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Resumo
Com o crescimento de grandes cidades e aglomerações em centros urbanos, o ruído tem se
tornado cada vez mais crítico nessas áreas. Entre as fontes sonoras geradoras de incômodo
para a população, encontram-se especialmente o tráfego de veículos e o ruído de obra. Em
São Paulo, os ruídos emitidos devem respeitar leis e normas vigentes, como a ABNT
NBR 10151, e o decreto municipal Nº 60.581 que traz limites para ruídos de obras. Como
forma de gerenciamento e mitigação de ruído urbano, o monitoramento sonoro contínuo
tornou-se uma ferramenta importante, especialmente quando aplicado em conjunto com
modelos de identificação automática de fontes sonoras, que reduz drasticamente esforços
manuais humanos e ajuda na tomada de decisões de gerenciamento de ruído. Contudo,
uma correta classificação de sons urbanos pode ser uma tarefa árdua pela complexidade
das paisagens sonoras urbanas, que pode conter muitas fontes sonoras simultâneas e ruído
atrelado. Além disso, é necessária uma base de dados de sons ampla e representativa para
o ambiente a ser monitorado. Este trabalho, primeiramente, se propõe a construção de
uma base de dados de sons urbanos para a cidade de São Paulo, Brasil, com as principais
fontes sonoras provenientes dessa área. Em seguida, são propostas arquiteturas de redes
neurais capazes de classificar corretamente esses sons, entre elas estão modelos CNN,
RNN e híbridos. Este último atingiu os melhores resultados nas métricas avaliadas. Sons de
baixas frequências, especialmente veículos, apresentaram uma maior dificuldade em serem
corretamente identificados. Neste estudo, foi utilizado o Log-Mel-spectrogram como dado
de entrada em 8 combinações diferentes de resoluções no tempo e frequência. Ainda foram
utilizadas técnicas de aumento de dados e modelo de classificação hierárquica em conjunto
com o modelo híbrido, estas, porém, não conseguiram demonstrar melhoria significativa
nas métricas de classificação. Trabalhos futuros devem focar especialmente, na otimização
dos resultados de algumas fontes sonoras de baixas frequências, através de novos modelos
e pré-processamentos.

Palavras-chaves: base de dados de sons; classificação de sons urbanos; redes neurais
convolucionais; redes neurais híbridas; aumento de dados; classificação hierárquica



Abstract
Noise has become increasingly critical in urban areas, due to the growth of large cities
and urban agglomerations. Among the noise sources causing inconvenience to the popu-
lation are especially vehicle traffic and construction noise. In São Paulo, emitted noises
must comply with current laws and regulations, such as ABNT NBR 10151, and the
municipal decree No. 60.581, which sets limits for construction noise. As a method of
managing and mitigating urban noise, continuous sound monitoring has become an im-
portant tool, especially when employed together with models for automatic identification
of sound sources, which drastically reduces human manual efforts and aids in noise man-
agement decision-making. However, the correct classification of urban sounds can be an
arduous task due to the complexity of urban soundscapes, which can contain many si-
multaneous sound sources and associated noise. Additionally, a broad and representative
sound dataset is required for the environment to be monitored. This work first proposes
the construction of an urban sound database for the city of São Paulo, Brazil, with the
main sound sources from this area. Subsequently, neural network architectures capable of
correctly classifying these sounds are proposed, including CNN, RNN, and hybrid mod-
els. The latter achieved the best results in the evaluated metrics. Low-frequency sounds,
especially vehicles, showed greater difficulty in being correctly identified. In this study,
the Log-Mel-spectrogram was used as input data in 8 different combinations of time and
frequency resolutions. Data augmentation techniques and hierarchical classification mod-
els were also used together with the hybrid model, however, they did not demonstrate
significant improvement in classification metrics. Future research should specially address
improving certain low-frequency sound sources classification, focusing on new models and
preprocessing techniques.

Keywords: sound dataset; urban sound classification; convolutional neural networks;
hybrid neural networks; data augmentation; hierarchical classification
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1 Introduction

Urban areas are home to more than half of the global population, and it is
predicted that two-thirds of the world’s population will live in urban agglomerations in
the next 30 years (RITCHIE; ROSER, 2018). According to the European Environment
Agency (EEA) (2020), air pollution is the most harmful environmental exposure to public
health, followed by noise pollution. For this reason, metropolitan areas have become the
epicenter of this hazard. Construction sites are one of the main sources of noise, along
with traffic noise. In São Paulo, Brazil, whose population is estimated to be over 12
million residents, noise complaints have increased by 41% from 2022 to 2023 (G1 SP; TV
GLOBO, 2023). However, the Brazilian mega-city is still in the early stages of dealing
with noise pollution.

In 2016, the city of São Paulo approved Law 16.499, which determines the
creation of a noise map by 2030. This map will work as a tool to assist public agencies
and society in establishing measures to improve the quality of life of São Paulo residents
regarding noise pollution. In addition, a recent regulatory action has been decreed to
mitigate noise pollution in response to disturbance from construction noise. This action,
outlined in Decree No. 60.581 (SÃO PAULO, 2021b), establishes sound pressure level
limits for both daytime and nighttime generated by construction sites in the city. São
Paulo has undergone significant verticalization since the approval of the new city’s Master
Plan in 2013, and from 2021 to 2022, 721 new construction licenses have been approved
(MOTA; CAMILLA, 2021), and 1363 demolition permits have been issued (SÃO PAULO,
2021a).

In 2002, the European Parliament and Council adopted Directive 2002/49 on
the assessment and management of environmental noise. The management approach is
based on diagnosis and specific actions. A common strategy in urban noise mitigation is
the creation of noise maps, which are essential diagnostic tools that help estimate how
many people are exposed to high noise levels. However, they fail to provide a complete
picture of the urban soundscape (KLOTH et al., 2008).

Nevertheless, noise maps are often criticized for their drawbacks, including be-
ing time-consuming, expensive, and static. Therefore, real-time sound monitoring emerges
as a viable solution, offering advantages such as continuous data collection over long peri-
ods and dynamic noise maps using online platforms. In addition to measuring noise levels,
understanding the sound source is fundamental for understanding the soundscape and the
possible causes of noise pollution.
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The relevant standards and legislation must be applied to verify compliance
with noise limits. Long-term noise monitoring is often the best practical approach to
investigate sound levels. However, urban soundscapes can be highly complex due to the
multiple possible sound sources that may happen simultaneously. Therefore, automatic
identification algorithms of sound events can be hugely time-saving and an excellent tool
for better understanding the soundscape.

In recent years, there has been an increasing interest in studies focused on
environmental sound classification (ESC), especially in identifying specific sound events
under interest. These studies have been applied in various practical domains, such as
robotic hearing, smart home systems, audio monitoring, and soundscape assessment. Un-
like regular and structured sounds such as speech and music, environmental sounds usu-
ally lack specific time patterns, like melodies or rhythms, or semantic sequences, like
phonemes. Consequently, identifying universal features that can accurately represent the
diverse temporal patterns of environmental sounds is often challenging. Moreover, envi-
ronmental sounds usually contain noise and other irrelevant simultaneous sounds, result-
ing in complex structures characterized by high variability, diversity, and unstructured
characteristics (ZHANG et al., 2021).

The growing interest in the sound analysis of urban environments was partially
facilitated by sensor networks and the abundance of online multimedia content contain-
ing urban scenes. However, while research in related fields such as speech, music, and
bioacoustics is extensive, there is a relative scarcity of work focused on analyzing urban
acoustic environments. Moreover, existing research in this area primarily concentrates on
classifying auditory scene types, such as streets or parks, rather than identifying specific
sound sources within these scenes, such as vehicles, machines, and animals (SALAMON
et al., 2014).

To tackle these tasks, researchers have explored multiple methods in signal
processing and machine learning to work with sound classification and detection prob-
lems. Traditional approaches often involve separating the analysis into different feature
representation and classification steps, requiring manual operations such as extracting the
Mel-frequency cepstral coefficient (MFCC), Mel-spectrum features, or wavelet transforms.
These methods have the disadvantages of the necessity for extensive manual work and
multiple experiments to find the best features (MU et al., 2021).

In contrast, deep neural networks, such as convolutional neural networks (CNNs)
and recurrent neural networks (RNNs), have emerged as promising solutions for sound
classification. CNNs excel at capturing time-frequency features, while RNNs effectively
learn time-dependent patterns in audio features. So, hybrid models such as CNN-RNN
(CRNN) have shown good performance in tasks requiring both spatial and temporal fea-
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ture learning, as needed in image detection and speech recognition (ACHARYA; BASU,
2020).

The large effort involved in manually annotating real-world data means that
datasets based on field recordings tend to be relatively small. However, a solid and rep-
resentative dataset is crucial to achieve accurate performance from a supervised model
(ROSEBROCK, 2017b). As a representative dataset, the training data should be as sim-
ilar as possible to the real-world application, which generally includes data with high
background noise or sound sources highly modified by the propagation path in the case
of environmental noise. The currently available free environmental audio datasets present
multiple important sound sources. However, they still lack some important sound sources
or are not entirely representative of the Brazilian soundscape in São Paulo. Many existing
urban noise monitoring datasets fail to accurately depict this issue’s complexities. These
datasets typically feature recordings sourced from Freesound (FONT et al., 2013), lack-
ing the authenticity of real-world noise monitoring scenarios. Furthermore, while some
datasets include audio recordings captured in real urban environments, they often offer
limited label sets, typically focused on human sounds and traffic. A description of the
current main datasets addressing urban sounds is provided in Section 3.1.

Tools like deep learning models and extensive audio datasets are integral to a
rapidly growing area of machine perception known as Machine Listening, which can be
considered the auditory counterpart to computer vision. In this field, a combination of
signal processing techniques and machine learning systems is used to extract meaningful
information from sounds and perform tasks, such as the audio classification conducted in
this project (LYON, 2017).

1.1 Objective

The primary goal of this study is to develop a comprehensive sound dataset
representative of São Paulo’s urban environment, designed to identify a broad range of
sounds that may exceed noise regulations. This includes common intrusive sounds such as
traffic noise, natural sounds, as well as human and machine-generated noises. Following the
dataset creation, the study will focus on building several deep learning models, including
convolutional neural networks, recurrent networks, and hybrid approaches, to accurately
classify the sounds in the dataset. These models will be evaluated and compared using
relevant performance metrics.
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1.2 Work organization

The thesis is divided into five chapters, each addressing a part of the research.
Chapter 1 introduces the topic of urban sound classification and highlights the impor-
tance of applying machine learning to urban noise management. It also addresses the
main challenges in sound classification and provides an overview of the current state of
development in the area. Chapter 2 is the theoretical background, which provides all the
essential information and concepts for machine learning and deep learning, focusing on
audio classification. This chapter also discusses two important architectures: Convolu-
tional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). Additionally, it
includes an explanation of the signal-processing techniques used in this work. Chapter 3
outlines the methodology. Firstly, this chapter introduces the main urban sound datasets
that are freely available. Then, it details how the construction of the dataset from this
work was carried out and the machine learning architecture implemented. It also describes
the configurations of the dataset preprocessing considered in the experiments. Chapter 4
presents the results and their discussion, analyzing the performance of various configu-
rations and models explored in the thesis. Finally, the last chapter concludes the thesis
with the main points and conclusions explored during the work and suggestions for future
works.
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2 Theoretical Background

This chapter provides an overview about the fundamentals of machine learning,
signal processing and the neural network architectures used in this project under the
context of urban sound classification.

2.1 Machine Learning Principles

Machine learning (ML) can be defined as the process of addressing a problem
through two main steps: collecting a dataset from a real-world application and construct-
ing a statistical model algorithm trained on that dataset, usually applied in a way to
solve a practical problem (VEMURI, 2020). Machine learning techniques have facilitated
significant progress in automating data processing and improving pattern recognition ca-
pabilities across a wide range of fields, including computer vision, image processing, speech
analysis, and physical sciences. In the realm of acoustics, machine learning is a quickly
evolving field, offering a large number of promising solutions to address the acoustic chal-
lenges mentioned earlier (BIANCO et al., 2019).

Machine Learning systems can be categorized based on the level and type of
supervision they receive during the training. There are four main categories of machine
learning models: supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement Learning.

In supervised learning, the training dataset used as input to the algorithm
includes predefined solutions, referred to as labels, with classification being a typical
application of this method. In this context, the dataset comprises a collection of labeled
samples denoted as {(𝑥𝑖, 𝑦𝑖)}𝑁

𝑖=1, where each element 𝑥𝑖, from 𝑁 instances, represents a
feature vector, and 𝑦𝑖 is the respective label. This feature vector is a multidimensional
vector, with each dimension indexed as 𝑗 = 1, . . . , 𝐷, containing a value that characterizes
the respective example. These values are called features and are denoted as 𝑥(𝑗).

In unsupervised learning, the dataset consists of unlabeled examples {𝑥𝑖}𝑁
𝑖=1,

where each 𝑥 represents a feature vector. The objective of unsupervised learning is to
develop a model that takes 𝑥 as input and transforms it into another vector or a value
useful for problem-solving. For instance, in clustering, the model assigns each feature
vector to a cluster. In dimensionality reduction problems, it produces a feature vector
with fewer dimensions than the input, while in outlier detection tasks, it outputs a real
number indicating the deviation of 𝑥 from a typical example in the dataset.
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In semi-supervised learning, the dataset includes both labeled and unlabeled
examples, typically with a much larger quantity of unlabeled data. The objective of a
semi-supervised learning algorithm is similar to the supervised learning algorithm, with
the expectation that the large amount of unlabeled data can aid in the creation of an
improved model.

Reinforcement learning is a type of machine learning where a machine interacts
with an environment, makes decisions and learns by receiving rewards for its actions. The
goal is to find the best way to act in different situations to maximize rewards. The objective
of a reinforcement learning algorithm is to learn a policy, represented by a function 𝑓 ,
which, similar to a supervised learning model, takes a state’s feature vector as input and
outputs the optimal action that maximizes expected average rewards (GERON, 2019).

2.2 Classification and Regression

Supervised machine learning is divided into two primary types: classification
and regression models (PAJANKAR; JOSHI, 2022).

2.2.1 Classification

This first type of model automatically assigns a label to an unlabeled example,
for instance, predicting if the image belongs to labels “cat”, “dog” or “horse”. Classification
algorithms use labeled examples to train and build models that can assign labels to new,
unseen, unlabeled data. A classification model can also be used, for example, to classify
sounds that are recorded. The classification task can also be divided into:

• Binary Classification: It refers to those classification tasks that only have two
classes. For example, classifying between a cat or a dog.

• Multi-class: It refers to those classification tasks that have more than two classes.
For example, classifying a sample as a cat, dog”, bird, or bear.

• Multi-label Classification: It refers to those classification tasks that have two or
more classes for a sample, where one or more classes may be predicted. For example,
a picture containing both a cat and a dog.

2.2.2 Regression

In regression, the goal is to predict a value label from a continuous range, such
as estimating house prices based on features like size, number of bedrooms, and location.
Thus, regression models provide numerical predictions for unlabeled data.
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2.3 Hierarchical Classification

This section is an overview of the main hierarchical classification approaches
from Silla and Freitas (2011). Hierarchy is commonly used when there is a taxonomy of
classes that can be grouped by similar characteristics.

2.3.1 Flat Classification

The flat classification approach is the most common method for dealing with
hierarchical classification problems. It works by ignoring the class hierarchy and predict-
ing only the leaf node classes. So, this approach is similar to traditional classification
algorithms during the training and testing stages. However, it still indirectly addresses
the hierarchical structure of the problem by implicitly assigning all the ancestors of a leaf
node to the same class as well. The main drawback of this approach is that it requires
building a classifier to distinguish among a possibly large number of leaf classes; there-
fore, it does not take advantage of the parent-child class relationships from the hierarchy.
Figure 2.1 shows the representation of a flat classification approach.

Figure 2.1 – Flat classifier representation from Silla and Freitas (2011).

2.3.2 Local classifiers

The local classifiers can also be divided into three approaches: Local Classifier
Per Node, Local Classifier Per Level, and Local classifier per parent Node.

