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ABSTRACT 
Action planning and decision-making in the sugarcane management chain depend on 
yield estimates, which, in turn, vary with the soil. This study aimed to describe an 
applicable method of classifying sugarcane productivity into three categories, based on 
soil properties (medium, low, and high), determining which is most associated with 
biomass production. To this end, we applied the machine learning methods Naïve Bayes, 
Decision Trees, and Random Forest, as they proved to be useful tools for faster and more 
accurate results. Our results indicate that Random Forest is the most suitable for 
classifying all yield categories, and Naïve Bayes had good results for classification into 
“medium” and “low” and potential for solving multiclass problems in agriculture. Organic 
matter was the property most closely related to sugarcane biomass yield by the Random 
Forest and Decision Trees algorithms. The methods described can be used to obtain 
subsidies for sugarcane chain management, contributing to more sustainable decisions. 

 
 
INTRODUCTION 

Brazil is the largest sugarcane producer worldwide. 
This crop is important for the economy, which has led to the 
search for scientific and technological advances, including 
productivity and fertilization estimates. Early estimates allow 
saving time, work, and resources, serving as a subsidy for 
decision-making public policies (Everingham et al., 2016). 

Several methods have been used to estimate 
sugarcane yield. However, productivity has not been 
classified based on soil fertility properties. Furthermore, 
knowing which soil properties are most closely related to 
sugarcane biomass allows for adequate fertilization of soils, 
preserving them for agricultural purposes. Organic 
fertilizers provide greater environmental control and 
relevant savings in sugarcane fertilization, contributing to 
sustainability (Xu et al., 2021). 

In this sense, Machine Learning techniques have 
been used to find correlations and connect information or 
patterns between attributes that make up a data network 

(Liakos et al., 2018). Among the techniques applied to 
agricultural processes, the tools Decision Trees, Random 
Forest, and Naïve Bayes stand out because they are based 
on input attributes (independent variables), describing 
interactions with a target attribute. 

Decision Trees are one of the most common and 
powerful data structures in Computer Science because they 
are easy to understand and interpret (Rajeswari & 
Suthendran, 2019). Random Forest is one of the most 
explored methods for crop yield prediction (van 
Klompenburg et al., 2020) to model and correlates it to soil 
fertility parameters in sugarcane (Charoen-Ung & 
Mittrapiyanuruk, 2019; Kouadio et al., 2018). Finally, the 
Naïve Bayes is an algorithm capable of performing 
multiclass classification, through a linear independence 
analysis of factors influencing dependent variables (Drury 
et al., 2017; Pham & Brabyn, 2017).  

Given their potential to provide subsidies to the 
sugarcane production chain, this research had two objectives: 
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1) to describe the method that can be applied for sugarcane 
yield classification in three categories (medium, low, and 
high) based on soil properties; 2) determine the soil fertility 
property mainly associated with biomass production. 

 
MATERIAL AND METHODS 

Study area 

The field study was carried out between July 2019 
and June 2020 in the city of Campinas, São Paulo State, 
Brazil. The experiment had a total area of three hundred and 
twenty square meters (320 m2), with the geographical 
coordinates being 22°49'12"S, 47°03'41"W, 625-m altitude 
at the central point. 

According to the USDA soil classification, the soil 
of the experimental area corresponds to a clayey Oxisol with 
a grain size distribution of 570, 250, and 180 g kg-1 of clay, 
sand, and silt, respectively. To eliminate weeds, the first soil 
layer was mixed to generate a stable and aerated layer, and 
a mower was used for root fixation. Then, two operations 
were carried out with a 0.66 m diameter disc plow. 

In this study, 400 sugarcane plants were grown in 
rows spaced 1.50m apart and at 0.75m in a row. The plants 
used belonged to the variety IACSP97-4039, which is 
characterized by its short cycle (up to 13 months), high 
sucrose content, and resistance to water deficit and sudden 
temperature changes. 

