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Resumo

Este estudo explora a aplicação de arquiteturas de aprendizado de máquina (ML) baseadas em
memória, como Long Short-Term Memory (LSTM) e Gated Recurrent Units (GRU), para
estimar dados horários de Irradiação Horizontal Global (GHI). Esses modelos de ML são
comparados com modelos físicos tradicionais propostos por Collares-Pereira, Garg e Yao.
Além disso, o Perceptron Multicamadas (MLP) e as Redes Neurais Convolucionais (CNN) são
considerados e avaliados. Os modelos de ML são treinados usando uma abordagem de janela
deslizante, com variáveis de entrada como irradiância diária total, ângulo horário do nascer
do sol e ângulo horário solar. A otimização dos hiperparâmetros é realizada usando uma
técnica de busca aleatória para melhorar o desempenho do modelo. O estudo também aborda
o impacto do tamanho da janela e diferentes combinações de características de entrada no
desempenho do modelo. Essa abordagem orientada por dados reduz a dependência de dados
meteorológicos extensos, tornando-a aplicável em locais diversos. Os resultados indicam que
os modelos de ML superam os modelos físicos, com a LSTM demonstrando o melhor
desempenho geral. O desempenho superior dos modelos de ML é atribuído à sua capacidade
de capturar relações complexas e não lineares nos dados. Este estudo destaca o potencial dos
modelos orientados por dados na estimativa de energia solar, oferecendo uma alternativa
�exível e robusta aos modelos físicos tradicionais.

Palavras-chaves: Downscaling, irradiância horizontal global, aprendizado demáquina, dados
solares sintéticos.



Abstract

This study explores the application of memory-based machine learning (ML) architectures,
such as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), for estimating
hourly Global Horizontal Irradiation (GHI) data. These ML models are compared against
traditional physical models proposed by Collares-Pereira, Garg, and Yao. Additionally, the
Multilyer Perceptron (MLP) and the Convolutional Neural Networks (CNN) are considered
and evaluated. The ML models are trained using a rolling-window approach, with input
features such as total daily irradiance, sunrise hour angle, and solar hour angle.
Hyperparameter optimization is performed using the random search technique to enhance
model performance. The study also investigates the impact of window size and di�erent
combinations of input features on model performance. This data-driven approach reduces
the reliance on extensive meteorological data, making it applicable across diverse locations.
Results indicate that ML models outperform physical models, with LSTM demonstrating the
best performance overall. The superior performance of ML models is attributed to their
ability to capture complex, non-linear relationships in the data. This study underscores the
potential of data-driven models in solar energy estimation, o�ering a �exible and robust
alternative to traditional physical models.

Keywords: Downscaling, global horizontal irradiance, machine learning, synthetic solar data.
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Chapter 1

Introduction

1.1 Introduction

Solar energy plays a pivotal role in the transition to sustainable energy systems, o�ering a

clean and renewable alternative to fossil fuel-based power generation. The e�cient design,

operation, and integration of solar energy systems require accurate predictions of solar

irradiance, particularly Global Horizontal Irradiance (GHI). While many solar monitoring

stations provide hourly resolution GHI data, there are still regions and applications where

only daily data is available. In these cases, the use of high-resolution data is crucial for

capturing the diurnal variations in solar radiation and improving the accuracy of solar

energy system simulations [23].

In photovoltaic systems, solar data is a critical resource in several key areas. It is essential

for power generation forecasting, which involves predicting the energy produced by solar

panels. Additionally, solar data are used for irradiance prediction to optimize system

performance. The e�ciency of solar panels is also monitored using this data, helping to

identify issues and ine�ciencies, and making necessary adjustments to improve overall

e�ciency. However, a signi�cant challenge is the lack of availability of data in the desired

time resolution needed for accurate simulations.

In Brazil, there are a few accessible solar data networks that provide this information.

Two notable networks are Instituto Nacional de Meteorologia (INMET) and Sistema de

Organização Nacional de Dados Ambientais (SONDA). The INMET network consists of 564

automatic weather stations, with 505 currently active and 59 inactive. Each station is

equipped with a pyranometer to measure GHI and collects various meteorological data such
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as temperature, humidity, atmospheric pressure, precipitation, wind direction, and wind

speed on an hourly basis. All the collected data are freely available and accessible on the

internet [25]. Conversely, the SONDA network includes 20 stations strategically positioned

to cover Brazil’s diverse climate zones. These stations collect solar radiation data every

minute, measuring and recording three types of solar radiation: GHI, Direct Normal

Irradiance (DNI), and Di�use Horizontal Irradiance (DHI) [39]. Fig. 1.1 illustrates the

distribution of these weather stations across Brazil.

Figure 1.1: Geographical distribution of INMET and SONDA weather stations across Brazil.

The collection of solar radiation data in Brazil encounters several challenges that impact its

accuracy and reliability. Despite the extensive network of weather stations, many are situated

in remote areas. This geographical isolation often results in frequent equipment failure and

data loss, as maintenance and repairs are di�cult to perform promptly. Consequently, the data

collected can be inconsistent and incomplete, making it challenging to obtain solar radiation

pattern across the consecutive time periods. These issues highlight the need of implement

preprocessing techniques to clean and re�ne the data.

In Fig. 1.1, it can be observed that there are still large areas without stations, leading to

signi�cant gaps in data collection. This issue impacts the design of photovoltaic systems,

particularly in regions with complex geographical features, where higher spatial and

temporal resolution data is necessary to accurately capture variations in solar radiation.



Chapter 1. Introduction 18

However, increasing the number of weather stations is not a feasible solution due to the high

costs associated with installing and maintaining this equipment. Consequently, measured

radiation data remains scarce for many locations in Brazil and worldwide. To address this

gap, generating synthetic solar data can provide valuable information for regions where

direct measurements are sparse or non-existent due to the lack of weather stations.

High-resolution solar irradiance data is essential for optimizing the performance of solar

energy systems and maximizing their energy yield. Hourly resolution data allows for a more

detailed analysis of solar radiation patterns throughout the day, capturing variations due to

factors such as cloud cover, atmospheric conditions, and shading. This level of detail is

particularly important for applications such as grid integration planning, where precise

predictions of solar energy generation are necessary to maintain grid stability and optimize

the use of solar resources.

In regions where only daily GHI data is available, the challenge lies in extrapolating this

data to hourly resolution. Di�erent works have been presented in the literature to address this

problem [45, 9, 16, 47, 5, 33, 1, 28, 20]. Among these works, three distinct types of models can

be identi�ed: physical models, stochastic models, and data-driven models. Physical models,

such as [9, 16, 47], consider solar geometry and atmospheric conditions to estimate the hourly

variation of solar radiation. One common approach is the use of clear sky models, which

calculate the solar radiation that would be received on a cloudless day and then adjust this

value based on cloud cover and other atmospheric conditions. Other physical models may

incorporate more complex atmospheric physics and radiation transfer equations to simulate

the interaction of solar radiation with the Earth’s atmosphere and surface. While physical

models can provide valuable insights into the underlying processes governing solar radiation,

they often require detailed knowledge of the site-speci�c meteorological conditions and could

be computationally intensive.

Stochastic models for data downscaling utilize probabilistic approaches to simulate the

variability of solar radiation at hourly intervals [33, 18, 5]. These models often incorporate

stochastic processes such as Markov chains to model the transitions between di�erent states

of solar radiation, taking into account factors such as cloud cover and atmospheric conditions.

