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ABSTRACT

Multi-Task Learning focuses on the simultaneous learning of multiple tasks - classifica-
tion or regression tasks, for example - expecting to improve performance on each task

individually, by exploring relationships among them.

To benefit from the joint learning procedure, we model a representation structure that is
shared by all tasks and can be used in multiple ways. It is possible to encode prior knowl-
edge about the tasks into the shared representation by thoroughly using regularization
terms, thus imposing the desired beliefs on the model’s parameters. Nevertheless, by im-
posing our beliefs about task relationship, we risk forcing relationships among unrelated
tasks, or simply imposing regularities not supported by the available datasets of the tasks,
thus promoting negative transference. An alternative is to estimate how tasks are related
during the learning process, thus avoiding some pitfalls of the previous strategy. But even
in this way we may assume fragile premises, such as: i) the relationship between tasks A
and B is symmetrical, so that the influence of task A on task B is taken to be the same as
the influence of task B on task A; or iz) all features of the dataset are equally responsible

for the relationship among tasks.

In this thesis, we present Group Asymmetric Multi-Task Learning (GAMTL), a model
capable of: 7) estimating how tasks are related in an interpretable manner; i7) consider-
ing asymmetric relationships among tasks; and i) considering local relationships that
are based on subsets of features, instead of imposing the involvement of all features. Ex-
perimental results demonstrate that the flexibility added by GAMTL mitigates negative
transference, while recovering significant relationships among tasks in an interpretable
transference structure. The efficiency of the method is also demonstrated in a real sce-
nario whose goal is to predict scores of cognitive tests associated with the progress of
Alzheimer’s disease (AD), taking as input pre-processed data based on cerebral imaging.
Besides obtaining a high performance on the scores predictions, GAMTL was able to
capture regions of interest in the brain that are part of the estimated relationships, in

accordance with independent results found in medical literature.

Keywords: Multi-Task Learning; Asymmetric Structural Learning; Sparsity; Structural

Sparsity; Local Feature Transference.



RESUMO

A area de aprendizado multi-tarefa se preocupa em aprender simultaneamente multiplas
tarefas - de classificagdo ou regressao, por exemplo - buscando melhorar o desempenho
de cada tarefa individualmente ao explorar as relagoes entre elas. Para se beneficiar do
aprendizado em conjunto, modela-se uma representacao compartilhada entre as tarefas
que pode ser utilizada de diversas formas. E possivel embutir conhecimento prévio sobre
o dominio das tarefas nessa representacao compartilhada, aplicando minuciosamente ter-
mos de regularizagao, impondo assim caracteristicas desejadas nos parametros do modelo.
Contudo, ao impor caracteristicas que acreditamos serem verdadeiras na relagdo entre as
tarefas, corre-se o risco de forgar relagoes entre tarefas nao relacionadas ou simplesmente
forcar caracteristicas que nao estao presentes nos dados. Quando isso ocorre, o desem-
penho individual das tarefas é prejudicado ao invés de melhorar, o que é conhecido como
transferéncia negativa. Outra abordagem possivel consiste em estimar as relagoes exis-
tentes entre as tarefas durante o processo de aprendizagem, evitando assim as armadilhas
da estratégia anterior. Mesmo assim, podemos assumir premissas frageis, como por ex-
emplo: i) a relagao entre uma tarefa A e uma tarefa B é simétrica, isto é, a influéncia de
A em B é idéntica a influéncia que B tem sobre A; ou i) todos os atributos incluidos na

base de dados participam igualmente na influéncia entre as tarefas.

Nesta tese apresentamos Group Asymmetric Multi-Task Learning (GAMTL), um mod-
elo capaz de: i) estimar como as tarefas estdo relacionadas de maneira interpretédvel;
i1) considerar relagoes assimétricas entre tarefas; e iii) considerar relagoes entre tarefas
que nao incluem necessariamente todos os atributos presentes nos dados, podendo se re-
stringir a relagoes localizadas em sub-conjuntos desses atributos. Resultados experimentais
demonstram que a flexibilidade adicionada ¢é capaz de mitigar fortemente a transferéncia
negativa, além de recuperar relagoes significativas entre as tarefas em uma estrutura inter-
pretavel. A eficiéncia do método tambem é demonstrada na predicao de scores de testes
cognitivos relacionados ao progresso da doenga de Alzheimer (AD), considerando como
entrada dados pré-processados a partir de imagens cerebrais. Além de obter uma bom
desempenho na predicao dos scores, o método foi capaz de estimar quais regides de inter-
esse no cérebro fazem parte das relagoes entre tarefas, em concordancia com resultados

independentes na literatura médica.

Palavras-chaves: Aprendizado Multi-Tarefa; Aprendizado Estrutural Assimétrico; Es-

parsidade; Esparsidade Estrutural; Transferéncia Local de Atributos.
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1 INTRODUCTION

The science of learning plays a key role in the fields of statistics, data mining and
artificial intelligence (HASTIE et al., 2001). Among the many possible configurations of
learning - such as learning from data (BISHOP, 2006), learning from the environment
through reinforcement signals (SUTTON; BARTO, 2018), or learning rules (LIU et al.,
2015) - Machine Learning (MURPHY, 2012; HASTIE et al., 2001; BISHOP, 2006) is
enjoying an increasing popularity as more data becomes available for applications in both

scientific and commercial scenarios.

Definition 1. We define Machine Learning (ML) as a set of methods that can automati-
cally detect patterns in data, and then use the uncovered patterns to predict future data,

or to perform other kinds of decision-making under uncertainty (MURPHY, 2012).

Machine Learning can be further divided in more specific approaches, for instance:
the predictive or supervised learning, and the descriptive or unsupervised learning. In the
supervised learning approach, we are interested on predicting the outcome/label of data
points that the model has never seen, based on what it could learn from a labeled dataset.
To that end, first we need a set of labeled data points where an annotator goes through the
sample and categorizes it in the labels. This will compose the labeled dataset. The features
that describe each data point can be of many types (discrete, continuous, categorical or
ordinal, for example) and their main function is to encode information in a useful way to
the learning model. After that, we split the labeled dataset into training and test sets.
We use the training dataset to tune the parameters of the model, and the test set is left
out of the training, being used to measure the quality of the trained model. Finally, when
the model is trained, it can be used to predict the labels of unlabeled data points. The
characteristics of the label space determine the type of problem we have to solve. For
example, when labels are categorical we call the learning task a classification task; when

labels are continuous we call the learning task a regression task.

Definition 2 (Supervised Learning). Let X € R™*" be a set of m data points with n
features, andy = [y1, -+, ym] be alist of labels for each data point. The labeled dataset
consists of the tuple (X,y) and a supervised learning task involves the estimation of a
mapping function f(-) : R™ — {labels} in case of a classification task, or f(-) : R" — R

in case of a regression task.

A classical example of supervised learning is the task of spam classification. Sup-
pose we are interested in building an automated system to classify our e-mails in SPAM
versus regular e-mails, i.e., y € {SPAM, Not SPAM}. In order to train the model, first



Chapter 1. Introduction 17

Labeling

%@@ @@

@@@%&é@@@@
s ()65 8
oreset % £ %

Evaluate

Train

Prediction

Figure 1 — Supervised learning workflow: on the top we see the labeling step, where a
human annotator labels some e-mails into SPAM or Not SPAM; on the middle
the model is trained and its generalization capability is measured; and on the

bottom the trained model is used to predict if new incoming e-mail messages
are SPAM or Not SPAM.

we need a labeled set of e-mails to compose our labeled dataset. This is depicted in the
top of Fig. 1, where a human annotator labels some e-mails as SPAM or Not SPAM.
For the training procedure we transform the text of each e-mail message into a numeric
feature space, extracting features to represent X in a R"™*™ domain. The labels in this
case can assume a value from two discrete outcomes, that characterizes the binary clas-
sification nature of our problem. For the training workflow, the labeled dataset is split
into the training and test sets (middle of Fig. 1). We use the training dataset to fit the
model’s parameters and existing hyper-parameters. The test set is used to measure the
generalization capability of the model, i.e., the capability to properly predict the label of
unlabeled data points that were not used to fit parameters or to tune hyper-parameter
values. The generalization capability is measured using some appropriate metric over the
test set, since we have the labels available. For example, accuracy is a widely used metric
for binary classification problems, and mean squared error for regression problems. Both
metrics indicate how close the estimation provided by the learning model is from the
desired output values. Once the training is completed and we are able to trust in the
generalization capability of the model, we can use it to predict if new incoming e-mails
are SPAM or Not SPAM (bottom of Fig. 1).

For the regression case of supervised learning, let us suppose that we have sensors
that capture some wheater measurements such as air pressure, air humidity, air temper-

ature, among other variables, and we are interested in predicting the air temperature of
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the next hour, given the measurements of our sensor in the current hour. In this case, the

desired outcome is a continuous variable, indicating that we have a regression task.

On the unsupervised approach of ML, the dataset is composed only of the sample
X € R™™ and the goal is to find “interesting patterns” in the data. “This is a much less
well-defined problem, since we are not told what kinds of patterns to look for, and there
is no obvious error metric to use” (MURPHY, 2012). The goal of clustering is to separate
a finite unlabeled dataset into a finite and discrete set of ‘natural’ hidden data structures,
rather than provide an accurate characterization of unobserved samples generated from
the same probability distribution (XU; WUNSCH, 2005). Although not complete, a classic
definition for clustering is described as follows (JAIN; DUBES, 1988):

o Instances, in the same cluster, must be similar as much as possible;
o Instances, in the different clusters, must be as distinct as possible; and

o Measurement for similarity and dissimilarity must be clear and have a practical

meaning.

On both approaches, supervised and unsupervised learning, each data point is described

by a set of n features.

1.1 THE PRESENCE OF MULTIPLE TASKS

Suppose now that instead of classifying our own e-mails, we are an e-mail provider
that wants to identify SPAM e-mails for all accounts using our service. Each user can be
seen as a classification task, where y € {SPAM, Not SPAM}. As the provider hosts for

many accounts, we have now multiple training datasets. How can we solve this problem?

In one extreme, we can train a classifier in isolation for each account, what is called
Single Task Learning (STL) approach and is represented in Fig. 2. In this approach, each
user has a learning model that uses its own data for training. We may require from each
user to label enough data for the training procedure. When the user has labeled enough
e-mails, their SPAM detector will probably be very suited to their needs, and will not
be affected by SPAM e-mails from other users. But how many data points should each
user label manually in order to have a classifier with acceptable accuracy? If we require a
great amount of data from each user, we will not have a practical solution for the problem.
Another problem occurs when new users arrive. Since in this setting every user must label
their e-mails, we will not have e-mails to train a classifier for new users, which is known
as the ‘cold start’ problem. Finally, depending on the number of hyper-parameters we
need to set for each classifier, the computational cost of finding a good configuration

and the amount of information required to enable a proper tuning may impose practical
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Figure 2 — The Single Task Learning approach for handling multiple tasks, where one
model is trained per user with labeled data, is depicted on the left. The Pooled
Model Learning approach for handling multiple tasks simplifies everything by
using a single model and is depicted on the right.

challenges. An important limitation of the single-task approach is that no information is
shared among related tasks, i.e., the models are not able to help each other even when

their respective users have similar SPAM e-mails.

On the other extreme, we can train a single classifier for all accounts, which is
known as the Pooled Model approach, represented in Fig. 2. This solution has the ben-
efit that new users will already have a trained model to classify their e-mails. Even if
some users do not label their e-mails, some of their SPAM may be represented in the
training set with data from other users and the classifier may work for them. However,
there are some aspects that may contribute to reduce the performance of pooled model
learning. The content of some SPAM campaigns may be general enough to be sent to
as many users as possible. Other campaigns may segment their audience based on other
collected information about the users. These specialized SPAM e-mails can be sent only
to a small fraction of users that meet their segmentation criteria, which leads to a severe
sub-representation in the training dataset when compared to the more popular SPAM
e-mails. This imbalance is a problem for most off-the-shelf classifiers and usually requires
more effort in tuning hyper-parameters or employing sampling strategies to alleviate the
imbalance during training. Since we only have a single model, it would probably have
an unacceptable classification performance for some of the tasks. Unlike the STL, in this
strategy information is shared among all users. The drawback now is that even unrelated
tasks share information and this may negatively affect the overall performance (CARU-
ANA, 1997).

Multi-Task Learning (MTL) (VANDENHENDE et al., 2021; ZHANG; YANG,
2017) is an attempt devoted to solve this problem by exploring the potential relationship
among the tasks. The goal is to train all tasks simultaneously while leveraging information
among related tasks, such that all tasks have better generalization performances when
compared to a process that trains each task independently (i.e., STL). This approach is
illustrated in Figure 3. In our SPAM detection example, we still train a classifier for each
user, but now all models are trained jointly and an information-sharing mechanism in
the MTL model will handle the information flow among the tasks that generally leads

to increased performance. This approach shares with STL the commonality that each
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Figure 3 — In the Multi-Task Learning approach, each task has its own model, but all
models are trained together and can share information among tasks that are
related in some way. Notice that each user has a dedicated model, and the
structural relationship among the tasks may be previously informed or even
estimated during the learning process.

account will have a learner that is dedicated to it. When compared to the pooled model
approach, MTL allows tasks to handle specific behavior of the accounts while sharing
information with related tasks. But even if we need to retrain the model, that can be

done in isolation for one or more tasks, with minimal impact on the other tasks.

Some MTL methods allow us to leverage prior knowledge about the structural rela-
tionship of the tasks, that will guide information sharing to relate tasks known in advance
to be related (LIU et al., 2019; LIU et al., 2018; OLIVEIRA et al., 2019; KOLAR et al.,
2011; HAN; ZHANG, 2015). MTL methods are also more robust to sample complexity:
when the number of data points is small, MTL is empirically proven to enhance the gener-
alization capability of the tasks, supported by consistent theoretical results (CARUANA,
1997; VANDENHENDE et al., 2021; ZHANG; YANG, 2017).

1.2 NEGATIVE TRANSFERENCE: A MAJOR CHALLENGE

One of the main challenges for MTL methods is that information sharing assump-
tions of the model may not match the underlying tasks relationships. In this case, instead
of improving generalization performance on all tasks, the MTL method will probably de-
teriorate performance. This phenomenon is know as negative transference (CARUANA,
1997) and conceiving new MTL approaches capable of alleviating negative transference is

a great motivation of this work.

Negative transference can occur for multiple reasons. A good example is when
unrelated tasks are forced to be related: in this case, the influence of one task into unrelated
tasks will probably have a harmful effect on the performance. But even sharing among
related tasks may reduce performance (CARUANA, 1997): if the assumptions of the model

are not satisfied by the data, it is likely that negative transference will occur.

As we will see in detail in Chapter 2, designing how tasks can be related is a
challenging effort. Different assumptions about how tasks are related can be encoded in

the MTL approach in many ways, popularly through the usage of regularization terms
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(ZHANG; YANG, 2017). Some methods assume that tasks are related in clusters (EVGE-
NIOU; PONTIL, 2004; ZHOU et al., 2011a), while others assume that related tasks share
a latent space (ANDO; ZHANG, 2005; JALALI et al., 2010), to mention a few. MTL
methods that leverage regularization terms to promote information sharing among tasks
have the advantage of encoding a priori domain knowledge into the model formulation.
By choosing proper regularization terms we can drive a set of parameters to zero due to
the “sparsity” property of such terms. As fewer variables are active in the final solution,
models with sparsity-inducing regularization terms are simpler to interpret. Other regu-
larization terms are able to structure the way sparsity is induced in patterns of overlapping
groups of variables. There is a great number of MTL methods that combine such regu-
larization terms disposed in clever arrangements, each one making different assumptions

about tasks relationships.

Given those scenarios, two major challenges remain: i) choosing a method is diffi-
cult, as the problem needs to meet too many a priori assumptions in order to benefit from

a given model; ii) models usually oversimplify the possible ways the tasks can be related.

A different approach is taken by the Structure Estimation strategy (ZHANG;
YEUNG, 2010a; GONCALVES et al., 2016; OLIVEIRA et al., 2019). Instead of imposing
hard a priori assumptions, they estimate how tasks are related to each other during
training, while using the estimated relationships to guide the learning procedure. They
usually require less a priori knowledge about tasks relationships, which alleviates the odds
of making the wrong assumptions. The drawback of many methods in this category is that
they also oversimplify how tasks can be related. This oversimplification typically includes

the following assumptions:

» tasks are symmetrically related - that is, task A affects task B in the same way that
task B affects task A (LEE et al., 2016; ZHANG; YEUNG, 2010a; JALALI et al.,
2010; LIU et al., 2019); and

« if two tasks are related they must influence each other on the entire set of features,
to which we will call global feature transference (LEE et al., 2016; ZHANG; YEUNG,
2010b; ZHOU et al., 2011a).

There have been attempts to flexibilize these models in order to circumvent the observed
downsides (LEE et al., 2016; GONCALVES et al., 2016), but no candidate simultaneously
accounts for both the local feature transference and asymmetrical structural learning, as
we will see in Chapter 2. It is also worth mentioning that the optimization challenges
introduced by MTL formulations commonly include non-smooth terms, and may not

even pose convex formulations.
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1.3 AVOIDING NEGATIVE TRANSFERENCE BY LEARNING HOW
TASKS ARE RELATED

The goal of this thesis is to develop an MTL method that avoids the mentioned
pitfalls. Namely, our intent is to design a more general MTL method that estimates how
tasks are related, while being capable of learning asymmetrical and local relationships

among the tasks.

In Chapter 5, we present the Group Asymmetric Multi-Task Learning (GAMTL)
(OLIVEIRA et al., 2019) approach, which was specially tailored to meet three goals:

1. estimate how tasks are related in an interpretable way;

2. consider that the relationship between two tasks may not involve all features, i.e.,
can be restricted to a subset of features, an approach we will call local feature

transference;

3. allow two tasks to be asymmetrically related, i.e., the influence a task A has on a

task B may differ from the influence task B has on task A.

GAMTL proposes a flexible mechanism to the problem of learning the complex relation-
ship tasks may exhibit, possibly more in tune with realistic scenarios by putting forward

local and asymmetric structural relations both among features and tasks.

As the Multi-Task Learning term is growing in popularity, it assumes different
meanings depending on the research area it is being used. Our scope was restricted to
regularization based sub-fields (ZHANG; YANG, 2017): Regularized Multi-Task Learning,
and Structure Learning. More on that discussion is presented in Chapter 2. In summary,
here we leverage the solid usage of regularization terms while reducing the assumptions
usually required by existing MTL formulations, together with ideas from the Structure

Estimation, to design flexible relationships among the tasks.

1.4 STRUCTURE OF THE THESIS

This work is organized in two parts. The first part lays down the fundamental
concepts of Multi-Task Learning, Sparse Models, and Non-Convex Optimization; which
stand as the building blocks of this thesis.

o Chapter 2 gives a formal definition of MTL, and highlights the benefits of this
approach in more detail. Related areas are discussed, and the usage of the term
Multi-Task Learning in other research areas is also exposed to better position our

work. We provide a landscape of the common terminology of MTL based on recent
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surveys. We discuss how some MTL methods are able to handle groups of features,

and proceed to an explanation of how Structure Estimation works.

