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Resumo

Esta tese de mestrado investiga a aplicação inovadora de modelos de linguagem de grande

escala (LLMs) em contextos de recuperação de informações (IR). Estudos recentes destacaram a

eficácia da alavancagem de LLMs para gerar explicações em linguagem natural antes de fornecer

respostas, resultando em melhorias de desempenho em diversas tarefas. Baseando-se nessa pre-

missa, este estudo explora o potencial impacto da integração de explicações em linguagem natural

como dados suplementares para ranqueadores neurais.

Por meio de uma experimentação abrangente que engloba diversos modelos de linguagem e

tamanhos de conjunto de dados, esta pesquisa examina detalhadamente a dinâmica da ampliação

de dados no domínio da IR. Os resultados demonstram os benefícios consistentes e tangíveis da

incorporação de explicações no processo de treinamento. Além disso, o estudo revela que à medida

que a escala dos modelos de linguagem aumenta, também aumentam os ganhos de desempenho,

destacando o papel crucial da escala na eficácia do modelo. No entanto, também reconhece as

considerações críticas em torno dos tamanhos destes modelos, incluindo o consumo de tempo e

as implicações de custos, que são explorados minuciosamente em diferentes cenários.

O método proposto para ampliação de dados apresenta uma solução alternativa ao enfrentar

o desafio da escassez de dados, acelerando o processo de aprendizado e aplicando os benefícios

da linguagem natural no treinamento de ranqueadores neurais. Ilustrados por resultados que

ultrapassam as referências alvo em uma avaliação zero-shot, esses achados afirmam a eficácia

da metodologia e defendem uma adoção mais ampla de técnicas de aumento de dados. Este

estudo possibilita uma nova estratégia no campo da recuperação de informações, impulsionada

pela integração de explicações em linguagem natural na utilização de ranqueadores neurais, além

habilitar a aplicação deste método em diferentes problemas e contextos.

Palavras-chave: Processamento de Linguagem Natural; Transformers; Aprendizado de

Máquina; Modelo de Linguagem de Grande Escala; Recuperação de Informações.



Abstract

This master’s thesis delves into the innovative application of large language models (LLMs)

within information retrieval (IR) contexts. Recent studies have underscored the effectiveness of

leveraging LLMs to generate natural language explanations before outputting answers, leading

to performance improvements across diverse reasoning tasks. Building upon this foundation, the

study explores the potential impact of integrating natural language explanations as supplemen-

tary labels within neural rankers.

Through comprehensive experimentation encompassing diverse language models and dataset

sizes, this research examines in details the intricate dynamics of data augmentation in the IR

domain. The findings demonstrate the consistent and tangible benefits of incorporating explana-

tions into the training process. Moreover, the study reveals that as the scale of language models

expands, so too do the performance gains, highlighting the pivotal role of scale in model efficacy.

However, it also acknowledges the critical considerations surrounding LLM sizes, including time

consumption and cost implications, which are thoroughly explored in different scenarios.

The proposed data augmentation approach presents an alternative solution to address the

challenge of data scarcity, accelerating the learning process by leveraging natural language to

finetune language models. Illustrated by results surpassing the target baseline in a zero-shot eval-

uation, these findings affirm the efficacy of the methodology and advocate for broader adoption

of data augmentation techniques. This thesis enables a new strategy in the field of information

retrieval, driven by the seamless integration of natural language explanations into neural rankers

and also enabling the application of this method in different problems and contexts.

Keywords: Natural Language Processing; Transformers; Machine learning; Large Lan-

guage Model; Information Retrieval.
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1 Introduction

As the amount of data, texts, websites, and journals continue to grow, Information Retrieval

(IR) importance is increasing significantly. The data can come from diverse sources, ranging from

scientific papers to personal social media accounts and devices connected in the internet. Recent

researches estimates the so called datasphere, which is the amount of data created, captured, and

replicated in any digital media across the world, will grown exponentially as show in Figure 1

from IDC (Internet Data Center) research[43].

This data expansion happens mainly due to the internet’s popularity, world globalization

and internet of things which are leading to an enormous amount of data being available on

almost any topic. Despite the benefits of having vast amounts of information readily available,

effectively filtering and selecting the relevant data poses a challenge.

Figure 1: Data available in the digital platforms - from IDC Data Age 2025.

In such scenario, IR emerges as a crucial method to select pertinent information sources

from a pool of potential candidates. Without a glossary or method to sort the data based on a

desired topic, the abundance of information would be rendered useless since there would be no

means to filter or select the desired content.

The information retrieval field has different application and solutions as briefly shown in

Figure 2. From indexing to search formulation, IR has been introduced in the big data envi-

ronment to select the most relevant information passages for a given query. IR is critical for

the effective implementation of search engines and facilitates relevant information selection and

usability. However, it is a complex task due to the diversity and amount of data being processed

by the IR systems.
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Figure 2: Information Retrieval main applications.

In this continuous growth and constantly changing work scenario, artificial intelligence and

its various derivatives, such as Large Language Models (LLMs), present promising strategies

for enhancing the effectiveness and applications of search engines. Neural models, in particular,

have gained widespread usage in addressing complex problems within the field of information re-

trieval [30], where traditional syntactical and lexical approaches may fall short in diverse contexts

and information structures. Recent advancements in Natural Language Processing (NLP) have

further amplified the effectiveness of these neural models, with AI proving beneficial across a wide

range of tasks. Notably, advances in self-supervised training and the introduction of the Trans-

former architecture [62] signify a remarkable leap forward in the capabilities and effectiveness of

IR models.

Transformer models have proven to be highly effective in complex language processing tasks,

including the field of information retrieval. The fundamental approach is to train these models

on large datasets for specific tasks in order to improve their effectivenes. Referred to as neural

rankers, these models are based in a neural network trained to learn suitable representations for

inputs and ranking functions using neural networks, rather than relying solely on matching scores

between queries and passages based on the presence of query terms within each passage. A base

functionaly of neural rankers is illustrated in Figure 3. The neural network used varies between

the different rankers and a range of deep learning models has been proposed [8, 9, 20], each

presenting a distinct set of neural network components to extract features utilized for ranking.



14

Figure 3: Neural ranker architecture. Given a query and N passages, the output score from a

neural network is used to rank.

Specifically in IR experiments, pretrained Transformer such as BERT [11] and T5 [40] have

been finetuned on hundreds of thousands of examples, leading to significant improvements [30,

37, 33, 28, 19, 66, 69, 23, 17, 32, 51, 22, 56, 72]. When queries and documents from a given

task closely resemble those in the finetuning data, a model is likely to perform better than

unsupervised models.

Nonetheless, deep learning methods for IR solutions depend heavily on the size of the avail-

able data used to finetune models, including Transformer based. Neural retrievers that are fine-

tuned on large datasets outperform statistical models by a significant margin. For instance, a

monoT5 [38] reranker trained with large quantities of labeled examples from MS MARCO [2] out-

performs the statistical model BM25 [45] in 15 out of 18 datasets of the BEIR benchmark [48, 47].

However, when the number of labeled examples is limited, the effectiveness of the model

decreases significantly. For example, a BERT reranker finetuned on a mere 10k query-relevant

passage pairs performs only slightly better than BM25 on the MS MARCO passage ranking

benchmark [38]. Increasing the size of the model [48] or pretraining it on IR-specific objectives [25,

18] can help to reduce the need for extensive finetuning data, but this comes at the cost of

increased computational resources.

