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"If I have seen further, it is by standing on the shoulders of giants."
— Isaac Newton

Scientia potentia est: Knowledge is power.



Resumo

Na última década, o interesse emplantasmedicinais aumentou consideravelmente, tor-
nando o controle de qualidade de fitoterápicos ainda mais importante. Embora a Farmaco-
peia Brasileira já sugira métodos para o controle de qualidade de alguns fitoterápicos lista-
dos, essesmétodos não são isentos de limitações e geralmente se concentram emgrupos de
compostos ou compostos específicos. Dada a composição complexa das plantasmedicinais
e a o efeito sinérgico entre todos os seus compostos, uma metodologia mais holística seria
ideal para esse controle de qualidade.

Nesse contexto, a Metabolômica Untargeted oferece uma alternativa interessante, uma
vez que mede, simultaneamente, o máximo de metabólitos possível, sem focar em marca-
dores químicos específicos. No entanto, apesar de sua eficiência, a análise metabolômica
geralmente gera grandes quantidades de dados altamente complexos que exigem ferramen-
tas matemáticas, bioinformáticas e quimiométricas para processá-los e analisá-los.

Neste cenário, Machine Learning (ML) se destaca para dar suporte à análise e inter-
pretação de dados metabolômicos, bem como para processar grandes conjuntos de dados.
Portanto, o objetivo deste estudo foi desenvolver um método de controle de qualidade as-
sociando metabolômica e ML, focando nas espéciesM. ilicifolia eM. laevigata, conhecidas
popularmente como espinheira santa e guaco, respectivamente.

Para isso, 400 amostras deMaytenus ilicifolia eMikania. laevigata, cada, foramanalisadas
por Cromatografia Líquida de Ultra Alta Performance acoplada à espectrometria de massa
(UHPLC-MS) utilizando dois métodos analíticos distintos. Após a análise UHPLC-MS, os
dados foram processados seguindo o fluxo de trabalho de estudos metabolômicos.

Com esses dados, dois modelos de ML foram desenvolvidos para cada espécie "ofi-
cial"(M. ilicifolia e M. laevigata) para classificar se novas amostras seguem os padrões de
controle de qualidade e pertencemàs especies-alvo. Para construir osmodelos, três algorit-
mos foram testados: Support Vector Classification (SVC), K-Nearest Neighbours Classifier e
Random Forest. Durante treinamento domodelo, a seleção de features foi realizada usando
três métodos distintos: Mutual information,Recursive Feature Elimination e Boruta. Grid-
SearchCV foi aplicado para otimização dos hiperparâmetros e os algoritmos foram avaliados
usando o coeficiente de correlação de Matthews (MCC) e a métrica F1, tanto nas etapas de
validação cruzada quanto de teste.

Osmodelos finais obtidos apresentam valores deMCC de 94% e 97% para osmodelosM.
ilicifolia eM.laevigata respectivamente, comprovando o sucesso do método em identificar
e diferenciar as espécies ‘oficiais’ de suas contrapartes. Embora o presente trabalho apre-
sente limitações, a alternativa apresentada, que associa MetabolômicaUntargeted comML,
oferece uma maneira eficiente, confiável e econômica de abordar os desafios do controle
de qualidade de fitoterápicos.



Abstract

During the past decade, the interest in medicinal plants has increased significantly, en-
hancing the importance of quality control. Although the Brazilian Pharmacopoeia already
suggests methods for the quality control of regulated medicinal herbs, these methods of-
ten focus on specific compounds or groups of compounds. Given the complex composition
of medicinal plants and the synergistic effect between their compounds, a more holistic
methodology would be ideal for quality control.

In this context, Untargeted Metabolomics offers an interesting alternative, as it simul-
taneously measures as many metabolites as possible, without focusing on specific chemi-
cal markers. However, despite its efficiency, metabolomic analysis usually generates large
amounts of highly complex data that demand mathematical, bioinformatic, and chemo-
metric tools to process and analyze them.

