
UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computação

Vanessa Mendes Rennó

Advanced Analysis and Simulation of

Generalized Wireless Channels

Análise e Simulação Avançada de

Canais sem Fio Generalizados

Campinas

2023



UNIVERSIDADE ESTADUAL DE CAMPINAS

Faculdade de Engenharia Elétrica e de Computação

Vanessa Mendes Rennó

Advanced Analysis and Simulation of

Generalized Wireless Channels

Análise e Simulação Avançada de Canais sem Fio Generalizados

Thesis presented to the School of Electrical and
Computer Engineering of the University of Camp-
inas in partial fulllment of the requirements for the
degree of Doctor in Electrical Engineering, in the
area of Telecommunications and Telematics.

Tese apresentada à Faculdade de Engenharia Elétrica
e de Computação da Universidade Estadual de
Campinas como parte dos requisitos exigidos para
a obtenção do título de Doutora em Engenharia
Elétrica, na Área de concentração: Telecomunicações
e Telemática.

Orientador: Prof. Dr. José Cândido Silveira Santos Filho

Este exemplar corresponde à versão
nal da tese defendida pela aluna
Vanessa Mendes Rennó, e orientada
pelo Prof. Dr. José Cândido Silveira
Santos Filho.

Campinas

2023





COMISSÃO JULGADORA - TESE DE DOUTORADO

Candidata: Vanessa Mendes Rennó, RA: 229995

Data da Defesa: 18 de Maio de 2023

Título da Tese: “Advanced Analysis and Simulation of Generalized Wireless Channels

(Análise e Simulação Avançada de Canais sem Fio Generalizados)”.

Prof. Dr. José Cândido Silveira Santos Filho (FEEC/UNICAMP) (Presidente)

Profª. Drª. Victoria Dala Pegorara Souto (Inatel)

Prof. Dr. Waslon Terllizzie Araújo Lopes (UFPB)

Prof. Dr. Michel Daoud Yacoub (FEEC/UNICAMP)

Prof. Dr. Paulo Cardieri (FEEC/UNICAMP)

A ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora,

encontra-se no SIGA (Sistema de Fluxo de Dissertação/Tese) e na Secretaria de Pós-

Graduação da Faculdade de Engenharia Elétrica e de Computação.



To my parents, Roberto and Regina.



Acknowledgements

I thank God for the gift of life, giving me health, ability, intelligence, and perseverance

to follow my journey.

To my parents, Roberto and Regina, for their unconditional love, encouragement, and

support in all my dreams.

To Vinícius, my ancé, with whom I share all my fears and secrets. Thank you for always

encouraging me to complete this work. Having you in my life made this journey lighter.

To my brother, Alexandre, for his companionship, friendship, and many pieces of advice.

I deeply thank my beloved family for being my inspiration and always showing me the

right way. I love them so much.

I would like to thank my advisor, Prof. Dr. José Cândido, for the moments of kind

dedication, excellent advice, patience and guidance throughout the development of this

work. Thank you for so many lessons shared and belief in my work.

To Unicamp, through the professors and employees, for the excellence in teaching.

To all my friends, for their loyalty, friendship, aection, and moments of relaxation.

This work was supported by the São Paulo Research Foundation (FAPESP) under Grant

no. 2018/20179-9. I thank FAPESP for the nancial support.

I will be forever grateful to everyone who accompanied me on this journey. I conclude the

realization of this dream with the certainty that I wouldn’t get this far alone.



“Maybe I couldn’t do the best, but I fought for

the best to be done. I’m not what I should be,

but thank God, I’m not what I used to be.”

(Marthin Luther King)



Resumo

Esta tese visa avançar no campo da comunicação por canais sem o abordando dois tópi-

cos chaves: (i) a simulação de processos de desvanecimento de canais sem o generalizados
e (ii) a análise assintótica de modelos de desvanecimento da classe gaussiana.

Apesar da exibilidade matemática e ótimo ajuste aos dados empíricos, as distribuições de

desvanecimento -, -, - e --- não tŸm, até o momento, uma estrutura de sim-

ulação tão geral quanto os próprios modelos. De fato, a estrutura de simulação disponível

é bastante limitada, aplicável apenas a valores inteiros e meio-inteiros do parâmetro real

. Essa é uma restrição pouco realista. Na primeira parte deste trabalho, propõe-se um

método de simulação unicado para os processos de desvanecimento -, -, - e -

--, que acomoda valores arbitrários de todos os parâmetros de desvanecimento. Não

menos importante, o método é simples, corresponde exatamente às estatísticas de primeira

ordem dos modelos de desvanecimento e se aproxima bem às estatísticas de segunda or-

dem. Este último requisito é especialmente complicado e, de fato, um problema antigo na

simulação de desvanecimento. São deduzidas expressões analíticas para as estatísticas rel-

evantes do método proposto. Além disso, um parâmetro de simulação crucial é otimizado

para melhorar o ajuste das estatísticas de segunda ordem. Como consequŸncia, são obti-

das representações em série e expressões assintóticas úteis para estatísticas essenciais de

primeira e segunda ordens dos modelos de desvanecimento investigados. Os resultados são

validados por simulação de Monte Carlo.

Modelos de desvanecimento de base gaussiana consideram diferentes aspectos de propa-

gação do canal sem o, como correlação, não-linearidade, clustering, ondas espalhadas

e componentes dominantes. A m de caracterizar a natureza dinâmica dos processos

aleatórios que modelam tais canais, estatísticas de segunda ordem e métricas correspon-

dentes são frequentemente empregadas. Infelizmente, a análise exata dessas estatísticas

para condições de desvanecimento generalizadas resulta em expressões intrincadas. Para

contornar essa desvantagem, na segunda parte deste trabalho, é fornecida uma análise

assintótica geral para estatísticas de segunda ordem em regime de alta relação sinal-ruído

para uma ampla gama de canais com desvanecimento de classe gaussiana. A estrutura pro-

posta produz expressões simples e em forma fechada, que caracterizam o impacto de cada

aspecto físico do desvanecimento no canal, fornecendo assim uma descrição completa,

prática e intuitiva do comportamento dinâmico do sistema. As expressões assintóticas

obtidas são exaustivamente validadas, tanto reduzindo-as a casos particulares conhecidos

como via simulações de Monte Carlo.

Palavras-chaves: Simulação, canais de desvanecimento, estatísticas de segunda ordem,

análise assintótica.



Abstract

This thesis aims to advance the eld of wireless communications by addressing two key

topics: (i) simulation of generalized wireless fading channels and (ii) asymptotic analysis

for a broad Gaussian class of fading models.

Despite their mathematical exibility, great t to empirical data, and increasing popular-

ity, the -, -, -, and --- fading models have to date no simulation framework

as general as the models themselves. Indeed, the available simulation framework is quite

limited, only applicable to integer and half-integer values of the (real-valued) -parameter.

This is an impractical constraint. In the rst part of this work, we overcome this drawback

by proposing a unied simulation method for -, -, -, and --- fading processes

that accommodates full-range values of all fading parameters. Not less important, the

proposed method is simple, exactly matches the fading models’ rst-order statistics, and
well approximates their second-order statistics. This last requirement is especially tricky,

by far the most challenging, and, indeed, a long-standing problem in fading simulation.

We derive analytical expressions for the proposed method’s relevant statistics. Also, we

optimize a crucial simulation parameter to improve the match for the second-order statis-

tics. In passing, we obtain useful series representations and asymptotic expressions for

essential rst- and second-order statistics for the fading models investigated. The results

are fully validated via Monte Carlo simulation.

Gaussian-based fading models incorporate dierent propagation aspects of the wireless

channel, such as correlation, non-linearity, clustering, scattered waves, and dominant com-

ponents. In order to characterize the dynamic nature of random processes that model such

fading channels, second-order statistics and corresponding metrics are often employed. Un-

fortunately, the exact analysis of these statistics for generalized fading conditions leads

to intricate expressions. To overcome this drawback, in the second part of this work, we

provide a general asymptotic analysis for second-order statistics at high signal-to-noise

ratio regime for a broad Gaussian class of fading channels. The proposed structure leads

to simple, unied, and closed-form expressions that characterize the impact of each phys-

ical aspect of fading in the channel, thus providing a complete, practical, and intuitive

description of the dynamic behavior of the system. The asymptotic expressions obtained

are thoroughly validated, both by reducing them to known particular cases and via Monte

Carlo simulations.

Keywords: Simulation, fading channels, second-order statistics, asymptotic analysis.
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1 Introduction

Over the years, the advance of wireless communication systems has been one

of the most crucial factors in the growing revolution that has been taking place in the

telecommunications world scenario. Increasingly sophisticated technologies and services

have become more accessible due to lower manufacturing costs and large-scale commer-

cialization. This improvement is mainly due to a key feature of wireless communications:

mobility.

As expected by Edholm’s law [1], wireless data rates have doubled every eigh-

teen months for the last three decades. The direct consequence predicts that a link speed

in the order of Terabits per second (Tbps) must be reached before 2030 [2]. Furthermore,

studies indicate that billions of devices will be connected to the network [3, 4]. With

this progressive demand, current wireless communication generations, as third-generation

(3G), fourth-generation (4G), and even fth-generation (5G), will not be able to support

such trac requirements. As a consequence, there are many challenges to be overcome by

the next generation of wireless networks, such as the restrictions imposed by the trans-

mission medium, the support of a massive growth in the number of connected devices, as

well as a vast and diversied set of services and applications, the demand for ubiquitous

and reliable coverage, capable of providing access anywhere and at anytime, and a more

ecient energy consumption [5–7].

To cover the goal of high data transmission rates, standards organizations such

as the Third Generation Partnership Project (3GPP) have already reported that frequency

bands above 6 GHz, the so-called millimeter wave (mmWave) bands, should be used to

meet these high-rate demands [8, 9]. Furthermore, enabling technologies such as non-

orthogonal multiple access [10, 11], massive multiple-input multiple-output systems [12,

13], as well as futuristic technologies such as recongurable intelligent surfaces (RIS) [14,
15] should be considered. Therefore, aiming to meet all the requirements imposed by the

new generations of wireless communication systems, academic and industrial researchers

have focused their eorts on the design and development of 5G and sixth-generation (6G)

wireless networks.

The communication channel is one of the components in a wireless transmission

system that naturally aects the performance and requirements imposed by the future

generations of wireless communication [16]. The channel is the propagation medium it-

self, which allows the connection between transmitter and receiver. In wireless systems,

the channel is the air interface, where information travels through electromagnetic radi-
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ation [17]. Along the channel, the signal can suer considerable losses. In wireless envi-

ronments, the signal is subject to reection, diraction, scattering, and path loss. Due

to these physical phenomena, the signal reaches the mobile receiver as a large number of

waves with random amplitudes and phases, coming from dierent paths, which is called

multipath propagation [16–18].

As a result of path loss and multipath propagation, the amplitude and phase

of the received signal randomly uctuate over time. This uctuation is known as fading.

Due to the multitude of factors involved, almost always unpredictable, the modeling of

the communication channel is treated in a probabilistic way. In other words, statistical

models are used to describe the random uctuations of the channel under the fading eect.
Therefore, the characterization of the wireless propagation environment is done through

probabilistic models, and the study of the communication channel proves essential in the

creation and improvement of current and new technologies [19–22]. Moreover, despite

the high spectral availability that the mmWave band oers to enable the emerging high

transmission rates, the associated technical challenges are great, such as the propaga-

tion phenomena being perceived more strongly compared to lower frequency bands [23].

Overcoming these challenges requires an in-depth characterization of the communication

channel.

The remainder of this chapter is structured as follows. Section 1.1 revisits

many established statistical fading models and corresponding application scenarios. Sec-

tion 1.2 introduces the fading channel’s most important rst- and second-order statistics.

Section 1.3 addresses the need for simulating fading channels in communication systems

design. Section 1.4 presents the asymptotic analysis of fading channels at high signal-to-

noise ratio (SNR). Finally, Section 1.5 exposes the objectives, contributions, and structure

of this dissertation.

1.1 Statistical Fading Models

In a wireless communication environment, the received signal is the sum of

wave components scattered by random obstructions. This interference between versions

of the same transmitted signal arriving at the receiver at dierent times is known as

short-term fading, or also as multipath fading. As a consequence, the multipath waves

arrive at the receiving antenna in a combined way, forming a signal that can vary greatly

in both amplitude and phase within a short period of time or distance [16]. Furthermore,

the relative motion of the transmitter and the receiver, along with the motion of objects

between them, results in random frequency modulation of the signal due to dierent
Doppler shifts in each of the multipath components [17]. Thus, the fading channel has a
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time-varying impulsive response.

Given the stochastic nature of the multipath fading phenomenon, probabilistic

models have been proposed to describe the behavior of the wireless channel, each of

which exploits certain physical aspects of the electromagnetic propagation [19–22, 24].

The accurate description of channel statistics is essential to correctly characterize the

system that it interacts with.

A simple and popular statistical model for short-term fading is the Rayleigh

distribution [20]. The model is described by the sum of two Gaussian random variable

(RV), one in phase and another in quadrature, with zero mean and identical variances.

Later, fading models such as Hoyt [25] and Rice [24] were proposed to contemplate the

physical eects of unequally distributed Gaussian components. In the Hoyt distribution,

the variances of the in-phase and quadrature components may have dissimilar values, and

in the Rice distribution, these components may have non-zero means.

The Weibull [26] and Nakagami [27] fading models were also developed from

the Rayleigh distribution. Such models consider Gaussian components with identical char-

acteristics. In the Weibull distribution, the non-linearity of the transmission medium is

considered. In the Nakagami distribution, through the -parameter, the clustering of

multipath wave signals is addressed.

Each aforementioned statistical distribution represents the isolated eect of

a single physical aspect of fading, except for Rayleigh, which is a distribution with no

shape parameters. Thus, to better characterize the communication channel, more exible
statistical models that combine more than one physical aspect of the propagation medium

were proposed later on.

The - [21], -, and - [22] distributions have gained attention due to their

great exibility and are widely used to characterize the fading phenomenon. Each distri-

bution represents the combined eect of two key aspects of short-term fading in wireless

channels. Specically, the distribution parameters account for the non-linearity of the

transmission medium (), power imbalance between the in-phase and quadrature compo-

nents (), existence of a dominant wave component (), and multipath wave clusterization

(). Despite being relatively recent fading models, their usefulness has been largely proven

in practice. Next we quote a few examples. In [28], Chong et al. showed that the - dis-

tribution best ts fading measurements at 400 MHz when wireless devices are located

just 1◁5 cm above the surface, under the eect of wind-blown foliage or human movement.

In [29], Rodrigo-Penarrocha et al. used the - distribution in a measurement campaign

for a vehicle-to-vehicle (V2V) scenario. The authors tested several fading models and con-

cluded that the - distribution provided an excellent t to the experimental data while
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being mathematically very simple to model the composite short- and long-term fading

in the urban area of Valencia, Spain. In [30], Yoo et al. validated the use of the - dis-

tribution through an indoor environment and real-time measurements, for body-centered

communication channels. In [31], Bhargav et al. modeled the impact of background noise

and co-channel interference in a body area network operating at 2◁48 GHz successfully

by using the - fading model. An extended version of the - fading model, namely the

- shadowed model [32], was also used by Canete et al. in [33] to model measurements

in ultrasonic underwater acoustic channels as well as body-centric and device-to-device

(D2D) communications. A great number of other measurement campaigns involving the

referred distributions can be found in the literature [34,35].

Given the development of more sophisticated communication systems, even

more general envelope-based fading models, namely -- and -- [36], were created.

The former combines the - and - distributions, and the latter, the - and -

distributions.

The --- complex fading distribution arises from a physically-based model

that encompasses the most relevant fading aspects found in the context of wireless com-

munications [19]. It accounts for key features of short-term propagation phenomena, such

as non-linearity of the medium, power of the scattered waves, power of the dominant

components, and the number of multipath clusters. Due to its exibility and, most im-

portantly, generality, the --- model is suitable to most diverse propagation conditions

and comprises several short-term fading scenarios found in the literature [20–22,24–27,36].

As --- distribution is a new and wide-ranging model, several issues still

need to be explored and investigated, attracting the attention of the scientic commu-

nity. For example, in [37], the authors investigated how the --- fading model aects
the channel capacity under dierent adaptive transmission policies. The authors of [38]

showed that the statistics of the --- distribution provide the best t for the envelope
of a signal propagating in mmWave scenarios, that is, it provides a better modeling for

5G applications. In addition, they derived second-order analytical statistics for the ---

 fading model. The authors of [39] studied the performance of Wyner’s classic listening

model, where the main channels and interceptors are modeled by the --- distribution.

The authors of [40] investigated the performance analysis of multi-hop wireless commu-

nication systems through the --- channel. The authors of [41] developed a simulator

of independent --- envelope samples and analyzed the performance of the algorithm

in spectral sensing application.

More recently, Parente et al. [42] explored a general Gaussian-class model that

contemplates several other models as particular cases, from Rayleigh to --- [19].

This new model makes the analysis more exible by allowing multipath clusters to be
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arbitrarily correlated. This is a realistic scenario for emerging communication systems.

For example, narrowband (NB) RIS and mmWave channels have a good agreement when

modeled by the well-known Rayleigh and Rice distributions [8,13–15,43]. However, recent

experimental studies have shown that mmWave systems operating over ultra-wideband

(UWB) channels can suer a high correlation between the multipath clusters, a scenario

where the assumption of independent multipath clusters is no longer realistic [8, 44].

Here we gathered some examples of fading models commonly addressed in the

literature, along with related applications and research studies. Next we introduce key

statistics for fading channels.

1.2 Fading Channel Statistics

Fading models are probabilistic representations that characterize the random

nature of the communication channel. These distributions are represented through fading

parameters that portray the physical characteristics of the propagation medium. The cor-

responding random variables are described by statistical functions related to the physical

parameters of the model. The main functions are the probability density function (PDF)

and the cumulative distribution function (CDF) [45]. These are the so-called rst-order
statistics, which contemplate the static behavior of the channel for any xed instant of

time. Such statistics can be used to assess system performance in terms of outage prob-

ability or bit error rate [45]. However, these metrics do not provide information about

the dynamic behavior of the channel over time, mainly caused by the relative movement

between transmitter and receiver, or by obstructions between them. Channel variations

over time produce a random frequency modulation of the signal due to dierent Doppler
shifts in each multipath component [17].

The dynamic, time-varying nature of a fading channel is characterized by its

second- and higher-order statistics. The main second-order statistics are the level crossing

rate (LCR) and the average fade duration (AFD) [46]. The LCR measures the average

number of ascending (or descending) crosses per second for a given envelope level. In

turn, the AFD is the average time the fading signal spends below a certain threshold

level. Fig. 1.1 exemplies these phenomena. These statistics are essential for appropriately

designing key transmission parameters such as power and bandwidth allocation, symbol

rate and block length selection, maximum latency requirements, and interleaving depth of

error-correction codes. For addressing these issues, more than metrics that solely consider

the static channel behavior, such as outage probability and bit error rate, are required.