Chapter 3 explains how regularization works in Machine Learning and how it can
induce sparsity into the models. We present the [,-norm family and the LASSO,
together with many variations. A geometric explanation of the sparsity properties
of l,-norms is provided. We also discuss how to induce sparsity considering groups
of correlated features with the /(, o-norm family, also with a geometric explana-
tion. This leads to the Group LASSO regularization, and the Latent Group LASSO

extension that handles overlapping groups of features.

Chapter 4 is dedicated to solving non-convex optimization problems. We develop
tools to handle non-smooth functions, mostly based on proximal operator functions,
and use them in optimization algorithms. We explain two common algorithms of
this class: (i) ISTA (BECK; TEBOULLE, 2009), a simple proximal method and
(ii) FISTA (NESTEROV, 1983; BECK; TEBOULLE, 2009), a fast algorithm with
improved convergence in the first-order methods; and (iii) ADMM (BOYD et al.,
2011), a flexible and parallelizable proximal algorithm.

Chapter 5 focuses on our main contribution, the Group Asymmetric Multi-Task
Learning (GAMTL) method. GAMTL is an MTL proposal that estimates how tasks
are related considering groups of features in an independent way. The resulting non-
convex optimization problem is solved by deriving smaller convex sub-problems that
can be solved with an alternating optimization procedure and methods presented in
Chapter 4. The source code of this proposal is available using the Python program-

ming language !.

In Chapter 6 we provide empirical results of GAMTL. An artificial setting is devised
with challenging transference assumptions to evaluate how the algorithm performs
against multiple related contenders. We investigate how the accuracy of our pro-
posal evolves as more data is available for training, and how a varying degree of
noise in the tasks labels can affect the estimated relationship structure. We also
compare GAMTL with state-of-the-art methods for the task of predicting cognitive
scores related to Alzheimer’s Disease, based on feature-processed brain images col-
lected on distinct stages of the disease. The results highlight the performance of the
method and the interpretability of the explainable relationship structure. Another
experiment is devised to validate the robustness of the structure of transference es-
timated by GAMTL with respect to data sampling and hyper-parameter settings.
This experiment reveals how the flexibility of GAMTL allows the method to capture

the distinct roles the features can play on related tasks.

1

https://github.com/shgo/gamtl
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Notation: Matrices are represented using uppercase letters, while scalars are rep-
resented by lowercase letters. Vectors are lowercase in bold. For any matrix A, a; is the
i-th row of A, and a; is the j-th column of A. Also, a;; is the scalar at row ¢ and column
j of A. The i-th element of any vector a is represented by a;. For any two vectors x,y the

Hadamard product is denoted by (x ®y); = z;y;.
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2 THE CHALLENGES OF LEARNING
MULTIPLE TASKS

It may be intuitive for us humans to think that learning one task may help us
learning other related and more complex tasks. For instance, let us consider the case of
an undergraduate course. The course usually divides certain areas of knowledge into a set
of disciplines. Fach discipline has it’s own agenda, covering the most important topics of
that area of knowledge. As a student, we enroll in multiple disciplines at the same time,
which may be related or not with other disciplines. When we take related disciplines at
the same time, we begin to understand connections between the related disciplines. This
helps us to develop a better understanding of the involved subjects and also allows us to
take multiple perspectives of each subject. Learning one task helps us learning the other

by leveraging what is common among them, and recognizing these connections is valuable.

Although this imagination exercise may not be useful to draw a mathematical
formalism, it helps us set a common ground of intuition about our main subject, Multi-
Task Learning. In the introduction we could see how the presence of multiple learning
tasks brings new challenges to the traditional ML setting, and we also discussed some
options on how to tackle the problem. This setting gives rise to a new learning paradigm
that is the main subject of this thesis, named Multi-Task Learning (MTL) (CARUANA,
1997). In this paradigm we train all tasks simultaneously, leveraging information from

related tasks to improve generalization performance in all tasks.

In this chapter, we formally introduce Multi-Task Learning (MTL) and discuss how
it relates to other machine learning areas. Also, we present how different MTL methods
can be categorized based on the assumptions made by the models, particularly about
how tasks are believed to be related. We present in detail the most common strategies
to model transference between tasks in MTL, discussing the advantages and drawbacks
of each approach through the lens of a regularization formulation. We also explore some
sources of negative transference in the way the methods consider how transference occurs.
By the end of the chapter, the reader will be familiar with the current literature of the

topic and have a clear view of the main decisions involved in MTL methods.

The chapter is structured as follows: in Section 2.1 we give a formal definition of
MTL. We explain how transference among tasks can be modeled by choosing what will
be shared, and how this information will be shared. Closing the section, we discuss how
MTL is related to other research areas. Section 2.2 presents the most common transference
strategies in a regularization formulation. We reproduce the categorization made by Zhang

e Yang (2017) and explore it to better outline our scope. Section 2.3 focuses on Structure
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Estimation, an approach that estimates how tasks are related to avoid forced relationships
among unrelated tasks. We also highlight the main advantages and drawbacks of this
approach, especially the global transference assumption. Finally, we summarize the main

remarks of the chapter and offer the motivation of the next chapter in section 2.4.

2.1 MULTI-TASK LEARNING

Let us introduce MTL formally, considering first a broad definition.

Definition 3 (Multi-Task Learning). Let 7 be a set of T" tasks, where all or some of the
tasks are related. In MTL, we want to improve the learning of the individual models by

leveraging the knowledge contained in the entire set 7T .

In this definition, our learning models can be of many types: supervised learning
(OLIVEIRA et al., 2019; GONCALVES et al., 2016), unsupervised learning (ZHANG;
ZHANG, 2010; ZHANG; ZHANG, 2013), or reinforcement learning (LI et al., 2009;
LAZARIC; GHAVAMZADEH, 2010), for each category. All these fields have seen some
work under the MTL umbrella, but as noticed by (ZHANG; YANG, 2017), most of the

current work in the field is focused on supervised learning.

In the supervised learning setting each task ¢t € T is composed of a dataset X; €
R™>™ —and a label vector y, € R™ for a regression task t, or y; € [0,1]"™ for a binary
classification task t, for example. The dataset of each task can have its specific domain
R™*m If the domains are different, we call it a heterogeneous setting, (HAN et al., 2012;
ZHANG; YEUNG, 2011) depicted in Fig. 4. On the left we have X, for ¢t € T, each
dataset having its own number of data points m, and features n;. Each X, also has its
vector of labels y; with an equal number of data points as X;, depicted on the right. When
the dataset of all the tasks share the same domain, we have a homogeneous setting - most
of the literature explored in this chapter - where n; = n (the same for all tasks), resulting
in X; € R™™" for all t € T. Notice that Fig. 4 does not present the learning models of

each task.

Let w; be the vector of parameters for a model dedicated to task ¢. Without loss
of generality, we will assume linear models for the homogeneous setting, where features
of all tasks share the same feature set, i.e. the same number of features with the same
meaning for all tasks, w, € R" for all t € T. The homogeneous setting is shown in Figure
5. Now all datasets have the same number of features, X; € R™>*"Vt € T . The parameters
of tasks models are depicted in the middle of the figure. We call W € R™*T the matrix
having the parameters of the tasks arranged as columns of W. Each row of W corresponds
to a feature, while each column corresponds to a task. Other settings where the models

are not linear, or labels are not represented by vectors, are discussed in Section 2.1.3.
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Figure 4 — A general depiction of multi-task learning. Each task can have its own dataset
with their own data points from a task-specific domain on the left, and labels
on the right.

T tasks
X, task dataset w; task parameters

ny task features— y: task labels
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Figure 5 — MTL for supervised learning tasks in the homogeneous setting with linear
models. Each task can have its dataset (on the left) but now all tasks share
a common domain and n; = n, hence the homogeneous setting. The linear
model’s parameters are at the center of the figure, and on the right we have
the labels for each task.

n features

In definition 3, the concept of “knowledge contained in 7 is not properly defined.
What we already know is that it is only through transference of knowledge that tasks
can affect each other to promote performance improvement. This leads to two important

questions that we answer in the next section: i) “what to share?”; and ii) “how to share?”.

2.1.1 SPECIFYING WHAT TO SHARE AND DETERMINING HOW TO
SHARE

Machine Learning models can be designed to reflect how tasks share informa-
tion in multiple ways, usually through (i) sample (BICKEL et al., 2008), (ii) features
(CARUANA, 1997; EVGENIOU; PONTIL, 2004; LIAO; CARIN, 2005), (iii) parame-
ters (JALALI et al., 2010; KANG et al., 2011; KUMAR; DAUME, 2012), or (iv) loss
(OLIVEIRA et al., Article no. 99, pp. 1-30, 2022.; GONCALVES et al., 2016; LEE et al.,
2016) . This is illustrated in Figure 6.

When sharing is based on sample, models try to identify data points that
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Figure 6 — What can be shared in MTL. We can share sample (highlighted in red on the
left), features (highlighted in red on the center), task parameters (red rectangle
around tasks parameters), and tasks losses (red rectangle around y,vectors).

can be useful to more than one task, which is depicted on the left by the connections
between data points of distinct tasks. When sharing is based on features, models try
to learn common feature representations that are useful to all tasks. In the figure, this
is represented by the connection between the features of different tasks. When sharing
is based on parameters, task models use their parameters to share information with
other tasks, also called inductive bias. Sharing will involve the parameter matrix W, and
for linear models they will indirectly involve tasks features, as parameters are directly
associated with features of the dataset. Finally, when sharing is based on loss, models

use the loss of each tasks to estimate relationships among them.

An example of sharing based on sample is (BICKEL et al., 2008). Here the
model first estimates a density ratio between probabilities that each data point/label
belongs to their task, against belonging to a mixture of tasks. Once this estimation is
finished, the parameters of the tasks are trained using a weighted training dataset based

on the previous step. However, this is not a common approach.

When sharing is based on features, we try to learn common feature repre-
sentations that are useful to all tasks. For example, the initial layers of neural networks
with multiple outputs act as a feature representation layer for the downstream tasks (rep-
resented by each component in the output layer) (CARUANA, 1997). More on neural
networks and deep learning for MTL methods in Section 2.1.4. Another possible way to
enable sharing of features is the usage of regularization terms to impose relationships
among parameters of the MTL formulation, arranging them according to a priori knowl-

edge of the problem. This is discussed in Section 2.2.

When sharing is based on loss we assume that tasks with similar losses are
related to each other, such as in (GONCALVES et al., 2016) where the residual of each
task is used to establish relationships, or in (LEE et al., 2016; OLIVEIRA et al., 2019)
where the loss of each task is used as a measure of confidence of each learning model and

penalize transference: tasks with higher loss are less encouraged to influence tasks with
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lower loss value.

Most publications in the field are dedicated to the last approach, where sharing
is based on tasks parameters. In this category, the methods explicitly model how
tasks are related in the parameters domain, depending on the assumptions each model
has of how tasks are related. According to these assumptions, methods that rely on this

approach can be sub-categorized as follows:

o Low-Rank Assumes that the parameters of the tasks share a low-rank representa-
tion (ARGYRIOU et al., 2008; KANG et al., 2011; KUMAR; DAUME, 2012). The

latent basis can also be regularized to enforce more specific premises;

o Task Clustering Assumes that tasks parameters are clustered into one or more
groups (EVGENIOU; PONTIL, 2004; JACOB et al., 2009a). If we consider over-

lapping groups of tasks, low-rank models can also achieve this goal;

e Structure Estimation Learns a task relationship structure while imposing it into
the parameters of the tasks (ZHANG; YEUNG, 2010b; GONCALVES et al., 2016;
LEE et al., 2016; OLIVEIRA et al., 2019);

o Dirty Models Decompose tasks parameters into a sum of two components, where
different regularizers are applied to each component (JALALI et al., 2010; CHEN
et al., 2011; CHEN et al., 2012; GONG et al., 2012);

o Multi-Level Decompose tasks parameters into a sum of more than two components,
each one with a distinct regularization term (JAWANPURIA; NATH, 2012). Similar

to the dirty models, but able to express more complex relationships among tasks.

We will see how different models of each of these categories leverage regularization
terms. But before that, it is important to see why MTL can improve the generalization
capacity of tasks, and also see how other areas of research are related to MTL. For a
broader overview of the MTL field, please refer to the survey on (ZHANG; YANG, 2017).

2.1.2 WHY MULTI-TASK LEARNING HELPS?

The motivation for MTL may be sound, but we still have not explored the main
reasons that make this approach beneficial. Here we list the main hypothesis for the

effectiveness of MTL, as observed by multiple authors.

Preventing overfitting: overfitting is the phenomenon where a learning model
is exaggeratedly fitted to the training dataset, so that the model will exhibit poor per-
formance when dealing with unseen data points, as the intrinsic noise of the training
dataset was also learned. In MTL, as tasks are learned jointly, the presence of multiple

related tasks acts as a regularization mechanism and prevents overfitting (CARUANA,
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1997: EVGENIOU: PONTIL, 2004; ZHOU; ZHAO, 2016; ZHONG et al., 2016; RUDER,
2017);

Feature selection: as features that are relevant to more than one task will usu-
ally have a smaller impact on the cost function that involves all tasks, MTL will promote
representation sparsity by identifying features that have little to no impact in the gen-
eralization performance of multiple tasks (CARUANA, 1997; HERNANDEZ-LOBATO;
HERNANDEZ-LOBATO, 2013; LIU et al., 2009);

Data augmentation: when tasks are related, MTL can help by leveraging the
signal from data of one task to the other related tasks, as noticed by (CARUANA, 1997;
THRUN; O’SULLIVAN, 1996; FELDMAN et al., 2014; JALALI et al., 2010; JACOB et
al., 2009b). As all tasks are noisy and different tasks have different noise patterns, leaning
them simultaneously helps the model to find a more general representation (RUDER,
2017). This benefit is especially pronounced when few data points are available, with
relation to the dimensionality of the datasets (CILIBERTO et al., 2017);

Representation bias: MTL biases the model to use representations preferred by
multiple tasks (RUDER, 2017). On neural networks in general, since we have multiple
local minima, MTL can help by guiding the search for a solution to a local minimum
that is exploited by multiple tasks simultaneously, promoting a representation bias in the
iterative weight adjustment (CARUANA, 1997);

It is important to keep in mind that MTL can also negatively impact on models’
performance. If the data does not support the assumptions made by the chosen model, it
will impose inadequate biases into the learning process that will lead to worse performance.
This can also happen when all tasks are related but the model assumptions are not capable
of handling the latent relationship among tasks. Whenever performance decreases when

compared to STL training procedure, we say that negative transference occurred.

2.1.3 RELATED AREAS

Other machine learning problems share similarities with MTL. Here we draw some
lines on research areas that are related to MTL, providing key references for the interested
reader. Most importantly, we expose the main distinctions between MTL and the related

areas.

Some of these related areas can be seen as special cases of MTL, such as Multi-
Class, Multi-Label classification, and Multiple-Output regression. Although guarding sim-
ilarities with M'TL, these related areas have the specific characteristic that all tasks share

a single dataset.
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2.1.3.1 Multi-Class Classification

Multi-class classification occurs when the labels can assume one value from a set
of T' discrete values. Without loss of generality, this problem can be stated as follows:
map X toy € [1,---,T]. Since labels can have multiple values, we can imagine that each
possible value is a different task. However, notice that in multi-class the label values are
not independent: if one value is assumed, all the others are not. In MTL the tasks are
not intertwined like that. Also, in multi-class, we only have a sample X, while in MTL
each task can have its dataset. The Handwritten Digit Recognition problem, known by
the popular MNIST challenge and benchmark dataset (LECUN; CORTES, 2010), is a
good example of multi-class. In this dataset, each data point is an image that contains
a hand-written number between 0 and 9. The challenge is to properly map each data
point to the correct written number. Since each data point can belong to a single class,
we have a multi-class classification problem. A more detailed explanation of multi-class
classification is provided by (ALY, 2005).

2.1.3.2 Multi-Label Classification

In Multi-Label Classification we want to predict 7' binary labels for each data
point. This problem can be stated as the following: map data points from X to y; € [0, 1],
fort € [0,---,T], where each task ¢ represents a label. Different from Multi-Class classifi-
cation, labels are independent now, as in MTL. But again, in Multi-Label Classification we
only have a single dataset, while in MTL we can have multiple. A problem that perfectly
matches this paradigm is the Object Detection in Computer Vision research. In this case,
for a single data point (image) we want to identify one or more objects (classes), which
characterizes the multi-label classification definition. Surveys with comprehensive cover-
age of this approach can be found in (LIU et al., 2020; ZHANG; ZHOU, 2014; SOROWER,
2010).

2.1.3.3 Multiple-Output Regression

In Multiple Output Regression, we also want to predict multiple outputs for each
data point, as in Multi-Label Classification, but now our labels are continuous. The goal
is to find a map from X to y € R”. The comparative analysis made for Multi-Label
Classification, in the previous subsection, is valid here. Refer to surveys in (BORCHANI
et al., 2015; XU et al., 2020).

2.1.3.4 Transfer Learning and Domain Adaptation

In this configuration, we have one or more models already pre-trained to some
tasks (source tasks), and some new tasks that need new models, called target tasks. The

goal is to benefit from previously trained tasks using them as an initialization to the target
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tasks parameters, to accelerate model training and improve generalization performance.
Transfer Learning leverages Domain Adaptation, an area that focuses on learning a source

task on a biased domain that may be different at inference time.

One of the main differences between Transfer Learning and Domain Adaptation
to MTL is that in the former we start with a subset of models that are already trained,
while in the latter all tasks are trained jointly: in MTL all tasks are source and target.
Another main difference is that in MTL we are interested in increasing the performance

of all tasks, not only of a subset of target tasks.

Among the many successful applications of Transfer Learning, Natural Language
Processing (NLP) gives a famous example. BERT (DEVLIN et al., 2019) is a famous pre-
trained neural network model consisting of 345 million-parameters. This pre-trained model
is used as a language representation model that can be fine-tuned to a varied number of
tasks, such as named entity recognition (SOUZA et al., 2019; LIU et al., 2021; LI et
al., 2022), sentence textual similarity (REIMERS; GUREVYCH, 2019), and recognizing
textual entailment (CABEZUDO et al., 2020; POLIAK, 2020). Transfer learning surveys
can be found in (ZHUANG et al., 2021; PAN; YANG, 2010).

2.1.4 MULTI-TASK LEARNING IN DEEP NEURAL NETWORK MODELS

From the conception of the term in (CARUANA, 1997), MTL is easily achieved in
neural networks, automatically occurring with the presence of multiple outputs. With the
advance of deep learning methods and the multiple developments in their architecture,
MTL acquired a special place in more applied research fields, such as Natural Language

Processing and Computer Vision.

Ruder (2017) discusses MTL in Deep Neural Networks. The author categorizes
MTL methods based on how tasks share parameters. In the hard parameter sharing ap-
proach, networks explicitly share layers of parameters across multiple tasks. When tasks
have some shared parameters, but also have their exclusive parameters and transference is
induced by regularization, the approach is called soft parameter sharing. The author cat-
egorizes the recent works that employ MTL in deep neural networks in groups of related

strategies, based on architectural decisions.