Markov chains are particularly useful in stochastic modeling due to their ability to capture the

memoryless property, where the probability of transitioning to a future state depends only on

the current state and not on the sequence of events leading up to it. By applyingMarkov chains,
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stochastic models can simulate the hourly and sub-hourly variability of solar radiation based

on the statistical properties of the available daily data, providing insights into the stochastic

nature of solar radiation patterns [1, 34]. The complexity of these models lies in establishing

the transition matrix, which de�nes the probabilities of transitioning between di�erent states.

This matrix can vary signi�cantly depending on the location and local climatic conditions,

making it di�cult to adapt the model to di�erent places.

Regarding data-driven models, they leverage Machine learning (ML) techniques to learn

the relationships between daily and hourly radiation variables, without explicitly using

meteorological data in the training process. They can capture the complex and non-linear

relationships that govern solar radiation patterns by focusing solely on radiation variables

such as GHI, sunrise and solar hour angle. This approach eliminates the need for

meteorological data, which may be unavailable or unreliable in certain locations. For

instance, authors in [28] present a Generalized Regression Arti�cial Neural Network using

the mean daily GHI, hour angle, and sunset hour angle as input parameters to estimate the

mean hourly GHI. Four neurons where considered for the hidden layer obtaining an Root

Mean Square Error (RMSE) of 15.1% in the test set. More recently, authors in [20] introduce

another data-driven model. With the aim to capture the non-symmetric pro�les of hourly

GHI, authors �rst employed the well-known K-mean technique to group hourly

observations, followed by a non-parametric function approximation using the Multilayer

Perceptron (MLP) arti�cial neural network. The proposed model was evaluated considering a

di�erent number of hidden neurons and then compared with 15 physical models. The results

showed that the ML based model outperformed, in terms of RMSE, all the physical models.

Despite the utility and accuracy of data-driven models, there is a scarcity of research

employing ML techniques for this particular problem. This study seeks to address this gap by

introducing Recurrent Neural Networks (RNN)s, including the Long Short-Term Memory

(LSTM) and Gated Recurrent Unit (GRU), as well as 1D Convolutional Neural Networks

(CNN)s to the task of downscaling data. Speci�cally, the objective is to estimate hourly GHI

data using daily GHI measurements, in conjunction with the sunrise hour angle and solar

hour angle, as input parameters for the ML networks. The study includes a comprehensive

performance evaluation, comparing these ML models with the MLP model and the physical

models proposed by Garg [16], Collares-Pereira [9], and Yao [47]. Evaluation metrics such as

RMSE, normalized RMSE (nRMSE), Mean Absolute Error (MAE), and R-squared (R2) are



Chapter 1. Introduction 20

employed. Finally, meticulous parameter optimization was conducted to achieve optimal

performance of the ML models.

1.2 Objectives

The general objective of this study is to evaluate memory-based machine learning models to

estimate hourly global horizontal irradiation (GHI) from daily measurements. This assessment

contributes to solar energy estimation by o�ering a �exible and robust alternative to traditional

physical models, improving the accuracy and e�ciency of estimations.

1.3 Speci�c objectives

• To implement and optimize memory-based ML architectures, including Long

Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), and additional models

such as Multilayer Perceptron (MLP) and Convolutional Neural Networks (CNN), for

estimating hourly GHI data.

• To compare the performance of ML models with traditional physical models proposed

by Collares-Pereira, Garg, and Yao in terms of accuracy.

• To investigate the impact of window size and di�erent combinations of input features

on the performance of the machine learning models.

1.4 Dissertation Structure

The rest of this study is organized as follows: Chapter 2 presents the fundamentals of solar

radiation, including de�nitions and equations for calculating solar position. Additionally, it

provides a brief overview of ML models considered in this study; Chapter 3 explains the

methodology, describes the dataset characteristics, details the data preprocessing steps, and

outlines the architecture of the models; Chapter 4 unveils and discusses the main results;

Chapter 5 concludes the work and suggests directions for future research.
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Chapter 2

Solar radiation and Models

This chapter o�ers a review of topics necessary for understanding the concepts and

methodologies employed in this work. Initially, fundamental aspects of solar geometry are

explained, including key concepts that describes the sun’s position at any moment of the day.

Subsequently, solar radiation is introduced, covering concepts such as the solar constant and

extraterrestrial radiation. In the latter part of the chapter, various physical models used to

estimate solar radiation are explored. Finally, machine learning models employed in this

study for the estimation of GHI are introduced.

2.1 Solar geometry

Solar geometry refers to the study of the sun’s position and its movement relative to the

Earth. Knowing the sun’s position in the sky at any time of day for any location on Earth

determines the intensity that reaches the Earth’s surface. This information can be used to

calculate other parameters such as the optimal orientation and tilt of solar panels.

Consequently, solar geometry is crucial for designing solar systems that maximize the

amount of solar energy captured and converted into electricity [43].

Many algorithms have been developed to calculate the position of the sun using di�erent

techniques. For example, the Spencer method uses the Fourier series [40], while the Solar

Position Algorithm developed by the National Renewable Energy Laboratory achieves greater

accuracy with more complex calculations [37]. These methods are integrated into the pvlib

Python library, which simpli�es their use. Additionally, pvlib provides a wide range of tools

and functions to handle various aspects of solar energy system analysis [24].
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Solar radiation levels at di�erent times and locations have been highly studied and are a

function of angles and equations. In the following subsections, we delve into key sun position

parameters, including hour angle, solar declination, zenith angle, solar altitude angle, sunrise

and sunset.

2.1.1 Hour angle

The hour angle (!) measures the time that has passed since solar noon and describes the course

of the sun during a day of 24 h, expressed in angular measurement (degrees). At solar noon,

the ! is zero degrees. Essentially, ! is an angular representation of solar time (ST ), with each

hour corresponding to �fteen degrees [41]:

! = (ST − 12) × 15 (2.1)

2.1.2 Solar declination

Solar declination (�) is the angle between the plane of the equator and a line drawn from the

center of the sun to the center of the Earth [17]. Fig. 2.1 illustrates how this angle varies

throughout the year due to the Earth’s axial tilt of approximately 23.5 degrees. In this

illustration, the Earth is depicted as �xed while the sun appears to move up and down. The

solar declination (�), in degrees, for any day of the year can be calculated by sinusoidal

relationship:

� = 23.45 sin [360365
(n − 81)] , (2.2)

where n is the day number of the year. As shown in Fig. 2.1, the Tropic of Cancer, located at

approximately 23.5 degrees north latitude is the farthest point north where the sun is directly

overhead at noon during the summer solstice, typically on June 21. On the other hand, the

Tropic of Capricorn is situated at around 23.5 degrees south latitude where the sun is overhead

during winter solstice on December 21.
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Figure 2.1: Variation of the solar declination angle with �xed earth and sun moving up and
down. Adapted from [17].

2.1.3 Zenith Angle

The zenith (Θz) is de�ned as the angle between the sun’s rays and an imaginary axis that is

perpendicular to the local horizontal plane at the observer’s location, as illustrated in Fig. 2.2.

It can be observed that this angle is complementary to the solar altitude angle [17].

2.1.4 Solar altitude

Solar altitude (�N ) is the angle between the horizontal plane and the sun in the sky. Also, it

can be interpreted as the sun’s height in the sky and measured in degrees. Fig. 2.2 illustrates

the solar altitude angle and the local horizontal plane. The mathematical expression for the

solar altitude and zenith angle for any date and time is given by 2.3 [30].

sin(�N ) = cos(Θz) = sin(L) sin(�) + cos(L) cos(�) cos(!), (2.3)

where L is the local latitude.