Soil sampling and fertility analysis 

The experimental area was divided into eight 
4.5x9.0m regular meshes (FIGURE 1). A 300-g composite 
sample was collected from each mesh at a depth of 0-20cm, 
with all sampling sites being geo-referenced. The samplings 
were performed monthly from December 2019 to June 2020 
to measure spatial and temporal variability of soil fertility. 

Calcium chloride (CaCl2) was used for pH 
determination. Organic content was determined by the 
photometric method, with the resin method to measure 
essential macro-elements (P, K, Ca, and Mg). Pentetic acid 
(DTPA) was the active component used to determine 
micronutrients (Cu, Fe, Mn, and Zn). Finally, the hot water 
method was used to quantify available boron (B).  

 
FIGURE 1. Distribution of sampling sites for determination 
of soil fertility properties in the experimental area. 
 
Harvest 

In mid-June 2020, sugarcane plants reached the 
optimum maturation point and were harvested manually. 
The mass of two contiguous plants within the same row was 
adopted as productivity per square meter. Thus, a regular 
mesh was generated over the experimental area to later 
generate a georeferenced productivity map. 

Data processing and algorithms application 

During monthly monitoring, undeveloped plants 
were detected and geo-referenced. Outliers were identified 
from yield histogram analysis. Afterward, soil chemical 
properties and sugarcane productivity were modeled with 
nearest-neighbor interpolation, using the free software 
QGIS™ version 3.10.12. 

Python programming language from Visual Studio 
Code editor was chosen for exploratory data analysis 
(EDA), measures of central tendency, analysis of 
correlations between variables, and removal of soil fertility 
parameters not correlated with the target attribute, reducing 
dimensionality problems for the application of the machine 
learning algorithms. 
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The filtered database was divided into two sets. The 
first contained 70% of the total volume of data and allowed 
the training of each classification algorithm, while the 
remaining 30% had the function of validating the 
performance of generated models. Each classifier was 

treated in the selection of training set adjustment parameters 
to obtain the best results (Table 1). Data splitting, model 
training, results in visualization, and further evaluation of 
modeling metrics was performed with Pandas Libraries, 
Scikit-learn, and Matplotlib 

TABLE 1. Model parameters used in each classifier. 

Algorithm Parameter 

Naïve Bayes 
Batch size= 100 
Kernel estimator: Yes  
Normalized values: Yes 

Decision Trees 

Criterion: Entropy 
Minimum number of samples required to split an internal node= 2 
Minimum number of samples required to be at a leaf node= 5 
Maximum leaf nodes= 5 
Class weight: Balanced  
Normalized values: Yes 

Random Forest 

Criterion: Entropy 
Number of trees in the forest= 50 
Minimum number of samples required to split an internal node= 2 
Minimum number of samples required to be at a leaf node= 5 
Maximum leaf nodes= 5 
Class weight: Balanced  
Normalized values: Yes 

 
Evaluation metrics (Models performance evaluation) 

Receiver Operating Characteristics (ROC) analysis 
was used to evaluate, compare, and select the best classifier 
based on performance. The first phase consisted of the 
generation of a confusion matrix (Majnik & Bosnić, 2013). 

Based on the confusion matrix values, recall is the 
true positive rate and indicates the probability of detecting 
a positive sample correctly. On the other hand, accuracy 
refers to the dispersion of a set of values from repeated 
measurements of a magnitude, and the less dispersed the 
values, the more accurate they are. The metric is represented 
by the ratio between the number of correctly classified 
instances (positive and negative) and the total number          
of instances. 

Then, a two-dimensional ROC plot was built 
considering the probability of a false positive on the abscissa 
versus the recall on the ordinate. Based on this projection, the 
area under the ROC curve (AUC) was determined. The AUC 
of a classifier is equivalent to the probability that the classifier 
will rank a randomly chosen positive instance higher than a 
randomly chosen negative instance. 