In (VANDENHENDE et al., 2021) the authors review MTL methods in the context
of Dense Prediction Tasks. According to their definition, dense prediction tasks are tasks
that produce pixel-level predictions in Computer Vision applications, such as semantic
segmentation. The authors present an alternative to the classification of methods made by
(RUDER, 2017), arguing that for dense prediction tasks the architectural choices of deep
learning models are not the same as deep networks in general. As models in this domain
are usually based on an encoder-decoder architecture, it makes more sense to organize
the MTL contributions in this field as encoder-based and decoder-based methods.
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Now that we have a better definition of MTL, and a more clear picture of how it
relates with other machine learning areas, it is time to dive into more technical detail. We
are interested in the methods that transfer information through tasks parameters. This
strategy is the most popular in MTL (ZHANG; YANG, 2017) and allows us to encode all

kinds of assumptions into the model.

2.2 PARAMETER-BASED TRANSFERENCE WITH REGULAR-
|ZATION

This section is particularly based on Oliveira et al. (2019). Here we will see that,
on parameter-based formulations, regularization terms provide a powerful tool to encode
assumptions about how tasks are related. Here we visit the most common assumptions
in the literature, such as task clustering, low-rank, and dirty /multi-level models, and also

present a discussion of how to model groups of related features.

Multiple MTL models use regularization terms to encourage information sharing
among the related tasks during training. In this case, regularization terms are applied di-
rectly to the tasks’ parameters, encouraging specific types of transference among multiple
tasks.

Definition 4 (Cannonical Formulation for Regularized MTL Models). The canonical

formulation for the Regularized Multi-Task Learning problem is given by:

mmi/n ; Li(wy) +R(W), (2.1)

where £,(-) : R™ — R is a suitable convex loss function for task ¢ (w, € R", VvVt € T),
and R is a regularization term over all tasks parameters. When the tasks weights are

stacked as columns of a matrix, we represent the task parameters as W € R™*7 .

Examples of loss functions for regression problems are Mean Squared Error and
Mean Absolute Error, while classification problems may use a cross-entropy loss. The
regularization term R (W) is usually convex and possibly non-differentiable. In this term,
we may consider additional aspects such as i) using prior knowledge to act as bias on tasks
parameters; and ii) adding a mechanism that enforces and/or captures the relationship

among tasks.

We present now a summary of the most common approaches used by models that
share information through tasks parameters, named: i) Task Clustering; ii) Low-Rank
Decomposition; iii) Dirty Models; and iv) Grouping Features. Given the connection of the

structure estimation approach with our work, we treat it with more detail in Section 2.3.
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2.2.1 TASK CLUSTERING

Task clustering is the assumption that all tasks belong to one or more groups of

related tasks, usually considering all features in the clustering mechanism.

Evgeniou e Pontil (2004) started from the general premise that the parameter
vectors of tasks should be close to each other. Following the intuition of Hierarchical
Bayes (HESKES, 2000; ALLENBY; ROSSI, 1998), assuming that all w, € R"™ can be
decomposed as w; = wqy+ vy, where v; should be small for all tasks, their model penalizes
the deviation from the “average model” w using slack variables. The dual problem of

their optimization problem is linked with the dual problem of standard SVM.

Jacob et al. (2009a) also resort to the task clustering assumption and start their
proposal by assuming that task clusters are known a priori. They use three regularization
penalties, one penalizing the magnitude of tasks parameters; a second one that penalizes
the between-cluster variance for each group of tasks; and a third regularization term that
penalizes the within-cluster variance. After defining the regularization term that encodes
these assumptions, they relax the requirement of task assignment to clusters, turning it
into another variable of the optimization problem. To make their proposal tractable, they
use a convex relaxation approach. Elaborating further, Zhou et al. (2011a) considered that
tasks parameters are grouped into K groups, being K a hyper-parameter of the model.
They employed a k-means inspired strategy to find the task clusters, but also needed to

relax the original problem to have a tractable formulation.

Despite allowing tasks to share information, the aforementioned methods induce
all the parameter vectors to pursue the average behavior of their corresponding group of
tasks. Another implication is that if tasks are related only through a subset of features,
both methods will fail to capture the relationship and will enforce the relationship on

features that are not supposed to be related.

2.2.2 LOW-RANK DECOMPOSITION

In this approach, we assume that tasks parameters share a latent space and their
parameters can be retrieved through a combination of vectors of the latent basis, as
illustrated in Fig. 7.

A well-known method of this category is GO-MTL (KUMAR; DAUME, 2012),
that considers a latent space where task parameters can be linearly decomposed. Let
L € R™* where k is the dimension of the latent basis, and S € R¥*T be a matrix with
the weights of a linear combination of tasks. Assuming that W = LS, the associated

optimization problem is defined as:

T
min > Lo(Lsy) + M| S+ AL 7 (2.2)

t=1
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Figure 7 — The Low Rank Decomposition strategy for MTL. In this class, tasks param-
eters lie on a shared latent basis L and their actual values may be recovered
through a linear combination of this basis. The parameters of the linear com-
bination of this basis are arranged in the matrix S.

The regularization term is composed of two norms on matrices S and L, ||.S||; being the
entry-wise {;-norm, and ||L||2 = Tr(LLT)? being the Frobenius norm of a matrix. The
norm on L restrains the magnitude of tasks parameters, while the sparsity term on S
enforces the tasks to derive from a small subset of the latent basis L. The relationship
between tasks occurs when two tasks share components in L, based on their decomposition
coded in S. If a task does not share basis vectors on S with any other task, it may be

interpreted as an outlier task.

Notice that by assuming that tasks parameters share the latent basis, GO-MTL
considers that tasks are related in possibly overlapping groups, i.e., one task can be part
of several groups. However, when two tasks are related, all parameters are involved in this

relationship since each component of the latent basis represents all tasks parameters.

Argyriou et al. (2008) present MTFL, a method that learns sparse feature rep-
resentations for the tasks on an orthogonal basis. This proposal also allows features to
be discarded when they are not beneficial to the performance of any task. In this case,
tasks are grouped based on the usage of the same feature representations. The proposal of
Kang et al. (2011) is based on Argyriou et al. (2008) with the difference that they apply a
low-rank constraint on the latent basis, and an /s ;-norm is used to enforce a relationship
on all tasks for each feature. In this work, tasks are assigned to a group of related tasks
using an integer programming approach (thus the title: learning with whom to share),

and the tasks’ parameters are optimized independently by each group of related tasks.

Other methods in this category take advantage of the trace norm as a regularization

term, which can force a matrix to have a low rank. This approach is explored with detail
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Figure 8 — The Dirty Model strategy for MTL. The parameter matrix W is decomposed
into a sum of two matrices. Different regularization terms can be applied to
the components of the decomposition, encoding a priori assumptions of the
problem.

by (PONG et al., 2010), where the authors derive both primal and dual reformulations
of the related optimization problem, prove the existence and uniqueness of stationary
points on an augmented formulation and compare multiple solutions to this problem. A
variation of this formulation is proposed by (HAN; ZHANG, 2016), using a capped trace

regularizer, that minimizes only the singular values that are smaller than some threshold.

2.2.3 DIRTY MODELS

The dirty models approach is based on a decomposition of the tasks parameter
matrix W into a sum of matrices. For example, in (JALALI et al., 2010) it is assumed
that W = S+ B, as depicted in Fig. 8. This allows us to encode more flexible assumptions
about task relatedness by employing different regularization terms on each component of
the decomposition. In this work, the authors use the /1 ;-norm (the sum of /;-norm of all
columns of the matrix) in one component, to induce sparsity over the parameters of all
tasks; and the [; oo-norm (the sum of /;,-norm of all columns of the matrix) in the other

component, to enforce a relationship among all tasks considering each feature in isolation.

The referred optimization problem becomes:

T
mwi/n Zﬁt(st+bt)+)\1”8‘|1,1 +>\2HB”1,00 (23)
t=1

In this formulation, one feature can be active for all tasks but each task is free to
avoid this feature with the regularization of the second term. The factorization strategy
adds the flexibility of sharing features between tasks when convenient, but we still are left
with two limiting properties: i) the [; jyr-norm encourages similar values for each feature
across all tasks, implying that one feature has the same impact on the outcome of all
related tasks; and ii) the model does not consider the case of grouped features. Other
works apply different regularization terms to the components of the parameter matrix
decomposition (CHEN et al., 2011; CHEN et al., 2012; GONG et al., 2012).

In (ZHANG; YANG, 2017), when the number of components in this decomposition

is greater than two, it is referred to as a multi-level approach. Increasing the number
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Figure 9 — Grouped Features in the parameters of a linear MTL model. Each group of
related features corresponds to a group of rows in the parameter matrix W.

of components allows for more flexibility in using different norms to encode multiple
assumptions that increase the complexity of the tasks’ structure. On the other hand,
more components increase the number of terms in the cost function, which increase the
challenges associated with the optimization. This approach is used by works such as
(JAWANPURIA; NATH, 2012) and (HAN; ZHANG, 2015).

2.2.4 GROUPING FEATURES

Let us consider the /;-norm, a common choice for a regularization term. When
applied to the parameters of each task individually, it encourages a sparse activation of
its features. When applied to different arrangements of parameters, it can encourage in-
formation sharing over all tasks on each feature independently. This regularization has
the nice property of being able to recover the exact support - i.e., the set of active vari-
ables of a vector - of a given model when using data generated from this model, if the
parameters are not too correlated (NEGAHBAN; WAINWRIGHT, 2009). However, if the
parameters are structured into correlated groups, it loses support recovery guarantees and
interpretability of results (OBOZINSKI et al., 2011). The family of [, ,-norms is suited to
enforce that groups of features are jointly active or absent. If one feature of a given group
is active, all features in the same group should be active; and if one feature is not active,

the whole group of features should not be active.

The Group LASSO regularization (YUAN; LIN, 2006) is a regularization that
accounts for grouped features. Let the tasks features be partitioned into G groups of
correlated features. Each group g € G = {1,--- ,G} consists of a subset of features in
X, for all tasks t € T. Let X/ be the design matrix restricted to the features present in
the group g for task ¢, and w{ be the task parameter with the same dimension as w; but
admitting non-null values only at locations associated with features belonging to group

g, and having null values at the remaining positions. The Group LASSO regularization
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term is defined as:

Rar(W)=>_>_ 1w/l

teT geg
Notice that the partition of features into the same groups is the same for all tasks, as

represented in Fig. 9.

When used as the regularization term of the canonical regularized multi-task learn-

ing formulation in Eq. (2.1), the MTL optimization problem becomes:

min STL(w) + XD [[w .. (2.4)
teT 9eg

In this penalty, each feature must belong to one group, although isolated features can be
put into a singleton group. As it penalizes the [;-norm of a vector of G [y norms (one per
group), when one element is forced to zero, all features of this group are forced to zero,
in other words: w{ = 0 for some g € G. However, when two groups overlap and only one
group is active in the final solution, the group that is not active will have all its features
zeroed, even the features that are shared with the active group. The recovered support
of this norm is then the complement of the union of the overlapping groups (JACOB et
al., 2009b; KOLAR et al., 2011; VOGT; ROTH, 2010). One appealing property of the
lo1-norm regularization in MTL is that it can help encouraging multiple predictors from
different tasks to share similar parameter sparsity patterns, as in a variation of MTFL
proposed by Liu et al. (2009).

Jacob et al. (2009b) proposed an extension to the Group LASSO where the feature
vector is decomposed as a sum of representations for each group w; = > g uf, applying
the ly-norm (or li,¢) on each group. The difference from the Group LASSO is that u/Vg € G
are latent representations of wy, instead of being a direct partition. This regularization is
called the Latent Group LASSO, or Overlapping Group LASSO, and can be posed as:

Roar(W) =D > dyllwi|2,

teT geg

where w; = 3 g w{, Vtell,---,T], and d, are independent weights for each group,
accounting for the cardinality of each group. The MTL optimization problem using the

Latent Group LASSO independently over all tasks is represented as:

min Y L(wy) + XD dg||wi]f (2.5)
w teT geG
=Y wivtell,--- T (2.6)
geG

In this case, the support for each task is a union of groups, not the complement, as a
feature shared by two groups will have its value preserved for the active group and be

zeroed in the inactive group.
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Both sparsity inducing [; and [, ,-norms present strong support guarantees when
appropriate conditions are met. However, the performance of methods based on [, ,-norms,
depends on how features are shared across tasks. For the [; , norm, (NEGAHBAN; WAIN-
WRIGHT, 2009) showed that if the number of tasks sharing a group of features is less
than a threshold, or even if the parameter values of features of the same group are highly
uneven, the regularization could perform worse than the [; norm. Ideally, each group
of features should be free to play distinct roles depending on the task, i.e., each task
may have its support (number of non-null elements in w{). In this case, we still need a

mechanism to select which tasks should transfer to each group independently.

Several MTL methods that use the Group LASSO regularization find applications
in the medical sciences. G-SMuRFS (WANG et al., 2012) finds groups of related vari-
ables using correlation, and applies the Group LASSO to enforce the estimated feature
grouping. The authors apply their method to identify quantitative trait loci - associations
between genetic variations and imaging measures - to better understand the underlying
biological etiology of Alzheimer’s Disease (AD) on the Alzheimer’s Disease Neuroimaging
Initiative dataset. The ADNI was launched in 2003 to test whether serial magnetic res-
onance imaging (MRI), positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be combined to measure the progres-
sion of AD in early stages or when there already is a mild cognitive impairment (MCI) !.
MT-SGL (LIU et al., 2018) uses the Group LASSO and the I3 ;-norm to encourage indi-
vidual feature selection that will be used on all tasks, and also models regions of interest
(ROI) in the brain with the Group LASSO. In FL-SGL (LIU et al., 2019) several LASSO
extensions such as the Group LASSO and the Fused LASSO (TIBSHIRANTI et al., 2005)

were used, accounting for ordered features to consider temporal smoothness.

All methods presented so far allow tasks to transfer in different ways, but exhibit
several limitations, namely i) the presence of non-convex and / or non-smooth terms in
the optimization formulation; and ii) the need to meet strong assumptions beforehand.
Since gradients are not always available, vanilla gradient-descent methods are not able
to solve such formulations. A different set of optimization tools is required to handle
such problems, which are presented in Chapter 4. Since all tasks are considered to be
related, they may not be robust to the presence of unrelated tasks as they force them to
be related; most of them do not account for grouped features and when they do, all tasks
must share the same sparsity pattern, which implies that each group of features has the
same influence on all tasks outcomes. To avoid imposing strong assumptions beforehand,
and better handle isolated tasks, we proceed to a distinct family of MTL methods that

estimates how tasks are related while learning the tasks’ parameters.

1 Information from <https://adni.loni.usc.edu/wp-content/uploads/how_ to_ apply/ADNI

Manuscript__Citations.pdf>
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Figure 10 — Multi-Task Structure Learning. In this setting, a mechanism responsible for
estimating how tasks are related is included as an additional module.

2.3 MODELING TASK RELATIONSHIPS: STRUCTURE ESTI-
MATION FOR MULTI-TASK LEARNING

In MTL, Structure Estimation is the process of not only estimating all tasks’ pa-
rameters but also how transference occurs from one task to another. Instead of meeting
strong assumptions of how tasks are related, it is possible to estimate statistically rele-
vant transference patterns by encoding them into variables that are not directly mapped
into the predictive loss function. In Fig. 10 we can see a depiction of this strategy. We
learn all tasks simultaneously, with the help of a coupling mechanism that estimates the

relationships among tasks. As we will see, this mechanism can take many forms.

MTRL (ZHANG; YEUNG, 2010b) uses a probabilistic framework and places a
matrix-variate prior distribution on tasks coefficients to model their relationship. They
estimate a precision matrix {2 as the transference mechanism. The precision matrix is
the inverse of the covariance matrix, 2 = ¥~!. It is important to highlight that if one of
its elements is set to 0, the involved variables are conditionally independent. Similar to
MTRL, MSSL (GONCALVES et al., 2016) relies on a probabilistic framework, in which a
sparse precision matrix is learned from the data to capture tasks relationship and to help
in isolating unrelated tasks. A semi-parametric copula distribution is used as prior for task
parameter matrix, capturing non-linear correlation among tasks. They also use a LASSO
penalty on the task parameters for automatic feature selection, which adds non-smooth
terms in the associated optimization problem. Since the transference structure is encoded
in a precision matrix, both methods share the property that transference between two
tasks is symmetric, i.e., transference from task ¢ to task s is the same as transference
from task s to task t. Moreover, as the precision matrix relates two tasks over all tasks

parameters, these methods do not account for groups of features.

AMTL (LEE et al., 2016) assumes that parameters of a task ¢t can be approxi-
mated by a sparse linear combination of the parameters of all other tasks. In other words,
w;, ~ Wby, where b, € RT is a vector with the coefficients of the linear combination.
A task cannot participate in its own formulation, thus by, = 0 V¢t € T. In this case, the

tasks’ parameters serve as a latent basis. The authors also use tasks losses to weight trans-
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ference: relationships must flow from tasks with lower cost (easier to learn) to tasks with
higher cost (harder to learn). Let B € RT*T be a task relationship matrix where by is the
t-th column, and by its ¢-th row. Each column ¢ indicates how the parameters of the other
tasks participate in the linear combination that approximates the parameters of task t,
and a row t indicates the degree with which the parameters of a task ¢ participate in the
approximation of the parameters of other tasks. Therefore, B encodes the relationships
among tasks in an asymmetric scheme: the transference from task ¢ to task s may not be

the same as that from task s to task t.
The associated optimization problem is written as follows:

T
min S04 M) £we) £l — W (2.7)
In the first term, the cost of a task ¢ weights the [;-norm applied to by (t-th row of
B), i.e., the transferences from task ¢ to all other tasks. (A1, Ag) are regularization hyper-
parameters. The asymmetrical transference is encoded in a set of variables that are dis-
tinct from the variables involved in prediction, which allows AMTL to achieve a flexible
regularization of related tasks. Nevertheless, AMTL also enforces the transference consid-
ering all features, which we will call from now on as global feature transference. The

formulation also contains non-convex and non-smooth terms.

Now we are familiar with the main challenges involved with the presence of multiple
learning tasks. Not only that, we reviewed a portion of the literature exploring what and
how information is shared. The main advantages and drawbacks of each approach were

discussed and the common ground is set with relation to ML research.

2.4 FINAL REMARKS

In this chapter, we formally defined Multi-Task Learning and reviewed a relevant
portion of the current literature. We could see how complex can become the relationships
among tasks. The transference between two tasks can include only one feature or a subset
of features of arbitrary size. This implies a combinatorial search on the powerset of the
features, for all possible pairs of tasks. If we consider that the two tasks may be related
asymmetrically, the search space is much larger. None of the proposals can properly
handle such complex scenarios. If not supported by tasks data, many assumptions made
by each category of methods can lead to negative transference. The usage of regularization
terms became a common option to model a priori knowledge about tasks relationships,
to overcome the risk of negative transference. Another common trend is to estimate how

tasks are related, avoiding the imposition of wrong a priori assumptions.