Equator

N

Earth

Local horizontal

 δ
 βNL

L

Zenith

Figure 2.2: The altitude angle of the sun. Adapted from [17].
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2.1.5 Sunrise and sunset

Sunrise occurs when the sun appears above the horizon in the morning. The sky gradually

transitions from darkness to light, signifying the start of the day. In contrast, sunset is the

moment when the sun gradually sinks below the horizon in the evening. Like sunrise, the

time of sunset depends on the speci�c location and varies daily. At sunrise, the sun is below

the horizon, this means that the angle of solar altitude is 0 degrees. Consequently, the hour

angle in 2.3 represents the sunset hour angle (!s) when �N = 0, and the equation can be

rewritten as [35]:

sin(0) = sin(L) sin(�) + cos(L) cos(�) cos(!s)

cos(!s) = −
sin(L) sin(�)

cos(L) cos(�)
,

which reduces to:

cos(!s) = − tan(L) tan(�), (2.4)

where !s is a positive value at sunset.

2.2 Solar radiation

Solar radiation is crucial for various applications, especially in solar power systems. This

renewable and sustainable energy source reduces our dependence on fossil fuels. Solar

radiation refers to the energy coming from the Sun in wavelength, forming a spectrum of

electromagnetic waves [26].

The solar radiation arriving outside the Earth’s atmosphere di�ers from that at the surface.

On the Earth’s surface, the amount of solar energy varies by location due to two main factors.

Firstly, solar geometry, as explained in the previous section, a�ects the angle and position of

the sun relative to a location. Secondly, atmospheric e�ects such as absorption and scattering

attenuate solar radiation. This attenuation depends on local climatic conditions, including

cloud cover, air quality, and humidity [27].
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2.2.1 Solar constant

The solar constant (ISC) represents the intensity of solar radiation outside the atmosphere of

the Earth on a horizontal surface, as illustrated in Fig. 2.3. Using the average distance between

the Earth and the Sun, the most recent estimate of the solar constant is 1361.1W/m2 [19]. This

value can vary slightly throughout the year due to the elliptical orbit of Earth, causing changes

in the distance between the Earth and the Sun [27].

Solar constant

atmosphera
Extraterrestrial 

radiation 

GHI

Figure 2.3: The solar constant on the top of the atmosphere. Adapted from [13].

2.2.2 Extraterrestrial Radiation

Extraterrestrial radiation (H0) represents the maximum possible solar radiation received at the

top of Earth’s atmosphere if there were no atmospheric e�ects. Unlike ISC , which provides an

average value, H0 accounts for Earth’s elliptical orbit around the Sun. Then a correction factor

is applied to ISC to calculate H0 for di�erent time periods [32]. The equation for calculating

extraterrestrial radiation is given by

H0 =
24

�
Isc [(!s sin L sin �) + (cos L cos � sin!s)] (2.5)

2.2.3 Solar radiation components

When solar radiation enters the Earth’s atmosphere, it undergoes various processes. Some of

the incident energy is absorbed by atmospheric constituents and particles, reducing the

amount that reaches the ground. The radiation that arrives at the Earth’s surface directly

from the Sun is known as Direct Normal Irradiance (DNI). This component includes only the
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direct sunlight. In contrast, scattering occurs when solar radiation is redirected in multiple

directions, with some of it returning to space. This process results in Di�use Horizontal

Irradiance (DHI), which reaches the Earth’s surface from all directions [38]. DHI is crucial

for solar photovoltaic systems, especially on cloudy days or in shaded areas where direct

sunlight is obstructed.

DNI

DHI

GHI

Figure 2.4: Components of the irradiance that reaches the Earth’s surface. Adapted from [14].

The combination of two components, DNI and DHI, contributes to Global Horizontal

Irradiance (GHI). In this way, GHI can be de�ned as the total solar energy received on the

Earth’s surface [8]. Fig. 2.4 provides a visual representation of the key components of solar

radiation. The unit of measurement of GHI, DNI, and DHI is typically watts per square meter

(W/m2). This unit measures the power of solar radiation received per unit area. The

relationship between these components can be expressed mathematically as:

GHI = DHI + DNI cos (Θz) (2.6)

2.3 Physical models

In this section, the formulation of the physical models considered in this work is outlined.

These models are used as benchmarks, providing a basis for the assessment of the performance

and capabilities of ML-based synthetic data generation methods.
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2.3.1 Collares-Pereira

The hourly solar radiation is determined based on the daily irradiance (HT ), the hour angle

(!), and the sunset hour angle (!s). In this model, the coe�cients a and b are functions of !s

and are included to account for the incidence angle e�ect [9]:

I =
�HT

24 ( cos(!) − cos(!s)

!s ⋅ cos(!s) − sin(!s)) ⋅ (a + b ⋅ cos(!)) (2.7)

where the coe�cients a and b are de�ned as follows:

a = 0.4090 + 0.5016 sin(!s − 60◦), (2.8a)

b = 0.6609 − 0.4767 sin(!s − 60◦) (2.8b)

2.3.2 Garg

To improve the accuracy of hourly solar radiation estimates during any season, an additional

term has been introduced into the equation. This additional term helps improve the

suitability of the model for estimating global radiation across di�erent seasons [16]. The

complete equation is given by

I = HT ( �

24 ( cos(!) − cos(!s)

!s ⋅ cos(!s) − sin(!s)) − 0.008 sin (3 (! − 0.65))) (2.9)

2.3.3 Yao

Yao proposed a model based on the consideration of solar geometric data to take into account

di�erent climatic conditions [47]. The equation is given by

I =
�HT

24
(0.4762 + 0.6347 cos!)

(24

�
sin

�

24
⋅ cos! − cos!s)

sin!s − !s cos!s

(2.10)

2.4 ML models

In this section, a brief overview of the models considered in this study, i.e., MLP, LSTM, GRU,

and CNN, is provided. The main aspects and formulations for each model are detailed below.
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2.4.1 Multi-layer perceptron

The well-known MLP is an arti�cial neural network capable of handling intricate patterns

and solving challenging problems such as classi�cation and regression. Usually referred to as

universal approximators, MLPs can estimate any continuous function given enough hidden

neurons and an appropriate training process [2]. Unlike a single perceptron, which has

limitations in solving complex problems, it consists of multiple interconnected layers of

neurons [15]. The output of a hidden neuron is determined by a linear combination of

weights and inputs, followed by an activation function. Also, the input could be the output

from the previous layer. Mathematically, the output of a neuron within a certain layer can be

expressed as

y l
i = 'l (

nl−11
j=1

W l
i,jy

l−1
j + bli) , (2.11)

where l * {1,& , L} corresponds to the hidden layer, i * {1,& , nl} is the neuron, W
l
i,j represents

the weights, bli is the bias term, and 'l(⋅) is the non-linear activation function.

The non-linearity of activation functions allows neural networks to learn complex patterns

and relationships in data that linear models cannot capture. By introducing non-linearity,

these functions enable neural networks to approximate a wide range of functions, making

them capable of solving more sophisticated problems and modeling real-world phenomena

with greater accuracy. Common types of activation functions are sigmoid, hyperbolic tangent,

relu, and softmax.

Backpropagation is a fundamental algorithm used to train feed-forward neural networks.