Cohen’s Kappa coefficient (k, equation [1]) 
represents the proportion of agreements observed beyond 
chance. It generally varies between 0 and 1 although 
negative numbers can occur. The closer the coefficient is to 
1, the greater the reliability, and values close to zero, or 
below, denote purely random agreement: 𝑘 =  𝑃଴  −  𝑃௘   1 −  𝑃௘    (1)

Where:  P଴ (equation 2) represents the proportion of 
agreements observed,  

Pୣ  corresponds to the proportion of agreements 
expected in the hypothesis of independence among 
classifiers, that is, agreements by chance, and n is the 
number of samples. 
 𝑃଴ = 𝑇𝑃 + 𝑇𝑁𝑛 , (2)

 𝑃௘ =  [(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝑇𝑁)] × [(𝐹𝑃 + 𝑇𝑁) × (𝐹𝑁 + 𝑇𝑁)]𝑛ଶ . (3)

Where:  

TP corresponds to positive data correctly classified 
by the algorithm;  

FN is the number of incorrectly classified positive 
data;  

TN is when the negative instance is classified as 
such;  

FP is in the case of positive data classified 
incorrectly. 
 
Mean absolute error (MAE, equation [4]), root mean 

square error (RMSE, equation [5]), and relative absolute 
error (RAE, equation [6]) were determined for reference, 
evaluation, and comparison purposes. 

𝑀𝑒𝑎𝑛 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝐴𝐸) = 1𝑛 ෍|𝑦௜ − 𝑥௜|௡
௜ୀଵ , (4)

 

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) =  ඩ1𝑛 ෍|𝑦௜ − 𝑥௜|௡
௜ୀଵ , (5)



Jhonnatan Yepes, Gian Oré, Marlon S. Alcântara, et al. 
 

 
Engenharia Agrícola, Jaboticabal, v.42, n.5, e20210239, 2022 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝐴𝐸) =  ෍ |𝑦௜ − 𝑥௜||𝑦పഥ − 𝑥௜|௡
௜ୀଵ . (6)

Where:  𝑦௜  is the response of the predicted variable, and  𝑥௜ is the observed variable response. 
 

RESULTS AND DISCUSSION 
Climatic factors 

From crop sowing to harvest, the average 
temperature was 22.7°C, average relative humidity 64.2%, 
and accumulated rainfall 1,213.1 mm, with 25% of rains 
concentrated between January and May 2020. FIGURE 2 
shows the historical series of climatic factors measured 
during the experimental period.

 

 
FIGURE 2. Monthly averages of temperature (°C), relative humidity (%), and accumulated rainfall (mm) between July 2019 and 
June 2020. 
 
Soil fertility analysis 

Soil analyses were performed from sugarcane 
maturation to harvest to monitor the uniformity and 
availability of chemical and nutritional properties. Eight 
sampling regions were defined, in which 56 sampling 
points were geo-referenced. Table 2 summarizes the 
results of soil analysis. In terms of temporal variability, the  

first layer of the soil profile under investigation showed 
uniform behavior. 

That behavior is not satisfied only in the case of 
calcium, whose standard deviation was 30 mg dm-3. This 
effect is because Ca is mainly absorbed during sugarcane 
rooting. Moreover, the cationic substitution of 
exchangeable Ca, in the Ca2+ form, improves soil structure, 
permeability, and water infiltration, helping plants 
withstand saline stress (Rahman et al., 2018).

 
TABLE 2. Summary of the descriptive statistical analysis of soil fertility factors expressed as mg dm-3, OM expressed as g dm-3, 
and pH non-dimensional. 

  OM pH P K Ca Mg B Cu Fe Mn Zn 

Mean 25.7 4.53 11.3 12.9 90.8 6.1 0.30 15.1 18.6 22.6 4.1 
Standard deviation 1.7 0.18 2.7 2.5 30.4 1.4 0.006 3.5 3.3 0.4 2.5 
Standard error 0.14 0.02 0.23 0.21 2.53 0.12 0.0005 0.29 0.28 0.03 0.21 
Lower value  22.3 4.2 8.2 9.0 44.0 3.6 0.29 9.0 13.2 21.3 0.8 
25% 24.4 4.3 8.7 10.8 62.0 4.8 0.296 11.7 16.1 22.5 1.7 
50% 25.8 4.5 10.7 12.9 86.4 6.0 0.3 15.0 18.9 22.7 3.2 
75% 27.5 4.7 13.9 15.2 119.0 7.3 0.30 18.1 20.6 22.8 6.3 
Maximum value 28.2 4.8 16.5 16.8 144.0 8.6 0.31 21.0 26.5 23.3 9.8 
OM - Organic matter, P- Phosphorus, K- Potassium, Ca- Calcium, Mg- Magnesium, B-Boron, Cu- Copper, Fe-Iron, Mn- Manganese, 
and Zn-Zinc. 