The fading channel analysis using rst- and second-order statistics is crucial to

obtaining a complete evaluation of the static and dynamic eects of fading on the perfor-
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Figure 1.1 – Illustration of LCR and AFD metrics for an arbitrary random fading signal.

mance of wireless communication systems. These statistics for fading models commonly

found in the literature have been extensively studied [21,23,35,38,47–50].

1.3 Fading Channel Simulation

Every modern communication system has been designed with the aid of exten-

sive computer-based simulations. They are used to test, revise, improve, and nely tune

equipment, algorithms, and techniques while helping to avoid, minimize, or complement

eld trials, usually much expensive and time-consuming. Analytical tools are certainly

preferable, but often they either solve the problem in simplistic ways or prove imprac-

tical. In such cases, the simulation may be the only appropriate solution. A simulator

allows for replicating real characteristics of an environment, usually through software.

In the context described here, the simulation is used to emulate a fading environment,

containing many of the propagation phenomena.

As the systems become increasingly complex with each new generation of net-

work standards and protocols, an ecient and realistic simulation framework proves crit-

ical [51, 52]. Yet many challenges remain unchanged in wireless communications, such as

the severe restrictions imposed by the transmission medium. In particular, a realistic fad-

ing simulator is needed to emulate the random, time-varying nature of the mobile radio

channel. The simulator should obviously mimic the channel odds at any xed instant of

time, i.e., the channel’s rst-order statistics [41]. Moreover, and much more challenging, a

fading simulator should also mimic how the channel variations unfold over time, i.e., the
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channel’s higher-order statistics [53]. These statistics aect dynamic metrics such as the

average outage rate and duration.

As the statistical distributions used to describe the behavior of the wireless

channel are associated with physical models (in fact, they derive from them), it is possi-

ble, in principle, to implement a simulator with direct use of these fading models. Such

simulators are commonly called classic and carry the motivation of having been inspired

by the physical models of each fading environment. However, sometimes the structure of

classic simulators is not exible enough to accommodate the range of parameters observed

in real systems. In the -, -, -, --, -- e --- fading distributions, the -

parameter, which accounts for the number of multipath clusters, was originally proposed

to be real-valued [19,21,22,36]. This relaxation of the -parameter proves indeed realistic,

being chiey motivated by the dramatic improvement in the models’ exibility and, above

all, in their t to empirical fading data [29, 30, 33, 34, 38]. In short, the classic simulators

is limited to integer and half-integer values of the -parameter, too strong a constraint

in practice.

In such cases, using alternative simulation schemes becomes the only solu-

tion. In [41, 54–57], ecient simulators were proposed for various fading models that

generate independent channel samples. Such generators are useful to meet the random

process rst-order requirements. However, to generate autocorrelated sequences (second-

order statistics), the simulation becomes more intricate. That occurs because, except

for the ultra-particular case where the fading model is Gaussian, linear ltering changes

the rst-order statistics of the input samples. For example, by linearly ltering a white

Gamma sequence, the colored output sequence is no longer Gamma [58]. Therefore, other

techniques are needed in the general non-Gaussian case.

The common method for generating an autocorrelated non-Gaussian sequence

is to modify an autocorrelated Gaussian sequence by a memoryless non-linear transfor-

mation [59]. The transformation is chosen so that the target PDF is achieved and the

Gaussian auto-correlation coecient (ACC) is chosen so that the target ACC is achieved.

In this method, the knowledge of the inverse function of the target CDF is essential.

The inverse is needed to establish the proper non-linear transformation. However, many

statistical distributions do not have their inverses CDFs in closed form. An alternative to

producing an autocorrelated sequence would be to generate a set of  independent sam-

ples, via any existing methods [41, 54–57], and appropriately order the samples to meet

the autocorrelation function (ACF) of the desired fading model. However, there are  !

possible arrangements of  samples to be tested. In principle, an extensive comparison

across all arrays could be used to nd the ACF that best ts, but for practical applications
(large ), this brute-force approach becomes computationally infeasible.
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Therefore, as far as we know, there is no comprehensive simulation method

for the -, -, -, and, more generally, --- fading models that accounts for the

channel’s static and dynamic behaviors combined while allowing for full-range values of the

fading parameters. The available schemes are quite limited [19, 21, 22]. They arise from

the physical models that originated the fading statistics, written as sums of Gaussian

components. There is a severe drawback, though. Of course, in the referred simulation

scheme, the number of Gaussian components must be integer-valued.

It is worth noting that the problem addressed here — generating autocorrelated

sequences of the fading models random processes, thereby covering the static and dynamic

properties of the channels — is far more complex than the somewhat related problem of

generating independent samples of the fading models random variables. The latter can be

solved via traditional techniques, such as the inversion and rejection methods, including

the dedicated solution provided in [41]. In these solutions, no constraints are imposed on

the values of the -parameter. Here, we face a much deeper challenge: maintaining the

no-constraints requirement for the -parameter value while generating a random sequence

that meets the higher-order statistics of the -, -, -, and --- fading models. In

fact, this has been a long-standing open issue in Gaussian-class fading simulation.

1.4 Fading Channel Analysis at High Signal-to-Noise Ratio

New propagation scenarios are emerging with the unprecedented requirements

in data rate for the next generation of wireless communications and its enabling tech-

nologies, such as massive multiple-input multiple-output (MIMO) systems [12, 13], non-

orthogonal multiple access [10, 43], and RIS [14, 15]. To meet the growing demand for

high data rates, these new communication scenarios can exploit the so-called mmWave

bands [13]. On the one hand, there is high spectral availability for mmWave communi-

cations. On the other, there are many technical challenges associated with propagation

phenomena. Therefore, to take advantage of the new resources oered by mmWave bands,

it is necessary to carry out an in-depth characterization of the wireless channel [38].

While traveling from source to destination, the transmitted signal is subject to

wave clustering, medium non-linearity, correlation between components, scattering, and

power dominance [16]. Given the stochastic nature of the phenomenon, several probabilis-

tic models have been proposed to describe the behavior of the wireless channel, each of

which exploiting certain physical aspects of the electromagnetic propagation [19, 21, 22].

Many of the widely used models were obtained based on the assumption that the multiple

wave clusters are Gaussian processes. Accordingly, they are called Gaussian-class fading

models [45,60]. Also, many fading models assume that there is independence between the
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multipath clusters or between their in-phase and quadrature components [19,21,22].

However, recent experimental studies have shown that mmWave systems op-

erating over UWB channels can suer a high correlation between the multipath clus-

ters [8, 14, 15, 44]. Even more, receiver imperfections and correlated Gaussian noise can

produce non-identical Gaussian components [31,61]. For these new propagation scenarios,

the assumption of independence between dierent wave clusters may not be valid any-

more. However, it turns out that the more fading parameters are considered in a model,

the more complex becomes the performance metrics analysis, which generally does not

result in closed-form expressions [19]. Furthermore, it is often hard to obtain practical

intuition about how each fading parameter interferes with the analyzed metrics.

In order to consider the new challenges of emerging propagation scenarios,

Parente et al. [42] explored a general Gaussian-class fading model that contemplates sev-

eral other models as particular cases, from the simplistic Rayleigh to the multiparameter

--- distribution [19]. This new model makes the analysis more exible by allowing

multipath clusters to be arbitrarily correlated, a more realistic scenario for current and

next generations of communication systems. Also, the framework introduced in [42] was

conceived in an asymptotic fashion, circumventing the complexity of the exact approach.

The analysis builds on a crucial point discussed in [62], which demonstrated that the

asymptotic PDF — at the origin — of the channel determines the system performance

in the regime of high SNR. More importantly, this tail regime is of most practical inter-

est for many wireless applications, such as in (i) optical-wireless communications, where

systems commonly operate at very high SNR, e.g., in the order of 70 dB [63, 64], and in

(ii) radiofrequency systems, in which severe fading conditions require a high SNR value

to achieve the target level of symbol error and outage probability [62].

Motivated by this, several works have studied asymptotic channel statistics

in the high SNR regime. However, the analyses are restricted to specic fading scenar-

ios (e.g., see [65–68] and references therein). Unfortunately, these eorts do not directly

render comprehensive insights into how each physical aspect of fading impacts the sys-

tem performance in emerging wireless channels, such as in intricate 5G and 6G networks,

where machines, things, and humans mutually communicate.

In [42], in order to avoid the intricacy of the exact approach and provide

comprehensive insights into the system performance, the authors went further into the

high SNR regime and introduced an unied asymptotic characterization based on the

referred Gaussian-class general fading model, which considers an arbitrary correlation

between the multipath components. All in all, the main motivation behind that work was

to provide an unied asymptotic analysis with exact closed-form solutions for the diversity

and coding gains of wireless channels subject to all known physical aspects of fading,
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including multipath correlation. But [42] addressed rst-order statistics only. No higher-

order statistics were considered. We help ll that gap in this thesis, by asymptotically

analyzing the corresponding second-order statistics.

1.5 Summary of Contributions and Dissertation Outline

This dissertation comprises three main contributions:

1. Design a fading simulator for autocorrelated -, -, -, and --- fading

processes with arbitrary real values of all fading parameters;

2. Conduct an asymptotic analysis at high SNR for the second-order statistics of the

general Gaussian-class fading model introduced in [42]; and

3. Validate these contributions by extensive Monte Carlo simulations for new and

known wireless propagation scenarios.

To achieve these goals, in Chapter 2 we design and analyze a general and

unied simulation method for -, -, -, and --- fading channels that embraces

arbitrary real values of the -parameter. Not less important, the proposed method matches

the exact rst-order statistics of the fading models and closely approaches their second-

order statistics. Our method relies on a cascade of two simulation techniques: random

mixture [69] and rank matching [70]. This combination has proven eective for Nakagami-

 fading, a very special case of the -, -, -, and ---models [53]. Here, we extend

and rene the idea far beyond, by showing that and how a cascade of random mixture

and rank matching can be adapted to oer an improved, general, and unied simulation

framework for the -, -, -, and --- fading models. To our knowledge, there is no

other simulation method in the literature that meets theses requirements for the referred

fading models. In addition, we develop a new simple approach for optimizing the random-

mixture stage and, as a byproduct, we derive new series representations and asymptotic

coecients for essential rst- and second-order statistics of the fading models analyzed

here. These representations and coecients constitute a valuable original contribution

of this work, which can be used elsewhere in the analysis and design of communication

systems over fading channels.

In Chapter 3, we investigate the time-varying nature of Gaussian random pro-

cesses and propose an asymptotic analysis for the dynamic metrics of a general class of

fading models [42]. More specically, we provide new, simple, closed-form expressions for

fundamental second-order statistics in high SNR regime, namely, LCR and AFD. The

framework includes several Gaussian-class fading distributions as particular cases, which
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considers the correlation between the multipath components as an additional parameter.

Our analytical results are extensively validated, by reducing them to known particular

cases, such as fading channels commonly reported in the literature [19], as well as to

various correlation scenarios for the in-phase and quadrature components.

In Chapter 4, we provide several numerical and simulation results that illus-

trate the behavior of the proposed simulator in Chapter 2 and the derived asymptotic

analysis for second-order statistics in Chapter 3. Dierent fading scenarios characterized

by wireless fading channel distributions are addressed, such as -, -, -, ---, and

the general Gaussian class fading model from [42].

Chapter 5 concludes this work with nal considerations. Possible future works
for the continuity of this research are also presented.
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2 Advanced Simulation of Generalized Wire-

less Channels

The -, -, -, and --- fading models have mathematical exibility,
great t to empirical data, and increasing popularity. However, they have to date no

simulation framework as general as the models themselves. Indeed, the available simu-

lation framework is quite limited, only applicable to integer and half-integer values of

the real-valued -parameter. In this chapter, we overcome this drawback by proposing

a unied simulation method for the -, -, and - fading processes and a general

simulation framework for --- fading model that accommodate full-range values of all

fading parameters. Not less important, the proposed methods are simple, exactly match

the fading models’ rst-order statistics, and well approximate their second-order statis-

tics. This latter requirement is especially tricky, by far the most challenging, and, indeed,

a long-standing problem in fading simulation. We derive analytical expressions for rele-

vant statistics of the proposed simulation methods. Also, we optimize a crucial simulation

parameter to improve the match for the second-order statistics. In passing, we obtain use-

ful series representations and asymptotic expressions for essential rst- and second-order

statistics of the fading models investigated.

The rest of this chapter is organized as follows. In Section 2.1, the -, -,

-, and --- fading models are revisited, along with their main statistics. In Section

2.2, the traditional simulation framework for these models, called classic method, is also

revisited. The proposed simulation frameworks are detailed and statistically analyzed in

Section 2.3. The optimization of a key simulation parameter is done in Section 2.4, as

well as the required derivation of asymptotic expressions for the fading models’ target

statistics. Finally, Section 2.5 presents some conclusions. Numerical results are postponed

to Chapter 4.

This chapter contains research ndings presented in the following articles:

• V. M. Rennó and J. C. S. Santos Filho, “On the Generation of Autocorrelated -,

-, and - Fading Sequences,” IEEE Trans. Antennas Propag., 2022.

DOI: 10.1109/TAP.2022.3209206.

• V. M. Rennó and J. C. S. Santos Filho, “On The Generation of Autocorrelated

--- Fading Sequences,” in IEEE Statistical Signal Processing Workshop (SSP),

Rio de Janeiro, Brasil, Jul. 2021.

DOI: 10.1109/SSP49050.2021.9513839
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• V. M. Rennó and J. C. S. Santos Filho, “Um Simulador Aprimorado para Processos

---,” in XXXIX Simpósio Brasileiro de Telecomunicações e Processamento de

Sinais (SBrT2021), Fortaleza, Brasil, Sep. 2021. Best Paper Award.

DOI: 10.14209/sbrt.2021.1570723489.

2.1 Target Statistics

In this section, for completeness, we reproduce essential rst- and second-order

statistics of the -, -, -, and --- fading models. Later, we will rely on these

statistics to design, analyze, and nely tune our simulation framework.

2.1.1 The - Fading Model

The - distribution is a general model of short-term fading, originally pro-

posed in [21]. Its statistical behavior encompasses the non-linearity of the wireless trans-

mission medium and the clusterization of multipath radio waves. This non-linearity is

represented by a power -parameter, so that the channel envelope arises as the -th root

of the sum of squares of 2 multipath wave components [21]:

 = 

⎯⎸⎸⎷
∑

=1

2
 +

∑

=1

 2
 ˓ (2.1)

where  and  are zero-mean, independent and identically distributed (i.i.d.) Gaussian

variates, E(2

 ) = E( 2

 ) = ̂▷2, and E(·) denotes expectation.

From (2.1), the PDF of the - envelope is found as [21]

() =
−1

̂Γ() exp
−

̂


˓ (2.2)

where  ≥ 0,  > 0,  = E
2()▷V() > 0, ̂ = 


E(), Γ(·) is the gamma func-

tion [71], and V(·) denotes variance. The corresponding CDF is obtained as [21]

() = 1−
Γ

˓ 

̂



Γ() ˓ (2.3)

where Γ(·˓ ·) is the upper incomplete gamma function [71].

The time-varying dynamics of a fading channel can be characterized by second-

order statistics. Here we focus on two of these statistics: LCR and AFD. In particular,

and following a standard practice, we consider isotropic scattering and omnidirectional

reception, for which the LCR and AFD of the - fading channel are given respectively

by [21]

() =

√
2

(− 1

2
)(−

1

2
)

Γ()̂(−
1

2
)exp




̂

 (2.4)
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() =
Γ(˓  

̂
)exp




̂


̂(−

1
2)

√
2

(− 1
2)(−

1
2)

˓ (2.5)

where  is the maximum Doppler shift in Hz.

2.1.2 The - Fading Model

The - distribution is a general model that represents the short-term varia-

tions of the fading signal in a non-line-of-sight (LOS) condition [22]. It is written in terms

of two key parameters, namely  and , and may appear in two dierent formats.The -

parameter is related to the number of multipath wave clusters, whereas the -parameter

is related to the power ratio (Format 1) or correlation (Format 2) between the in-phase

and quadrature wave components. The envelope of the - fading signal can be written

as [22]

 =

⎯⎸⎸⎷
2∑

=1

2
 +

2∑

=1

 2
 ˓ (2.6)

where  and  are zero-mean Gaussian variates. In Format 1,  and  are mutually

independent, E(2
 ) = ̂▷((+1)), and E( 2

 ) = ̂▷((+1)) [19], the power ratio being

 = E(2
 )▷E(

2
 ) > 0. In Format 2,  and  are mutually correlated and have identical

variances, the correlation coecient being  = E()▷E(
2
 ) = E()▷E(

2
 ), −1 <

 < 1. For convenience, in [22] the -parameter was used in both formats and, based on it,

two auxiliary parameters were dened, namely ℎ and . In each format, these parameters

assume a dierent meaning and a dierent range of values. In Format 1, ℎ = (2+−1+)▷4

and  = (−1−)▷4; in Format 2, ℎ = 1▷(1−2) and  = ▷(1−2). These formats can

be obtained from one another via the bilinear transformation 1 = (1−2)▷(1+2), where
1 denotes the -parameter in Format 1 and 2 denotes the -parameter in Format 2.

From (2.6), the - envelope PDF is given by [22]

() =
4
√
+

1
2ℎ

Γ()− 1
2 ̂




̂

2

exp

(

−2ℎ



̂

2
)

× I− 1
2


2




̂

2

˓ (2.7)

where  ≥ 0,  = [E2(2)▷(2V(2))] × [1 + (▷ℎ)2] > 0, ̂ =

E(2), and I[·] is the

modied Bessel function of the rst kind and order  [71]. The CDF of the - envelope

is [22]

() = 1−Y




ℎ
˓

2ℎ



̂


˓ (2.8)

where

Y(˓ ) ≜
2−+ 3

2
√
(1− 2)

Γ()− 1
2

∫ ∞


2 exp


−2


I− 1

2
[2]◁ (2.9)

In [48], the LCR and AFD of the - fading channel were derived for Format 1

only. This is also the format we cover in this work. As already detailed, one format can be
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converted into another. For isotropic scattering and omnidirectional reception, the LCR

of - fading is obtained as [48]

() =


√
((1 + ))2−

1
2

22−2Γ2()




̂

4−1 ∫ ▷2

0
(sin(2))2−1


1 +  − (1− ) cos(2)×

exp

(

−((1 + )2 + (1− 2) cos(2))

2




̂

2
)

˓

(2.10)

and the AFD is obtained from its general representation as

() =
()

()
˓ (2.11)

in which (·) is given by (2.8), and (·), by (2.10).