As presented, although the current state-of-the-art MTL methods can model and

learn the tasks relationship information from the data, two major drawbacks are present:
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(i) most of the methods assume that tasks are symmetrically related, that is, task A af-
fects task B in the same way that task B affects task A; and (ii) if two tasks are related,
they must influence each other on the entire set of features. There have been attempts
to enhance the flexibility of these models and to alleviate the mentioned downsides, but
no candidate simultaneously accounts for both the local feature transference and asym-
metrical structural learning. Filling this gap is precisely the main theme of GAMTL, the

main contribution of this work - presented in Chapter 5.

Most presented methods leverage properties of some norms to induce sparsity in
their associated cost functions. The choice of norms to compose a regularization term
presents new challenges, as we need to understand how the norms promote sparsity and
how much we can trust on the few variables that remain active in the final solution. The
norms are used in distinct arrangements of the variables, allowing us to encode complex
relationships among tasks and/or features in the MTL formulation. For the models that
we presented in this chapter, sparsity by itself is not enough if we want to handle groups
of correlated variables. We may need to structure how we enforce sparsity properties in
the variables. In the next chapter, we present how some norm-families promote sparsity in
optimization problems, and detail specific properties that are useful for ML and statistics

models.
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3 INDUCING SPARSE ACTIVATION OF
VARIABLES IN MACHINE LEARNING
MODELS AS A WAY TO ENCODE
PRIOR KNOWLEDGE

The previous chapter covered the main ideas behind Multi-Task Learning and
exhibited how regularization is a key component in multiple strategies used by MTL
methods to model the transference of information among tasks. The usage of multiple
regularization terms is widely adopted, and many of them leverage sparsity properties in
many ways, such as a feature selection mechanism, sparse activation of a latent basis, and
so on. In this chapter, we study the class of sparse models in ML. We discuss how some
norm families promote sparsity when used as regularization terms of a learning problem.
At the end of this chapter, the reader will know why some norms induce sparse solutions,
in which scenarios this property is useful, and how to promote sparsity in a structured

way.

3.1 REGULARIZATION AND SPARSITY INDUCING NORMS

Regularization terms are important in machine learning because of multiple fac-
tors. By penalizing the magnitude of the parameters of the model being trained, these
terms prevent features of the optimization problem of assuming large values and turn the
output of the model too sensitive to their values, helping to alleviate overfitting problems.
Regularization terms can turn the optimization problem better conditioned, or enhance
smoothness in the error surface, turning the optimization easier. As we could see in Chap-
ter 2, regularization terms are also used to impose restrictions and prior knowledge into

the structure of the estimated parameters, in the presence of multiple tasks.

The formulation for a general regularized ML model (of a single task) is defined

min  L(w) + AR(w), (3.1)

where L is a proper loss function, R is a regularization possibly norm-based, and A > 0

is a hyper-parameter that weights the regularization term in the cost function.
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Figure 11 — The norm-ball of [, norms, when p = [1,2]. Notice that when p = 1 we have
a singularity at = = 0.

Let p > 1 be a real number. The /,-norm of a vector x € R" is given by

el = (3 myp); |

i=1
When p = 1, we have the Manhattan or Taxicab norm; when p = 2, we have the

Euclidean or Frobenius norm; and if p approaches infinity, we have the Maximum

norm.

Notice that the formulation in 3.1 is the Lagrangian formulation of the following

constrained optimization problem:

min  L(w)

s.t. R(w) <C, (3.2)

where C' is a hyper-parameter. There is a one-to-one correspondence between the formu-
lations in Eq. (3.1) and Eq. (3.2). This alternative formulation has the nice property that

the constraint is exactly the definition of a norm ball.

Let us examine the norm ball of [,-norms, for some values of p in Figure 11. When
p = 1, the value of the norm is zero if x = 0 and increases linearly with the absolute value
of x. This norm ball is convex but not smooth at x = 0, where its derivative can take
infinite values. When p = 2, the value of the norm follows a smooth quadratic function of
the absolute value of x. Notice that in this case, the norm ball is convex and smooth for
all values of z. If p approaches infinity, the norm always assumes the maximum value of

x.

The geometry of the norm balls highlights important properties of the norm and
carries an easy intuition of how the norm will impact the surface of the cost function in

a regularized ML model. For example, for any smooth convex non-constrained problem,
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a local optimum is a global optimum and the solution can be found using any gradient-
based optimization method. When the chosen norm introduces non-smoothness into the
problem, gradients may not even exist for all elements of the domain. But it is precisely

at the introduced discontinuities (or singularities) that sparsity is achieved.

As a didactic exercise, let x € R? and f(x) = (z; — 3)? + (2o — 5)?, the area of
a circle with center at z; = 3,29 = 5. Let us minimize the area of this circle, with the

constraint that ||x||, = 1, for p = [1,2]. This can be expressed as:

min (21 — 3)% + (29 — 5)?

s.t. [|x]|, = 1.

Let us examine this problem for some values of p. Figure 12 depicts the problem
for p = 2. The contour levels of f(x) show all possible values for x with f value associated
with the color of the lines. The [5-norm ball that corresponds to the constraint is shown
in blue. The solution of our problem must lie in the intersection of f with the norm ball
in order to meet our constraint. Since we want to minimize the area of the circle, the
first contour line that touches norm ball contains our solution. The optimal solution is
depicted with an "X’ mark, at the point x* = L/%, \/%] Notice that the values for both
x1 and x5 are different than zero. The features could only have zero as their optimal value

if the f circle was centered at zero in one of the coordinates.

In Figure 13, we show the same optimization problem, but now with p = 1. The
solution that meets our constraint also lies at the intersection of a contour line of f with
the [;-norm ball, and is marked with an 'X’ mark at x* = [0, 1], even though f is not
centered at any axis. As noticed by (HASTIE et al., 2015), this does not occur for norms

with p > 1; while for p < 1, although solutions are also sparse, the problem is not convex.

There are a few important reasons that make sparse solutions desirable, if not
in general, for plenty of applications. Hastie et al. (2015)[p. 13] highlights three main
motivations for sparsity. The first is the simplicity assumption: as few features are
active in the final solution, the resulting model is simpler to understand and thus more
interpretable. The second motivation is the computational convenience brought by
sparse models. As many features are zeroed, sparse models have significantly less mem-
ory requirements. Sparse solutions lie on smaller sub-spaces and can handle many more
features than a dense counterpart. This allows us to handle high-dimensionality problems
with less memory requirements in a reasonable amount of time. The third motivation is

what the authors termed as the bet on sparsity principle:

“Use a procedure that does well in sparse problems, since no procedure does
well in dense problems.” (HASTIE et al., 2015).
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Figure 12 — Depiction of the optimization problem where we minimize the area of the
circle, constrained to the ls-norm ball, in two dimensions.

In cases where the number of features in a problem is much larger than the number of
data samples, it is usually safer to use sparse models even if the underlying model is not

sparse, as the low number of samples does not allow us to find the optimal solution.

Sparsity plays a key role in other areas of research as well. For instance, in Com-
pressed Sensing (DONOHO, 2006) the goal is to measure n general linear functionals of
x € R™, a digital image or signal, where n < m, and reconstruct the original signal as pre-
cisely as possible. x is assumed to have a sparse representation in some orthonormal basis
(DONOHO, 2006; CANDES et al., 2006). When the samples of x are noisy, Orthogonal
Matching Pursuit (CAL; WANG, 2011; TROPP; GILBERT, 2007) is a popular algorithm

based on sparsity properties. In this case, sparsity is seen as a compression mechanism.

3.1.1 THE [;-NORM AND THE LASSO

Originally proposed for regression problems, the LASSO (TIBSHIRANI, 1996) is

a regularized linear model that is based on the [;-norm. It is defined as follows.

Definition 5 (LASSO). The LASSO model finds the solution to the following optimiza-
tion problem (TIBSHIRANI, 1996):

min || Xw ] (3.3)
st |[wli<C,

where C' is a hyper-parameter.
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Figure 13 — Depiction of the optimization problem where we minimize the area of the
circle, constrained to the /;-norm ball, in two dimensions.

As we did with Eq. (3.1), it is convenient to rewrite the problem in the Lagrangian

form, where the constraint is incorporated into the objective function (Eq. (3.1)).

Definition 6 (LASSO in the Lagrangian Form). The LASSO formulation is as follows:
min [ Xw =y + Allwl:. (3.4)
where A > 0 is the Lagrangian multiplier.

The hyper-parameter A allows us to tune the weight of the regularization in the

solution, imposing more or less sparsity in the estimated parameters.

As highlighted in (HASTIE et al., 2015)[p. 9] by Lagrangian duality, there is a
one-to-one correspondence between the constrained problem and the Lagrangian form:
for each value of C' in the range where the constrain ||w||; < C is active, there is a

corresponding value of C' that yields the same solution from the Lagrangian form.

Tibshirani (1996) analyzes the solution of Eq. 3.6 when X is orthonormal, i.e.,
XTX =1. Let w be the related least-squares solution of Eq. 3.5 for a feature j, without
considering the LASSO constraint. The solution for Eq. 3.5 is:

W, = sign (W;) (’W]O‘ - ’y>+ : (3.5)

where v is determined by the condition that >, [w;| = A, and (-)* = max(0,-). This

solution is called the soft-thresholding operator.
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Figure 14 — Dataset X partitioned in g groups of correlated features. This imposes extra
challenges to the [;-norm regularization.

Using this operator in a coordinate descent iterated procedure to solve the LASSO
can be reasonably fast because the coordinate-wise minimizers are explicitly available in
Eq. (3.5), and thus we do not need to search along each coordinate. The sparsity property
of the problem also avoids multiple computational steps, as for large enough values of A,
most of the features are set to zero. More information on numerical options to solve Eq.
3.5 are available at (HASTIE et al., 2015).

Notice, however, that the LASSO is not well suited to handle groups of correlated
features. As noticed in (JACOB et al., 2009a; OBOZINSKI, 2011), in the presence of
groups of correlated features, the LASSO model loses important properties such as the
recovery of the true support even if given enough samples. This is an important limitation,
as groups of features naturally arise in many statistical and learning applications. For
instance, in linear models: i) a categorical feature is commonly transformed to a group of
dummy variables; ii) a continuous feature may be represented by a group of basis functions
that incorporate non-linear relationships; or iii) some specific domain prior knowledge can
be introduced into the model in a way that features are arranged in structured groups
- example: genes in the same biological pathway may be part of the same group (XU;

GHOSH, 2015).

Let us see how we can impose sparsity properties when features are correlated in

groups.

3.2 STRUCTURED SPARSITY: GROUPING FEATURES WITH
THE GROUP LASSO

Features correlated in groups arise in many applications. For example, it may
happen if groups of different features are collected from the same source, may belong to a
nearby area or to the same time interval, or may even represent a single feature collected

by multiple sources. In all these cases subsets of features are correlated.
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Assume that X € R™*" can be partitioned into G groups of correlated features
with |G| < n, as illustrated in Fig. 14. When estimating a linear model to predict the cor-
responding labels of samples in X, we are interested in sparse solutions that can penalize
all features of the same group in the same way. In other words, if a feature in a group g
is active, a reasonable assumption is that all other features of the same group are active.
On the other hand, we expect that if a feature of a group ¢ is not active, meaning that
it is not relevant for predicting the label, all features of the same group are not relevant
as well. This is usually called structured sparsity, since we are structuring the sparsity

pattern retrieved by the regularized ML model.

If we know a priori that our features are correlated, we want to be capable of
inserting this information into the regularization terms of our model. The Group LASSO
is a widely used norm for this case. It is a special case of the mixed [, ,-norm family where

p=2and g =1, and is defined as follows.

Definition 7 (Group LASSO). Let the features of the design matrix be partitioned into
G groups of correlated features. Each group g € G = {1,--- , G} consists of a subset of
features in X. Let w9 € Rl = [w; if i € g]7. The Group LASSO solves the following

problem (YUAN; LIN, 2006):
min [ Xw —y[|+A> [w. (3.6)

9€g

In this penalty, each feature must belong to one group, although isolated features
can be put into a singleton group. As it penalizes the [;-norm of a vector of G I, norms
(one per group), when one element is forced to zero, all features of this group are forced
to zero. In other words, w{ = 0 for some g € G. However, when two groups overlap and
only one group is active in the final solution, the group that is not active will have all its

features zeroed, even the features that are shared with the active group.

As a regularization, the Group LASSO is defined as:
Rer(w) = [Wlza = > [w]2.
9g€eg

The recovered support of this norm is then the complement of the union of the overlapping
groups (JACOB et al., 2009b; KOLAR et al., 2011; VOGT; ROTH, 2010).

In order to handle the overlapping among groups of features, the Overlapping
Group LASSO (JACOB et al., 2009a) proposes to manage the groups in a latent space,
so the support of the recovered parameters is the union of possibly active groups, as
opposed to the complement of the union when groups overlap. Let XY be the design
matrix restricted to the features present in a group g, and w? be the task parameter with
the same dimension as w but admitting non-null values only at locations associated with
features belonging to group g, and having null values at the remaining positions. The

Overlapping Group LASSO is defined as follows.



Chapter 3. Inducing Sparse Activation of Variables in Machine Learning Models as a Way to Encode
Prior Knowledge 50

[l
+
+

W W1 W2 WG

Figure 15 — Behavior of the Overlapping Group LASSO when X contains g groups of
correlated features. Notice that when a group of features is not active, the
features that are also present in other groups of features can still be active.

Definition 8 (The Overlapping Group LASSO). Assume that w = >, w7 where each
w9 represents the portion of w that is included in the group g € G. The Overlapping
Group LASSO regularization term is defined as (JACOB et al., 2009a):

Rocr(w) =Y [[w9||2, where w = > w?.
9geg g
Fig. 15 shows how the Overlapping Group LASSO setting can handle the over-
lapping features. In this formulation, the features belonging to more than one group are
considered independently on each group. When the parameter vector is decomposed, the
regularization can set a group of features to zero without affecting the other overlapping
groups. This implies that the support for each task is the union of the groups now, not
the complement of the union, as features shared by more than one group will have their

values preserved for the active group and be zeroed in the inactive group.

Again, to enhance our intuition of these regularization terms, let us compare the
norm-balls of both norms, the Group LASSO and the Overlapping Group LASSO. Figure
16 shows both norm-balls in R? (Figures from (JACOB et al., 2009a)). For both cases
we have the groups of features G = {{1,2},{2,3}}. For the Group LASSO (left), the
singularities that appear correspond to cases when only w; or ws is non-zero. The Over-
lapping Group LASSO on the other hand (right), has two circular sets of singularities

when (wy, wsy) or (wsy, ws) is non-zero.

To solve the latent version of the Group LASSO regularization we can rearrange
the features that belong to the overlapping groups by replicating them in the design
matrix. Then we can use any solver for the original Group LASSO regularization. But

depending on the number of groups this solution is far from optimal in terms of memory
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Figure 16 — Norm-ball of the Group LASSO (left) and Overlapping Group LASSO (right)
in R®, with G = {{1,2},{2,3}}. Figure from (JACOB et al., 2009a).

usage, as we are replicating data to match our representation.

3.3 VARIATIONS OF THE LASSO

The properties of the LASSO were used to construct many variations of this algo-

rithm, considering more specific knowledge from the application.

The Relaxed LASSO (MEINSHAUSEN, 2007), for instance, first trains a LASSO
model and then uses only the active features in a least-squared model. The LASSO here
acts as a feature selection step. Fused-LASSO (TIBSHIRANTI et al., 2005) is a general-
ization designed for problems with features that can be ordered in some meaningful way.
This variation penalizes the [;-norm of each feature and their successive differences, pro-
moting sparsity of the features and their successive differences jointly. The Fused-LASSO

is especially useful when the number of features is much greater than the sample size.

The Adaptive LASSO (ZOU, 2006) is a weighted version of the LASSO, where

each feature is weighted according to some rule.

Definition 9 (Adaptive LASSO). Let W € R™ be a weight vector with a weight for each
feature of our linear model. Under certain assumptions on w, the Adaptive LASSO solves
the following optimization problem(ZOU, 2006):

minimize || Xw —y| + AW ® w||4, (3.7)
where A > 0 is a hyper-parameter.

The usual configuration for W is to solve an Ordinary Least Squares problem with
1

=
Wors

the available data and set w =

where v = 1. This variation of the LASSO preserves
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important oracle properties, related to the consistency of the selection of active features.

The LASSO also has some Bayesian variations, where linear regression parameters
can be interpreted as a Bayesian posterior mode estimate when the regression parameters
have independent Laplace (i.e., double-exponential) priors. Park e Casella (2008) propose
a Gibbs sampling from this posterior using an expanded hierarchy with conjugate normal
priors for the regression parameters and independent exponential priors on their variances.
Casella et al. (2010) extended this model and proposed a fairly general fully Bayesian
formulation which could accommodate various LASSO variations, including the Group
LASSO, the Fused LASSO and the Elastic Net. A Bayesian Group LASSO model with
spike and slab priors for problems that only require feature selection at the group level is
found in (XU; GHOSH, 2015).

All these variations gain from the main advantages of the LASSO:

o lessis more: as fewer parameters are active, the resulting model is more interpretable.

« statistical efficiency: if the signal is sparse the bet justifies; if the signal is not sparse

and the results are poor, other methods will not improve much more.

» computational efficiency: sparsity may lead to a dramatic reduction of computation

in the optimization process.

A common problem for all these sparsity-inducing regularization terms is that
gradients may not exist at the introduced non-smoothness, which prevents us from using
vanilla gradient methods. In this case, we need efficient optimization procedures that can

solve these challenges, which is the main topic of the next chapter.

3.4 FINAL REMARKS

In this chapter, we presented how sparsity plays an important role in ML methods.
We formally introduced the /,-norm family, focusing on the /;-norm and the LASSO model.
The geometric interpretation of the LASSO showed how the singularities imposed by the
l;-norm promote sparsity. We also saw how groups of correlated features can be handled
with a specific instance of the mixed [,,-norm family presented by the Group LASSO
regularization. Although being able to handle groups of features, if features belong to
more than one group (i.e. groups overlap), the recovered support is the complement of
the union of the active groups, which can be counter-intuitive. The Overlapping Group
LASSO is an extension of the Group LASSO that is able to handle overlapping groups of
correlated features while having its support as the union of the active groups, instead of
the complement of the union of active groups. Again, by analyzing the geometry of the

norm-balls we could see how these norms promote different sparsity patterns.
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By exploring sparsity, we can achieve simpler solutions and handle high-dimensionality
models, for example. A common drawback of sparsity inducing regularization is the in-
troduction of non-smoothness in the cost function. This prevents us from using vanilla
gradient-based optimization methods that are widely adopted in the ML community.
As highlighted by Nesterov (2005), although sub-gradient methods are popular for such
problems, they do not have an optimal convergence rate. The next chapter is devoted
to optimization procedures that can handle non-smooth terms with optimal convergence

rates, or in an easily parallelizable fashion.
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4 SOLVING OPTIMIZATION PROBLEMS
WITH NON-SMOOTH TERMS

The previous chapters presented how to design regularization terms that induce
sparsity into the variables of the optimization problem and can be used to encode a
priori knowledge on learning formulations. The variables of the optimization problem are
generally associated with free parameters of the learning models and also parameters of
the structural relationship established by the learning tasks. Considering all the multiple
ways that tasks can be related to each other we end up with a combinatorial search
that can easily become intractable in high-dimensional settings, as we would have to
take into account all possible subsets of features, as well as all subsets of tasks (that
share information) and transference in more than one direction. By leveraging sparsity
inducing norms, the tasks relationships is automatically inferred by the learning process..
Notice that the mismatch of assumptions made by the MTL model and the effective
structural relationship among tasks may lead to negative transference. Sparsity inducing
terms also introduce non-smoothness into the related cost function, which requires specific

optimization methods.

