated using applications of

practically any non-quadratic functions G (subject to some constraints) to x; as follows:

J(x:) ~ c(E[G(x:)] — E[G(v)))* (3.30)

where c is a constant and v is a random Gaussian variable of null mean and unit variance.
This can already be used for finding one independent component 1; = w’x, where w
is scaled such that E[(w”x)?] = 1 (which is not a problem, since ICA admits that the

sources be recovered up to a scaling factor).

This approach yields Equation (3.31) as the estimation of the negentropy, and we
can use it as the maximization objective function for each w; of W = [wy, ..., wy,|T by

using a deflation strategy:

Ja(w) = (E[G(w'x)] — E[G(v)])* (3.31)

Another approach is to jointly calculate all w; by enforcing a decorrelation constraint, as

follows:

N
argmax > _ Ja(w;) (3.32)
W1,...,WN, =
1 ifj=k
s.t. Bl(wlx)(wix)] = (3.33)
0 ifj#k

Hyvarinen (1997) recommends the use of three different G(.) functions, all of which
satisfy the conditions of consistency, asymptotic variance and robustness of the estimator
of w; and W — they are presented in Equations (3.34), (3.36) and (3.38), with g;(u) being

the derivative of the respective G;(u):

Gi(u) = iln(cosh(alu)) (3.34)

ai

g1(u) = tanh(aju) (3.35)
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Go(u) = —;16_(122“2 (3.36)
ga(u) = ue~ % (3.37)
G3(u) = iu4 (3.38)
g3(u) = v’ (3.39)

with 1 <a; <2 and ay = 1 are constants.

3.3.1 Fixed-point algorithm

If we apply the Karush-Kuhn-Tucker (KKT) conditions to Equation (3.31), we will
see that its maxima under the constraint of ||w||> = 1 respect Equation (3.40), where
f can be calculated as 3 = E[wlxg(wlx)] and wy is the value of w that minimizes

Equation (3.31):

F(w) = E[xg(w'x)] — Bw = 0 (3.40)

We can then use Newton’s method to solve this optimization problem. The Jacobian

of Fis

VF = Elxx"¢(w'x)] — g1 (3.41)

The method requires the calculation of the inverse of the Jacobian, so a few approx-
imations will be made. First, we will assume that x is sphered, e.g., its covariance matrix
is the identity matrix such that E[xx’¢'(wlx)] = E[l¢'(w'x)] = E[¢'(w'x)]. The value

of 3 is also approximated by using the current value of w instead of wy.

The Newton’s method step is defined as w(n + 1) = w(n) — F(w)/F'(w), and can

be written in two steps as:

w — E[xg(w'x)] — E[xg' (w!x)|w
w (3.42)

[[wl]

Convergence proof of this algorithm can be found at Hyvarinen (1999).
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For estimating several w we must prevent each one from converging to the same
result. This can be done by applying a Gram-Schmidt decorrelation at each step when

estimating the p-th weight vector (w,) as:

p—1
W, < W, ngwzwl
i=1 (3.43)
W, P
T [l

or can be done at once for the entire matrix W after one full iteration of approximating

w, for all p by using

W+ (WWT)2 W (3.44)

where (WWT)’% can be obtained by eigenvalue decomposition.

As it is a fast and reliable ICA option, it is found to be used for different purposes
in the BCI pipeline, such as pre-processing (WU et al., 2020; REJER; G6RSKI, 2017),
artifact removal (BAT et al., 2014; WINKLER et al., 2011) and feature dimensionality
reduction (SAFITRI et al., 2020).

3.4 Second-Order Blind ldentification

The character of time series of the signals, which implies that they have a natural
time structure, can be exploited for an ICA solution. SOBI uses the time-lagged covariance
matrices as a measurement of independence between the recovered sources, aiming to
nullify this second-order dependency. This is not perfect, since independence would imply
nullifying dependencies of all orders, but is a reasonable approach. For this, we will assume
that the source signal s(t) = [s1(t),...,sn,(t)]T is a deterministic ergodic sequence or
a stationary multivariate process, meaning that the signal autocovariance matrix is a

diagonal, as follows:

R = E[s(t + 7)s(t)"] = diag[pi(7), . .., pu(T)] (3.45)

where p,(7) = E[s,(t + 7)s,(t)*]. This condition means that a source at time ¢ is not
correlated to any other source at any other present or past time (BELOUCHRANTI et al.,
1997).



Chapter 3. Independent Component Analysis 40

The assumed mixture model is as follows:

x(t) = As(t) + n(t) (3.46)

The mixing matrix A is assumed to be full rank and has dimensions N, x N, and the
observed mixtures x(t) are generated by a linear transformation of the sources s(t) plus a
noise n(t) = [ny(t), ..., ny,(t)] which is assumed to be stationary, temporally and spatially
white, as described by:

En(t + 7)n(t)"] = 020(7)I (3.47)

where 02 is the noise’s variance and §(7) is Kronecker’s delta.

It directly follows from those assumptions that the autocovariance matrices Ry (7) =

E[x(t + 7)x(t)*] of the observed signals can be written as:
R, (0) = AR (0)A" + o°T (3.48)
R, (7) = AR(1)A" T#0 (3.49)

Since the ICA solution has ambiguities concerning the order and the scale of the sources,
we conventionally assume that they have unit variance, meaning that Rg(0) = I and
R,(0) = AAf where y(t) = As(t). This leaves the order and phases of the columns
in A undetermined, so the goal will be to estimate a matrix W such that W = PA~!,
where P is a matrix with only one non-zero element per column and row with unitary
modulus, meaning that we can determine A up to permutation and phase shift and that
the sources are also recovered up to permutation and phase shift. The existence of such
matrix P can be represented by W = A~! which means that W is essentially equal to
AL
If we have a whitening matrix B of y(¢) such that

EBy(t)y(t)'BY] = BR,(0)B” = BAA"BY =1

we can conclude that BA = U, where U is an unitary matrix, i.e., UU? =1, and hence
A = B#U, where # denotes the Moore-Penrose inverse. The white signal z(¢) can then
be defined as:

z(t) = Bx(t) = B[As(t) + n(t)] = Us(t) + Bn(t) (3.50)

From Equation (3.49) and considering A = B#U, we can obtain

R.(7) = UR,(7)U", V7 #£0 (3.51)
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which is used in Theorems 3.1 and 3.2 and discussed in Belouchrani et al. (1997):

Theorem 3.1 First Uniqueness Conditions: For a 7 # 0 and a unitary matric V such

that
VAR, (T)V = diag[d,, . .., dn,] (3.52)
with pi(T) # pj(T) V1 <i#j< N, (3.53)

hold, the following statements are true:

1. v=U

2. [dy,...,dn,] is a permutation of [p1(7), ..., pn,(T)].

Theorem 3.2 Second Uniqueness Conditions: For a set of K non zero lags {m,..., Tk}

and V an unitary matriz such that

VI<k<K VAR, (1,)V = diag|d,(k), ..., dn, (k)] (3.54)

Vi<i#j<N, dk, 1 <k <K, di(k) #d;(k) (3.55)
hold, the following statements are true:

1. v=U

2. [di(k),...,dn, (k)] is a permutation of [p1(Tk), ..., pn, (Tk)]

These two theorems are similar in the sense that Theorem 3.1 states some properties
of the diagonalization matrix V for one time lag 7, and Theorem 3.2 states the same
properties but regarding a set of time lags {7, ..., 7k }. For instance, if the source signals
have identical normalized spectra, the conditions for Theorem 3.2 fail, while the conditions
(3.53) for Theorem 3.1 are "simpler" in the sense that they depend on the source signals
and not on finding V. On the other hand, it is not easy to check conditions (3.53) a priori.
Note that the existence of V in conditions (3.52) and (3.54) is guaranteed by Equation
(3.51).



Chapter 3. Independent Component Analysis 42

The goal of the SOBI algorithm is to jointly diagonalize a set
M - {Ml,...,MK}

of K covariance matrices (for the set of time lags {71, ..., 7x}), reducing the chance of a
bad choice of 7. This also increases statistical efficiency by using a larger set of statistics

(BELOUCHRANTI et al., 1997).

The "off" measure of an n x n matrix M with m; ; values is defined as

of M) = > |my,l? (3.56)

and the diagonalization of a matrix M by V is equivalent to zeroing off( VAMYV). Addi-
tionally, if M is in the form of M = U¥DU with U an unitary matrix and D a diagonal
matrix, them off(VEMYV) = 0 if and only if U = V.

The joint diagonalization of the matrices in M is done by minimizing the joint

diagonality criterion (JD) C(M, V), given by:

=

Z fF(VEM,V) (3.57)

A matrix V' that minimizes the JD criterion is referred to as a joint diagonalizer of

M. This is stated in Theorem 3.3, as follows:

Theorem 3.3 FEssential Uniqueness of Joint Diagonalization: Let M = {My, ..., Mg}
be a set of K matrices with 1 < k < K and My, has the form of M, = UD,U",
with U unitary and Dy = diag[d,(k), ..., d, (k)] diagonal. Any joint diagonalizer of M is
essentially equal to U if and only if the following condition holds:

V1<i#j<N, 3k 1<k<K dk)#d;(k) (3.58)

The Jacobi technique (GOLUB et al., 1989) can be used for the diagonalization
of an Hermitian matrix through successive Givens rotations. Belouchrani et al. (1997)
proposed an extension of the method that can be used for the joint diagonalization of non
symmetric matrices, which is similar to the original algorithm but uses the JD criterion

given by Equation (3.57).
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Algorithm 1 SOBI

Require: Mixed signals x(t).
Estimate R(0) from the samples of x(t), and calculate its eigenvalues {1, ..., Ay, } and
corresponding eigenvectors {hy, ..., hy, }.
Assuming a white noise, its variance can be estimated as ¢° using the average of the

N, — N, smallest eigenvalues of R(O) The corresponding whitening matrix B is given
by

~2

B=[\—-06%72...,(\y, — 022" (3.59)

Calculate the whitened signal z(t) = Bx(t)

Estimate R.(7) for a set of time lags 7 € {mp|k =1,..., K}

Find a joint diagonalizer matrix U for the set {R (Tk)lk’ L,...,K}
The source signals are estimated as §(t) = UTBx(¢).

The mixing matrix is estimated as W# = B#U.

Output: §(¢), W

The complete SOBI algorithm is as follows:

The computational cost of SOBI is relatively small, compared to other methods. It is re-
ported to be one of the least robust ICA methods in terms of signal-noise ratio (SNR) of
the input signals (KACHENOURA et al., 2008), and to extract sources that are not nec-
essarily related to ERPs (WU et al., 2020). At the same time, it has been reported to pro-
vide an excellent separation when its assumptions are met (SAHONERO; CALDERON,
2017).

3.5 Joint Approximate Diagonalization of Eigenmatrices

The technique of joint approzimate diagonalization of eigenmatrices (JADE) ex-
ploits the fourth-order cumulants of the mixed signals to develop a blind beamforming
algorithm, aiming to identify the source vectors without knowledge of the source array
configuration. Assuming that the configuration is seen as a linear superposition of the
sources, similar to the ICA model, and that the sources are independent, the beamform-
ing problem turns into finding the mixing matrix. Using this approach, the sources can
only be estimated up to a complex scalar factor (for a complex signal) and up to a
permutation order, i.e., the recovered signals will likely be unordered and with different
magnitudes and phase-shifts. This, as already mentioned, is generally the case in ICA,
and hence we assume sources with unit variance such that the autocovariance matrices

are in the form of:
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R, = E[s(t)s(t)] =1 (3.60)

and

Ry = Ely(t)y(t)"] = E[As(t)(As(t))"] = AA" (3.61)

where A is the Ny x N, mixing matrix, y(f) = As(t) is the mixed signals vector and
s(t) = [s1(t),...,sn,(t)]" are the sources. Here, as in SOBI, the identification of matrix
A (and consequently its inverse) is made by determining a matrix that is essentially
equal to A, since ordering and phase indeterminacy are not a problem in our context. We
shall also define the observed signals vector x(t) = y(t) + n(t), where n(t) represents a

corrupting additive noise.

The use of cumulants comes from their interesting characteristics as statistical de-
scriptors of probability functions. One important property is that, if all signals v;, ..., v,
are independent, it follows that their joint cumulants are zero (PECCATI; TAQQU, 2011)

- this is an important result for establishing a connection between JADE and ICA.

The n-th (n > 1) order joint cumulant Cum of the random variables (signals)

v1,...,0, can be written as:

Cum(vy,...,v,) = (x| = D= ] E

T Bern

11 vp] (3.62)

pEB

where 7 is the set of all possible partitions (non-empty sets whose union create the full set)
of {1,...,n}, and B are the sets contained in each partition in 7 (PECCATT; TAQQU,
2011). For instance, if n = 3, then 7 contains {{1}, {2}, {3}}, {{1},{2,3}}, {{2},{1,3}},

{{3},{1,2}} and {{1,2,3}}, so:

Cum(vy, v, v3) = Elvyv03] (3.63)
— E[vv9] Elvs] — E[vivs] Elvg| — Elvgus] Elvy] (3.64)
+ 2E[v1|Efvs| E[vs] (3.65)

Furthermore, let’s define a cumulant set £, of a d-dimensional stationary process

v(t) as:
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Ly = {Cum(vi, v}, v, v))|[1 <4, 5, k, 1 < d} (3.66)

The kurtosis of the p-th complex signal source s, () is defined as the fourth-order cumulant

as follows:

kurt(s,(t)) = kurt, = Cum(sy, s,, $p, 5,) (3.67)

For the next steps, we will have the following set of assumptions for the ICA scenario:
e Hy. The processes n(t) and s;(t),...,sn,(t) are jointly stationary (and hence the
time ¢ does not matter for calculating the cumulants).
e H,. There is at most one source with zero kurtosis.
e H,. The rows on A are linearly independent.
e Hj. The processes s1(t),...,sn.(t) are statistically independent for each t.

e H,. There exist consistent estimates for Ry and Ly (implying finite variance and

kurtosis).
e Hj;. The additive noise n(t) is gaussian and independent of the sources.

e Hg. n(t) is spatially white with R,, = oI, where o is the noise’s variance.

As in SOBI, we can whiten the process y(¢) by calculating the whitening matrix B.
The whitened process

z(t) = Bx(t) = Us(t) + Bn(t) (3.68)

still respects the ICA model in Equation (3.46). The matrix U = [uy,...,uy,] = BA will
be unitary, since R, = BR,B¥ = BAA#B# =1. All of the second order information in

z(t) is exhausted, i.e., multiplying it by any unitary matrix doesn’t change its covariance.

Cardoso and Souloumiac (1993) propose two approaches to solve JADE, one based

on eigendecomposition and one based on a cumulant criterion.
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3.5.1 Eigendecomposition approach

We define a cumulant matriz Q,(M) associated with a n X n matrix M, by defining

each entry g; ; as:

Qi,j — Z Cum(z'“ 2;7 Z]f? Zl*)mlvk
W57 (3.69)

1<i,j<n

The (k,1)-th cumulant slice is the matrix whose entry in the i-th column and j-th row is
Cum(zi, 25, 21, 2 ), which is equal to Q.(b;bj), where by, is a n x 1 matrix with zeros in
all positions but the k-th. The parallel set N? is defined as the set of all parallel slices

and can be represented as:

NP = {Q.(bbi)|1 < k1 < n} (3.70)

Since z(t) takes the form of Equation (3.68), we can use cumulant properties (addi-

tivity, multilinearity, Gaussian rejection) (CARDOSO; SOULOUMIAC, 1993) and write
Q.(M) as:

N =Q.(M) =) kurt,u;Mu,u,u;

p=1

_ UALUH (3.71)

v M

where Ay = diag(kurt;uiMuy, . . ., kurt,u:Mu,). From Equation (3.71) we see that U
diagonalizes any cumulant matrix, and since A = B#U we know that left multiplying

the Q. eigenvectors U by B# yields the mixing matrix.