Herein lies the potential of Machine Learning (ML) to support analysis and interpreta-
tion of metabolomics data as well as to process large datasets. Therefore, the purpose of
this study was to develop a quality control method that associates metabolomics and ma-
chine learning, focusing on two important brazilian medicinal species, Maytenus ilicifolia
andMikania laevigata, popularly known as “espinheira-santa” and “guaco”, respectively.

To this end, 400 samples of Maytenus ilicifolia and Mikania laevigata each, were ana-
lyzed by Ultra High-Performance Liquid Chromatography coupled withmass spectrometry
(UHPLC-MS) using two different analytical methods along with their counterparts. After
UHPLC-MS analysis, the data were processed following the metabolomics workflow.

With such data, two machine learning models were developed for each ‘official’ species
(Maytenus ilicifolia andMikania laevigata) to classify if new samples follow quality control
standards. To build the models, three algorithms were tested: Support Vector Classifica-
tion (SVC), K-Nearest-Neighbors Classifier (KNN), and Random Forest (RF). In addition to
model training, feature selection was performed using three distinct methods: Mutual in-
formation, Recursive Feature Elimination, and Boruta. The GridSearchCV was applied to
find the optimal hiperparameter space and the algorithms were evaluated using Matthews
correlation coefficient (MCC) and the F1 score, both at the cross-validation and testing steps.

The final models obtained present high MCC scores of 94% and 97% for the M. ilici-
folia and M. laevigata models respectively, proving the success of the method in identify-
ing and differentiating the ‘official’ species from their counterparts. Although the present
work presents limitations, the alternative presented herein, which associates Untargeted
MetabolomicswithMachine Learning, offers an efficient, trustworthy, and economical way
to approach the challenges of quality control of herbal medicine.
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1 Introduction

1.1 Quality control of herbal medicines

In the past decade, the interest in medicinal plants has significantly increased and the
global market for herbal drugs reflected this phenomenon. In 2019 the market was worth over
US$ 83 billion partially driven by the coronavirus (COVID-19) pandemic, when there was an
increased demand for immune-boosting herbal products (Ng et al., 2023). By 2030, this market
is expected to reach US$ 550 billion, at a compound annual growth rate of 18.9% according to
insightSLICE (insightSLICE, 2021; Ng et al., 2023).

Due to this increase, the quality assessment of medicinal plants is even more necessary as
the lack of regulation of these products may result in adverse effects caused by poor quality,
adulteration, and contamination of the herbal drug. Therefore, efficient quality control meth-
ods should be in place in every country where herbal medicines are used and regulated, which
is the case for Brazil (World Health Organization, 2004).

In this regard, the Brazilian Pharmacopoeia already presents instructions for the quality
control of regulated medicinal herbs with the use of methods such as Thin Layer Chromatog-
raphy (TLC) and Total Phenolic, Flavonoid, and Tannin Contents (ANVISA, 2019). Such meth-
ods, however, present many limitations and usually focus on specific compounds or groups of
compounds.

ThinLayerChromatography, for example, is commonly used for an initial semi-quantitative
evaluation (Liang et al., 2004) and even the most advanced techniques present low sensitivity
(Loescher et al., 2014). Moreover, TLC methods also require a pre-purification step that can
result in the loss of some constituents (Gilard et al., 2010).

Similarly, Total Phenolic, Flavonoid and Tannin Content are alsomethodswith low sensitiv-
ity and specificity, as different species can present similar results by such techniques (Games,
2010). Additionally, the results from such methods can also be influenced depending on the
presence of other interfering classes of compounds (Sánchez-Rangel et al., 2013).

Furthermore, medicinal plants present a complex composition, and their pharmacologi-
cal activity is usually derived from a combined effect between many components (Rasoanaivo
et al., 2011). According to Gilbert e Alves (2003), for some species, it is often observed that the
isolated substances are less active than when presented in the mixture of the plant extract. In
the psychotherapeutic field for example, isolated compounds from Rauwolfia serpentina, Hy-
pericum perforatum, and Passiflora incarnata did not reproduce the activity observed from the
crude extracts of the plants.