Likewise, finetuning neural rankers using only categorical labels, such as “true“ or “false“

is directly tied to the need for large amounts of training data. This is because the limited

information supplied by these binary labels does not provide additional context or nuance to

the learning process. To illustrate, it would be challenging to teach a person to evaluate the

relevance of passages to queries using only the words “true“ or “false“ for each query-passage

pair. Providing natural language explanations for why a passage is relevant or not to a given

query would be a more efficient way to facilitate learning, rather than relying solely on binary

classification and trial-and-error.

In this research study, we introduce a novel method for training retrieval models that employs

natural language explanations as additional labels. This approach has several benefits, including

reducing the need for extensive training examples. By utilizing natural language explanations,
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we aim to bring the language benefits observed in other NLP tasks to the IR domain.

It is well-known that NLP advancements have had a positive impact on a wide range of

activities, and our proposed method is a step towards integrating these benefits into information

retrieval. Furthermore, the usage of language inputs to augment categorical datasets may hold

promise for various other tasks in future research.

Also, dataset size is often a limitation for applying AI solutions to a variety of different

tasks. However, our proposed augmentation method can help to mitigate this limitation by

enabling more tasks to be evaluated using neural models. Overall, we believe that our approach

holds significant potential for improving retrieval effectivenes while reducing the need for large

amounts of labeled data, which could have implications for a range of real-world applications.

To incorporate natural language, like explanations, as additional labels for training retrieval

models, we need to generate this information as it is usually not available in the datasets. This

can be a laborious and time-consuming process if done manually, which could be a potential

obstacle for many researchers. To overcome this issue, an automated process is required for

generating these explanations.

One way to generate these explanations is to use a few-shot LLM which can automatically

augment the training examples with explanations. This approach allows IR practitioners to

apply our method to other datasets without the need for manual annotation, thereby reducing

the time and effort required to generate augmented data. By automating the generation of

natural language explanations, we can enable the wider application of our method and promote

the development of more effective retrieval models.

Integrating language models that produce text can elevate the quality of information retrieval

tasks by generating explanations for ranked lists. However, this added capability might result in

longer processing times, potentially slowing down the generation of categorical labels. Thus, it is

vital to consider the trade-offs between the benefits of improved explanations and the potential

impact on computational efficiency and performance.

Moreover, commercially LLMs, like GPT-3.5 [39], are often proprietary, potentially limiting

methods due to the expenses involved in generating augmented datasets. Overcoming this limi-

tation requires recognizing the advantages of utilizing natural language processing produced by

open-source LLMs, which may be constrained by model size and consequently affect the quality

of generated explanations. Despite potential lower quality in text generation, data augmentation

remains beneficial for neural rankers, offering increased signal for improved comprehension and

reranking of passages in information retrieval applications.

1.1 Main Contributions

The main contribution of this study is to introduce a novel method to augment categorical

datasets with natural language explanations, thereby enhancing the effectiveness of retrieval

models in an automated manner. The experimental results clearly demonstrate the advantages

of incorporating language processing techniques for data augmentation in information retrieval
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research.

Notably, the study examines the relationship between data quantity and retrieval effective-

ness, showcasing how language augmentation can address data scarcity issues and enhance model

effectiveness. Additionally, a correlation is observed between the contributions of explanations

and various LLM sizes. There exists a direct link between the enhancement in effectiveness and

the quality of text automatically generated by these models for dataset augmentation.

While the method is flexible and applicable in various scenarios, it is crucial to acknowledge

its limitations concerning the explanations generated. We do not claim that our method renders

a retriever interpretable since we have not massively evaluated the accuracy of the generated ex-

planations. Our objective is distinct from building interpretable retrievers; instead, we illustrate

how explanations can enhance retrievers’ effectiveness.

In summary, the main contributions of this novel method are listed below and explained in

the next sections of this study,

1. A novel method for augmenting categorical datasets with natural language explanations,

which can be used to improve information retrieval effectiveness. The method has been

stressed over different data set sizes, prompts and models.

2. Large datasets generated from MSMARCO and augmented with explanations in regards of

each query-passage relevance relation. It has been done using different LLMs and datasets

sizes.

3. Improvements in neural rerankers effectivenes using a seq-to-seq strategy to finetune LLMs.

The results surpass the strong baseline used as target for our study which was trained using

categorical classification method.

4. Experiments to demonstrate the benefits of incorporating language processing techniques

into information retrieval research. From small to large datasets, the experiments compare

the neural ranker effectiveness with and without data augmented by text into categorical

datasets.

5. The datasets augmented with explanation and the source code used to generate the explana-

tions and apply this method has been public shared at https://github.com/unicamp-dl/

ExaRanker for future studies.

6. Acceptance in the 46th International ACM SIGIR 2023 Conference on Research and De-

velopment in Information Retrieval [1] as a short paper [15]. Two additional [14, 16] papers

related to this study have been published, aiming to disseminate our findings and allowing

future works to leverage our augmented dataset for new researches and studies.

Overall, this method aims to enhance the models generalization capability and increase

effectivenes across various IR datasets when evaluated in a zero-shot manner. It is also useful to

speed up the learning process even when there is a shortage of data available, making it possible
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to tackle problems in a more efficient manner. Besides the contributions related to the IR field,

the method can be extend in different areas and objectives beyond retrieving data.
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2 Related Work

In recent studies, it has been found that augmenting language models with the capabil-

ity to generate natural language rationales in a step-by-step manner can lead to a significant

improvement in their effectivenes on a variety of reasoning tasks, either through LLMs optimiza-

tion [42, 12, 27, 24] or exploring reasoning features [67, 71]. This involves the ability of the

language model to explain its reasoning process in a clear and structured way, making it easier

for humans to understand and evaluate its decision-making.

The results of these studies suggest that incorporating this feature into language models

can result in more accurate and effectiveness outcomes in problem-solving. By providing a step-

by-step explanation of its reasoning, a language model can provide greater transparency in its

decision process, which is crucial for tasks that require a high degree of accuracy and reliability.

The addition of natural language rationales to language models represents a promising av-

enue for improving the capabilities and effectivenes of these models, and could have significant

implications for a wide range of applications in fields such as healthcare, finance, and natural

language understanding.

Despite the effectiveness of induced explanations in improving model effectivenes, it should

be noted that the experiments conducted to evaluate their efficacy often involve models with

billions of parameters. While these large models are indeed powerful, they may not always be

practical for certain tasks, particularly those related to information retrieval.

For example, re-ranking 100 passages for a single query using a model with 175B param-

eters would require at least one minute on four A100 GPUs, which highlights the limitations

of such models in terms of speed and practicality. Therefore, the computational resources and

time required to run these models may be prohibitive for some applications, making them less

accessible or feasible in certain contexts.

There is a need to strike a balance between model effectivenes and practicality when con-

sidering the use of induced explanations in real-world applications. More research is needed to

explore alternative approaches that can achieve similar benefits with less computational over-

head, making them more suitable for use in a wider range of scenarios and contexts.

In information retrieval tasks, the datasets often lack the specific language or terminology

associated with the target label relevance. As a result, the potential benefits of language-based

models may not be fully utilized. Despite this limitation, a significant amount of research has

been devoted to developing techniques that can generate explanations to be integrated with

ranked lists of results, it may be focused on interpretability techniques [53, 63, 54, 13, 73] or

explanations for the ranked list [58, 49, 52, 64, 70]. These techniques provide a rationalization

in the context of information retrieval, thereby improving the interpretability of the results.