3.5.2 Approach based on a cumulant criterion

Let us define e(t) as:

e(t) = Vz(t) = VHUs(t) + V¥Bn(t) (3.72)
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where V is an n X n unitary matrix. If V.= U, the channels of e(¢) are the possibly
permuted and phase-shifted source signals, corrupted by additive Gaussian noise, so their
higher-order joint cumulants are zero. It can be shown that U can be determined as the
unitary minimizer of the sum of the squared joint cumulants in Le. Since the sum of the
squared joint cumulants plus the sum of the squared auto-cumulants does not depend on
V, this criterion is equivalent to maximizing the sum of the squared auto-cumulants, as

follows:

d(V) = Z |Cum(e;, e}, ei, e})|? (3.73)

i=1

Cardoso and Souloumiac (1993) proposed determining U as the maximizer of:

c(V) = zn: |Cum(e;, e}, ex, ef)|? (3.74)
ik =1

which is equivalent to minimizing the squared joint cumulant with distinct first and second
indices. Such criteria can be used in substitution to Equation (3.73) due to an efficient op-
timization strategy using joint diagonalization. Moreover, Cardoso and Souloumiac (1993)
propose that ¢(V) = C(N?, V) (the same as Equation (3.57)) for any unitary matrix V,
meaning that a maximiser of ¢(V) is a joint diagonalizer of N7, where N? is a K-sized
parallel set of matrices. They also propose that, under the JADE prior assumptions, a ma-
trix that jointly diagonalizes N'? is essentially equal to U. The joint diagonalization of N7
can be achieved using an extension of the Jacobi technique (CARDOSO; SOULOUMIAC,

1993; GOLUB et al., 1989).

The fourth proposition states that for any d-dimensional complex random vec-

tor v with fourth-order cumulant, there exist d? scalars A;,..., A\ and d? matrices
M, ..., Mg, called eigenmatrices, such that:

Qv(M,) = A\ M, (3.75)

Tr(M,M) =4, 1<rs<d (3.76)

with 0,5 = 1, if » = s, and 0 otherwise. It is possible to represent the relationship

N = Q. (M) in vector-matrix form as N = QM, where N and M are created by stacking
the d x d matrices into d2 x 1 vectors and by mapping £, into the d2 x d2 matrix Q. One

way to do this is by defining
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ﬁa = Ny j (377)
ma =My ; (378)

Gap = Cum(v;, v3, vy, vy) (3.79)

with

1§a,b§d2
1<4,j<d
a=i+(j—1)d
b=k+(l—1)d

In Equations (3.77) to (3.79), A, and 7, are the a-th value from N and M vectors,
respectively, n; ; and m; ; are the values at the i-th column and j-th column of the N and

M matrices, respectively, and ¢, is the value at the a-th row and b-th column of Q.

Matrix Q is Hermitian, so it has d? eigenvalues and d? eigenvectors of size d2,
which can be unstacked to create the eigenmatrices that inherit the orthonormality prop-
erty from the eigenvectors. The eigenstructure of £, is derived from the definition of
Q. in Equation (3.71). The spectrum of Q consists of n(n — 1) zero eigenvalues and n
non-zero eigenvalues, with magnitude equal to the kurtosis of the sources (CARDOSO;
SOULOUMIAC, 1993). Ordering those eigenvalues A, by decreasing order of magnitude

allow us to define the eigenset of L, as:

Ne={\M, |1 <r<n} (3.80)

which contains only n non-zero eigenmatrices (with the non-zero eigenvalues \,) in-
stead of the n? that are in A'P. For the purposes of this method, the set N¢ exhausts
the relevant fourth-order information, and Cardoso and Souloumiac (1993) propose that
c(V) = C(NP, V) = C(N¢ V) for any unitary matrix V. This reduces the number of

matrices that need to be jointly diagonalized from n? to n.

The JADE algorithm can be summarized by:
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Step 1. Calculate the estimate of R, and the whitening matrix B.

Step 2. Calculate the fourth-order cumulant matrix £,, and compute the eigenvalues

and eigenmatrices {\,, M.||1 < r < n}.
 Step 3. Jointly diagonalize N¢ = {\,M,||1 < r < n} using an unitary matrix U.

« Step 4. Estimate A = B#U, where # denotes the Moore-Penrose inverse.

Practical and illustrative methods for performing each step are presented in Cardoso and

Souloumiac (1993).

JADE is considered one of the classical ICA algorithms (WU et al., 2020) for being
one of the first methods that considered higher-order cumulants in its calculations, and
because it uses a joint diagonalization strategy, such as SOBI, being more computationally
efficient compared to other ICA variants (KACHENOURA et al., 2008). There is literature
on it outperforming SOBI and even Infomax in the MI-BCI literature (URIBE et al.,
2016).

3.6 Preconditioned ICA for real data

The likelihood function for the ICA model can be written in terms of the unknown
N; x N mixing matrix A and p; denoting the p.d.f. of the i-th source signal. Assuming
zero-mean, independent and identically distributed sources, we can write the likelihood

of A as:

T N

p(X|A) = tl;[l [det(A)] thi([A_lX]i(t)) (3.81)

where X is the N, X T observed mixed signal matrix, with N, channels and 7" time samples
for each channel. It is often useful to work with the time averaged negative log-likelihood

parameterized by W = A~!, written as L(W) = —£log (p(X|W™1)). In the case of the
ICA model, we have:

LIW) = —logldet(W)] — E [z zOg<pi<yi<t>>>] (3.82)

i=1
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where £ denotes the empirical mean and with Y = WX = [yi, .y~ and y; =
[4:(0), ..., y:(T — 1)]T. The sources and observed signals representations X and Y now
contain the T realizations of x(t) and y(t), so the ICA model representation is slightly
changed to

Y =WX

which only serves the purpose of accommodating the additional time dimension, but the

underlying physical interpretation is the same.

The Picard algorithm approach is based on learning the curvature of the manifold
that £(W) describes using the available data, making the convergence of the algorithm
faster since it will rely more on the data itself making it less prone to optimization prob-
lems in cases where the ICA model does not hold exactly. Picard uses the standard Infomax

source density model, i.e., —log(p;(u)) = 2log(cosh(3)) + C, where C is a constant.

To understand the local topology of £(WW) and its changes for small variations £ in

W, we will use its Taylor expansion, calculated as:

L(I+&EW)=LW)+ (GIE) + ;(8\H|8> + O(||IE) (3.83)

The Ny x Ny matrix G, known as the relative gradient, controls the first-order term while
the Ny x Ny x Ny x Ny tensor H, known as the relative Hessian, controls the second-
order term. The operation (M|M') = Tr(MTM’) represents the Frobenius matrix scalar
product, where M and M’ are N x N matrices. Also, the operation (H|M), were H is a
N x N x N x N tensor, results in a N x N matrix HM, with its (7, j)-th value calculated
as [HM];; = 33— H; j 1 My,,. Finally, we have the equality (M'|H|M) = (M'|HM).

Both terms can be obtained by calculating the second-order expansions of log(|det (I+

E)|) and log(p;(u + €)), resulting in:

G(Y) = ;,MY)YT —1 (3.84)

Hi ki =005+ 5i,kE[¢,<yi)yjyl] (3.85)

where ¥(u) = ¢;(u) = —gEZi (as in Equation (3.16), used in the Infomax method) is the

scoring function, E is the empirical mean and N is the number of samples. In practice 10,

is a chosen fixed non-linearity, typically v;(u) = tanh(u).
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Using the notations:

(3.86)

%

for 1 <4,7,1 < Ny, we can use two approximations for H; ;x;. The first approximation,

denoted as ﬁf’j’k’l, is obtained by replacing fL,-J»J by 5]-71}}1»7]- and is calculated with

HEj g = Sabje + Sudsihi (3.87)

The second approximation, denoted as H&j’k’l, extends the first one by also substituting

hi; by h;62, as follows:

. 00k + 5ik5jlﬁigj2‘ ifi#j
Hz%j,k,l = A (3.88)
The superscripts indicate the computational complexity of calculating each approx-
imation, as H};, ; scales quadratically with Ny while H}, ; scales linearly with N;. Fur-
thermore, both approximations have a block-diagonal sparse structure that helps in the

calculation of the inverse. It can be shown that for a; ; = ]:I”” and 7 #£ j

a;iGij — Gy

@i @i — 1

[H'Gl,; = (3.89)

For independent signals and in the limit of ¢ — oo (infinite data samples), we
have the identity }ALMJ = 6j7lﬁm- = (5]~71le-5§2, meaning that the two approximations will
be equivalent for independent signals. This implies that if the algorithm converges, the
Hessian approximation gets very close to the true relative Hessian. If the algorithm is
far from convergence, the approximation is not accurate, so it will only be used as a

preconditioner for the algorithm.

For the following steps, the Hessian approximations must be positive semi-definite.

Since the approximations may not follow this property, a regularization procedure is
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employed. Since the approximations have a block diagonal structure, the regularization
procedure employed by Picard involves shifting the eigenvalue spectrum of the blocks so

that their smallest eigenvalue is \A,,;,, using the following algorithm:

« For all (i, j) blocks of H, calculate the smallest eigenvalue with Aij = %(ai,j +aj; —

\/(aivj —a;;)? +4), where a; ; = H}

OVEN]

& )
or CZZJ — Hi,j,i,j'

o If )\i,j < /\min) we add ()\mm — )\Z'J‘I) to the (Z,j) block.

The L-BFGS (LIU; NOCEDAL, 1989) algorithm is a widely used method for un-
constrained optimization, due to its flexibility in addressing a variety of problems and its
efficient memory usage. It uses an easily invertible approximation of the Hessian, refining
it at each iteration, while its inverse is calculated using a recursive algorithm. The main
idea of Picard involves using either H' or H? as the approximation of the Hessian ma-
trix, rather than starting from scratch with the identity matrix. Algorithm 2 shows the
L-BFGS algorithm in Picard, while Algorithm 3 shows the recursive calculation of the

1

search direction (ﬂ_lG), with v, = G; — G,;_1, & = a;p; and p; = TR These algorithms

leverage the Hessian approximations and search directions from up to m past iterations.

Algorithm 2 Preconditioned L-BFGS for Picard

Require: Mixed signals X, whitening matrix Wy, memory size m (for L-BFGS), number
of iterations Ny,
for Kk =0,..., Ni, do
Calculate Gy, using Equation (3.84)
Calculate H, using Equation (3.87) or (3.88).
Regularize H;, using the regularization procedure (shifting of the eigenspectrum).
Compute the search direction py, + —(H}*)~' Gy, using Algorithm 3
Compute the step size ay using a line search.
Wi < (I+ cupr) Wy,
end for
Output: Y, W

L-BFGS works by using both gradient and curvature (the Hessian) information to
determine the optimal direction py for updating the candidate unmixing matrix W. The
step size ay in that direction is determined using a line search algorithm. The search
algorithm proposed by Moré and Thuente (1994) is known for its efficiency, but a simpler
strategy called backtracking can also be employed. Backtracking involves evaluating the

function in the search direction using o = 1. If the objective function does not decrease,
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Algorithm 3 Direction calculation for L-BFGS

Require: Current gradient Gy, Hessian approximation Hy, previous values of &, 7, p:

Vie{k—m,...,k—1}

q < =Gy

fori=k—1,....,k—mdo
a; < pi(&ilq)
q < q— a;

end for

T4 flk_lq

fori=k—m,...,k—1do
B < pilvilr)
rr+&(a — P

end for

Pr < T

Output: p;

oy is halved and the process is repeated; if the function does decrease, oy, is retained.
Backtracking terminates when «j becomes too small, indicating minimal weight updates
and a potential saddle point. After a certain number of failed backtracking attempts, the
current descent direction is considered inefficient and the memory is reset so L-BFGS will

use the current relative gradient.

3.6.1 Orthogonal Picard

Many ICA methods also enforce decorrelation of the unmixed signals, such as Fast

ICA. This means that W assumes the form

W = OW, (3.90)

where Wy is the whitening matrix given by:

1 3
W, = <NXXT> (3.91)

and O is an orthogonal matrix (OOT = I), which guarantees that the recovered sources
Y = WX are orthogonal. Picard-O is an extension of Picard that returns an unmixing
matrix as in Equation (3.90), claiming to be faster than Fast ICA as it is designed to deal
with real data that often does not accurately follow the ICA model.

The goal is equivalent to minimizing L(OWj) (from Equation (3.82)) w.r.t. O,
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and can be achieved by using the iteration W, = O, W, and updating O, to another
orthogonal matrix O,;. The matrix O, is parameterized as O;;; = €O, where &
is an N, x N, skew-symmetric matrix (€7 = —&). This approach follows results from

differential geometry.

As in the original Picard, we use the second-order Taylor expansion of the likelihood

function:
1
L(egW) =L(W)+ (G|E) + §<8|H|8> + (9(HSH3) (3.92)
Here, the N, x Nj relative gradient matrix G and the Ny x Ng x N, X N; relative

Hessian tensor H are calculated using the expansion of €€ ~ I+ & + %82, resulting in the

following element-wise calculations:

Gij = ElWi(yi)y;] — 0i; (3.93)
Hi kg = 01005 B [0 (y)yi] + 0in B[y )] (3.94)
where 1; = —%ﬁ is the score function.

Again, computing the Hessian is costly, so we use the approximation £ Vi (yi)yu) ~
8,1 E[0)(y:)) E(y2) by assuming a large sample size and independent signals {y1, ..., yn. },

for i # j. The approximate relative Hessian takes the form:
H;jra = 0abi Bl (yi)yi] + 0inb B (yi)] (3.95)

considering E [y?] = 1 for i # j. By substituting this approximation into Equation (3.92)
and performing some arithmetic manipulation, the sum of first-order and second-order

terms can be expressed as (ABLIN et al., 2018):

K,i—f-
2

.
(GIE) + (EMIE) = (Gij — Gj)Ei5 + *EL (3.96)

1
2 i<j
where r; = E[vi(yi)yi] — E[W)(y:)], Gi; and &;; are the elements of matrices G and &,

respectively, at their i-th row and j-th column.

It can be shown that if x; + x; > 0, the value of & ; that minimizes Equation (3.96)

_Gij=Gja
Hi-‘rﬁj

is given by &; ; = . This leads to the following update rule:

Wi = ePW;, (3.97)
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with,
2 Giyj — Gj’i
Ki + Rj 2

where D, ; is the element at the i-row and j-th column of D. In order to enforce x;+r; > 0,

(3.98)

ivj:_

Picard-O uses a non-linearity switching strategy. At each iteration, ¢; < sign(k;)v, and
when the sign of a source changes, the L-BFGS memory is flushed. Very small values
Iii—i-lij

of k; + k; > 0 may cause numerical instability, so in practice, we use min(~5=~, Kmin),

where £, is typically 1072 (ABLIN et al., 2018). Finally, during the L-BFGS iterations,

the same backtracking strategy for the line search is used to find the best step size ay.
The algorithm stops when the gradient norm ||G — GT|| becomes smaller than a small
constant threshold e.

All steps of Picard-O are represented in Algorithm 4 and Algorithm 5, with Ay, =

AT
Gk;Gg — Gk_IZG’“*l and py = (Ex|Ay). Additionally, although e = 72 LEF, it is

approximated up to the second-order term of the expansion. Algorithm 4 describes the
adapted L-BFGS algorithm for Picard-O, while Algorithm 5 is used to find the search

direction during the optimization.