The process begins with forward propagation, where input data passes through the network

and produces predictions. The di�erence between the predicted output and the actual target

is measured using a loss function. Backpropagation then applies the chain rule of calculus to

compute the gradient of this loss with respect to each weight, layer by layer, starting from

the output and moving backward. These gradients are used to update the weights in the

direction that reduces the loss, typically through an optimization algorithm like gradient

descent. By iteratively repeating this process over multiple training examples, the model

re�nes its parameters, improving its ability to generalize to new data. This iterative process

is called training, and the objective is to minimize the loss function.
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2.4.2 Long short term memory

The LSTM is a type of RNN that can hold information for an extended time period. Fig. 2.5

illustrates the memory cell, which is the core component of an LSTM network, highlighting its

capability to regulate information �ow through various gates. To create a multi-layer LSTM

network, several memory cells are stacked vertically. The sequence data is processed by each

LSTM layer, and its output is passed to the next LSTM layer at each timestep. Finally, the

output from the last LSTM layer is fed into a fully connected (Dense) layer to produce the

�nal result. The equations that describe how an LSTM cell processes input data, updates its

internal state, and produces an output at each time step are as follows [22]:

it = '(Wi ⋅ [ℎt−1, xt] + bi), (2.12a)

ft = '(Wf ⋅ [ℎt−1, xt] + bf ), (2.12b)

ot = '(Wo ⋅ [ℎt−1, xt] + bo), (2.12c)

Ct = ft ⋅ Ct−1 + it ⋅ tanh(wC ⋅ [ℎt−1, xt] + bC), (2.12d)

ℎt = ot ⋅ tanh(Ct), (2.12e)

where t represents the current time step; xt is the input; '(⋅) is the non-linear activation

function; W� and b�, � * {i, f , o} are the weights and biases of the input, forget, and output

gates, respectively. Also, the hidden state is given by ℎj , whereas the cell state Cj represents

the memory of the LSTM network.

Recurrent networks, including LSTMs and GRUs, are trained using an algorithm called

Backpropagation Through Time (BPTT) [44]. This algorithm is an extension of traditional

backpropagation, speci�cally adapted to handle the sequential nature of RNNs. BPTT

enables the network to learn from temporal dependencies in the data by "unfolding" the

recurrent network across time steps. This unfolding process conceptually transforms the

RNN into a deep feedforward network, where each layer represents a time step in the

sequence. By doing so, BPTT can calculate how each parameter a�ects the output over the

entire sequence. However, this approach introduces challenges, such as increased memory

requirements for processing long sequences and the risk of vanishing or exploding gradients

as time steps increase.
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Figure 2.5: Structure of an LSTM cell. Recovery from [11].

2.4.3 Gate recurrent unit

The architecture of the GRU shares similarities with the LSTM model. Both networks employ

gating mechanisms to dynamically adjust how much past information should be retained and

howmuch new information should be incorporated at each time step [7]. Unlike LSTM, which

typically has three gates, GRU uses only two gates and a di�erent mechanism to update the

hidden state. The behaviour of the GRU network is given by the following equations [6]

zt = ' (Wz ⋅ [ℎt−1, xt]) , (2.13a)

rt = ' (Wr ⋅ [ℎt−1, xt]) , (2.13b)

ℎt = (1 − zt) ⊙ ℎt−1 + zt ⊙ ℎ̃t , (2.13c)

ℎ̃t = tanh(Wℎ ⋅ [rt ⊙ ℎt−1, xt]), (2.13d)

where W�, � * {z, r , ℎ}, represents the weights of the update gate, reset gate, and hidden state,

respectively. Also, ℎt represents the current hidden state, ℎ̃t symbolizes the current memory

content weighted by the update gate, and ⊙ denotes element-wise multiplication.

2.4.4 Convolutional neural network

This network automatically learns hierarchical features from raw input, eliminating the need

for manual feature engineering [29]. Since we aim to model sequential data, in this work we

focus on 1D CNNs. In a 1D CNN, a 1D kernel slides over the sequence capturing local patterns.
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A kernel is a small vector of weights with shapew * ℝ
L, where L * {3, 5, 7, ...}, and corresponds

to the length of the kernel. The kernel computes the dot products with local regions of the

input, and the result of this operation is a feature map. Multiple kernels are applied to capture

various features from the input. The output of the �rst convolutional layer can be described

by

yi = '(
L−11
j=0

wj ⋅ xi+j + b) , (2.14)

where, yi is the output at position i, L is the length of the kernel, x is the input vector,w is the

kernel (weight) vector, b is the bias term, and '(⋅) is the non-linear activation function. The

most commonly used activation function in CNNs is ReLU (Recti�ed Linear Unit).

The size of the output feature map is in�uenced by the stride and padding used in the

convolution layer. The stride refers to the steps size by which the kernel is shifted along the

input data, with larger strides resulting in smaller output feature maps. For example, a stride

of 1 means the kernel moves one step at a time, while a stride of 2 moves two steps at a time.

Padding is a technique to add extra values (typically zeros) around the border of the input

data. It helps control the size of the output feature map and preserve information at the edges

of the input.

The pooling layer is a key component typically inserted after the convolutional layer. Its

primary functions are to reduce the size of the sequence and decrease the computational load

on the network. Pooling achieves this by summarizing information from local regions into

single values. The two most common types of pooling are max pooling and average pooling.

In a deepCNN, convolutional layers are stacked sequentially, forming a hierarchical feature

extractor. The initial layers typically detect low-level features such as edges and textures, while

deeper layers progressively capture more complex, high-level features like shapes and object

parts. Interspersed between these convolutional layers are pooling layers, most commonly

max pooling, which serve to downsample the feature maps.
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Chapter 3

Methodology

This chapter introduces the methodology adopted to evaluate the ML models. The steps

outlined include a summary of the overall methodology, followed by detailed descriptions of

the dataset, pre-processing techniques, and hyperparameters used in the evaluation process.

3.1 Overview

To improve clarity, the methodology steps for evaluating and optimizing the ML models are

graphically represented in Fig. 3.1. A detailed explanation of each step is presented in the

upcoming subsections.

Historical
data

Processing

Data pre-processing.
Normalization and split data.
Time series (rolling-window).

Solar
geometric

data

Test

Validation

Train

ML models

Hyperparameter
optimization

Physical models

Evaluation metrics

MLP.
LSTM.
GRU.
CNN.

Collares-Pereira.
Garg.
Yao.

RMSE.
nRMSE.
MAE.
R2.

Hourly GHI.

Sunrise hour angle.
Solar hour angle.

Figure 3.1: Overview of the methodology for evaluating ML models.

As illustrated in the �owchart in Fig.3.1, the process begins with a dataset containing real

measurements of hourly GHI, as detailed in Section 3.2. Following this, the necessary pre-

processing steps to prepare the data for analysis are described in Section 3.3. During this
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stage, a daily dataset is derived from the available hourly data, and solar geometric data are

incorporated into this dataset. By the end of this stage, a comprehensive dataset with daily

irradiance (ĄĐ ), sunrise hour angle (āĉ), and hour angle (ā) variables representing the input

features is obtained, along with the hourly GHI measurements that represent the output of the

models. Next, the dataset is normalized and restructured using the rolling-window approach,

as explained in Section 3.4. This is followed by splitting the dataset into three subsets: training,

validation, and testing, as outlined in Section 3.5. In this section, the architecture of the models

are also de�ned and the hyperparameter optimization is expounded in Section 3.6. Finally, the

input features are fed into the MLmodels to downscale the data back to hourly. The output are

then compared with the actual hourly GHI to evaluate the models’ performance, using error

metrics such as RMSE, nRMSE, MAE, and R2.

3.2 Dataset

In this study, we make use of the data provided by INMET, available in [25]. It comprises

hourly measurements of various meteorological parameters, including: global radiation, total

hourly rainfall, atmospheric pressure at station level, air temperature, dew point temperature,

humidity levels, and wind characteristics. For the purpose of our analysis, we have centered

on the Brasilia meteorological station, located at Latitude: 15.78◦ď and Longitude: 47.92◦ċ,

with an elevation of 1161 meters. Additionally, we have selectively utilized data spanning

from January 1, 2017, to December 31, 2023, covering a 7-year period. This selection results in

a total of 61344 data points. Table 3.1 summarize this information.