2.3.2.1 Local Classifier Per Node

The local classifier per node approach involves training individual binary clas-
sifiers for each node in the class hierarchy. This approach uses multi-class or binary clas-
sifiers like the One-Against-One scheme for Binary SVMs to distinguish between child
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nodes for each parent node in the hierarchy. Figure 2.2 shows the representation of a local
classifier per node approach.

Figure 2.2 – Local classifier per node representation from Silla and Freitas (2011).

2.3.2.2 Local Classifier Per Level

The local classifier per level approach works by training a single multi-class
classifier for each level in the class hierarchy. Figure 2.3 shows the representation of a
local classifier per level approach.

Figure 2.3 – Local classifier per level representation from Silla and Freitas (2011).

2.3.2.3 Local classifier per parent Node

The local classifier per parent node approach involves training a multi-class
classifier for each parent node to distinguish among its child nodes. Figure 2.4 shows the
representation of a local classifier per parent node approach.
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Figure 2.4 – Local classifier per parent node representation from Silla and Freitas (2011).

2.3.3 Big-bang (or Global Classifier)

While local approaches are used to address hierarchical classification, a global
classifier offers the advantage of significantly reducing the total size of the classification
model compared to the local models used in the local classifier approaches. In the global
classifier approach, a single and more complex model is created from the training data,
considering the entire class hierarchy in a single algorithm run. During the testing phase,
this model can assign classes at multiple levels of the hierarchy to test examples. Figure 2.5
shows the representation of the global classifier approach.

Figure 2.5 – Global classifier representation from Silla and Freitas (2011).
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2.4 Machine Learning and Data Fitting

It is crucial to understand how to approach a machine learning problem, as
the complexity of the data plays a key role in selecting the most appropriate model.
Models perform optimally when specifically designed to address the given task effectively.
Two situations can arise when there is a mismatch between model and data complexity.
When a high-capacity model is used for a low-complexity task and dataset, an overfitting
situation will occur, in which the model learns too many details from specific training data
and cannot generalize to other unseen samples. The opposite is also possible; when the
task is too complex for a low-capacity model, an underfitting behavior will be observed
since the model cannot learn the correct relationships within the data. Both situations
must be avoided, so a well-suited model should be chosen based on the dataset complexity
(BIANCO et al., 2019). Figure 2.6 shows a graphical representation of the underfitting
and overfitting of a model in a dataset.

Figure 2.6 – Example of underfitting, good fitting, and overfitting situation. Source: Au-
thor.

2.5 Parameterized Learning

Parameterization is the process of defining the required parameters for a spe-
cific model. In the context of machine learning, this process involves defining a problem
based on four fundamental elements: data, a scoring function, a loss function, and param-
eters such as weights and biases.

Data (𝑥𝑖) is the fundamental component that constitutes the learning input. It
comprises the data points, such as raw pixel intensities from images or extracted features
and their corresponding class labels. The scoring function (𝑓𝑚) is paramount, as it maps
the input data to class labels using mathematical functions. For instance, in the case
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of images, this function processes the data points (pixels) as input, and it outputs the
predicted class labels. The loss function is a metric for evaluating our predicted class
labels’ similarity to the actual ground-truth labels. The goal is to achieve a high similarity
between these label sets, resulting in a lower loss value, which means a higher classification
accuracy, especially within the training set. Finally, the classifier’s Weight Matrix and Bias
Vector (typically represented as 𝑊 and 𝑏) are the elements that are actively optimized
during training. Both outputs from the scoring and loss functions are used to adjust these
values to enhance classification accuracy.

While additional parameters may depend on the model, these four elements
are the most common aspects of parameterized learning. For this reason, defining these
components enables us to apply optimization techniques to determine an optimal set of
parameters (𝑊 and 𝑏) that minimize the loss function concerning the scoring function,
thereby boosting classification accuracy on our dataset (ROSEBROCK, 2017b).

A simple linear mapping would be expressed as:

𝑓𝑚(𝑥𝑖, 𝑊, 𝑏) = 𝑊𝑥𝑖 + 𝑏. (2.1)

2.6 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a type of binary classifier that seeks to find
an optimal hyperplane (Figure 2.7) that separates different classes of data points with the
maximum margin (distance between the hyperplane and the observations closest to the
hyperplane). This method is based on the concept of structural risk minimization (SRM),
which aims to minimize the generalization error on unseen data instead of minimizing the
training error like traditional methods.

With an optimal hyperplane defined by 𝑊 and 𝑏, the decision function 𝑓(𝑥)
for classifying a new, unknown data point 𝑥 is given by:

𝑓(𝑥) = sign (𝑊𝑥 + 𝑏) = sign
⎛⎝𝑁𝑆∑︁

𝑖=1
𝛼𝑖𝑦𝑖𝐾(x𝑖, 𝑥) + 𝑏

⎞⎠ , (2.2)

where 𝑁𝑆 is the number of support vectors, x𝑖 are the support vectors, 𝛼𝑖 are the Lagrange
multipliers, 𝑦𝑖 indicates the label (±1) of the support vectors, 𝐾(x𝑖, 𝑥) is the kernel
function that computes the similarity between the support vectors and the new data
point 𝑥, “sign” is the sign function that determines the class label based on the computed
value.

The goal of the SVM method is to create a decision boundary that correctly
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classifies as many new unseen data points as possible while maximizing the margin be-
tween different classes. This makes SVM a popular choice for studies in which tasks
like classification and regression are conducted due to its capability to handle complex
datasets and make robust predictions (WANG et al., 2006). There are two types of SVM
algorithms:

• Linear SVM is a model in which a hyperplane separates data points into two
classes using a straight line. For multiclass problems, it usually uses the “One-vs-
Rest” strategy, which consists of fitting one classifier per class. For each classifier,
the class is fitted against all the other classes.

• Non-Linear SVM is a model used when the data cannot be effectively separated
by a linear hyperplane in the original feature space. In these cases, class overlap
can occur, and advanced techniques like kernel tricks should be employed to classify
the data. In real-world applications, data is not usually easily separable by straight
lines, necessitating kernel tricks to effectively solve them. Using a kernel function,
SVMs can implicitly map input data into a higher-dimensional space where a linear
separator (hyperplane) can be used to divide the classes. Some examples of non-
linear kernels are polynomial, sigmoid, radial basis function (RBF), Bessel, Anova,
etc.

Figure 2.7 – Example of a hyperplane generated by linear SVM classification. Source:
Author.
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2.7 Artificial Neural Networks (ANN)

Artificial Neural Networks are a machine learning method inspired by the
human brain composed of stacks of inter-connected neuron blocks or layers. Each neuron
has a weight that is iteratively updated by the input data during the training phase,
usually through an algorithm designed to minimize the difference between the predicted
and actual output. Feed-forward neural networks (FNN) consist of sequential layers of fully
connected (FC) neurons, and each neuron’s output is passed as input to every neuron in
the next layer without any feedback. This can be schematically seen in Figure 2.8. The
example shows an input layer, an output layer, and two intermediate layers, also known
as hidden layers. The ANNs with more than one hidden layer are often called Deep Neural
Network (DNN) and are frequently used in state-of-the-art models for audio classification
(PUENTE, 2018).

Figure 2.8 – Deep learning architecture using two hidden layers. Source: Author.

Figure 2.9 shows the mathematical relation between the inputs and output of
a single neuron. The first layer is a block of n neurons connected to a single neuron in the
next layer. Each neuron has an 𝑥𝑛 value that is multiplied by its respective weight (𝑤𝑛).
The products are summed into a single number, and an additional bias (𝑏) is incorporated.
In summary, the output is a weighted sum of the input, thus a linear combination. A
possibly non-linear activation function (𝑓) is applied to the result to learn a more complex
relationship between input and output, improving its capacity for learning non-linear
behavior (CAKIR, 2019). A rectified linear unit (ReLU) function, for example, is the
most popular non-linear activation in recent years, and it is defined as 𝑓(𝑥) = max(0, 𝑥)
(ADAVANNE, 2020). More about activation functions will be discussed in Section 2.8.

The learning process of neural networks involves two critical phases: feedfor-
ward and backpropagation. During feedforward propagation, input data flows from the
network’s input layer to its output layer, with intermediary functions computed within
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Figure 2.9 – The neuron consists of a linear operation from the inputs and a non-linear
operation (activation function). Source: Author.

the hidden layers. Conversely, backpropagation aims to minimize the cost function (loss
function) by iteratively adjusting the network’s weights, reducing the disparity between
the predicted output and the target output vector.

2.8 Activation functions

To effectively process a diverse amount of data and solve complex real-world
problems, neural networks usually require the application of an activation function within
their mathematical modeling. This function produces more dynamism in the network
composition, which enables it to learn more complex and non-linear relationships within
data from input to output. An activation function must be differentiable to allow for the
implementation of backpropagation, an algorithm used to compute the errors or losses
with respect to the weights in a neural network (see Section 2.10). This allows the iterative
optimization of weights, utilizing techniques such as Gradient Descent to reduce errors
(SHARMA et al., 2020).

One of the most significant challenges activation functions face is the Vanish-
ing Gradient problem. This issue occurs when gradient values become extremely small,
or “vanish”, during backpropagation, leading to minimal weight updates. As a result,
the network struggles to learn effectively, with weights becoming saturated and progress
stalling. Consequently, the loss ceases to decrease, preventing the network weights from be-
ing trained and appropriately updated (GUSTINELI, 2022). Saturated neurons are what
the neurons with inadequately updated weights are called. Some of the main activation
functions will be discussed next.

• Sigmoid

The Sigmoid function is the most commonly used activation function due to its
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non-linear nature. It transforms input values into a range between 0 and 1. This
behavior is illustrated in Figure 2.10, and its mathematical definition is:

sigmoid(𝑥) = 1
1 + 𝑒−𝑥

. (2.3)

Figure 2.10 – Sigmoid Activation function. Source: Author.

• Tanh

The Hyperbolic Tangent function, Tanh, has a similar shape to the sigmoid function.
However, it exhibits symmetry around the origin. This activation function leads to
higher gradients than the sigmoid function, and its output values lies between -1
and 1. Its behavior is illustrated in Figure 2.11, and its mathematical definition is:

tanh(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
. (2.4)

• Softmax

The Softmax function can be seen as a generalization of the sigmoid function for
multiclass classification. While the sigmoid function outputs values between 0 and 1,
representing probabilities for individual classes in binary classification, the softmax
function extends this capability to handle multiple classes. Unlike sigmoid func-
tions, softmax outputs a probability distribution across all classes, with the sum
of the probabilities equal to 1. This behavior is illustrated in Figure 2.12, and its
mathematical definition is:

softmax(𝑥𝑖) = 𝑒𝑥𝑖∑︀𝑁
𝑗=1 𝑒𝑥𝑗

, (2.5)

where 𝑁 is the number of classes.
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Figure 2.11 – Tanh Activation function. Source: Author.

Figure 2.12 – Softmax Activation function. Source: Author.

• ReLU

ReLU (Rectified Linear Unit) is a widely used non-linear activation function in
neural networks. Its advantage is that it selectively activates neurons, ensuring that
not all neurons are active at the same time. Specifically, a neuron is deactivated
when the output of the linear transformation is less than zero. This behavior is
depicted in Figure 2.13, and its mathematical definition is:

ReLU(𝑥) = max(0, 𝑥). (2.6)
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Figure 2.13 – ReLU Activation function. Source: Author.

2.9 Loss functions

A loss function quantifies how well the model fits the training data by evaluat-
ing the mathematical difference (error) between predicted and actual output values during
the neural network training. In supervised learning, the employed loss function depends
on the type of the problem, whether it is regression or classification. The primary loss
functions in regression models are Mean Squared Error (MSE) and Mean Absolute Error
(MAE). In classification tasks, the loss functions covered here are Binary Cross-Entropy,
and Categorical Cross-Entropy (TERVEN et al., 2023).

2.9.1 Binary Cross-Entropy Loss

Binary Cross-Entropy (BCE), or log loss, is employed in binary classification to
assess the difference between the predicted class probability and the actual class label. It
is often used to measure how different two probability distributions are. The loss function
is defined as:

𝐽 = − 1
𝑁

𝑁∑︁
𝑖=1

[𝑦𝑖 · log(𝑝𝑖) + (1 − 𝑦𝑖) · log(1 − 𝑝𝑖)] , (2.7)

where 𝑝𝑖 represents the predicted probability for the 𝑖-th sample, 𝑦𝑖 denotes the true class
of the 𝑖-th sample and 𝑁 is the total number of samples.

2.9.2 Categorical Cross-Entropy Loss

Categorical Cross-Entropy Loss is a common choice when dealing with multiple
class problems. It assesses the difference between the predicted probability distribution
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and the actual distribution. The loss function is mathematically defined as:

𝐽 = − 1
𝑁

𝑁∑︁
𝑖=1

𝐶∑︁
𝑗=1

𝑦𝑖𝑗 · log(𝑝𝑖𝑗), (2.8)

where 𝑝𝑖𝑗 represents the predicted probability for class 𝑗 of the 𝑖-th sample example, 𝑦𝑖𝑗

denotes if class 𝑗 is the true class for the 𝑖-th sample example, 𝑁 is the total number of
examples and 𝐶 is the total number of classes.

2.10 Gradient descent algorithm

The gradient descent algorithm is used during the training phase of the model
to optimize the loss function employing iterative updates on the learning parameters 𝑤,
known as weights. This procedure is what is referred to as the learning process. The
gradient descent algorithm comprises three main stages:

1) Feed-forward Propagation: The input vector 𝑥 undergoes a series of
mathematical operations throughout the entire model to generate a prediction 𝑦.

2) Loss Function Computation: After the feed-forward is complete, the loss
function is calculated alongside the gradient of the loss function for each weight 𝑤. The
gradient is computed to determine the correct direction towards a local minimum of the
loss function, as represented in Figure 2.14.

Figure 2.14 – The aim of the gradient descent is to find the minimum points of a cost
function. Source: Author.

3) Backpropagation: The error is propagated back through the network, and
the weights (𝑤) associated with reducing the loss are updated. This backward propagation
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aims to adjust the parameters to minimize the loss further.

These three steps are repeated multiple times during the training phase. So,
the gradient descent operates as a method to minimize the loss function 𝐽(𝜃) that is
dependent on the model’s parameters 𝜃 ∈ R𝑑. This minimization process involves updating
the parameters in the direction opposite to the gradient of the loss function, denoted as
∇𝜃𝐽(𝜃). The learning rate (𝛼) controls the sizes of the steps towards the direction of a
local minimum. Analogously, this approach involves going down the slope of the function’s
surface, similar to going downhill until reaching a valley (RUDER, 2016).

There are three approaches to gradient descent, which depend on the amount
of data used to compute the gradient: batch gradient descent, stochastic gradient descent
(SGD), and mini-batch gradient descent. The choice typically involves balancing the trade-
off between the accuracy of parameter updates and the time required to perform these
updates.

Batch gradient descent calculates the gradient of the cost function considering
the learning rate (𝛼) for the entire training dataset at once. Since it requires computing
gradients for the entire dataset for each update, batch gradient descent can be slow and
impractical for datasets too large to fit into computer memory. The formula of weights
update for Batch gradient descent is:

𝜃𝑛+1 = 𝜃𝑛 − 𝛼∇𝜃𝐽(𝜃𝑛). (2.9)

On the other hand, stochastic gradient descent (SGD) updates parameters
for each training example individually. Unlike batch gradient descent, which recomputes
gradients for similar examples before each update, SGD performs one update at a time.
This approach is generally faster and better suited for online learning. The formula for
updating weights in stochastic gradient descent is:

𝜃𝑛+1 = 𝜃𝑛 − 𝛼∇𝜃𝐽(𝜃𝑛; 𝑥(𝑖); 𝑦(𝑖)). (2.10)

Finally, the mini-batch gradient descent combines the advantages of both
approaches by updating parameters for every mini-batch of 𝑛 training examples. This
method reduces the variance in parameter updates, leading to more stable convergence,
and uses highly optimized matrix operations commonly found in cutting-edge deep learn-
ing libraries, making the gradient computation of mini-batch very efficient. The formula
of weights update for mini-batch gradient descent is:

𝜃𝑛+1 = 𝜃𝑛 − 𝛼∇𝜃𝐽(𝜃𝑛; 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛)). (2.11)
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However, there are variations of SGD. In the standard gradient descent algo-
rithm, the learning rate (𝛼) is fixed, which means it is often set high initially and then
adjusted manually in steps. The Adam optimizer is an improvement over standard SGD,
which provides adaptive learning rates for each parameter based on the history of gradi-
ents. This allows the optimizer to converge faster and more accurately (KINGMA; BA,
2017).