Algorithm 4 Preconditioned L-BFGS for Picard-O

Require: Mixed signals X, memory size m (for L-BFGS), number of iterations N,

Calculate W with Equation (3.91)

Y + WX

for k =0,..., Ny do
Compute sign(k;) and flush memory if a signal has changed
Calculate Gy, using Equation (3.93)
Find the search direction using Algorithm 5
Compute the step size oy, using a line search (backtracking method).
Wiy < e DrWy
Y + Wk-JrlX.

end for

Output: Y, W,

Frank et al. (2022) have shown that Picard and Picard-O can be computationally
faster than Infomax ICA, while being competitive in terms of reduction of mutual infor-

mation, making them interesting in scenarios where computation speed is important.

3.7 Online Recursive Independent Component Analysis

Online Recursive Independent Component Analysis (ORICA) is an online ICA

method for source separation. It is based on the natural gradient of the Infomax criterion
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Algorithm 5 Direction calculation for L-BFGS

Require: Current gradient Gy, k;, previous values of £, A, pp VI € {k—m,... k—1}
Q « S50
fori=k—1,...,k—mdo

a < pi(€11Q)
Q<+ Q—ad,
end for
Compute D with D; ; = (M%é )
max 5 Kmin
fori=k—m,...,k—1do
B < pi(A(D)
end for
Pr < T
Output: Search direction D

and has the advantage of adapting to nonstationarity. Online means that the unmixing
matrix is iteratively updated during the signal separation phase, which differs from most
ICA algorithms where there is a phase for computing the unmixing matrix, which is used
afterward. Instead of buffering all the data that the system has ever received to recom-
pute the unmixing matrix from time to time, ORICA uses a Recursive-Least-Squares-like

method, where the matrix can be updated at each received sample (or batch of samples).

It is part of the family of incremental algorithms that use the following general

weight update:

dW (t)
dt

= u(t) [A = To(y()w" (y(t)| W(1) (3.99)

where A, T and W are N, x Ny matrices, with A being positive definite (AKHTAR
et al., 2012; CICHOCKI et al., 1994). The functions ¢ and 1 are the element-wise ap-
plication of a vector of functions, such that ¥(y(t)) = [¢1(y1(t)), ..., ¥n. (yn.(t))]" and
e(y() = [e1(yi (), ..., on, (yn.(#))]F, with all functions being odd. For instance, the

natural gradient update rule of the Infomax ICA shown in Equation (3.17) also falls into

this family, with A =T =1, o(y(t)) = tanh(y(t)), ¥(y(t)) = y(t), u(t) = n (constant).

The discrete time update rule can then be written as:

W(t+1) = W(t) +n[I—p(y@)y®)] W(t) (3.100)

In the limit of a small learning rate and iterating over the same data multiple
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times, the update rule algorithm converges to a fixed-point solution, defined as when
the average update E[W(t + 1) — W(t)] converges to zero. This condition is met when
W = E[f(t)xT(t)]WWT where f(t) = ¢(y(t)). Note that a projection of W on its null
space is a valid solution, but not a desired one. Although f(¢) depends on W, we can
assume that it is fixed, since a typical ¥ will barely be affected by small changes on W.
This leads to the full-rank solution:

W#* = A = E[x(t)fT (t)] (3.101)

here W7 represents the Moore-Penrose pseudoinverse of W. The calculation of W is done

by the pseudoinversion of A.

In an online scenario, the expected value A will be calculated as a windowed average

over recent data. We will use the recursive formula:

A(t+1) = a,A(t) + Bix()fT () (3.102)

for updating the expected value A on iteration ¢ using a sliding windows with exponential
decay A (f; =1 — oy = \), implying in the assumption of a non-stationary A (AKHTAR

et al., 2012). The non-recursive calculation can also be written as:

A(t) = Ai(l —N)"ix(t — )T (t — ) (3.103)

We then use the Sherman-Morrison formula:

H luv’H!

Hiw'] =H'- T

(3.104)

with vIiH 'u # —1 for the recursive inversion of A without the need for explicit inversion

at every sample, reducing its computational complexity.

The next iteration’s W(t + 1) can then be written as:

1
S M ET @)y (t) - 1)

W(t+1) = W(t) — y(OfT ()W (1) (3.105)

1—N

which can then be used for the online ICA algorithm (AKHTAR et al., 2012). Note that
A has been substituted by )\;, meaning that the exponential decay may be changed during
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the iterations to increase or decrease the weight of past data in the calculation of A. As
in the Extended Infomax ICA, we can use two nonlinearities for simultaneous extraction
of supergaussian and subgaussian sources. The function used for the supergaussian source
separation is:

ot (y;) = —2tanh(y;) (3.106)
While the function used for subgaussian source extraction is:

v~ (yi) = tanh(y;) — y; (3.107)

These are similar to the activation functions used in Extended Infomax. Further improve-
ments can be made to this approach to improve ICA convergence (HSU et al., 2014). The
RLS whitening algorithm (ZHU, 2004) can be used for online whitening of the observed
signals if added as the first step of the pipeline. The algorithm assumes zero mean, unit
power, statistically mutually independent sources with at most one normally distributed

source, and uses the cost function (CARDOSO; LAHELD, 1996) as follows:

J(M) = tr(MR,,M") — log(det(MR,M")) — N, (3.108)

It can be shown that J(M) > 0, where the equality holds if and only if MR, M7” =1,
i.e., M whitens x. To construct the RLS algorithm, we can define the exponentially

weighted autocovariance matrix of x as:
t
Ry = (1- ) XN x(i)x" (i) (3.109)
i=1

And substitute it into Equation (3.108), with A as the forgetting factor. The deriva-
tive of J(M) w.r.t. M can then be calculated as:

VJ(U) = 2MR, — 2[MR, M’ 'MR, (3.110)

If we set V.J(M) to 0, we find that the minimum value of .J is when M = [R, M7~
giving us the recursive equation M(t 4+ 1) = [RxM7”(#)]"!, where M(t) represents the
estimated whitening matrix at the t¢-th iteration. Substituting Equation (3.109) into it

results in:

M(t+1) =AM (t) + (1 = Nx@)v(t)]! (3.111)

where v(t) = M(¢)x(t). By using the Sherman-Morrison formula, we derive the RLS-like

whitening algorithm, as follows:
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1 v(t)vT(t)
Mt +1) = ;= [I -y VT(t)V(t)] M(t) (3.112)

Where we make A a function of the iteration ¢, so we can adjust the algorithm’s
effective window size. It is interesting to note that both source separation and whitening
iterative updates have the form of Equation (3.99), showing that the ORICA method can

be viewed as a nonlinear online RLS whitening method.

The calculation of A; for both W and M is heuristic. One possible approach is to

use Ay = 2—2, where \g is the initial forgetting factor and v is the decay rate of A;.

As in Extended Infomax ICA, we need to set the prior assumption on the number
of subgaussian sources Ng,. This reflects on the ¢ nonlinearities that will be used, as

follows:

- for1 <7< Now

ot otherwise
For high sampling rates, it becomes very costly to perform those computations on
every newly recorded sample, so a block-update rule has been proposed (HSU et al., 2014).
By assuming that \; is small and approximating y(t + ) as y(¢) for 1 <[ < L, where L

is the block size, we can write the approximate block-rule update as follows:

N n+L—1 1 n+L—1 y(l)fT(l)
W(t+L)~< l];[t 1—Az> [I— ; 1;—jl+fT(z)y(z) W(t) (3.114)

Using big block sizes worsens the approximation accuracy but greatly decreases the

computational cost, so L needs to be chosen carefully.
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4 Pattern Recognition and Classification

Pattern recognition concerns the use of mathematical algorithms for detecting pat-
terns in data. In the field of machine learning, the starting point is, in general, a labeled
data set i.e. a set of pre-collected data representative of the task of interest. The idea
is that the algorithm be trained using this dataset, so that, when it is presented with
new (non-annotated) data, it is able to detect the general patterns present in the train-
ing phase. This is an instance of the approach known as supervised learning because the
algorithm has access to some sort of desired response or label (BISHOP, 2006). The use
of such methods has benefited immensely from the availability, in the last decade, of vast

amounts of data, as well as from the remarkable developments in parallel hardware design.

In the context of MI BCI, an essential pattern recognition task is that of classifying a
sample of windowed data as one of the intended tasks, assuming that, during the training
stage, the algorithm is presented with a representative set of examples from all relevant
categories. As presented in Chapter 2, MI tasks engender ERDs and ERSs on the mu
and beta rhythms of the contra-lateral sensory and motor cortices (PFURTSCHELLER,;
NEUPER, 2001). The nature of those responses reflects how different authors design the
feature extraction steps of the BCI, which will have an impact on the performance of the

feature translation and classification module.

In MI BClIs, the use of features extracted using the Power Spectral Density (PSD)
together with a linear classifier is a well-established option (SAIBENE et al., 2023;
BASHASHATT et al., 2007). It is also usual that the feature extraction step be preceded
by a Common Spatial Patterns (CSP) step, which creates a smaller subset of channels and
amplifies their discrimination power (KHADEMI et al., 2023). LDA is a popular linear
classifier option, along with its extensions and variations, such as Quadratic Discriminant
Analysis (QDA) and adaptive LDA. SVMs have been used with success and good clas-
sification results (KHADEMI et al., 2023; AGGARWAL; CHUGH, 2019; LOTTE et al.,
2018). It is important to remark that Random Forest (RF) classifiers are highly non-linear
classifiers that are also present in the MI BCT literature (LOTTE et al., 2018), sometimes

with higher accuracy than LDA.

The Naive Bayes classifier is a conceptually simple classification algorithm (BISHOP,
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2006), but with a fair performance nonetheless; although it is not widely used, it is known
for sometimes achieving very good results even when its premises are not strictly respected
(ZHANG, 2004). The logistic regression classifier falls into the same case, and, although
it is not commonly used for MI, it has been applied with success to other domains that

also use EEG signals (SAIBENE et al., 2023; HOSSEINT et al., 2021).

Neural networks form a class of algorithms that are inspired by certain aspects
of the functionality of the nervous system. For their great flexibility, they have been
applied to numerous classification problems, such as MI. A classical NN is the Multi-layer
perceptron (MLP) classifier, which consists of fully connected layers and is endowed with
universal approximation capability (LOTTE et al., 2018). More recently, Deep learning
(DL) methods are being employed in diverse problems for having the ability to learn the
representations and patterns directly on the signal space instead of the feature space. In
this context, Convolutional Neural Networks (CNNs) (such as EEGNet) and Recurrent
Neural Networks (RNNs) have been applied with success and it has been shown their
superiority and practical ability on BCIs (ALTAHERI et al., 2021; LOTTE et al., 2018)

The objective of the classification algorithm in a BCI is to translate the raw, pre-
processed, or processed (feature vector) EEG signals into classes, which will be further
translated into commands for the digital or physical device. The differences between them
lie in their capability to generalize (transfer their knowledge between sessions, or even
subjects), their assumptions (of feature distributions, dependence, stationarity), flexi-
bility (linear vs non-linear classifiers, and also the DL approaches (ALTAHERI et al.,
2021)), structure, learning capability under a low number of samples, high number of
non-discriminant features, complexity (computational cost in during training or infer-
ence, and number of learned parameters). In evaluating many classification methods, we
intend to compare some of those aspects and ponder how great or poor classification

results correlate with those characteristics.

Khan et al. (2023) studied the performance of a two-class MI-BCI, where the EEG
signals were preprocessed using ICA and they evaluated the use of some classification al-
gorithms like SVM, Naive Bayes, Logistic Regression, and LDA. The system achieved up
to 95.42% for five subjects using Logistic Regression. Mohammadi et al. (2022) used the
random forest, SVM, and LDA classifiers for calibrating a three-class MI-BCI, in which
they concluded that LDA had the highest performance for most of the subjects in all
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datasets. Sharma et al. (2022) compared the use of many classifiers, such as the MLP,
SVM, LDA, Logistic Regression, Decision Tree, Random Forest, and Naive Bayes for a
three-class Motor imagery application, where the Logistic Regression and the MLP at-
tained accuracies of up to 90%. Tiwari et al. (2020) collected a dataset of seven subjects,
which performed eight imagination tasks. The logistic regression outperformed other clas-
sifiers for only two out of the seven subjects. Wahid and Tafreshi (2021) used, among all
classification methods, Random Forest, LDA, and SVM as the classifiers of an ensem-
ble for a two-class MI-BCI, and concluded that the Random Forest had more consistent

results than other classifiers, achieving up to 80% accuracy.

4.1 Support Vector Machine

Linear models are paradigmatic in classification in view of their relative simplicity
and mathematical tractability. In a D dimensional space, considering that the classifier

weight vector is w € R”, and that the bias term is b, the classifier output is:
y(v) =w'o(v) +b (4.1)

In this formulation, it is considered that an input vector v € R”" is mapped via
$(v) : R — RP, which denotes a fixed feature-space transformation i.e. a function which
is applied to v before applying the conventional linear model. The dataset is composed
of N input vectors {vy,..., vy}, with corresponding target values {ti,...,tx}, where
t, € {—1,1} and n = 1,..., N, representing the two possible classes. In the binary case,
we assume that the two classes are linearly separable i.e. that there exist w and b such that
tny(vy) > 0 for any n. This means that, in the feature space, there exists a hyperplane

(the decision boundary) capable of perfect separation.

There may be infinite solutions for w and b that linearly separate the data; a robust
solution, in terms of generalization, is to choose the one that maximizes the margin
between the decision boundary and any of the samples (which will be the closest to the
boundary). The perpendicular distance between the point v,, and the hyperplane defined
by y(v,) = 0 can be calculated as |y‘<;'V'|")‘ (BISHOP, 2006). In the linearly separable case,

|
we know that ¢,y(v,) > 0 Vn. We can then write the equality:
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- (4.2)

The margin is defined as the minimum perpendicular distance from the boundary
to any vector v,. So, in order to maximize the margin, we need to solve the following

equation:

arg max {|1min [tn(ngb(vn) + b)} } (4.3)

This optimization problem can be converted to an equivalent problem that is easier
to solve. Firstly, we chose an ay to re-scale both w and b such that the margin is equal

to 1, satisfying:

to(asw! ¢(vi) + agb) = 1 (4.4)

for a v, that is the closest to the margin. Let w <— a,w and b < a,b. As a consequence,

all vectors v,, will satisfy:

ta(who(vy) +b) > 1 (4.5)

The data points for which the equality condition holds are called active, while the
remainder are said to be inactive. There will be at least one active point, which will be the
point with the closest distance to the boundary, and after the margin is maximized there
will be at least two active points. So, the optimization problem of Equation (4.3) simplifies
to maximizing |\T1v|\’ which is equivalent to minimizing ||w||?, subject to Equation (4.5).