2.1.3 The - Fading Model

For a LOS condition, the short-term variations of the fading signal can be

modeled by the - distribution [22]. Its statistical behavior is governed by the parameters

 and . The former describes the ratio of the total power of the dominant components

to the total power of the scattered waves, and the latter is related to the number of

multipath clusters. In this fading model, all scattered waves have identical powers, but

in each cluster there is an arbitrary dominant component. Accordingly, the - fading

envelope can be described as [22]

 =

⎯⎸⎸⎷
∑

=1

( + )
2 +

∑

=1

( + )
2˓ (2.12)

where  and  are zero-mean i.i.d. Gaussian variates, with E(2
 ) = E( 2

 ) = ̂▷(2(+

1)) [19]. The parameters  and  are respectively the mean values of the in-phase and

quadrature components of the -th multipath cluster. By letting 2
 ≜ 

=1 
2


and 2 ≜


=1 
2

, and by the meaning of the -parameter, we have 2 + 2 = ̂▷(+ 1) [19,22].

From (2.12), the - envelope PDF is given as [22]

() =
2(1 + )

+1
2


−1
2 exp()̂




̂



exp

(

−(1 + )



̂

2
)

I−1


2


(1 + )



̂


˓ (2.13)

where  ≥ 0,  > 0,  = [E2(2)▷V(2)]× [(1 + 2)▷(1 + )2] > 0 and ̂ =

E(2). The

corresponding CDF is obtained as [22]

() = 1−Q

√
2˓


2(1 + )



̂


˓ (2.14)

where Q[·˓ ·] is the generalized Marcum- function [72].
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The LCR and AFD of the - fading channel were derived in [49] for the

isotropic scenario, respectively, as

() =

√
2(1 + )


2


−1
2 exp()̂




̂



exp

(

−(1 + )



̂

2
)

I−1


2


(1 + )



̂


(2.15)

() =
1−Q

[√
2˓


2(1 + ) 

̂

]

√
2(1 + )


2



̂


exp


−(1 + )



̂

2


−1
2 exp()

I−1

[

2

(1 + ) 

̂

] ◁ (2.16)

2.1.4 The --- Fading Model

The --- envelope  can be written as [19, Eq. (9)]

 =
∑

=1

( + )
2 +

∑

=1

( + )
2 ˓ (2.17)

where  > 0 represents the nonlinearity of the transmission medium; {}

=1 and {}



=1

are zero-mean, mutually independent Gaussian processes with variances 2
 and 2

, re-

spectively;  and  are respectively the mean values of the in-phase and quadrature

components of the -th multipath cluster; and  and  are respectively the number

of multipath clusters for the in-phase and quadrature components. Then, the rst- and
higher-order statistics of  can be obtained in terms of in-phase parameters (, , and

) and quadrature parameters (, , and ). This is the so-called Raw Parameteriza-

tion [19].

It is sometimes convenient to write the rst- and higher-order statistics of  in

terms of physical parameters found elsewhere in the literature. For instance, the following

parameters, in which  denotes either  or  conveniently described in terms of in-phase

and quadrature signals, can be used:  > 0, dened as the ratio of the total power of

the dominant components to the total power of scattered waves, i.e.,  = 2▷(
2
); and

̂2 > 0, dened as the mean value E(), given as a function of the power of the multipath

clusters and the power of the dominant components, i.e., ̂2 = 
2
 + 2. This is the

so-called Local Parameterization [19]. Note that the --- envelope  to the power of

 (i.e., ) can be written as the sum of two - powers with parameters (, ▷2, ̂)

and (, ▷2, ̂).

Additionally, the rst- and higher-order statistics of  can be represented in

terms of the so-called Global Parameterization [19]. In this case, the following parameters

are used: (i)  > 0 denotes the nonlinearity of the transmission medium; (ii)  > 0,

dened as the ratio of the total power of the in-phase scattered waves to the total power

of the quadrature scattered waves, i.e.,  = 
2
▷(

2
); (iii)  > 0, dened as the ratio



Chapter 2. Advanced Simulation of Generalized Wireless Channels 37

of the total power of the dominant components to the total power of the scattered waves,

i.e.,  = (2 + 2)▷(
2
 + 

2
); (iv)  > 0, dened as the total number of multipath

clusters, i.e.,  = ( + )▷2; (v)  > 0, dened as the ratio of two ratios, namely the

ratio of the power of the dominant components to the power of the scattered waves of the

in-phase signal and its counterpart for the quadrature signal, i.e.,  = 2


2
▷(

2


2
);

(vi)  > 0, dened as the ratio between the number of multipath clusters of the in-

phase and quadrature signals, i.e.,  = ▷; and (vii) ̂ > 0, dened as 


E(), i.e.,

̂ = 
2
 + 2 + 

2
 + 2.

In [19], the --- rst-order statistics, that is, its PDF and CDF, were intro-

duced. Later on, in [73], new ecient representations were provided for these statistics. In

particular, to the analysis that follows, we shall use a series representation of the ---

PDF, obtained as [73]

() =
()

exp

(1+)




(





)

1+ −1

̂
exp

(

−


̂

) ∞∑

=0

(

(− )

̂

)

×




1+
−1



(



( − )

)

0̃1

(

;+ ;
22

̂

)

˓

(2.18)

where  ≥ 0,  = (1 + )(1 + )▷(1 + ),  = (1 + )(1 + )▷(1 + ), 0̃1(; ; ) is the

regularized hypergeometric function [71], and 
() is the generalized Laguerre Polyno-

mial [71, Eq. (22.3.9)]. Likewise, the --- CDF is obtained as [73]

() = exp

−


(





)


1+ ∞∑

=0

(

1− 



)




1+
−1



(



( − )

)

×

⎛
⎝1−+

⎛
⎝
√
2


˓



̂


2

√
2



⎞
⎠
⎞
⎠ ◁

(2.19)

In [38], key second-order statistics, including the LCR and AFD, were ob-

tained for --- fading. Alternative formulas were presented in [50], including a series

representation we shall use for the LCR, given as

() =
2


−Ψ̈(0)()−

1
2

√
(1 + ) exp


(1+)




(





)
1
2
− 

1+ (−
1
2
)

̂(−
1
2
)
exp

(

−


̂

) ∞∑

=0

∞∑

=0

1

!

(

22

̂

)

×

(

(− )

̂

)




1+
−1



(

− 

(− )

)

2̃1

(

−1

2
˓ +



1 + 
;  + + ; 1− 

2

)

˓

(2.20)

where 2̃1(; ; ;) is the regularized form of Gauss’s hypergeometric function [71, Eq.

(15.1.1)], Ψ̈(·) is the second time derivative of the autocorrelation function, and  denotes

the in-phase–quadrature imbalance of the referred derivative, as detailed in [50]. Con-

sequently, 2(−Ψ̈(0))1▷2 = (−Ψ̈(0))
1▷2 + (−Ψ̈(0))

1▷2 and  = (−Ψ̈(0))
1▷2▷(−Ψ̈(0))

1▷2.
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Here we consider the isotropic scenario, for which Ψ̈(0) = −222
 , where  is the

maximum Doppler shift, and  can be  or  for in-phase and quadrature components,

respectively. Finally, the --- AFD is obtained from its general representation as in

(2.11), where () and () are given by (2.19) and (2.20), respectively.

As mentioned, the --- distribution includes most other fading models as

special cases, as detailed in [19, Section VI].

2.2 Classic Simulation Framework

The classic framework for generating random sequences that fulll the rst-
and higher-order statistics of the -, -, -, and --- fading channels is to mir-

ror their physical models based on Gaussian components, as in (2.1), (2.6), (2.12), and

(2.17), respectively [19, 21, 22]. The Gaussian sequences are individually generated using

any established technique and are then combined as in the models [74]. This simulation

framework is shown in Fig. 2.1, which can be specialized for each of the fading models

covered here, as detailed in Table 2.1.

However, since the number of Gaussian input components is obviously discrete,

the classic simulation framework only applies to integer and half-integer values of the

-parameter. This is a severe limitation in practice. The real-valued nature of the -

parameter is largely responsible for the great exibility of the -, -, -, and ---

distributions and for their notable t to empirical fading data. For example, non-integer

values of the -parameter are known to occur if there exists (i) a nonzero correlation

between the clusters of multipath waves, (ii) a nonzero correlation between the in-phase

and quadrature components, or (iii) any degree of non-Gaussianity in these components.

Moreover, electromagnetic scattering is known to occur continuously throughout surfaces,

and not at discrete points. Indeed, non-integer numbers of multipath clusters have been

detected empirically and extensively reported in the literature [28–31,33–35,38].

Let us briey review the big picture. The physical models of -, -, -,

and --- fading in (2.1), (2.6), (2.12), and (2.17) can be used (as they have been) as

a simulation framework, but this approach only holds for integer and half-integer values

of the -parameter. In contrast, those physical models give rise to rst- and second-order

statistics, namely (2.2)–(2.5), (2.7)–(2.11), (2.13)–(2.16), and (2.18)–(2.20), that have no

constraints to be used (as they have been) for arbitrary real values of the -parameter

and, most importantly, only if so used they fully shine when applied to practical wireless

channels. Next, we provide a simulation framework that addresses this need.
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Figure 2.1 – The classic simulation framework for -, -, -, and --- fading.

Table 2.1 – Parameterization of fading models for the classic simulator.

Fading Models      E () E () E


2




E


 2




-  0 0   0 0 ̂

2
̂

2

- 2 0 0 2 2 0 0 ̂2

((+1))
̂2

((+1))

- 2     0 0 ̂2

(2(+1))
̂2

(2(+1))

---      0 0
(+1)̂

(2(+1)(+1))
(+1)̂

(2(+1)(+1))

2.3 Proposed Simulation Framework

In this section, we propose a general and unied simulation framework for -

, -, and - fading channels, illustrated in Fig. 2.2. We also propose a more general

simulation scheme for the --- fading model, illustrated in Fig. 2.3.

The proposed simulation methods share the same principle, being a cascade

of two simulation techniques: random mixture [69] and rank matching [70]. This kind

of approach was introduced in [53] for the Nakagami- channel, a particular case of

the -, -, -, and --- fading scenarios. Our proposal, in both cases, not only

adequately reproduces the rst- and second-order statistics of these fading processes, but

also removes a critical limitation of the classic simulation method by accommodating

arbitrary real values of the -parameter. As far as we know, there is to date no simulation

scheme for the referred fading models with all those features combined.

A block diagram of the proposed simulation framework is depicted in Fig. 2.2,

for the -, -, and - fading channels, and in Fig. 2.3, for the --- fading channel.

These simulation schemes will be described and analyzed in the following sections.

Here, for a unied treatment of the -, -, and - (Fig. 2.2) scenarios,

let  be a placeholder parameter, with  =  for - fading,  =  for - fading, or
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Figure 2.2 – The proposed simulation framework for -, -, and - fading.
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Figure 2.3 – The proposed simulation framework for --- fading.

 =  for - fading. Accordingly, from now on, we will refer to a - channel, in which

 denotes , , or , depending on the channel model at hand. Therefore, let , , and ̂

be the desired fading parameters of an -sample - sequence to be generated. For the

--- scenario (Fig. 2.3), , , , , , , and ̂ are the desired fading parameters of

the  -sample --- sequence to be generated.

2.3.1 The Random-Mixture Stage

In this section, the random-mixture stage of the simulation schemes presented

in Fig. 2.2 and Fig. 2.3 will be discussed separately. In Sections 2.3.2 and 2.3.3, the

rank-matching stage and output statistics will be treated in a unied way. The dierence
between the simulation schemes in the random-mixture stage (cf. Fig. 2.2 and Fig. 2.3)

occurs because the --- fading model allows for dierent numbers of multipath clusters

for the in-phase and quadrature components, through the parameter , as explained and

analyzed below.
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For the case represented in Fig. 2.2, where the goal is to generate an -, -,

or - fading sequence, rst, in the random-mixture stage, two - reference sequences

are generated using the classic method described in Section 2.2. As required in that

method, these reference sequences are generated by combining (an integer number of)

Gaussian components. More precisely, one reference sequence (say, L, with “L” standing

for “lower”) is specied by rounding the desired -parameter down to the nearest integer

or half-integer value, i.e.,

L =
⌊2⌋
2
˓ (2.21)

where ⌊·⌋ denotes oor. In a similar vein, the other reference sequence (say, U, with “U”

standing for “upper”) is specied by rounding the -parameter up to the nearest integer

or half-integer value, i.e.,

U =
⌊2⌋
2

+
1

2
◁ (2.22)

For example, if the desired fading parameter is  = 1◁6, then L = 1◁5 and U = 2,

that is, L ≤  < U. In short, one - reference sequence L is generated with fading

parameters , L, and ̂, and another - reference sequence U is generated with fading

parameters , U, and ̂. Recall that  is in fact , , or , depending on the fading model

considered.

For the case represented in Fig. 2.3, in the random-mixture stage, two ---

reference sequences are generated separately through the classic method, also described

in Section 2.2. As required by that method, these reference sequences must comprise an

integer number of Gaussian components. To this end, from the desired values of  and

, the corresponding desired values of  and  are calculated using the relationships

between the Global and Raw parameterizations. Recall that, in general, , , , and 

are all real-valued. Then, one reference sequence (L) is specied by rounding  and

 down to the nearest integers, i.e., L = ⌊⌋ in-phase components and L = ⌊⌋
quadrature components. In a similar way, the other reference sequence (U) is specied by

rounding  and  up to the nearest integers, i.e., U = ⌈⌉ in-phase components and

U = ⌈⌉ quadrature components, where ⌈·⌉ denotes the ceiling operation. For these

sequences, the  and  values must be adapted accordingly, since they are the only global

parameters solely given in terms of  and . So, the L-sequence has parameters

L =
L + L

2
(2.23)

and

L =
L
L

˓ (2.24)

and the U-sequence has parameters

U =
U + U

2
(2.25)
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and

U =
U
U

◁ (2.26)

All in all, one --- reference sequence L is generated with fading param-

eters , , , L, , L, and ̂, and another --- reference sequence U is generated

with fading parameters , , , U, , U, and ̂. Note that both sequences bear an integer

number of multipath clusters for the in-phase and quadrature components. In particular,

when L = 0, L specializes to an -- sequence with parameters , , L▷2, and

̂2▷ . Similarly, when L = 0, it specializes to an -- sequence with parameters ,

, L▷2, and ̂
2▷
 . The parameters , , ̂, and ̂ are those referring to the Local

parameterization, described in Section 2.1.4.

The output sequence of the random-mixture stage in both situations described

above (say, ref) can now be formed, by concatenating the reference sequences L and

U, in any order. Of course, for ref to contain  samples, the lengths of L (say, L)

and U (say, U) must satisfy L+U =  . Let L = round (mix) and U = −L,

where 0 ≤ mix ≤ 1. Indeed, mix and 1 − mix are key simulation parameters, called

mixture probabilities. They govern the relative frequency of samples from L and U

that form ref. As a result, any statistics of ref can be written as a weighted sum of the

corresponding statistics of L and U. The weights are given by the respective mixture

probabilities, mix and 1− mix.

A central task in the random-mixture stage is to design suitable mixture prob-

abilities that render a good approximation to whatever statistics of interest. In [69], for

instance, this task was addressed for independent Nakagami- samples using a moment-

based approach, yielding

mix =
2( − )


◁ (2.27)

The scenario here is quite dierent, requiring a complete redesign of the mixture proba-

bilities as detailed in Section 2.4.

As desired, the random-mixture stage allows for arbitrary real values of all

fading parameters, including the -parameter.

A remark is in order. Even though the - channels are particular cases of the

--- channel, it is more ecient to simulate - channels using their dedicated scheme

in Fig. 2.2 than by specializing the --- scheme in Fig. 2.3, as follows. Considering a

- fading channel in the scheme shown in Fig. 2.3 and  < 1, we have L = L = 0

and U = U = 1. This results in L = 0 and U = 1, where the output of the random-

mixture stage will be the U sequence alone, with U = 1. On the other hand, when using

the dedicated method given in Fig. 2.2, if 0◁5 ≤  < 1, we have L = 0◁5 and U = 1,

where the output sequence of the random-mixture stage is formed by both L and U
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sequences. Moreover, when  < 0◁5 in Fig. 2.2, we have L = 0 and U = 0◁5, so the

output of the random-mixture stage will be the U sequence alone with U = 0◁5. Note

that U = 0◁5 is closer to the range under consideration for the desired -parameter than

if we use the scheme in Fig. 2.3, where U = 1 for the same range of -values. The point

here is that the ner tuning of L and U causes the dedicated method in Fig. 2.2 to

better t the - second-order statistics than the general method in Fig. 2.3.

2.3.2 The Rank-Matching Stage

The output of the random-mixture stage provides the input to the rank-

matching stage [70]. In this second stage, for both simulators described in Fig. 2.2 and

Fig. 2.3, a global output - or --- sequence (say, ̌) is obtained from the reference

sequence ref, coming from the random-mixture stage, and from a set of  - or ---

samples (say, I) drawn independently according to the desired fading parameters , ,

and ̂, or , , , , , , and ̂ (e.g., via the rejection method in [41]). The global output

sequence ̌ is a mere rearrangement of the samples in I, in a way that the samples in

̌ exactly match the ranking of the samples in the reference sequence ref, that is, their

minima occur in the same position, their second minima occur in the same position, and

so on. This operation is called rank matching [70]. It can be implemented in Matlab as

follows:

[ref˓ index] = sort(ref);

I = sort(I);

I(index) = I;

̌ = I◁

Notice how the random-mixture and rank-matching stages are interconnected.

Due to the random-mixture stage, ref follows either a -, -, - or --- process

with fading parameters conditioned to ref = L, with probability mix, or a -, -, - or

--- process with fading parameters conditioned to ref = U, with probability 1−mix.

Due to the rank-matching stage, whatever the value of mix, the global output sequence

̌ satises the exact rst-order statistics of the fading models with the desired fading

parameters, since ̌ is just a reordering of the samples in I [70]. However, mix aects
̌’s second- and higher-order statistics. Next, we analyze ̌’s second-order statistics in a

unied way for the -, -, -, and --- fading models as a function of mix. Then,

in Section 2.4, we optimize mix to render ̌ a good t to the exact second-order statistics

for the fading models discussed here.

As desired, the proposed cascade of random-mixture and rank-matching stages
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allows for full-range values of all -, -, -, and --- fading parameters. (See

Appendix A for an illustrative example of the proposed simulation scheme.)