Table 3.1: Detailed information about the dataset.

Station Latitude (°S) Longitude (°O) Elevation (m) Time period Resolution Data points

Brasilia 15.78 -47.92 1161 Jan, 2017 - Dec, 2023 1 h 61344

3.3 Data processing

The data pre-processing stage is crucial in many �elds, including ML [46], since it can

signi�cantly improve the performance and e�ciency of models. In this work, it involves the

application of various techniques and methodologies to ensure the accuracy and reliability of
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solar radiation data[36, 21]. The procedures applied to GHI data include visual inspection,

handling missing values, implementing quality constraints, and removing outliers. As a �rst

step, we visualize the data to identify any signi�cant issues. Typically, this involves plotting

the measurements over time and generating histograms. This preliminary qualitative

analysis aims to detect major problems within the dataset. In the Fig. 3.2, the left plot

illustrate the raw dataset, allowing us to observe trends and anomalies over time. The right

plot is a histogram of the data, which helps us understand the distribution of values and

identify any skewness.
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Figure 3.2: Raw GHI data available from Jan/2017 to Dec/2023 and histogram.

Fig. 3.3 shows a short period of GHI measurements in a 2-Dimensional plane where each

pixel represents samples from the dataset with the intensity color indicating the measurement

value. Here, the yellow dashed line indicates sunrise and sunset in the local area which was

calculated using the solar position algorithm introduced by [37] and available in [24]. The

�gure depicts a GHI data gap on January 3, 2018, as well as low values of GHI before the sunrise

and after the sunset. To avoid these minor variations, GHI values before the sunrise and after

the sunset were set to zero. The �gure also shows that measurements neither commence nor

conclude in alignment with the sunrise and sunset, respectively. Consequently, the dataset

exhibits a positive o�set of one hour.

Now, to identify outliers and possible erroneous measurements in our dataset, we apply

the test recommended by [31]. It consists of comparing the measurements with two bounds

that can be reached by the correct global irradiance values. The bounds for GHI are given by

Ā < ăĄą < ÿ Ą0 ÿąĉ
1.2(ΘĐ) + �, (3.1)
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Figure 3.3: GHI data with each data point visible for identifying gaps, time shifts, and missing
data.

where Ā * {−2,−4}, ÿ * {1.5, 1.2}, � * {100, 50}, Ą0 is the extraterrestrial irradiance calculated

using the Spencer method presented in [40], and ΘĐ is the solar zenith angle. When Ā = −4,

ÿ = 1.5 and � = 100 it is referred to as physically possible limit; whereas for Ā = −2, ÿ = 1.2

and � = 50 as a extremely rare limit.

After applying the test [31] over our dataset, measurements that are outside the

physically possible and extremely rare limits were found for 75◦ < ΘĐ < 90◦ and correspond

to samples taken during sunrise and sunset. Speci�cally, the three measurements that

surpassed the physical possible limit were replaced by null values whereas the 482

measurements that exceeded the extremely rare limit were replaced by the upper bound in

(3.1). Fig. 3.4 shows the �ltered data.
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Figure 3.4: Quality control bounds for hourly GHI measurements.

The last step in the dataset cleaning process involves linear interpolation to �ll missing

data points (up to 3 consecutive points), and the removal of entire days if any data gap exists.

Fig. 3.5 illustrates the impact of quality control procedures on the dataset, demonstrating
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consistent data, corrected time shifts, and data �ltered between the sunrise and sunset time

period. The resulting dataset, after all the data pre-processing tasks, consists of 61272 data

points with hourly resolution.
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Figure 3.5: Graphical representation of the resulting dataset after the data pre-processing stage.

Figure 3.6: Process �ow for creating the training dataset.

The focus of this work is on generating synthetic hourly data based on daily GHI

measurements. To achieve this, Fig 3.6 illustrates the entire process of creating the dataset

used to train ML models. It begins with the hourly GHI data, which is processed and cleaned.

Next, the daily iiradiance (ĄĐ ) was calculated by integrating the hourly GHI measurements

throughout the day using the trapezoidal rule. Additionally, the sunrise hour angle (āĉ) and

solar hour angle (ā), both in radians, were included in the dataset. Here āĉ was calculated

using the solar position algorithm presented in [37] while ā is given by

ā = (Đ − 12)
ÿ

12
, (3.2)
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where Đ is the local solar time (in hours). It is important to mention that the solar hour angle,

ā, is not added directly to the dataset because it varies throughout the day. Fig. 3.7 depicts

an example, showing the dimension inconsistency between the variables. In Fig. 3.7a, ĄĐ and

āĉ have a single value, whereas ā has 24 distinct values. To address this issue, we used the

resample and forward-�ll methods available in [42]. With this method we guarantee that the

ĄĐ and āĉ dimension match with ā as shown in Fig. 3.7b. This adjustment addresses this

dimensional mismatch by aligning all variables.

[ ��0 ��0 ]   [  
  �0�1 �2⋮�23]  

     [   
    ��0 ��0 ��0⋮ ��0

��0��0��0⋮��0
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 ]   
  

a) b) 

Figure 3.7: Data matrix for a single day. a) Data vectors with di�erent sizes. b) Equal-sized
data.

3.4 Rolling Window Time Series Structure

The time series using a rolling-window approach allows capturing temporal dependencies and

patterns, making it valuable for time series forecasting. In this work, we explore this approach

speci�cally to generate hourly synthetic GHI data. The procedure involves dividing the time

series data into smaller segments or windows, where each window contains a �xed number

of data points. By feeding these overlapping windows into a model, new data points can be

generated based on past observations.

For illustrative purposes, Fig. 3.8 depicts the process of creating one-sample of a time

series. More speci�cally, given a data set ò * ℝ
ă×ā with ă observations and ā features, we

de�ne a window size (Ą) and horizon (ℎ). The former represents a sequence of consecutive

lag observations as input for the model, while the latter is the forecast period into the future

for which predictions are made. Note that the window size can be variable to control the

quantity of past information that is fed in the model. After de�ning the values of Ą and ℎ, the

shape of the input data is given by Ď * ℝ
Ĉ×Ą×ā−1, and the output data has the shape ď * ℝ

Ĉ×ℎ,

where Ĉ is the number of training samples or batch size.
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Figure 3.8: Rolling-window approach for Ą = 3 and ℎ = 1.

3.5 Evaluation Methodology

At this stage, the data have been pre-processed, and a dataset with ĄĐ , āĉ, and ā feature

inputs was created, as explained in Section 3.3. This dataset has an hourly resolution, meaning

there are 24 intervals per day. The data were normalized using the Min-Max normalization

technique to scale the values within the range of 0 to 1. The equation is given by

ĎĄąĈă =
Ď −min(Ď)

max(Ď) −min(Ď)
(3.3)

where Ď is the original value, ĎĄąĈă is the normalized value, min(Ď) and max(Ď) represent the

minimum and maximum values of the feature, respectively.

The normalized data was then chronologically split into three subsets: training,

validation, and testing. With 7 years of available data, the �rst 5 years were used for training,

the subsequent year for validation, and the �nal year for testing. This split corresponds to

approximately 72% for training, 14% for validation, and 14% for testing. These subsets were

restructured using past samples to estimate the next hourly GHI value (horizon = 1). The

past samples include daily irradiance (ĄĐ ), sunrise (āĉ), and hour angle (ā), but do not

incorporate past hourly GHI values, as explained in Section 3.4, This approach focuses on

estimation based on related features rather than direct forecasting from previous GHI values.