This optimization problem is formulated as follows:

1
arg rr1111§]|w||2 (4.6)

We can solve this constrained optimization problem using Lagrange multipliers with
one multiplier a,, for each constraint in (4.5), given that this problem satisfies the KKT
conditions, which is a requirement for using this method (KUHN; TUCKER, 1951). The

Lagrangian function for this case is written as:
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L(w,b,a) = ;|yw||2 Z i (ta(WH(vn) +B) — 1) (4.7)

with a = {a,|n = 1,..., N}. Note that we are minimizing w.r.t. w and b and maximizing
w.r.t. a (hence the minus sign in the Lagrange multiplier term). Calculating the deriva-
tives w.r.t w and b of the Lagrangian and setting them to zero yields the two following

equations:

W = 2—:1 aptnd(vy) (4.8)
0= g: anty, (4.9)

Substituting Equations (4.8) and (4.9) into Equation (4.7) yields the dual represen-

tation of the maximum margin problem, written as:

N N
Z Z btk (Vi, Vi) (4.10)

l\')\»—l

N
=
n=1

completely eliminating w and b from the problem. In this equation k(v;, v;) = ¢(v;) ¢ (v;),
i.e., a inner product in the codomain of ¢, and this step is known as the kernel trick be-
cause instead of calculating ¢(v;) and ¢(v;) we just need to calculate the kernel function
k between the both. The goal now is to maximize Equation (4.10) w.r.t a, subject to the

constraints:

an >0 (4.11)

N
> ant, =0 (4.12)

This characterizes a quadratic programming problem, which can addressed using
known algorithms such as the Sequential Minimal Optimization algorithm (PLATT,
1998). Equation (4.8) also enables us to create an equation for classifying new data points,

by substituting it in Equation (4.1), which yields the following classification equation:

N
=" antyk(v,v,) + b (4.13)

n=1
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Having found a solution for a, there is the need to find b. The KKT conditions will

lead to the following equations:

4y >0 (4.14)
ty(vy) —12>0 (4.15)
an(thy(vn) —1) =0 (4.16)

from which we can conclude that either a, is 0 or ¢,y(v,) = 1. Note that any data point
with a,, = 0 will not have any effect on the prediction of new data points by using Eq.
(4.13), and for the remaining data points ¢,y(v,) = 1 is true. Those remaining points
that are used in the prediction are called the support vectors. It is possible to choose any
v,, and substitute it into Eq. (4.13) and calculate b, but generally, it is calculated as the

average value of all possible solutions, as follows:

b= 1 (tn — Z amtmk(vn,vm)> (4.17)
‘S| nes

meS
where S represents the set of indexes of the support vectors (note that the term inside

the outermost sum is the solution to b by substituting v,, into Eq. (4.13)).

In real data, examples from different classes are often not linearly separable, which
will ultimately make this solution fail. It is possible to make a small modification to
the problem to deal with this, by allowing data points to be on the "wrong side" of
the decision boundary margin with the introduction of "slack variables" &,, one for each
v,,. Those variables represent a penalty to the optimization objective, and their values
are proportional to their distance to the margin boundary, so points that are correctly
classified will have &, = 0 and all other points will have &, = |t,, — y(v,)|. A data point
in the decision boundary will have £, = 1. Equation (4.5) is then replaced by:

to(Wwl(vy) +b) > 1-¢, (4.18)

It can be seen that points that are correctly classified but are inside the margin will
have 0 < ¢, < 1, and data points that are incorrectly classified will have £ > 1. Therefore,
the goal is to maximize the margin while penalizing points that lie on the wrong side of

the margin boundary, leading to the minimization problem:
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N
1
argmin C' Y &, + §||WH2 (4.19)
w,b n=1

where C' > 0 controls the penalty weight. Since &, > 1 for misclassified points, >N | &,
is the upper bound to the number of misclassified points, and for C' — oo the problem

degenerates to the case where we assumed linear separability.

Again, the minimization goal in Equation (4.19), subject to Equation (4.18) can
be solved using Lagrange multipliers, with the Lagrangian function given by (BISHOP,
2006):

L(w,b,a) = —||WH2+CZ£n Zan{t (Wp(vy) +b) — 14+ &, — Zungn (4.20)

n=1 n=1

where {a, > 0ln=1,...,N}and {i, > 0|n =1,..., N} are the the Lagrange multipliers.

The KKT conditions are given by the following equations:

fin >0 (4.21)

€n 20 (4.22)

[inEn = 0 (4.23)

a, >0 (4.24)

ta(Wo(vi) +0) — 1+ &, >0 (4.25)

tn (ta(Wo(vy) +b) — 1+ &,) =0 (4.26)

Vn=1,...,N

Similarly to the process done to obtain Equation (4.10), by deriving Equation (4.20)
w.r.t w, band {&, > 0ln =1,..., N} and setting the value to 0, we can arrive at a new

dual representation of the Lagrangian in the form of:

N
Z nGmtntmk(Vi, Vin) (4.27)

HMZ

N 1
:7;@"_5

which is equal to Eq. (4.10) but with an additional constraint (from the KKT conditions):

an =C — (4.28)
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along with the following two constraints:

0<a,<C (4.29)

N
S ant, =0 (4.30)
n=1

Since p > 0, the new optimization problem is to minimize Eq. (4.27) w.r.t {a, > 0|n =
1,..., N}, subject to Equations (4.29) and (4.30), resulting in a quadratic programming

problem.

By substituting Equation (4.8) into Equation (4.1), we get:

y(v) = ant,k(v,vy) + b (4.31)

n=1

which is used to classify new data points as a function of each a,, and each support vector.

Note that a,, < C implies ;> 0 and &, = 0, so the corresponding data points lie on
the margin. On the other hand, a,, = C implies u, = 0, so from Equation (4.23) £ can
be either be less or equal than one, for correctly classified points, or greater than one, for

misclassified points.

Figure 4.1 shows a linear SVM decision boundary (full line, defined by wy), the
margins (dotted lines) and the data as colored points, where each color represents each
class. In this example the vector v has only two dimensions, represented by v[1] and v[2]
as the plot axes. The support vectors are marked with black borders. Note that data
points located on the correct side of the classification boundary have &, = 0, and points

crossing the margin have &, > 0.
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Figure 4.1 — SVM decision boundary.

411 Kernels

In SVM, kernels are functions that represent generalized inner products. Their im-
portance comes from the so-called kernel trick - a kernel function can be used to calculate
inner products within a feature (mapped) space without the explicit need to perform the

underlying mapping.

There is no need to explicitly know the ¢ mapping or the space in which the kernel
describes an inner product, but we need to guarantee that there exists at least one.
One necessary and sufficient condition is that the Gram matrix K, whose elements are
k(v;,v;), must be positive semi-definite for all possible choices of v; and v; in the dataset.
Another way is to verify whether k satisfies the Mercer’s Theorem (THEODORIDIS;
KOUTROUMBAS, 2006):

Theorem 4.1 Mercer’s Theorem. Let v € RY and a mapping ¢ with o(v) € H, where
H is a Hilbert space. Then, the inner product operation (¢(v), (V")) = k(v,v') where
(-,-) denotes the inner product in H and k(v,v') is symmetric, continuous and satisfies
FEquation (4.32) where g(v) is any function that satisfies Equation (4.33) and C is a
compact subset of RP". The opposite is true: any symmetric, continuous function kE(v,v')
that satisfies Equation (4.32) and Equation (4.33) defines the inner product of a space.
Such functions are known as kernels and those spaces are known as Reproducing Kernel

Hilbert spaces (RKHS).
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/C/Ck’(v, v)g(v)g(v')dvdv' > 0 (4.32)

/Cg(V)de < 400 (4.33)

For a more detailed discussion about the properties and the applicability of different
kernels, see (SHAWE-TAYLOR,; CRISTIANINI, 2004) and (HERBRICH, 2001). There

are well-known kernel functions that satisfy these properties:

1. Polynomial: In Equation (4.34), «y is a scalar multiplier, ¢y is a constant offset, and
q is the degree of the kernel. This kernel defines a polynomial decision rule for the

SVM.

E(v,v) = (7vIV + cp)" qg>0 (4.34)

2. Linear, which is a particular case of the polynomial kernel when v =1, ¢y = 0 and
g = 1, as shown in Equation (4.35). This kernel defines linear decision rules and

boundaries.
k(v,v)=vv (4.35)
3. Radial Basis Function (RBF), also known as Gaussian kernel, but here it does

not represent a probability density. This kernel is special because the resulting trans-

formation depends only on the euclidean distance between v and v’. As shown by:

k(v,v') = exp (—’}/HV — V/||2> (4.36)

4. Sigmoidal: Shown in Equation (4.37), v is a scalar multiplier known as the slope
and cg is the kernel’s intercept. This kernel doesn’t actually respect Mercer’s theorem
but has been used in practice with some success since the resulting SVM functionally

resembles a neural network (VAPNIK, 2000).

k(v,Vv') = tanh(yv'V' + c) (4.37)
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4.2 Logistic regression

The logistic regression algorithm is a method in which the logarithm of the ratio of
the posterior probabilities of each class C}, calculated using Bayes’ theorem, is modeled
as a linear equation on v,,. Under certain hypotheses, it provides a Bayesian approach to
estimating conditional probabilities of events (such as C} occurring given v,,), which are

associated with class labels.

From a probabilistic point of view, we can model the class-conditional densities
p(v|Cy) and class priors p(Cy), where Cj represents the k-th class and v is a vector
from the dataset. Bayes’ theorem is then used to derive the posterior probabilities for CY

(HASTIE et al., 2009). For the case of two classes C; and Cy, p(Cg|v) can be written as:

pviCop(@) 1
v|C1)p(Ch) + p(v[Ca)p(Cy) 1+ exp(—a)

p(Cilv) = o = o(a) (4.38)

where a is defined as:

. lnp(V!C1)p(C1)
p(v|C2)p(Ca)

and o(a) is called the logistic function, or sigmoidal function. It can be shown that in the

(4.39)

case of K classes, we can write the posteriors p(Cy|v) as:

ek
C = — 4.40
PO = 5 (1.40

where ap = In(p(v|Ci)p(Ck)). In the logistic regression approach, we model a;, as linear

function of v, represented by:

ar = In (p(v|Cp)p(Cy)) = wiv (4.41)

For each class k, we assign a weight vector w} of the same size as v. One way to find
good values for the weight vectors wy, is by using maximum likelihood estimation (MLE),
an estimation criterion that maximizes the joint probability of a set of observations y

given the set of parameters 6. This criterion can be written as:

{w1,...,wg} =argmax p(T|wy,..., wgk) (4.42)

Wi, WE
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where T = [ty,... ,tN]T, and each t, = {t,1,tn2,....thx} is a K-dimensional vector
representing the class of the n-th observation, with ¢, € {0,1}. In t,,, all values are zero

except for its k-th position, indicating that it belongs to class Cj.

To model t,,, we may use the multinomial distribution, described by the following

equation:

p(tnlp) = H s (4.43)
where p = {u,...,ux} are the parameters from the multinomial distribution, with
ity = 1and py = p(tyr = 1) = p(Cr) > 0.

In our model, we assume that p(Ck|v,) = p(t,r = 1|v,), such that a sample from
the k-th class has t = [0,...,1,...,0], where all values are zero except the k-th value. If

we assume N independent observations, we can write the likelihood function as:

p(T|wy,...,wg) = 1:[ 1:[ p(Cylvy)! (4.44)

It is common to use the negative of the logarithm of the likelihood function as the

minimization criteria, so we can arrive at the optimization goal:

N K
{W1,...,Wg} =argmin — Z Z tn il (Ynk) (4.45)
Wi WK n=1k=1
where {Wy,...,Wg} are the estimated parameters of the logistic regression and y,; =
% So, the logistic regression estimate of p(C|v,) = yn i is calculated as:
ewzvn
k= - 4.46
yn7 Zj(zl ewfvn ( )

Often, an additional term is added to the objective function of Equation (4.45) to
prevent the values in the weight vectors {Wy,..., Wk} from growing large (in absolute
value). This term penalizes the magnitude of the weights, keeping them close to zero. It is
commonly used as a regularization method aimed at limiting the flexibility of the model,

thereby improving generalization. The new optimization goal is written as:

N K
{Wi,... ., Wg} =argmin — > > t,xln(ynr) + AL(W) (4.47)

WhenWK  p=1 k=1
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where W = [wq, ..., wg|, h(W) is the additional regularization term and A is its strength.

Two common methods for regularization are the Lasso, or L;-regularization (repre-
sented by Az, ), and the Ridge, or Lo-regularization (represented by hy,) (HASTIE et al.,
2009). The penalty term for the Lasso assumes the following form:

hi, (W) = kz_: ; |w i (4.48)

where wy; is the ¢-th element of wy. This penalty, also called L1 loss function, tends
to yield sparse weight vectors, so it can be used for selecting features by zeroing many

weights from W. On the other hand, the Ridge regularization is as follows:

K D
hr,(W) =33 Jwgl? (4.49)
k=11:=1

and tends to spread the penalty across all weights instead of zeroing out a few. As a result,
the weight vectors will have a smaller norm. This is especially useful for highly correlated
features, where there is uncertainty in their values because a very large positive weight
can be "canceled out" by a very large negative weight of a correlated feature, thereby
potentially increasing the variance of the predictor. hy, is also referred to as the L2 loss

function.

4.3 Linear Discriminant Analysis

The term discriminant refers to functions that can map an input vector v,, to a class
CY. Fisher’s linear discriminant, named after Sir Ronald Aylmer Fisher (COHEN, 2013), is
a method that linearly projects the original feature space into a lower-dimensional space,
aiming to maximize the differences between the means of classes while minimizing their

variance to reduce overlap. This mapping is represented as:

v =W'v (4.50)

where v/ € R? is the feature vector in the lower dimensional space, v € R? is the feature
vector in the original space, and W € RP*?" is the linear mapping. For the two-class case,

the mapping is done in only one dimension using a vector w.
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Fisher’s criterion (BISHOP, 2006) is expressed as:

(mg — m1)2

J = 4.51
™ ="g73 oy

which summarizes the two objective functions. The numerator represents the between-
class variance, where m; and msy are the means of the classes in the one-dimensional
projected space, and the denominator represents the within-class variance, where s; and

s9 are the variances of two classes in this space.

More generally, Equation (4.51) can be written as:

wlSpw

where Sg is the between-class covariance matrix given by:

Sp = (Vo — V1) (Vo — vy (4.53)

and Sy, is the within-class covariance matrix given by Equation (4.54). Here, v =
|571k-| Y ones, Vn is the average vector of class k, and Sj is the set of indices for feature

vectors from the k-th class.

SW = Z (Vn - \_/1)(Vn — \_fl)T + Z (Vn - \_/2)(Vn - \_IQ)T (454)

neSy neSs

To generalize to multiple classes, we return to Equation (4.50) as our mapping. The

generalized within-class covariance matrix is calculated as:

Sy — fj Sy (4.55)
k=1
Sk = Z(Vn — Vi) (Vi — V)" (4.56)

with S; as the covariance matrix from the k-th class. We can assume that the total
covariance matrix St can be decomposed as a sum of the within-class covariance matrix
and the between-class covariance matrix St = Sy + Sp (HASTIE et al., 2009). As Sy is

the total covariance, it can also be calculated as:
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Sy = Z;(vn ) (v — V)T (4.57)
_ 1
=y I v (4.58)

where v is the average value of v. With this system of equations, we can calculate Sg

with the following:

Sp = Ni(vi —v)(v), — V)" (4.59)

k=1
To proceed with the LDA solution, we will need to calculate all of these values in the
projected space. By denoting the equivalent covariance matrices and average vectors in

the new space with an apostrophe, the values are calculated using the following equations:

N
Sy = (v, =) (v, = V)" (4.60)
n=1
S, =S%+ Sy (4.61)
K
W= 8 (4.62)
k=1
N
=2 (v, = Vi) (v, = vi)" (4.63)
n=1
k
5= Ne(vi,—V)(vi, - V)" (4.64)
k=1
A ) (4.65)
‘Sk’ neSk
1
v = N Z:IV;L (466)

where S’ represents the total covariance matrix, S’y represents the between-class covari-
. , 1 . . ,

ance matrix, Sy, represents the total within-class covariance matrix, Sj represents the

within-class covariance matrix for the k-th class, v/ represents the average dataset vector

and v}, represents the average class vector (all in the projected space).