2.11 Regularization

According to Goodfellow et al. (2016), regularization is “any modification we
make to a learning algorithm that is intended to reduce its generalization error but not its
training error”. Several techniques have been proposed to improve the accuracy, general-
ization over unseen examples, and convergence speed for neural network training. These
techniques are grouped under network regularization techniques, and they help avoid the
overfitting problem discussed in Section 2.4 and improve the generalization of the trained
networks. The main techniques will be covered next.

Dropout is an algorithm where, during training, hidden unit activations are
randomly set to zero (dropped out) with a certain probability, typically between 0.1 and
0.25. This process helps prevent units from relying too much on specific input connections,
reducing their co-adaptation. By randomly dropping units, dropout effectively mimics
training multiple networks with varied initial parameters and averaging their outputs,
promoting a more robust and generalized model (CAKIR, 2019).

Another regularization technique is the Batch Normalization (BN). It funda-
mentally aims to standardize the activations within each neural network layer, ensuring a
Gaussian distribution with zero mean and unit variance. This process enhances network
generalization and mitigates sensitivity to poor initialization. BN is implemented by in-
tegrating normalization layers following fully connected or convolutional layers preceding
non-linear activation functions. As a differentiable operation, normalization preserves the
training procedure. The trainable parameters (weights and biases) for normalization are
learned iteratively, computing running averages specific to each mini-batch. It acts as a
preprocessing step, preparing the data at each network layer (KOUTINI, 2018).

The following regularization technique is Early Stopping (ES). Early stopping
involves splitting the available data into training, validation, and testing sets. The al-
gorithm keeps track of the error on the validation set throughout the training process.
Suppose the validation error does not decrease during a given number of iterations (known
as “patience”). In that case, the training is halted, and the weights corresponding to the
minimum validation error are retained (GENÇAY; QI, 2001). Figure 2.15 shows the in-
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dicated point where an ES is executed.

Figure 2.15 – Example of an Early Stopping application from Gençay and Qi (2001).

Lastly, the Data Augmentation technique employs various methods to create
additional training samples from the original data by introducing random variations and
adjustments while preserving the class labels. Data augmentation primarily aims to en-
hance the model’s ability to generalize. By exposing the network to diverse, slightly altered
versions of the input data, it learns more resilient and versatile features (ROSEBROCK,
2017a). More about this technique will be described in Section 2.18.

2.12 Convolutional Neural Networks (CNN)

Convolutional Neural Networks were first introduced to deal with image recog-
nition patterns once they could learn the main spatial features presented in an array of
pixels. These features can be edges, shapes, or structures commonly belonging to a par-
ticular class of images. In the case of acoustics, the image is often a spectrogram, Mel
spectrogram, MFCC, or any other kind of temporal-frequency representation. CNNs differ
from the fully connected layers because not all input neurons are connected to all output
neurons, leading the model to learn local patterns. CNNs use small filters, called kernels,
which slide over the input image or spectrogram and perform convolutions at each po-
sition. These filters contain the weights to be learned by the model during the training.
Figure 2.16 shows a 2×2 kernel example that slides over the input image and results in an
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output (called feature map). In this example, the 2×2 kernel is multiplied element-wise
by a 2×2 region of the input (highlighted in blue), and the resulting values are summed.

Figure 2.16 – Example of a convolutional layer. Source: Author.

CNNs exhibit two important properties. The first is local invariance, meaning
a pattern can be recognized anywhere in the image. The second is the ability to learn
spatial hierarchies, for example, allowing the network to learn edges from pixels, shapes
from edges, and complex objects from shapes (ROSEBROCK, 2017b).

Convolutional layers are often followed by a pooling layer, which replaces the
output at each location with a summary statistic of nearby outputs. The outputs of a
pooling layer are usually the maximum value or the average in each region. Figure 2.17
demonstrates a Max-pooling layer with a filter size of 2×2.

Figure 2.17 – Example of a Max-pooling layer carried out using a 2x2 filter (kernel) and
stride of 2. Source: Author.

This reduces the image size, and it is useful when spectral pattern positions
of a class present small shifts. Reducing the spatial size also minimizes the parameters
and computational cost, hence controlling overfitting. After the convolutional layers, the
outputs are often connected to fully connected layers where the prediction is made. CNN
architectures are currently part of the state-of-the-art in the field of sound classification
(ROCH, 2021).
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2.13 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNN) identify patterns in sequential data such as
handwriting, genomes, text, or time series, often encountered in industrial settings, e.g.,
stock markets or sensors. They can also apply to images if these are decomposed into
patches and treated as a sequence. Unlike Feedforward Neural Networks, where infor-
mation passes through the network without cycles, an RNN transmits information back
into itself. This enables RNNs to extend the functionality of Feedforward Networks by
considering not only the current input (𝑥𝑡) but also previous inputs (𝑥0:𝑡−1) (SCHMIDT,
2019). RNNs have various applications, including language modeling and text generation,
speech recognition, image description generation, and video tagging on a higher level.

At each time step 𝑡 (also known as a frame), this recurrent neuron receives
inputs 𝑥(𝑡) as well as its output from the previous time step 𝑦(𝑡 − 1), as shown in Fig-
ure 2.18.

Figure 2.18 – A recurrent neuron (left), unrolled through time (right) (SCHMIDT, 2019).

Each recurrent neuron possesses two sets of weights: one for the inputs 𝑥(𝑡)
denoted as weight vector 𝑤𝑥, and the other for the outputs of the previous time step,
𝑦(𝑡 − 1), denoted as weight vector 𝑤𝑦. Considering the entire recurrent layer rather than
just one neuron, we can arrange all weight vectors into two weight matrices, 𝑊𝑥 and 𝑊𝑦.
The output vector of the entire recurrent layer can then be computed as:

𝑦(𝑡) = 𝑓
(︁
𝑥(𝑡)𝑇 · 𝑊𝑥 + 𝑦(𝑡 − 1)𝑇 · 𝑊𝑦 + 𝑏

)︁
, (2.12)

where b is the bias term and 𝑓(.) is the activation function.

Similar to many neural networks, RNNs also face issues of vanishing or ex-
ploding gradients. This issue was the reason for the development of Long Short-Term
Memory units (LSTM). As a variation of RNN, LSTM has shown superior performance
over traditional RNNs across various tasks.
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The LSTM cell has the capacity to make decisions about what information to
keep in the long-term state (through the input gate), what to forget (using the forget gate),
and what information to read and output in the current time frame (by the output gate).
Due to this mechanism, important information data are preserved from being disrupted
by less relevant memory contents from more recent data points.

Additionally, there are bidirectional RNN models that incorporate informa-
tion from both past and future time steps. These models utilize data from previous and
later time frames, allowing a more comprehensive understanding of temporal patterns in
sequences.

2.14 Performance Metrics

To assess the effectiveness of a sound classification model, CAKIR (2019) sug-
gests comparing the model’s binary predictions against the true labels in the test or eval-
uation dataset. This comparison involves calculating various performance metrics based
on these binary outputs. Commonly utilized performance metrics for this task include
accuracy, precision, recall (also called true positive rate), F1-score, error rate, and the
area under the Receiver Operating Characteristic (ROC) curve.

The performance metrics for sound classification use a standard set of inter-
mediate statistics. The final performance is derived from these metrics and intermediate
statistics. These statistics encompass the counts of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). Some performance metrics can be
computed individually for each class based on these statistics, while others can be calcu-
lated globally by aggregating the statistics across all classes.

Accuracy assesses the percentage of accurately classified instances from the
total number of objects in the dataset. To calculate this metric, the number of correct
predictions is divided by the total number of predictions generated by the model, as
follows:

Accuracy = TP + TN
TP + TN + FP + FN . (2.13)

Precision is a metric that reveals the proportion of correctly identified instances
among all the detections made by the system for a specific class. It is computed as:

Precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
. (2.14)

On the other hand, recall or true positive rate (TPR) indicates the ratio of
correctly detected instances among all the instances of a specific class. Its calculation is
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defined as:
Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (2.15)

The F1-Score is the harmonic mean of precision and recall, and it is calculated
using the formula:

𝐹1 = 2 · 𝑃 · 𝑅

𝑃 + 𝑅
. (2.16)

The ROC curve differs from other performance metrics in that it doesn’t rely
on a single threshold for converting detection probabilities into binary outcomes. Instead,
the ROC curve is generated by plotting the True Positive Rate (TPR) against the False
Positive Rate (FPR) across a range of threshold values. TPR is calculated equally to
recall, and FPR is calculated as:

𝐹𝑃𝑅 = 𝐹𝑃

𝐹𝑃 + 𝑇𝑁
. (2.17)

The area under the curve (AUC) from the ROC curve also indicates the system
performance, as a high-performance method should have a greater TPR than FPR at each
threshold value.

2.15 Cross-validation

Cross-validation is a model evaluation technique to assess a machine learning
model’s generalization performance capacity. It offers more stability and comprehensive-
ness than a traditional single split into training and test sets since it involves splitting
the data into multiple subsets (folds) with subsequent training of models. An important
cross-validation method is the k-fold cross-validation, where ’k’ denotes a user-defined
parameter typically set to 3, 5, or 10. In the case of 5-fold cross-validation, the dataset
is initially divided into five approximately equal-sized partitions, known as folds. After
that, a series of models are trained. Initially, the first model is trained employing the
first fold as the test set, while the four remaining folds (2-5) are employed as the training
set. Subsequently, the model is constructed using data from folds 1, 3, 4, and 5, with the
accuracy evaluated on fold 2. So, this process is carried out five times, in the example,
with each model trained utilizing a different fold as the test set and the remaining folds as
the training set. This procedure is exemplified in Figure 2.19. The accuracy is computed
for each one of the five splits of the data, facilitating a comprehensive evaluation of the
model’s performance (PAJANKAR; JOSHI, 2022). Finally, an average accuracy can be
computed through all the splits.
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Figure 2.19 – Schematic example of a 5-fold cross-validation. Source: Author.

2.16 Sound Event Detection and Sound Classification

The task of sound event detection (SED) involves identifying a predominant
event amidst background sounds. This objective includes detecting the start and conclu-
sion of the sound event, as well as determining its type. Identifying the type of event
within a sound segment is referred to as sound classification (NASIRI, 2021), and also
named Environmental Sound classification (ESC) when dealing with non-speech signals.
The SED and ESC representation is seen in Figure 2.20.

Figure 2.20 – SED and ESC difference represented in examples (NASIRI, 2021).

Urban environments present complex soundscapes where multiple sound events
often co-occur. Consequently, noise monitoring systems in cities must typically address
the challenge of multi-label audio classification. This characteristic of urban sound, where
multiple sound events overlap, is known as polyphonic audio (CAKIR et al., 2015). Fig-
ure 2.21 illustrates this concept. In this context, the algorithm continuously classifies
fixed-duration audio segments, represented as time frames (denoted as t).
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Figure 2.21 – Polyphonic SED example from Cakir et al. (2015).

2.17 Mel Scale and Mel Spectrogram

The human hearing perception is non-linear across the spectrum. The Mel
scale is a psychoacoustic scale that reflects key aspects of human hearing: humans per-
ceive pitch as linearly related to frequency in the lower frequency range. However, at higher
frequencies, the relationship between perceived pitch and actual frequency becomes more
logarithmic (GALILEU, 2020). Figure 2.22 illustrates this non-linear relationship graph-
ically.

Figure 2.22 – Mel versus frequency scale relation from Galileu (2020).

The formula to convert frequency (in Hz) to pitch (in Mel) is expressed as:

𝑚 = 2595 log10

(︃
1 + 𝑓

700

)︃
, (2.18)

where 𝑚 corresponds to the Mel scale and 𝑓 is the frequency in Hertz. Therefore, in
the Mel domain, the frequency scale is adjusted so that pitches are perceived as equally
spaced.

In deep learning, the audio signal is often represented as time-frequency domain
data, and the Short-Time Fourier Transform (STFT) is the most common representation.
Alternatively, the Mel scale can be used to consider human frequency perception. As
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shown in Figure 2.23, a set of Mel filterbanks can be applied to the signal, resulting in
the Mel spectrogram. The Log-Mel-spectrogram can be calculated in three steps (ARIAS-
VERGARA et al., 2021):

1. the signal is framed into short-time windows;

2. a Hamming time window is applied to each frame to compute the STFT;

3. a set of triangular filters in the Mel scale is applied, and the logarithm of the result
is computed to obtain the Mel spectrogram.

Figure 2.23 – 20 Mel filters bank from Yusnita et al. (2013).

2.18 Data augmentation for audio

Data augmentation is the process of applying one or more transformations
to a set of annotated training samples to create new, additional training data. These
transformations are made so that they do not change the semantic meaning of the labels
(classes) and still represent their real behavior. In computer vision, for example, an image
of a car can be rotated, translated, mirrored, or scaled and remains a valid image of a car.
Therefore, these transformations can be used to generate additional training data while
preserving the semantic content of the label. While training the network on this augmented
data, the network can learn new features, become invariant to these transformations, and
generalize better to unseen data (SALAMON; BELLO, 2017). Data augmentation can be
applied to audio samples directly in the time domain or after the spectrogram has been
extracted. Some of the most common techniques are:
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• Pitch shift: It is a technique where the pitch of an audio is decreased or increased,
randomly, by a factor, while the duration remains the same. Figure 2.24 shows an
example of the resulting spectrogram using a pitch shift of 5 semitones in a voice
audio.

Figure 2.24 – Example of a spectrogram before and after the pitch shifting. Source: Au-
thor.

• Time stretch: This technique consists of slowing down or speeding up an audio
duration by a ratio factor without changing the pitch. Figure 2.25 shows an example
of the resulting time signal using a time stretch of 1.3 in a voice audio.

Figure 2.25 – Example of a time signal before and after the time stretch. Source: Author.

• Synthetic noise: In this method, a synthetic noise, typically a white noise, is
created and added to an existing audio sample. Figure 2.26 shows an example of
the resulting spectrogram of a voice audio with added white noise.
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Figure 2.26 – Example of a spectrogram before and after the addition of synthetic white
noise. Source: Author.

• Time shifting: This technique shifts the audio to the left or right, in the time
domain, by a random factor. Figure 2.27 shows an example of the resulting time
signal using a time shift of 0.5 in a voice audio.

Figure 2.27 – Example of a time signal before and after the time shift. Source: Author.

• Loudness: The volume of all samples is increased or decreased at a random or fixed
rate.
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3 Methodology

This chapter first provides an overview of the state-of-the-art in urban sound
datasets. It then describes the methodology used to create a new dataset of urban sounds
for the city of São Paulo. Next, the chapter discusses the dataset preprocessing configura-
tion employed in this work. Finally, it explains the machine learning and neural network
architecture utilized to address the problem of sound classification on the new dataset.

3.1 Audio datasets for urban sounds

In this section, an overview of the current state of the main urban sound
datasets is provided. The Sounds of New York City (SONYC) project (CARTWRIGHT
et al., 2019) is a research initiative focused on employing data-driven methodologies to
address urban noise pollution in New York City. The project’s primary objective is to
study and comprehend the spatial and temporal behavior of noise pollution across the city.
The SONYC project takes a real-time approach, leveraging years of measurement data.
To support this research, the SONYC team has developed a specialized acoustic sensor
designed for effective noise pollution monitoring. This sensor features high-quality sound
acquisition capabilities while maintaining cost-effectiveness (MYDLARZ et al., 2019).

The project involves deploying 55 low-cost acoustic sensor nodes across New
York City to collect continuous real-time urban noise data. The research has gathered
approximately 75 years of sound pressure level (SPL) data and 35 years of raw audio
recorded from this sensor network. An extensive dataset allows for identifying noise pat-
terns and detecting frequently overlooked sources of noise pollution in urban areas.