This chapter is dedicated to solving convex optimization problems with non-
smooth terms. Proximal operators are presented as a tool to handle non-smooth terms
that commonly appear in ML and statistical applications. Three algorithms are presented,
namely: i) Iterative Shrinkage-Thresholding Algorithm (ISTA) in Section 4.2, ii) Fast Iter-
ative Shrinkage-Thresholding Algorithm (FISTA) in Section 4.3, and iii) the Alternating
Direction Method of Multipliers (ADMM) in Section 4.4.

4.1 PROXIMAL METHODS

Gradient-based methods are commonly used to solve unconstrained convex op-
timization problems, specially when no closed-form analytical solution is available and
memory requirements are not prohibitive. These methods propose an iterative procedure
where the variables are updated until convergence is achieved. In this case, the objective
function needs to be smooth and convex to achieve fast convergence. As presented in
the previous chapters, regularization terms that impose non-smoothness in the objective
function or in the constraint of the optimization problem prevent us from using vanilla

gradient descent.

Let us generalize this procedure by considering proximal operators and proximal-

based optimization methods, taking the LASSO as an example that uses the [;-norm in
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the regularization term. The singularity introduced by this term can be easily handled by
the proximal operator function associated with the [;-norm regularization, as it assumes
a closed-form analytical solution of cheap computation. The same is valid for many other
non-smooth regularization terms commonly used in ML, when the proximal operator
is available (POLSON et al., 2015). These methods are specially useful when handling

decomposable convex functions, which is the case of most regularized ML models.

Parikh e Boyd (2014) compares this class of methods with Newton’s method as

follows:

“[Clonsidering the importance that Netwon’s method has in solving smooth,
non-constrained minimization problems, the proximal methods are for non-
smooth, constrained, large-scale, or distributed optimization problems. ”

Let f: R™ — RU{+o0} be a closed proper convex function. Thus, f is a function
whose epigraph

epif = {(x,1) € R" x R|f(x) <t}

is a nonempty closed convex set, where t € R. The numerically tractable domain of f is
the set where f takes on finite values, domf = {x € R"|f(z) < +o0}.

Definition 10 (Proximal Operator of f). The proximal operator prox; : R" — R" of
f is defined by

1
prox;(v) := argmin (f(x) + <2||x - v||2> ), (4.1)
where ||.|| is the usual Euclidean norm (PARIKH; BOYD, 2014, p. 124).

It is common to parameterize the proximal operator by A > 0, resulting in:

1

prox,(v) = arg}r{nin (f(x)—l— (2)\Hx - VH2> ) (4.2)

Since the proximal operator is strongly convex, for any v € R” there is a unique
global optima. This definition can also be seen as a suitably defined envelope function of

f. For instance, the Moreau envelope f*(v) is expressed as:

P =gt (00 + 55 Ix—vIE < 7v). (4.3)

It approximates f from below, having the same minimizing values. The proximal operator
computes the value that solves the minimization problem defined by the Moreau envelope
(POLSON et al., 2015), providing a trade-off between minimizing f and staying near to
the point v that is controlled by .
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Figure 17 — The black line shows f(z) = |z|, while the dotted line shows the corresponding
Moreau envelope with A = 1. Let v = 1.5, the function |z|+3(zv)2 is shown as
a gray line. Its minimum, located at (0.5, 1) and depicted as a red cross, defines
the Moreau envelope and proximal operator, being closer to the minimum
(0,0) than (v = 1.5, f*=*(v)) depicted as a blue dot. Figure extracted from
(POLSON et al., 2015).

The proximal operator is especially useful when it can be evaluated in closed form
or at a modest computational cost. A didactic example given in (POLSON et al., 2015)
is the proximal operator for f(x) = A||x||;. As f is separable, for a given component x

the proximal operator solves the problem

. A 2
min [)\|x| + §(x — ) ] . (4.4)
The solution is given by
z* = prox, (=) = sign(z)(|z| — \)* = Sx(z). (4.5)

Notice that this solution is the soft-thresholding operator with parameter \.

Figure 17 depicts a geometric interpretation of the connection between the proxi-
mal operator and the Moreau envelope. The black line shows f(z) = |z|, while the dotted
line shows the corresponding Moreau envelope with A\ = 1. Let v = 1.5, the function
|z| + 1 (2v)2 is shown as a gray line. Its minimum, located at (0.5, 1) and depicted as a red
cross, defines the Moreau envelope and proximal operator. Notice that this point is closer
than (v = 1.5, f*1(v)) (blue dot) to the minimum (0,0), emphasizing the point-wise

construction of the Moreau envelope in terms of a simple optimization problem.

Three interpretations stated in (PARIKH; BOYD, 2014) are important for this
work. First is the notion that the proximal operator behaves similarly to a gradient step of
the function f. For instance, computing the optimization problem related to the derivative
of the Moreau envelope df*(v) results that prox,;(v) = v—AJf*(v), which means that
computing the proximal operator is equivalent to computing a gradient-descent step for
the Moreau envelop, with A as a step-size. Secondly, the proximal operator can be seen as

a generalized projection. For instance, when f is the set indicator function of a convex set
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C, the proximal operator is the Euclidean projection of x onto C'. Lastly, when applied to
x* - the optimal solution of f - the proximal operator returns x*, which means that the
optimal solution for minimizing f is a fixed-point of the proximal operator and reveals a
close connection between proximal operators and fixed-point theory. Please refer to Parikh
e Boyd (2014) for an extensive presentation of proximal methods, and Polson et al. (2015)

for a didactic exposition of proximal methods in ML and statistical applications.

A proximal algorithm leverages the proximal operators of the objective terms
to solve a convex optimization problem (PARIKH; BOYD, 2014, p. 126). Let f : R"
R U {oo} be a closed proper convex function, k be the iteration counter, and x* be
the k-th iteration of the algorithm. As defined in (PARIKH; BOYD, 2014, p. 142), the
proximal minimization algorithm is presented in Algorithm 1. The main advantage of
such algorithm is its simplicity: it successively applies the proximal operator of f, until

convergemnce.

4.1.1 PROXIMAL GRADIENT

Let us now consider the problem

min £(x) + 9(x).

where f : R” — R is a smooth convex function that is continuously differentiable with

Lipschitz continuous gradient L(f):
IVf(x) = Vf(y)ll < L(f)llx =yl for every x,y € R",

L denoting the Lipschitz constant of Vf, and g : R® — R U {+o0} is a closed proper
convex function. The differentiable terms in f and the non-differentiable terms in g are
isolated. The extended-value definition of the domain of g allows us to encode any convex

constraints on the variable x through this function.

Let \¥ be a step size, the prozimal gradient method consists of the updates on the
variable x according to Algorithm 2. Compared to Algorithm 1, instead of successively
applying the proximal operator to f, the proximal operator is applied to the gradient
descent step of f.

Algorithm 1 Proximal Minimization Algorithm

. Initialize x°; k =1

while convergence not reached do
xF1 = prox, ;(x*)
k:=k+1

end while
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Algorithm 2 Proximal Gradient Algorithm

1: Initialize x;k = 1

2: while convergence not reached do
30 XM= proxy, (xF — MV f(xF))
4: k=k+1

5: end while

4.2 |ITERATIVE SHRINKAGE-THRESHOLDING ALGORITHMS

The procedure called iterative shrinkage-thresholding algorithm, or ISTA (BECK;
TEBOULLE, 2009) is based on a convex approximation model of the problem in Eq.
(4.6). For any L(f) > 0, consider the quadratic approximation of F/(x) = f(x) + g(x) at

y:
Qu(x.y) = F(y) + (x 9" VF () + 2 x — ¥ + o) (1.6

Let the unique minimizer of @1, be py(y) := argmin{Q.(x,y) : x € R"}. By ignoring the

2}. (4.7)

Applying the proximal minimization solution to solve this problem leads to the Iterative
Shrinkage-Thresholding Algorithm (ISTA), stated in Algorithm 3 (BECK; TEBOULLE,
2009, p. 191).

constant terms with relation to y, pr(y) can be rewritten as:

pr(y) := argmin, {g(y) + 5 HX - (y - 2Vf(y)>

Algorithm 3 ISTA with Constant Step-Size

Initialize x°; L := L(V f), k = 1.
while convergence not reached do
xFH = py (xF).
k:=k+1
end while

When L is unknown, Beck e Teboulle (2009) proposes a backtracking procedure
to find a good value for L, leading to Algorithm 4.

The main advantage of the ISTA algorithm is its simplicity. It is simple to compute,
simple to implement, and can encompass many usefull problems in the machine learning
domain. The main drawback is that this algorithm demonstrates a sublinear global rate
of convergence. With the backtracking operation, this procedure results in a worst-case
complexity result of O(3) (BECK; TEBOULLE, 2009). The next section introduces an

accelerated version of this algorithm.
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4.3 ACCELERATING ISTA

An accelerated version of the ISTA algorithm was first introduced in (NESTEROV,
1983), and is presented in (BECK; TEBOULLE, 2009) as FISTA. It consists of the ap-
plication of the proximal operator at each iteration, as in ISTA. Instead of computing
it on the sole x;,_; point, it uses a specific combination of the previous two points of

the optimization procedure. For the details of how this combination of points is reached,
please refer to (BECK; TEBOULLE, 2009). FISTA is presented in Algorithm 5.

The additional computation is the point y, that has a marginal cost with respect
to the cost of computing the proximal operator. The very specific linear combination of

the previous two points x;_; and x_s, is explained in (BECK; TEBOULLE, 2009). This

1

algorithm keeps the advantages of ISTA and converges at the optimal rate of 7,

by (NESTEROV, 1983).

as proven

As in ISTA, the value of L is a parameter and if its value is unknown, the same
backtracking procedure used for ISTA can be employed here. Algorithm 6 shows FISTA
with Backtracking.

4.4 ALTERNATING DIRECTION OF MULTIPLIERS METHOD

Suppose that the variable of our optimization problem can be decomposed into
x € R™ and z € R™. The Alternating Direction of Multipliers Method (ADMM) (BOYD

Algorithm 4 ISTA with Backtracking

1: Initialize x°; Lo > 0;n > 1; and k = 1.

2: while convergence not reached do

3: Find the smallest positive iz, such that with L = n* L, the following condition is
still met:

4 Flpr(xe-1)) < Qrlpr(xe—1), pr(xr-1)).

5 Set L =n'Ly_1, and compute

6: xF = pr(xF).

7

8:

k=k+1
end while

Algorithm 5 FISTA with Constant Stepsize

1: Initialize x°; L := L(Vf), k= 1.

2: Let y; =x9 € R" and t; = 1.

3: while convergence not reached, compute do
4: Xt = pr(Y)-

5. gy = L@,

6: Yit1 = X + (i’;:ll) (Xk- — kal)-

7: k=k+1

8: end while
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Algorithm 6 FISTA with Backtracking

Initialize x°; Ly > 0;n > 1; and k = 1.
Let y, =xp € R" and t; = 1.
while convergence not reached do
(k > 1)Find the smallest positive i;, such that with L = n% Ly, the following
condition is still met:
Flpr(xe-1)) < Qr(pr(Xp—1,Xr-1)).
Set L, =n'Ly_1, and compute
X = pr(Yr)-

14/ 14483

let1 = — 55—,
Yit1 = Xg + (i’;:) (Xp — Xp—1)-
10: ki=k+1

11: end while

et al., 2011) solves the following optimization problem:

min f(x) + g(2)
s.t. Ax+ Bz =c,

(4.8)

where f and g are convex functions, A € RP*™ B € RP*" and c € RP, accounting for
p equality constraints. Notice that splitting the variable x leads to a separable objective

function.

The ADMM method solves this problem by mixing two strategies: the dual ascent,
and the method of multipliers. In a few words, the dual ascent is an optimization method
that maximizes the dual function related with the original problem using the convex
conjugate of f. The method then consists of two operations, one updating the value of
the primal variables, and a second that is based on the gradient of the dual formulation
together with a proper step-size that performs a ‘cost adjustment’ step. This procedure
can be used even if g is not differentiable. But the main advantage is that this procedure

can optimize separable functions in a highly parallelizable algorithm.

To solve this problem, ADMM starts by forming the augmented Lagrangian for
Eq. (4.8) as follows:

Lagy(x,y.2) = [(x) + 9(2) + " (Ax+ Bz —c) + (4 ) | Ax + Bz — el (49)

Then it proceeds minimizing this function with respect to the primal variables x and z,

and then updating the dual variable y.

Definition 11 (Alternating Direction of Multipliers Method). The ADMM algorithm
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consists of the following updates (BOYD et al., 2011):

x"* = argmin Lag,(x,z",y") (4.10)
z"t' = argmin Lag,(x"™,z,y") (4.11)
yit = y* 4 p(AxXMT 4 BzMT —¢), (4.12)

where p > 0 (BOYD et al., 2011, p. 14).

ADMM iterates as in the dual ascent: first it optimizes the primal variable (steps
1 and 2 in Equations (4.10) and (4.11)), and then it optimizes the dual variable (step 3 in
Eq. (4.12)) performing an adjustment on the primal variables. Notice that the augmented
Lagrangian parameter p is used as the step-size of the dual variable update. The addition
of the penalty term in the augmented Lagrangian formulation enhances the convexity
properties of the problem, helping the method of multipliers to converge faster and under
less restrictive assumptions, such as f being not strictly convex, or having an extended
domain (when f assumes infinite values when x is out of f domain). It is also important
to notice that “the roles of x and z are almost symmetric, but not quite, since the dual
update is done after the z-update but before the x-update” (BOYD et al., 2011).

The most common representation of ADMM method is slightly different from
what was shown. It is more convenient to write the algorithm by combining the linear

and quadratic terms and scaling the dual variable. Let the residual be r = Ax + Bz — ¢,

so that:
p p ! !
vTr + (2> Ir|]2 = (2> I+ <p) vl - <2p> I3
p P
= () e+l () Il

where u = (%) y is the scaled dual variable.
Definition 12 (Scaled Form of ADMM). Using the scaled form of the dual variable,
ADMM can be expressed with the following updates (BOYD et al., 2011):

x"1 = argmin f(x) + (g) |Ax + Bz — ¢ 4 u”||2 (4.13)
z"th = argmin g(z) + (g) |Ax*™ + Bz — ¢ + u”||2 (4.14)
u" = a4 AxFT 4 BZRT — e (4.15)

Assuming that i) f and g are closed proper convex functions with real-extended
domain, and that ii) the unaugmented Lagrangian has a saddle point, ADMM convergence

satisfy the following properties:
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o residual convergence: r* approaches 0, as k approaches infinity, which is known as

feasibility;

o objective convergence: f(x*)+g(z") approaches the optimal value p*, as k approaches

infinity; and

e dual variable convergence: y* approaches y* as k approaches infinity. y* is the dual

optimal point.

See the Appendix A of (BOYD et al., 2011) for detailed proofs.

In practice, ADMM is not known to be a method of fast convergence to high
accuracy. Instead, it converges to modest accuracy within a few tens of iterations, which
is more than reasonable for most machine learning applications. The optimality conditions
of ADMM help us to decide on the stopping criteria when implementing ADMM. Basically,
some conditions on the magnitude of the primal and dual residuals can be imposed. The
optimization procedure is stopped if they reach a small enough value. Another interesting
characteristic of ADMM is its flexibility to handle parallelism. The updates of the primal
variables can occur in parallel, needing to synchronize only for the dual update, that is
a cheap operation. The structure on f, g, A, and B is also of great advantage if the
application suits this framework. For more in-depth exposition of ADMM and how many

applications can leverage its properties, please refer to (BOYD et al., 2011).

4.5 FINAL REMARKS

Regularization terms that induce sparsity are commonly used in ML to encode a
priori knowledge into the variables of the optimization problem. This is especially true
when the goal is to incorporate knowledge about how tasks are assumed to be related
in MTL settings. Some of the norm regularization terms presented in the previous chap-
ter introduce non-smooth components in the objective function. To solve optimization
problems containing non-smooth terms requires approaches other than vanilla first-order
gradient descent or Newton’s Method. This chapter presented the necessary tools to solve
non-smooth optimization problems, common in the MTL setting. Proximal methods allow

us to efficiently handle the non-smoothness and to use multiple regularization terms.
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5 GROUP ASYMMETRIC MULTI-TASK
LEARNING

The previous chapters of this thesis discussed the problem of learning in the pres-
ence of multiple tasks. Over the many possible ways to tackle this problem, our focus is in
the Multi-Task Learning approach. The main assumption of MTL is that by jointly learn-
ing the tasks, each task can benefit from information of other related tasks to improve
their own performance. This strategy brings some interesting benefits such as preventing

overfitting and allowing interpretability of the learning structure of the involved tasks.

The possible choices of how tasks may be related guide to a combinatorial chal-
lenge, considering all the subsets of features and tasks as possible paths of information
transference. Most of the presented literature still enforces limiting assumptions in this
sense. Restricting ourselves to models with interpretable parameters, two characteristics

of the tasks’s transference that are most limiting in the current literature are:

o the global transference assumption, where the relationship between tasks includes

the entire set of features; and

o symmetric relationships, i.e., the influence of task A on task B is the same as the

influence of task B on task A.

These assumptions can become a limiting factor as they do not encompass relationships
that may be present in the data. Another motivation for this work is that it is easy to
assume that negative transference occurs when unrelated tasks are forced to be related by
the method’s assumptions, but this is not entirely true. Negative transference may occur

even when all tasks are related.

It may be natural to some applications to consider that the relationship between
tasks can involve only subsets of features, while including two or more tasks; and also
that this relationship may not occur both-ways. Based on the intrinsic characteristics of
the problem, choosing a model that enforces the wrong assumptions on the data may
deteriorate the performance instead of promoting gains. This aspect evinces the difficulty

of choosing a model.

In this chapter we present Group Asymmetric Multi-Task Learning (GAMTL), an
MTL that overcomes these assumptions. By considering that tasks are related asymmet-
rically based on the losses of the tasks, and that the relationship between any two tasks
is based on groups of features, instead of on the entire set of features, GAMTL offers a

flexible alternative to model more sophisticated groups of tasks. GAMTL estimates how
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tasks are related in a fine-grained way that is also easy to interpret, as it is based on linear

relationships among tasks parameters.

This Chapter is organized as follows: In Section 5.1 we present the model and
its formulation. Section 5.2 explores some variants of GAMTL. Section 5.3 decomposes
the non-convex problem of GAMTL into smaller convex problems of easier solution, and
proposes an optimization procedure that solves the proposed optimization problem and
the presented variants. Section 5.4 presents a complexity analysis of the computational

solution that reassures the competitive performance of the solution.