The idea of LDA is to maximize S’ and minimize S, so different classes lay distant
from each other and samples from the same class are maximally packed together. The
criterion for defining the mapping W must be a scalar that increases as the between-class

covariance increases and the within-class covariance decreases. There are many possible
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criteria for this, and the classical algorithm uses the following criterion (FUKUNAGA,
1990):

J(W) = tr(Siy'S}) = tr (WS W) (WSpW7)) (4.67)

where the solution to W are the D’ eigenvectors of S;;}Sp that corresponds to the D’

largest eigenvalues.

We know that Sp is a sum of K matrices, each one of rank 1 because they are
outer products of vectors. Also, the rank of Sg is at most K — 1 due to Equation (4.59),
showing that D’ will be at most K — 1. It also shows that the projection into the D’-
dimensional space will not change the value of J(W). Howland et al. (2003) proposed
a method for optimizing the criterion in Equation (4.67) using auxiliary matrices and
Generalized Singular Vector Decomposition (GSVD), with the advantage of not needing

to explicitly calculate Sy, and Sp.

Now that the optimal projection for the discrimination criterion is found, we can
calculate the logarithm of the probabilities p(v|Cy) that v belongs to class Cy for each
class. For this, we first assume that the data vectors from class k& have multivariate normal

distribution N (v, 3y), described as:

fo(v) = ——— e 3T V) (4.68)

LDA assumes that the classes covariance matrices are equal, i.e. 3 = 3 Vk. The chosen
class for v will be the one that maximizes the probability function. The linear discrimi-

nation function is written as:

1 N
(Sk(V) = VTzil\ifk — 5\7?271\7]6 + ZOQWk (469)

and represents the log-probability of v being an example from the k-th class, so k can be
estimated as argmax dx(v) (HASTIE et al., 2009). We also need to estimate ¥, which
k

can be done using:

1

N - K Z Z (Vn - ‘_/k)(vn - ‘_fk*)T (4.70)

k=1 neSy

3=
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The decision boundaries between two classes [ and k are defined by d;(v) = §;(v),

which is linear in v.

4.4 Random forest

Random forests (RFs) can be thought of as ensembles i.e. a group of relatively weak
classifiers in which the ensemble prediction is a composition of the predictions of each
model in the group. There are many ways to build a set of diversified classifiers, such as
Bagging or Bootstrap Aggregation, in which the components are trained using random
subsets of the whole dataset (BISHOP, 2006). The random subspace method (HO, 1998)
trains each weak classifier using only a subset of the characteristic features i.e. not all are
used for fitting each predictor. In the case of RFs, each one of those individual models is

Decision Trees, hence the epithet Forests.

4.4.1 Decision tree

Decision trees are hierarchical structures that use a recursive tree of decisions in
order to predict outcomes. At each node, one condition is verified and if the condition
holds the decision flow continues to one or another branch. Building the optimal tree
structure and the best conditions is an infeasible computational problem, so there are
many heuristics for it. A particular common framework for building such trees is called

classification and regression trees (CART) (BREIMAN et al., 1984).

In this framework, a decision tree is a binary tree (graph) where each node corre-
sponds to a decision to continue to the left or right child node. This decision is based on
thresholding the value of one of the dimensions of a feature vector v,, = [v,1,..., Uy, p]T
(with v,, being the n-th feature vector of the dataset and D the number of dimensions of
v,,), and hence its decision boundaries consists of hyper-planes that partition the feature
space into M regions {Ry, ..., Ry} defined by the M leaves of the tree. Those boundaries
are parallel to the coordinate system axes (RP) since they are defined by equations of the

form v,,; — 0 = 0, where 0; are thresholds that are learned during the model training

phase.

The tree is grown starting from a root node, represented by Qg = {vy,..., vy},

which is the whole feature vector space. Qy is split into two disjoint partitions (called its
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"children" nodes) Q'“/t(1,0) = {v|v € Q,,,v; < 0} and Q9" (1. 0) = {v|v € Q,,,v; > 0}
(THEODORIDIS; KOUTROUMBAS, 2006) (with m = 0 for the first split) by selecting

both a feature [ and a threshold # that minimizes a splitting criterion H’:

{lym,0m} = argmin H'(Q,,,1,0) (4.71)
10

where H' is a weighted sum of the impurity measure H of each partition of @Q,,:

Q' (1, 6)]
|Qm

Q" (1, 6)]

H(Q(1,0)) +
(Q,"(1,0)) ]

H'(Qn,1,0) = ( H(Qrish1, 9))) (4.72)

The impurity is generally a metric on how clustered feature vectors from the same
class are in the partition. One common metric is the Gini index (BREIMAN et al., 1984),
defined as:

Qm = Z 1 _pm k) (473>

where p,, 1, is defined as

Pmg = |Q | S I(t,=k) (4.74)

Vn€Qm

To find values of [ and 6 that minimize Equation (4.71) we can calculate the ob-
jective function for all [ and iterate 6 overall unique values of v, ; for all v,, € Q,,. This
partitioning is recursively applied to Q'/*(1,,,6,,) and Q"9"*(1,, 6,,) until a stop criterion
is achieved, which can be a minimum cardinality of Q,,, a minimum cardinality of both
children of Q,,, a maximum tree depth, a minimum decrease in impurity (difference from
H(Q,,) and H'(Q, lm,0n)) (THEODORIDIS; KOUTROUMBAS, 2006). The partitions
defined by the tree leaves are denoted by R to Rjs and represent a sequence of decisions
on v,. They are called leaves because they don’t have children and represent the final

decision of the classifier.

The class prediction of v, is y(v,) = C}, such that k = arg max p, x, where v,, € R;

k
(and we know that there is only one m that satisfies this since R;NR; = {} V{4, j},7 # j).
One can make probabilistic predictions to model the conditional probabilities p(Cy|v,,) =

Dik with v, € R;, since Zszl Dix = 1. Note that this means that we need to find which
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partition R; contains v,, which is done by recursively checking which child partition
contains v, starting from Qy until a leaf partition (a partition without children) is

achieved.

4.472 The ensemble

The set of features and thresholds {(l1,61),...,(ln,0m)} defines a decision tree
T;, and TF(v,) is its output probability estimate of v, being from the k-th class (as in
Equation (4.74)). To create the random forest, Np decision trees T;, i € {1,... Nr} are

created using a modified version of Equation (4.71), as follows:

{lym,0m} = argmin H'(Q,,,1,0) (4.75)
IEFi 0

with F; denoting the random subset of possible features [ of v used in the i-th tree Tj,
so |F;| < D. Apart from this, the Ny (an arbitrarily chosen number of trees) trees are
constructed, but each with different F;. The modification yields a set of trees that are
created using fewer features than D, so each tree is tackling the classification task with

different information making the random forest robust to outliers, noise and not overfit

(given a sufficient number of trees) (BREIMAN, 2001).

4421 Extremely randomized trees

The Extremely randomized Trees (GEURTS et al., 2006) ensemble algorithm goes
one step further into the randomization, and uses random thresholds at each split iteration
for each tree. At each split a random threshold 6, € (min(v.;), max(v.;)) is chosen for
each feature whose index is in F;, where min(v.;) and max(v.;) are respectively the
minimum and maximum possible values for v,, ;. To choose the best feature [ and threshold
0 for the split, a new modification is made in Equation (4.71), resulting in the following

optimization criteria:

{1, 0m} = arg min H'(Qm,1,0) (4.76)
LO)E{(,0) Ve Fi0'€0,})

With ©; = {6,|l € F;} being the set of random thresholds chosen for each feature.
The ensemble prediction is typically done by a majority voting of the set of classifiers.

In all of these approaches, we calculate the predicted probability of class C} by averaging

the predictions of each tree, as:
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PICKIV) = - D TE(v,) (L77)

and the predicted class is the one with highest probability, i.e., arg max p(C|v,,)
Ck

4.5 Naive Bayes

The Naive Bayes is a family of classifiers that makes use of Bayes’ theorem to

estimate p(Cy|v) (BISHOP, 2006):

p(v|Ck)p(Ck)

T

(4.78)

In this equation, p(Cy) is called the prior of class Cy and can be estimated as its prevalence
in the dataset, and p(v|Cy) is the conditional probability of observing v given that we
know it is from the k-th class. In the following equations, v = [v1,...,vp]? represents
a random vector of features (with D as its dimensionality), and v,, = [v,1,..., 05 p]"

represents the n-th feature vector of the dataset, i.e., a realization of v.

The name comes from one "naive" hard assumption that all features in v are condi-
tionally independent, such that p(v|Cy) = 12, p(vs]Cy). Since p(v) is constant given v,

to estimate the feature vector class we need to find k that maximizes p(Cy,) TT2, p(vi|Ci).

One of the members of this family of models is the Gaussian Naive Bayes, which
assumes that each feature has normal conditional distribution p(v;|Cy) = N (Mi,k,agk),
where ; , and aﬁ . are the features’ class conditioned means and variances, respectively.
Those statistics can be estimated using maximum likelihood estimation (CHAN et al.,

1982) as follows:

. 1

fik =~ Y Ung (4.79)
k ne{nftn=k}

N 1 R

UiQ,k = N, —1 Z (Un,i - ,ui,k)2 (480)
k ne{n|tn,=k}

where Ny is the number of samples v,, that belongs to the k-th class. Finally, the proba-

bilistic estimator is given by:
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p(Cutv) = AL 1) (4.8)

j=1 (p(Cj) 1 p<vi|Cj>)
This equation comes from the conditional independence assumption which, together
with Equation (4.78), implies p(Ck|v) o< p(Cy) [T, p(v;|Ck) and that S5 | p(Cylv) = 1.

The prior p(C}) can be estimated empirically through the dataset using the following:

N,
p(C) =2k (4.82)
and p(v;|Cy) is calculated by:
1 (vi — pi)®
[ Ch) = ———eap L 4.
pluilCi) 2107, o ( 207, (483)

4.6 Multilayer perceptron

The multilayer perceptron (MLP) is a machine learning structure from the family
of the fully-connected feedforward neural networks. This model, historically, is an exten-
sion of the classical (Rosenblatt’s) perceptron towards a multilayer framework in which

nonlinear classification tasks can be straightforwardly dealt with (BISHOP, 2006).

The name neural network (NN) historically comes from the attempt to represent cer-
tain aspects of the brain structure mathematically and computationally. An NN is based
on units called neurons, which are connected to other neurons through their synapses.
Feedforward networks have a multi-layer structure in which information only goes one
way ("forward"), and the "fully-connected" qualifier refers to the fact that all neuron out-

puts from one layer are connected to all neurons of the next layer.

Following the general outline of the classical perceptron, the inputs of a given neu-
ron are added and transformed by a nonlinear mapping, yielding an output z;;, which
corresponds to the i-th neuron of the [-th layer. To simplify the notation, we will use
the equality zp; = vy, meaning that z; is not the output of a neuron but one of the
input features from the feature vector. Mathematically, the neuron performs the following

operation:
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nj—1
210 = fii (Z Wy j21—1,5 + bl,i) (4.84)

j=1

where n; is the number of neurons in the {-th layer, w;; ; is the synaptic weight for the j-th
input of the i-th neuron of the I-th layer, b;; is the bias, and f;; is the activation function
(BISHOP, 2006). The vector w;; = [wy i1, ... ,wlmm_l]T is a more concise notation for the
synaptic weights, where each w;; ; is the weight of the neuron’s j-th input (or equivalently
the weight for the j-th neuron of the previous layer [ — 1). Figure 4.2 illustrates the
structure of this neuron model. The sum can be represented by an inner product, leading

to:

210 = fui (le;izlfl + bl,i) (4.85)

where z; = [21,...,215]". Since all neurons at the I-th layer have the same number of

inputs, the intermediary values z;; can be written in vector notation as:

Jia (lejlzl—l + bl,l)
21,1
7 wli,z;_1+b
7, = _ fl,2 ( 1,2 l 1 l,2> (4.86)
Zln
l iy (mezlq + bl,m)_

Z—1,1

® 0 0O

Fl—1m 4

Figure 4.2 — Functional structure of the i-th neuron of the /-th layer.

It is very common to have just one type of activation function for all neurons in
the same layer [, i.e., fi; = fi, so Equation (4.86) can be further simplified using matrix

notation as:
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z; = fi(Wlz_ +by) (4.87)

where bl - [bhla cee 7bl,nl]T e R™ and f(V) P RM — |R”l|f(v) = [fl(vl)’ e 7fl(UNv)]T for

vV = [vl,...,vnl]T

Common choices for fi(.) are the hyperbolic tangent (Equation (4.88), Figure 4.3c),
the sigmoid function (Equation (4.89), Figure 4.3b), the rectified linear unit function
(ReLU, shown in Equation (4.90), Figure 4.3a). It is also common to use the softmax
function (Equation (4.91)) as the activation function of the last layer, since the sum of
all neuron outputs will be equal to 1, allowing them to be interpreted as the conditional

probabilities p(Cj|v).

2
e +1
tanh(z) = 4.88
()= e (4.59)
1
sigmoid(z) = 4.89
gmoid(z) = (4.89)
ReLU(z) = max(0, z) (4.90)
412)
f(z)=0, z<0 f(z)=22>0 F . f,(,%,),,,,,,,,,i ——————— - Af) e
(a) ReLU function. (b) Sigmoid function. (c) Hyperbolic tangent function.
Figure 4.3 — Common activation functions for neural networks.
e
film) = (1.91)
VA .
I\4l] 22121 e7n
e*m

The softmaz, shown in (4.91), has the same functional form of Equation (4.40) used for
the logistic regression, which establishes an interesting and relevant conceptual link with

this linear classifier.
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In order to simplify the following calculations, we can redefine some variables. Having
the term b;; at each f; for calculating z; is mathematically equivalent to having an
additional weight on w;; with value b;;, and an additional value in the z;_; vector equal
to 1. So, let’s consider wy; < (W1, Wiin,_,,bi:]" and z; < [211, ..., 210, 1], and also
adjust the layer size n; <= n; + 1, and define 2;,, = 1 and wy;,, = bi; ¥V [,7 to keep the

notation consistent. This allows us to rewrite Equation (4.87) as:

z1= fi{(W]z_) (4.92)

The learnable parameters of this approach are the redefined W, matrices (containing
the b;,; biases). The number of layers L and neurons per layer n; are called hyperparam-
eters and are not learned, because they represent the model’s architecture and hence are
modeling choices. One common objective function for finding the parameters is defined

by:

N
{Wy,..., W} = argmin — Z g, (4.93)
{Wl 7777 WL} n=1

which uses the cross-entropy function:

K
Jp=J(Vn,Wq,..., W) =— Z tr il (Yn k) (4.94)
k=1

where y,x denotes the output of the k-th neuron in the last layer (which is zz ) when
the input is v,, to the neural network. This is the same objective function as used in
the logistic regression (Equation (4.44)) because this is an MLE solution with the only
assumption that the targets in T follow the multinomial distribution. In regression tasks,

on the other hand, the mean-squared error (MSE) cost function is the classical choice.

The classical optimization strategy for MLPs is the gradient descent family of algo-
rithms, in which the derivatives of the objective function w.r.t. the parameters are used
to find the loss minimization direction in an iterative process. A straightforward approach
for updating the parameters is the stochastic gradient descent (BISHOP, 2006), defined
by:

(4.95)
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where WZ(TH) is the value of W, at the r-th iteration of the gradient update and 7 is the

gradient update step size.

MLPs are universal function approximators i.e. with a sufficient number of layers
and/or neurons on each layer, they are able to approximate any function in a defined
region of interest (HORNIK et al., 1989), so they are very flexible in terms of adapting
to different problems. Another computational advantage is that the J,, gradient w.r.t the
model parameters at the [-th layer can be calculated as a function of the gradient of the
parameters at the [41-th layer. This means that starting from the L-th layer, we can easily
calculate the gradients of the entire network by this backpropagation strategy (ROJAS,
1996; RUMELHART et al., 1986). On a note, the stochastic gradient algorithm is often
substituted by Adam (Adaptive Moment Estimation) (KINGMA; BA, 2017), which uses

the notion of "moment" to better guide the gradient direction during the updates.