2.3.3 The Output Statistics

In [58], it was demonstrated that the generation of ̌ from ref and I via the

rank-matching operation is asymptotically equivalent to the generation of ̌, from ref

alone, via the traditional inversion method, as the length  goes to innity. Therefore,
considering this asymptotic scenario (in practice,  is desirably very large), the output

̌ of the proposed simulator can be written in terms of the reference ref as

̌ = −1
 (ref

(ref)) ˓ (2.28)

where ref
(·) is the CDF of the - envelope, with parameters , ref and ̂, when the

simulator presented in Fig. 2.2 is considered, or the CDF of the --- envelope with

parameters , , , ref, ,  ref, and ̂, when the simulator shown in Fig. 2.3 is considered.

Furthermore, −1
 (·) is the inverse CDF of the fading models with desired parameters,

i.e., ,  and ̂ for the - envelope, and , , , , , , and ̂ for the --- envelope.

(Recall that, conditioned on ref = L or ref = U, the reference sequence ref produced by

the random-mixture stage is a - or --- process with fading parameters , ref, and

̂ or , , , ref, , ref, and ̂, respectively.) The CDF of the -, -, -, and ---

fading models are given by (2.3), (2.8), (2.14), and (2.19), respectively, and the inverse

CDF can be calculated numerically using any standard mathematical software.

In the analysis that follows, instead of (2.28), it is more convenient to use its

inverse relationship, in which ref is written in terms of ̌, i.e.,

ref = −1
ref


(̌)


≜ ℎref

(̌)˓ (2.29)

where (·) is the CDF of the - or --- envelope with the desired parameters and

−1
ref

(·) is the inverse CDF of the - or --- envelope with parameters from the

random-mixture stage, conditioned to ref = L or ref = U.

Now, based on (2.29), we are able to derive any statistics of ̌ in terms of the

corresponding statistics of ref. For example, ̌’s LCR and AFD are directly obtained as

̌() = ref
(ℎref

()) (2.30)

̌() = ref
(ℎref

()) ˓ (2.31)

where ref
(·) and ref

(·) are the target LCR and AFD of the fading model at hand,

given by (2.4) and (2.5) for the - channel ( = ), (2.10) and (2.11) for the - channel

( = ), (2.15) and (2.16) for the - channel ( = ), and (2.20) and (2.11) for the
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--- channel, with parameters conditioned to ref = L or ref = U. Furthermore, ℎref

is given by the denition in (2.29).

In the proposed simulator, as already discussed, the rank-matching stage is

preceded by a random-mixture stage. Then, in fact, the global statistics are provided as

a weighted sum of individual statistics when ref = L and ref = U, the weights being given

by the mixture probabilities mix and 1 − mix, respectively. Combining this with (2.30)

and (2.31), we nally obtain the output LCR and AFD of the proposed simulators as

̌() = mixL
(ℎL

()) + (1− mix)U
(ℎU

()) (2.32)

̌() = mixL
(ℎL

()) + (1− mix)U
(ℎU

()) ◁ (2.33)

2.4 Leveraging the Mixture Probabilities

In this section, we design mix to render the proposed simulation framework

an optimum t to the theoretical second-order statistics of the -, -, -, and ---

fading models.

2.4.1 Design Principle for Mixture Probabilities

From (2.32) and (2.33), it can be noticed that the mixture probability mix

directly aects the second-order statistics of the proposed simulator. As a term of com-

parison, the mixture probability in (2.27) has been originally designed in the context of

random mixture alone [69], aiming to render a good t to the Nakagami- PDF. But

in our scheme, due to the rank-matching stage, the -, -, -, and --- PDFs

are exactly attained by construction, regardless of the mixture probabilities used in the

random-mixture stage. Therefore, we can now tune these probabilities to optimize the

match for the second-order statistics, namely, LCR and AFD, as follows.

An appropriate value of mix can be selected to match the exact LCR or AFD

at any given target envelope level (say, th). This is achieved by solving (2.32) or (2.33)

for mix, yielding

mix =
(th)−U

(ℎU
(th))

L
(ℎL

(th))−U
(ℎU

(th))
or (2.34)

mix =
(th)− U

(ℎU
(th))

L
(ℎL

(th))− U
(ℎU

(th))
˓ (2.35)

where (·) and (·) are the LCRs and AFDs of the investigated fading models with the

desired fading parameters, given by (2.4) and (2.5) for the - channel, (2.10) and (2.11)

for the - channel, (2.15) and (2.16) for the - channel, and (2.20) and (2.11) for the

--- channel. Moreover, ref
(·) and ref

(·) are LCR and AFD of the models in terms
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of the fading parameters from the random-mixture stage, conditioned to ref = L and

ref = U.

In principle, one can plug into (2.34) or (2.35) any target envelope level th

for which the exact LCR or AFD should be satised. To gain insight into a suitable

choice of th, we tried initially the mixture probability as in (2.27). Even for that value

of mix, not tailored to our purpose, we observed that the overall match for the LCR and

AFD is very good. We also observed that this match is slightly worse at low envelope

levels. More importantly, it is often at very low signal levels that system outages occur in

practice. Therefore, a good choice for th is a low envelope level that best ts the outage

requirements of the application at hand and the sensitivity of the receiver in operation.

There is a hidden drawback in (2.34) and (2.35). These expressions require the

numerical evaluation of ℎref
(·), dened in (2.29) in terms of the CDF and inverse CDF for

each fading model, and the numerical evaluation of LCR and AFD for each fading model,

using the theoretical statistics presented in Section 2.1. Alternatively, in what follows,

we derive simple approximate design expressions for mix by building on the assumption

that th ≪ 1, as suitable in practice. The idea is to replace in (2.34) and (2.35) the exact

expressions of ℎref
(·), (·) and (·) by their asymptotic representations as th → 0.

Eventually, in Section 2.4.4, we obtain highly accurate, closed-form design expressions

for mix. But rst, in Sections 2.4.2 and 2.4.3, we derive the required asymptotic repre-

sentations. In fact, we derive complete Maclaurin series representations for key rst- and
second-order statistics of the -, -, and - fading models [75]. Then, by dropping

the terms beyond the rst, we obtain the desired asymptotic expressions. For the ---

fading model, we obtain the asymptotic expressions from the series representations given

in (2.19) and (2.20).

It is noteworthy that the Maclaurin series representations alone, derived here

as byproducts, turn out to be valuable original contributions of this work. These rep-

resentations can be readily used elsewhere for the analysis and design of various digital

communication systems operating over fading channels.

2.4.2 Maclaurin Series for Target Statistics

In this section we obtain the Maclaurin series representations for the CDF,

LCR, and AFD of the -, -, and - fading models. As explained, these representa-

tions shall be used in Section 2.4.4 to obtain a simple asymptotic design of the mixture

probability mix. To our best knowledge, the Maclaurin series representations presented

here are new [75]. Throughout the text, “∼” means “asymptotically equal to around zero,”

i.e., () ∼ () ⇐⇒ lim→0()▷() = 1.
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Assume that the CDF of  has a Maclaurin series representation, written as

() =
∞∑

=0


 ∼ 0

0˓ (2.36)

where  is a monotonically increasing function with respect to  and the coecients 

and  depend on the fading model considered.

Proposition 1. The Maclaurin series coecients  and  for the CDF of the -, -,

and - fading models are respectively given by

 =
(−1)+

(+ )!Γ()̂(+)
(2.37a)

 = (+ ) (2.37b)

 =
2+2(−ℎ)ℎ

(+ 2)Γ(1 + )Γ(2)




̂2

+2

2F1

(

1− 

2
˓
−
2

;+
1

2
;
2

ℎ2

)

(2.38a)

 = 2(2+ ) (2.38b)

 =
(+ 1)

+1
2


−1
2 exp()̂+1(+ )




̂


(+ 1)

2+−1 U(−˓ ˓ )()−

Γ(1 + )Γ(+ )
(2.39a)

 = 2(+ )˓ (2.39b)

where 2F1(·) is the hypergeometric function and U(·) is the conuent hypergeometric func-

tion [71].

Proof. The Maclaurin series for the PDF of the -, -, and - fading models were

provided in [76]. The Maclaurin series for the corresponding CDF can be readily obtained

by integrating the PDF series term by term. ■

Now, assume that the LCR of  also has a Maclaurin series representation,

written as

() =
∞∑

=0


 ∼ 0

0˓ (2.40)

where  is a monotonically increasing function with respect to  and the coecients 

and  depend on the fading model considered.

Proposition 2. The Maclaurin series coecients  and  for the LCR of the -, -,

and - fading models are respectively given by

 =
(−1)

√
2

+−0◁5

!Γ()̂(+−0◁5)
(2.41a)

 = (+ − 0◁5) (2.41b)
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 =


3▷2((1 + ))2−1▷2(−1)

Γ()+̂2(+2)−1


∑

=0

(1 + )2(−)−1▷2(1− 2)

(−)!2++2+2

⎛
⎝4(1 + (−1))(1 + )

Γ

1 + 

2

 3F2

(

{−1

4
˓
1

4
˓
1 +

2

}

˓
{

1

2
˓
1 +

2
+ 

}

;
(−1 + )2

(1 + )2

)

−

(−1 + (−1))(−1 + )

Γ

1+
2

 3F2

(

{

1

4
˓
3

4
˓
2 +

2

}

˓
{

3

2
˓


2
+ + 1

}

;
(−1 + )2

(1 + )2

)

⎞
⎠
⎤
⎦ (2.42a)

 = 2(+ 2)− 1 (2.42b)

 =

√
2(+ 1)


2


−1
2 exp()̂+1




̂


(+ 1)

2+−1 U(−˓ ˓ )()−

Γ(1 + )Γ(+ )
(2.43a)

 = 2(+ )− 1˓ (2.43b)

where 3F2(·) is the regularized generalized PQ hypergeometric function [71].

Proof. By considering the Maclaurin series of the exponential function [77] into the -

LCR in (2.4), we eventually obtain

() =
∞∑

=0

(−1)
√
2

+−0◁5

!Γ()̂(+−0◁5)
(+−0◁5)◁ (2.44)

From (2.44), the coecients of the Maclaurin series for the - LCR are directly given as

in (2.41).

For the - fading model, we start with a transformation of variables in the

integrand of (2.10), obtaining

() =


√
((1 + ))2−

1
2

22−2Γ2()




̂

4−1

×

∫ 1

−1

1

2


1− 2

−1
1 +  − (1− ) exp

(

−(1 + )22

2̂2

)

exp

(

−(1− 2)2

2̂2

)

d◁

(2.45)

By replacing the rightmost exponential function in the integrand of (2.45) with its Maclau-

rin series and solving the integral, we obtain

() =


3▷2((1 + ))2−
1
2√

1 + Γ()




̂

4−1

exp

(

−(1 + )22

2̂2

) ∞∑

=0

(−1)(1− 2)2

22(1++)+̂2
×

(

4(1 + (−1))(1 + )

Γ(1 + 
2
)

3F2

(

{−1

4
˓
1

4
˓
1 +

2

}

˓
{

1

2
˓
1 +

2
+ 

}

;
(−1 + )2

(1 + )2

)

−

(−1 + (−1))(−1 + )

Γ(1+
2

)
3F2

(

{

1

4
˓
3

4
˓
2 +

2

}

˓
{

3

2
˓


2
+ + 1

}

;
(−1 + )2

(1 + )2

))

◁

(2.46)
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Following a similar procedure, we substitute the remaining exponential function in (2.46)

by its Maclaurin series, which leads to

() =


3▷2((1 + ))2−
1
2√

1 + Γ()




̂

4−1 ∞∑

=0

1

!

(

−(1 + )22

2̂2

) ∞∑

=0

(−1)(1− 2)2

22(1++)+̂2
×

(

4(1 + (−1))(1 + )

Γ(1 + 
2
)

3F2

(

{−1

4
˓
1

4
˓
1 +

2

}

˓
{

1

2
˓
1 +

2
+ 

}

;
(−1 + )2

(1 + )2

)

−

(−1 + (−1))(−1 + )

Γ(1+
2

)
3F2

(

{

1

4
˓
3

4
˓
2 +

2

}

˓
{

3

2
˓


2
+ + 1

}

;
(−1 + )2

(1 + )2

))

◁

(2.47)

Finally, by grouping terms with identical exponents ( being the basis), after algebraic

manipulations we obtain

() =
∞∑

=0


3▷2((1 + ))2−1▷2(−1)

Γ()+̂2(+2)−1


∑

=0

(1 + )2(−)−1▷2(1− 2)

(−)!2++2+2
×

(

4(1 + (−1))(1 + )

Γ(1 + 
2
)

3F2

(

{−1

4
˓
1

4
˓
1 +

2

}

˓
{

1

2
˓
1 +

2
+ 

}

;
(−1 + )2

(1 + )2

)

−

(−1 + (−1))(−1 + )

Γ(1+
2

)
3F2

(

{

1

4
˓
3

4
˓
2 +

2

}

˓
{

3

2
˓


2
+ + 1

}

;
(−1 + )2

(1 + )2

))
× 2(+2)−1˓

(2.48)

from which the Maclaurin series coecients for the - LCR are promptly formulated as

in (2.42).

For the - fading model, once again we replace the exponential function and

the modied Bessel function of rst kind and (−1)-th order in (2.15) by their Maclaurin

series representations given in [77], which yields

() =

√
2(1 + )


2


−1
2 exp()̂




̂

 ∞∑

=0

1

!

(

−(1 + )2

̂2

)

×

∞∑

=0

1

!Γ(+ )

⎛
⎝

(1 + )

̂

⎞
⎠

2+−1

◁

(2.49)

By grouping terms with identical exponents, we obtain

() =
∞∑

=0

√
2(1 + )


2


−1
2 exp()̂+1

⎛
⎝

(1 + )

̂

⎞
⎠

2+−1

×

∑

=0

1

!(− )!Γ(−  + )

(

−(1 + )

̂2

)
⎛
⎝

(1 + )

̂

⎞
⎠

−2
(2.50)

Then, after algebraic manipulations, the series reduces to

() =
∞∑

=0

√
2(+ 1)


2


−1
2 exp()̂+1




̂


(+ 1)

2+−1 U(−˓ ˓ )()−

Γ(1 + )Γ(+ )
× 2(+)−1˓

(2.51)

where the Maclaurin series coecients for the - LCR become apparent as in (2.43). ■
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Finally, for the AFD, we can directly use its representation in terms of the

CDF and LCR:

() =
()

()
=

∞
=0 



∞
=0 


∼ 0
0
0−0˓ (2.52)

where , , , and  are the CDF and LCR coecients provided in Propositions 1

and 2.

2.4.3 Asymptotic Expressions for ℎref
(·)

Now, we obtain an asymptotic expression, as  → 0, for the auxiliary function

ℎref
(·) also required in (2.34) and (2.35).

As dened in (2.29), ℎref
(·) depends on the envelope CDF and its inverse

function. For  → 0, ℎref
(·) can be asymptotically expressed as

ℎref
() ∼ 0

0˓ (2.53)

where 0 and 0 can be shown to depend exclusively on the asymptotic CDF coecients,

namely, 0 and 0, provided in Proposition 1 with  = 0, for the -, -, and -

channels. For the --- fading model, one nds 0 and 0 keeping only the rst term,

with  = 0, in (2.19). After algebraic manipulations, 0 for the -, -, -, and ---

fading models are respectively obtained as

0 =

(

̂(ref−)−1Γ(ref)

ref−1
ref Γ()

)
1

ref

(2.54)

0 =

(

4−ref1−2ref

ref Γ(2ref)ℎ
−ref

1−2̂4−4refΓ(2)

)

1
4ref

(2.55)

0 =

(

exp((ref − ))Γ(ref)(+ 1)−ref

1−ref−1
ref Γ()̂2(−ref)

)
1

2ref

(2.56)

0 =

⎛
⎜⎜⎝

exp

(1+ref)ref

ref


̂ref()





 
1+ Γ(1 + ref)

exp

(1+)




̂(refref)ref


ref


refref
1+ref Γ(1 + )

⎞
⎟⎟⎠

1
ref

˓ (2.57)

and the same 0 can be found for all fading models mentioned here, such as

0 =


ref
◁ (2.58)

2.4.4 Asymptotic Design of Mixture Probabilities

Having obtained asymptotic expressions for ℎref
(·), (·) and (·) in Sec-

tions 2.4.2 and 2.4.3, we now plug them into (2.34) and (2.35) to yield simple asymptotic
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design expressions for mix, respectively as

mix ∼
0 × 0th − 0U ×


0U

0U
th

0U

0L ×

0L

0L
th

0L − 0U ×

0U

0U
th

0U (2.59)

mix ∼
0
0

× 0−0
th − 0U

0U
×

0U

0U
th

0U−0U

0L
0L

×

0L

0L
th

0L−0L − 0U
0U

×

0U

0U
th

0U−0U
˓ (2.60)

where the coecients 0 and 0 are provided in Proposition 1 with  = 0, for the -,

-, and - fading channels, and in (2.19), with  = 0, for the --- fading model; the

coecients 0 and 0 are provided in Proposition 2 with  = 0, for the -, -, and -

fading channels, and in (2.20), with  =  = 0, for the --- fading model; the coecient

0 is given by (2.54), (2.55), (2.56), and (2.57) for the -, -, -, and --- fading

channels, respectively; and, nally, the coecient 0 is given by (2.58) for all mentioned

scenarios. In (2.59) and (2.60), we added the subscript L or U to some coecients. This

subscript indicates that the coecient is calculated with fading parameters conditioned

to ref = L or ref = U, as applicable.

Let us review what happened in Section 2.4. We started by adjusting mix via

(2.34) or (2.35) to match the exact LCR or AFD at a target envelope level th. Also,

we advocated choosing in practice th ≪ 1, because real-world system outages normally

occur at very low signal levels. But there was room for improvement: (2.34) and (2.35)

require the numerical evaluation of intricate statistics. Then, building on the assumption

th ≪ 1, we replaced these statistics by their asymptotic expressions as th → 0, derived

here, leading to the approximate, yet closed-form design solutions in (2.59) and (2.60).

Remarkably, these approximate solutions prove highly accurate, even in cases where the

assumption th ≪ 1 does not hold. In passing, we derived new useful Maclaurin series

representations for the CDF, LCR, and AFD of the -, -, and - fading models,

presented in (2.37)–(2.52).

2.5 Conclusions

In this chapter, a unied sequence-generation scheme for the -, -, -, and

--- fading channels was proposed, which (i) accommodates arbitrary real values of

all fading parameters, (ii) corresponds exactly to the fading models’ rst-order statistics,
and (iii) closely approximates their second-order statistics. As far as we know, there is

no other simulation scheme that meets these requirements for the referred fading models.

The new scheme corrects a strong limitation of the classic simulation scheme, restricted

to discrete values of the -parameter, which is quite a severe, impractical constraint.