In addition to this, multiple studies demonstrated that the chemical composition of plants
changes in response to environmental events (Flück, 1955; Qaderi et al., 2023). These changes
are related to the plant acclimation and defense against such abiotic environmental stresses
which can increase or decrease the amounts of primary and secondary metabolites within the
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plants (Qaderi et al., 2023).

Anthocyanins, for instance, are produced at a higher rate under multiple stresses such as
increased UVB exposure, heat stress, drought stress, nutrient deficiency, etc. (Wahid, 2007).
Terpenoids, on the other hand, can increase during stress-induced stomatal closure, such as
drought and heat stress (Singsaas, 2000). Glucosinolates, glycosides, and alkaloids have been
shown to increase after cold stress while heat stress presented the opposite effect (Qaderi et al.,
2023).

Therefore, since herbal medicine’s activity is usually more efficient when considering the
total composition of the extract, applying a quality control method that focuses on isolated
compounds might not be ideal. Additionally, this composition might also change depending
on the climate, and with that, the prevalence of given chemical markers.

Therefore, analyzing the whole composition and the combination of substances might
be more accurate to ensure the quality and efficiency of herbal medicines. In this regard,
quality control methods that apply a more holistic methodology are ideal and Untargeted
Metabolomics is an interesting approach to achieve this goal (Lee et al., 2017).

1.2 Metabolomics

Metabolomics is an emerging ‘omics’ field that aims to identify and quantify small
molecules known as metabolites in cells, tissues, or fluids of different species (Lee et al., 2017;
Liebal et al., 2020). These small molecules are the by-products of metabolism, which, for the
plant kingdom, can be divided into primary and secondary metabolism.

Primary metabolism is involved in a plant’s fundamental processes such as growth, de-
velopment, and reproduction and it is mostly formed by carbohydrates, lipids, and proteins.
In consequence, primary metabolism is highly conserved among plant species. Secondary
metabolism, on theotherhand, is composedof a larger variety ofmetabolites, usually responsi-
ble for the plant’s response to the environment. For this reason, different plant species present
differences in their secondarymetabolism, which is often used as a ‘fingerprint’ to identify the
species (van Dam e van der Meijden, 2011).

According to Okada et al. (2010), in plant science, metabolomics is an effective approach
to analyze the diversity of chemical compounds contained in plant cells. For medicinal plant
research specifically, metabolomics has been widely used to evaluate and discriminate species
and samples based on their metabolic profile, fingerprint, and even chemical markers (Okada
et al., 2010).

Morad et al. (2023) for example, studied the effects and metabolic profile of Calotropis pro-
cera and Atriplex halimus, two medicinal plants commonly found in different areas of Africa,
Asia, and the Mediterranean regions. In this study, thanks to the application of metabolomics,
118 metabolites were identified that have been linked to multiple medicinal effects, such as
anti-diabetic, antioxidant, and anticarcinogenic activity. As a result, these species can now be
considered for future studies as a source of molecules for the treatment of medical conditions
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related to such effects.

Another study, by Zanatta et al. (2023), leveraged mass spectrometry and nuclear magnetic
resonance spectroscopy techniques for themetabolic analysis ofTerminalia catappa, a Brazilian
medicinal species. In the study, the authors were able to characterize the metabolic profile of
this plant aswell as understand how seasonal variation and environmental conditions interfere
with its metabolic production. By usingmetabolomics, this study helped establish appropriate
quality criteria for the standardization of this herbal medicine.

With similar approaches, previous studies from our research group also leveraged the
power of metabolomics to aid the quality control of medicinal species. Mokochinski et al.
(2018), for example, usedmetabolomics to analyze samples of Eucalyptus species and detected
88 polar primary metabolites and 625 semi-polar secondary metabolites. Additionally, the
study was able to detect that soluble sugars and polyphenols were affected by different tem-
perature regimes. This information will also help standardize the quality control for herbal
medicines based on Eucalyptus samples.