For example, the GenEx model [41] generates noun phrases such as “impacts on Medicare

tax“ for a given query-document pair as briefly presented in Figure 4. Additionally, snippet

generation can also be seen as a means of providing explanations for presenting certain results
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to the user [59, 61, 3, 6]. These methods enhance the overall effectivenes of information retrieval

systems by improving the interpretability of the results, which is crucial for user satisfaction

and trust. However it is limited to the result interpretability and not direct on the ranking

effectiveness.

Figure 4: GenEx model - base functionality. This model generates output text to explain the

relation between a query and a document.

By integrating explanation-generating techniques with ranked lists of results, information

retrieval systems can provide users with more transparent and understandable results. This not

only improves the overall user experience but also helps to bridge the gap between the language

of the dataset and the language of the user, thereby facilitating more efficient and effective search

queries.

While there have been several techniques developed to generate explanations for ranked lists

of results in the context of information retrieval [46, 41], these techniques do not primarily focus

on leveraging language models to support the finetuning process. Instead, their main goal is to

produce qualitative language outputs that can enhance the interpretability and explainability

of the results. However, generating high-quality language outputs can be a challenging task,

especially when dealing with small datasets that lack reliable rationales. In such cases, the

effectiveness of language-based models in supporting the finetuning process may be limited.

In our preliminary experiments, we observed that well-performing language models face

difficulties in IR tasks where the target output lacks quality language signals. These models

demonstrate efficient performance when processing text language, such as explanations, but may

struggle when only a small text signal is expected, as in the case of categorical classification

required by an IR problem.

Integrating language-based models into information retrieval tasks has the potential to en-

hance the quality of results by generating explanations for ranked lists of results. However,

incorporating these models may also introduce additional processing time for generating expla-

nations, which could potentially delay the production of categorical labels that are required

for information retrieval tasks. Therefore, it is important to weigh the benefits of integrating

language-based models for explanation generation against the possible drawbacks in terms of

computational resources and effectivenes.
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The focus of our work is to introduce a novel approach that utilizes LLMs to improve the

quality of results in a ranking task without additional processing time in the reranker model. To

achieve this, we draw upon existing techniques such as InPars [4, 26], Promptagator [10], and

UPR [50]. However, our approach differs in that it leverages LLMs to enrich the target labels

from training datasets with relevant information that pertains to the specific task at hand.

Essentially, our approach aims to enhance the existing labels instead of generating new ones or

scoring queries.

The InPars strategy uses a LLM to generated queries for a set of documents as illustrated

in Figure 5. After this generation, a neural ranker is trained using the top queries based on the

probabilistic score generated by the LLM. This method focus mainly in the dataset generation

and represent an important and inspiring strategy to our work as they relies on the LLM output

to finetune a neural ranker. However, InPars focus on improving the query quality and relevance

using the benefits of large language models capacity to generate text.

Figure 5: InPars model - method overview. The model uses synthetic queries from LLMs.

Similarly, the Promptagator focus on query generation by a LLM but using zero-shot and

few-shot prompts. The queries generated are combined in a synthetic dataset and used to fine

tune a neural ranker as presented in Figure 6. The method shows the benefits of combining

queries using different strategies and generate by a LLM to improve the ranker effectiveness.
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Figure 6: Promptagator model - method overview. This model uses different prompts to generate

queries from LLMs.

On the other hand, UPR (Unsupervised Passage Re-ranker) use the LLM to generate queries

for the list of passages being re-ranked. These synthetic queries are compared with the input

query from the user and the passages re-ranked based on the similarity score (log likelihood)

of the query generated by the LLM and the input query as shown in Figure 7. This method

take the benefits of LLM text generation and compares the most-likely queries associated and

generated by the model for each passage, using the LLM capacity to process natural language

in a effective manner.

Figure 7: UPR method overview. The model compares user query and LLMs queries generated

for all documents.

In summary, Figure 8 compares the previous works that inspired our method. Although

these methods use LLM advantages, they are mainly focused in the query itself either to generate

datasets or during the inference. Only GenEx tries to explain the results. Also, all methods are

tackling the IR problem as a classification although generating text using the LLMs.
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Figure 8: Comparison of related work purposes and methods. The last line shows ExaRanker

which is a seq-to-seq model.

Our method, dubbed as ExaRanker, is a mix of these techniques, being inspired by the

explanation in the results and dataset generation based on LLM outputs. By this combination,

we move the problem from a classification task to a text generation problem. Using more text

during the finetune is an opportunity to explore in a better way the benefits of NLP when using

the LLMs in the IR field.

Another related technique is to use a graded relevance score [68, 35], such as assigning a

continuous grade instead of a binary classification. However, in preliminary experiments, we have

observed that LLM models are more efficient in generating natural language text rather than

grading the relevance score between a query and a passage. Although we recognize the potential

value of these existing methods, we believe that our approach offers a distinct and effective way

to enhance ranking results. Moreover, we anticipate that future research may involve combining

these strategies to achieve even better effectivenes in ranking tasks.

Finally, our approach uses naturally-occurring co-citations in scientific corpora to enhance

document similarity models [36]. While our method may aid users in understanding a ranked

list of results better, our primary focus is on improving the retrieval model’s effectiveness, rather

than creating an interpretable retriever. The accuracy and correctness of the generated explana-

tions have not been evaluated, and hence, we cannot claim that our method renders a retriever

interpretable.
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3 Methodology

The proposed method is briefly outlined and illustrated in Figure 9. The approach begins

by utilizing an LLM to augment the desired dataset with explanations related to its categorical

label, which is either true or false. As already available in most information retrieval bench-

marks, the method requires a baseline dataset that is composed by pairs of query-passage and

its corresponding label, which is either relevant or not relevant.

Figure 9: Method overview - 3 stages summary.

Once the baseline dataset has been selected, the next step is to choose a suitable LLM

and an input prompt to bias the model to generate explanations for every query-passage sample

given its label. The LLM is then used to generate explanations and augment the original dataset

target. These augmented samples now form an augmented dataset which can be used to finetune

a ranking model.

The proposed method aims to enhance the ranking model’s by leveraging LLMs to generate

high-quality explanations that are relevant to the specific IR task at hand. This approach is

different from other methods that solely focus on providing users with an interpretable list of

results. While the proposed method may help users better understand a ranked list of results,

the primary objective is to improve the ranking model’s effectiveness.

These explanations could be manually generated through human annotations but it would be

cost and time prohibitive in datasets with thousands of samples. Using a LLM for this purpose,

the process is entirely automated as the model can use its capacity to process natural language

and generate the explanations efficiently, thereby saving time and cost.

In order to effectively utilize LLMs for generating explanations, it is important to refine the
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input prompt to convey to the model what constitutes an explanation and how it is expected to

be generated. To this end, we propose the prompt input depicted in Figure 10. After conducting

several trials, we formulated an input prompt that includes clear instructions and seven different

examples consisting of a query, passage, answer, and explanation, all structured in a way that

can be easily interpreted by the LLM.

Figure 10: Prompt used to generate explanations for a query-passage-label triple (presented in

Python’s f-string notation).