Moreover, the new scheme can be easily implemented with little consumption of time and
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memory. In order to optimize the proposed scheme, we derived asymptotic expressions

and series representations of essential fading models’ statistics. This contribution alone

can be useful in various wireless applications. We hope that our simulation framework can

serve as a practical design tool to assist in the analysis, dimensioning, and optimization

of next-generation wireless systems.

In Chapter 4, Monte Carlo simulations of second-order channel statistics will

attest the eciency of the proposed solution.
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3 Unied Asymptotic Analysis of Generalized
Wireless Channels

The dynamic nature of a random process can be characterized by means of

second-order statistics. For a broad class of Gaussian fading models, covering various phys-

ical aspects of the wireless channel, the exact analysis of these statistics yields intricate

expressions, which have been explored on a case-by-case basis for particular scenarios.

In this chapter, we provide a general asymptotic analysis of second-order statistics at

high SNR regime for the general Gaussian-class fading model introduced in [42]. The pro-

posed framework leads to simple, unied, and closed-form expressions that characterize

the impact of each physical aspect of the fading in the channel: clustering, non-linearity,

correlation, scattered waves, and dominant components. To our knowledge, the correlation

between multipath clusters has never before been analyzed for the second-order statis-

tics of a physical fading model. Our results provide a complete, practical, and intuitive

description of the dynamic behavior of the system as impacted by the various aspects of

multipath fading. We consider the general case, where each multipath cluster has real and

arbitrary values of all fading parameters, including the correlation between the clusters.

Furthermore, we particularize the analysis for various in-phase–quadrature scenarios, as

well as for some well-known fading models in the literature [19–22,27].

The remainder of this chapter is organized as follows. In Section 3.1, the Gaus-

sian class fading model explored in [42] is revisited. In Section 3.2, the asymptotic second-

order statistics of the model are derived and specialized for some particular cases. Finally,

Section 3.3 presents the main conclusions. The asymptotic expressions obtained are thor-

oughly validated in Chapter 4, both by reducing them to known particular cases and via

Monte Carlo simulations.

This chapter contains research ndings presented in the following articles:

• V. M. Rennó, F. R. A. Parente, and J. C. S. Santos Filho, “Asymptotic Analysis of

Second Order Statistics for Gaussian Class Fading Channels,” IEEE Trans. Wireless

Commun., 2023, submitted.

• V. M. Rennó, F. R. A. Parente, and J. C. S. Santos Filho, “Análise Assintótica Uni-
cada de Estatísticas de Segunda Ordem para Canais de Classe Gaussiana,” in XL

Simpósio Brasileiro de Telecomunicações e Processamento de Sinais (SBrT2022),

Santa Rita do Sapucaí, Brasil, Sep. 2022.

DOI: 10.14209/sbrt.2022.1570812932.
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3.1 Preliminaries

Ultra-reliability, low latency, and high rate communication with massively con-

nected devices are some of the desired features for the next generations of wireless sys-

tems [5–7]. It is known that mmWave communication is a key technology to enable such

characteristics [38]. Unfortunately, new propagation challenges in the mmWave band arise

as well. For instance, recent experimental results have shown that there is a high corre-

lation between multipath clusters of a wireless signal in mmWave communications, due

to a high beamforming gain and an ultra-large channel bandwidth [8]. Also, other factors

such as receiver imperfections and correlated Gaussian noise can further contribute to

deteriorate the transmitted signal [31,61].

3.1.1 Physical Model

In order to provide better performance analysis for emerging wireless scenar-

ios, the authors in [42] explored a general Gaussian class fading model. This model con-

templates dominant and scattered components with arbitrary powers propagating in a

nonlinear environment. In addition, it allows the multipath clusters to be arbitrarily cor-

related, which is a more realistic assumption. For convenience, let the power  of the

wireless communication channel be expressed by



2 =

∑

=1

2
 ˓ (3.1)

where  > 0 represents the nonlinearity of the transmission medium [19], is the number

of multipath clusters, and  ≜ [1 2 · · ·  ]T follows a multivariate Gaussian PDF

with mean vector  ≜ E() and covariance matrix Σ ≜ E


( −)( −)T


[42].

In particular, E() =  and V() = 2
 ,  ∈ {1˓ ◁ ◁ ◁ ˓}. The correlation coecient be-

tween the RVs  and  is dened as ˓ ≜ (E()− E()E()) ▷ (V()V())
1▷2.

As known, the multivariate Gaussian PDF of  can be expressed as

() =
exp

−1

2
(−)TΣ−1(−)



((2) det(Σ))
1
2

◁ (3.2)

Due to this arbitrary correlation between the fading components, the exact

analysis of the statistics of the channel  in (3.1) can result in intricate mathematical ex-

pressions, with little insight into how dierent fading aspects aect performance metrics.

For instance, the exact analysis of the PDF of  depends on a multidimensional integral

over the multivariate Gaussian PDF in (3.2). This integral can be obtained through Bren-

nan’s approach [78], and the PDF of the general Gaussian class fading model described
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in (3.1) can be calculated as

() =



2
−1

((2
2


+3) det(Σ))
1
2

∫ 

2

0

∫ 

2 −2



0
· · ·
∫ 


2 −


=3
2


0

1


=1 ||

2∑

=1

exp

−1

2
( −)TΣ−1( −)


× d22 · · ·d

2
−1d

2
 ˓

(3.3)

where  ≥ 0, 21 = 

2 −

=2 
2
 , with the vector  being dened for each  ∈ {1˓ ◁ ◁ ◁ ˓ 2}

as 1 ≜ [1 2 · · ·  ]T, 2 ≜ [−1 2 · · ·  ]T, 3 ≜ [1 − 2 · · ·  ]T, and so on for

all possible combinations of the set of components {}

=1.

To avoid the intricacy of the exact approach and provide comprehensive in-

sights into system performance, in [42] an asymptotic analysis at high SNR of the general

fading model presented in (3.1) was performed, providing simple, general, closed-form ex-

pressions for the model rst-order statistics. To accomplish this, a key concept discussed

in [62] was used, which demonstrated that the asymptote of the channel PDF around

zero determines the system performance at high SNR. Before proceeding to the analysis

for the second-order statistics, it is convenient to revisit the rst-order statistics derived
in [42].

3.1.2 First-Order Statistics

The aim is to obtain the asymptotic PDF of  in (3.3) as  → 0. To this

end, the authors in [42] derived initially the asymptotic PDF of , then of 2 ≜
[2

1 
2
2 · · · 2

 ]T, and nally the asymptotic PDF of , which depends on the sum

of 2
 for all  ∈ {1˓ ◁ ◁ ◁ ˓}. The main steps are reproduced next.

The asymptotic PDF of  can be obtained from the Maclaurin series expan-

sion in (3.2). Taking only the rst term, the asymptotic PDF of  results in

() ∼
exp

−1

2
TΣ−1



((2) det(Σ))
1
2

◁ (3.4)

For convenience, let the covariance matrixΣ be factored asΣ =  such that

Σ = diag

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

2
...



⎤
⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1˓2 ◁ ◁ ◁ 1˓

1˓2 1 ◁ ◁ ◁ 2˓
...

...
. . .

...

1˓ 2˓ ◁ ◁ ◁ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
· diag

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

2
...



⎤
⎥⎥⎥⎥⎥⎥⎥⎦
˓ (3.5)

where  is a diagonal matrix  × and  is a normalized covariance matrix [42].

Also, using the decomposition in (3.5), let  ≜ 2
 ▷

2
 , ∀ ∈ {1˓ ◁ ◁ ◁ ˓}, and  ≜
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[1▷1 2▷2 · · · ▷ ]T, such that  = −1. Thus, the PDF of  in (3.4) can

be expressed as

() ∼
exp

−1

2
T−1



((2) det())
1
2

∏

=1

1


˓ (3.6)

where det() > 0. Furthermore, through a simple transformation of variables into (3.6),

the asymptotic PDF of 2 is given by

2(2) ∼
exp

−1

2
T−1



((2) det())
1
2

∏

=1

1

||
◁ (3.7)

To determine the asymptotic PDF of  in (3.1), a key observation was made

in [79]: under certain conditions, a set of positive correlated RVs behaves asymptotically

around zero as an equivalent set of positive independent RVs. In particular, (3.7) meets

these conditions [79, eq. (5)]. Thus, let {̌2
 }


=1 be the set of independent RVs asymptot-

ically equivalent to {2
 }


=1. Comparing (3.7) with [79, eq. (5)], the asymptotic PDF of

̌2
 reduces to

̌2

(̌2 ) ∼ ˓0(̌

2
 )

˓0˓ (3.8)

in which

˓0 =
exp

− 1

2
T−1



((2) det())
1

2

∏

=1


− 1


 (3.9a)

˓0 = −1

2
◁ (3.9b)

Replacing (3.8) into [79, eq. (4)], and after some algebraic manipulations, the asymptotic

PDF of  is obtained as the convolution of the asymptotic PDFs of {̌2
 }


=1 [42] as

() ∼ ˓0
˓0˓ (3.10)

where

˓0 = 
exp

−1

2
T−1



(2+2 det())
1
2Γ(

2
)

∏

=1

1


(3.11a)

˓0 =


4
− 1◁ (3.11b)

The relationship between the power  and the envelope  of the channel is given by

 =
√
. Thus, the asymptotic PDF of the envelope  results in

() ∼ 2(
2) ∼ 2˓0

2˓0+1˓ (3.12)

where ˓0 and ˓0 are given as in (3.11).

Note that (3.12) provides a simple but comprehensive closed-form characteri-

zation of the asymptotic envelope PDF of the channel in terms of all the fading parameters



Chapter 3. Unied Asymptotic Analysis of Generalized Wireless Channels 57

of the general fading model in (3.1). The framework can give insights into how each phys-

ical fading parameter aects the performance of the wireless system at high SNR, which

is the region where communications systems often operate. This is indeed a useful tool

to analyze and optimize system design while circumventing the complexity of the exact

approach. This result will also serve as a basis for the asymptotic analysis of second-order

statistics provided next.

3.2 Asymptotic Second-Order Statistics

To provide the complete modeling of a communication medium, one must

also estimate the time-varying behavior of the wireless channel through the analysis of

the channel’s higher-order statistics. These statistics aect dynamic metrics such as the

average outage rate and duration, expressed by the LCR and AFD, respectively.

The second-order statistics discussed here concern those related to the tem-

poral derivative of the signal envelope. From the physical model in (3.1), we start by

computing the joint distribution of {̌2
 }


=1 and the time derivative of , denoted by ̇.

Then, we proceed by doing a transformation of variables to obtain the joint distribution

of , ̇, and {̌2
 }


=2. The ultimate goal is to nd the joint distribution of  and ̇

and, from that, to derive the LCR and AFD. Next we obtain new, simple, closed-form

asymptotic expressions for fundamental second-order statistics of the fading model in

(3.1). These expressions characterize the time-varying nature of the wireless channel, for

arbitrary values of fading parameters and, more importantly, when multipath clusters are

arbitrarily correlated.

3.2.1 LCR and AFD at High SNR

We start by taking the time derivative of both sides of (3.1) in terms of the

envelope  (recall that  =
√
). Isolating the time derivative ̇, we obtain

̇ =


=1 2̇

−1
˓ (3.13)

where ̇ is the time derivative of .

In [80], the relationship between the multipath components and their respec-

tive time derivatives was investigated in detail. Here, following a common practice, we

consider isotropic scattering and omnidirectional reception, for which the zero-mean Gaus-

sian RV ̇ is independent of  and has variance given by ̇2
 = 222


2
 , where  is

the maximum Doppler shift in Hertz, and 2
 is the variance of ,  ∈ {1˓ ◁ ◁ ◁ ˓} [80].

Furthermore, although the RVs in the set {}

=1 may be correlated, those in the set
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{̇}

=1 are mutually independent. In addition, we assume that  and ̇ are also in-

dependent, ∀(˓ ). Thus, given the knowledge of {}

=1, ̇ is a sum of  independent

Gaussian RVs with conditional PDF given as

̇|2
1 ˓◁◁◁˓

2

(̇|21˓ ◁ ◁ ◁ ˓ 

2
) =

1
22

̇

exp

(

−̇2
22

̇

)

˓ (3.14)

where 2
̇ =

4


=1 
2
 ̇

2



▷22−2.

In the asymptotic scenario, as detailed in Section 3.1, the set {2
 }


=1 of cor-

related RVs behaves asymptotically around zero as an equivalent set of independent RVs

{̌2
 }


=1. In this way, the joint PDF of the variables {̇˓ ̌2

1 ˓ ◁ ◁ ◁ ˓ ̌
2
} is given as

̇˓̌2
1 ˓◁◁◁˓̌

2

(̇˓ ̌21˓ ◁ ◁ ◁ ˓ ̌

2
) = ̇|̌2

1 ˓◁◁◁˓̌
2

(̇|̌21˓ ◁ ◁ ◁ ˓ ̌

2
)̌2

1
(̌21) ◁ ◁ ◁ ̌2


(̌2)˓ (3.15)

where ̌2

(·),  ∈ {1˓ ◁ ◁ ◁ ˓}, is asymptotically expressed as in (3.8). The joint PDF of

{̇˓ ˓ ̌2
2 ˓ ◁ ◁ ◁ ˓ ̌

2
} is then obtained from (3.15) through a transformation of RVs. To

this end, using ̌2
1 =  −

=2 ̌
2
 , obtained from the manipulation of (3.1) in terms of

the envelope , the joint PDF ̇˓˓̌2
2 ˓◁◁◁˓̌

2

(·˓ ·˓ ·˓ ◁ ◁ ◁ ˓ ·) results in

̇˓˓̌2
2 ˓◁◁◁˓̌

2

(̇˓ ˓ ̌22˓ ◁ ◁ ◁ ˓ ̌

2
) = −1̇˓̌2

1 ˓̌
2
2 ˓◁◁◁˓̌

2


(

̇˓  −
∑

=2

̌2 ˓ ̌
2
2˓ ◁ ◁ ◁ ˓ ̌

2


)

◁ (3.16)

In turn, the joint PDF of ̇ and  can be obtained by integrating (3.16) using Brennan’s

approach [78], leading to

̇˓(̇˓ ) =
∫ 

0

∫ −̌2

0
◁ ◁ ◁
∫ −



=3
̌2

0
̇˓˓̌2

2 ˓◁◁◁˓̌
2
−1˓̌

2

(̇˓ ˓ ̌22˓ ◁ ◁ ◁ ˓ ̌

2
−1˓ ̌

2
)

d̌22 ◁ ◁ ◁d̌
2
−1d̌

2
 ◁

(3.17)

Finally, (3.17) can be used to derive the asymptotic expressions of LCR and AFD, as

follows.

The LCR is a second-order statistic that provides the average number of as-

cending (or descending) crosses per second for a given envelope level. By denition, the
LCR of a continuous process can be calculated as [23]

() =
∫ ∞

0
̇̇˓(̇˓ )d̇◁ (3.18)

Thus, substituting the joint PDF ̇˓(·˓ ·) given in (3.17) into (3.18), with use of (3.14)–

(3.16) and the asymptotic PDF of {̌2
 }


=2 given in (3.8), after some algebraic manipula-

tions, we obtain the asymptotic LCR for the general Gaussian-class fading model as

() ∼
√
2


˓0̇1Γ(1 + ˓0)



(

−1∏

=1

Γ((1 + ˓0))

)

⎛
⎝

∏

=1

21

(

−1

2
; 1 + ˓0; (1 + ˓0); 1−

̇2


̇2
1

)

⎞
⎠× (˓0+

2−1
2

)◁

(3.19)
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This is a general closed-form solution whose elements ˓0 and ˓0 are the asymptotic

coecients given in (3.9).

The AFD of the fading signal envelope is the average time that the signal

spends below a certain envelope threshold. It is given by the ratio between the envelope

CDF and LCR, as in (2.11). Using the asymptotic CDF derived by the integration of

(3.12) and the asymptotic LCR given in (3.19), we obtain the asymptotic AFD for the

general Gaussian-class fading model as

() ∼



2
˓0

−
˓0 ̇

−1
1 Γ(1 + ˓0)

− × 2(˓0+1)−(˓0+
2−1

2
)

(˓0 + 1)
−1

=1 Γ((1 + ˓0))


=1 21


−1
2
; 1 + ˓0; (1 + ˓0); 1− ̇2



̇2
1

 ˓

(3.20)

where ˓0 and ˓0 are the asymptotic coecients given in (3.11).

The asymptotic expressions of LCR and AFD presented in (3.19) and (3.20),

respectively, provide a complete characterization for the dynamic performance of the

wireless transmission channel operating at high SNR. This characterization accounts for

arbitrary values of many fading parameters, such as the nonlinearity of the transmission

medium (), the number of multipath clusters (), the average power of the scattered

(2
 ) and dominant () waves, and, more generally than previous physical fading models

considered elsewhere, the correlation between multipath clusters (˓). All in all, the

analysis embraces, as particular cases, a broad class of fading models reported in the

literature [19], since it considers all the physical aspects considered therein, in addition

to the correlation between the multipath components.

The general scenario discussed above considers that the physical parameters

of the multipath components may assume arbitrary values. This is a general condition.

Some particular cases can be analyzed in order to further simplify the dynamic asymptotic

statistics, given in (3.19) and (3.20), of the fading channel modeled by (3.1). Next, we

analyze important particular-case scenarios and fading distributions.

3.2.2 Particular Scenarios

Recent works show that UWB channels in mmWave communications can present

a high correlation between the in-phase and quadrature components, due to the high

beamforming gain [8,13–15,43,44]. Motivated by this, we now analyze the case in which

the RVs {}

=1 in (3.1) are arranged in pairs of correlated in-phase and quadrature

components. Let x and y represent the number of in-phase and quadrature Gaus-

sian components, respectively, such that x +y =  . For convenience, the in-phase

components {}
x

=1 and the quadrature components {}

=x+1 can be organized into

a vector form as  ≜ [1 2 · · ·x
x+1 · · ·  ]T. In particular, we let the x
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in-phase components have a xed value for each fading parameter, i.e., the fading pa-

rameters reduce to  = x and  = x, ∀ ∈ {1˓ ◁ ◁ ◁ ˓x}. Similarly, we assume that

the fading parameters of the y quadrature components are such that  = y and

 = y˓∀ ∈ {x + 1˓ ◁ ◁ ◁ ˓}. As for the correlation coecients between the RVs in ,

we investigate three dierent scenarios.

3.2.2.1 Correlated In-Phase–Quadrature Components

The rst scenario considers that (i) any pair of in-phase components has a

xed value for the correlation coecient (x), (ii) any pair of quadrature components has

a xed value for the correlation coecient (y), and (iii) there is a non-zero xed cross-

correlation between any pair of in-phase and quadrature components (). In this case, the

correlation coecients can be expressed as

˓ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x˓ if {˓ } ∈ {1˓ ◁ ◁ ◁ ˓x};

y˓ if {˓ } ∈ {x + 1˓ ◁ ◁ ◁ ˓};

˓ otherwise.