Hence, the shape of the input matrix are de�ned as Ĉ × Ą × 3 and the output as Ĉ × 1, where Ĉ is

the batch size, Ą is the windows size, and 3 corresponds to the three features (ĄĐ , āĉ, and ā).
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In this work, the values of Ĉ and Ą are de�ned as hyperparameters, with their optimal values

being determined through hyperparameter tuning.

Figure 3.9: Evaluation methodology

Fig. 3.9 illustrated the process to estimate hourly GHI values using various ML approaches

such as MLP, LSTM, GRU, and CNN. For LSTM and GRU networks, the input shape remains

Ĉ × Ą × 3. This shape is ideal for these recurrent networks, which process data step by step

along the sequence dimension (windows size). For CNN, the input shape is also maintained as

Ĉ ×Ą×3, treating the sequence dimension as a 1D spatial dimension with 3 channels. However,

for the MLP network, the input data is �attened, resulting in a 2D shape of Ĉ × (Ą ∗ 3), where

each sample in the batch is represented as a single vector of length (Ą ∗ 3), combining all

features across the entire sequence.

For comparison, also are included physical models such as Collares-Pereira, Garg, and

Yao. Before beginning the training process, the architecture of each model is de�ned, as

show Fig. 3.10. Here, the MLP, GRU, and LSTM models each contain two hidden layers with

dropout regularization, followed by a fully connected layer. The CNN model employs a

six-layer con�guration, with three 1D convolutional layers, each followed by a max-pooling
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layer. The output from the �nal layer is �attened into a 1D vector, to which dropout is then

applied. Regarding the physical models, the expressions outlined in Section 2 were used for

evaluation. These models rely on established mathematical formulations and do not require

parameter tuning or training. Consequently, physical models can generate hourly data

directly from the test set without the need for additional preprocessing, such as

normalization or rolling windows.

The outputs of the models are the estimated GHI values for each hour, which are then

compared to the actual GHI values to assess the performance and accuracy of each model.

The metrics used for this evaluation include RMSE, nRMSE, MAE, and the R2 metric. RMSE

provides a measure of the average magnitude of the errors, nRMSE normalizes this error to

make it comparable across di�erent scales, MAE gives the average absolute di�erence between

the estimated and actual values, and the R2 metric indicates the proportion of the variance in

the dependent variable that is predictable from the independent variables. These metrics can

be calculated as follows:

RMSE =

√
1Ą

ÿ=1(ċÿ − Čÿ)
2

Ą
, (3.4a)

nRMSE =
RMSE

ċăÿĎ

, (3.4b)

MAE =
1Ą

ÿ=1 |ċÿ − Čÿ|
Ą

, (3.4c)

Ď2 = 1 −
1Ą

ÿ=1(ċÿ − Čÿ)
2

1ÿ=1 Ą(ċÿ − Čÿ)2
, (3.4d)

where ċÿ represents the ÿ-th true measurement, Čÿ represents the ÿ-th output value of the

models Ą is the total number of data points, and ċăÿĎ is the maximum value present in true

measurement.
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Figure 3.10: Architecture of ML models a) MLP b) LSTM c) GRU d) CNN

3.6 Hyperparameters optimization

To obtain the best accuracy from the ML models, an optimization of its hyperparameters was

conducted. Initially, we de�ned a search space containing all possible values for the

hyperparameters. Subsequently, we employed random search to randomly sample a �xed

number of con�gurations from the search space to train the models [3]. The number of

iterations was set to 30, meaning that 30 di�erent con�gurations of the model were

randomly generated and evaluated. Each iteration represents a unique set of

hyperparameters, creating distinct initializations of the model. This approach ensures a

diverse exploration of the hyperparameter space, allowing us to assess a wide range of model

con�gurations. The optimal model is then selected based on the lowest RMSE value achieved

on the validation set. The optimization task was executed with weights and biases python

library [4] and the hyperparameter’s search space is detailed in Table 3.2. For all models,

common hyperparameters such as window size, batch size, and learning rate were optimized.

Also, for MLP, GRU, and LSTM the size of the two hidden layers, dropout rate, and size of the

fully connected layer were re�ned. Finally, for the CNN, the �lter size, kernel size, dropout

rate, and size of the fully connected layer were �ne-tuned.

The models were trained using the Adam optimizer, and the mean square error was used

as a loss function. The training process was set to run for 20 epochs. To ensure optimal

model performance, convergence was monitored by tracking the training and validation

losses. A model was considered converged when these indicators showed consistent stability
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Table 3.2: Con�guration of search space

Model Hyperparameter Range

All windows size [1, 3, 6, 12, 18, 24, 48, 72]

batch size [32, 64, 256, 512, 1024]

learning rate [5, 3, 1, 0.5, 0.3]∗

last layer [32, 128, 32∗∗]

MLP, dropout [0.1, 0.3]

LSTM, layer 1 [32, 256, 32∗∗]

GRU. layer 2 [32, 256, 32∗∗]

CNN �lters 1 [16, 64, 16∗∗]

�lters 2 [16, 128, 16∗∗]

�lters 3 [16, 128, 16∗∗]

kernels 1 [3, 5, 9, 13]

kernels 2 [3, 5, 7]

kernels 3 [3, 5, 7]
∗ Expressed in scienti�c notation: ×10−3

∗∗ Quantization step size.

over multiple epochs. The learning curves illustrating how the loss function evolves across

epochs for both the training and validation datasets are provided in Appendix C.

Additionally, early stopping was implemented to prevent over�tting and reduce unnecessary

computations with a patience parameter set to 10. This means that training would be

stopped early if the validation loss did not improve for 10 consecutive epochs, preserving the

best model encountered during the training process.
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Chapter 4

Results and discussion

This chapter presents the main results obtained fromChapter 3 jointly with a detailed analysis

of the impact of the input features is presented.

4.1 Impact of window size

This analysis focuses on the impact of window size on the model’s performance among

optimized hyperparameters. Our �ndings indicate that the optimal window size does not

necessarily correspond to the largest number of past samples. In fact, a continuous increase

in window size eventually leads to a decrease in performance. Conversely, overly small

window sizes do not provide enough context for models to perform adequately. Therefore,

the ideal window size is best determined through a hyperparameter optimization process.

Table 4.1 presents the performance metrics for various window sizes with the optimal one,

for each model, highlighted in bold. The optimal window size for the MLP, LSTM, and GRU

models was 12, while the best window size for the CNN model was 72. The table also

indicates that the LSTM architecture yields the best overall performance with this optimal

window size. Interestingly, the MLP model achieves the second-best performance in terms of

RMSE, outperforming the GRU model despite the latter’s architectural similarity to the

LSTM. Given its simpler design, the MLP model can be a compelling alternative to more

complex architectures, o�ering a balance between accuracy and model simplicity.

In addition to window size, other hyperparameters were �ne-tuned using the random

search technique. Table 4.2 summarizes the optimal set of hyperparameters for each model

evaluated in this study. The optimal con�gurations varied among the di�erent models,
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Table 4.1: Error metrics in test set for di�erent window sizes and for each ML model. The bold
number shows the best metric values.