4.7 EEGNet

Deep learning is a paradigm within neural network theory that advocates the use
of a relatively large number of layers as a cascade of feature extractors driven directly by
the information present in the dataset. Naturally, the success of this scheme depends on
the availability of a sufficiently large dataset and of high-performance parallel hardware.
If these conditions are met, deep neural networks can learn which aspects of the data are
important and which can be discarded for the task at hand without expert supervision.
The deep learning revolution, which took form approximately a decade ago, greatly pop-
ularized the use of Convolutional Neural Networks (CNN), which are a class of neural
networks that are constructed to deal with arrays of data, like signals, images, or videos.
They can be viewed as stacked sets of filters, with less learnable parameters, and are more

efficient than the fully connected networks for those kinds of data (LECUN et al., 2015).

EEGNet is a compact CNN designed for EEG signal processing, and can be applied
to different paradigms (LAWHERN et al., 2018), consisting of 4 main layers. The first
main layer is a conventional 2D convolutional layer with F filters of size (1,64) (i.e.,
500ms). Even though the convolutional operation is 2D, it is equivalent to applying a
temporal filter individually to each one of the N, input EEG channels. The output of

this layer is N, x F} feature maps, where each feature map can be seen as a band-filtered



Chapter 4. Pattern Recognition and Classification 85

version of the respective EEG channel. This shows that the first layer selects interesting
bands to be further processed by the network. Let’s use the notation that X is the N, x T
matrix with the EEG signals, and X is the EEG data after being filtered by the k-th
temporal filter, with 1 < k < F}.

The second main layer is a Depthwise Convolution, which is equivalent to learning
a spatial filter for each one of the temporal filters from the first layer. This means that
after selecting the frequency bands of interest, each X, passes through a spatial filter. A
parameter D indicates the number of spatial filters that are learned for each temporal

filter, meaning that this layer outputs D *x F} frequency and spatially filtered signals.

The third main layer is a Separable Convolution layer, which is implemented using
a Depthwise Convolution followed by a Pointwise convolution. Here, the depthwise con-
volution is equivalent to a set of temporal filters (one for each one of the D % Fj signals
from the previous layer), which learns a time-domain summary for each one of the feature

maps. The pointwise convolution then learns how to combine those values into F, outputs.

The final layer is a traditional fully connected dense layer followed by a softmax
operation, which will output the probability estimates of the data pertaining to each one

of the K classes (depending on the task and the paradigm).

Those are the main components of the EEGNet, which are interpretable building
blocks with signal processing qualities. The actual network has some Batch Normalization
layers (IOFFE; SZEGEDY, 2015), Average pooling layers for dimensionality reduction,
ELU activation function layers (CLEVERT et al., 2016), and Dropout layers for regular-
ization (SRIVASTAVA et al., 2014) during training. The full architecture is sequentially
composed of:

1. Convolutional Layer (F; 500ms temporal filters)
2. Batch Normalization

3. Dropout (50%)

4. Depthwise Convolution (F spatial filter)

5. Batch Normalization

6. ELU activation function
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7. Average Pooling (kernel size (1 x 4), stride 4)

8. Dropout (50%)

9. Separable Convolution (F» 500ms filters)

10. Batch Normalization

11. ELU activation function

12. Average Pooling (kernel size (1 x 8), stride 8)

13. Dropout (50%)

14. Dense Layer (K neurons)

15. Softmax function

The typical values for the parameters are Fy = 4, D = 2, and Fy, = D % F}.

Additionally, the norm of each spatial filter is constrained to be smaller or equal to 1,

and the norm of each weight vector of the final dense layer is constrained to be smaller

or equal to 0.25.

The EEG data is pre-processed before being used for the network training. The data
is downsampled to 128Hz, then a bandpass Butterworth filter with cut-off frequencies of
4Hz and 38Hz is applied, followed by an electrode-wise exponential moving standardiza-

tion. For z;(t) the i-th channel at time ¢, processed signal z/ is calculated as:

/ zi(t) — pu
Ti(t) = ———— (4.96)
\/0—72
pi(t) = Azi(t) + Bui(t — 1) (4.97)
af(t) = Nai(t) — pui(t))* + oy (t — 1) (4.98)

where p;(t) is the average of the i-th channel at time ¢, 0;(¢) is its variance. The constants
v and [ represents the decay of the moving exponential, with A = (1 — ) = 0.001. As
the formula is recursive, we set y;(t) as the mean of the first 1000 samples of x;(t), and

o? as the variance of the first 1000 samples of z;(t) (SCHIRRMEISTER et al., 2017).

Before each training phase, 30% of the training data is removed to be used as a

validation set for the early stopping of the network (YAO et al., 2007), so only 70% of
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the data is used for training EEGNet. The method consists of tracking the loss function
value during training for a separated set (the validation set), and stopping the training
when it decreases slower than a threshold or stops increasing. This is done to estimate the

generalization error of the network during training, avoiding overfitting and saving time.

In the next Chapter, we will present the materials used in our analyses, the experi-

mental setup used to answer our research questions, the results, and discussions.
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5 Methods and Results

In this chapter, we present the experiments that form the core of our contribu-
tions and analysis of the obtained results. Two datasets were used in our experiments, in
association with different experiments. The first experiment comprises the joint compar-
ison of the use of different ICA and classification methods in a Motor-Imagery BCI. The
methods are compared in terms of Cohen’s Kappa metric, and we calculate the average
performances for each ICA method and classifier. In the following scenario, we replace the
feature extraction and classification modules with the EEGNet (LAWHERN et al., 2018),
a neural network designed for the processing and feature extraction of EEG, originally
proposed for classifying signals in MI-BCI. Each ICA method is evaluated in terms of
accuracy, in comparison with not using ICA, and in convergence speed of the network
during training. An additional experiment is done to compare the different ICA methods
in two scenarios: a within-session calibration of the BCI, and a between-session calibra-
tion. With this, we can evaluate the methods that better generalize between different

acquisition sessions or days.

5.1 Datasets

The BCI Competition IV dataset 2a (dataset D1) (BRUNNER et al., 2004) is com-
posed of data from 9 subjects, with each one performing four motor imagery tasks during
two days, with two sessions on each day. At each session, the subjects performed 36 tri-
als of each motor imagination task: left hand, right hand, foot and tongue movement (4
classes). The task cues were presented on a monitor screen. The trial protocol starts with
a beep to indicate its start, and after two seconds a visual cue is displayed on the mon-
itor during 1.25s, signaling the subject to imagine the respective task for 4s. The study
followed the 10-20 international montage system with 22 electrodes at 250Hz sampling
rate, and the signal was bandpass filtered between 0.5Hz and 100Hz, and also by a notch

filter at 50Hz. We used only the 4s of imagination in our experiments.

The OpenBMI dataset (dataset D2) (LEE et al., 2019) is also composed of two data

collection days, with two sessions on each day. On each session, each one of the 54 subjects
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performed 50 trials of hand motor imagination for left and right hands (2 classes), totaling
400 trials over the four sessions. Each trial starts with a fixation cross that appears on a
monitor screen for 3 s, followed by the image of an arrow that indicates which hand to
imagine the movement. The imagination lasts for 4 s, and is succeeded by 6 s+ 1.5 s of a
blank screen indicating rest. The montage followed the 10-20 international system, with
62 electrodes at 1000Hz. EEG was bandpass-filtered using a 5th-order IIR butterworth
filter at 8Hz and 30Hz. We cropped the trial windows from 1 s to 3.5 s to reproduce the
methodology in LEE et al..

5.2 ICA and classifier comparison

In this section, we will present results from the benchmarking of the set of ICA
algorithms and classification methods that were discussed. The BCI will be evaluated in

terms of Cohen’s kappa, which is calculated as follows:

(5.1)

where p, is the relative number of concordances between prediction and true class values
(prediction is correct) and p, is the expected accuracy if predictions are made at random.
It is a measure of agreement between predicted and expected values and is proportional
to a balanced accuracy metric, but it is normalized so that random-guess classifiers have
a score of 0, while perfect classifiers still have a score of 1. Classifiers with predictions

that are on average worse than a random guess have a negative kappa.

The experiments of this section were performed using the BCI Competition IV
dataset 2a (dataset D1) and the OpenBMI dataset (dataset D2), at different times. As
both datasets have sessions performed on two different days, we use the first day as
training (calibration) set and the second as testing data, as shown in Figure 5.1. For each
subject of each dataset, the first and second sessions are selected. Then, for each ICA
algorithm, the ICA model is calibrated, the sources are extracted and the features are
calculated using Welch’s spectrogram. The ICA method denoted as "None" represents a
baseline scenario where no actual source extraction is done (the raw EEG channels are
used), and is used to assess how ICA preprocessing compares with not using ICA. The

features are scaled using a Z-score transformation, as follows:
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o =t (5.2)

where v; is the i-th feature, v} is the transformed i-th feature, v; is the average value of
v; and o; is it’s standard deviation. A smaller number of features are selected using the
Wrapper technique, and each classifier is used in a grid search for the best hyperparame-

ters, using a K-Fold cross-validation with 4 folds.

For each dataset

For each algorithm For each classifier
RICA | ORICA Nai R
BCI sopy | ORICA ORICA| 4 \pe G| N | [RENENL
Competition 0 i Bayes Forest
IV Dataset 2a picard Picard- Infomax Extended Poly. | Linear | RBF |Sigmoid
(o) Infomax SVM VM SVM SVM
OpenBMi Logistic | Logistic | Logisti
ogistic | Logistic | Logistic
Dataset FastICA| N MLP
astiCA RIS Reg. |Reg.L1|Reg. L2
' Fit ICA model K-Fold
Select first , , , Feature Feature Model
session P and extract Scaling P Selection > Hyiﬁ:?:éam' training
sources S
Filtering v PSD + v +
Select Extraction
second _> , Extract _> _> Feature _> Keep best Predict _> Calculate
session sources Scaling features classes Kappa

Figure 5.1 — Pipeline of the experiment.

The parameter space is shown in Table 5.1, representing the possible values that each
parameter may assume during the optimization. During the hyperparameter search, all
combinations between all parameters are tested, for each classifier. Then, the parameter
combination that yields the highest average kappa between the 4 validation sets is chosen,

and the model is retrained using all training data with this fixed parameter set.
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Classifier Parameter Space
LDA - -
Logistic =~ Regression | regularization A 20 values in the [0.01,1000] interval,
(L1) equally log-spaced
Logistic =~ Regression | regularization A 20 values in the [0.01,1000] interval,
(L2) equally log-spaced
Logistic ~ Regression | - -
(unregularized)
hidden layer sizes (-), (10), (6), (4), (10, 6), (6, 4), (4,
1)
MLP Vali‘dajcion fraction 25%
optimizer Adam
initial learning rate n | le-3
patience 50
nonlinearity ReLU, Sigmoid

Gaussian Naive Bayes

SVC - RBF Kernel

regularization C'

6 values in the [0.1,1000] interval,
equally log-spaced

kernel coefficient ~

5 values in the [0.001,0.1] interval,
equally log-spaced

SVC - Linear Kernel

regularization C'

10 values in the [0.001,1000] inter-
val, equally log-spaced

SVC - Poly. Kernel

regularization

6 values in the [0.001,0.1] interval,
equally log-spaced

kernel coefficient ~

4 values in the [0.001,0.1] interval,
equally log-spaced

degree ¢

2,3

SVC - Sig. Kernel

regularization C'

6 values in the [0.1,1000] interval,
equally log-spaced

kernel coefficient

6 values in the [0.001,0.1] interval,
equally log-spaced

Random Forest

N. of trees Np

10, 15, 25, 40

number of features per
tree

sqrt(D), logs(D)

maximum depth 2,3
Extra Trees N. of trees Ny 10, 20, 30, 40
maximum depth 2,3,5

Table 5.1 — Hyperparameter search space

The MLP has at least two layers, the D-sized input layer and K-sized output layer,

where D and K are the dimensionality of the feature vector and the number of classes
(except for 2 classes, where K is 1). The hidden layer parameter controls the layers
in between those two. For instance, "(-)" means no hidden layer, "(16, 4)" means one

16-neuron layer followed by a 4-neuron layer. The MLP training uses an early stopping

technique to avoid overfitting: a fraction of the training data (validation fraction) is taken,
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and the model is trained on the remaining data. On each epoch, the model performance
is evaluated on the validation set. If the metric does not improve after a number of
training epochs (patience parameter), the training stops. This is done both to terminate
the training when no more improvements are being achieved and to avoid overfitting by

limiting the model adjustment to the training data.

Note that only training data is used to learn the separation matrix associated with
ICA (the same unmixing matrix for all MI classes), to calculate the mean and standard
deviation for the z-score transform, to select the features using the Wrapper, to find
the classifier best parameters in the grid search and to fit the classifier. The following

subsections show the results of the mentioned experiments for each one of the two datasets.

5.2.1 BCI Competition IV 2a

In this subsection, we present the results of experiments where we followed the
described methodology for dataset D1. We will evaluate the best (in terms of Cohen’s
Kappa) ICA and classifier combination per subject, the best ICA for each classifier, the
best classifier for each ICA, and the best overall classifier and ICA methods. Here, "best'
means the highest in the kappa metric for the four MI classes classification. Results with
no standard deviation indicate that the classifier and the ICA methods are deterministic

(initial conditions do not affect the results).

5.2.1.1 The best combinations per subject

Table 5.2 shows the top-3 combinations of classifier and ICA for each subject in
terms of kappa (average and std. over the 10 runs for each combination). We see that
ORICA was in the top-3 for 4 out of 9 subjects, and logistic regression appears 7 times in
the top-3 positions. ORICA had the highest kappa for 3 out of 9 subjects. Subject 3 had
the highest kappa among subjects, and both linear and non-linear classifiers were tied for
the highest accuracy. Results with zero standard deviation mean that both the classifier

and ICA method are deterministic (initial conditions do not affect the results).
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Table 5.2 — Top 3 classifier and ICA combinations, per subject in dataset D1.

Subject Classifier ICA Kappa

mean std

1 Log. Reg. (L1) SOBI 0.574 -
MLP SOBI 0.545 0.017
Log. Reg. (L2) SOBI 0.542 -

2 Random Forest Infomax 0.247 0.035
Random Forest Picard 0.239 0.029
Random Forest Picard-O 0.237 0.040

3 Log. Reg. ORICA (1) 0.676 -
Log. Reg. (L1) ORICA (1) 0.676 -
SVM (RBF) ORICA (1) 0.676 -

4 SVM (Lin.) Picard-O 0.284 0.013
LDA Picard-O 0.279 0.014
Log. Reg. (L2) Picard-O 0.279  0.009

5 Naive Bayes ORICA (1) 0.102 -
Random Forest JADE 0.094 0.021
Random Forest Infomax 0.094 0.040

6 Log. Reg. (L1) SOBI 0.278 -
Log. Reg. (L2) SOBI 0.273 -
Log. Reg. SOBI 0.269 -

7 Log. Reg. (L1) ORICA (0) 0.611 -
Log. Reg. (L2) ORICA (0) 0.602 -
Log. Reg. ORICA (0) 0.593 -

8 SVM (RBF) Picard 0.626 0.014
SVM (Lin.) Picard 0.625 0.015
Log. Reg. Picard 0.624 0.003

9 SVM (Lin.) SOBI 0.662 -
SVM (RBF) SOBI 0.662 -
Log. Reg. (L2) ORICA (1) 0.644 -

5.2.1.2 The best ICA per subject

Table 5.3 shows the average kappa for the top-3 best-performing ICA methods,
averaged over all classifiers and runs, for each subject. ORICA had the top-3 kappa for
4 out of 9 subjects, while SOBI and Infomax had the top-1 kappa for 2 out of 9 subjects
each. FastICA got at most to the 3rd best ICA for any subject. Note that in all cases the

use of any of the ICA methods is better than using raw signals.
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Table 5.3 — Top 3 ICAs per subject in dataset D1.