 
Variation in intracellular free Ca2+ concentration is 

one of the earliest events following plant perception of 
environmental changes (Aldon et al., 2018). Table 3 
highlights this variation that occurred between December 
2019 and March 2020 when monthly accumulated rainfall 

was reduced by one-third (from 147 to 47 mm). The 
monthly average of relative humidity also declined by 
10.2%, while temperature increased by 14% (from 20.4 to 
23.7°C). During this time interval, there was an increase in 
the consumption of Ca2+ available in the soil. 
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TABLE 3. Averages of available calcium in the first layer of the soil profile. 

Ca2+ (mg dm-3) 
Dec/19 Jan/20 Feb/20 Mar/20 Apr/20 May/20 

98.5 90.0 85.0 86.5 88.5 81.5 
 
Harvest data 

The rigorous monthly monitoring of the sugarcane 
field, together with other parallel investigations, allowed 
the detection of 20 undeveloped plants, which generated a 
set of missing values in the global dataset (Luebeck et al., 
2020; Oré et al., 2020). These values were removed       
from the dataset and modeled by inverse distance weighting  

(IDW), using the QGIS™ software version 3.10.12 
(FIGURE 3a). 

The changes made in the main database provided: a) 
a decrease in standard deviation by 26%; b) a reduction in 
the range of values between maximum and minimum crop 
productivity by 36.5%; c) an increase in yield per square 
meter from 29.14 to 32 kg m-2 for the estimated 
productivity. As consequence, the overall value of fresh 
mass increased from 4196.2 to 4616.5 kg m-2.

 

  
(a) (b) 

FIGURE 3. Sugarcane harvest results: (a) yield map after removal of outliers (kg m-2), (b) yield histogram. 
 
Frequency histogram analysis and interpretation, in 

parallel with a mean (𝑥̅) and standard deviation (𝜎), allowed 
us to categorize productivity into three classes: low 
(equation [7]), medium (equation [8]), and high (equation 
[9]). As a result, the range corresponding to each dataset 
was divided based on the mean and standard deviation of 
the dependent variable. The category “medium” contained 
36% of the data, while “high” and “low” contained 33 and 
31% of the data, respectively. 𝐿𝑜𝑤 ≤ 𝑥̅௣௥௢ௗ − 𝜎௣௥௢ௗ2 , (7)

𝑥̅௣௥௢ௗ − 𝜎௣௥௢ௗ2 ≤ 𝑀𝑒𝑑𝑖𝑢𝑚 < 𝑥̅ + 𝜎௣௥௢ௗ3 , (8)
 𝐻𝑖𝑔ℎ ≥  𝑥̅௣௥௢ௗ + 𝜎௣௥௢ௗ3 . (9)

 
Consecutively, exploratory data analysis was 

executed to reduce the dimensionality of model input 
variables, and the data correlation matrix was calculated. 
The micronutrients boron (B) and manganese (Mn), which 
were used as input variables, were not correlated according 
to FIGURE 4. For this reason, these micronutrients were 
discarded from the input group of the model training sets.
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FIGURE 4. Correlation matrix of fertility properties and sugarcane yield. 
 
Performance of models 

Three classification algorithms were trained and 
evaluated: Naïve Bayes, Decision Trees, and Random 
Forest. Tables 4, 5 and 6 show the performance of each 
algorithm corresponding to the ROC curve from the 
machine learning models used. Additionally, table 7 shows 
the statistical analysis results of each model. The summary 
of results demonstrates that the Random Forest algorithm 
had a better performance in classifying the proposed labels 
for the development of this research. 