The eighth example, denoted as number 8, includes the query, passage, and label from the

baseline dataset, and the model generates an explanation for the provided answer. By using this

refined input prompt, we aim to optimize the LLM’s ability to generate high-quality explanations

that to be used in the downstream task.

The procedure of selecting the dataset samples, composing the prompt, sending it to the

LLM, and extracting the generated explanation will be performed iteratively for each sample

in the dataset. This process will continue until the entire dataset is processed, resulting in an

augmented dataset that includes explanations for each sample. This method step is called as

dataset augmentation and illustrated in Figure 11.
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Figure 11: Dataset augmentation detailed.

It is crucial to highlight that our prompt explicitly provides the expected answer (relevant or

not) to the LLM for each pair being evaluated. This approach is designed to direct the model’s

attention to the explanation instead of the answer. By doing so, we avoid three issues that may

arise during the augmentation process.

Firstly, providing the answer in the prompt reduces the likelihood of LLMs incorrectly

predict the answer, which could result in inaccurate explanations. Secondly, LLMs may generate

weak text explanations if they are unclear about how to classify the presented pair. This can

occur if the model’s token scores for the “final answer“ are low.

By providing the expected answer in the prompt, we help the model to better understand

the relationship between the query and the passage, thereby producing stronger explanations.

Figure 12 illustrate the scenario. The LLM is capable to generated explanations for the same

query-passage pair considering it relevant or not relevant. However, in the case it is not a correct

classification, i.e., different from the target, the explanation generated is weak, being ambiguous

and not clear.

A similar situation is observed when the model has to decided the proper classification

and then explain it. Comparing the third output presented in Figure 12 where the LLM did

not received the final answer classification against the second output, where it was previously in-

formed about the non-relevant relation, we see the second output with more accurate information

regarding the query and the passage being assessed.
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Figure 12: LLM explanations with correct, incorrect and without “Final Answer“ in the prompt.

Another important technique used in the prompt is to provide to the models a text sequence

as the final answer, i.e. “The passage is (or not) relevant to the question.“, instead of

a simple true/false label. By doing this, the models have more tokens related to the final

answer in a language context. This is important because the models are designed to process

language text and not just binary classifications. Additionally, by providing the models with

more information, we can reduce the chances of the models mistaking the answer and generating

a weak text explanation. Therefore, using plain text as the final answer is an important setup

to improve the overall quality of the text output.

Once the explanations are generated, the baseline dataset will be augmented with the as-

sociated explanation for each query-passage pair, in addition to its binary label. This results

in a new dataset where each sample contains a query, a passage, and a corresponding text ex-

planation, in addition to its original label. As a consequence, the finetuning task of the LLM

model changes from a binary classification task, where only the label is provided as the target,

to a sequence-to-sequence task, where the target is a text explanation. This change in the target

format is a crucial modification proposed in this study, as it allows the LLM model to learn and

use the high-quality text explanations during the finetuning process.

As result of augmenting the baseline dataset with generated explanations, the proposed

method provides more information to the model, which in turn accelerates the learning process.
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The additional tokens in the augmented dataset transform the training task from a simple classifi-

cation to a more complex sequence-to-sequence problem, thereby providing the model with more

context and signals to learn from. As demonstrated in a variety of reasoning tasks, incorporating

explanations into the model’s output generation can significantly improve its effectivenes.

This approach moves the problem of information retrieval towards the sequence-to-sequence

spectrum, where the models have previously been finetuned and optimized. Figure 13 illustrates

the differences between the traditional neural rankers finetuning methods versus the ExaRanker.

Our method enables the target model to be finetuned to produce the entire sequence and leverage

language processing to enhance the assessment of correlation between each query-passage pair in

the dataset. This strategy is expected to bring more benefits of LLM capability to process text

instead of being used as simple classifier for a binary target.

Figure 13: Finetune methods comparison: Neural Rankers vs ExaRanker. It highlights the

different strategy in regard to the target.

Figure 14 shows the details of the finetuning process. It is a sequence-to-sequence model

finetuned using the input/output templates specified below, as demonstrated using Python’s

f-string notation. The terms {query} and {passage} are the query-passage pair extracted from

the baseline dataset. The {label} is true if the passage is relevant to the query and false

otherwise. Finally, {explanation} is the one generated by the LLM as explained above.

Input: Is the question {query} answered by the {passage}? Give an explanation.
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Output: {label}. Explanation: {explanation}

Figure 14: ExaRanker finetuning method detailed.

Since the model is being trained through text generation, the risk of overfitting is greatly

reduced even when working with small datasets. The finetuned model is expected to be dynamic

as it learns the classification task rationale and not just adjusts its weights to classify the provided

dataset. Overfitting is a common problem when working with small categorical datasets and large

models as it can easily adapt the weights to memorize each training sequence’s classification,

leading to failure when presented with an unknown sample. Although our method still uses a

categorical dataset, it is now augmented with text and a sequence output.

In the inference phase, the finetuned model can be used to evaluate and rank a set of

documents based on their relevance to a given query. While the finetuned model is capable of

generating explanations, only the first token, i.e., the label token, is required. As demonstrated

in Figure 15, our method can use only one token to reranking the documents which does not add

any additional cost or time where compared to the traditional neural rerankers methods.

Figure 15: Inference time comparison: Neural Rankers vs ExaRanker in regard to inference time.
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The model can be evaluated on the desired passage ranking task using the same input as

designed before, and, as a consequence, it generates the same output pattern1. The inference

strategy is detailed in Figure 16.

Figure 16: ExaRanker inference strategy detailed including the score calculation to rank the

passages.

As presented, the probability of the first output token is used as the relevance score s for the

query-passage pair which is calculated as follows. The unitary offset is used to set the passages

with low probabilities of true or false classification with a score close to 1. However, the

passages with high probability will be close to score 2 when it is true, and score 0 when its

false.

s =



















1 + p0, if t0 = true

1− p0, if t0 = false

0, otherwise

where t0 is the token generated in the first decoding step and p0 is the probability assigned by

the model to that token, i.e., the probability from the softmax after the logits.

The effectiveness of the reranker can be measured in different ways, but in general, the

arrangement of a list of documents in the correct order of relevance is the objective, placing

the most relevant documents at the top of the list and the least relevant ones at the bottom.

This means that a good reranker should be able to distinguish between highly relevant and less

relevant documents and order them accordingly.

1In our experiments the model always generates an output that matches the target template.
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4 Experimental Setup

As previously presented in Figure 9, the experiment is divided into 3 stages: Dataset aug-

mentation, finetuning and Inference. All details and parameters used in each stage are described

in this section and visual presented for each phase in Figure 17.

Figure 17: Experimental setup - ExaRanker and monoT5 (comparison model).

4.1 Dataset Augmentation

To begin our experiment, we first augment our dataset by selecting 300,000 query-relevant

passage pairs and 300,000 query-non-relevant passage pairs at random from the training set of

the MS MARCO passage ranking dataset. In order to generate explanations for these 600k

pairs, we utilize the GPT-3.5 text-davinci-0022, which allows us to infer explanations using

the few-shot prompt described in Section 3.

Given the large volume of text involved, manually generating these explanations would be

prohibitively time-consuming and costly. We employ a greedy decoding approach and limit the

output to a maximum of 256 tokens. The few-shot prompt used in our experiment consists of 7

examples that were carefully selected from the MS MARCO training dataset. On average, this

prompt has a length of 1400 tokens, which includes the 256 tokens needed for generating the

explanation.