Subject ICA Kappa
mean std
1 SOBI 0.521 0.030
JADE 0.469 0.033

FastICA 0.468 0.053
2 Infomax 0.185 0.053
ORICA (0) 0.184 0.029
Picard 0.183 0.038
3 ORICA (1) 0.643 0.035
Picard-O 0.589 0.028
FastICA 0.585 0.052

4  Picard 0.259 0.036
Picard-O 0.258 0.032
JADE 0.258 0.020

5 Infomax 0.071 0.040
JADE 0.070 0.020
Picard 0.070 0.030

6 SOBI 0.231 0.052
Picard 0.184 0.032

FastICA 0.164 0.058
7 ORICA (0) 0.527 0.078
Picard 0.487 0.074
ORICA (1) 0.485 0.084
8 Infomax 0.584 0.035
Picard 0.581 0.058
FastICA 0.575 0.038
9 ORICA (1) 0.613 0.040
SOBI 0.601 0.063
ORICA (0) 0.553 0.065

5.2.1.3 The best classifier per subject

Table 5.4 shows the average kappa for the top-3 best-performing classifiers, aver-
aged over all ICA methods and runs, for each subject. Results may be a little negatively
biased because the baseline source extraction is taken into consideration here. The logistic
regression models are ranked as top-1 for 6 out of the 9 subjects, and always appear in the
top-3. The tree-based ensembles only appear on top-3 for 1 subject, showing that linear

classifiers are almost always the most suitable option.
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Table 5.4 — Top 3 classifiers per subject.

Subject Classifier Kappa

mean std

1 Log. Reg. (L2) 0.474 0.054
Log. Reg. 0.473 0.045
Log. Reg. (L1) 0.467 0.067

2 Random Forest 0.183 0.084
SVM (RBF) 0.167 0.045
Extra Trees 0.164 0.066

3 Log. Reg. 0.561 0.085
Log. Reg. (L2) 0.561 0.082
Log. Reg. (L1) 0.556 0.092

4 Log. Reg. 0.222 0.073
Log. Reg. (L2) 0.221 0.076
Log. Reg. (1) 0.221 0.069

5 Log. Reg. 0.057 0.039
LDA 0.056 0.038
Log. Reg. (L2) 0.055 0.042

6 SVM (Sig.) 0.142 0.056
LDA 0.137 0.063
Log. Reg. (L2) 0.136 0.066

7 Log. Reg. (L1) 0.433 0.162
Log. Reg. 0.425 0.147
Log. Reg. (L2) 0.423 0.152

8 SVM (Lin.) 0.535 0.092
Log. Reg. 0.531 0.085
Log. Reg. (L2) 0.529 0.091

9 Log. Reg. (L2) 0518 0.114
Log. Reg. 0.518 0.108
Log. Reg. (1) 0.516 0.113

5.2.1.4 The best classifier per ICA - average over the dataset

Table 5.5 shows the classifier with the highest average kappa, for each ICA. ORICA

(1) was the only method that had the best performance with a non-linear classifier.

Apart from that, for no ICA method a SVM variant had the highest average kappa.

Since the statistics are calculated among all subjects, those values can be interpreted

as the expected results independently of the subject. JADE and SOBI methods were

the ones that performed the worst, even for their best-case classifiers. This is interesting

because Table 5.3 shows SOBI as a good choice for several subjects, showing that it has

more unfavorable scenarios, which is corroborated by the fact that its median kappa is

considerably smaller than its mean kappa.
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Table 5.5 — Best classifier per ICA in dataset D1.

ICA Classifier Kappa
median mean std
Picard Log. Reg. (L2) 0.498 0.380 0.199
FastICA Log. Reg. (1.2) 0.464 0.379 0.209
Picard-O Log. Reg. (L1 0.480 0.373 0.219
ORICA (1)  Random Forest ~ 0.438 0.373 0.231
Infomax Log. Reg. (L2) 0.438 0.356 0.197
Ext. Infomax Log. Reg. (L1) 0.439 0.355 0.211
ORICA (0) Log. Reg. (L1)  0.472 0.344 0.260
SOBI Log. Reg. (L1) 0.278 0.344 0.229
JADE Log. Reg. 0.278 0.291 0.147
None LDA 0.259 0.248 0.177

Figure 5.2 extends the results from Table 5.5, by showing the results from all clas-

sifiers. The red asterisk below each bar indicates that the result is significantly smaller

than the best classifier (Wilcoxon’s one-sided test), for each ICA method. The logistic

regression classifiers consistently appear in the top-3 positions, and it is interesting that

for the ORICA (1) method, the random forest was statistically tied with many other

classifiers.
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5.2.1.5 The best ICA per classifier - average over the dataset

Table 5.6 shows the ICA with the highest average kappa for each classifier. FastICA
and Picard stood out having the highest kappa for 6 and 3 out of 12 classifiers, respec-
tively. This is interesting, because, in Table 5.6, most of the cases present a mean value
considerably lower than the median value, indicating a prevalence of scenarios where the
kappa is higher than the mean value. Those values can be interpreted as the expected
kappa value for the respective ICA and classifier combination independently of the sub-
ject, as in Table 5.5. Even though FastICA and Picard rarely appeared as top-1 in Table
5.3, here they appear as the best ICA for most of the classifiers, showing that even though
they are not optimal for all classifiers on average, there are many scenarios they can be

optimal.

Table 5.6 — Best ICA per classifier in dataset D1.

Classifier ICA Kappa
median mean std
Log. Reg. (L2) Picard 0.498 0.380 0.199
Log. Reg. FastICA 0.468 0.378 0.207
Log. Reg. (L1) FastICA 0.486 0.377 0.207
LDA Picard 0.477 0.373 0.187
Random Forest ORICA (1)  0.438 0.373 0.231
SVM (Lin.) FastICA 0.452 0.371 0.203
SVM (Sig.) FastICA 0.460 0.369 0.205
SVM (RBF) Picard 0.435 0.368 0.190
MLP FastICA 0.448 0.368 0.198
Extra Trees ORICA (1) 0.439 0.348 0.235
Naive Bayes FastICA 0.345 0.324 0.200
SVM (Poly) Picard-O 0.377 0.319 0.194

Figure 5.3 extends the results from Table 5.6, by showing the results from all ICAs.
The red asterisk below each bar indicates that the result is significantly smaller than
the best classifier, for each classifier method. Picard, FastICA, and Picard-O consistently
appear with the top-3 kappa values. Here we see that the tree-based methods perform
well with ORICA, as they are the top-1 ICAs with those classifiers (even though they are

statistically tied with some other source extraction methods).
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5.2.1.6 The best ICA method and the best classifier - average over the dataset

Figures 5.4 and 5.5 show the average kappa for each ICA method and classifier,
respectively. The results are ordered from lowest to highest mean kappa and are averaged
over all runs, subjects, and classifiers or ICA methods. Here, the red asterisk indicates that
the one-sided Wilcoxon’s signed-rank test between each bar and the highest (rightmost)
bar had a p-value lower than 0.05, meaning that its value is significantly lower than
the highest bar, showing that Picard and FastICA are tied for the best-performing ICA.
The logistic regression classifiers had the highest average kappa among classifiers, with
significant difference. In Uribe et al. (2016), JADE has shown great performance for
a 2-class MI-BCI system, with better classification accuracy than SOBI and Infomax,
contrasting with the results here, where JADE has been consistently a low accuracy ICA

method. This could be due to differences in dataset or subject characteristics.
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Figure 5.4 — Average kappa values for each ICA in dataset D1.
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Even though LDA is commonly used as a classifier in BCI systems, we can note
that the logistic regression model and its regularized variations are significantly better
in terms of classification accuracy, especially in the case of using power spectral density
features. It is also possible to conclude that, when using those features, it is always better
to obtain the power spectral density of the ICs instead of raw EEG. This is expected as
the known underlying phenomena for MI (the ERD/ERS) is known to be spatially and
spectrally localized, and while the localization of the event may be difficult to extract, it
is facilitated by the ICA filtering. Out of the many classifiers in our experiments, there
was no significant gain when using non-linear approaches, as logistic regression, LDA and

linear SVM were among the top average kappa values.

5.2.2 OpenBMI

Tables 5.7 and 5.8 show the best ICA and classifier combination for each subject, and
the respective average kappa and its standard deviation. Column "N" shows the number
of ICA and classifier combinations that yielded an average kappa with no significant
difference from the best, as tested by Wilcoxon’s one-sided test. This shows that even
for some subjects that have high average kappa, there are few (and sometimes many)
scenarios where the kappa value is statistically similar to the best scenario. Subject 29,
for instance, has one of the best BCI controls even without source extraction, with 3 other
combinations that would be statistically similar to it. Subject 21 has 35 ICA and classifier
combinations that achieved similar performance than the best strategy, showing that for
this subject the BCI calibration is more easily done, independently of the chosen source

extraction and classifier.

5.2.2.1 The best classifier per ICA method - average over the dataset

Table 5.9 shows the classifier with the highest average kappa for each ICA. The
results were averaged over all runs, for each ICA and classifier, and then the one with
the highest kappa was selected. We see that the top-5 ICA have almost the same average
kappa and are shown to have the logistic regression as the best option for the downstream
classifier. Despite of that, FastICA shows a higher median value, indicating that most of
the time it can yield higher kappa values than the other ICA methods, when we choose

the right classifier. Overall, in all cases, we see a very high standard deviation, and this
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Table 5.7 — Best ICA and classifier combination for each subject and number of combi-
nation with no significant difference, first part (dataset D2).

Subject N Classifier ICA Kappa mean Kappa std
1 6 Log. Reg. (L2) Ext. Infomax 0.385 0.034
2 3 Log. Reg. (L1) None 0.220 -
3 25 Log. Reg. (L1) FastICA 0.718 0.158
4 1 Naive Bayes ORICA (1) 0.190 -
5 1 MLP None 0.482 0.024
6 20 Log. Reg. Picard 0.634 0.041
7 52 Log. Reg. Infomax 0.300 0.095
8 1 SVM (Lin.) None 0.100 -
9 11 MLP None 0.383 0.059

10 5 SVM (RBF) None 0.150 -
11 3 SVM (Lin.) ORICA (1) 0.070 -
12 1 SVM (Poly) SOBI 0.180 -
13 1 SVM (RBF) None 0.170 -
14 3 SVM (Lin.) ORICA (1) 0.160 -
15 2 Naive Bayes ORICA (0) 0.100 -
16 1 LDA ORICA (0) 0.250 -
17 4 Random Forest FastICA 0.291 0.057
18 10 SVM (Poly) SOBI 0.600 -
19 1 SVM (Sig.) SOBI 0.340 -
20 23 Extra Trees SOBI 0.133 0.042
21 35 Log. Reg. (L1) Ext. Infomax 0.954 0.020
22 2 SVM (Sig.) SOBI 0.450 -
23 31 Log. Reg. Infomax 0.333 0.063
24 2 SVM (Sig.) ORICA (0) 0.090 -
25 1 Log. Reg. None 0.340 -
26 13 Extra Trees ORICA (1) 0.110 0.071
27 1 SVM (Poly) SOBI 0.150 -

is due to the high heterogeneity of the subjects in the dataset, as seen in Tables 5.7 and

5.8.

Figure 5.6 shows the average kappa over all runs, then over each ICA for each clas-

sifier. The asterisks indicate whether each result is significantly different than the highest

kappa for the same classifier. We see that JADE and the ORICA methods consistently un-

derperform in relation to the other ICA methods. We also see that the logistic regression

methods are almost always on the top-3 classifiers. Differently from dataset D1, Random

Forest appears on the top 3 classifiers 6 out of 12 times. Using no ICA, the best kappa

value is similar to the kappa values of the least performing classifiers that were combined

with ICA (except JADE and ORICA). We see that the difference between the highest

and lowest kappas for each ICA method is of about 0.05.
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Table 5.8 — Best ICA and classifier combination for each subject and number of combi-
nation with no significant difference, second part (dataset D2).

Subject N Classifier ICA Average kappa std
28 6 Log. Reg. (L1) SOBI 0.760 -
29 3 Log. Reg. None 0.970 -
30 4 MLP None 0.198 0.029
31 35 SVM (RBF) Ext. Infomax 0.111 0.075
32 12 Random Forest SOBI 0.751 0.029
33 11 SVM (Poly) SOBI 0.850 -
34 1 SVM (RBF) ORICA (1) 0.150 -
35 46 MLP Ext. Infomax 0.371 0.218
36 11 Log. Reg. Ext. Infomax 0.951 0.007
37 1 SVM (Lin.) None 0.840 -
38 2 Naive Bayes ORICA (1) 0.090 -
39 24 MLP Infomax 0.476 0.127
40 1 SVM (Sig.) ORICA (1) 0.100 -
41 28 LDA Picard 0.063 0.043
42 41 Random Forest FastICA 0.173 0.077
43 1 Random Forest SOBI 0.311 0.014
44 1 Log. Reg. SOBI 0.960 -
45 24 Random Forest Infomax 0.804 0.030
46 2 Log. Reg. SOBI 0.450 -
47 3 SVM (RBF) None 0.110 -
48 3 Random Forest SOBI 0.198 0.085
49 1 SVM (Sig.) None 0.340 -
50 1 SVM (Poly) ORICA (0) 0.140 -
51 28 SVM (Sig.) FastICA 0.283 0.024
52 29 Naive Bayes SOBI 0.330 -
53 3 Naive Bayes None 0.100 -
54 1 SVM (Poly) ORICA (0) 0.180 -

Table 5.9 — Best classifier per ICA in dataset D2.
ICA Classifier Kappa
median mean std
Infomax Log. Reg. 0.108 0.238 0.295
Picard Log. Reg. (L1) 0.106 0.238 0.292
Picard-O Log. Reg. (L1) 0.106 0.238 0.292
Ext. Infomax Log. Reg. (L1) 0.091 0.238 0.292
FastICA Log. Reg. (L1) 0.136 0.237 0.294
SOBI Random Forest 0.091 0.231 0.294
None Log. Reg. (L1) 0.085 0.209 0.278
ORICA (0)  SVM (Sig.) 0.040 0.095 0.224
ORICA (1)  Random Forest ~ 0.036 0.077 0.195
JADE MLP 0.013 0.064 0.149
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Table 5.10 — Best ICA per classifier in dataset D2.

Classifier ICA Kappa
median mean std
Log. Reg. Infomax 0.108 0.238 0.295
Log. Reg. (L1) Infomax 0.104 0.238 0.291
Random Forest Infomax 0.135 0.238 0.291
SVM (Lin.) Ext. Infomax 0.088 0.236 0.288
MLP Infomax 0.088 0.235 0.289
Log. Reg. (L2) Ext. Infomax  0.094 0.234 0.289
Extra Trees Infomax 0.096 0.227 0.290
SVM (Sig.) Ext. Infomax  0.099 0.226 0.284
SVM (RBF) Ext. Infomax 0.075 0.224 0.283
LDA Ext. Infomax 0.081 0.220 0.270
SVM (Poly) Infomax 0.070 0.209 0.272
Naive Bayes FastICA 0.061 0.189 0.266

5.2.2.2 The best ICA per classifier - average over the dataset

Table 5.10 shows the ICA with the highest kappa, on average, for each classifier. It
is noticeable that aggregating by the classifier, Infomax and its extended version perform
better than the other ICA algorithms. Also, the average kappa values are much more
homogeneous, so we can conclude that different classifiers have less influence on the final
metric than the different ICA possibilities. The Random Forest classifier with Infomax
ICA combination had a higher median kappa than others, but with no statistical difference
when comparing to the first and second best combinations of the table (using Mood’s

median test, with 95% confidence level).