To deal with such a large amount of data, volunteers on the ZOONIVERSE
citizen science platform assisted in the task of labeling the presence of 23 fine-grained
classes of sounds, which were chosen consulting the New York City Department of Envi-
ronmental Protection and respecting the New York City noise code. These 23 fine-grained
classes can be grouped into eight coarse-grained categories: engine noise, machinery im-
pact, non-machinery impact, powered-saw noise, alert signals, music, human voices, and
dog sounds. The final dataset comprises 18,510 audio samples.

The sensor network does not only perform continuous SPL measurements but
also records 10-second audio segments at random intervals during specified time frames.
This data collection strategy is designed to facilitate the training and evaluation of ma-
chine listening algorithms deployed in acoustic sensors. During the measurement, the sen-



Chapter 3. Methodology 44

sor nodes constantly communicate with the server via a Virtual Private Network (VPN),
and audio and SPL data are uploaded at a 1-minute interval.

Despite being the most complete available dataset, it still needs essential natu-
ral sounds, such as rain noise, birds, and insects. Additionally, the means of transportation
need to be separated, as there are only generic labels for small, medium, and large-sized
engines.

Another important dataset in urban sound field is the UrbanSound8K (SALA-
MON et al., 2014). This dataset is commonly used as a benchmark test of urban sound
classification models, as it comprises 8,732 audio files categorized into ten classes: air
conditioner, car horn, children playing, dog bark, drilling, engine idling, gunshot, jack-
hammer, siren, and street music. With the exception of “children playing” and “gunshot”,
which were added for variety, all other classes were selected based on an analysis of noise
complaints collected through New York City’s 311 services since 2010, in a total of over
370,000 complaints.

Given the manual effort required for audio annotation, the number of classes in
the dataset was limited to 10 as a practical starting point. This decision was informed by a
previous study, where Chu et al. (2009) conducted a listening test and found that subjects
could identify environmental sounds with 82% accuracy within four seconds of the audio
presentation. Consequently, a 4-second clip duration was adopted in the construction
of this dataset. Furthermore, each sound occurrence was also described for its salience,
which indicates whether a noise source was subjectively perceived to be in the foreground
or background of the recording.

Despite its popularity for urban sound classification, UrbanSound8K only
presents ten classes of sounds, which is generally insufficient for most urban sound moni-
toring cases. Additionally, they do not comprise specific classes for vehicles, which are the
primary sound sources of metropolitan areas.

The IDMT-Traffic Dataset (ABESSER et al., 2021) is designed to serve as
a public evaluation benchmark for detecting and classifying passing vehicles on urban
and rural roads. It comprises time-synchronized stereo audio recordings captured using
both high-quality sE8 microphones and more affordable microelectro-mechanical systems
(MEMS) microphones from four distinct recording locations, including three urban traffic
sites and one rural road location in and around Ilmenau, Germany. The recording scenarios
cover a few speed limits (30, 50, and 70 km/h) as well as some different road conditions,
such as wet and dry surfaces.

In the dataset, four vehicle classes are included and distributed as 3903 events
of cars, 511 events of trucks, 53 events of buses, and 251 events of motorcycles. This dis-
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tribution reflects the natural imbalance of vehicle types typically encountered in everyday
traffic scenarios. However, heavy vehicles often do not accurately represent the Brazilian
vehicle fleet in most cases, as the Brazilian fleet tends to be older than the German fleet.

The ESC-50 dataset (PICZAK, 2015b) is another dataset commonly used as
a benchmark for urban sound classification experiments. It comprises 2000 labeled envi-
ronmental recordings, evenly distributed among 50 classes with 40 clips per class. These
classes are grouped into five broad categories, each containing ten classes: animal sounds,
natural soundscapes and water sounds, human (non-speech) sounds, interior/domestic
sounds, and exterior/urban noises.

This dataset is organized into three main sets. The first is the primary labeled
set, which includes 50 classes of diverse environmental sound sources. The second is a
smaller proof-of-concept subset of 10 classes selected from the main dataset, serving as a
simplified benchmark, and finally, a supplementary dataset of unlabeled audios suitable
for unsupervised learning experiments. All datasets consist of sound clips collected from
publicly available recordings from the Freesound project. The selection of classes of the
labeled dataset was made in order to maintain a balance among major types of sound
events while considering the limitations in the quantity and diversity of available source
recordings, as well as considering how useful and distinctive they are.

To ensure data accuracy, each audio was individually evaluated and verified by
the author through the annotation of segments containing events belonging to the given
class. These annotations were then utilized to extract 5-second-long recordings of audio
events, with shorter events padded with silence when necessary. The extracted samples
were converted to a single channel and a sample rate of 44.1 kHz. The labeled datasets
were then organized into five uniformly sized cross-validation folds.

Nevertheless, the dataset only contains 40 audio samples per class which is typ-
ically insufficient and challenging for many supervised learning applications, furthermore,
most classes in the dataset are not particularly relevant for use in urban environments.

The ESC-10 dataset is a subset derived from the larger ESC-50 dataset. It com-
prises 10 classes extracted from the original, representing three broader groups of sounds:
1) transient or percussive sounds, characterized by distinctive temporal patterns, such as
sneezing, dog barking, and clock ticking; 2) sound events with prominent harmonic con-
tent, exemplified by sounds like crying babies and crowing roosters; and 3) more structured
noises or soundscapes, including rain, sea waves, fire crackling, helicopters, and chainsaws.
This subset was designed to provide a more introductory and manageable problem for
research purposes, compared to the full ESC-50 dataset.

The final important dataset covered in this review is the BCNDataset (VIDAÑA-
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VILA et al., 2020). This dataset comprises 363 minutes and 53 seconds of real-world au-
dio recordings captured in the city center of Barcelona, recorded over two Saturdays from
22:00 to 03:00. It encompasses 14 distinct types of events, totaling 6076 event occurrences.
These events were categorized into two main groups: “leisure” and “traffic”, excluding rare
events where the sound sources could not be determined or were a combination of sounds.
The dominant type of noise event identified in the dataset is attributed to people, followed
by road traffic noise, brakes, doors, and other rare occurrences.

3.2 The audio dataset

The dataset of this work was conceived to deal with the most common sound
sources in the city of São Paulo, Brazil. It encompasses not only sound sources capable
of producing high noise levels, such as construction noise and vehicles, but also considers
sound sources that are generally neglected and capable of exceeding lower noise limits of
residential zones at night, for example, birds, insects, and rain. Including a “Background
noise” class is important regarding environmental sound classification since many regu-
lations consider noise limits below 60 dB (ASSOCIAÇÃO BRASILEIRA DE NORMAS
TÉCNICAS (ABNT), 2019) for comfort. The sounds are often close to the background
noise level at such low sound pressure levels. It is important to note that the dataset
only contains external urban sounds since internal environments comprise many different
sound sources that are out of the scope of the project.

The dataset comprises five coarse classes: Construction noise, Animals, Alert
signals, Vehicles, and Others. And a total of 19 fine classes: Impact Equipment, Non-
impact equipment, Dog, Bird, Insect, Alarm, Siren, Car (pass-by), Motorcycle (pass-
by), Heavy vehicle (pass-by), Heavy vehicle (idling), Helicopter, Airplane, Train, Music,
Human, voice, Rain, Air conditioner and Background noise. The schematic taxonomy can
be seen in Figure 3.1.

The labels colored in light green indicate that the samples from that sound
source were collected from the UrbanSound8K dataset. In contrast, the labels in light
orange signify that collecting enough audio files for these classes was not possible, and
they will be excluded from this study. Future efforts will be undertaken in subsequent
research to complete the entire dataset. Studies utilizing this dataset have been published
using earlier and smaller iterations of it (BORIN et al., 2023).

The “Air conditioning” class covers sounds generated by machinery like con-
densers, chillers, and similar equipment commonly found in air conditioning systems. This
category includes mechanical noises associated with the operation of such units, like com-
pressor hums, fan noises, and refrigerant flow sounds. The “Impact equipment” mainly
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Figure 3.1 – Proposed dataset taxonomy. The light green indicates classes collected from
UrbanSound8K dataset, while the light orange indicates classes which num-
ber of samples was not enough for this work. Source: Author.

comprises hammering and pile driver sounds, while the “Non-impact equipment” com-
prises sound samples such as drilling, sawing, sanding, power tools, and concrete mixers.

The audios were mainly collected in the city of São Paulo, Brazil, using a
Tascam DR-05X recorder set to mono mode, sampling frequency of 44.1 kHz, 16 bits of
depth, and saved in “.wav” file format. This configuration was chosen since it covers the
typical audible range of the spectrum (20 Hz to 20 kHz), and resampling can be applied
if necessary.

Audio recordings of up to 5 minutes each were conducted at various represen-
tative sites in the city of São Paulo at different times of the day. The recording places
mainly included different streets, parks, construction sites, and facade measurements.
Figure 3.2 illustrates a typical setup for vehicle recordings. Additionally, to ensure accu-
rate traffic identification, video footage was captured concurrently with the audio using a
smartphone, aiding in the labeling process due to the potential for vehicle sounds to be
misleading.

After each recording session, the audio files were analyzed using Reaper (COCKOS
INCORPORATED, ), a digital audio workstation (DAW). The sound sources were care-
fully identified by listening to the files. Subsequently, audio segments corresponding to the
identified sound sources were manually trimmed to a maximum duration of four seconds.
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Figure 3.2 – Tascam recording the traffic noise in São Paulo, Brazil. Source: Author.

These trimmed segments were then saved as “.wav” files to their designated paths in the
database, categorized according to their respective classes.

As mentioned in Section 3.1, Chu et al. (2009) conducted a listening test,
revealing that subjects could identify environmental sounds with 82% accuracy within a
4-second duration. This finding was relevant for their adoption of a 4-second clip duration
in their experiments with automatic classification. In a related study, Salamon et al.
(2014) investigated the impact of audio duration on classification accuracy. They created
ten versions of the UrbanSound8K dataset, varying the maximum slice duration from 10
seconds to 1 second. Their analysis compared the performance of five different algorithms:
decision tree (J48), k-NN (with k = 5), random forest (500 trees), support vector machine
(SVM) (radial basis function kernel), and a baseline majority vote classifier (ZeroR). The
findings revealed consistent behavior across all classifiers: performance remained stable
from 10 to 6 seconds, with a gradual decline after that. However, focusing on the top-
performing classifier (SVM), no statistically significant difference was observed between
6-second and 4-second slices. This finding aligns with the results of Chu et al., supporting
the choice of 4-second slices for the UrbanSound8K dataset. Following these findings, a
4-second duration was also chosen as the maximum occurrence duration for the dataset
in this work.

Table 3.1 presents the complete dataset used in this project, showing the class
and its respective number of files. In this work, a total of 5864 audio files were used.

An example spectrogram of each class can be seen in Figures 3.3, 3.4 and 3.5.
The Short-Time Fourier Transform (STFT) was computed using a hop size of 512 and a
Hanning window of 1024 samples. The sampling rate was set to 22050 Hz. These spectro-
grams are only illustrative to comprehend differences between classes better. Section 3.3
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Table 3.1 – Number of audio samples collected for each class.

Class Number of samples
Background noise 413
Motorcycle 306
Car 339
Heavy vehicles (pass-by) 365
Heavy vehicles (idling) 315
Helicopter 320
Air conditioner 360
Construction noise (non-impact) 409
Construction noise (impact) 303
Rain 307
Human voice 398
Music 368
Dog 360
Insect 303
Bird 315
Alarm 320
Siren 360
Total 5864

will explore the actual data preprocessing configuration.

(a) Background noise spectrogram (b) Motorcycle spectrogram

(c) Car spectrogram (d) Heavy vehicle (pass-by) spectrogram

Figure 3.3 – Example spectrograms from classes: (a) Background noise, (b) Motorcycle,
(c) Car, (d) Heavy vehicle (pass-by).
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(a) Heavy vehicle (idling) spectrogram (b) Helicopter spectrogram

(c) Air conditioner spectrogram (d) Construction noise (non-impact) spectrogram

(e) Construction noise (impact) spectrogram (f) Rain spectrogram

(g) Human voice spectrogram (h) Music spectrogram

Figure 3.4 – Example spectrograms from classes: (a) Heavy vehicle (idling), (b) Heli-
copter, (c) Air conditioner, (d) Construction noise (non-impact), (e) Con-
struction noise (impact), (f) Rain, (g) Human voice, (h) Music.
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(a) Dog spectrogram (b) Insect spectrogram

(c) Bird spectrogram (d) Alarm spectrogram

(e) Siren spectrogram
Figure 3.5 – Example spectrograms from classes: (a) Dog, (b) Insect, (c) Bird, (d) Alarm,

(e) Siren.

To perform a 5-fold cross-validation, the dataset was evenly divided into 5
folds, ensuring that each fold had the same class distribution, or as close as possible. Next
section will cover data preprocessing.

3.3 Data Preprocessing

To satisfy the CNN model’s requirement for fixed-length audio frames, all
audio samples shorter than four seconds were padded with zeros to extend their length
to four seconds.
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A literature review was conducted to choose the most appropriate sample
rate for this project. In studies from Boddapati et al. (2017) and Boddapati (2017), an
accuracy comparison of sample rates (8 kHz, 16 kHz, and 32 kHz) applied to the ESC-10
and ESC-50 datasets revealed superior results with a sample rate of 16 kHz. Conversely,
in the study from Högskola et al. (2018), no significant difference was observed among
sample rates of 44.1 kHz, 32 kHz, and 16 kHz when using linear spectrograms as input.
However, the utilization of Mel spectrograms indicated that a sample rate of 32 kHz
yielded better results with the ESC-50 dataset. In investigations from Guo et al. (2022),
a comparison of sample rates (8 kHz, 16 kHz, 44.1 kHz, and 48 kHz) across ESC-10, ESC-
50, and UrbanSound8K datasets demonstrated that 44 kHz was consistently superior by
1 or 2 percentage points in most cases. Finally, in the study from Aljubayri (2023),
an examination of sample rates (8 kHz, 16 kHz, and 44.1 kHz) using the UrbanSound8K
dataset revealed that the optimal results were achieved with sample rates of 16 kHz and
44.1 kHz, depending on the input feature.

In general, sample rates ranging from 16 kHz to 44 kHz have been found to
yield the best results for sound classification, with precision varying depending on input
features. Therefore, a sample rate of 22050 Hz was selected for this study, considering
both performance and memory consumption. For this reason, all audio files had to be
resampled, and this task was conducted using the Librosa Python library (MCFEE et al.,
2021).

Next, all audio sample amplitudes were standardized to have a zero mean
and a standard deviation of 1, resulting in an RMS of 1 and the same power level. This
allows the model to ignore audio levels and focus on learning pattern features within the
audio. The Short-Time Fourier Transform (STFT) was then calculated for each audio
sample. The STFT used a Hanning time window with lengths of 8192 (372 ms), 4096
(186 ms), 2048 (93 ms), and 1024 (946 ms) samples. The respective hop sizes were 4096
(186 ms), 2048 (93 ms), 1024 (46 ms), and 512 (23 ms) samples. This process extracted
the amplitude spectrogram, always ensuring a 50% overlap. Afterward, the spectrogram
underwent processing through a Mel filter bank to divide the frequency spectrum into
16, 32, 64, and 128 Mel bands. The resulting spectrogram was then converted into a
logarithmic scale to derive the Log-Mel spectrogram. Each audio sample thus results in a
fixed frame according to the parameters used. A total of eight configurations were adopted
in this work, with a summary of the parameters for all experiments provided in Table 3.2.

An example of the resulting Log-Mel spectrogram from a sample of human
voice for each configuration is seen in Figures 3.6 and 3.7.
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Table 3.2 – Summary of the 8 experiments configuration.

Configuration Mel bands Hop size Window length Mel spectrogram size
1 16 4096 8192 16×22
2 16 2048 4096 16×44
3 32 2048 4096 32×44
4 32 1024 2048 32×87
5 64 1024 2048 64×87
6 64 512 1024 64×173
7 128 1024 2048 128×87
8 128 512 1024 128×173

(a) (b)

(c) (d)

Figure 3.6 – Example spectrograms using (a) 16 Mel bands, hop size of 4096 and window
length of 8192; (b) 16 Mel bands, hop size of 4096 and window length of
2048; (c) 32 Mel bands, hop size of 2048 and window length of 4096; (d) 32
Mel bands, hop size of 1024 and window length of 2048.
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(a) (b)

(c) (d)

Figure 3.7 – Example spectrograms using (a) 64 Mel bands, hop size of 1024 and window
length of 2048; (b) 64 Mel bands, hop size of 512 and window length of 1024;
(c) 128 Mel bands, hop size of 1024 and window length of 2048; (d) 128 Mel
bands, hop size of 512 and window length of 1024.