(3.21)

For this scenario, the normalized covariance matrix reduces to

 =

⎡
⎣x

+ x

x

1x×y

1y×x
y

+ y

y

⎤
⎦ ˓ (3.22)

where  is the identity matrix, 1 is the unitary matrix whose all elements are equal to 1,

and  is the complement of the identity matrix, i.e.,  ≜ 1 − . Given the covariance

matrix  in (3.22), we nd after algebraic manipulations that (see Appendix B.1)

det() =
(1− x)

x−1(1− y)
y−1

((1 + (x − 1)x)(1 + (y − 1)y)−xy2)
−1 ◁ (3.23)

Since we have the condition det() > 0 in (3.6), it follows that x ∈


xy2

1+y(y−1)
− 1


1
x−1

˓ 1

,

y ∈


xy2

1+x(x−1)
− 1


1
y−1

˓ 1

, and  < ((1+x(x−1))(1+y(y−1))(xy)

−1)1▷2.

Furthermore, in such case, the entry at the th line and th column of the inverse matrix

−1, say ˓, is found as (see Appendix B.2)

˓ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1+x(x−2))(y(1−y)−1)+(x−1)y2

(x−1)((1+(x−1)x)(1+(y−1)y)−xy2)
˓ if  = ˓ {˓ } ∈ {1˓ ◁ ◁ ◁ ˓x}

x(1+(y−1)y)−y2

(x−1)((1+(x−1)x)(1+(y−1)y)−xy2)
˓ if  ̸= ˓ {˓ } ∈ {1˓ ◁ ◁ ◁ ˓x}

(1+y(y−2))(x(1−x)−1)+(y−1)x2

(y−1)((1+(y−1)y)(1+(x−1)x)−xy2)
˓ if  = ˓ {˓ } ∈ {x + 1˓ ◁ ◁ ◁ ˓}

y(1+(x−1)x)−x2

(y−1)((1+(y−1)y)(1+(x−1)x)−xy2)
˓ if  ̸= ˓ {˓ } ∈ {x + 1˓ ◁ ◁ ◁ ˓}

−
((1+(x−1)x)(1+(y−1)y)−xy2)

˓ otherwise.

(3.24)
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Substituting these results into (3.19) and (3.20), the asymptotic LCR and AFD for the

Gaussian-class fading model with correlated in-phase and quadrature components are

respectively obtained as

() ∼
√
 exp


−1

2
T−1



2

2
−1x−1

x 
y
y Γ(

2
)((1− x)x−1(1− y)y−1

×


=x+1 21


−1
2
; 1
2
; 
2
; 1− 2

y

2
x


× (

−1
2 )

((1 + (x − 1)x)(1 + (y − 1)y)−xy2))
1
2

(3.25)

() ∼



2


√
x


=x+1 21


−1
2
; 1
2
; 
2
; 1− 2

y

2
x

 ˓ (3.26)

where, after the necessary simplications, the T−1 matrix is given by

T−1 =
xx(1 + (y − 1)) + yy(1 + (x − 1)x)− 2


xyxy

((1 + (x − 1)x)(1 + (y − 1)y)−xy2)
◁ (3.27)

For ease of notation we use x ≜ 2
x▷

2
x and y ≜ 2

y▷
2
y.

3.2.2.2 Uncorrelated In-Phase–Quadrature Components

The second scenario is similar to the rst one, but now we consider that there

is no cross-correlation between the in-phase and quadrature components, i.e., the in-

phase and quadrature components are mutually independent. In this case, the correlation

coecients are given as

˓ =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x˓ if {˓ } ∈ {1˓ ◁ ◁ ◁ ˓x};

y˓ if {˓ } ∈ {x + 1˓ ◁ ◁ ◁ ˓};

0˓ otherwise.

(3.28)

For this case, the normalized covariance matrix reduces to

 =

⎡
⎣x

+ x

x

0x×y

0y×x
y

+ y

y

⎤
⎦ ˓ (3.29)

where 0 is the null matrix. After algebraic manipulations, we nd that det() = (1 −
x)

x−1(1−y)y−1(1+ (x− 1)x)(1+ (y− 1)y) (See Appendix B.3) . The condition

det() > 0 in (3.6) then implies that x ∈


1
1−x

˓ 1

and y ∈


1

1−y
˓ 1

. In such a

case, the entry at the th line and th column of the inverse matrix −1 reduces to (see
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Appendix B.4)

˓ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1+x(x−2)
(1−x)(1+x(x−1))

˓ if  = ˓ {˓ } ∈ {1˓ ◁ ◁ ◁ ˓x}

−x
(1−x)(1+x(x−1))

˓ if  ̸= ˓ {˓ } ∈ {1˓ ◁ ◁ ◁ ˓x}

1+y(y−2)
(1−y)(1+y(y−1))

˓ if  = ˓ {˓ } ∈ {x + 1˓ ◁ ◁ ◁ ˓}

−y
(1−y)(1+y(y−1))

˓ if  ̸= ˓ {˓ } ∈ {x + 1˓ ◁ ◁ ◁ ˓}

0˓ otherwise.

(3.30)

Using these simplications into (3.19) and (3.20), the corresponding asymp-

totic LCR and AFD for this scenario are respectively given by

() ∼
√
 exp


−1

2
T−1


=x+1 21


−1
2
; 1
2
; 
2
; 1− 2

y

2
x


× (

−1
2 )

2

2
−1x−1

x 
y
y Γ(

2
)((1− x)x−1(1− y)y−1(1 + (x − 1)x)(1 + (y − 1)y))

1
2

(3.31)

() ∼



2


√
x


=x+1 21


−1
2
; 1
2
; 
2
; 1− 2

y

2
x

 ˓ (3.32)

where, after the necessary algebraic manipulations, we have

T−1 =
xx

(1 + (x − 1)x)
+

yy
(1 + (y − 1)y)

◁ (3.33)

The two scenarios detailed above can be further particularized. For example,

assuming thatx =y =▷2, one can consider the scenario in which there is correlation

only between the th in-phase and the th quadrature components. In such case, the

physical model is represented by



2 =

▷2∑

=1


2

I
+2

Q


˓ (3.34)

and the covariance matrix  reduces to

 =

⎡
⎣ ▷2 ▷2

▷2 ▷2

⎤
⎦ ˓ (3.35)

where the detailed analysis for the asymptotic LCR and AFD expressions has been omitted

for brevity. Note that our results simplify the analysis of the general expressions in (3.19)

and (3.20) for emerging communication schemes, such as in mmWave applications [8,13–

15,43,44].

3.2.2.3 Commutative Scenario

In high-rate, low-range indoor scenarios expected for future generations of

wireless communications, the physical parameters of all multipath clusters may assume
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the same value [23, 44, 81]. In this scenario, the fading parameters reduce to  = ,

 = , and ˓ = , ∀ ̸= . Accordingly,  = 2▷2. In [42], it was shown that in this

scenario det() = (1− )−1(1 + ( − 1)). The condition det() > 0 in (3.6) implies

that  ∈


1
1−

˓ 1

. In such a case, the entry at the th line and th column of the inverse

matrix −1 can be obtained as (see [42, Appendix])

˓ =

⎧
⎪⎨
⎪⎩

1+(−2)
(1−)(1+(−1))

˓ if  = ;

−
(1−)(1+(−1))

˓ otherwise.
(3.36)

Using these simplications into (3.19) and (3.20), the asymptotic LCR and

AFD for the commutative scenario are given by

() ∼


√
(1− )

1−
2 exp


−

2(1+(−1))



Γ


2


−12


2
−1(1 + ( − 1))

1
2

(
−1

2
) (3.37)

() ∼



2


√


◁ (3.38)

The analysis discussed here provides relevant information about the dynamic

performance of the system in terms of each physical fading parameter when all components

have the same characteristics. This contributes to the modeling of wireless communication

channels in promising indoor technologies [8, 44].

3.2.3 Particular Fading Models

A large number of statistical models from the literature is used to describe the

randomness of the short-term fading [19]. Many of them assume independence between the

multipath clusters or between the corresponding in-phase and quadrature components—

a less comprehensive scenario than the one considered here. As already mentioned, the

exact mathematical analysis of the channel statistics becomes increasingly complicated as

more aspects of fading are incorporated into the model. To overcome such limitation, it is

convenient to asymptotically analyze the dynamic statistics of fading channels popularly

discussed in the literature, which turn out to be particular cases of the general Gaussian-

class fading model discussed herein.

To characterize the asymptotic dynamic behavior of the wireless channel at

high SNR for a broad class of distributions, we reduce our analysis presented in (3.19)

and (3.20) to some particular cases. In Table 3.1, we provide the closed-form asymptotic

expressions of LCR and AFD for some fading models reported in the literature [19–22,27].

In this table, (i) the rst column lists the fading models under consideration, (ii) the

second column contains the original parameterization of the model, (iii) the third column
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shows how the parameters of the general fading model in (3.1) are chosen to obtain

each particular model, (iv) the fourth column gives the asymptotic LCR expressions, and

(v) the fth column gives the asymptotic AFD expressions. Even though these second-

order statistics are given in terms of the original parameterization (second column), the

third column shows the correspondence in terms of the parameters considered here (,

 , , and ). The omitted parameters have a trivial equivalence (see [19, Sec. VI]

for more details on fading models parameterization). For example, the correspondence

for  is not shown in the third column when the nonlinearity parameter is the same

parameter for some particular fading model, such as - and ---. Furthermore, as

the particular models assume that the multipath components are mutually independent,

the corresponding correlation coecients are null, that is, ˓ = 0, ∀ ̸= , omitted in

the table for simplicity. Finally, it is noteworthy that the real -parameter of known

fading distributions is a physical continuous version of the number of multipath clusters,

represented here by the integer -parameter [19–22,27].

The results in Table 3.1 show that the unied analysis of second-order statistics

proposed herein can be simplied and explored for several fading models addressed in the

technical literature. So, one can determine the asymptotic dynamic performance, in terms

of LCR and AFD, for dierent propagation scenarios and fading distributions. These

results are indeed novel and can be readily applied to the performance analysis of a broad

variety of communication channels.

3.3 Conclusions

The exact formulation of the dynamic statistics that model the wireless com-

munication channel is challenging, as the expressions are usually given as a function of

several integrals.

In this chapter, a general, simple, and unied asymptotic analysis of the wire-

less communication systems’ dynamic performance over fading channels was proposed.

Asymptotic expressions were derived in closed form for key second-order statistics of gen-

eral Gaussian class distributions. The analysis considered the most diverse physical fading

phenomena described in the literature, including the correlation between multipath com-

ponents, a realistic assumption for emerging applications. The analytical expressions were

analyzed and reduced to special-case propagation conditions, including particular fading

models in the literature and various correlation scenarios for the in-phase and quadrature

components.

The proposed analysis can provide useful information on how each fading pa-

rameter aects the dynamic performance of wireless systems operating at high SNR.
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The results can be readily used to evaluate and optimize applications that are subject

to dierent propagation conditions, such as those envisaged for emerging communication

systems.

The analytical results are validated through Monte Carlo simulations for sev-

eral fading scenarios in Chapter 4.
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4 Numerical and Simulation Results

This chapter presents several numerical results that illustrate the behavior

of the second-order statistics addressed in this work, namely LCR and AFD, for the

dierent fading scenarios investigated in the previous chapters. Theoretical and simulation

results of the second-order statistics are provided in Section 4.1 for the simulation schemes

proposed in Chapter 2 for the -, -, -, and --- fading channels. Additionally,

in Section 4.2, theoretical, simulation, and asymptotic results are provided for the general

Gaussian-class fading model analyzed in Chapter 3.

4.1 Simulation Results for the Proposed Simulation Framework

In this section, we present analytical and empirical statistics of the proposed

simulation scheme for the -, -, -, and --- models, with dierent values of the
fading parameters. Our aim is not to discuss the fading models’ statistics themselves; a

thorough discussion has already been presented in [19,21,22]. Instead, our aim is to illus-

trate, for a wide range of scenarios, how closely the statistics of the proposed simulation

scheme, described in Chapter 2, approximate the theoretical fading models’ statistics.

Since the match for rst-order statistics is perfect by design, here we only cover the

second-order statistics (LCR and AFD).

The LCR is shown in Fig. 4.1-(a), Fig. 4.2-(a), and Fig. 4.3-(a), and the AFD,

in Fig. 4.1-(b), Fig. 4.2-(b), and Fig. 4.3-(b). The fading models’ statistics are represented

by solid lines, given by (2.4) and (2.5) for - fading, (2.10) and (2.11) for - fading,

(2.15) and (2.16) for - fading, and (2.20) and (2.11) for --- fading. The proposed

simulator’s analytical statistics, given by (2.32) and (2.33), are represented by dashed

lines, and their empirical counterparts (i.e., obtained via simulation) are represented by

markers. In all simulations, we used  = 107 samples. For the mix calibration via (2.59)

and (2.60), we use somewhat arbitrarily a normalized envelope level of th▷̂ = −25 dB.

In all simulated scenarios, in the random-mixture stage, the autocorrelated

Gaussian components of the physical fading models were generated according to the tra-

ditional Jakes/Clark model [74]. In the rank-macthing stage, the independent samples

with the desired fading parameters of each fading channels were generated through the

rejection method proposed in [82].

We select the sample scenarios as follows. In Fig. 4.1-(a) and Fig. 4.1-(b), the

unied - simulator, described in Chapter 2.3 and illustrated in Fig. 2.2, was used in a
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worse-than-Rayleigh condition, i.e., with Nakagami- fading parameter ≜ E
2(2)▷V(2)

less than unity ( < 1). In Fig. 4.2-(a) and Fig. 4.2-(b), we consider a better-than-

Rayleigh condition for the same - simulator, i.e.,  > 1. Both conditions are common

in practice [28–31,33–35]. Then, for each scenario, we pick two cases:  <  and  > .

In each case, the same values of  and  are used for the -, -, and - fading models.

Based on these values, the corresponding values of  are adjusted using [21]

 =
Γ2

+ 2





Γ()Γ

+ 4




− Γ2


+ 2



 ˓ (4.1)

and the corresponding values of  are adjusted using [22]

 = 2

(

1 +



ℎ

2)−1

˓ (4.2)

where  and ℎ are dened in Section 2.1.2, depending on the format in which the -

distribution is used. Finally the corresponding values of  are adjusted using [22]

 =
(1 + )2

1 + 2
◁ (4.3)

On the other hand, in Fig. 4.3-(a) and Fig. 4.3-(b) the proposed --- simu-

lator, described in Chapter 2.3 and illustrated in Fig 2.3, was used. The results were found

with a set of randomly selected parameters, covering several fading scenarios [19,38].

It is observed from the gures that the analytical and empirical statistics for

the proposed simulation schemes perfectly match each other, as expected. In addition, it is

observed that, in general, the simulator’s statistics maintain an excellent agreement with

the fading models’ statistics over the whole range of envelope values, becoming practically

indistinguishable as the -parameter increases.

A remark is in order. In Fig. 4.1, Fig. 4.2, and Fig. 4.3, note that, for  ≥ 0◁5,

an exact match is achieved between the models’ statistics and the proposed simulator’s

statistics at envelope level th, as desired. On the other hand, the match is no longer

exact for  < 0◁5 (see scenarios with  = 0◁46 in Fig. 4.1, and  = 0◁45 in Fig. 4.3). This

is because, if  < 0◁5 (or, in the --- case,  < 1 and  < 1), then L = 0 and

U = 0◁5 (or, in the --- case, U = 1), causing the input reference sequence L in

the random-mixture stage to be null. In such a case, the best thing we can do is to choose

U alone as the output of the random-mixture stage or, equivalently, choose mix = 0.

But then, of course, we can no longer adjust mix to match the exact statistics at any

target envelope level. Hence the imperfect t at th. It is noteworthy, however, that even
in those extreme, unlikely cases where  < 0◁5 (or  < 1 and  < 1), the overall t is
still very good, with the proposed simulator mimicking the general shape of the fading

models’ statistics.
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Refer to the legend in Fig. 4.1-(b) below.
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Figure 4.1 – LCR and AFD of the proposed -, -, and - simulator versus theoretical
fading model’s statistics in a worse-than-Rayleigh condition.(fading model:
solid; proposed simulator, analytical: dashed; proposed simulator, empirical:
markers).
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Refer to the legend in Fig. 4.2-(b) below.
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Figure 4.2 – LCR and AFD of the proposed -, -, and - simulator versus theoretical
fading model’s statistics in a better-than-Rayleigh condition. (fading model:
solid; proposed simulator, analytical: dashed; proposed simulator, empirical:
markers).
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Refer to the legend in Fig. 4.3-(b) below.
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Figure 4.3 – LCR and AFD of the proposed --- simulator versus theoretical fad-
ing model’s statistics. (fading model: solid; proposed simulator, analytical:
dashed; proposed simulator, empirical: markers).
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To our best knowledge, the simulation framework proposed here is the only

available solution to date for generating autocorrelated sequences of -, -, -, and

--- fading processes with real arbitrary values of the -parameter, as well as of all

other fading parameters.

4.2 Numerical Results for the Proposed Asymptotic Analysis

In this section, considering particular fading models and various correlation

scenarios for the in-phase and quadrature components, the asymptotic expressions of LCR

and AFD derived in Chapter 3.2 for a general Gaussian-class fading model are validated

through Monte Carlo simulations.

Initially, a sequence of  = 107 realizations was generated for each autocor-

related Gaussian multipath cluster ,  ∈ {1˓ ◁ ◁ ◁ ˓}, with zero mean, forming an array

 of dimension× . The autocorrelation of each sequence  was adjusted according

to the traditional Jakes/Clark model [74]. So, the mean vector  and the covariance ma-

trix Σ were included via  =  +, where  is the Cholesky decomposition of the

covariance matrix, that is, Σ = T [83, 84]. Finally, the  lines of  were combined

as in (3.1), resulting in a 1× sequence for the channel power  and for the envelope ,

since  =
√
. Using the -sequence, the empirical LCR and AFD were then calculated.

The LCR is shown in Fig. 4.4-(a), Fig. 4.5-(a), and Fig. 4.6-(a), and the AFD,

in Fig. 4.4-(b), Fig. 4.5-(b), and Fig. 4.6-(b). In these gures, (i) the asymptotic ana-

lytical solutions are represented by solid lines, (ii) the simulation results are represented

by markers, and (iii) the theoretical expressions, numerically calculated by Brennan’s

method [78], are represented by dashed lines.