Model Window RMSE nRMSE MAE R2

size (W/m2) (%) (W/m2)

MLP 1 80,201 7,070 39,933 0,933

6 80,637 7,108 39,778 0,932

12 80,047 7,056 40,677 0,933

24 80,562 7,102 39,763 0,932

48 80,561 7,102 41,497 0,932

72 81,994 7,228 39,843 0,930

LSTM 1 81,036 7,143 40,682 0,931

6 80,125 7,063 41,357 0,933

12 79,967 7,049 38,486 0,933

24 80,150 7,065 39,443 0,933

48 80,929 7,134 40,562 0,931

GRU 1 80,882 7,130 39,233 0,931

6 80,294 7,078 39,287 0,932

12 80,210 7,071 39,257 0,933

24 80,466 7,093 39,996 0,933

48 80,391 7,086 42,045 0,931

CNN 6 80,504 7,096 39,077 0,932

12 80,773 7,120 40,620 0,932

24 80,309 7,079 40,034 0,932

48 80,772 7,120 39,375 0,932

72 80,107 7,061 39,166 0,933

96 80,986 7,139 40,598 0,931
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Table 4.2: Optimal hyperparameter values for each ML model

Hyperparameter MLP LSTM GRU CNN

windows size 12 12 12 72

batch size 32 64 64 512

learning rate 0.001 0.0003 0.0003 0.0005

layer last 128 128 96 224

dropout 0.1 0.3 0.1 -

layer 1 32 192 128 -

layer 2 128 64 32 -

�lters 1 - - - 32

�lters 2 - - - 64

�lters 3 - - - 80

kernels 1 - - - 3

kernels 2 - - - 7

kernels 3 - - - 5

re�ecting the unique equations that drive each network’s internal dynamics. These �ndings

underscore the critical role that hyperparameter tuning plays in the performance of ML

models.

4.2 In�uence of input features

In this subsection, we examine the impact of each input feature on the estimation of hourly

GHI using the MLP model with its optimal hyperparameters, as de�ned in the previous

subsection. The MLP strikes an optimal balance between accuracy and computational speed,

making it ideal for a comprehensive investigation of feature importance. Its e�ciency allows

for faster analysis of three scenarios without signi�cant delay. The three scenarios consist of

the following input features: (i) ĄĐ , āĉ, and ā, representing the scenario evaluated thus far;

(ii) ĄĐ and ā; and �nally (iii) ĄĐ and āĉ. The performance of each scenario, based on the

given metrics, is presented in Table 4.3. Additionally, Fig. 4.1 depicts the estimated hourly

GHI values for each of them. It’s noteworthy that the worst performance occurs for scenario

(ii), which uses ĄĐ and āĉ as inputs. This poor outcome is likely due to these features

remaining constant throughout the day, causing the model to struggle with capturing the

daily solar radiation pro�le. In scenario (iii), which uses ĄĐ and ā as input features, every

performance metric shows signi�cant improvement. This enhancement is likely due to the
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Table 4.3: Error metrics using MLP network with n=12 and varying the input features.

Input RMSE nRMSE MAE R2

features (W/m2) (%) (W/m2) -

ĄĐ , ā, āĉ 80,047 7,056 40,677 0,933

ĄĐ , ā 82,823 7,301 42,798 0,928

ĄĐ , āĉ 236,105 20,813 173,589 0,416

ĄĐ is the total daily irradiance, ā is
the solar hour angle and āĉ is the
sunrise hour angle

model’s ability to associate the solar hour pro�le with the corresponding solar radiation

trends. Additionally, this scenario suggests that the amplitude of the GHI curve at solar noon

is primarily in�uenced by ĄĐ . Finally, when the inputs are ĄĐ , āĉ, and ā, (corresponding to

scenario (i)), the MLP model achieves its highest performance in estimating hourly GHI

values. This con�guration allows the model to capture a broader range of information,

leading to more accurate predictions.
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Figure 4.1: Estimated hourly GHI values using MLP network with n=12 and varying the input
features.

4.3 Performance of the optimized models

To assess the accuracy and bene�ts of our data-driven approach, we compared optimized ML

models with the three physical models described in Section 2.3. We used the same test set to
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Figure 4.2: Estimated hourly GHI values generated by all evaluated models and true measured
under two extreme scenarios: sunny days and cloudy days.

evaluate both ML and physical models. Table 4.4 presents the performance of each model,

sorted from the lowest to the highest error rate. The results indicate that all ML models

outperformed the physical models, with the LSTM model achieving the best overall

performance. On average, the LSTM model improves the performance of the least e�ective

model, referred to as Yao, by 15.12% in terms of RMSE. When compared to the

Collares-Pereira and Garg physical models, LSTM outperforms them by 12.05% and 7.68%,

respectively. It is worth mentioning that the table displays performance metrics for ML

models with optimized window sizes. However, even when considering non-optimal window

sizes, the ML models consistently outperformed the physical models. These �ndings

underscore the robustness and adaptability of ML approaches compared to traditional

physical modeling techniques.

To further illustrate the e�ectiveness of the previously discussed models, Fig. 4.2 presents

the estimated hourly GHI values from eachmodel, compared against actual GHImeasurements
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Table 4.4: Error metrics for ML models and physical models. Only models with the optimal
window size are considered.

Model RMSE nRMSE MAE R2

(W/m2) (%) (W/m2) -

LSTM, n=12 79,967 7,049 38,486 0,933

MLP, n=12 80,047 7,056 40,677 0,933

CNN, n=72 80,107 7,061 39,166 0,933

GRU, n=12 80,210 7,071 39,257 0,933

Garg 86,625 7,636 42,828 0,921

Collares-Pereira 90,924 8,015 46,991 0,913

Yao 94,220 8,306 49,542 0,907

for two di�erent weather conditions: sunny and cloudy days. The �gure demonstrates that

all models successfully capture the general GHI pro�le in both conditions. Notably, it also

highlights the ability of the ML models to adapt to seasonal variations in time. For example,

every ML model accurately tracked the GHI pro�le on November 9, when low GHI values

were recorded at 6:00, and on March 17, when no GHI values were observed at 6:00.

When examining the sunny day samples—the optimal scenario for estimating hourly GHI

values—we �nd that the ML models consistently track the true measurements throughout the

day. In contrast, physical models tend to overestimate GHI, especially during the solar noon

period. This overestimation is most pronounced in the Collares-Pereira and Yaomodels, which

show signi�cant deviations from the actual GHI pro�le at solar noon. Among the physical

models, Garg’s approach stands out as the top performer, exhibiting the least overestimation

and generally providing more accurate estimates throughout the day compared to the other

physical models.

Fig. 4.3 shows the estimated GHI obtained by all evaluated models. The estimates from the

ML models align more closely with the true measurement pro�le than those from the physical

models. Consequently, ML models handle uncertainties, primarily caused by cloud cover and

varying climatic conditions throughout the day, more e�ectively than physical models.

Regarding performance under cloudy conditions, the physical models generate a

smoother curve, as expected, since their equations lack explicit variables for modeling

adverse atmospheric conditions like cloud cover. In this scenario, the ML models

demonstrate superior �exibility in adjusting their predictions, allowing them to cope with
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Figure 4.3: Estimated hourly GHI values generated by all evaluated models for 5 days.

dynamic weather conditions. This adaptability results in the LSTM network outperforming

all other models under both sunny and cloudy conditions.
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Chapter 5

Conclusions and Future Works

5.1 Conclusion

This work introduces an novel approach to GHI data downscaling using memory-based ML

models, including LSTM, GRU, and a 1D CNN. The approach requires only daily GHI

measurements, the sunrise hour angle, and the solar hour angle as input parameters, without

reliance on detailed meteorological data. The results indicate that these ML models

outperform the well-known physical models of Collares-Pereira, Garg, and Yao. According to

the comprehensive performance evaluation conducted in this study, the LSTM model

achieved the lowest error metrics among all evaluated models. Additionally, this work

underscores the advantages of applying hyperparameter optimization to improve the

performance of ML models. Among the physical models considered, the Garg model

demonstrated the best results, outperforming the Collares-Pereira and Yao models. This

study not only establishes the superiority of memory-based ML models over traditional

physical models but also emphasizes the value of hyperparameter tuning in enhancing model

accuracy.