3.4 Machine Learning architectures

This section outlines the machine learning architectures used in this work.
First, a simple linear support vector machine (SVM) model was selected as a baseline
to compare with the subsequent, more complex models. This also allows for observing
the behavior of a linear model in contrast to non-linear ones. Next, a CNN was chosen
for its strong performance in classification tasks. A second deep learning model based on
RNN (LSTM) was also used for comparison. Finally, a hybrid model was implemented,
combining a CNN block and an RNN layer known as a CRNN (Convolutional Recurrent
Neural Network).

3.4.1 Linear SVM

A linear SVM algorithm was first trained to solve the classification task to ver-
ify the necessity of implementing non-linear deep learning models. It served as a reference
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to check the accuracy improvement of the more complex models. The kernel was linear,
and the Regularisation Parameter (𝐶) was set to 1. The model was configured to output
probability estimates for each class.

3.4.2 CNN model

The first deep learning model covered in this work consists of a CNN model,
which was chosen due to its good performance on audio classification tasks (ROCH,
2021). The CNN block includes three sets of alternating convolutional and max-pooling
layers. Batch normalization is applied after each max-pooling operation. The CNN layers
help reduce the data dimensions while extracting crucial features for classification. Then,
the data is flattened and fed into a fully connected layer, followed by a dropout layer
(0.3) before the output, as depicted in Figure 3.8, with the operations and its respective
number of filters and kernel shapes. A Relu is used as an activation function for both
the convolutional and dense layers, except for the last one where a Sigmoid function is
applied. An L2 regularizer is used in the fully connected layer as well.

Figure 3.8 – The neural network architecture consists of a CNN block followed by a fully
connected layer.
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3.4.3 RNN model

The second deep learning model consists of an RNN model. It includes two
layers of LSTM, chosen for their ability to control what information to keep and what
to forget, thereby preserving important information. The first LSTM layer has 128 units
and is bidirectional. This layer returns the full sequence of outputs. The second layer also
has 128 units. Both layers use the Tanh activation function. The data is then fed into a
fully connected layer, followed by a dropout layer (0.3) before the output, as depicted in
Figure 3.9. A Relu activation function is used for the first dense layer, and a Sigmoid for
the final output layer. Additionally, L2 regularization is applied to the fully connected
layer.

Figure 3.9 – The neural network architecture consists of a RNN block followed by a fully
connected layer.

3.4.4 CRNN model

The CNN model is further improved by incorporating an RNN block after the
CNN part. The RNN component consists of a bidirectional LSTM layer with 64 units. The
output from this RNN layer is then fed into the same fully connected output layers as the
previous models. The combination of a CNN and an RNN together forms a hybrid neural
network architecture known as a Convolutional Recurrent Neural Network (CRNN). The
complete architecture is depicted in Figure 3.10.



Chapter 3. Methodology 57

Figure 3.10 – The neural network architecture consists of a CNN layers followed by a
LSTM and a fully connected layer.

3.5 Chapter overview

This chapter provided details of the methodology used for constructing the
audio dataset of urban sounds in the city of São Paulo. It also discussed the signal pre-
processing applied to the data to serve as input for the networks: SVM, CNN, RNN, and
CRNN. The next chapter will present the results of this methodology.
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4 Results and discussion

This chapter presents the results of the models detailed previously using the
configuration of data described in Table 3.2 with the respective discussions. Moreover,
some techniques are employed to improve accuracy, including data augmentation and
hierarchical classification algorithms.

The same hyperparameters were used for the deep learning models: a learning
rate of 0.0001, a batch size of 32, and 120 epochs. An early stop condition controlled the
execution, and the lowest validation loss model was recovered in the end. In addition, the
Adam optimizer was applied together with the Binary Cross-Entropy loss function.

4.1 Linear SVM results

The linear SVM model experiment was carried out for each configuration from
Table 3.2, so it can serve as a reference for the more complex models in the next sections.
Table 4.1 presents the accuracies achieved for each configuration of the linear SVM model
and the respective standard deviations (𝜎). Configuration 7 demonstrated the highest
performance with an accuracy of 72.0%. However, a two-tailed t-test at a 95% confidence
level revealed that this result was not statistically significantly higher than configuration
8 (𝑡(8) = 2.238, 𝑝 = 0.056), which achieved a slightly lower accuracy of 69.8%. The t-test
results will be used to indicate whether the differences in accuracy between models are
statistically significant. A higher 𝑝-value (≥ 0.05) suggests that the difference is likely due
to random chance, whereas a lower 𝑝-value (< 0.05) indicates a statistically significant
difference.

Table 4.1 – Accuracy of the experiments using the linear SVM model.

Configuration Accuracy (%) 𝜎 (p.p.)
1 58.5 1.23
2 58.9 1.34
3 66.6 0.44
4 66.1 0.40
5 69.1 0.83
6 69.0 0.82
7 72.0 0.95
8 69.8 1.69
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4.2 CNN results

The accuracy for each configuration described in Table 3.2 using the CNN
model can be seen in Table 4.2 with their respective standard deviations (𝜎). It is possible
to notice no direct relation between the increase of the Mel-spectrogram resolution and
higher accuracies. The best result was achieved in Configuration 3 (87.8%) using 32 Mel
bands, hop size of 2048, and window length of 4096. However, no statistically significant
difference was found between models 3 and 2 (𝑡(8) = 1.818, 𝑝 = 0.107) and models 3 and
4 (𝑡(8) = 2.156, 𝑝 = 0.063).

Table 4.2 – Accuracy of the experiments using the CNN architecture and their respective
standard deviations (𝜎).

Configuration Accuracy (%) 𝜎 (p.p.)
1 84.2 0.81
2 86.7 0.85
3 87.8 0.87
4 86.4 0.96
5 86.1 1.07
6 82.6 1.68
7 86.0 0.39
8 81.9 0.62

Compared with the SVM, the CNN consistently outperforms across all con-
figurations, exhibiting an improvement of up to 27.8%. This significant performance gain
suggests that a non-linear model is necessary for this type of task.

The class-wise precision, recall, and f1-score for each of the eight configurations
were calculated and are presented in tables 4.3, 4.4 and 4.5, respectively. The standard
deviations are presented alongside. In these tables, the highest value for each class is high-
lighted. Notably, Configuration 3 emerges with the best overall performance in precision,
achieving top results in 6 out of 17 classes. Additionally, Configuration 3 demonstrates
superior recall, securing the highest values for six classes, and excels in the f1-score, with
seven classes achieving top scores.

Classes like “Insect” and “Alarm” consistently emerged with the best scores
across most metrics, reaching precision scores up to 99%. In contrast, low-frequency sound
classes such as vehicles tended to exhibit poorer performance, primarily due to the simi-
larities in their spectral profiles, as illustrated in the spectrogram from Section 3.1. Specif-
ically, “Heavy Vehicle (pass-by)” proved particularly challenging to distinguish, achieving
only a 68.9% precision score. Meanwhile, other low-frequency sounds located within the
first seven positions in the tables generally scored below 90%, except “Heavy Vehicle
(idling)”.
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Table 4.3 – Precision resulted from the CNN model for each configuration.

Precision (%)

Configuration 1 2 3 4 5 6 7 8

Bkg noise 81.9 ±4.5 82.1 ±2.3 78.5 ±2.1 75.1 ±4.1 71.1 ±5.7 63.8 ±3.2 73.8 ±4.2 65.6 ±2.5

Motorcycle 74.7 ±4.6 76.5 ±4.3 75.4 ±2.9 70.9 ±6.1 71.8 ±4.9 68.5 ±4.5 68.7 ±7.1 68.8 ±5.2

Car 81.8 ±5.3 82.5 ±4.0 81.8 ±7.5 78.9 ±7.8 77.1 ±1.9 76.6 ±5.3 69.8 ±5.0 67.5 ±6.5

HV (pass-by) 65.8 ±2.1 66.6 ±3.4 68.6 ±6.9 68.9 ±3.3 61.0 ±4.8 57.9 ±6.2 67.6 ±6.0 57.4 ±3.4

HV (idling) 95.7 ±2.5 95.1 ±2.2 95.4 ±1.9 93.4 ±3.1 94.8 ±3.0 89.2 ±3.3 93.5 ±2.2 87.2 ±10.3

Helicopter 80.3 ±9.1 85.8 ±5.7 85.8 ±3.2 85.1 ±3.6 80.5 ±2.8 78.4 ±4.3 83.7 ±11.0 79.2 ±6.1

Air conditioner 78.5 ±6.1 84.0 ±4.7 86.7 ±6.3 85.1 ±3.6 86.5 ±5.8 77.3 ±8.8 80.7 ±2.9 78.9 ±5.5

Const (non-imp) 89.2 ±3.5 92.9 ±2.8 91.3 ±4.1 94.2 ±2.0 95.2 ±2.9 94.0 ±3.4 93.7 ±2.7 88.4 ±3.1

Const (imp) 88.0 ±4.5 93.4 ±1.2 93.1 ±2.5 94.7 ±3.9 92.3 ±3.1 91.6 ±2.9 92.8 ±4.6 88.7 ±4.9

Rain 93.3 ±1.7 92.7 ±2.7 95.5 ±2.6 92.9 ±6.7 91.5 ±5.2 91.8 ±2.5 92.1 ±3.7 89.7 ±2.3

Voice 84.1 ±2.4 86.9 ±2.7 88.6 ±3.3 88.5 ±4.1 93.6 ±1.8 91.5 ±1.7 91.9 ±2.5 88.1 ±5.8

Music 77.3 ±6.1 79.5 ±5.5 86.5 ±7.7 81.8 ±6.2 85.8 ±2.1 80.8 ±4.0 89.6 ±1.9 86.1 ±2.9

Dog 86.7 ±2.6 89.6 ±2.4 93.7 ±1.6 92.4 ±2.2 94.0 ±1.3 91.6 ±2.9 95.0 ±3.0 93.1 ±3.0

Insect 95.7 ±1.6 98.3 ±1.1 98.6 ±0.7 96.1 ±2.7 96.7 ±3.3 96.3 ±2.7 95.5 ±4.3 96.6 ±2.3

Bird 90.5 ±0.6 92.6 ±3.7 94.1 ±1.8 91.8 ±3.5 94.6 ±2.4 91.6 ±2.4 96.3 ±3.1 92.3 ±2.4

Alarm 93.7 ±2.1 96.6 ±3.0 97.8 ±1.3 99.0 ±0.8 97.2 ±2.2 96.8 ±1.7 97.8 ±0.8 96.0 ±2.7

Siren 85.0 ±3.5 88.9 ±5.1 93.1 ±3.2 91.2 ±3.9 92.8 ±1.8 85.9 ±4.0 90.9 ±2.8 86.7 ±2.2

Macro avg. 84.8 ±0.9 87.3 ±0.9 88.5 ±0.8 87.1 ±0.8 86.9 ±0.8 83.7 ±1.5 86.7 ±0.6 83.0 ±0.5

Weighted avg. 84.6 ±0.9 87.0 ±1.0 88.2 ±0.8 86.8 ±0.9 86.7 ±0.9 83.4 ±1.5 86.5 ±0.5 82.6 ±0.5

Table 4.4 – Recall resulted by the CNN model for each configuration.

Recall (%)

Configuration 1 2 3 4 5 6 7 8

Bkg noise 88.6 ±3.4 90.6 ±3.7 89.3 ±4.7 87.7 ±2.6 86.4 ±2.8 86.0 ±3.6 85.4 ±5.3 87.9 ±1.3

Motorcycle 68.0 ±7.9 72.9 ±5.9 74.8 ±4.5 70.6 ±5.5 66.7 ±5.2 62.7 ±7.6 69.9 ±3.7 69.3 ±4.5

Car 77.9 ±5.0 77.9 ±7.3 77.6 ±2.9 77.3 ±4.4 76.1 ±4.5 74.9 ±4.2 77.0 ±3.3 70.8 ±6.3

HV (pass-by) 66.8 ±8.3 70.1 ±8.1 70.1 ±4.5 63.8 ±6.7 64.1 ±2.8 59.7 ±5.9 54.2 ±6.9 50.4 ±2.7

HV (idling) 97.1 ±1.2 97.8 ±1.3 98.1 ±1.9 96.5 ±1.9 96.5 ±1.9 94.0 ±3.5 94.0 ±3.2 91.4 ±1.9

Helicopter 79.3 ±4.0 78.7 ±1.2 78.7 ±3.6 83.4 ±0.8 79.6 ±8.3 75.9 ±4.0 82.1 ±5.4 72.4 ±3.6

Air conditioner 76.7 ±5.3 81.4 ±1.7 84.4 ±5.2 80.0 ±3.7 75.6 ±6.1 65.0 ±6.7 79.7 ±6.2 68.9 ±4.7

Const (non-imp) 84.9 ±3.9 89.2 ±2.1 92.4 ±1.4 91.5 ±4.2 90.0 ±2.4 88.5 ±2.3 89.5 ±3.7 83.9 ±4.4

Const (imp) 93.7 ±3.8 98.0 ±1.9 97.0 ±3.0 96.0 ±4.1 97.7 ±0.8 95.7 ±2.0 97.4 ±3.8 94.7 ±6.7

Rain 90.2 ±2.3 93.8 ±4.3 94.1 ±3.8 92.5 ±3.6 95.4 ±3.3 87.6 ±3.9 92.8 ±2.9 90.5 ±3.9

Voice 88.9 ±4.3 89.7 ±3.5 91.5 ±1.5 87.7 ±4.0 91.4 ±4.3 85.2 ±4.9 93.5 ±2.5 90.2 ±2.0

Music 75.8 ±5.2 82.3 ±7.3 85.6 ±4.0 85.6 ±2.5 88.3 ±2.4 82.3 ±5.3 88.6 ±1.9 81.0 ±5.5

Dog 82.5 ±3.6 85.0 ±4.1 86.1 ±3.5 86.7 ±3.4 87.8 ±3.2 83.3 ±1.2 88.6 ±1.0 84.2 ±3.7

Insect 94.1 ±2.8 98.0 ±1.9 96.0 ±2.7 96.0 ±2.7 94.7 ±2.2 93.1 ±2.2 94.7 ±1.6 90.8 ±3.4

Bird 89.3 ±4.8 92.1 ±2.8 93.7 ±3.9 92.5 ±3.0 92.1 ±4.1 92.1 ±3.7 89.3 ±4.7 90.2 ±4.6

Alarm 92.5 ±2.7 93.8 ±2.4 96.6 ±2.3 96.2 ±1.9 95.3 ±2.2 93.1 ±1.6 96.9 ±2.6 95.3 ±1.4

Siren 88.3 ±3.8 86.1 ±6.1 89.2 ±2.0 88.6 ±4.1 88.3 ±3.2 87.5 ±4.4 90.8 ±3.0 83.6 ±8.5

Macro avg. 84.4 ±0.8 86.9 ±0.8 88.0 ±0.9 86.6 ±0.9 86.2 ±1.2 82.7 ±1.8 86.1 ±0.4 82.1 ±0.6

Weighted avg. 84.2 ±0.8 86.7 ±0.9 87.8 ±0.9 86.4 ±1.0 86.1 ±1.1 82.6 ±1.7 86.0 ±0.4 81.9 ±0.6

The normalized confusion matrix of the best configuration (Configuration 3)
is depicted in Figure 4.1, highlighting prominent class confusions. As expected, “Heavy
vehicle (pass-by)” is frequently misclassified as “Background noise” (7%), “Motorcycle”
(7%), and “Car” (8%). Significant errors also occur when 14% of cars and 12% of mo-
torcycles are incorrectly identified as heavy vehicles. This underscores the challenge in
distinguishing low-frequency sounds, which often exhibit spectral similarities. Addition-
ally, among the other classes, it is important to point out that 5% of “Voice” samples
are mistaken for “Music”, and conversely, 7% of music samples are misidentified as voice,
which is natural by the presence of voice in music.
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Table 4.5 – F1-score resulted by the CNN model for each configuration.