5.1 GROUP ASYMMETRIC MULTI TASK LEARNING (GAMTL)
FORMULATION

Group Asymmetric Multi-Task Learning (GAMTL) - presented in (OLIVEIRA et
al., 2019) with expanded analysis in (OLIVEIRA et al., Article no. 99, pp. 1-30, 2022.) -
is an MTL method that accounts for grouped features on the tasks design matrix of linear
models while estimating how tasks share information. The learning models are taken as
linear models, and each vector of parameters is a column of the design matrix. So, the
number of columns equals the number of tasks. The estimated relationship structure con-
siders each group of features independently, enabling a bidirectional transference between
any two tasks. In this flexible formulation, tasks can transfer differently depending on
how a group of features is benefitial to their predictions: if a group of features is relevant
for some tasks, transference occurs. On the other hand, transference refrains when the

same group of features is not relevant for a different set of tasks.

Considering a set of linear models as tasks in an MTL problem, let the tasks
features be partitioned into G = {1,--- , G} groups of correlated features in X, for all tasks
t € T. X/ is the design matrix restricted to the features present in group g for task ¢, and
w{ is the parameter vector of task ¢ whose values are zeroed outside of ¢g. Let us assume
that the parameters of a task can be decomposed into a sparse linear combination of the
parameters from the other tasks when considering each group of features independently.
In this case w{ =~ Y .cp b5 w?, where b}, is a scalar that encodes the influence of task
s on task t restricted to the group of features g. The b, V s,t € T variables compose G
matrices BY € RT*T where a row by encodes the influence of task ¢ on all other tasks,
and a column b{ encodes the influence of the other tasks on task ¢ when considering the
group ¢g. Each one can be seen as the adjacency matrix of a directional graph transference
structure. Nodes are tasks and directional weighted edges indicate transference from one
task to another. Based on the latent representation of each task parameter vector, w; ~

> geg W9b{, where W9 is the task parameter matrix with values restricted to the group
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g, and zeros elsewhere. Eq. (5.1) shows the resulting MTL optimization problem.

2

. 1 A2
T D (1 Ay ||b§||1) Liw) + 2 Hw =W A Y dywills

teT M 9€g 9€9G 9 9€9G
st owy=> wf
9€g

b >0,Vge Gandte T

(5.1)

The first term computes the loss function of each task weighted by the number

of samples. Therefore, it takes into account sample imbalance among tasks, while also
using the loss to weight transference from task ¢ to the other tasks. The [;-norm applied
to bY is used to enforce sparsity on the estimated relationship among the tasks. This
helps us pruning the search space while keeping only the more relevant transferences per
group of features. As in (LEE et al., 2016), GAMTL considers the noise of each task as a
weight when transferring to the other tasks in order to enforce that a task with a higher
cost should be less inclined to influence tasks with smaller costs, while tasks with smaller
costs are encouraged to transfer more. This increases the asymmetry on the transference

between tasks.

The second term penalizes the difference between the parameters of a specific task
t and the linear combination of parameters from the tasks with which task ¢ is grouped.
Notice that this term considers how the task ¢ is related to possibly different tasks for each
group of features independently. Together with the equality constraint on each wy, the
last term corresponds to the Overlapping Group LASSO regularization. The constraint
on BY variables restricts the way tasks relate by allowing only non-negative values in the
linear combination. However, in case this restriction is not suitable for the application,
an optimization procedure for the more relaxed variant (without the restriction on BY
values) is presented. GAMTL uses the transference matrices BY in a way that allows us
to employ the Group LASSO while estimating how tasks share information, instead of

forcing transference involving all tasks on each group of features.

GAMTL contains three hyper-parameters that impact how transference occurs.
When A\ = 0, Ay = 0, and A3 = 0, independent linear models are recovered, leading
to a Single Task Learning (STL) approach. If only A3 > 0, we still have independent
linear models per task but regularized by Overlapping Group LASSO. Ay > 0 controls the
transference flexibility from many groups of related tasks - one per group of features - to

w;. With A\; > 0 the sparsity of the transference is activated.

Eq. (5.1) allows some variants: with and without the second constraint; and con-
sidering or not the loss to penalize transference between tasks. This choice is based on
the particularities of the application and whether a negative relationship between tasks

makes sense or not.
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Figure 18 — Input data representation is depicted on the left: a design matrix and labels
for each task along with a possibly overlapping partition of the input feature
set into the same groups for all tasks. The training procedure is depicted
in the middle, where an alternating optimization takes place. One step in-
volves the optimization of tasks parameters so that each task is free to find
its own features sparsity pattern and the relationship between any pair of
tasks is enforced locally to each group. The second step estimates how tasks
are related considering each group of features. The resulting relationship ma-
trices are shown as the adjacency matrix of a multi-digraph, where each level
corresponds to a group of features, recursively used at the first step as the
structural relationship among tasks, thus implementing the asymmetric local
transference. The output is shown on the right, consisting of the predicted
labels for each task, and an asymmetrical relationship among tasks estimated
per group of features.

Figure 18 shows a flowchart presenting the training process for GAMTL. The input
consists of a labeled training set for each task, with the tasks features structured into
groups. The grouped partition of features must be the same for all tasks design matrix.
However, the partition is arbitrary allowing non-contiguous groups of features to overlap,
despite Figure 18 induces contiguity of features. An alternating optimization procedure
performs the training process, switching between the estimation of tasks parameters and
the relationship among tasks. The relationship among tasks is encoded into G matrices, a
transference structure that enables local transference and is equivalent to a multi-digraph.
In this multi-digraph, each level of the graph corresponds to a group of features where
tasks can be related. Tasks are related independently for each group of features in an
asymmetrical fashion. Finally, the output for each task is shown on the right: predictions
for each task, and structural information about how tasks are related at the level of groups

of features.

By representing the relationship among tasks via multiple matrices, and consid-
ering the parameters of the tasks as a latent space for relationship, GAMTL promotes

unique flexibility for the transference:
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» Tasks may be related only on subsets of features.
o Groups of features can play distinct roles on different groups of related tasks.

o Transference is asymmetric: the influence of task ¢t on task s may differ from the

influence of task s on task ¢, at the group level.

Using the categorization in the survey of (ZHANG; YANG, 2017), GAMTL belongs
to the parameter-based transference category of MTL models. Another important aspect
of our formulation is that GAMTL is designed for linear models. The structure that
encodes the relationship of the tasks is based on linear combinations that can be easily
interpreted. The assumption that the parameters of one task can be decomposed as a
linear combination of the parameters of other tasks, on each group of features, may be

too restrictive for multi-layer nonlinear models, such as neural networks.

5.2 VARIANTS OF GAMTL

Let us call GAMTL the formulation that uses the loss to refrain tasks with higher
costs to transfer to other tasks, and that restricts the values of all BY to be equal to or
greater than zero, as shown in Eq. (5.1). Consider this as the standard formulation, but
all experiments report all variants of GAMTL. These variants arise by putting aside one
or both of the following aspects that are present in the standard formulation of (5.1): (i)
using the loss to regularize how much a task can transfer to other tasks; and (ii) using

the non-negativity restriction on the elements of BY.

5.2.1 GAMTL-NL: NO LOSS

The standard formulation of GAMTL considers the loss of each task as a weight
that is multiplied by the regularization parameter of the tasks transference. In this case,
the transference of a task ¢ to all other tasks is proportionally penalized, based on the
value of the loss function of task . On the contrary, tasks with a low value of the loss

function are encouraged to transfer to other tasks.

GAMTL-nl is the variation that disables the loss-weighting behavior on the for-

mulation, which yields the following optimization problem:

2
. 1 A
min Y- —L(we) + Ay b+ 52 w; — > WIbY|| 4+ X3 D dy||wi 2
’ e Mt g€g 9€g 9 9€g

geg

b >0,Vge Gandte T
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The difference lies in the first term of Eq. (5.1) that is now expanded on the first two
terms of Eq. (5.2). After expanding, the product between the loss function and the /;-norm
regularization on the b? variables is removed. Now the regularization on the variables that
encode how a task transfers to the other tasks depends only on the value of the hyper-

parameter \;.

5.2.2 GAMTL-NR: NO RESTRICTION

GAMTL-nr is the variation where BY € RT*T as shown in Equation (5.3).

2
. 1 A
mn Y- (1 NS Hbel) £lwe) + 52 [we = S IWbE| 4+ 0  dyflwlls
: teT Mt 9€6 9€¢ 2 9€9 (5.3)
st owy =) wi.
9€g

Compared to the standard version presented in Equation 5.1, the difference lies in the

removal of the constraints on BY.

5.2.3 GAMTL-NLNR: NO LOSS, NO RESTRICTION

Based on the choices presented above, another variant of GAMTL is obtained by
not using the loss function on the transferences from tasks with higher costs while also
not considering the constraints on the values of BY Vg € G. This variation is called

GAMTL-nlnr and is associated with the following optimization problem:

2

. 1 A
min -y —L(wy) + M) Yl + 52 w,— > Wb + X3 dyl[wls
’ teT "ht 9€g 9€g 9 9€G (5‘4)
st owy =) wi.
Y

Notice that this formulation combines the changes introduced in Equations (5.2)
and (5.3).

Considering all optimization variables at the same time, Eq. (5.1) ends up being a
non-convex optimization problem, possibly with the presence of local minima (GORSKI
et al., 2007). The next section derives smaller convex sub-problems that allow the use of

an alternating optimization procedure.

5.3 SOLVING THE GAMTL FORMULATION

Considering all parameters at the same time, Eq. (5.1) constitutes a non-convex
problem. Let w, € R” and by € R” for all ¢ € G,t € T compose the partitions of the

objective function variables. However, by considering each partition at a time while fixing
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the other variables, we attain smaller convex sub-problems that characterize a multi-
convex optimization problem (XU; YIN, 2013; SHEN et al., 2017).

GAMTL uses an alternating strategy in terms of each w;, while keeping w Vs €
T\ t, and BY Vg € G fixed, and then optimizing with respect to each by Vg € G, t € T,
as shown in Algorithm 7. As commonly used in alternating optimization strategies, the
procedure is carried out until there is a sufficiently small change in the values of the
variables between successive iterations (BEZDEK; HATHAWAY, 2002; XU; YIN, 2013;
GORSKI et al., 2007).

5.3.1 OPTIMIZING TASK PARAMETERS

Isolating Eq. (5.1) in terms of w;,t = 1,2,--- T with all remaining variables fixed

results in: . \
min - —(1+XA; ) Hbi-’\ll)ﬁ(wt)Jr;HWt—Z Wb |13
oM 9eg geg (5 5)
A\ ) )
+§2 W= > Wb 3+ As D dgl[wi |2,
SET\t geg geg
where

We=w,— > > wibl.

weT\{s,t} 9€G
The first term is composed of a convex loss function, as the /;-norm on b is constant.
The second term is the projection of w; onto the other task parameters, which is also a
convex term. The third term computes the interference of w; on the projections of the
other task parameters, being a sum of convex terms. The last term is the Group LASSO

regularization, a convex and non-differentiable term.

Eq. (5.5) can be solved using an accelerated proximal method, such as FISTA (BECK;
TEBOULLE, 2009). Let us decompose the objective function into f : R® — R and

Algorithm 7 GAMTL Alternating Minimization

Require: (X;,y;) VteT,G
1: Initialize W ~ N(0,I7) and set BY =0,Vg € G
2: while convergence not reached do
3: fort=1,---,T do
update w; optimizing task parameters - Eq. (5.5)
end for
fort=1,---,T do
for g € G do
update b{ optimizing task relationships - Eq. (5.7)
end for
10: end for
11: end while
return W, B9 Vge g




Chapter 5. Group Asymmetric Multi-Task Learning 70

h:R™ - RU{oo}, both closed proper convex functions, f being L-Lipschitz continuous

— L can be found with a backtracking procedure — while h being non-differentiable:

1
fwe) = —(1+ M) [bY[1)L(w:)
my g€eg
o Y ) ) (5.6)
+ 2w = S WOIE+ 2 Y [ — 3 wibh
g€g sET\t 9€G

and h is the Group LASSO regularization:

h(wi) = X3 3 dg|[wi 2.

geg

The proximal operator for the group LASSO regularization is given by

5 yeq wolselect) woll, > Ad,

prox,, (w!) = T

0 otherwise.

5.3.2 OPTIMIZING TASK RELATIONSHIPS

The matrices BY encode the relationship between tasks. Since a task cannot be
represented by itself, we fix by, = 0. The strategy used by GAMTL is to isolate Eq. (5.1)
in terms of by, with all remaining variables fixed. Let W, = w;, — Y5 ¢ a\g W9 b?, and
let W9 = [w{/L(wy),---,w5/L(wr)]. The resulting problem is:

. L. A1
min §||Wt_ng?”%+)T2Hb?H1

subject to b >0,Vge Gandt e T.

(5.7)

This problem is similar to the Adaptive LASSO (ZOU, 2006) and thus is convex but
not differentiable at all points. Without the constraints in Eq. (5.7), it can be solved using
any standard method for the LASSO. To handle the constraints (b > 0 Vg € G,t €
T), GAMTL uses the ADMM (BOYD et al., 2011). In this framework, the inequality

constraint can be transformed into an indicator function:

min f(x) + hi(z1) + ha(z2)
subject to x = 7 (5.8)
X = Zo

where hy; = h, and hy(zs) is defined as

0 , 2o Z 0
ha(2z2) = 1, (22) =
+00 ,otherwise.
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The augmented Lagrangian of (5.8) is then, L = L, p,(X, 21,22, 11, Up):

P1,02

Ly, p, =f(X) + hi(z1) + ha(22)

+ 5 (I =z + will = )

+ 22 (b = 22 + ol = [ 3).

resulting in the following ADMM update steps:

Zi-C—H = argmin (hi(zi)—kp;ka_zi—i-u?H%) ;1= {1, 2}

Z;

2 .
X1 = argmin <f<x>+z ’;”|rx—z§“+ufu§)
X ]:1

ul =l g = (1,2}
The two steps in z;-update can run in parallel, with the same occuring for u;. The z;-
update steps are solved with the proximal operators: soft-thresholding, S.(a) = (1 —
r/|al)+a; and projection onto the non-negative orthant R, S(a) = (a); = max(0,a). The
x-update step is a convex problem with a differentiable function f plus quadratic terms,
which can be solved in closed-form via Cholesky decomposition or by any gradient-based
method. GAMTL implementation using the Python programming language is available
on Github *.

54 COMPUTATIONAL COMPLEXITY

The existence of many transference matrices tends to offer better results and in-
terpretability to the model while including some extra computational effort. The cost of
each GAMTYL iteration is mostly driven by steps 4 and 8 of Algorithm 7, which involve a
FISTA and an ADMM execution, respectively.

Step 4 computes V f and prox,,. The cost of the proximal operator is G [Gmaz)?n,
where gpqz is the size of the largest group. The derivative of Eq. (5.6) needs T?G ¢y,a, flops.
Higher costs involved in the gradient computation are O(T?Gn), with other negligible
costs. The full computation of V f is then O(T?Gn). Therefore, a FISTA iteration has an
overall cost of O(T?*Gn).

Step 8 prepares W, using GTn + n flops. For W, the computation of the loss
function of each task costs O(n? + mn), and is reused for all iterations over the same g.
ADMM computes a soft-thresholding operator, the projection of z, and the update of u, all
with negligible costs. Solving x-update in closed-form with Cholesky decomposition uses

T3 flops, with a back-solve cost of n?. When considering n > T other theoretical results

L https://github.com/shgo/gamt]
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(BOYD et al., 2011) allow us to perform this computation at a cost of Tn?. Therefore,
the cost of a complete ADMM iteration is at the order of O(Tn?).

As one iteration of GAMTL consists of T' FISTA and GT' ADMM executions, with
a fixed number of iterations, GAMTL presents a time complexity of order O(T?Gn +
T2Gn?) when considering n > T'. There is an overhead on learning how tasks are related
for each group of related features. Computing gradients is expensive, but the number of
relationship matrices also involves all tasks in a bi-directional way.Computing gradients is
expensive, but the number of relationship matrices also involves all tasks in a bi-directional
way.

However, as we expect tasks to have a sparse activation of their parameters, most
of the computation involved with the relationship of tasks can be skipped when related

to groups of features that are not active.

Let us consider (EVGENIOU; PONTIL, 2004) as a baseline comparison, which
assumes that all tasks are related over all parameters by penalizing their deviation of the
mean (basically clustering the tasks into a single group), and presents a time complexity
of order O(T?m?). Comparing the worst time complexity of order O(T3*Gn + T*Gn?)
presented by GAMTYL, it does not increase the complexity related to the number of tasks
T, but adds a quadratic cost on the number of features. As the method is designed to
handle data of high dimensionality, the usage of sparsity in both the grouped features
of the tasks and in the estimated relationships is essential to mitigate this increase in
computational cost. As most groups of features will be set to zero, a great portion of
the computation can be skipped. Considering that GAMTL adds a detailed structure
of transference among all tasks for each group of features, the additional computational
burden is counterbalanced by the gain in flexibility, as demonstrated by the experiments

in the next chapter.

5.5 FINAL REMARKS

This chapter proposed GAMTL, a method that estimates how multiple tasks are

related considering that:

o local transference: transference can occur in subsets of features considering two or

more tasks; and

o asymmetric transference: transference from task A to task B can be different from

the transference from task B to task A.

The method uses the Group LASSO regularization to consider the sparse activation

of groups of related features. The latent version of this regularization also accounts for
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features belonging to more than one group. GAMTL estimates linear relationships among
the tasks considering each group of features independently, which leads to a fine-grained

relationship among tasks that can be asymmetric.

Although the presented formulation is not convex, the problem is split into smaller
convex sub-problems where the resulting problem can be solved with an alternating pro-
cedure. This leads to an algorithm that adds little computational burden when compared
with simpler MTL methods, while adding more flexibility to information transference

among the tasks, as demonstrated in Section 5.4.

The next chapter demonstrates the effectiveness of GAMTL in a set of experi-
ments. It investigates how GAMTL performs with a crescent number of samples available
for training, starting with an ill-conditioned scenario and ending with enough samples
to train the models for all tasks. Additionally, the chapter proceeds to a real application
where GAMTYL is used to predict cognitive scores related to the progression of Alzheimer’s
Disease, comparing its performance with the state-of-the-art models. Finally, the robust-
ness of the method when noise is present in the data, and the sensitivity to the setting of

hyper-parameters is empirically explored.
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6 EXPERIMENTS AND RESULTS

This chapter presents empirical results of GAMTL in three experimental settings
and compare the results with existing MTL methods. Section 6.1 investigates the perfor-
mance of GAMTL when varying the number of samples available for training, assessing
the quality of fit and capacity to recover the structure of how tasks are related. We de-
signed an artificial dataset with known structure of relationship in the parameters of
the tasks. Section 6.2 uses GAMTL to predict cognitive scores that are related with the
progression of Alzheimer’s Disease, based on pre-processed medical imaging data. Sec-
tion 6.3 examines the sensitivity of the parameters estimated by GAMTL with relation
to noise in the data, and the sensitivity of the active variables with a varied setting of

hyper-parameters.