It is worth noting that as of March 2023, generating an explanation for each query-passage-

2beta.openai.com
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label triple using the OpenAI API costs 0.028 USD, which total amounts to 16,800 USD. Once

the explanations were generated, we augmented the original dataset by adding the explanation

after the categorical label for each sample, thus creating the proposed input/output template.

Due to the high cost associate of using commercial LLMs to generate explanations, another

2 datasets were generated using open-source models. For these experiments, a smaller dataset

consisting of 15k query-relevant and 15k query-non-relevant passage pairs from the same samples

randomly chosen previously have been used.

After that, two open-source LLMs have been used for generating explanations and augment-

ing the dataset: llama-2-7B-chat-hf and llama-2-70b-chat-hf [60], using the same method and

prompt as done with the GPT-3.5. In addition to the dataset with 30k samples, we created a

larger version containing 100k samples. This dataset is composed of 50k pairs of query-passage

relevant and another 50k non-relevant pairs. It is important to note that these models have not

been previously finetuned on the IR task being evaluated in this study.

In total, five versions of augmented datasets with explanations were generated for this ex-

periment, as detailed in Table 1.

LLM model Relevant

Samples

Total

Samples

GPT-3.5 300k 600k

Llama-2-7B 15k 30k

Llama-2-7B 50k 100k

Llama-2-70B 15k 30k

Llama-2-70B 50k 100k

Table 1: Augmented datasets generated with explanations.

4.2 finetuning

The subsequent stage in our experiment involves finetuning a monoT5-base model, which

was used as the initial starting point of our study. Although any sequence-to-sequence model

could be used, we have selected monoT5 because it is currently close to the state-of-the-art in

various NLP-related tasks.

During the finetuning process, we used the AdamW optimizer [31] for 30 epochs with a

learning rate set of 3e − 5, weight decay of 0.01, and a batch size of 128 examples, which

consisted 64 positives and 64 negatives. The maximum number of input and output tokens were

each restricted to 512. During both training and inference, any sequences exceeding these limits

were truncated. Figure 18 provides examples of input and output generated by the ExaRanker

model after finetuning. Each model has been finetuned over different attempts, at least three

different times, in order to have a more realistic scenario, mitigating the risk of optimal finetuned

models in a random manner.
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Figure 18: Illustration of input and generated outputs of a relevant (green) and non-relevant

(red) query-passage pair.

To provide a basis of comparison, we also finetuned a monoT5-base model using the same

dataset and hyperparameters as ExaRanker, but without incorporating any explanations into the

target text. The input/output template used for this model was slightly modified, as the phrase

“Give an explanation.“ was removed from the input, and the explanation tag was removed from

the output. The resulting model will be referred to as the baseline model, and its effectiveness

will be compared against ExaRanker models in Section 5. Figure 17 presented before provides a

better visualization of the experimental setup, side by side, comparing the monoT5-base model

and the ExaRanker.

4.3 Inference

To evaluate the effectiveness of our reranker, we adopted a widely used metric called the

Normalized Discounted Cumulative Gain (nDCG) score. The nDCG score measures the quality of

the reranked list by taking into account both the relevance of the documents and their position

in the list. In the results presented in the following sections, we measured the quality of the

reranked list using the nDCG score, this allowed us to assess the effectiveness of our method in

improving the relevance ranking of documents in IR tasks.

The nDCG is calculated based on the Discounted Cumulative Gain (DCG) metric, which

takes into account both the relevance of the recommended documents and their position in the

list. Specifically, the DCG for a query “q“ and a ranked list “R“ of documents “d“ is calculated

as follows:

DCG(R, q) =
∑ 2rel(q,d) − 1

log2(i+ 1)

Then the nDCG is calculated dividing the DCG by the ideal DCG, which is the DCG for

the perfect recommendation order for the documents lists.
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nDCG(R, q) =
DCG(R, q)

IDCG(R, q)
,

where IDCG represents the DCG for a perfect ordered list.

The nDCG value ranges from 0 to 1, with 1 indicating the perfect recommendation order.

The metric can be calculated for different sets of documents, such as the first top 10 documents or

the first 1000 documents. In our method evaluation, we focus on the nDCG@10, which evaluates

the recommendation order for the first 10 documents.

In order to evaluate the benefits of explanations in a realistic scenario where training data is

not available, we conduct a zero-shot evaluation on six datasets from the BEIR benchmark [57],

namely Robust04 [65], TREC-COVID [44], DBPedia [21], FiQA [34], TREC-NEWS [55], and

NFCorpus [5]. We have used TREC-DL 2020 [7] as a validation set to select the best checkpoint

for the model evaluation in the different experiments. As described before, at least three different

attempts were made for each experiment, with this study reporting the average results obtained.

This approach mitigate the risk of reporting unrealistic results due to suboptimal performance

during the finetuning phase.

We calculate the relevance score s for each query-passage pair based on the probability

score generated by the model in the label token (the first token from the output). Using this

relevance score, we order the passages and calculate the nDCG@10 score for the ranked list as

the effectivenes metric evaluated in all datasets.

During the inference phase, we have set a limit on the output of the ExaRanker model. Only

the label for the query-passage pair (i.e., the first token) is generated, and the full explanation

text is omitted to save processing time. This is because the model was trained with a causal

mask, meaning that only the tokens generated so far influence the prediction of the next token.

Therefore, the relevance scores calculated would be the same, regardless of whether the

model generated an explanation. It means ExaRanker and the monoT5-base model have the

same processing time, however, it is still possible to generate explanations from ExaRanker

by decoding more tokens until the termination token (e.g., <EOS>) is generated. We have not

evaluated the quality of the explanation generated as our focus was on improving the effectiveness

of the retrieval model rather than building an interpretable retriever.
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5 Results

The main results are presented in Table 2. As a baseline for comparison, we provide the

results of the BM25 algorithm in the first two rows of the table. These results are obtained using

the Pyserini toolkit [29] where the “flat” index concatenates the document titles and contents into

a single field, while the “multifield” index stores them as separate fields. The BM25 algorithm is

a statistical retrieval function that uses lexical matching of words between two texts to provide

a similarity score. It can be used to rank a set of documents given a query using the score

calculated by the BM25. This baseline does not employ any neural model and is purely based

on statistical methods.

In the third row, we present a monoT5-base model that was finetuned for one epoch on 400k

positive query-passage pairs from the MS MARCO dataset.3 This model is used as a baseline

for comparison with the rerankers reported in this work, which rerank 1000 documents retrieved

from BM25’s “flat“ indexes.

Our analysis focuses on the number of positive query-passage pairs that require manual

annotation, as this is a labor-intensive task when developing a search engine. It involves “experts“

in the domain to read and evaluate each query-passage pair to determine if the passage is relevant

to the query. In contrast, negative query-passage pairs can be easily obtained through automatic

selection using a retriever once the queries have been collected. This means that we do not need to

have experts evaluate them manually. However, even for negative pairs, we still need to generate

explanations in our method. The cost associated with generating explanations for negative pairs

is likely to decline in the future as open-source LLMs become more widely available.