However, a more detailed analysis of true positive 
and true negative rates opened a debate about the choice  

of the best classifier. Although the Naïve Bayes algorithm 
had a superior performance for "medium" and "low" 
classes, its low performance in the "high" class reduced its 
overall performance. 

When analyzing values in the area under ROC 
(AUC), which is interpreted as the probability of a classifier 
considering a positive instance superior to a negative 
instance under random conditions, the Naïve Bayes 
algorithm had the best results, demonstrating its ability to 
solve multi-class problems due to its conditional 
independence analysis setup.  

 
TABLE 4. Summary of the ROC characteristics of the Naïve Bayes algorithm. 

Naïve Bayes 
Class True positive rate False positive rate Accuracy Recall AUC 
High 0.36 0.18 0.40 0.36 0.70 

Medium 0.40 0.22 0.62 0.40 0.70 
Low 0.83 0.32 0.50 0.83 0.84 

Weighted average 0.51 0.24 0.53 0.51 0.74 
 
TABLE 5. Summary of the ROC characteristics of the Decision Trees algorithm. 

Decisions Tree 
Class True positive rate False positive rate Accuracy Recall AUC 
High 1.00 0.78 0.30 1.00 0.47 

Medium 0.00 0.00 -- -- -- 
Low 0.50 0.03 0.86 0.50 0.63 

Weighted average 0.40 0.21 -- 0.40 -- 
 
TABLE 6. Summary of the ROC characteristics of Random Forest algorithm. 

Random Forest 
Class True positive rate False positive rate Accuracy Recall AUC 
High 0.64 0.28 0.44 0.64 0.70 

Medium 0.35 0.26 0.54 0.35 0.52 
Low 0.75 0.16 0.64 0.75 0.79 

Weighted average 0.58 0.24 0.54 0.54 0.64 
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TABLE 7. Performance metrics for classification algorithms. 

Metrics 
Algorithm 

Naïve Bayes Decision Trees Random Forest 
Correctly classified instances (%) 51.16 39.53 53.48 

Incorrectly classified instances (%) 48.84 60.46 46.51 
Kappa coefficient 0.27 0.18 0.30 

MAE 0.34 0.40 0.38 
RMSE 0.47 0.44 0.47 
RAE 0.77 0.89 0.85 

 
The recall is responsible for evaluating how well a 

model predicts a positive class when the actual result is 
positive. It showed that the three models promoted a better 
interpretation of the range of values corresponding to high 
productivity, while the two other classes showed 
discontinuous behavior, with the "medium" class being the  

most susceptible to misclassification despite having more 
observations to categorize productivity. 

The Decision Trees was the least successful method 
for label classification. According to the graphical result in 
FIGURE 5, the root node corresponds to organic matter, and 
a rule reaches its terminal nodes to classify productivity as 
low or medium.

 

 
FIGURE 5. Productivity classification by the decision trees method (Organic matter [OM]). 

 
Although the distribution and availability of soil 

fertility properties were homogeneous in the experimental 
field, productivity showed a dispersed range of values. 
Thereby, the Kappa concordance indexes obtained were 
unsatisfactory for all methods used. The maximum Kappa 
index achieved was 0.30 for Random Forest followed by 
0.27 for Naïve Bayes. 

The situations discussed are based on the internal 
structure of each algorithm. For instance, Decision Trees 
and Random Forest are methods that automate interaction, 
with mostly non-linear effects. Furthermore, predictors or 
classifiers are split to imply a more solid forest. In this 
process, overfitting problems of the models are generated  
so that Random Forest is less prone than Decision Trees 
(Jiang et al., 2020). 

Despite its limitations, Random Forest could 
improve performance in predicting unbalanced categorical 
variables, due to its ability to divide trees of the same size 
in parallel in the learning process (Zhou et al., 2020). As 
previously shown, data imbalance is reflected in accuracy 
and recall metrics. For this reason, Random Forest 

performed better than the Decision Trees in terms                   
of labeling. 