6.1 VARYING THE NUMBER OF DATA POINTS

By leveraging information among related tasks, MTL is known to show improved
performance when there are few data points available for training. This is important as
many applications may not have plenty of data available. This section explores how STL
and MTL methods perform with a varying number of data points, given a fixed number
of features in each task. Our goal is to verify which methods present pronounced gains
when few data points are available, and also verify how many data points are enough so

that the methods stop improving performance.

For all experiments, the variants of GAMTL are denoted as follows:

o« GAMTL - standard formulation (Section 5.1);
o GAMTL-nl - without considering loss as weighting coefficient (Section 5.2.1);
o GAMTL-nr - removing the constraint that B9 > 0 Vg € G (Section 5.2.2); and

o GAMTL-nlnr - removing the constraint that BY > 0 Vg € G, while not considering

loss as weighting coefficient (Section 5.2.3).

6.1.1 SYNTHETIC DATASET

To validate GAMTL we designed a synthetic data with the following character-
istics: 8 regression tasks are generated with 50 attributes partitioned into two groups
g1 = [1,...,25] and go = [26,---,50]. For the first two tasks, the true values of the
parameters of the first group of attributes were sampled from a standard Gaussian dis-

tribution, A(0, Is5), and the second group of parameters was set to zero. As for the third
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Figure 19 — Instance of generated parameters for the artificial experiment. On the left,
we can see an example of W, on the right we see the relationship matrices of
the two feature groups gi, and gs.

and fourth tasks, the parameters of the first group were set to zero, while the parame-
ters of the second group were sampled from a standard Gaussian distribution. The last
four tasks are based on the previous ones, as their parameters are generated as a linear
combination of the parameters of the previous tasks. The linear combination parameters
were sampled from a truncated Gaussian distribution, ensuring that all values were posi-
tive. An instance of generated parameters is shown in Fig. 19. On the left, we can see an
example of W, on the right we see the relationship matrices of the two feature groups ¢,

and gs.

The dataset of each task was sampled from a standard Gaussian distribution with
300 data points and 50 variables. After that, a Gaussian noise with ¢ = 0.4 was added
on the first four tasks, and with ¢ = 2.9 on the remaining tasks. This difference in
the amount of noise is related to our assumption of asymmetric transference based on
loss. Transference is expected to occur from tasks with lower costs to tasks with higher

costs, recovering the transference structure among all tasks. If all tasks have the same
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level of noise, all transferences will be penalized similarly and the last four tasks will
be equally encouraged to transfer back to the first tasks, resulting in quasi-symmetric

matrices BY, Vg€ G.

6.1.2 EXPERIMENTAL SETUP

The number of data points available for training and testing the models varied
from 30 to 100 per task, as all methods converge to similar performances from this value
on. The synthetic dataset is split so that 70% of the sample are used for the training and
30% for the test. For each number of data points, the hyper-parameters of all methods are
chosen by a holdout procedure in which the training set is split in 70% for training and
30% for validation. The best parameters are used to train the models for 30 independent

runs.

The results of GAMTL are compared with the LASSO (TIBSHIRANI, 1996) and
Group LASSO (JACOB et al., 2009a) as STL contenders. MTFL (KANG et al., 2011),
and MTRL were considered as MTL contenders, along with the GAMTL variants. Hyper-
parameters were chosen using the Python library Optuna (AKIBA et al., 2019), which
implements a relational sampling strategy to search for the optimal values of some function
in a given interval. For each method, 200 trials are used for the search of hyper-parameter
values, and the values with the lowest normalized mean squared error (NMSE) in the
validation portion of the training data are chosen to the experiment. The NMSE metric
is defined as:
_ ZtT:1(||Yt = 3u3)/o(ye)

Z?:1 my 7

where y; and ¥, are the true and predicted labels for task ¢, respectively.

For the LASSO, the search limits were A € [107°, 4], while for the Group LASSO
we adopted A € [107°,15]. MTFL had 2,3,4 as the quantity of task groups, and py, ps €
[0.001, - -+ ,10]. MTRL values were chosen as py, p2 € [0.0001,--- ,10]. All GAMTL vari-

ants used Aj, A2, A3 € [107°,5]. All reports include the mean and standard deviation of

NMSE(y,§)

the normalized mean squared error (NMSE) on the test set, over all 30 runs.

6.1.3 RESULTS ON THE SYNTHETIC DATASET

Figure 20 shows the behavior of the average NMSE for all methods as the size of
the training sample is increased. Considering first the STL methods, notice how Group
LASSO outperforms the LASSO at the given interval, highlighting that ignoring the group
structure of the features is sub-optimal, even if no transference is modeled. For LASSO
all features are independent, while for Group LASSO there is a group-structured feature
dependence in place. All MTL methods improve upon STL, specially when the number

of data points available for training is small, as in the interval between 30 and 70 data
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Figure 20 — Normalized Mean Squared Error (NMSE) of all methods in this experiment,
with a varying number of data points available for training. MTL methods
outperform STL methods specially when there are only small sets of data
points for training.

points. Notice that AMTL presents sub-optimal results: when m < 60 it performs better
than the LASSO, while for m > 60 its performance is worse than all other methods
(MTFL, MTRL, and GAMTL variants). We believe that despite having a transference
mechanism, this happens because it doesn’t leverage the group structure information.
GAMTL variants are able to improve even further when compared to the other MTL
methods (AMTL, MTFL, and MTRL) on this synthetic setting. GAMTL-nl presented
the best results in this experiment. Even when m = 30 it is able to achieve a NMSE
that Group LASSO reaches only when twice the number of data points is available. As
m increases, for instance when m > 90, both MTL and STL methods achieve similar
performance as all tasks have enough data points for a successful training procedure with

respect to the number of parameters estimated by each method.

Figure 21 shows the relationship matrices BY estimated by GAMTL when m =
{40,80, 90, 100} sided by the original BY used on the generative process. With few data
points, such as when m = {40,80}, the recovered relationship structure estimated by
GAMTL is not similar to the original, but is informative enough to improve performance
in an ill-conditioned scenario. Since GAMTL formulation is subject to local optima, we
conjecture that this is a local minima. With enough data points, when (m > 90), the

relationship structure is sufficiently close to the generative structure.

6.2 PREDICTING COGNITIVE SCORES RELATED TO THE PRO-
GRESSION OF ALZHEIMER'S DISEASE WITH GAMTL

Alzheimer’s Disease (AD) is the most common form of dementia in the world
(KHACHATURIAN, 1985). As people live longer and we improve our capabilities of

identifying and diagnosing dementia, we expect the number of people living with demen-
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Figure 21 — Relationship matrices of the two groups of features, estimated by GAMTL on
the synthetic dataset with different training / testing set sizes. The estimated
relationships between tasks are used to regularize tasks parameters. The more
data points available for training, the closer the relationship matrices are to
their true values.

tia will more than triple by 2050 when compared with the estimates of 2018, according
to the World Alzheimer Report of 2018 (Alzheimer’s Disease International, 2018). As a
recognition of the need for global actions to mitigate and further investigate dementia, in
May 2017, the World Health Assembly endorsed a global action plan ! on a public health
response to dementia, directed to policy-makers, international, regional and national part-
ners. The absence of treatment to reverse the progression of this neurodegenerative disease
fuels plenty of current research in the hope to understand the underlying mechanisms of
AD. (LIU et al., 2018) and (ZHOU et al., 2011b) have already shown that MTL can
contribute in modeling the connection between cognitive scores (representing multiple
regression tasks) and the progression of AD, considering multiple distinct Regions Of

Interest (ROI) in the brain, with each ROI representing a group of features.

6.2.1 ADNI DATASET

The performance of GAMTL is tested in a real scenario on the ADNI dataset 2.

This dataset of medical images was collected by the Alzheimer’s Disease Neuroimaging

<https://www.who.int /mental_health/neurology /dementia/action_plan_ 2017 _2025/en/>

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI
contributed to the design and implementation of ADNI and/or provided data but did not par-
ticipate in this experiment or in writing the subsequent analysis. A complete listing of ADNI in-
vestigators can be found at: <http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI _
Acknowledgement__List.pdf>

2
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Initiative (ADNI) and was pre-processed by a team from University of California at San
Francisco, as described in (LIU et al., 2018), who performed cortical reconstruction and
volumetric segmentation with the FreeSurfer image analysis suite. It contains information
from 816 subjects that are the same for all tasks and are divided into three stages: those
cognitively normal (CN) (228), with mild cognitive impairment (MCI) (399), and with
Alzheimer’s disease (AD) (189). There is a total number of 327 features including cortical
thickness average, cortical volume, and sub-cortical volume. In this dataset, regions of
interest (ROI) in the brain are represented by groups of features. The labels available
in this dataset and used as tasks in our formulation include five cognitive measures. 3
of these scores are based on Rey Auditory Verbal Learning Test (RAVLT), a test that
is used as a neuropsychological instrument for evaluating episodic declarative memory.
It provides scores for assessing immediate memory, new verbal learning, susceptibility to
interference (proactive and retroactive), retention of information after a period of time,
and memory recognition (MAGALHAES; HAMDAN, 2010). The other two scores are the
Mini Mental State Exam Score (MMSE), a test used to screen for cognitive impairment;
and the Alzheimer’s Disease Assessment Scale (ADAS) cognitive total score, used to assess

the severity of cognitive symptoms of dementia. Here is a list of the tasks:

o RAVTL Total score (TOTAL);

o RAVTL 30 minutes delay score (T30);

o RAVLT recognition score (RECOG);

« Mini Mental State Exam score (MMSE); and

o Alzheimer’s Disease Assessment Scale cognitive total score (ADAS).

The usage of these scores is widespread, impacting on drug trials, assessment of the sever-
ity of symptoms of AD, the progressive deterioration of functional ability, and deficiencies
in memory, as highlighted in (LIU et al., 2018), thus emphasizing the importance of this
type of modeling. Our goal is to estimate the values of the scores obtained by the indi-

viduals, while estimating how scores are related through ROI activation.

6.2.2 EXPERIMENTAL SETUP

This experiment considers all STL and MTL methods used in the previous exper-
iment, but add other state-of-the-art contenders. We added some other MTL methods for
completion: AMTL (LEE et al., 2016) is also based on using task parameters as a latent
basis, but does not account for groups of features; MT-SGL (LIU et al., 2018), a method
that instead of learning a shared representation from the level of feature and groups of

features across all the tasks simultaneously, it encourages i) individual feature selection



Chapter 6. Experiments and Results 80

based on the utility of the features across all tasks, and ii) task specific group selection
based on the utility of the group. In this way, the method decouples the sparsity of groups
of features from individual features, although it is not designed to estimate the relation-
ships among tasks; GO-MTL (KUMAR; DAUME, 2012) that is based on a latent basis to
model related tasks, thus estimating transference structure; MSSL (GONCALVES et al.,
2016) which accounts for unrelated tasks and estimates a precision matrix as the learning
model structure for transference among tasks; MTRL (ZHANG; YEUNG, 2010b), that
uses a probabilistic framework and places a matrix-variate prior distribution on tasks co-
efficients to model their relationship; and MTFL (KANG et al., 2011) that groups tasks
based in an orthogonal-complement sub-spaces decomposition where features are shared
among tasks. We obtained implementations of the contenders with their respective au-
thors. AMTL, GO-MTL, MSSL, and MTRL were implemented in Matlab, while MT-SGL

was implemented in Python.

As in the previous experiment, Optuna (AKIBA et al., 2019) is used to search
for the value of the hyper-parameters of all methods, using 200 samples for the search
of each method. For this experiment we used a 5-fold cross-validation procedure, where
each fold contains the same proportion of participants from the stages CN, MCI, and
AD. The search limits used to tune the methods hyper-parameters are defined as follows:
For the LASSO A € [107°,--- /4], while for the Group LASSO X € [107°,15]. For AMTL
w, A € [107°,5]. GO-MTL has the number of groups set to 2, 3, 4, while p; € [107%,10], p, €
[1074,10]. MSSL had pi,ps € [107°,10]. For MTFL, [2,3,4] are the quantity of task
groups, and py, pp € [107°,10]. MT-SGL used r € [107°,15]. MTRL hyper-parameters
were chosen as pi, py € [1074,10]. For AMTL, u, A € [107°,5]. All variants of GAMTL
used A1, Ao, A3 € [107°,5]. The hyper-parameters values with the best results in this step
are selected to train the methods for 30 runs, accounting for the initial randomness of the

parameters of the tasks.

6.2.3 PERFORMANCE RESULTS

Table 1 shows the overall performance of all methods using the NMSE metric. Val-
ues are the mean and standard deviation of the 30 runs and the best result is highlighted
in bold.

Among the STL methods, LASSO is the one presenting the best score, but most
MTL methods achieved better results when compared with the LASSO. GAMTL variants
achieved better results than all methods, but presented more deviation than most of
them on the results. As GAMTL estimates more parameters, it is at certain extent an
expected outcome. A Mann-Whitney U test with p < 0.05 was used to verify that the

score difference between GAMTL-nr and all other methods was statistically significant.

As for each task individually, the mean-squared error (MSE) is used to compare
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Table 1 — NMSE of all methods in ADNI dataset (mean and standard deviation over 30
runs). GAMTL-nr had the best results (highlighted in bold), closely followed
by the other GAMTL variants, and MTRL method. A Mann-Whitney U non-
parametric test was run, assuring the significance of score improvement when
comparing GAMTL-nr with all other methods.

(1.4
GAMTL-nl 0787 (4.3
GAMTL-nr 0.780 (2.
GAMTL-nlnr  0.789 (2.8

Method NMSE
1 LASSO 0.840 (2.2 - 10716)
5 Group-LASSO  0.977 (2.0-107Y)
GO-MTL 0.896 (1.1-10716)
MSSL 0.818 (1.1-107'6)
MTFL 0.810 (2.2 10716)
MT-SGL 0.801 (1.5 - 10713)
= MTRL 0.791 (2.2 - 10716)
S AMTL 0.898 ( 0)
GAMTL 0.781 -5)
)
)
)

the methods, with the results presented in Table 2, and the mean absolute error (MAE)
is reported in Table 3. For visual interpretation, the same information is depicted in
Figure 22 on a bar plot. Each sub-figure presents a bar plot of the MSE obtained by all

methods in the experiment for each task.

It is important to highlight that in terms of MAE, the LASSO results were compet-
itive with GAMTL variants. On tasks TOTAL and T30 it obtained better performance,
while closely following GAMTL variants on tasks MMSE and ADAS. But notice that be-
yond sole performance, GAMTL also returns a complex structure mapping how tasks are
related in a flexible and interpretable way. In this type of application, the interpretation
of the active variables is often more important than pure metric performance. Although
Group LASSO has access to the group structure of the features, this information is not
enough to improve performance on an STL setting where no information is shared among
tasks. Considering each task individually, AMTL presented the smaller MSE for the task
TOTAL but showed poor performance for the other tasks. For the same task Group
LASSO showed wide variance in their results. For the task T30, the LASSO presented the
best result, closely followed by MT-SGL. For all other tasks, GAMTL variants had the
most competitive performance. In contrast with the task TOTAL, the tasks RECOG and
MMSE, AMTL showed a poor performance. GO-MTL also showed a similar behavior in
this task: it showed competitive performance for some tasks, but presented poor results
for the task MMSE. GAMTL got the best result for both RECOG and ADAS tasks. As
for the ADAS task, the variation of performance among the methods is small. Each task

benefited the most from a different strategy of transference, but still, task T30 could not
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Table 2 — MSE of all methods per task in ADNI dataset. The best results for each task
are highlighted in bold.

Method TOTAL T30 RECOG MMSE ADAS
2 LASSO 0.857 (2.2-10716) 0.617(1.1-1076) 0.962 (4.4-10'6) 0.618 (5.5-10716) 0.556 (1.1-10716)
& Group-LASSO 1.190 (9.9-107%) 0705 (1.3-107%) 1.019 (9.6-1072) 0.736 (1.0-107%) 0.635 (7.1-1072)
GO-MTL 0.837 (0.0) 0.643 (2.2-107%6) 0.842 (3.3-1071) 0.856 (1.1 10- 16) (.584 (2.2-10716)
MSSL 0.846 (2.2 10 16) 0.648 (3.3-10716) 0.856 (0.0-10°) 0.597 (4.4-1071) 0.566 (1.1-106)
MTFL 0.851 (2.2-10716) 0.648  (0.0-10°) 0.839(1.11-107'6) 0.588(2.22-1016) 0.554(1.11 - 10~26)
MT-SGL 0.885 (5.9 10 13)0.619 (5.6-107%) 0.760 (7.0-10713) 0.612 (3.4 0713) 0.551 (4.7-10713)
= MTRL 0.848 (1.1-107'6) 0.674 (1.1-107'%) 0.786 (3.3-107'6) 0.579 (1.1-10716) 0.520 (0.0- 10°)
= AMTL 0.769(2.2-107'%)  0.700 (4.4-107'9) 0.994 (0.0) 0753 (L1-107) 0.547 (2.2 10~ 10)
GAMTL 0914 (2.7-107°) 0.653 (6.0-107°) 0.744(1.5-1075) 0560 (3.2-1075) 0.506(1.8-107°)
GAMTL nl 0860 (9.3-1075) 0.646 (6.9-1075) 0.794 (1.7-107%) 0.563 (4.5-107°) 0.528 (4.2-107)
GAMTL nr  0.870 (5.0-107%) 0.654 (6.5-107°) 0.775 (6.0-107) 0.555(4.3-10"%) 0513 (3.3-1079)
GAMTL_nlnr  0.857 (3.1-107%) 0.645 (5.6-107%) 0.801 (9.8-107%) 0.566 (6.1-107°) 0.531 (2.8-107%)

Table 3 — MAE of all methods per

are highlighted in bold.

task in ADNI dataset. The best results for each task

Method TOTAL T30 RECOG MMSE ADAS
1 LASSO 0.714 (0.0) 0.629 (0.0) 0.819 (0.0) 0.635 (0.0)  0.560 (0.0)
£ Group-LASSO  0.796 (2.4-1071) 0.661 (5.2-1072) 0.831 (3.8-1072) 0.695 (5.0-1072) 0.599 (4.2 -10~2)
GO-MTL 0.715 (0.0)  0.650 (0.0) 0.736 (0.0) 0.790 (0.0) 0.575 (0.0)
MSSL 0.709 (0.0)  0.662 (0.0) 0.757 (0.0) 0.642 (0.0) 0.556 (0.0)
MTFL 0.711 (0.0) 0.665 (0.0) 0.748 (0.0) 0.639 (0.0) 0.549 (0.0)
MT-SGL 0.725(3.4-10"M) 0.654(1.3-1073) 0.700(4.3-1073) 0.653(2.5-10~4) 0.558(1.6 - 10~13)
= MTRL 0.720 (0.0) 0.676 (0.0) 0.712 (0.0) 0.640 (0.0) 0.537 (0.0)
= AMTL 0.721 (0.0) 0.669 (0.0) 0857 (0.0) 0.758 (0.0) 0.543 (0.0)
GAMTL 0.743(9.2-107%)  0.650(2.3-10~%)  0.692(7.7-107°) 0.631(1.8-10-")  0.549(4.6- 10-%)
GAMTL nl  0.720 (4.9-1075) 0.669 (5.0-1075) 0.723 (1.0-107%) 0.626 (5.2-10~°) 0.537 (3.5-1077)
GAMTL nr  0.725 (2.3-1075) 0.672 (3.4-1075) 0.713 (1.6-1075) 0.623(4.2-107°) 0.531(2.2-107%)
GAMTL nlnr  0.718 (1.5-1075)  0.668 (4.6-1075) 0.727 (4.4-1075) 0.627 (5.6-107°) 0.539 (3.0-107%)

benefit from MTL. As each method holds distinct premises for the transference among

tasks, this result indicates that no single transference mechanism is capturing all nuances

of information transference among the tasks. Most importantly, when not improving per-

formance, some MTL methods incur in poorer performance.