The fourth row in our results table showcases the outcomes obtained after finetuning the

monoT5-base model using a selected dataset of 600,000 samples. Out of these, 300,000 are

relevant pairs of query-passage that serve as our metric for measuring dataset size and cost. The

fifth row displays the results after finetuning ExaRanker, a monoT5-base model, on the same

dataset using explanations as augmentation. The hyperparameters used to train both models

were kept the same, and we selected the best checkpoint as explained in Section 4 and reporting

the average results of the attempts done.

The evaluation results demonstrate that the ExaRanker model surpasses the model without

explanations in almost all datasets. The zero-shot evaluation shows an average improvement of

1.0 nDCG@10 points when compared to the model without explanations. The finetuned models

exhibit much higher nDCG@10 scores in comparison to the BM25 baseline.

Additionally, the ExaRanker model outperforms the monoT5-400k model by an average of

0.6 nDCG@10 points. This baseline is the monoT5-base model, which was trained over the entire

MS MARCO dataset, consisting of 400k relevant pairs. In contrast, our model is trained on a

dataset with 300k relevant pairs but still achieves superior performance.

3https://huggingface.co/castorini/monot5-base-msmarco-10k
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Table 2: Results (nDCG@10) and average zero-shot (all except DL 20). The column “Ft Pos.” is

the number of positive training examples on which the model was finetuned. In BM25 multifield,

document titles are separated from content.

Model Ft Pos. DL 20 Robust Covid Dbp FiQA News NFC Avg ZS

BM25 flat - 0.478 0.407 0.594 0.318 0.236 0.395 0.321 0.379

BM25 multifield - - 0.407 0.656 0.313 0.236 0.398 0.325 0.389

monoT5 400k 0.652 0.536 0.777 0.419 0.413 0.447 0.357 0.491

monoT5 300k 0.662 0.532 0.780 0.412 0.403 0.446 0.350 0.487

ExaRanker 300k 0.682 0.558 0.784 0.427 0.416 0.451 0.349 0.497

The results of our study clearly demonstrate the advantages of using explanations as a source

of additional data during the training phase. We observed that by incorporating explanations,

the effectiveness of the ExaRanker model improved significantly across all 7 datasets. This

improvement is reflected in the nDCG@10 scores, which increased in the zero-shot evaluation.

Therefore, we can conclude that the use of explanations as a form of data augmentation is

highly effective in providing more signal to the model during the finetuning process, making it

more efficient in terms of the amount of data required to achieve high effectiveness. This is a

promising result that can have important implications for the development of more effective and

efficient search engines.

As a means to gain a deeper understanding of the benefits of using explanations during the

finetuning process, we conducted a series of experiments with smaller datasets of 150k, 100k,

50k, 15k, 10k, 5k and 2.5k relevant pairs of query-passage. In each of these experiments, the

datasets contained an equal number of positive and negative query-passage pairs, resulting in the

smallest dataset comprising 5k samples and the largest reaching 300k. Our results presented on

Table 3, show that the ExaRanker model consistently outperforms the model that was finetuned

without explanations.

Specifically, when finetuning on a dataset of 150k positive examples, the ExaRanker model

performed 1.1 points better than the monoT5 model. This improvement increased to 1.4 points

when finetuning on 50k examples and to 2.6 points when finetuning on only 5k positive examples.

These results clearly demonstrate the efficacy of using explanations to provide additional signal

and improve the efficiency during the finetuning process. The use of explanations allows the

model to succeed with much less training data.
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Table 3: Results (nDCG@10) and average zero-shot (all except DL 20) using different datasets

size. The column “Ft Pos.” is the number of positive training examples on which the model was

finetuned. In BM25 multifield, document titles are separated from content.

Model Ft Pos. DL 20 Robust Covid Dbp FiQA News NFC Avg ZS

monoT5 150k 0.663 0.537 0.790 0.395 0.396 0.443 0.349 0.485

ExaRanker 150k 0.684 0.559 0.781 0.426 0.413 0.447 0.348 0.496

monoT5 100k 0.658 0.528 0.774 0.400 0.396 0.434 0.350 0.480

ExaRanker 100k 0.677 0.552 0.776 0.419 0.412 0.440 0.350 0.492

monoT5 50k 0.653 0.534 0.757 0.384 0.396 0.426 0.350 0.475

ExaRanker 50k 0.673 0.540 0.778 0.423 0.413 0.431 0.349 0.489

monoT5 15k 0.656 0.523 0.746 0.392 0.382 0.409 0.344 0.466

ExaRanker 15k 0.683 0.531 0.752 0.403 0.408 0.415 0.352 0.477

monoT5 10k 0.643 0.510 0.749 0.379 0.374 0.426 0.341 0.463

ExaRanker 10k 0.667 0.527 0.752 0.409 0.393 0.418 0.347 0.474

monoT5 5k 0.625 0.488 0.693 0.364 0.337 0.417 0.328 0.438

ExaRanker 5k 0.665 0.505 0.750 0.389 0.380 0.414 0.345 0.464

monoT5 2.5k 0.611 0.486 0.666 0.334 0.328 0.370 0.325 0.418

ExaRanker 2.5k 0.650 0.496 0.686 0.393 0.306 0.398 0.335 0.436

The findings of our study are visually presented in Figure 19, which clearly shows that

as the size of the dataset decreases, the benefits of using explanations tend to increase. The

results indicate that when comparing the effectiveness of the monoT5 model finetuned on 50k

positive pairs with ExaRanker finetuned on 10k positive pairs, the average scores are quite similar,

even though ExaRanker has been trained with only one-fifth of the data (4x less data). This

highlights the potential of data augmentation through explanations, which effectively distills

knowledge from LLMs and reduces the reliance on massive datasets to achieve good effectiveness

in information retrieval tasks.
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Figure 19: Average zero-shot results on 6 datasets of the BEIR benchmark. monoT5-400k is

finetuned on the 400k relevant query-passage pairs from MS MARCO without explanations.

Note the log scale in horizontal axis.

5.1 LLMs comparisons

The outcomes presented so far are not based on open-source LLM which leads to a cost

constraint in our method. In order to address this problem, the experiment has been done

using open-source LLMs to generated explanation in two different dataset sizes (as described in

Table 1) which results are presented in the Table 4. This version of our model is dubbed as

ExaRanker-Open.

Table 4: Results (nDCG@10) of open-source LLMs. Average zero-shot (all except DL 20). The

column “Ft Pos.” is the number of positive training examples on which the model was finetuned.

Model LLM Ft Pos. DL 20 Robust Covid Dbp FiQA News NFC Avg ZS

monoT5 n/a 15k 0.656 0.523 0.746 0.392 0.382 0.409 0.344 0.466

ExaRanker GPT-3.5 15k 0.683 0.531 0.752 0.403 0.408 0.415 0.352 0.477

ExaRanker-Open Llama-2-70B 15k 0.653 0.551 0.730 0.398 0.393 0.425 0.341 0.473

ExaRanker-Open Llama-2-7B 15k 0.662 0.523 0.737 0.407 0.392 0.421 0.344 0.471

monoT5 n/a 50k 0.653 0.534 0.757 0.384 0.396 0.426 0.350 0.475

ExaRanker GPT-3.5 50k 0.673 0.540 0.778 0.423 0.413 0.431 0.349 0.489

ExaRanker-Open Llama-2-70B 50k 0.670 0.563 0.757 0.414 0.403 0.440 0.345 0.487

ExaRanker-Open Llama-2-7B 50k 0.670 0.529 0.741 0.419 0.398 0.439 0.349 0.479

For each block, the initial row represents the T5-base model finetuned without data aug-

mentation, solely relying on categorical labels. The second row reflects the earlier results of

ExaRanker using GPT-3.5. The last two rows present the outcomes of this study, employing

Llama-2-70B and Llama-2-7B, respectively.