In Fig. 4.4-(a) and Fig. 4.4-(b), which share the same legend, some well-known

fading distributions are illustrated [19,23]. The asymptotic expressions depicted are those

presented in Section 3.2.3. Fig. 4.5-(a) and Fig. 4.5-(b) consider the commutative scenario,

described in Section 3.2.2.3, where the asymptotic solutions of the LCR and AFD are

given by (3.37) and (3.38). Finally, the correlated and uncorrelated in-phase–quadrature

scenarios, described in Section 3.2.2.1 and 3.2.2.2, are illustrated in Fig. 4.6-(a) and

Fig. 4.6-(b), in which the asymptotic analytical expressions of the LCR and AFD are

given by (3.31), (3.25), (3.32), and (3.26). In all scenarios considered, the fading parame-

ters were chosen at random.

Observe that, in the asymptotic region ( → 0), the analytical and simulated

statistics coincide perfectly with each other for all the fading scenarios, as expected. In

addition, the asymptotic expressions have a good overall t for  < 0 dB, the region that
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Figure 4.4 – Analytical-asymptotic (solid lines), simulated (markers), and theoretical
(dashed lines) LCR and AFD for known particular cases of the Gaussian-
class fading model.
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Figure 4.5 – Analytical-asymptotic (solid lines), simulated (markers), and theoretical
(dashed lines) LCR and AFD for the commutative scenario of the Gaussian-
class fading model.
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Figure 4.6 – Analytical-asymptotic (solid lines), simulated (markers), and theoretical
(dashed lines) LCR and AFD for various in-phase–quadrature scenarios of
the Gaussian-class fading model.
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governs the high SNR (average) performance [62], most important in practical wireless

applications. Moreover, the asymptotic statistics derived here were implemented simply

and quickly for all scenarios.

The asymptotic expressions provided here for the dynamic fading metrics were

validated for dierent propagation scenarios, proving to be a practical and useful tool to

help model wireless channels in emerging applications.

4.3 Conclusions

In this chapter, the main goal was to show the applicability of the advanced

simulation scheme and the unied asymptotic analysis proposed in Chapters 2 and 3,

respectively, for several known fading scenarios such as -, -, -, and ---, as

well as for more general scenarios such as the Gaussian-class fading model in (3.1). Monte

Carlo simulations attested the eciency of the proposed solutions.

The simulation scheme and the unied asymptotic analysis proposed in this

work for the dierent fading environments were both validated through well-known second-

order statistics, namely LCR and AFD. To this end, the output sequence of the proposed

simulator and the asymptotic statistics were compared with the theoretical statistics of

the analyzed fading models. Several fading scenarios were addressed and, in all cases, the

simulation results and the asymptotic analysis coincided with the fading model’s theoret-

ical statistics.

The simulation framework proposed here produces fading samples that mimic

the dynamic behavior of the communication channel for arbitrary real values of the fading

parameters, including the -parameter. As far as we know, this is the only existing sim-

ulation scheme that considers the rst- and second-order statistics of the -, -, -,

and --- fading models while covering arbitrary real values for all fading parameters.

Additionally, the asymptotic analysis provided here for the second-order statistics proved

to be accurate in the high SNR region of operation. The analysis considers the correlation

between multipath clusters, a condition not previously addressed in the literature, yet

realistic for current and emerging propagation scenarios.
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5 Final Words

This chapter highlights the main contributions of this dissertation and suggests

a few research directions for future related works.

5.1 Concluding Remarks

In this thesis, we approached three aspects in the eld of wireless fading chan-

nels: (i) the development of a simulation framework for autocorrelated fading sequences

that contemplates well-known fading distributions in the literature; (ii) the derivation

of an asymptotic analysis for key second-order statistics of a general Gaussian-class fad-

ing model; and (iii) the validation of these contributions through extensive Monte Carlo

simulations.

In the rst part of this dissertation (Chapter 2), we focused on the design and

analysis of a general and unied simulation method for -, -, -, and --- fading

channels that (i) embraces arbitrary real values of the -parameter. Not less importantly,

the proposed method (ii) matches the exact rst-order statistics of the fading models and

(iii) closely approaches their second-order statistics. The method relies on a cascade of

two simulation techniques: random mixture [69] and rank matching [70], a combination

that has proven eective for Nakagami- fading [19,21,22,53]. To our knowledge, this is

the only simulator available that meets the requirements (i)–(iii) for the referred fading

models. In addition, we develop a new simple approach for optimizing the random-mixture

stage and, as a byproduct, we derive new series representations and asymptotic coecients

for essential rst- and second-order statistics of the fading models analyzed here. These

representations and coecients constitute a valuable original contribution of this work,

which can be used elsewhere in the analysis and design of communication systems over

fading channels.

In the second part of this dissertation (Chapter 3), we investigated the time-

varying nature of Gaussian-based random processes. The general fading model analyzed

is composed of multipath clusters with arbitrary specular components and arbitrary mul-

tipath powers propagating in a non-linear environment. Unlike other models in the lit-

erature, which assume independence among the clusters or among their in-phase and

quadrature components, the investigated model allows them to be arbitrarily correlated,

a more realistic assumption to model wireless channels in 5G, 6G and beyond. We pro-

posed an asymptotic analysis for the dynamic metrics of a general class of fading mod-
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els [42]. More specically, we provide new, simple, closed-form expressions for fundamental

second-order statistics in high SNR regime, namely LCR and AFD. The analysis is rather

comprehensive and was simplied for many particular cases, ranging from Rayleigh dis-

tribution to the ultrageneralized --- distribution, in addition to various correlation

scenarios for the in-phase and quadrature components, described and derived here. This

analysis seeks to overcome the inherent complexity of the exact approach for higher-order

statistics when several physical fading parameters are considered, mainly the correlation

between multipath clusters. So, a comprehensive analysis has been introduced at high

SNR, a prime regime for most applications, and can be readily applied to evaluate, de-

sign, and optimize emerging wireless systems operating in a broad family of propagation

scenarios. As an example of promising technology that can benet from the proposed

analysis, mmWave and RIS communications over fading channels are strongly impacted

by intracluster correlation [8,42].

Finally, in the third part of this dissertation (Chapter 4), we provided an

extensive validation of the fading simulator proposed in Chapter 2 and the asymptotic

analysis proposed in Chapter 3, through Monte Carlo simulations for many dierent fading
scenarios. The second-order statistics, LCR and AFD, were analyzed. It was observed that

the analytical and empirical statistics for the proposed simulation schemes (Chapter 2)

perfectly match each other and, in general, the simulator’s statistics maintain an excellent

agreement with the fading models’ statistics over the whole range of envelope values. For

the proposed asymptotic analysis (Chapter 3), it was observed that, in the asymptotic

region, that is, as  → 0, the analytical and empirical statistics coincide perfectly with each

other, as expected, in all the fading scenarios considered. Our solutions proved to be easy,

simple, and quick to implement in all those sample examples. This further emphasizes the

usefulness of the simulation scheme and asymptotic analysis proposed in this dissertation

to model and simulate the dynamic statistics of generalized fading channels.

5.2 Future Research Directions

Some possible directions for future related works are summarized next.

1. An immediate research direction would be the improvement of the fading sam-

ples simulator, proposed here for well-known channels, by extending it to cover the

general Gaussian-class model discussed in Chapter 3. The objective would be to

generate fading samples propagating in a non-linear environment, with arbitrary

values of dominant and scattered powers. Furthermore, the samples may bear an

arbitrary correlation between an arbitrary real number of multipath clusters. The
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validation of the statistics produced by that extended simulator can be attained

through the analysis of the theoretical asymptotic statistics discussed here.

2. Another research direction is to obtain the asymptotic second-order statistics of

series, parallel, and mixed combinations of multiple independent random processes

associated with Gaussian-class fading channels, according to the model discussed

in [85]. Then, in addition to considering the correlation between the clusters within

each channel, one can consider the correlation between the multiple random pro-

cesses belonging to the serial, parallel, and mixed combinations of channels. The

analysis of such channel combinations is useful in the development of emerging

technologies such as RIS communications [14,15,86].

3. A third research direction would be to build on the Gaussian Field Theory [87]

to design a realistic spatial simulation of fading processes, considering a two- or

three-dimensional propagation scenario for the various fading models.



80

Bibliography

[1] S. Cherry, “Edholm’s Law of Bandwidth,” IEEE Spectr., vol. 41, no. 7, pp. 58–60,

2004.

[2] T. Kürner and S. Priebe, “Towards THz Communications-status in Research, Stan-

dardization and Regulation,” Journal of Infrared, Millimeter, and Terahertz Waves,

vol. 35, no. 1, pp. 53–62, 2014.

[3] G. Davis, “2020: Life with 50 Billion Connected Devices,” in IEEE International

Conference on Consumer Electronics (ICCE), 2018.

[4] L. Ericsson, “More than 50 Billion Connected Devices,” White Paper, vol. 14, no. 1,

2011.

[5] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and

J. C. Zhang, “What Will 5G Be?” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp.

1065–1082, Jun. 2014.

[6] S. Amakawa, Z. Aslam, J. Buckwater, S. Caputo, A. Chaoub, Y. Chen, Y. Corre,

M. Fujishima, Y. Ganghua, and S. Gao, “White Paper on RF Enabling 6G–

Opportunities and Challenges from Technology to Spectrum,” University of Oulu,

2021.

[7] M. Banafaa, I. Shayea, J. Din, M. H. Azmi, A. Alashbi, Y. I. Daradkeh, and A. Alham-

madi, “6G Mobile Communication Technology: Requirements, Targets, Applications,

Challenges, Advantages, and Opportunities,” Alexandria Engineering Journal, 2022.

[8] N. Iqbal, J. Luo, R. Müller, G. Steinböck, C. Schneider, D. A. Dupleich, S. Häfner,

and R. S. Thomä, “Multipath Cluster Fading Statistics and Modeling in Millimeter-

Wave Radio Channels,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2622–2632,

Jan. 2019.

[9] T. S. Rappaport, G. R. MacCartney, S. Sun, H. Yan, and S. Deng, “Small-Scale, Local

Area, and Transitional Millimeter Wave Propagation for 5G Communications,” IEEE

Trans. Antennas Propag., vol. 65, no. 12, pp. 6474–6490, 2017.

[10] X. Chen, G. Liu, Z. Ma, X. Zhang, W. Xu, and P. Fan, “Optimal Power Alloca-

tions for Non-Orthogonal Multiple Access Over 5G Full/Half-Duplex Relaying Mo-

bile Wireless Networks,” IEEE Trans. Wireless Commun., vol. 18, no. 1, pp. 77–92,

2019.



Bibliography 81

[11] J. Zheng, Q. Zhang, and J. Qin, “Average Block Error Rate of Downlink NOMA

Short-Packet Communication Systems in Nakagami- Fading Channels,” IEEE

Commun. Lett., vol. 23, no. 10, pp. 1712–1716, 2019.

[12] M. Matthaiou, P. J. Smith, H. Q. Ngo, and H. Tataria, “Does Massive MIMO Fail

in Ricean Channels?” IEEE Wireless Commun. Lett., vol. 8, no. 1, pp. 61–64, 2019.

[13] C. L. Miller, P. J. Smith, P. A. Dmochowski, H. Tataria, and M. Matthaiou, “Ana-

lytical Framework for Full-Dimensional Massive MIMO With Ray-Based Channels,”

IEEE J. Sel. Topics Signal Process., vol. 13, no. 5, pp. 1181–1195, 2019.

[14] Y. Han, W. Tang, S. Jin, C. Wen, and X. Ma, “Large Intelligent Surface-Assisted

Wireless Communication Exploiting Statistical CSI,” IEEE Trans. Veh. Technol.,

vol. 68, no. 8, pp. 8238–8242, 2019.

[15] B. Di, H. Zhang, L. Song, Y. Li, Z. Han, and H. V. Poor, “Hybrid Beamforming

for Recongurable Intelligent Surface based Multi-User Communications: Achievable

Rates With Limited Discrete Phase Shifts,” IEEE J. Sel. Areas Commun., vol. 38,

no. 8, pp. 1809–1822, 2020.

[16] M. D. Yacoub, Foundations of Mobile Radio Engineering. Routledge, 2019.

[17] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge

University Press, 2005.

[18] T. S. Rappaport, Wireless Communications: Principles and Practice. Prentice Hall

PTR New Jersey, 1996, vol. 2.

[19] M. D. Yacoub, “The --- Fading Model,” IEEE Trans. Antennas Propag., vol. 64,

no. 8, pp. 3597–3610, Aug. 2016.

[20] L. Rayleigh, “XII. On the Resultant of a Large Number of Vibrations of the same

Pitch and of Arbitrary Phase,” The London, Edinburgh, and Dublin Philosph. Mag.

and J. of Sci., vol. 10, no. 60, pp. 73–78, 1880.

[21] M. D. Yacoub, “The - Distribution: A Physical Fading Model for the Stacy Dis-

tribution,” IEEE Trans. Veh. Technol., vol. 56, no. 1, pp. 27–34, Jan. 2007.

[22] M. D. Yacoub, “The - Distribution and the - Distribution,” IEEE Antennas

Propag. Mag., vol. 49, no. 1, pp. 68–81, Feb. 2007.

[23] A. A. Dos Anjos, T. R. R. Marins, C. R. N. Da Silva, V. M. R. Peĳarrocha, L. Rubio,
J. Reig, R. A. A. De Souza, and M. D. Yacoub, “Higher Order Statistics in a mmWave

Propagation Environment,” IEEE Access, vol. 7, pp. 103 876–103 892, Jul. 2019.



Bibliography 82

[24] S. O. Rice, “Statistical Properties of Random Noise Currents,” Selected Papers on

Noise and Stochastic Processes, 1954.

[25] R. S. Hoyt, “Probability Functions for the Modulus and Angle of the Normal Complex

Variate,” The Bell System Technical Journal, vol. 26, no. 2, pp. 318–359, 1947.

[26] W. Weibull, “A Statistical Distribution Function of Wide Applicability,” Journal of

applied mechanics, 1951.

[27] M. Nakagami, “The -distribution: A General Formula of Intensity Distribution of

Rapid Fading,” in Statistical Methods in Radio Wave Propagation. Elsevier, 1960,

pp. 3–36.

[28] P. K. Chong, S. Yoo, S. H. Kim, and D. Kim, “Wind-Blown Foliage and Human-

Induced Fading in Ground-Surface Narrowband Communications at 400 MHz,” IEEE

Trans. Veh. Technol., vol. 60, no. 4, pp. 1326–1336, May 2011.

[29] V. M. Rodrigo-Penarrocha, J. Reig, L. Rubio, H. Fernandez, and S. Loredo, “Analysis

of Small-scale Fading Distributions in Vehicle-to-Vehicle Communications,” Mobile

Information Systems, 2016.

[30] S. K. Yoo, P. C. Sofotasios, S. L. Cotton, M. Matthaiou, M. Valkama, and G. K.

Karagiannidis, “The - / Inverse Gamma Composite Fading Model,” in IEEE 26th

Annual International Symposium on Personal, Indoor, and Mobile Radio Communi-

cations (PIMRC), Aug. 2015, pp. 166–170.

[31] N. Bhargav, S. L. Cotton, and D. B. Smith, “An Experimental-Based Analysis of

Inter-BAN Co-Channel Interference Using the - Fading Model,” IEEE Trans. An-

tennas Propag., vol. 65, no. 2, pp. 983–988, Feb. 2017.

[32] J. F. Paris, “Statistical Characterization of - Shadowed Fading,” IEEE Trans. Veh.

Technol., vol. 63, no. 2, pp. 518–526, Feb. 2014.

[33] F. J. Canete, J. Lopez-Fernandez, C. Garca-Corrales, A. Sanchez, E. Robles, F. J.

Rodrigo, and J. F. Paris, “Measurement and Modeling of Narrowband Channels for

Ultrasonic Underwater Communications,” Sensors, vol. 16, no. 2, p. 256, 2016.

[34] M. G. Doone, S. L. Cotton, and C. Oestges, “An Experimental Investigation into the

Impact of Vehicular Trac on Interpersonal Wearable-to-Wearable Communications

Channels,” IEEE Trans. Antennas Propag., vol. 65, no. 10, pp. 5418–5430, Oct. 2017.

[35] P. Karadimas, E. D. Vagenas, and S. A. Kotsopoulos, “On the Scatterers’ Mobility

and Second Order Statistics of Narrowband Fixed OutdoorWireless Channels,” IEEE

Trans. Wireless Commun., vol. 9, no. 7, pp. 2119–2124, Jul. 2010.



Bibliography 83

[36] G. Fraidenraich and M. D. Yacoub, “The -- and -- Fading Distributions,” in

IEEE 9th International Symposium on Spread Spectrum Techniques and Applications,

2006, pp. 16–20.

[37] X. Li, X. Chen, J. Zhang, Y. Liang, and Y. Liu, “Capacity Analysis of --- Fading

Channels,” IEEE Commun. Lett., vol. 21, no. 6, pp. 1449–1452, Jun. 2017.

[38] A. A. dos Anjos, T. R. R. Marins, R. A. A. de Souza, and M. D. Yacoub, “Higher

Order Statistics for the --- Fading Model,” IEEE Trans. Antennas Propag.,

vol. 66, no. 6, pp. 3002–3016, Jun. 2018.

[39] A. Mathur, Y. Ai, M. R. Bhatnagar, M. Cheena, and T. Ohtsuki, “On Physical

Layer Security of --- Fading Channels,” IEEE Commun. Lett., vol. 22, no. 10,

pp. 2168–2171, Oct. 2018.

[40] A. Goswami and A. Kumar, “Performance Analysis of Multi-Hop Wireless Com-

munication Systems Over --- Channel,” Physical Commun., vol. 33, pp. 9–15,

2019.

[41] V. M. Rennó, R. A. A. de Souza, and M. D. Yacoub, “On the Generation of White

Samples in Severe Fading Conditions,” IEEE Commun. Lett., vol. 23, no. 1, pp.

180–183, Jan. 2019.

[42] F. R. A. Parente, F. d. P. Calmon, and J. C. S. Santos Filho, “High-SNR Performance

in Gaussian-Class Fading,” in IEEE International Conference on Communications

(ICC), 2020, pp. 1–7.

[43] S. Sun, T. S. Rappaport, M. Sha, P. Tang, J. Zhang, and P. J. Smith, “Propagation

Models and Performance Evaluation for 5G Millimeter-Wave Bands,” IEEE Trans.

Veh. Technol., vol. 67, no. 9, pp. 8422–8439, 2018.

[44] S. Schwarz, E. Zöchmann, M. Müller, and K. Guan, “Dependability of Directional

Millimeter Wave Vehicle-to-Infrastructure Communications,” IEEE Access, vol. 8,

pp. 53 162–53 171, 2020.

[45] Y. S. Chow and H. Teicher, Probability theory: Independence, Interchangeability, Mar-

tingales. Springer Science & Business Media, 2003.