F1-score (%)

Configuration 1 2 3 4 5 6 7 8

Bkg noise 85.0 ±3.5 86.1 ±2.4 83.4 ±1.0 80.8 ±2.1 77.8 ±3.3 73.2 ±3.0 79.0 ±1.8 75.1 ±1.4

Motorcycle 70.7 ±2.7 74.4 ±3.2 75.0 ±3.0 70.4 ±3.2 69.0 ±4.0 65.0 ±3.7 68.9 ±2.0 68.8 ±1.8

Car 79.6 ±3.7 79.7 ±2.6 79.5 ±4.6 77.9 ±5.0 76.5 ±1.8 75.6 ±3.9 73.1 ±2.7 68.6 ±2.9

HV (pass-by) 66.0 ±3.7 67.9 ±2.5 69.1 ±3.9 66.0 ±3.8 62.3 ±1.5 58.5 ±4.1 59.7 ±3.3 53.6 ±2.0

HV (idling) 96.4 ±1.2 96.4 ±1.2 96.7 ±1.3 94.9 ±1.5 95.6 ±1.0 91.5 ±3.0 93.7 ±1.0 88.8 ±4.7

Helicopter 79.3 ±3.3 82.0 ±2.3 82.0 ±2.2 84.2 ±2.1 79.8 ±4.4 77.1 ±3.9 82.2 ±4.5 75.4 ±3.1

Air conditioner 77.3 ±3.7 82.6 ±1.8 85.4 ±4.8 82.4 ±2.1 80.4 ±4.1 70.0 ±2.9 80.1 ±3.2 73.3 ±1.7

Const (non-imp) 86.8 ±2.0 91.0 ±1.9 91.8 ±1.8 92.8 ±2.5 92.5 ±1.8 91.1 ±1.5 91.5 ±2.2 85.9 ±1.8

Const (imp) 90.6 ±1.6 95.6 ±1.4 95.0 ±2.0 95.2 ±2.0 94.9 ±1.8 93.6 ±1.3 94.9 ±2.2 91.3 ±3.3

Rain 91.7 ±1.2 93.2 ±2.7 94.7 ±1.7 92.5 ±3.1 93.4 ±3.7 89.6 ±2.8 92.4 ±2.3 90.1 ±2.9

Voice 86.4 ±2.4 88.2 ±2.2 90.0 ±2.4 88.0 ±3.3 92.5 ±2.0 88.1 ±2.3 92.6 ±1.5 89.1 ±3.3

Music 76.2 ±1.7 80.6 ±4.4 85.7 ±3.2 83.5 ±3.7 87.0 ±1.4 81.5 ±4.1 89.1 ±1.5 83.3 ±2.5

Dog 84.5 ±2.4 87.1 ±2.1 89.7 ±1.8 89.4 ±2.1 90.8 ±2.1 87.2 ±1.2 91.7 ±1.6 88.3 ±1.8

Insect 94.8 ±1.5 98.2 ±1.4 97.3 ±1.5 96.0 ±2.4 95.7 ±2.5 94.6 ±2.0 95.1 ±2.0 93.5 ±1.3

Bird 89.8 ±2.2 92.3 ±1.7 93.8 ±1.7 92.0 ±0.8 93.3 ±1.8 91.8 ±2.0 92.6 ±3.3 91.2 ±2.9

Alarm 93.1 ±1.9 95.1 ±1.5 97.2 ±1.8 97.6 ±0.9 96.2 ±0.6 94.9 ±1.2 97.3 ±1.5 95.6 ±1.8

Siren 86.5 ±2.3 87.4 ±4.9 91.1 ±2.3 89.7 ±1.8 90.4 ±1.5 86.5 ±2.1 90.8 ±2.4 84.8 ±3.8

Macro avg. 84.4 ±0.8 86.9 ±0.8 88.1 ±0.8 86.7 ±0.9 86.4 ±1.0 82.9 ±1.7 86.1 ±0.5 82.2 ±0.5

Weighted avg. 84.2 ±0.8 86.7 ±0.8 87.9 ±0.8 86.4 ±1.0 86.2 ±1.0 82.7 ±1.6 86.0 ±0.4 81.9 ±0.6

Figure 4.1 – Normalized confusion matrix resulted from using the CNN model and the
configuration 3 (32 Mel bands, hop size of 2048 and window length of 4096).

4.3 RNN results

In Table 4.6, the accuracy for the RNN model in each configuration described
in Table 3.2 and their respective standard deviations (𝜎) are shown. As seen in the CNN
model, the accuracy does not increase with Mel spectrogram resolution and the best
performance was yielded by Configuration 7 (85.3%). In a direct comparison with the CNN
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model, configurations 2, 3, 4, and 5 showed a significant decrease in accuracy. However, the
two-tailed t-tests for configurations 1, 6, 7, and 8 yielded the following results, respectively:
𝑡(8) = −7.813, 𝑝 < 0.05; 𝑡(8) = −7.712, 𝑝 < 0.05; 𝑡(8) = −4.074, 𝑝 < 0.05; and 𝑡(8) =
−3.448, 𝑝 < 0.05. Therefore, configurations 1, 6, 7, and 8 are equivalent in both CNN and
RNN models.

In tables 4.7, 4.8 and 4.9, the class-wise precision, recall, and f1-score for every
tested configuration were calculated and are presented, respectively, with the highest value
highlighted for each class. Configuration 7 stands out among all the configurations in the
class-wise comparison, exhibiting the best overall performance in precision by achieving
the highest results in 9 out of 17 classes. Additionally, Configuration 7 demonstrates
superior recall, attaining the top values for seven classes, and excels in the f1-score, with
eight classes achieving the best scores.

Table 4.6 – Accuracy of the experiments using the RNN architecture and their respective
standard deviations (𝜎).

Configuration Accuracy (%) 𝜎 (p.p.)
1 83.2 1.16
2 82.2 0.80
3 83.5 0.73
4 83.3 1.18
5 84.0 0.58
6 82.1 1.35
7 85.3 1.08
8 82.0 1.36

Table 4.7 – Precision resulted by the RNN model for each configuration.

Precision (%)

Configuration 1 2 3 4 5 6 7 8

Bkg noise 83.9 ±3.5 81.9 ±2.4 78.7 ±2.9 76.8 ±3.6 75.9 ±3.7 72.3 ±3.3 76.6 ±5.3 69.5 ±1.6

Motorcycle 64.9 ±7.4 64.2 ±7.5 65.1 ±4.8 66.4 ±5.3 71.5 ±6.7 66.6 ±3.4 77.0 ±5.2 66.9 ±3.3

Car 77.6 ±7.5 77.7 ±4.4 76.8 ±5.5 81.9 ±3.4 82.6 ±4.3 72.0 ±8.0 80.2 ±3.8 72.3 ±5.2

HV (pass-by) 63.5 ±6.9 58.2 ±9.3 61.4 ±4.0 62.0 ±4.4 59.6 ±4.9 63.3 ±6.0 58.4 ±3.8 57.6 ±1.7

HV (idling) 94.0 ±3.4 94.5 ±3.9 94.1 ±3.6 93.2 ±2.9 94.4 ±3.1 89.4 ±3.7 95.2 ±3.9 93.4 ±1.7

Helicopter 74.3 ±4.6 72.7 ±2.3 74.1 ±8.7 76.0 ±2.8 77.3 ±6.1 77.1 ±6.5 85.7 ±4.5 80.8 ±6.3

Air conditioner 81.9 ±7.6 79.5 ±4.6 81.6 ±5.8 79.4 ±8.3 84.3 ±2.5 82.8 ±4.4 86.5 ±4.3 83.0 ±5.9

Const (non-imp) 91.2 ±6.5 88.1 ±2.6 93.8 ±3.9 94.3 ±3.8 91.9 ±5.9 90.0 ±4.1 93.3 ±4.8 91.4 ±3.2

Const (imp) 91.1 ±2.8 88.1 ±4.9 87.7 ±2.3 89.8 ±4.7 90.9 ±4.8 91.2 ±2.7 90.8 ±3.4 89.4 ±7.2

Rain 91.5 ±1.8 90.0 ±3.3 94.3 ±3.5 90.2 ±3.2 89.8 ±3.8 88.5 ±1.9 89.2 ±1.8 91.2 ±2.7

Voice 83.2 ±5.9 82.3 ±7.7 82.1 ±3.3 84.0 ±1.1 83.7 ±3.9 78.8 ±2.4 88.3 ±2.3 81.3 ±4.3

Music 73.7 ±6.0 78.7 ±2.2 78.6 ±4.4 78.0 ±6.1 81.9 ±4.2 83.4 ±5.2 85.2 ±4.1 77.9 ±4.7

Dog 84.4 ±2.5 84.5 ±4.8 86.0 ±5.0 86.0 ±4.4 88.9 ±1.9 84.3 ±4.6 84.5 ±4.9 87.9 ±6.1

Insect 96.4 ±1.8 97.6 ±2.2 97.3 ±1.7 95.4 ±3.7 96.3 ±2.8 95.6 ±0.8 98.9 ±1.4 96.2 ±2.8

Bird 91.6 ±4.2 91.5 ±3.0 92.4 ±3.4 91.5 ±5.0 90.1 ±1.4 90.1 ±3.9 93.3 ±4.2 90.6 ±5.9

Alarm 95.0 ±3.7 94.1 ±1.7 97.2 ±2.0 95.7 ±3.4 96.6 ±2.6 97.1 ±1.9 98.1 ±1.8 95.2 ±2.1

Siren 87.0 ±4.5 86.6 ±4.9 90.9 ±3.2 86.5 ±4.1 89.0 ±4.6 86.6 ±3.3 86.3 ±4.7 87.5 ±1.3

Macro avg. 83.8 ±1.2 82.9 ±0.7 84.3 ±0.6 83.9 ±1.1 85.0 ±0.4 82.9 ±1.3 86.3 ±1.1 83.1 ±1.1

Weighted avg. 83.7 ±1.2 82.7 ±0.7 84.0 ±0.6 83.7 ±1.2 84.7 ±0.5 82.6 ±1.4 86.0 ±1.1 82.7 ±1.2
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Table 4.8 – Recall resulted by the RNN model for each configuration.

Recall (%)

Configuration 1 2 3 4 5 6 7 8

Bkg noise 85.7 ±3.6 86.2 ±2.7 85.2 ±2.1 83.6 ±4.9 83.3 ±4.8 86.4 ±2.5 86.7 ±3.1 88.6 ±4.1

Motorcycle 65.0 ±11.8 57.8 ±7.6 65.1 ±8.3 68.6 ±7.2 64.4 ±3.1 65.7 ±11.8 64.1 ±6.9 58.2 ±8.3

Car 74.6 ±5.3 72.3 ±2.4 75.2 ±2.3 71.7 ±2.8 69.0 ±5.1 75.2 ±3.7 74.3 ±5.9 72.0 ±3.9

HV (pass-by) 66.6 ±3.8 67.4 ±5.8 64.7 ±6.8 63.0 ±5.0 71.2 ±6.1 58.6 ±4.3 72.9 ±5.3 62.2 ±3.4

HV (idling) 97.1 ±1.9 95.2 ±1.4 94.6 ±2.2 94.0 ±3.2 93.7 ±2.2 94.9 ±2.1 96.5 ±2.7 89.8 ±2.9

Helicopter 74.9 ±7.3 75.3 ±5.7 79.6 ±5.2 75.9 ±5.1 82.2 ±6.3 79.6 ±4.0 82.5 ±7.7 79.6 ±2.1

Air conditioner 80.3 ±1.4 78.3 ±1.1 79.7 ±4.1 83.3 ±4.7 85.8 ±1.8 78.9 ±4.9 82.2 ±3.2 81.7 ±4.2

Const (non-imp) 85.8 ±5.7 86.8 ±1.5 85.3 ±2.6 87.5 ±3.0 88.3 ±2.4 85.8 ±1.0 89.0 ±1.5 84.9 ±3.5

Const (imp) 90.8 ±2.9 89.1 ±4.2 93.7 ±3.5 94.4 ±4.9 91.7 ±2.1 91.1 ±3.8 95.4 ±2.9 92.1 ±3.2

Rain 90.6 ±3.6 89.3 ±3.3 90.5 ±4.9 91.9 ±3.6 89.2 ±7.4 87.6 ±5.5 90.9 ±4.8 89.2 ±6.1

Voice 84.7 ±5.2 84.7 ±6.2 86.2 ±6.4 85.7 ±6.4 86.4 ±5.4 83.6 ±4.8 86.9 ±4.3 85.2 ±2.9

Music 75.3 ±3.1 75.0 ±3.5 77.7 ±4.5 74.2 ±6.3 80.2 ±2.5 75.8 ±6.1 82.6 ±4.4 78.0 ±2.9

Dog 82.5 ±3.0 78.3 ±6.8 80.0 ±2.6 79.7 ±4.0 81.7 ±1.4 79.7 ±4.5 86.9 ±3.7 81.1 ±3.4

Insect 96.0 ±3.3 93.7 ±1.9 94.1 ±1.7 93.4 ±2.1 93.1 ±1.9 92.1 ±2.8 90.4 ±4.3 90.4 ±4.3

Bird 90.6 ±2.8 89.3 ±4.9 89.6 ±4.0 91.5 ±1.9 86.2 ±4.7 85.2 ±6.1 88.1 ±6.5 84.3 ±6.6

Alarm 92.8 ±1.9 94.7 ±1.6 95.6 ±2.7 95.3 ±1.7 94.4 ±0.8 92.2 ±0.0 94.7 ±2.5 92.8 ±1.2

Siren 84.2 ±1.9 85.0 ±5.5 85.6 ±6.0 87.2 ±3.4 88.6 ±3.8 86.1 ±4.2 86.7 ±4.3 85.3 ±4.4

Macro avg. 83.4 ±1.2 82.3 ±0.9 83.7 ±0.7 83.6 ±1.1 84.1 ±0.6 82.3 ±1.5 85.3 ±1.0 82.1 ±1.4

Weighted avg. 83.2 ±1.2 82.2 ±0.8 83.5 ±0.7 83.3 ±1.2 84.0 ±0.6 82.1 ±1.4 85.3 ±1.1 82.0 ±1.4

Table 4.9 – F1-score resulted by the RNN model for each configuration.