5.2 Future works

Propose a machine learning model for synthesizing a one-minute global irradiance time

series based on hourly averaged data as input. By training on historical data, the model

learns to downscale from hourly averages into high-resolution minute-by-minute values,

providing a detailed and precise representation of solar irradiance �uctuations. Additionally,
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the model can been extended to predict other relevant solar irradiance components,

including direct normal irradiance and di�use horizontal irradiance,which are essential for

comprehensive solar energy analysis.

Explore generative networks and attention mechanisms to generate high-resolution solar

data. These approaches can be particularly e�ective in creating realistic minute-level solar

irradiance data from hourly averages. Generative adversarial networks consist of a generator

and a discriminator that work together to produce high-quality synthetic data. Attention

mechanisms, on the other hand, enhance the model’s ability to capture temporal

dependencies and patterns in the data. By focusing on relevant parts of the input sequence,

attention mechanisms enable the model to better understand the relationships between

di�erent time steps.

To ensure that the synthetic solar irradiance data accurately replicates the statistical

properties of real-world measurements, distribution metrics can be utilized to quantify the

similarities or di�erences between the ground truth data and the generated data. Metrics

such as the Kullback-Leibler divergence, Jensen-Shannon divergence, and

Kolmogorov-Smirnov integration provide a comprehensive assessment of how well the

distributions of the synthetic data align with those of the actual measurements. By

comparing the probability distributions of key variables like global irradiance, direct normal

irradiance, and di�use horizontal irradiance, the �delity of the synthetic data will be

evaluated.
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Appendix A

Data exploration

This appendix presents an overview of the data exploration process. Fig. A.1 depicts a heat

map spanning from 2017 to 2023, revealing temporal patterns across a 24-hour daily cycle.

The visualization highlights consistent daily cycles and annual trends, with peak irradiance

typically occurring around midday. These patterns, along with the pre-processing steps taken

to address any data irregularities, ensure the dataset is thoroughly prepared for model input.
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Figure A.1: Resulting dataset after applying data pre-processing.

Fig. A.2 presents a series of plots depicting the daily GHI pro�les for one representative

day each month in 2023. Each subplot illustrates the variation in GHI throughout a single

day, highlighting the seasonal changes in solar radiation. The �gure shows longer and more

intense irradiance periods during the summer months (e.g., July and August) compared to

the shorter, less intense periods in the winter months (e.g., January and December). This

visualization e�ectively represents the daily solar cycle and its seasonal �uctuations, providing

crucial context for model testing.
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Figure A.2: Sample day for each month of the test set.
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Appendix B

Hyperparameter Optimization

For each ML model and window size, we conducted a hyperparameter optimization process

based on the search space de�ned in Table 3.2. This appendix provides a summary of the

optimization results for the LSTM model. Given the multiple model runs, we utilized a �gure

to compare the experiments and visualize their accuracy with di�erent hyperparameters. Fig.

B.1 illustrates the random combinations explored to achieve the best performance.

Tables B.1-B.5 show the top �ve con�gurations ranked according to their RMSE values.

The errors shown in these tables were obtained from the validation set. Only the model with

the minimum error was selected for application to the test set.

Figure B.1: All hyperparameter con�gurations tested for LSTM with window size = 12. The
blue line indicates the best con�guration.
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Table B.1: Top 5 hyperparameters con�guration for LSTM and windows size = 1.

ID RMSE MAE batch_size dropout layer_1 layer_2 layer_last learning_rate # exp

1 0,06455 0,03500 512 0,1 96 96 128 0,003 27

2 0,06474 0,03359 64 0,1 64 128 32 0,003 7

3 0,06476 0,03449 256 0,3 224 256 96 0,005 17

4 0,06489 0,03666 1024 0,3 128 192 96 0,005 25

5 0,06508 0,03643 1024 0,1 224 160 96 0,003 4

Table B.2: Top 5 hyperparameters con�guration for LSTM and windows size = 6.

ID RMSE MAE batch_size dropout layer_1 layer_2 layer_last learning_rate # exp

1 0,06400 0,03277 256 0,1 224 96 96 0,0005 16

2 0,06429 0,03257 1024 0,1 64 128 32 0,005 8

3 0,06430 0,03276 1024 0,3 64 224 64 0,005 19

4 0,06464 0,03248 32 0,1 192 128 128 0,001 21

5 0,06471 0,03123 64 0,3 160 128 64 0,0003 1

Table B.3: Top 5 hyperparameters con�guration for LSTM and windows size = 12.

ID RMSE MAE batch_size dropout epochs layer_1 layer_2 layer_last learning_rate # exp

1 0,06385 0,03048 64 0,3 20 192 64 128 0,0003 11

2 0,06406 0,03111 32 0,1 20 224 128 64 0,003 25

3 0,06441 0,03127 32 0,1 20 32 64 96 0,005 2

4 0,06457 0,03114 512 0,3 20 128 192 64 0,001 9

5 0,06487 0,03133 32 0,3 20 160 96 64 0,0005 23

Table B.4: Top 5 hyperparameters con�guration for LSTM and windows size = 24.

ID RMSE MAE batch_size dropout epochs layer_1 layer_2 layer_last learning_rate # exp

1 0,06409 0,03105 1024 0,1 20 224 160 64 0,003 11

2 0,06425 0,03035 64 0,3 20 64 128 32 0,0003 5

3 0,06427 0,03185 64 0,1 20 224 192 64 0,0003 14

4 0,06428 0,03105 32 0,3 20 256 160 64 0,003 2

5 0,06446 0,03106 32 0,3 20 160 64 96 0,001 14

Table B.5: Top 5 hyperparameters con�guration for LSTM and windows size = 48.

ID RMSE MAE batch_size dropout epochs layer_1 layer_2 layer_last learning_rate # exp

1 0,06420 0,03087 512 0,1 20 96 160 96 0,005 4

2 0,06448 0,03124 32 0,1 20 96 160 96 0,0003 8

3 0,06467 0,03091 256 0,1 20 64 224 128 0,005 3

4 0,06498 0,03332 32 0,3 20 96 160 32 0,005 2

5 0,06531 0,03204 256 0,3 20 96 192 32 0,003 7
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Appendix C

Learning curves

This appendix presents the learning curves for MLP, LSTM, GRU, and CNN models,

illustrating the progression of the loss function during model training (see Figs C.1-C.4). The

�gures are organized by model type, with each graph displaying curves for di�erent window

sizes. These curves demonstrate how the MSE evolves across epochs for both the training

and validation datasets. All models exhibit a general trend of decreasing loss over epochs,

providing visual insight into their respective convergence processes. The validation curves,

however, display more �uctuations than the training curves, particularly for models with

smaller window sizes, suggesting increased sensitivity to speci�c data points in the

validation set. After approximately 10 epochs, most models reach a relatively stable loss,

with only minor variations thereafter.

(a) (b)

Figure C.1: Learning curves for MLP and di�erent window sizes.
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(a) (b)

Figure C.2: Learning curves for LSTM and di�erent window sizes.

(a) (b)

Figure C.3: Learning curves for GRU and di�erent window sizes.

(a) (b)

Figure C.4: Learning curves for CNN and di�erent window sizes.
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