[46] A. Abdi, K. Wills, H. A. Barger, M. S. Alouini, and M. Kaveh, “Comparison of the

Level Crossing Rate and Average Fade Duration of Rayleigh, Rice and Nakagami

Fading Models with Mobile Channel Data,” in IEEE 52nd Vehicular Technology

Conference, vol. 4, 2000, pp. 1850–1857 vol.4.



Bibliography 84

[47] M. D. Yacoub, J. E. V. Bautista, and L. G. R. Guedes, “On Higher Order Statistics

of the Nakagami- Distribution,” IEEE Trans. Veh. Technol., vol. 48, no. 3, pp.

790–794, May 1999.

[48] D. B. da Costa, J. C. S. Santos Filho, M. D. Yacoub, and G. Fraidenraich, “Second-

Order Statistics of - Fading Channels: Theory and Applications,” IEEE Trans.

Wireless Commun., vol. 7, no. 3, pp. 819–824, Mar. 2008.

[49] S. L. Cotton and W. G. Scanlon, “Higher-order Statistics for - Distribution,”

Electron. Lett., vol. 43, no. 22, Oct. 2007.

[50] A. A. Dos Anjos, T. R. R. Marins, C. R. N. da Silva, V. M. R. Peĳarrocha, L. Rubio,
J. Reig, R. A. A. De Souza, and M. D. Yacoub, “Higher Order Statistics in a mmWave

Propagation Environment,” IEEE Access, vol. 7, pp. 103 876–103 892, 2019.

[51] T. G. Newman and P. L. Odell, The Generation of Random Variates. London, U.K.:

Charles Grin, 1971.

[52] A. Papoulis and S. U. Pillai, Probability, Random Variables and Stochastic Processes.

New York: McGraw-Hill, 2002.

[53] J. C. S. Santos Filho, B. V. Teixeira, M. D. Yacoub, and G. T. F. Abreu, “The RM2

Nakagami Fading Channel Simulator,” IEEE Trans. Wireless Commun., vol. 12,

no. 5, pp. 2323–2333, May 2013.

[54] N. Beaulieu and C. Cheng, “Ecient Nakagami- Fading Channel Simulation,”

IEEE Trans. Veh. Technol., vol. 54, no. 2, pp. 413–424, 2005.

[55] Q. M. Zhu, X. Y. Dang, D. Z. Xu, and X. M. Chen, “Highly Ecient Rejection

Method for Generating Nakagami- Sequences,” Electronics letters, vol. 47, no. 19,

p. 1, 2011.

[56] R. Cogliatti, R. A. A. de Souza, and M. D. Yacoub, “Practical, Highly Ecient

Algorithm for Generating - and - Variates and a Near-100% Ecient Algorithm

for Generating - Variates,” IEEE Commun. Lett., vol. 16, no. 11, pp. 1768–1771,

2012.

[57] R. A. A. de Souza, A. M. O. Ribeiro, and D. Guimarães, “On the Ecient Generation

of -- and -- White Samples with Applications,” Int. J. of Antennas and

Propag., 2015.

[58] J. C. S. Santos Filho and M. D. Yacoub, “Coloring Non-Gaussian Sequences,” IEEE

Trans. Signal Process., vol. 56, no. 12, pp. 5817–5822, Dec. 2008.



Bibliography 85

[59] B. Liu and D. Munson, “Generation of a Random Sequence having a Jointly Specied
Marginal Distribution and Autocovariance,” IEEE Trans. Acoust., Speech, Signal

Process., vol. 30, no. 6, pp. 973–983, 1982.

[60] N. C. Beaulieu and K. T. Hemachandra, “Novel Simple Representations for Gaussian

Class Multivariate Distributions With Generalized Correlation,” IEEE Trans. Inf.

Theory, vol. 57, no. 12, pp. 8072–8083, 2011.

[61] M. D. Kulkarni and A. B. Kostinski, “A Simple Formula for Monitoring Guadrature

Phase Error with Arbitrary Signals,” IEEE Trans. Geosci. Remote Sens., vol. 33,

no. 3, pp. 799–802, 1995.

[62] Z. Wang and G. B. Giannakis, “A Simple and General Parameterization Quantifying

Performance in Fading Channels,” IEEE Trans. Commun., vol. 51, no. 8, pp. 1389–

1398, Aug. 2003.

[63] A. Chaaban, Z. Rezki, and M. Alouini, “Capacity Bounds and High-SNR Capacity

of MIMO Intensity-Modulation Optical Channels,” IEEE Trans. Wireless Commun.,

vol. 17, no. 5, pp. 3003–3017, May 2018.

[64] H. Kazemi and H. Haas, “Downlink Cooperation with Fractional Frequency Reuse

in DCO-OFDMA Optical Attocell Networks,” in IEEE International Conference on

Communications (ICC), 2016, pp. 1–6.

[65] J. Si, Z. Li, J. Cheng, and C. Zhong, “Asymptotic Secrecy Outage Performance for

TAS/MRC Over Correlated Nakagami- Fading Channels,” IEEE Trans. Commun.,

vol. 67, no. 11, pp. 7700–7714, 2019.

[66] L. Kong, G. Kaddoum, and Z. Rezki, “Highly Accurate and Asymptotic Analysis on

the SOP Over SIMO – Fading Channels,” IEEE Commun. Lett., vol. 22, no. 10,

pp. 2088–2091, 2018.

[67] N. Varshney, A. K. Jagannatham, and L. Hanzo, “Asymptotic SER Analysis and

Optimal Power Sharing for Dual-Phase and Multi-Phase Multiple-Relay Cooperative

Systems,” IEEE Access, vol. 6, pp. 50 404–50 423, 2018.

[68] B. Zhu, J. Cheng, H. T. Cheng, R. Selea, and L. Wu, “An Asymptotic Study of Hi-

erarchical Diversity Receptions Over Rician Channels With Arbitrary Correlation,”

IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 3299–3311, 2016.

[69] G. T. F. Abreu, “On the Moment-Determinance and Random Mixture of Nakagami-

 Variates,” IEEE Trans. Commun., vol. 58, no. 9, pp. 2561–2575, Sep. 2010.



Bibliography 86

[70] J. C. S. Santos Filho, M. D. Yacoub, and G. Fraidenraich, “A Simple Accurate

Method for Generating Autocorrelated Nakagami- Envelope Sequences,” IEEE

Commun. Lett., vol. 11, no. 3, pp. 231–233, Mar. 2007.

[71] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formu-

las, Graphs, and Mathematical Tables. New York: Dover, 1972.

[72] J. Marcum, “A Statistical Theory of Target Detection by Pulsed Radar,” IRE Trans.

Inf. Theory, vol. 6, no. 2, pp. 59–267, Apr. 1960.

[73] C. R. N. da Silva, G. R. D. L. Tejerina, and M. D. Yacoub, “The --- Fading

Model: New Fundamental Results,” IEEE Trans. Antennas Propag., vol. 68, no. 1,

pp. 443–454, 2020.

[74] W. C. Jakes, Microwave Mobile Communications. Wiley, 1974.

[75] “Taylor series,” https://mathworld.wolfram.com/, accessed: 2023-06-02.

[76] V. Perim, J. D. V. Sanchez, and J. C. S. Santos Filho, “Asymptotically Exact Approx-

imations to Generalized Fading Sum Statistics,” IEEE Trans. Wireless Commun.,

vol. 19, no. 1, pp. 205–217, 2020.

[77] A. Jerey and D. Zwillinger, Table of Integrals, Series, and Products. Elsevier, 2007.

[78] D. G. Brennan, “Linear Diversity Combining Techniques,” Proc. IRE, vol. 47, no. 6,

pp. 1075–1102, Jun. 1959.

[79] F. R. A. Parente and J. C. S. Santos Filho, “Asymptotically Exact Framework to

Approximate Sums of Positive Correlated Random Variables and Application to

Diversity-Combining Receivers,” IEEE Wireless Commun. Lett., vol. 8, no. 4, pp.

1012–1015, Aug. 2019.

[80] I. B. G. Pôrto and M. D. Yacoub, “On the Phase Statistics of the - Process,” IEEE

Trans. Wireless Commun., vol. 15, pp. 4732–4744, Jul. 2016.

[81] T. R. R. Marins et al., “Fading Evaluation in the mm-Wave Band,” IEEE Trans.

Commun., vol. 67, no. 12, pp. 8725–8738, Sep. 2019.

[82] V. M. Rennó, “Geração de Amostras do Modelo de Desvanecimento --- e Apli-

cações,” Master’s thesis, Instituto Nacional de Telecomunicações, 2018.

[83] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012,

vol. 1.



Bibliography 87

[84] “Cholesky factorization,” https://www.mathworks.com/help/matlab/ref/chol.html,

accessed: 2023-06-01.

[85] L. Yang and M.-s. Alouini, “Level Crossing Rate over Multiple Independent Random

Processes: an Extension of the Applicability of the Rice Formula,” IEEE Trans.

Wireless Commun., vol. 6, no. 12, pp. 4280–4284, 2007.

[86] G. R. L. Tejerina, C. R. N. Silva, R. A. A. Souza, and M. D. Yacoub, “On the

Extended - Model: New Results and Applications to IRS-Aided Systems,” IEEE

Trans. Veh. Technol., vol. 72, no. 4, pp. 4133–4142, 2023.

[87] N. Kang and N. G. Makarov, “Gaussian Free Field and Conformal Field Theory,”

Mathematics Subject Classication, 2011.



Appendices



89

APPENDIX A – Supporting Material for

Chapter 2

A.1 Illustrative Example for the Proposed Simulator

Consider the proposed simulator for the -, -, and - (-, generically)

fading channels, shown in Fig. A.1, and the proposed simulator for the --- fading

channel, shown in Fig. A.2. In this section, to aid understanding, we illustrate the simu-

lation process through the generation of an output sequence ̌ consisting of 9 samples.

First, two reference sequences are generated using the classic simulation method.

Assume that, for a given mixture probability value, the reference sequence L (shown in

orange) with fading parameters , L, and ̂ (Fig. A.1), or , , , L, , L, and ̂

(Fig. A.2), consists of 4 samples. Accordingly, assume that the reference sequence U

(shown in blue) with fading parameters , U, and ̂ (Fig. A.1), or , , , U, , U,

and ̂ (Fig. A.2), consists of 5 samples. The output sequence ref (part in blue, part in

orange) of the random-mixture stage is formed by concatenating L and U in any order,

resulting in a 9-sample sequence.

The output of the random-mixture stage provides the input to the rank-

matching stage. The global output - (Fig. A.1) or --- (Fig. A.2) sequence, ̌,

is obtained from the reference sequence ref (from the random-mixture stage) and a set of

9 - (Fig. A.1) or --- (Fig. A.2) samples, I (shown in red), drawn independently

according to the desired fading parameters , , and ̂, or , , , , , , and ̂. The

Figure A.1 – Illustrative example of the proposed simulation framework for -, -, and
- fading.
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Figure A.2 – Illustrative example of the proposed simulation framework for --- fad-
ing.

global output sequence ̌ (also shown in red) is a rearrangement of the samples in I, such

that the ranking of the samples in ̌ exactly match that of the samples in the reference

sequence ref: their minima occur in the same position, their second minima occur in the

same position, and so on. In other words, the samples in ̌ inherit their values from I,

but their order is determined by ref.
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APPENDIX B – Supporting Material for

Chapter 3

B.1 The Determinant of  for Correlated In-Phase–Quadrature

Components

In order to nd the determinant of  in in-phase and quadrature scenarios

with non-zero cross correlation, we can perform elementary matrix operations. To improve

the understanding of the process, we can rewrite (3.22) as follows

 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x ◁ ◁ ◁ x   ◁ ◁ ◁ 

x 1 ◁ ◁ ◁ x   ◁ ◁ ◁ 
...

...
. . .

...
...

...
. . .

...

x x ◁ ◁ ◁ 1   ◁ ◁ ◁ 

  ◁ ◁ ◁  1 y ◁ ◁ ◁ y

  ◁ ◁ ◁  y 1 ◁ ◁ ◁ y
...

...
. . .

...
...

...
. . .

...

  ◁ ◁ ◁  y y ◁ ◁ ◁ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

◁ (B.1)

Starting from (B.1), we subtract the xth column from the other x − 1

columns and subtract the th column from its other  − 1 to x + 1 columns, i.e.,

′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− x 0 ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 

0 1− x ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 
...

...
. . .

...
...

...
. . .

...

x − 1 x − 1 ◁ ◁ ◁ 1 0 0 ◁ ◁ ◁ 

0 0 ◁ ◁ ◁  1− y 0 ◁ ◁ ◁ y

0 0 ◁ ◁ ◁  0 1− y ◁ ◁ ◁ y
...

...
. . .

...
...

...
. . .

...

0 0 ◁ ◁ ◁  y − 1 y − 1 ◁ ◁ ◁ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

◁ (B.2)

By adding the rst x−1 lines of (B.2) to its xth line and adding the −1
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to x + 1 lines of (B.2) to its th line, we attain

′′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− x 0 ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 

0 1− x ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 
...

...
. . .

...
...

...
. . .

...

0 0 ◁ ◁ ◁ 1 + (x − 1)x 0 0 ◁ ◁ ◁ x

0 0 ◁ ◁ ◁  1− y 0 ◁ ◁ ◁ y

0 0 ◁ ◁ ◁  0 1− y ◁ ◁ ◁ y
...

...
. . .

...
...

...
. . .

...

0 0 ◁ ◁ ◁ y 0 0 ◁ ◁ ◁ 1 + (y − 1)y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

◁

(B.3)

Now we add the th line, multiplied by −1▷y, to each of the lines in the

range of −1 to x+1 lines. Finally, we add the xth line, multiplied by (−y)▷(1+

(x)x), to the th line, resulting in

′′′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− x 0 ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 

0 1− x ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 
...

...
. . .

...
...

...
. . .

...

0 0 ◁ ◁ ◁ 1 + (x − 1)x 0 0 ◁ ◁ ◁ x

0 0 ◁ ◁ ◁ 0 1− y 0 ◁ ◁ ◁ y − 1+(y−1)y
y

0 0 ◁ ◁ ◁ 0 0 1− y ◁ ◁ ◁ y − 1+(y−1)y
y

...
...

. . .
...

...
...

. . .
...

0 0 ◁ ◁ ◁ 0 0 0 ◁ ◁ ◁ 1 + (y − 1)y − xy2

1+(x−1)x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

◁

(B.4)

It is known that elementary matrix operations do not change the determinant

of the original matrix [83], and as (B.4) is upper triangular, we have the determinant of

 as in (3.23).

B.2 The Inverse of  for Correlated In-Phase–Quadrature Compo-

nents

The covariance matrix in (3.22) can be rewritten as follows

 =

⎡
⎣x×x

x×y

y×x
y×y

⎤
⎦ ˓ (B.5)

where x×x
= x

+x

x

, x×y
= 1x×y

, y×x
= 1y×x

and y×y
=

y
+ y


y

.
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As in this case the matrices x×x
and y×y

are invertible, the inverse

matrix of (B.5) is given by [83]

−1 =

⎡
⎣x×x

x×y

y×x
y×y

⎤
⎦
−1

=

⎡
⎣ (−−1)−1 −(−−1)−1−1

−( −−1)−1−1 ( −−1)−1

⎤
⎦ ˓

(B.6)

where the matrices dimensions have been omitted for brevity.

Following the denition in (B.6), and after extensive algebraic manipulations,

the entry at the th line and th column of −1 from (3.22), say ˓, is obtained as in

(3.24).

B.3 The Determinant of  for Uncorrelated In-Phase–Quadrature

Components

In order to nd the determinant of  in in-phase and quadrature scenarios

with zero cross correlation, we can perform elementary matrix operations. To improve the

understanding of the process, we can rewrite (3.29) as follows

 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 0

x 1 ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 0
...

...
. . .

...
...

...
. . .

...

x x ◁ ◁ ◁ 1 0 0 ◁ ◁ ◁ 0

0 0 ◁ ◁ ◁ 0 1 y ◁ ◁ ◁ y

0 0 ◁ ◁ ◁ 0 y 1 ◁ ◁ ◁ y
...

...
. . .

...
...

...
. . .

...

0 0 ◁ ◁ ◁ 0 y y ◁ ◁ ◁ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

˓ (B.7)

Starting from (B.7), we subtract the xth column from the other x − 1

columns and subtract the th column from the other  − 1 to x + 1 columns, i.e.,

′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− x 0 ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 0

0 1− x ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 0
...

...
. . .

...
...

...
. . .

...

x − 1 x − 1 ◁ ◁ ◁ 1 0 0 ◁ ◁ ◁ 0

0 0 ◁ ◁ ◁ 0 1− y 0 ◁ ◁ ◁ y

0 0 ◁ ◁ ◁ 0 0 1− y ◁ ◁ ◁ y
...

...
. . .

...
...

...
. . .

...

0 0 ◁ ◁ ◁ 0 y − 1 y − 1 ◁ ◁ ◁ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

◁ (B.8)
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By adding the rst x−1 lines of (B.8) to its xth line and adding the −1

to x + 1 lines of (B.8) to its th line, we attain

′′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− x 0 ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 0

0 1− x ◁ ◁ ◁ x 0 0 ◁ ◁ ◁ 0
...

...
. . .

...
...

...
. . .

...

0 0 ◁ ◁ ◁ 1 + (x − 1)x 0 0 ◁ ◁ ◁ 0

0 0 ◁ ◁ ◁ 0 1− y 0 ◁ ◁ ◁ y

0 0 ◁ ◁ ◁ 0 0 1− y ◁ ◁ ◁ y
...

...
. . .

...
...

...
. . .

...

0 0 ◁ ◁ ◁ 0 0 0 ◁ ◁ ◁ 1 + (y − 1)y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

◁

(B.9)

Since elementary matrix operations do not change the determinant of the orig-

inal matrix [83], and as (B.9) is upper triangular, we have

det() = (1− x)
x−1(1− y)

y−1(1 + (x − 1)x)(1 + (y − 1)y)◁ (B.10)

B.4 The Inverse of  for Uncorrelated In-Phase–Quadrature Com-

ponents

The covariance matrix in (3.29) can be rewritten as follows

 =

⎡
⎣x×x

0x×y

0y×x
y×y

⎤
⎦ ˓ (B.11)

where x×x
= x

+ x

x

and y×y
= y

+ y

y

. (B.11) is a diagonal block

matrix. This matrix is invertible if and only if each of the main blocks is invertible [83].

Thus, the inverse matrix of (B.11) is given by

−1 =

⎡
⎣

−1
x×x

0x×y

0y×x
−1

y×y

⎤
⎦ ◁ (B.12)

By the denition of matrices x×x
and y×y

, both are invertible and,

after algebraic manipulations, the entry at the th line and th column of−1 from (3.29),

say ˓, is obtained as in (3.30).
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