Figure 5.7 shows the average kappa over all runs, then over each classifier for each
ICA method. The asterisks indicate whether each result is significantly different than the
highest kappa for the same classifier. We see that most of the time, the Extended Info-
max, Infomax, Picard-O, and Picard are almost tied in the top positions, indicating that
independently of the downstream classifier, using any of those methods is almost similar.
This was not so evident in dataset D1, as shown in Figure 5.3. It is also very interesting
to see that, differently from dataset D1, the online ICA methods heavily underperform,
as well as JADE.
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5.2.2.3 The best ICA and best classifier - average over the dataset

Figure 5.8 presents the average kappa value for each ICA method. The kappa is
averaged over all runs for each subject, classifier, and ICA, then over all classifiers and
subjects, for each ICA. The red asterisk indicates statistically significant differences com-
pared to the rightmost (highest) bar using Wilcoxon’s one-sided signed-rank test. Ex-
tended Infomax is shown with the highest kappa, being significantly higher than all other
ICA methods, while JADE appears in the last position with approximately one fourth of
the kappa value of the first place ICA. Also, three ICA methods had the average kappa

value lower than the baseline, which did not happen in dataset D1.

Average Kappa for each ICA
3 %

« | 7

JADE

ORICA (1)
ORICA (0)
None

SOBI
FastICA
Picard
Picard-O
Infomax
Ext. Infomax

Figure 5.8 — Average kappa value for each ICA method, over all classifiers and subjects
in dataset D2.

Figure 5.9 presents the averaged kappa values for all classifiers. Here, the kappa
is averaged over all runs for each subject, classifier, and ICA, then over all ICAs and
subjects, for each classifier. The red asterisk also indicates the classifiers with significant
differences from the first one. The L1-regularized version of logistic regression significantly
outperformed all other classifiers, but we see that the difference between the highest and
lowest kappa classifiers (in this case, Naive Bayes) is much lower than what happened
with the ICAs. This indicates that the classifier choice is less important to the kappa
value than the choice of the ICA method.
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Figure 5.9 — Average kappa value for each ICA method, over all classifiers and subjects
in dataset D2.

The results contrast with the ones obtained using dataset D1, as for many subjects
the baseline ("none") preprocessing was the best. As for the classifier, the random forest
performed better than most of the other algorithms, which was not seen in dataset D1. On
the other side, the RBF kernel SVM went from the 5th position to the 9th position, from
dataset D1 to D2 regarding average kappa. Interestingly, LDA stood at the 8th place.
The naive bayes classifier was the one with the lowest kappa, which could be expected

since it is one of the classifiers with more broad assumptions (feature independence).

The ORICA algorithm degraded in performance compared to dataset D1, on aver-
age. Its kappa value is lower than the baseline, indicating that the method may not be
suitable for the average subject, or that another preprocessing method is needed before
applying the algorithm. Works by Brunner et al. (2007) and Naeem et al. (2006) compared
SOBI, FastICA, and Infomax regarding classification accuracy in a 4-class MI task. In
the testing phase, Infomax had the best accuracy, followed by FastICA and SOBI, which
was validated by our results in D2. JADE rarely outperformed other methods, similar to
the findings of Wu et al. (2020), where Infomax also had the top-2 classification accuracy
among ICA methods.

5.3 EEGNet

EEGNet is a network that was designed for learning temporal filters, spatial filters,
feature extraction, and classification in just one structure. This joint learning is generally

better since all steps are optimized to minimize the same loss function in a supervised
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manner. It was designed to deal with EEG signals in the electrode space instead of the
source space, which was considered in the last section. In this section, we feed signals
in source space to this network and evaluate kappa and also training convergence speed.
We assume that some sources extracted using ICA have a lot more information about
the classification task we are training the BCI system to identify, so the network learning
phase should be easier because we expect that at least the spatial filters will not need to
be as complex as if we were using raw signals. The experiments were carried out using
only the BCI Competition dataset due to the dataset size of D2. During EEGNet training
we also used the early stopping strategy (as we use for the MLP), with a patience of 100

epochs.

5.3.1 The best ICA method per subject

Table 5.11 shows the average kappa for the top 3 best-performing ICA algorithms
for each subject. The results are the average and standard deviation over 10 runs with
different EEGNet weights initialization, while Figure 5.10 shows the kappa average and

standard deviation for all ICAs, for each subject.

Figure 5.10 extends the results from Table 5.11, showing the average kappa value,
along with the 95% confidence interval for each ICA algorithm and each subject. The
red asterisk indicates that the respective ICA algorithm kappa value is significantly lower
than the best ICA for the respective subject (one-sided Wilcoxon’s signed-rank test). For
Subjects 3, 6, 7, 8 and 9 using no ICA is always better than using any ICA, but with no
statistical significant difference for subjects 7 and 8. For subjects 1, 2, 4, and 5 using ICA

Kappa per ICA method, per subject
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Figure 5.10 — Average kappa value for each ICA method, for each subject in dataset D2.
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Table 5.11 — Top 3 ICA classifiers regarding average kappa value, for each subject in

dataset D1.
Subject ICA Kappa

mean std

1 FastICA 0.675 0.028
None 0.674 0.021
JADE 0.650 0.049

2 FastICA 0.267 0.048
ORICA (0) 0.263 0.035
Ext. Infomax 0.262 0.050

3 None 0.779 0.049
ORICA (0) 0.697 0.087
SOBI 0.688 0.057
4 SOBI 0.384 0.082
Picard 0.374 0.038
FastICA 0.372 0.065

5 ORICA (0) 0.300 0.098
ORICA (1) 0.262 0.106
JADE 0.126 0.082
6 None 0.279 0.041
Picard-O 0.245 0.049
FastICA 0.236 0.047
7 None 0.540 0.055
Picard-O 0.527 0.059
FastICA 0.517 0.032

8 None 0.670 0.060
SOBI 0.657 0.057
Picard-O 0.654 0.036

9 None 0.726 0.042
FastICA 0.686 0.047
Infomax 0.676 0.086

5.3.2 Training convergence speed per ICA

Table 5.12 shows the comparison between the best performing ICA, for each subject,

with the baseline (no ICA). For subjects 2, 4 and 5 the kappa values are significantly

greater than the baseline, and for subjects 2 and 4 there was a significant reduction on

the number of needed training epochs. Overall, only for one subject the average number

of epochs increased, and since it was an increase of only 6% it is not significant. Subjects

with high baseline kappas had worsened results. The significance was measured using

Wilcoxon’s test at 5% confidence interval, with alternative hypothesis that ICA’s kappa

or number of epochs is greater.
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Table 5.12 — Comparison of best ICA method and baseline average kappa and number of
training epochs.

Subject  ICA Baseline ICA Baseline kappa  ICA kappa
epochs  epochs
mean mean mean std mean std
1 FastICA  656.0 464.5 0.674 0.021 0.675 0.028
2 FastICA  368.0 214.0 0.189 0.087 0.267 0.048
3 ORICA (0) 924.0 607.5 0.779 0.049 0.697 0.087
4 SOBI 290.5 206.5 0.332  0.054 0.384 0.082
5 ORICA (0) 341.0 339.5 0.083 0.117 0.300 0.098
6 Picard-O  300.5 239.5 0.279 0.041 0.245 0.049
7 Picard-O  501.5 300.0 0.540  0.055 0.527  0.059
8 SOBI 605.5 559.5 0.670  0.060 0.657 0.057
9 FastICA  721.0 755.5 0.726  0.042 0.686 0.047

Table 5.13 shows the average kappa and number of training epochs over all subjects.
We see an interesting correlation between number of epochs and average kappa. As we
performed the training early stopping using a validation set, it is possible that the lower
number of epochs harmed the learning phase for the ICA methods. This could be due to
the additional need to learn the unmixing matrix and apply it to the unseen validation
set, to which it is not generalizing well to, so the training phase is stopped. All ICA
kappa results are significantly lower than the baseline, showing that, on average, using
ICA harms EEGNet performance. FastICA was the algorithm that least decreased the
average kappa, with a reduction of 4% but with a reduction in the necessary number of

training epochs by 25.2%.

Table 5.13 — Average ICA method kappa and number of epochs until training convergence.

N. epochs Kappa
ICA mean std mean std
None 523.1 262.5 0475 0.252
Picard 408.3 253.0 0.441 0.226
Ext. Infomax 399.4 2329 0.438 0.226
FastICA 391.8 2422 0.456 0.221
Infomax 391.2 221.7 0444 0.224
SOBI 3904 216.0 0444 0.221
Picard-O 388.3 226.5 0.451 0.225
ORICA (0) 375.9 203.2 0.437 0.179
JADE 354.6 207.1 0.434 0.211

ORICA (1) 3338 191.1 0429 0.187

As we used early stopping for the EEGNet training, it is possible that training with
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more epochs would yield better kappa. Since the validation set is removed from training
data, the potential results from EEGNet are not directly comparable to the experiments

using the traditional classifiers, which used the entire training set.

We did not use the validation set for estimating the ICA unmixing matrix to avoid
biasing the validation set metric estimation. If we view the ICA and the EEGNet as
independent structures, it can be argued that we could have used both train and validation
sets, since the early stopping is only required for the training of the EEGNet and not for

the source separation matrix design.

5.4 Within- and between-session calibration of a BCl

In this study, we perform a comparative analysis of a Motor Imagery (MI) Brain-
Computer Interface (BCI) calibrated with within-session data and between-session data
(session-to-session transfer). We aim to quantify the impact of the latter in the accuracy
of the BCI in comparison with the prior, and also compare the effect of different ICA
techniques. This analysis is based on two freely accessible datasets, the BCI Competition

IV Dataset 2A and the OpenBMI dataset.

We used the left and right-hand movement imagination tasks from the BCI Com-
petition IV and OpenBMI datasets. Although both datasets differ in number of EEG
channels, we used the same processing and classification steps for both. Each session
data, on each day, was split into two. For the within-session experiment, the first half of
the first session data is used for calibration and the second half is used for testing. In the
between-session experiment, the same first half of the first day is used for calibration, and
half of the other day is used for testing. This is done so the results are comparable, i.e., the
model is calibrated on the same data, and only the test set changes. This data splitting
is done for both datasets. The pipeline is run 20 times to account for ICA randomness,
when necessary. In this experiment, we used all of the mentioned ICA methods but only

used LDA as the classifier.

Figure 5.11 shows the within-session against the between-session experiment ac-
curacy. The diagonal line is the identity line. Accuracies were averaged over all runs,
then all subjects. Points below the identity line mean that the average accuracy for the

within-session protocol is higher.
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Figure 5.11 — Within-session vs between-session kappa results in a BCI calibration.

For both datasets, the Extended Infomax, Infomax and FastICA algorithms yielded
very similar results. Those algorithms also seem to suffer performance loss in the between-
session experiment. Additionally, JADE and the baseline preprocessing also present dif-
ferences between both protocols, but for dataset D1 the kappa increases in the between-
session experiment. In dataset D1, Picard, FastICA, Infomax, and Extended Infomax had
a significant decrease in performance in the between-session case, while in dataset D2 all
algorithms but ORICA (1) had a significant decrease. The significance test was done us-
ing Wilcoxon’s signed-rank test, with the alternative hypothesis that the between-session

kappa was lower (tested for all subjects and runs).

Figures 5.12 and 5.13 show boxplots of the average (over the 20 runs) subject per-
formance for each ICA algorithm, at each protocol, for datasets D1 and D2, respectively.
"None" refers to the baseline case, without source extraction. We see that for dataset D1
the distribution of the kappa values is similar between protocols, while for dataset D2 the
difference is more pronounced. The kappa distribution for the baseline method is similar
between the two protocols, but the kappa is smaller when compared to most of the other

processing strategies.
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6 Conclusion

In this work, we presented a comparative analysis of ICA and classification methods
in the context of MI-based BCI. The study had the aim of providing a systematic view

of two key aspects of brain signal classification.

On subject specific combinations of ICA and classifiers for dataset D1, we can point
logistic regression and Online Recursive Independent Component Analysis (ORICA) as
the combination that appeared more times, and we note that ORICA appears on at least
the top-3 combinations for 4 subjects. For dataset D2, we presented the top-1 classifier
and ICA combination, where SOBI appeared at the top for 14 subjects, no ICA for 13
subjects, and the ORICA methods for 12 subjects. In dataset D1 the logistic regression
was on a top-3 combination for 6 out of the 9 subjects. For dataset D2, SVM s achieved
the top-1 combination performance for 21 out of 54 subjects (where the sigmoidal and
polynomial kernels were at top-1 for 6 subjects each), followed by logistic regression (for 13
subjects, where the non-regularized version performed better for 8 subjects). Interestingly,

LDA was outperformed by the other classification methods.

For dataset D1, when evaluating ICAs averaged over all classifiers and subjects we
see that Picard appeared on the top-3 ICA methods for 6 subjects, followed by FastICA
and ORICA, which appeared on the top-3 ICA methods for 4 subjects. Logistic regression
models appeared in top-3 for 7 out of 9 subjects, followed by SVM (for 4 subjects). Overall,
the highest average and median kappa combination was Picard with the L2-regularized

logistic regression.

When averaging all results for each ICA in dataset D2, Extended Infomax was
significantly better than all other methods, followed by Infomax and Picard-O. As for the
classifiers, logistic Regression with L1 reg. significantly outperformed all other classifiers,
followed by the non-regularized version and random forest. The combination that got
the highest average kappa was the logistic regression with Infomax ICA, although with
no significative difference to the L2-regularized version and to random forest, both also
with Infomax algorithm. The performance for the top 5 best-case classifiers for each ICA
is almost tied. The same happens for approximately the top 3 best-case ICA for each

classifier. Interestingly, the random forest classifier achieves a much higher median kappa
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value than the other methods.

The EEGNet was originally proposed to deal with the EEG signals in the electrode
space, i.e., with no source extraction. The learning of the spatial filters could theoretically
be sped up since the source extraction possibly has separated the signals into interesting
sources, non-interesting sources, and noise. If for some reason the source space does not
have discriminatory signals, learning could be hampered. Finally, we note that the average
kappa is higher when not using ICA, and the result matches the accuracy reported by
Lawhern et al. (2018). The ICA method that achieved the highest average kappa value

was FastICA, with a 5% kappa loss from the baseline scenario.

In the within-session and between-session comparison, datasets D1 and D2 yielded
different between-session behaviors. In D1, the difference between both protocols was
much more less pronounced, while for D2 most of the algorithms had a higher kappa
decrease from within to the between-session scenario. Albeit ORICA (1) had no perfor-
mance decrease from the within to the between session experiment, it also had one of the

lowest kappas.

Overall, when using PSD features in an MI-BCI there is no ICA nor classification
method that greatly stands out for all of the subjects. On dataset D2 SVMs and logistic
regression models were selected the most times as the highest scoring classifiers, while
SOBI and ORICA were in the top-1 combinations most of the times. For some subjects

not using ICA was the best choice.

As a perspective for future work, we may indicate the extension of this analysis
to other BCI paradigms (e.g. SSVEP and P300), considering, if possible, also real-time

operation.
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