The main constraint of Decision Trees was their 
instability, as a small change in data may build different 
trees (Deepa & Ganesan, 2018). Furthermore, this algorithm 
is sensitive to noisy and irrelevant attributes and may cause 
the absence of global functions of various types. Therefore, 
it loses representativeness in complex multi-class 
classification problems. 

By contrast, for being based on a conditional 
independence test, the Naïve Bayes algorithm is suitable for 
solving multiclass problems in the case of several categorical 
inputs. Its main limitation, however, is that it implicitly 
assumes that all attributes are independent of each other, 
limiting their applicability in real-life cases since completely 
independent predictors are difficult to obtain (Poroikov et al., 
2019). Also, if a categorical variable has a label in the test 
dataset that was not observed during model training, a value 
of zero will be assigned, and classification will not be 
performed. To solve this problem, the training data must be 
cleaned and verified or smoothed with Laplace functions.  
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Soil fertility parameters associated with sugarcane 
productivity 

Organic matter (OM) had the highest importance 
factor among the chemical properties mostly related to 
biomass production when the Random Forest algorithm was 
used (FIGURE 6). The same result was obtained by the 
Decision Trees algorithm, which was supported by the 
correlation matrix in the exploratory data analysis, which, 
in turn, described the low association of manganese and 
boron with the targeted variable. 

OM contents must stabilize so that organic carbon 
deposits can be maintained. As a result, positive effects are 
generated on soil structure, water retention, aeration, 
fertility, plant rooting, fauna development, as well as 

microbial biomass, and diversity (Moreno-Barriga et al., 
2017). The soil is a dynamic habitat for countless living 
beings and is where biotic interactions occur for the 
ecosystem's functioning. In this context, macrofauna and 
microfauna are crucial for OM crushing and transforming. 
In turn, Ca2+ promotes a bond between OM and mineral 
particles, forming aggregates in the soil, which, in turn, 
control the dynamics of OM in the soil and directly increase 
its ability to capture and stabilize organic carbon (Juriga et 
al., 2018). 

In the relationship between water, soil, and 
environment, OM showed to be closely related to soil water 
retention, facilitating root growth, soil nutrient absorption, 
and crop establishment (Ankenbauer & Loheide, 2017; 
Minasny & McBratney, 2018).

 

 
FIGURE 6. Ranking of the importance of soil fertility properties according to sugarcane productivity using the Random Forest 
algorithm. 
 

Given the close relationship between crop yields and 
climate changes, especially in sugarcane fields (Jin et al., 
2018), future studies should evaluate such factors in a time 
series. Therefore, we recommend replicating our study in 
other regions of the country to increase the volume of data 
and then build robust and reliable models. Accordingly, 
sugarcane production volume can be predicted, ensuring 
that national and international demands are met, rigorous 
monitoring of water and soil management, land-use 
planning, and support in decision-making regarding storage, 
transport, and logistics in the sector.  

Besides the widely used algorithms for solving 
regression and classification problems in agriculture 
(Random Forest and Decision Trees), we included the 
Naïve Bayes. And, although it has been little used to classify 
agricultural productivity, it had a good performance and 
potential due to its simpler internal structure. We could also 
detail the procedures required for database exploration, in 
addition to identifying, removing, and filling in missing 
data, dividing classes taking as a starting point the two 
typical measures of central tendency. 

 
CONCLUSIONS 

The application of Random Forest is recommended 
to classify all categories of crop productivity. The Naïve 
Bayes is a good technique for the classification of 

productivity at "medium" and "low" levels, with the 
potential for solving multiclass problems in agriculture.  

Organic matter has a considerable relationship with 
sugarcane biomass production when using the Random 
Forest and Decision Trees algorithms. This fact reinforces 
the convenience of using organic fertilizers to reduce 
impacts on the environment.  

For future studies, we recommend replicating the 
experiments under different conditions, including climatic 
factors within the time series analyzed, including hybrid 
machine-learning systems to mitigate limitations and 
improve analysis. 
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