F1-score (%)

Configuration 1 2 3 4 5 6 7 8

Bkg noise 84.7 ±1.9 84.0 ±2.2 81.8 ±2.1 79.9 ±3.5 79.2 ±2.1 78.7 ±1.6 81.3 ±3.6 77.9 ±1.5

Motorcycle 64.5 ±8.6 60.4 ±5.4 64.6 ±4.2 67.2 ±4.7 67.7 ±4.7 65.7 ±7.3 69.6 ±3.8 61.9 ±4.5

Car 75.8 ±4.5 74.8 ±3.2 75.8 ±2.1 76.4 ±2.8 74.9 ±1.6 73.2 ±4.0 76.9 ±2.3 72.0 ±3.1

HV (pass-by) 64.8 ±4.3 62.1 ±6.7 62.8 ±3.4 62.2 ±2.4 64.5 ±1.7 60.6 ±3.2 64.7 ±3.6 59.8 ±2.2

HV (idling) 95.5 ±1.0 94.8 ±2.7 94.3 ±2.3 93.5 ±1.8 94.0 ±1.9 92.0 ±1.9 95.8 ±1.7 91.6 ±1.5

Helicopter 74.4 ±4.4 73.9 ±3.4 76.3 ±3.9 75.9 ±3.9 79.2 ±2.2 78.1 ±3.5 83.8 ±4.1 80.1 ±3.6

Air conditioner 80.9 ±3.3 78.8 ±2.2 80.5 ±2.9 80.9 ±3.8 85.0 ±1.3 80.5 ±1.2 84.2 ±3.0 82.2 ±4.0

Const (non-imp) 88.1 ±3.3 87.4 ±1.8 89.3 ±1.8 90.8 ±2.9 90.0 ±3.6 87.8 ±2.0 91.1 ±3.0 88.0 ±2.5

Const (imp) 90.9 ±2.1 88.4 ±1.7 90.6 ±2.5 91.8 ±2.1 91.2 ±1.8 91.1 ±2.4 92.9 ±2.0 90.6 ±4.8

Rain 91.0 ±1.3 89.5 ±2.2 92.3 ±3.5 91.0 ±2.6 89.3 ±3.7 88.0 ±2.8 89.9 ±2.3 90.0 ±3.0

Voice 83.6 ±2.3 82.9 ±1.3 83.9 ±3.0 84.7 ±2.9 84.8 ±1.1 81.1 ±2.3 87.5 ±2.5 83.1 ±2.9

Music 74.2 ±2.5 76.7 ±2.0 78.1 ±4.1 75.8 ±4.5 81.0 ±2.2 79.3 ±5.2 83.8 ±4.0 77.9 ±3.5

Dog 83.4 ±2.7 81.1 ±4.2 82.8 ±2.6 82.7 ±3.9 85.1 ±1.2 81.7 ±1.4 85.6 ±2.2 84.2 ±2.9

Insect 96.2 ±1.7 95.6 ±1.6 95.6 ±1.3 94.4 ±2.3 94.6 ±2.0 93.8 ±1.5 94.4 ±2.6 93.2 ±3.0

Bird 91.0 ±3.0 90.3 ±2.4 90.9 ±2.2 91.4 ±2.1 88.1 ±2.7 87.4 ±2.6 90.4 ±3.5 87.1 ±4.5

Alarm 93.9 ±2.6 94.4 ±1.3 96.4 ±1.3 95.5 ±1.7 95.4 ±1.0 94.6 ±0.9 96.3 ±1.3 94.0 ±1.2

Siren 85.5 ±2.7 85.6 ±3.1 88.0 ±3.8 86.8 ±2.5 88.8 ±3.4 86.3 ±3.3 86.3 ±2.0 86.3 ±2.6

Macro avg. 83.4 ±1.2 82.4 ±0.8 83.8 ±0.7 83.6 ±1.1 84.3 ±0.5 82.3 ±1.4 85.6 ±1.0 82.3 ±1.3

Weighted avg. 83.2 ±1.2 82.2 ±0.7 83.5 ±0.7 83.4 ±1.2 84.1 ±0.5 82.1 ±1.3 85.4 ±1.1 82.1 ±1.3

As seen in the CNN architecture, classes “Insect” and “Alarm” achieved the
top scores, reaching precision scores up to 98.9% in the precision. Low-frequency sound
classes tended to exhibit poorer performance, particularly the “Heavy Vehicle (pass-by)”
class, which achieved the best precision score of only 63.5%, obtained by Configuration 1.
It is important to highlight that there is a significant disparity between the precision and
recall scores for all configurations in this class. For instance, Configuration 7 scored only
58.4% in precision and 72.9% in recall, indicating that many samples were incorrectly
classified as “Heavy Vehicle (pass-by).”
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4.4 CRNN results

Using The CRNN model, all configurations have shown improvement compared
to previous models, as depicted in Table 4.10. Configuration 8 presented the highest leap:
9.6% of enhancement. This same model also reached the best overall accuracy among
all: 91.5%. Unlike the CNN model, there is a noticeable gradual improvement in accuracy
while the Mel spectrogram resolution increases. However, it is important to notice that the
increment between successive configurations is small, Model 8 has not shown statistically
significant difference compared to Model 7 (𝑡(8) = 0.273, 𝑝 = 0.792), Model 6 (𝑡(8) =
1.877, 𝑝 = 0.097), Model 5 (𝑡(8) = 0.922, 𝑝 = 0.384) and Model 3 (𝑡(8) = 2.100, 𝑝 =
0.069). The class-wise precision, recall and f1-score are depicted in tables 4.3, 4.4 and 4.5,
respectively, with the best results of each class being highlighted. Configuration 8 has
graded top score in 7 out of 17 classes in each of the metrics.

“Alarm” has achieved the best class result with over 99% in the metrics, while
“Heavy vehicle (pass-by)” presented the worse results again, with top scores ranging from
75% to 80%. However, this still represents crucial improvement compared to the CNN
model which best result was only 70.1% on recall.

Table 4.10 – Accuracy of the experiments using the CRNN architecture and their respec-
tive standard deviations (𝜎).

Configuration Accuracy (%) 𝜎 (p.p.)
1 85.6 1.20
2 88.4 1.04
3 89.7 1.41
4 89.2 1.20
5 90.7 1.49
6 90.1 1.09
7 91.3 1.15
8 91.5 0.95

The normalized confusion matrix of the best configuration (Configuration 8)
is depicted in Figure 4.2, highlighting prominent class confusion. As expected, although
the confusion still exists in the low-frequency sounds, it is in a smaller degree. Compared
to the CNN model, the “Heavy vehicle (pass-by)” incorrect assignment as “Background
noise” dropped from 7% to 2%, “Motorcycle” from 7% to 6%, and “Car” remained at
8%. However, a significant error of 15% still occurs when cars are incorrectly identified as
heavy vehicles, which raised 1% compared to the previous model. Another improvement
can be seen when 5% of voice samples mistaken for music dropped to 1%, and conversely,
7% of music samples misidentified as voice lowered to 2%.

Poorer performance in heavy vehicles has already been found in sound clas-
sification experiments. Ashhad et al. (2023) conducted a study using the IDMT traffic
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Table 4.11 – Precision resulted by the CRNN model for each configuration.

Precision (%)

Configuration 1 2 3 4 5 6 7 8

Bkg noise 83.5 ±8.4 80.6 ±3.3 84.6 ±3.3 82.6 ±2.0 83.7 ±3.1 81.6 ±4.7 83.7 ±2.6 85.0 ±2.2

Motorcycle 75.7 ±8.0 79.5 ±4.1 77.2 ±5.9 80.8 ±6.7 76.9 ±7.3 83.7 ±7.5 79.5 ±2.3 82.8 ±5.4

Car 84.9 ±2.0 85.2 ±5.0 84.0 ±6.0 81.2 ±2.7 81.8 ±4.0 80.5 ±2.4 78.1 ±4.4 84.0 ±4.8

HV (pass-by) 71.4 ±2.4 73.0 ±8.5 76.9 ±4.6 72.5 ±5.1 76.1 ±6.4 73.7 ±3.3 75.5 ±5.8 72.6 ±4.3

HV (idling) 96.3 ±1.5 97.3 ±2.9 94.8 ±2.0 95.1 ±2.8 95.7 ±1.9 96.0 ±2.4 97.5 ±2.1 97.2 ±2.6

Helicopter 74.5 ±2.5 86.9 ±6.1 87.2 ±6.1 89.1 ±5.0 88.4 ±4.6 89.3 ±5.3 90.5 ±3.9 87.7 ±6.8

Air conditioner 86.3 ±5.6 85.4 ±3.9 89.1 ±4.3 83.7 ±2.7 87.4 ±3.4 87.4 ±5.1 90.9 ±1.9 91.1 ±1.4

Const (non-imp) 88.9 ±2.4 90.9 ±3.9 94.6 ±2.0 95.1 ±3.7 97.5 ±1.6 95.9 ±2.5 95.4 ±2.6 97.0 ±2.2

Const (imp) 92.0 ±2.0 94.7 ±3.2 93.9 ±3.7 95.6 ±2.0 95.6 ±2.5 95.4 ±3.5 96.1 ±1.6 97.1 ±2.3

Rain 93.7 ±1.0 94.3 ±3.2 94.5 ±2.9 97.7 ±2.0 96.2 ±3.4 96.4 ±1.2 98.0 ±0.6 97.8 ±1.9

Voice 85.8 ±4.1 89.6 ±2.9 90.1 ±3.8 87.2 ±3.7 94.0 ±3.4 93.3 ±3.1 95.8 ±3.5 94.9 ±2.2

Music 75.0 ±5.4 84.2 ±5.5 88.8 ±5.7 89.5 ±2.9 92.3 ±1.8 87.8 ±3.5 93.7 ±2.1 93.9 ±2.8

Dog 89.1 ±5.0 91.5 ±4.8 93.0 ±1.6 90.9 ±1.8 93.8 ±3.4 94.3 ±3.4 93.9 ±0.9 94.8 ±1.1

Insect 96.4 ±1.8 97.7 ±1.9 98.0 ±1.9 98.7 ±1.9 97.7 ±1.3 98.3 ±1.8 98.3 ±1.1 97.3 ±2.7

Bird 92.7 ±2.4 95.7 ±4.2 95.7 ±3.1 95.9 ±1.8 96.5 ±2.4 94.7 ±2.1 96.1 ±2.6 97.8 ±2.4

Alarm 95.2 ±2.2 96.8 ±1.0 96.6 ±1.5 97.8 ±1.6 99.4 ±0.8 99.1 ±1.2 98.8 ±0.6 99.4 ±0.8

Siren 85.8 ±4.8 91.9 ±4.7 91.1 ±3.1 91.5 ±2.9 93.4 ±3.3 93.7 ±4.1 95.7 ±1.7 92.8 ±2.3

Macro avg. 86.3 ±1.1 89.1 ±0.8 90.0 ±1.3 89.7 ±1.1 91.0 ±1.4 90.6 ±1.0 91.6 ±1.0 91.9 ±1.0

Weighted avg. 86.1 ±1.1 88.8 ±0.9 89.9 ±1.4 89.4 ±1.1 90.8 ±1.4 90.4 ±1.0 91.5 ±1.0 91.8 ±0.9

Table 4.12 – Recall resulted by the CRNN model for each configuration.

Recall (%)

Configuration 1 2 3 4 5 6 7 8

Bkg noise 88.6 ±4.1 93.5 ±2.1 89.1 ±2.5 92.7 ±3.7 88.6 ±2.4 89.8 ±3.6 93.2 ±1.8 91.3 ±3.7

Motorcycle 73.9 ±6.6 73.5 ±4.8 78.5 ±7.4 74.5 ±2.3 81.4 ±6.8 80.1 ±4.1 82.0 ±3.1 84.0 ±2.8

Car 77.9 ±4.1 79.0 ±7.1 81.7 ±4.4 81.1 ±1.8 79.1 ±3.4 81.4 ±5.2 82.6 ±5.7 78.2 ±3.4

HV (pass-by) 71.0 ±5.7 75.3 ±8.4 74.8 ±7.9 72.9 ±5.8 72.1 ±1.4 75.3 ±3.6 71.5 ±2.5 78.9 ±5.4

HV (idling) 97.8 ±0.8 98.4 ±1.4 97.8 ±1.6 96.8 ±1.7 97.5 ±1.6 98.4 ±1.0 96.2 ±1.9 97.5 ±2.6

Helicopter 84.7 ±4.1 80.9 ±6.6 84.6 ±1.5 84.0 ±5.0 89.7 ±4.0 84.3 ±5.5 90.0 ±5.2 90.3 ±2.3

Air conditioner 78.1 ±4.1 83.9 ±5.3 86.7 ±1.9 86.7 ±2.6 87.2 ±2.0 84.7 ±3.8 88.1 ±2.1 87.8 ±2.2

Const (non-imp) 87.8 ±2.9 91.2 ±1.4 93.6 ±2.9 92.9 ±2.5 94.4 ±2.4 94.1 ±1.2 94.4 ±2.7 92.9 ±1.8

Const (imp) 94.4 ±1.7 97.4 ±1.7 97.7 ±3.2 98.4 ±1.8 98.0 ±2.4 98.0 ±1.2 98.0 ±1.9 98.0 ±1.6

Rain 91.5 ±4.8 93.2 ±5.2 95.1 ±3.7 95.1 ±3.4 94.8 ±4.1 94.1 ±3.0 96.1 ±2.2 95.8 ±2.4

Voice 87.4 ±4.6 90.4 ±3.7 94.5 ±1.0 94.0 ±3.2 96.7 ±1.9 93.0 ±4.4 96.2 ±1.6 96.7 ±1.3

Music 79.9 ±4.0 85.1 ±2.7 85.9 ±4.5 83.7 ±5.8 91.3 ±4.6 91.0 ±3.9 92.7 ±3.3 94.0 ±2.4

Dog 80.8 ±3.9 85.0 ±2.8 87.8 ±1.8 88.3 ±3.6 90.3 ±2.9 90.0 ±1.6 89.7 ±1.7 90.3 ±4.1

Insect 96.0 ±3.7 97.7 ±2.5 97.0 ±2.6 97.3 ±1.7 97.0 ±1.9 96.0 ±2.5 97.0 ±2.0 96.0 ±1.7

Bird 90.6 ±1.9 95.0 ±3.4 93.7 ±4.3 94.6 ±4.3 94.7 ±3.5 95.6 ±2.5 93.7 ±4.6 94.3 ±3.8

Alarm 93.1 ±2.1 95.6 ±1.8 97.8 ±1.6 97.2 ±1.2 98.1 ±1.8 98.1 ±1.2 99.4 ±0.8 99.4 ±0.8

Siren 86.4 ±3.2 89.7 ±3.1 90.8 ±3.4 87.5 ±3.9 92.8 ±3.2 90.0 ±3.8 92.5 ±3.1 91.7 ±3.2

Macro avg. 85.9 ±1.2 88.5 ±1.1 89.8 ±1.5 89.3 ±1.2 90.8 ±1.5 90.2 ±1.1 91.4 ±1.2 91.6 ±0.9

Weighted avg. 85.6 ±1.2 88.4 ±1.0 89.7 ±1.4 89.2 ±1.2 90.7 ±1.5 90.1 ±1.1 91.3 ±1.2 91.5 ±1.0

dataset of vehicles with four classes: “Car”, “Motorcycle”, “Truck” and “No vehicle”,
where a CNN architecture was implemented for classification. The precision of each class
was 88%, 98%, 69%, and 100%, respectively. In a further investigation of the truck data,
they conducted a subjective test with humans. They analyzed the wrongly classified sam-
ples of trucks by both the Neural Network and the human subjects. It was discovered that
there was a correlation between the misclassifications: over 90% of the wrongly classified
truck samples by the human subjects were also misclassified by the Neural Network.
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Table 4.13 – F1-score resulted by the CRNN model for each configuration.

F1-score (%)

Configuration 1 2 3 4 5 6 7 8

Bkg noise 85.7 ±4.6 86.5 ±1.6 86.7 ±1.8 87.3 ±2.4 86.0 ±2.2 85.4 ±2.6 88.2 ±2.2 88.0 ±2.0

Motorcycle 74.4 ±4.4 76.2 ±3.1 77.5 ±4.4 77.4 ±3.9 78.9 ±5.6 81.6 ±4.3 80.7 ±1.9 83.2 ±1.9

Car 81.2 ±2.5 81.6 ±2.3 82.7 ±4.2 81.1 ±1.4 80.4 ±3.1 80.9 ±2.9 80.2 ±4.3 80.9 ±3.6

HV (pass-by) 71.1 ±3.5 73.3 ±2.6 75.6 ±4.8 72.4 ±3.2 73.9 ±2.6 74.4 ±2.5 73.3 ±3.0 75.5 ±3.4

HV (idling) 97.0 ±1.0 97.8 ±1.0 96.3 ±1.2 95.9 ±1.0 96.5 ±0.3 97.2 ±1.6 96.8 ±1.0 97.3 ±1.6

Helicopter 79.2 ±1.4 83.6 ±5.1 85.8 ±3.4 86.5 ±4.5 89.0 ±3.7 86.6 ±4.5 90.1 ±3.3 88.8 ±3.1

Air conditioner 81.7 ±1.7 84.4 ±2.0 87.8 ±2.0 85.1 ±2.1 87.2 ±1.9 85.8 ±2.2 89.4 ±0.6 89.4 ±1.1

Const (non-imp) 88.3 ±1.8 91.0 ±2.2 94.1 ±1.7 94.0 ±2.6 95.9 ±2.0 95.0 ±1.1 94.8 ±1.9 94.9 ±1.6

Const (imp) 93.2 ±0.9 96.0 ±1.5 95.7 ±1.7 96.9 ±0.6 96.8 ±1.4 96.6 ±1.3 97.1 ±1.2 97.5 ±1.5

Rain 92.5 ±2.4 93.6 ±2.4 94.8 ±2.9 96.3 ±2.3 95.4 ±2.3 95.2 ±1.3 97.0 ±1.1 96.7 ±0.6

Voice 86.6 ±3.4 90.0 ±2.8 92.2 ±1.9 90.4 ±1.7 95.3 ±2.0 93.0 ±2.5 96.0 ±2.1 95.8 ±1.5

Music 77.1 ±2.5 84.4 ±1.9 87.2 ±4.1 86.3 ±2.5 91.7 ±2.7 89.3 ±2.9 93.1 ±2.0 93.9 ±1.3

Dog 84.6 ±2.2 88.1 ±3.5 90.3 ±1.3 89.5 ±1.5 91.9 ±2.5 92.1 ±2.1 91.8 ±0.6 92.4 ±2.3

Insect 96.2 ±1.8 97.7 ±1.3 97.5 ±1.9 98.0 ±1.5 97.3 ±1.2 97.2 ±1.8 97.7 ±1.3 96.7 ±2.2

Bird 91.6 ±1.6 95.3 ±3.3 94.6 ±2.0 95.2 ±2.4 95.5 ±2.2 95.1 ±2.2 94.9 ±3.4 96.0 ±2.5

Alarm 94.2 ±1.8 96.2 ±1.2 97.2 ±1.4 97.5 ±1.1 98.7 ±1.1 98.6 ±0.9 99.1 ±0.3 99.4 ±0.6

Siren 86.1 ±3.7 90.8 ±3.4 91.0 ±3.2 89.5 ±3.4 93.0 ±2.7 91.7 ±1.3 94.0 ±1.7 92.2 ±1.6

Macro avg. 85.9 ±1.2 88.6 ±1.0 89.8 ±1.4 89.4 ±1.1 90.8 ±1.4 90.3 ±1.1 91.4 ±1.1 91.7 ±1.0

Weighted avg. 85.7 ±1.2 88.4 ±1.0 89.7 ±1.4 89.2 ±1.2 90.7 ±1.4 90.2 ±1.1 91.3 ±1.1 91.5 ±1.0

Figure 4.2 – Normalised confusion matrix resulted from using the CRNN model and the
configuration 8 (128 Mel bands, hop size of 512, and window length of 1024).