As evident, the zero-shot effectiveness is enhanced when employing a larger LLM model.

Illustrated in Figure 20, the performance of Llama-2-7B surpasses that of the monoT5 with-
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out explanations in both evaluated dataset sizes, 15k and 50k relevant pairs of query-passage.

However, Llama-2-70B outperforms Llama-2-7B, specially when using the larger dataset with

50k query-relevant passage pairs. Ultimately, ExaRanker, using GPT-3.5, remains the top-

performing model.

These results strongly suggest the quality of data augmentation produced by each Llama

model size versus GPT-3.5. As expected, larger models exhibit superior natural language pro-

cessing capabilities, leading to a more substantial extraction of signals that can be effectively

utilized during the finetuning phase.

Although we can question how much these LLMS are actually zero-shot due to having been

trained on large scale data from different sources of information, the results are still demonstrat-

ing that the explanations leads to better results independently of the LLM size used for data

augmentation. These results reinforce the fact that the text augmentation is an effective strategy

to better finetune neural rerankers as the models have more signal and data to properly retrieve

information and rerank the relevant passages to the queries.

Figure 20: Average zero-shot results on 6 datasets of the BEIR benchmark with respect to

training dataset size, comparing the 4 models evaluated.

5.2 Qualitative Analysis

Table 5 and Table 6 present some outputs generated by ExaRanker and ExaRanker-Open

using either commercial and open-source LLMs augmented datasets. These outputs are gener-

ated from TREC-DL 2020 dataset samples, providing a qualitative comparison of the model’s

predictions.

Overall, the model generates reasonable explanations that help to improve understanding

of the relationship between the query and the passage. The correct and incorrect explanations

passages generated by the models are highlighted in red for a better assessment and visualization

about the output quality got from the ExaRanker models.
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For instance, in the second sample in Table 5, the models correctly predict the non-relevance

of the passage even though it mentions specific terms from the query, such as “early pregnancy“.

This suggests that the models were able to extract important information from the query and

use it to make relevant predictions.

However, as shown in the primary example in Table 6, the models may struggle with more

complex relationships, such as those between electromagnetic and radio waves which is a type

of electromagnetic wave. This highlights a potential limitation of the approach, as the model’s

effectiveness may be limited by the complexity of the relationships it is able to identify. It also

indicates the models does not carry any type of memory or reasoning in this IR application,

instead, they seem to be able to use only the information available at that samples, i.e. limited

to the passage and carried context.

Nevertheless, these results provide strong evidence that explanations can be used to improve

the effectiveness of large language models on information retrieval tasks. By providing additional

information during the training process, explanations can help the language models by reducing

the amount of training data needed to achieve high levels of effectiveness. However, the models

do not necessarily rely on reasoning to arrive at an answer. Instead, the explanations are used to

expedite the learning process, with the most relevant score for ranking the relationship between

sequences being concentrated in the label score, specifically the true or false label indicating the

relevance relation, rather than in the entire explanation generated.

From a reason perspective, it is important to note that datasets generated using larger

models provides more comprehensive explanations. Comparing the outputs generated by the

ExaRanker trained using the GPT-3.5 in the augmented dataset versus the one using Llama, it

is notably the difference in the explanation quality. While the GPT-3.5 leads to a concise and

clear understand of relevance relation between query and passage, the Llama tends to hallucinate

and create unreal explanations which leads to wrong relevance classification.

It can be easily noted the primary example in Table 5. Although predicting the relevance

relation properly, the Llama-2-7B rewrite all the text again, including irrelevant information

for the query such as “according to Bureau of Labor statistics“. In a similar problem, the

Llama-2-70B is much more verbose and repeats the term “relevant to the question“ twice in the

explanation. On the other hand, GPT-3.5 is direct and concise, highlighting only the key terms

in the explanation.

The same situation can be observed in a wrong prediction. For instance, the second example

in Table 6, we see the Llama models generating more text and repeating the term “inter-sheet“

which is not a key-word in the explanation. Also, there is a mistake in the smaller LLama model

(Llama-2-7B), which has failed to predict the relation properly although providing a very similar

explanation as the Llama-2-70B. In this case, the GPT-3.5 has provided a small explanation but

failed in the relevance relation as well.
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Input Is the question: “average salary for dental hygienist in

nebraska“ answered by the document: “Dental Hygienist

Salaries by Area. According to the Bureau of Labor

Statistics, Dental Hygienists in the state of Nebraska

can expect to earn an average of $65,236 annually or

$31.36 per hour.“? Give an explanation.

Output

GPT-3.5

true. Explanation: The question is about average salary for

dental hygienist in nebraska. The passage describes the aver-

age salary for dental hygienist in Nebraska.

Output

Llama-2-7B

true. Explanation: The question is about the average salary

for dental hygienist in Nebraska. The passage provides infor-

mation on the average salary for dental hygienists in Nebraska

according to the Bureau of Labor Statistics.

Output

Llama-2-70B

true. Explanation: The question is about the average salary

for a dental hygienist in Nebraska. The passage provides in-

formation on the average salary for dental hygienists in Ne-

braska, which is relevant to the question. Therefore, the pas-

sage is relevant to the question.

Input Is the question: “can fever cause miscarriage early preg-

nancy¿‘ answered by the document: “Pregnancy Early

symptoms of pregnancy include a missed period,

morning sickness, breast swelling, fatigue, and more.

Chickenpox (varicella) Chickenpox is an illness that

causes a red, itchy rash, fever, headache, sore throat,

and body aches“? Give an explanation.

Output

GPT-3.5

false. Explanation: The question is about fever causing mis-

carriage early pregnancy. The passage is about chickenpox

causing fever.

Output

Llama-2-7B

false. Explanation: The question is about whether fever can

cause miscarriage early in pregnancy. The passage is about

early symptoms of pregnancy, including chickenpox, which is

a different illness.

Output

Llama-2-70B

false. Explanation: The question is about whether fever can

cause miscarriage early in pregnancy. The passage mentions

chickenpox, which is an illness that causes fever, but it does

not address the question of whether fever can cause miscar-

riage early in pregnancy. Therefore, the passage is not rele-

vant to the question.

Relevant

Non-

relevant

Table 5: Outputs generated by the ExaRanker model - mostly correct prediction.
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Input Is the question: “what medium do radio waves travel

through“ answered by the document: “An electromag-

netic wave (this includes light) does not require

a physical medium - it can travel through empty

space.“? Give an explanation.

Output

GPT-3.5

false. Explanation: The question is about the medium of

radio waves. The passage is about electromagnetic waves.

Output

Llama-2-7B

false. Explanation: The question is about the medium

through which radio waves travel. The passage is about elec-

tromagnetic waves and their ability to travel through empty

space.

Output

Llama-2-70B

false. Explanation: The question is about the medium

through which radio waves travel. The passage does not men-

tion radio waves or their medium, but rather discusses elec-

tromagnetic waves and their ability to travel through empty

space. Therefore, the passage is not relevant to the question.