A linha da primeira figura esta errada. na tltima figura tem um AMTL3 To see how

GAMTL improves upon their results, we focus now on methods that account for grouped

features. Choosing Group LASSO as the main reference, the difference of MSE between

Group LASSO and GAMTL variants for each run is taken and the results are shown in
Figure 23. Positive values indicate the method had a smaller MSE than the Group LASSO

(positive transference), while negative values indicate negative transference. GAMTL vari-

ants improved the generalization performance on all tasks when compared with Group
LASSO. Strong improvements are exhibited for RECOG, MMSE, and ADAS tasks, while
not incurring negative transference for the most challenging tasks (TOTAL and T30).
RECOG is the task that benefits the most from GAMTL models.
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Figure 22 — MSE of all methods, for each task, with a blue horizontal line highlighting
the best performance. AMTL had the best performance for the TOTAL task,
with Group LASSO showing a great variance in their results. For the task
T30, the LASSO presented the best result, closely followed by MT-SGL. For
the other tasks GAMTL variants had the most competitive performance.
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Figure 23 — GAMTL gains over STL Group LASSO for each task. For the task TOTAL
the gains vary due to the unstable performance of Group LASSO on that
task. For the task T30 a consistent small gain was obtained, and GAMTL
variants presented an expressive gain for tasks RECOG, MMSE, and ADAS.
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6.2.4 RECOVERED SPARSITY PATTERNS

Figure 24 presents a heatmap of the structural sparsity produced by each method
that achieved the best result on at least one task. The mean of the parameter values for
each group of parameters is taken and if the value is greater than zero, we consider it an
active group, represented by a darker color. LASSO (Figure 24a) is used as a reference for
the STL methods. AMTL obtained the best result for the task TOTAL and is represented
in Figure 24b. Notice the presence of two groups of related tasks: TOTAL, T30, RECOG,
and MMSE as part of one group, while ADAS was isolated in a singleton group. It is
also noticeable that when tasks belong to the same group, they show a strongly related

sparsity pattern on all tasks features.

GAMTL variants show sparser results (Figures 24c and 24d). The ADAS task also
seems unrelated to the other tasks by presenting a different sparsity behavior on GAMTL
results. Both GAMTL methods allow the tasks to relate in different ways when sharing,
thus yielding a more flexible structural sparsity pattern for related tasks. In this case,
GAMTL allows ADAS task to be related to other tasks only in a few groups of features.

The transference scheme encoded on BY,Vg € G matrices is responsible for regular-
izing the parameters of the tasks to fit into the estimated relationships. As these matrices
present interpretable information, a Stability Selection (MEINSHAUSEN; BuiHLMANN,
2010) procedure was performed (see the next section) to examine how robust are the ac-
tive variables of a learning model with relation to noise on the training data and arbitrary

settings of hyper-parameter values.

6.3 STABILITY SELECTION ON ADNI

Besides learning the parameters of the tasks, GAMTL also estimates GT? param-
eters for the relationship among the tasks. On one hand, these extra parameters encode
a distinct source of information retrieved from data; on the other hand, three hyper-
parameters are added and need to be fine-tuned. This raises a question: is the set of
active variables robust to hyper-parameterization processes and data noise? As in (LIU
et al., 2009; LIU et al., 2018; HE; YU, 2010), a Stability Selection is used on the ADNI
dataset both to validate the robustness of GAMTL and also to highlight the interpretative

capabilities of the model.

6.3.1 EXPERIMENTAL SETUP

Stability Selection (MEINSHAUSEN; BuHLMANN, 2010) is a feature selection
procedure that i) employs a sampling procedure on both the data that is used to train
the method and hyper-parameter values; and ii) computes the marginal probability of a

feature being active by the total number of runs in the procedure.
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Figure 24 — Sparsity pattern estimated by the methods with best performance on at least
one task. Darker cells indicate groups of attributes where the mean of their
parameters is greater than zero. All methods show a distinct sparsity pattern
on the ADAS task, when compared to the other tasks. When comparing
results of AMTL with the LASSO, we see groups of features that became
active for ADAS task, but play no role in the STL result. GAMTL variants
(showed on 24c and 24d) present even sparser results, with the benefit of
not enforcing groups to be active for ADAS when the task is not related to
the others, preserving the flexibility of tasks to share only on the groups of
features that are valuable for transference.

Given a set of hyper-parameter values I', a subset of the available dataset is chosen
randomly and without replacement, then the model is trained for N times. After that,
the frequency that a variable was active in the obtained solutions is computed and the
variables are filtered with a threshold. The overall process is described in Algorithm
8. For each variable ¢ of our problem and a certain configuration of hyper-parameters
A= A1, Ay, A3 € T, 7; represents the percentage of times that variable ¢ was active over all
runs. Let S* = {7, i € W U B9, ¥g € G} be the set of percentages, and S = {S}\ e I'}
be the set of percentages over all hyper-parameter values. A variable 7 is considered stable
when the mean over all elements of S* are greater than a certain threshold. A ROI (which
corresponds to a group of features) is stable if the mean of the percentages of all its features

is greater than the threshold.
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Algorithm 8 Stability Selection

Require: T', (X;,y;)Vt € T, and a threshold.
LS = (1)
: for A\, Ay, A3 € " do
while run < N do
fort € T do
X, e Rm/2n g e R™/2 ~ X, yVteT
end for
Initialize GAMTL with )\1, /\2, /\3
Train GAMTL on X, §
end while
1 S*={r]i e WU B9 Vg € G}
1:  S=Sus
12: end for
13: Compute the mean over S and apply threshold.
return 5*, SAVA e T

e

The model hyper-parameters are chosen from the set I' = {\, g, A3|A\, Ag €
[0.001,---,5], A3 € [0.0001,--- 1]} and present results using a threshold of 80%, which

is commonly used in the literature.

6.3.2 STABILITY SELECTION RESULTS

For each ROI, the mean of the stability percentages of its features is taken and com-
pared against the pre-defined threshold of 80%, resulting in a binary matrix Wy, € Z¢<7
whose entries indicate which groups are active for which tasks. For visualization purposes,
we clustered the rows of W, considering the number of clusters as 2 - after a comparison
of the Silhouette Score (ROUSSEEUW, 1987) of the samples after experimenting with
values in the range between 2 and 10. K-means is applied in 30 distinct runs to alleviate
the effects of the random initialization, keeping the result with the best results in terms of
within cluster sum of squares. Figure 25 presents W, split in those two groups. Notice
that the clustering procedure here aims to help us visualize the stability of ROIs that are
similar to each other. GAMTL estimated transference structure does not depend on this
procedure to be meaningful, but since we have a great number of ROls, it may be difficult

to visualize sets of ROIs are active in a stable manner on the tasks.

On the first cluster (left) almost all ROIs are stable on the ADAS task, while
almost no ROI is stable for the other tasks. The second cluster (right) shows stable ROIs
for all tasks but ADAS. However, each cluster contains a few distinct active features
depending on each task, which shows the flexible transference among tasks. This is a key
point in GAMTL models: the distinct behavior of features is an important characteristic
of the MTL problem setting. If the model does not account for the distinct roles that

features can play on related tasks, negative transference may occur. A relationship that is
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Figure 25 — ROIs clustered by similar stability among all cognitive tests (tasks). The
cluster on the left shows high activity for ADAS task, with a sparse presence
on the other tasks. On the other hand, the second cluster is highly active for
all tasks but ADAS, clearly showing the flexible transference possibilities of
GAMTL.

highly expressed in a set of features among two tasks should not be imposed on a different

set, of features.

Choosing some ROIs to further explore the transference among tasks, we picked
two ROIs that are active for all tasks on the second cluster: the Left Caudate and Left
Inferior Temporal. Figure 26a shows the illustrative anatomical location of the Left Cau-
date on a template brain, and Figure 26b shows the estimated relationship among tasks
considering this ROI. The task RECOG is influenced by all other tasks (RECOG column)
but influences only the task ADAS (see the row for task RECOG), while all other tasks
are fully connected on this ROI. The Left Inferior Temporal ROI is depicted anatomically
in Figure 26¢c. In this case, the ADAS task is not related to any other task; TOTAL
and MMSE influence all other tasks, while receiving their influence as well; and RECOG
influences TOTAL and MMSE tasks while is influenced by TOTAL, T30, and MMSE.
Even by choosing ROIs that are active on the solution of all tasks, different relationship
schemes among tasks are expressed, stressing the benefits of a flexible mechanism that

learns how transference occurs.

Considering now the estimated relationship matrices, the average of stability scores

is computed for each B9Vg € G, and these are the 6 ROIs with the highest average value:

o Left Cerebral Cortex;
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position.

Inferior
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(b) Relationship among
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poral ROL

Figure 26 — Left Caudate and Left Inferior Temporal ROIs belonging to the second cluster
were stable on all tasks. Their illustrative anatomical position is depicted
on the left, while the right depicts the estimated relationship among the
tasks. Despite being part of the same cluster, those two ROIs present distinct

transference among tasks.

Right Inferior Temporal;

Left Caudate;

Left Accumbens Area;

Left Pars Orbitalis;

Left Superior Parietal.

Since the Left Caudate was already explored, its presentation is skipped. Figure 27a
illustrates the Left Cerebral Cortex, which is the ROI with most stable transference

among the tasks in all directions. This is the outermost layer surrounding the brain, that

serves as a connection for several ROIs. We can see strong relationships among tasks in

this analysis.
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(d) Left Pars Orbitalis. (e) Left Superior Pari-
etal.

Figure 27 — ROIs with highest stability: the Left Cerebral Cortex, the Right Inferior Tem-
poral, the Left Accumbens Area, the Left Pars Orbitalis, and the Left Su-
perior Parietal. Each sub-figure shows the illustrative anatomical position of
the ROI, together with the respective estimated relationship matrix.

Figure 27b shows the Right Inferior Temporal ROI, also presenting stable connec-
tions among all tasks, with the only exception when transferring from ADAS to RECOG.

The Accumbens Area is a small part of the Left Caudate ROI, being depicted in
Figure 27c. The relationship matrix shows fewer stable connections when compared to

the results of the previous ROIs. The MMSE task is not influenced by any other tasks,
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influencing all but the ADAS task. The Left Pars Orbitalis is shown in Figure 27d. It is
visible that the pairs of tasks ADAS and TOTAL, RECOG and MMSE, do not influence
each other. Notice that coincidentally this ROI shows a symmetric relationship among
tasks. Finally, the Left Superior Parietal (Figure 27e) presents sparser relationships among
the tasks.

These results agree with findings in the literature. For example, it is known that
the Left gray matter suffers greater loss than its symmetric counterpart in the presence
of Alzheimer (THOMPSON et al., 2003). It is also known that the left hemisphere as a
whole is impacted by AD, especially the Temporal and Parietal areas (THOMPSON et
al., 2001; CANU et al., 2011). In this case, GAMTL could find a stable solution where
the ROIs with the most transference activity are known to be related to the progression

of Alzheimer’s Disease.

6.4 FINAL REMARKS

This chapter provided the empirical results of the GAMTL formulation in a set of
experiments. Section 6.1 investigated the performance of GAMTL with a varying number
of samples available for training, in an artificial dataset with known structure of relation-
ship in the parameters of the tasks. Compared to state-of-the-art contenders, GAMTL
gains were enhanced when the number of samples available for training was small. Section
6.2 compared the performance of GAMTL in the prediction of cognitive scores related
with Alzheimer’s Disease progression. GAMTL showed improved performance when pre-
dicting the cognitive scores according to the RMSE and MSE metrics. Moreover, the
method also estimated an interpretable structure of how regions of interest in the brain
are related through the cognitive scores. Section 6.3 tested the robustness of the param-
eters estimated by GAMTL formulation with relation to noise present in the training
data, and also in the settings of the hyper-parameters of the model. When applied to the
same dataset of Section 6.2, the structure of transference that was estimated by GAMTL
and encoded how ROIs (groups of features) were related when considering the different

cognitive scores (modeled as multiple tasks), was backed by the medical literature.
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7 CONCLUSIONS AND FUTURE DIREC-
TIONS

7.1 SUMMARY

This thesis explored how Multi-Task Learning (MTL) is used to tackle Machine
Learning (ML) problems in the presence of multiple tasks. Chapter 1 introduced the pres-
ence of multiple ML tasks and showed some naive solutions to handle the new challenges.
Chapter 2 presented MTL, an approach to handle multiple tasks where ML models for
all tasks are trained jointly to promote gains of performance on the tasks by transferring
information among related tasks. Chapter 3 exposed how sparse models play a key role
in MTL by allowing us to impose a priori knowledge in the cost function using regular-
ization terms. Chapter 4 presented the class of proximal methods as a means to solve
optimization problems with non-smoothness in the objective function or constraints of a

convex optimization problem.

The main contribution of this work was depicted in Chapter 5, with the proposal
of Group Asymmetric Multi-Task Learning (GAMTL), an MTL model that circumvents

important limitations of the current MTL literature, namely:

o global transference: transference of information between two tasks involve all fea-

tures; and

o symmetric relationships: transference between two tasks occurs both ways with the

same intensity..

The distinguished flexibility of GAMTL’s estimated transference structure among

tasks leads to the following main properties:

o Tasks may be related considering only a few groups of features.
o Groups of features can play distinct roles in different groups of related tasks.

o Transference is asymmetric: the influence from a task ¢ on a task s may be different

from the influence of s on t.

The method allows tasks to transfer in a highly flexible way and learns a rich set of local
relationship structures, which also admit interpretable parsing. Chapter 6 provided the

empirical results of the thesis, and GAMTL was tested in two experimental settings:



Chapter 7. Conclusions and Future Directions 93

Sample complexity: this setting measured the performance of GAMTL with a varying
number of samples available during the training phase, and compared the perfor-
mance of GAMTL with related contenders in an synthetic setting, measuring its
predictive performance and ability to recover the true structure of the relationships

among the tasks.

Prediction of cognitive scores related to AD progression: GAMTL was contrasted
with state-of-the-art contenders on the problem of predicting cognitive scores to es-
timate Alzheimer’s Disease progression. In this experiment, each cognitive score was
taken as a learning task. GAMTL showed the best results to predict the majority
of the scores while unveiling relationships among them that have been found in the

medical literature.

The same chapter included a stability selection analysis, which assessed the ro-
bustness of the estimated parameters of GAMTL with relation to noise in the data and
the values of hyper-parameters. The stability selection procedure applied on GAMTL pa-
rameters highlighted statistically robust relationships among cognitive scores, conditioned

on regions of the brain taken as groups of features.

7.2 IMPLICATIONS FOR THE MTL COMMUNITY

Among the many conclusions stated in the body of the chapters, we highlight a

few that we believe to be the most relevant for the MTL community.

Structural estimation: Choosing methods that estimate how tasks are related is pre-
ferred over methods that trust on strong a priori assumptions. But keep in mind
that the way we model how tasks are related needs to be flexible in order to match
the information found in data. GAMTL was demonstrated to properly explore the
premises that tasks are related considering subsets of features that can overlap, in
an asymmetric fashion. These are two degrees of flexibility added in the way tasks

can be related, with a low computational complexity overhead.

Transference among tasks can be complex: as demonstrated in this work, transfer-
ence can occur in multiple groups of features, possibly overlapping, in an asymmetric
fashion. There are potentially other ways to capture nuances of relationships among
tasks, but this was a direction with positive results and low computational over-
head. It is important to consider flexibility in the transference among tasks to avoid
negative transference. The flexibility of transference added by GAMTL helped the
method to almost nullify the effect of negative transference in a variety of experi-

ments, while improving predictive performance.
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MTL may be even more advantageous in the context of scarce data: the gains
of MTL methods when compared with STL counterparts are more expressive when
a smaller number of data points is available for training. Notice that this is a char-
acteristic of many real-world applications, as many scenarios in the daily life suffer

from small data.

Proximal methods are suited for non-convex regularization: Proximal methods are
effective solutions to a variety of formulations to promote regularization. They are
adequate to solve non-smooth problems that are widely common in MTL; they

provide fast convergence rates and are easy to parallelize.

7.3 FUTURE DIRECTIONS

o Extending GAMTL to the heterogeneous features case, where features may not
be the same for all tasks. It may be possible that with the current formulation,
GAMTL is able to handle such scenarios if we consider that all tasks share the
same domain composed of features of all tasks, and the dataset of each task would
be pre-processed to set to zero the features that belong to other tasks but are not
present in this task. In this case, there is no need to modify the formulation or
to impose new constraints on the problem. It would be the easiest path forward,
requiring only to find a suitable application and experimenting with the method. In
case of success, it is possible to modify the formulation adding more constraints to
block transference on groups of features that do not exist in a given task. This may

lead to improvements on the optimization procedure.

o The Group LASSO requires a definition of how features are correlated in groups.
In case the group information is not known beforehand, it is possible to consider
each feature as a singleton group. But a path forward would be searching the group
information automatically, without requiring this information from the user. This

would expand the applicability of this method to new domains.

o The assumption that the parameters of the tasks are linearly dependent among
themselves leads to an easy interpretation of how the tasks are related, but impli-
cates that the features must lie in the same domain. We are going to investigate
how the advantages brought by GAMTL can be expanded to the heterogeneous

case, where features are not on the same domain for all tasks.

o Extending GAMTL to non-linear models seems to be a relevant initiative. Multiple
Kernel Learning (GONEN; ALPAYDN, 2011), tree-based models or even Neural
Networks may benefit from GAMTL’s assumptions.



Chapter 7. Conclusions and Future Directions 95

o The multi-convex nature of the formulation of GAMTL is practical and handy to
combine multiple regularization terms in ML and Statistics. Solving these problems
usually requires a reformulation of the optimization problem into a set of smaller
convex problems with an easier solution, and then applying an alternating minimiza-
tion procedure. Alternating procedures are easy to use, are simple to parallelize, and
converge for many cases, but still are subject to local optima. This work lacks more
theoretical analyses about the convergence of such schemes. For example, what
properties are desired to achieve faster convergence or find better local optima in
problems like that? Does the number of partitions of the original problem affect the
convergence rate of the alternating procedure or the quality of the local minima? Is

it preferable to have a few partitions of the problem or lots of them?
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