4.5 CRNN with data augmentation results

As an attempt to improve even further the model’s classification performance,
data augmentation techniques using signal modifications were applied to the dataset with
the aid of the Python library Audiomentations (JORDAL, 2022). The applied signal
modifications are as follows:
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• Gaussian noise addition: Adds Gaussian noise to the samples with a random
Signal-to-Noise Ratio (SNR) (SNR range: 10 dB to 35 dB) (p=0.8).

• Time stretch: Time stretches the signal without changing the pitch (rate range:
0.8 to 1.25) (p=0.5).

• Pitch shift: Pitch shifts the sound up or down without changing the tempo (semi-
tone range: -4 to 4) (p=0.5).

• Sample shift: Shifts the samples forward or backward with rollover (shift range:
-0.5 to 0.5) (p=0.5).

The modifications are applied to the training split. p is the probability of
executing the respective augmentation so that a single sample can undergo multiple mod-
ifications. A total of 4000 new samples were generated.

Another technique employed was audio mixing (VIDAÑA-VILA et al., 2021),
which involves summing audio waveforms or spectrograms to generate new samples. These
newly generated samples contain information from both source audios, and their label files
were created by aggregating the one-hot encoding values of the original samples. Before
mixing, waveforms were normalized to the same energy (RMS = 1) to ensure equal contri-
bution from each source. After mixing, the amplitude was normalized again. This modifi-
cation was applied to all data classes except for “Background noise”, as background noise
in urban classification typically needs to be detected without other prominent sounds.
Figure 4.3 demonstrates a schematic representation of the audio mixing process, using an
alarm (audio 1) and human voice (audio 2) as examples. The figure shows the waveform,
Mel spectrogram, and an example of one-hot encoding for each. Over 1000 new samples
were generated through this process. Source audios were randomly selected from the entire
dataset, allowing for any possible combination of sounds.

Five thousand new files were generated using all data augmentation techniques
comprising signal modification and audio mixing. These files were added to the training
dataset, in a total of 10864, approximately 1172 for testing and 9692 for training, each
run.

As discussed previously, the hybrid model CRNN obtained better results than
the CNN or RNN models. Therefore, this was the model chosen for this task using data
augmentation. The modifications were explicitly applied to configurations 5, 6, 7, and 8.
In Table 4.14, the accuracy with and without data augmentation is exhibited, with the
respective standard deviations and the result of the two-tailed t-test comparison.

Three models showed decreased performance, while one demonstrated improve-
ment. However, statistical analysis using a t-test revealed no significant differences in these
comparisons. Despite data augmentation techniques often being helpful in increasing reg-
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Figure 4.3 – Audio mixing scheme example.

Table 4.14 – Accuracy of the experiments using the CNN + RNN architecture and data
augmentation.

Configuration Accuracy without DA Accuracy with DA T-test
5 90.7 ± 1.49% 90.4 ± 1.26% (𝑡(8) = 0.226, 𝑝 = 0.827)
6 90.1 ± 1.09% 90.0 ± 1.31% (𝑡(8) = 0.140, 𝑝 = 0.892)
7 91.3 ± 1.15% 91.9 ± 0.84% (𝑡(8) = 0.860, 𝑝 = 0.415)
8 91.5 ± 0.95% 90.7 ± 1.16% (𝑡(8) = 1.020, 𝑝 = 0.338)

ularization and accuracy on various datasets, they did not prove effective for the dataset
used in this work when applied with the proposed signal processing method. Similar find-
ings are reported in the literature. Piczak (2015a) used random combinations of time
shifting, pitch shifting, and time stretching for data augmentation, reporting that “simple
augmentation techniques proved to be unsatisfactory for the UrbanSound8K dataset due
to the considerable increase in training time they generated and their negligible impact on
model accuracy”. Another study by Turskis et al. (2023) used data augmentation on the
ESC-50 and UrbanSound8K datasets. The results showed an improvement in the ESC-
50 dataset, while the UrbanSound8K dataset did not benefit and, in some cases, even
performed worse for both datasets.

4.6 Hierarchical CRNN results

A hierarchical classification approach was implemented in an attempt to in-
crease the performance in classes of lower frequencies. A “Local classifier per parent Node”
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model was chosen, which involves training a multi-class classifier for each parent node to
distinguish among its child nodes. The spectral centroid was chosen as the criteria for
dividing the dataset since it helps to define where most of the energy is localized in
the spectrum (GIANNAKOPOULOS; PIKRAKIS, 2014). For this reason, the spectral
centroid of each audio was calculated, and the average for each class is shown in Table
4.15.

Table 4.15 – List of classes ordered by spectral centroid.

Class Spectral centroid (Hz)
Background noise 126

Heavy vehicle (idling) 199
Heavy vehicle (pass-by) 312

Car 313
Motorcycle 530
Helicopter 529

Air conditioner 774
Music 789
Voice 821
Siren 936
Dog 1018

Construction noise (impact) 1018
Alarm 1761
Rain 1996

Construction noise (non-impact) 2335
Bird 3337

Insect 3479

According to the centroid results, it was chosen that from “Background noise”
to “Air conditioner” would be a group named “Low-frequency” and from “Music” to
“Insect” would be a “High-frequency” group. The division between these groups occurs
between “Air conditioner” and “Music”. This split was chosen due to the similarity of these
sound sources with their respective groups. “Air conditioner” shares more characteristics
with other machine-like sounds, such as vehicles, typically in the low-frequency range.
Conversely, “Music” resembles sounds like voices and dogs, which often include complex
patterns and modulations characteristic of higher-frequency sounds.

Under the light of these two groups, the hierarchical classification proceeds.
Firstly, a binary classifier identifies if the sample corresponds to the “Low-frequency”
or “High-frequency” groups. This model is named Model 1. Afterward, depending on the
result of the first classifier, the “Low-frequency” or “High-frequency” models are activated,
and both multi-class classifiers decide which is the final class the sample belongs to.
These models are named Model 1.1 and 1.2, respectively. Figure 4.4 depicts a schematic
representation of the used hierarchy.



Chapter 4. Results and discussion 70

Figure 4.4 – Schematic representation of the hierarchical classification model.

The architectures used for Model 1, 1.1, and 1.2 are the same CRNN model
presented in Section 3.4.4, the only difference is the output layer where Model 1 has 2
nodes, Model 1.1 has 7 nodes and Model 1.2 has 10 nodes, so they can adapt to the
correspondent number of classes. Table 4.16 shows the accuracy comparison between the
CRNN and the hierarchical models, using configurations 5, 6, 7, and 8, with the respective
standard deviations. The two-tailed t-test is presented in the same table, comparing the
original CRNN model and the new model using a hierarchical structure.

Table 4.16 – Accuracy comparison between the CRNN and the hierarchical model.

Configuration CRNN model acc. Hierarchical model acc. T-test
5 90.7 ± 1.49% 91.1 ± 0.84% (𝑡(8) = 0.516, 𝑝 = 0.620)
6 90.1 ± 1.09% 91.1 ± 0.71% (𝑡(8) = 1.484, 𝑝 = 0.176)
7 91.3 ± 1.15% 91.7 ± 0.89% (𝑡(8) = 0.586, 𝑝 = 0.574)
8 91.5 ± 0.95% 90.8 ± 1.00% (𝑡(8) = 0.986, 𝑝 = 0.353)

Models 5, 6, and 7 presented a rise in accuracy, and Model 8 a decrease.
However, the t-test also clarifies that the accuracy difference is not significant. Despite
being statically equivalent, the hierarchical model can be considered less efficient, requiring
much more computational effort than the smaller CRNN model.

A class-wise precision comparison between the hierarchical model and the
CRNN can be made using tables 4.17 and 4.11. Overall, it is not possible to point out



Chapter 4. Results and discussion 71

a significant difference between the models. Therefore, the confusion at low frequencies
persists at similar levels, even when using a specialized model for this frequency range.

Table 4.17 – Precision resulted by the hierarchical model for each configuration.

Precision (%)

Configuration 5 6 7 8

Bkg noise 84.2 ±3.8 84.5 ±5.2 82.1 ±1.7 81.9 ±4.4

Motorcycle 78.6 ±4.3 78.0 ±4.8 77.9 ±6.1 86.3 ±5.8

Car 87.1 ±1.9 82.8 ±3.8 85.8 ±5.8 81.6 ±4.1

HV (pass-by) 70.4 ±4.5 74.1 ±3.3 73.8 ±6.1 69.5 ±5.8

HV (idling) 92.9 ±3.3 95.7 ±2.4 95.3 ±2.9 93.6 ±3.2

Helicopter 87.6 ±2.6 86.5 ±4.1 91.2 ±4.3 85.6 ±6.1

Air conditioner 88.4 ±3.6 91.5 ±1.9 93.0 ±5.0 88.6 ±1.4

Const (non-imp) 96.4 ±1.9 96.9 ±2.5 98.3 ±1.8 96.4 ±2.5

Const (imp) 97.8 ±1.6 97.8 ±1.3 97.4 ±1.9 97.1 ±1.2

Rain 97.7 ±1.6 95.7 ±3.8 97.4 ±1.7 95.8 ±2.6

Voice 95.6 ±2.3 94.9 ±2.4 96.5 ±1.8 94.9 ±2.6

Music 95.7 ±2.9 93.5 ±2.7 93.5 ±2.3 96.0 ±1.7

Dog 93.8 ±2.2 95.4 ±2.1 95.5 ±1.5 95.4 ±1.6

Insect 98.4 ±1.5 97.0 ±1.9 97.7 ±1.3 97.4 ±2.1

Bird 96.4 ±2.8 97.2 ±0.6 97.5 ±1.3 96.8 ±1.7

Alarm 97.9 ±2.0 98.5 ±1.9 98.2 ±1.8 99.1 ±0.8

Siren 94.7 ±2.7 92.9 ±4.3 95.5 ±1.5 93.9 ±1.3

Macro avg. 91.4 ±0.7 91.3 ±0.5 92.2 ±0.9 91.2 ±1.0

Weighted avg. 91.3 ±0.7 91.2 ±0.6 92.0 ±0.8 91.0 ±1.0
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5 Conclusion

This work explored the construction of an audio dataset tailored for the Brazil-
ian soundscape in the city of São Paulo. Almost six thousand audio sample data dis-
tributed in 17 classes were collected comprising the main sound sources occurrences in
the city, from natural sounds to machinery. Afterward, the sound classification problem
using this dataset was tackled using machine learning and neural network architectures:
linear SVM, CNN, and RNN. As input, 8 configurations of different Log-Mel spectrogram
resolutions were processed.

The linear SVM model has clearly shown poorer performance than the neural
networks, proving that a non-linear model is necessary for this type of task. The RNN
(LSTM) model is a good improvement compared to a linear SVM for all resolutions
of Log-Mel spectrograms. In CNN, increasing the resolution did not mean an accuracy
improvement, considering that Configuration 3 performed best. The RNN (LSTM) model
performed worse than the CNN model in four of the configurations. However, the RNN
and CNN models exhibited similar performance in the remaining four configurations.
These results are consistent with the literature, where the CNN architecture is frequently
the most commonly used for sound classification tasks due to its performance.

A hybrid model approach using both CNN and RNN (LSTM) layers has shown
to be an important evolution for the sound classification task of this work. The CRNN
model has outperformed in all configurations over the previous CNN and RNN architec-
tures. Moreover, there is a clear trend of growth in accuracy when increasing the Log-Mel
spectrogram resolution, proving that capturing both spatial features and time relation-
ships within samples is essential for classification efficiency.

A class-wise analysis of the results showed similar observations for all models:
a difficulty in classifying the low-frequency machinery sound sources, especially vehicles,
as depicted in precision, recall, and f1-score. This is explained by the similarity of spectral
components and how they are generated. “Heavy vehicles (pass-by)” and “Motorcycle”
presented the worst results, in general. In contrast, high-frequency sounds of this dataset
contain much more unique patterns and are easily distinguishable, resulting in scores near
99% in classes such as “Alarm” and “Insect”.

The data augmentation techniques applied in this work have not shown signif-
icant evolution in the results for the dataset under study compared to the CRNN. Despite
being an important approach for regularization, preventing overfitting, and improving the
accuracy of a model, these results are not atypical and are occasionally described in the
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literature. So, it is important to be aware that this technique may not always guarantee
a better performance.

The last model improvement used a hierarchical classification, splitting the
dataset by its spectral centroid into two groups: low frequency and high frequency. The
idea of having a specialized network trained for each group has not shown improvement
compared to the CRNN results. Even for a class-wise comparison, the low-frequency
problem could not be sorted out using this approach, leading to the same errors throughout
the classes. The hierarchical model used in this work has not proven viable since it results
in the same performance using much more computational power.

5.1 Future work

Future research could further explore and enhance the findings of this study.
Some steps to be investigated in future research of this work include:

• Complete the full dataset: Expand the dataset by including the missing classes
and reevaluating the performance of the models could provide a more comprehensive
understanding of models’ capabilities and address gaps in the current dataset.

• Real-world applications: Analyze the performance for real-world applications
embedded in sound monitoring stations, so a huge amount of new unseen data is
gathered in several different conditions.

• Real-time classification: Investigate the performance of models for real-time clas-
sification and their cost-benefit considering power consumption and performance.

• Hybrid and ensemble models: Continue to develop and refine hybrid models,
such as combinations of CNN and RNN layers. Examples include dual stream input
for CNN and RNN, for instance (BAE et al., 2016). Additionally, investigate the
use of ensemble methods to potentially improve classification accuracy by combining
the strengths of multiple models.

• Multi-features input: Use other features simultaneously as input, such as wave-
forms and MFCCs (Mel-Frequency Cepstral Coefficients) to provide diverse repre-
sentations of the audio data and enhance the model’s ability to capture different
aspects of the sound.

• Human-model comparison: Further investigate the comparison between human
and model performance in distinguishing sounds. Some studies have shown that
humans also struggle to differentiate certain sounds that models find challenging
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(ASHHAD et al., 2023). Since models usually mimic the human hearing system,
it is natural they encounter similar difficulties, therefore, analyzing these similar-
ities could provide more insights about the models’ performances, and exploring
architectures beyond human capacity may be necessary.
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