Input Is the question: “do google docs auto save“ answered by

the document: “Inter-sheet formulas in Google Docs are

similar to those used in Microsoft Excel. Using this

ability, you can post a value automatically in a cell on

one tab that is calculate or posted in a cell on another

tab.“? Give an explanation.

Output

GPT-3.5

true. Explanation: The question is about google docs auto

save. The passage describes how google docs auto save.

Output

Llama-2-7B

true. Explanation: The question is about Google Docs auto

save. The passage explains how Google Docs uses inter-sheet

formulas to post values automatically in cells on one tab,

which is relevant to the question.

Output

Llama-2-70B

false. Explanation: The question is about auto-save in Google

Docs, but the passage only discusses inter-sheet formulas in

Google Docs and their similarity to Microsoft Excel. It does

not provide any information about auto-save or the ability

to save data. Therefore, the passage is not relevant to the

question.

Relevant

Non-

relevant

Table 6: Outputs generated by the ExaRanker model - mostly incorrect prediction (except by

Llama-2-70b at non-relevant query-passage case).
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5.3 Ablation Experiments

We conducted two supplementary experiments to gain a better understanding of the impact

of incorporating explanations as training objectives. In the first experiment, we finetuned an-

other ExaRanker model for 30 epochs, using the same hyperparameters, but with the label and

explanation generation order inverted. We expected this approach to lead to better results, as

the model would first elaborate on the relationship between the query and the passage before

predicting a label.

However, as shown in Table 7, the nDCG@10 score decreased by 9.9 points compared to the

original method of generating a relevance label followed by an explanation. This outcome may

be counterintuitive and contradicts previous findings in chain-of-thought researches [? ].

This result is likely due to the difficulty of consolidating the probabilities of multiple gen-

erated tokens into a single ranking score. We explored several approaches, such as using the

average token probabilities of the entire sequence or only the probability of the final token (true

or false), but in all cases, the nDCG@10 score was lower than the approach described in Sec-

tion 3. Also, it would impact in the processing time of the reranker as the entire explanation

would need to be generated to rank the documents which is time consuming and would make it

impossible to use this type of solution in the IR field.

Output template nDCG@10

{label}. Explanation: {explanation} 0.683

Explanation: {explanation}. {label}. 0.584

Table 7: Ablation of the output template. Results on TREC-DL 2020 with models finetuned on

15k pos. + 15k neg. samples.

The second ablation study conducted was done to investigate if explanations can improve

a model that has already been finetuned on a large ranking dataset. For this purpose, we fur-

ther finetuned a monoT5-base model, which had already been trained on 400k positive pairs

from MS MARCO, on 15k positive and 15k negative examples with explanations. The results

in Table 8 indicate a minimal difference of 0.2 nDCG@10 points on average over the 7 datasets.

As previously discussed, the benefits of explanations appear to diminish when a large train-

ing dataset is available. This experiment also demonstrates that finetuning with explanations

does not undermine the effectiveness of a ranker while providing it with the ability to generate

explanations.
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Model DL 20 Robust Covid Dbp FiQA News NFC Avg

monoT5 (ft on 400k pos) 0.652 0.536 0.777 0.419 0.413 0.447 0.357 0.514

ExaRanker (from monoT5) 0.701 0.528 0.756 0.398 0.406 0.442 0.352 0.512

Table 8: Results on finetuning ExaRanker from a monoT5-base model finetuned on 400k positive

examples from MS MARCO.
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6 Conclusion

This master’s thesis has explored the application of large language models in information

retrieval. This master thesis has explored the concept of integrating natural language explana-

tions as supplemental labels within neural rankers to improve their performance across different

datasets.

Through experimentation involving various language models, dataset sizes, and training

methods, the study introduced ExaRanker, a novel approach to IR that utilizes explanations

generated by LLMs to enhance ranking models. ExaRanker demonstrated superiority over tra-

ditional methods in multiple experiments, showcasing its potential to enhance search engine

performance.

The study represents a shift in traditional methodologies by seamlessly combining the ca-

pabilities of LLMs with the interpretability of explanations. By enriching datasets with contex-

tual explanations, ExaRanker improves the training process, addressing challenges such as data

scarcity and linguistic nuances.

The proposed data augmentation technique automates explanation generation, reducing the

need for manual annotation while enhancing the richness of training data. ExaRanker con-

sistently outperformed baseline models across diverse datasets and evaluation metrics without

sacrificing speed, making it suitable for real-world applications.

Notably, experiments with smaller datasets underscored ExaRanker’s efficiency in utilizing

limited training data, highlighting the effectiveness of explanations as a form of augmentation

during the finetuning process of neural rankers. Additionally, comparisons of different LLMs

emphasized the importance of model size in capturing language patterns, while confirming the

consistent efficacy of explanations across different LLM sizes.

The thesis contributes to IR by demonstrating the integration of natural language explana-

tions into neural rankers and paving the way for its application in diverse domains. By enhancing

retrieval models through automated explanation augmentation, the study improves effectiveness

while reducing data requirements, ultimately leading to more efficient search engines. It advances

our understanding of utilizing language processing techniques for IR challenges while emphasizes

the significance of incorporating natural language explanations in the training process to improve

model generalization and effectiveness across different datasets.

Beyond the direct contributions to the IR field, the proposed methodology holds promise for

extension and application in diverse areas and objectives beyond data retrieval. Further research

could explore additional strategies for optimizing the use of explanations in IR tasks, as well as

investigate the scalability and applicability of ExaRanker in real-world search scenarios.

6.1 Future Work

Some paths emerge from of our study with ExaRanker and LLMs application in the IR field.

These avenues offer a continued exploration of text generation and its benefits to expand the
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applications of ExaRanker as briefly discussed in this section.

One avenue for future exploration involves extending the application of ExaRanker to dif-

ferent domains and applications. By adapting and finetuning the methodology to suit diverse

contexts such as document classification, sentiment analysis, or recommendation systems, we can

unlock new possibilities for leveraging explanations in various real-world scenarios. For exam-

ple, the method could find application in decision-making processes across industries like retail,

healthcare, or finance, offering valuable insights and augmenting human judgment in critical

areas such as product recommendation, medical diagnosis, or financial risk assessment.

Another direction for future research lies in exploring the ethical implications and potential

applications of ExaRanker in sensitive areas. Given that the method generates explanations that

elucidate the underlying rationale behind decision-making processes, there arises an opportunity

to investigate its use in contexts such as social decisions, legal judgments, or policy formulation.

By addressing ethical considerations and ensuring transparency and accountability in decision-

making, ExaRanker could contribute to enhancing fairness, equity, and accountability in high-

stakes decision-making contexts. Although a final human decision would be done, the method

proposed by our study could explain and rationalize any recommend decision made by an AI

system or integrated application.

Furthermore, exploring the listwise application of ExaRanker presents an interesting avenue

for future investigation. In this approach, a top-N list of ranked documents serves as input,

and the explanations generated by the model are utilized to inform decision-making and refine

the ranking order. By leveraging the rich contextual information encoded in the explanations,

ExaRanker could facilitate more nuanced and informed decision-making processes, particularly

in scenarios where document ranking is crucial, such as content recommendation, search engine

result ranking, or information triage in large-scale document repositories. It also could improve

the performance when the list of documents is limited as the ExaRanker method showcase good

results even with data scarcity scenario.
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