Additionally, Galbiatti et al. (2021), also with the aid of metabolomics techniques, detected
changes in the chemical composition of Plectranthus neochilus (Coleus neochilus) that coincided
with environmental changes. Their study was the first attempt to correlate metabolic changes
and environmental factors for this species and it was a first step toward a better quality control
of this herbal medicine.

These studies used a specific type of metabolomic technique called untargeted
metabolomics. Usually, metabolomics studies can be separated based on two distinct
approaches: targeted and untargetedmetabolomics. The targeted approach aims to measure a
specific set of metabolites, typically focusing on one or more pathways of interest. Untargeted
metabolomics, on the other hand, aims to simultaneously measure as many metabolites as
possible, without focusing on specific compounds or groups of compounds (Patti et al., 2012).

In both approaches, the most popular analytical method is Mass Spectrometry (MS)
due to its high sensitivity, selectivity, and throughput (Dunn e Ellis, 2005). For untargeted
metabolomics, mass spectrometry is usually associated with Liquid Chromatography (LC-MS),
as it allows the detection of thousands of peaks from biological samples, covering a wide range
of compounds (Commisso et al., 2013; Kenny et al., 2005; Patti et al., 2012). For such reason,
over the past decades, LC-MS has been applied in the analysis of herbalmedicines (Liang et al.,
2004) and it is ideal for the quality control of such products.

However, despite its efficiency, metabolomic analysis usually generates large amounts of
highly complex data (Liebal et al., 2020). This data can contain hundreds or thousands of data
points and, therefore, high-performancemathematical, bioinformatic, and chemometric tools
are essential to process and analyze the data (Kenny et al., 2005; Alonso et al., 2015). In this
regard, Machine Learning could offer great support to the Metabolomics field (Liebal et al.,
2020).
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1.3 Machine learning and its applications

Machine Learning (ML) is a subfield of Artificial Intelligence and, according to Géron
(2019), can be defined as "the science and art of programming computers so they can learn
from data”. ML approaches learn from data to identify patterns and relationships and achieve
a predictive analysis (Tian et al., 2018). The ML methods are commonly divided into two cate-
gories: supervised learning and unsupervised learning.

In supervised learning the goal is to create a regressor (for continuous outputs) or classifier
(for discrete outputs) froma ‘training’ dataset andapply it to a ‘test’ set, to verify its performance
(Zhang, 2020). Unsupervised learning, on the other hand, consists of exploring patterns in an
unlabeled dataset using clustering approaches and/or multidimensional projections. The goal
is to find the patterns on its own, in order to separate the data (Zhang, 2020).

The development of a supervised learningmodel typically beginswith framing the problem
and selecting an appropriate performance metric. This metric is chosen based on the model
type (regressor or classifier), the problem being addressed, and the data configuration (bal-
anced or imbalanced). Following these initial steps, data is gathered and split into training and
testing sets.

This data split is performed to evaluate a model’s performance. One possible way to eval-
uate a model involves deploying the model on real-world data and checking its predictions.
However, if themodel performs poorly, the results may be unreliable and potentially problem-
atic. Therefore, an alternative approach involves dividing the initial dataset into training and
testing sets.

The training set is used to train the model, while the testing set evaluates its performance
bymeasuring the prediction error rate, known as the generalization error. This error provides
insight into how the model might perform on unseen data.

During model training, various parameter values within the algorithm can be tested. How-
ever, training and testing the model multiple times with different parameter values can lead to
the model ’memorizing’ patterns specific to the train-test split, known as ’overfitting’. To solve
this problem, a method called ’Cross-validation’ can be used.

Cross-validation is performed by dividing the training set into complementary subsets,
training the model on different combinations, and testing it on the remaining subsets. The
best-performing model is then retrained on the full training set and tested on the test set to
assess its generalization error. Figure 1 illustrates this development cycle.

Currently, ML is already being applied alongside metabolomics and chemometrics but it
is mainly limited to the preliminary stages of the analysis. The most well-known and used
algorithms, in this case, are hierarchical clustering analysis (HCA) and principal component
analysis (PCA), both unsupervised learning methods (Nazarenko et al., 2019).

The applications of machine learning along with plant metabolomics, however, are still
new. Few studies were developed on this subject and the application of ML for quality control
of medicinal plants is even scarcer. The studies either focus on chemical markers or species
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Figure 1: Machine Learning model development cycle
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identification (Kharyuk et al., 2018; Li et al., 2020; Nazarenko et al., 2016) or do not apply LC-MS
methods (Ramírez-Meraz et al., 2020).

Kharyuk et al. (2018), for example, applied LC-MS fingerprinting and ML to help identify
74 medicinal species. In their study, only one ML model and LC-MS methods were created to
classify all samples. The drawback of their solution is that due to the diversity ofmetabolites in
all 74 samples, creating one LC-MSmethod that detects all metabolites properly is a challenge.

Although the authors achieved a high accuracy score on the models, from 68% above, de-
pending on the approach and algorithm, subtle differences between samples caused misclas-
sification. The pairs Bidens tripartita - Anethum graveolens and Aerva lanata - Salvia officinalis,
which were even from different families, demonstrated very similar chemical profiles on their
LC-MS method, which resulted in poor classification scores by the machine learning model,
that consistentlymistook the samples in the pairs (up to 30% for some of the tested algorithms)
(Kharyuk et al., 2018).

According to Srirama et al. (2017), there are herbalmedicines adulteration practices, which
only recently have been revealed by the use of ‘omics’ techniques such as metabolomics. In
some African countries, for example, adulterated herbal drugs were up to 80% of the total mar-
ket, due to misidentification or species substitution.

Therefore, effective quality control techniques must be developed, especially for cases of
chemical andmorphological similarities between two species. For this reason, amodel like the
one developed byKharyuk et al. (2018) would not be enough for the quality control ofmedicinal
plants, since it could present low scores for samples with similar compositions but different
biological effects.

Another study by the same research group also applied Metabolomics and ML to iden-
tify plant species, but the drawbacks of this study are similar to the previous one. In this
study, 36 species were analyzed via UHPLC-MS, and three algorithms were trained with the
metabolomics data obtained: logistic regression (LR), support vector machine (SVM), and ran-
dom forest (RF) (Nazarenko et al., 2016).

This study also achieved high accuracy scores of around 95% for most of the algorithms
tested, but similarly to the previous study, only onemodel was trained to classify all 36 species.
As the authors state, the next step of their work would be to test the applicability of their ap-
proach on a much larger number of species. However, as mentioned before, to achieve this
goal, a universal UHPLC-MS method would need to be developed, capable of detecting and
ionizing hundreds of metabolites present in a diverse set of samples, which is a challenging
feat.

Therefore, even for those studies that applied LC-MS techniques along with ML classifica-
tion algorithms, further research is necessary to verify their applicability to quality control
processes, which demand techniques with higher sensitivity. Furthermore, at the moment, no
attempt has been made to improve the quality control of Brazilian herbal medicines applying
such methods.
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1.4 Brazilianmedicinal plants

In this regard, two important Brazilianmedicinal species widely used by the population are
Maytenus ilicifolia and Mikania laevigata popularly known as “espinheira-santa” and “guaco”,
respectively. Both species are included in the Brazilian Phytotherapy Formulary and clear in-
structions for their quality control are provided in the Brazilian Pharmacopoeia (ANVISA, 2019,
2021).

Maytenus ilicifolia Mart. ex Reiss, from the Celastraceae family, is popularly used due to its
gastroprotective and antiulcerogenic effects (Ferreira et al., 2004; Gonzalez et al., 2001; Souza-
Formigoni et al., 1991). The general population, however, occasionally substitutes this species
with Maytenus aquifolium Mart., from the same family, possibly due to misidentification or
intentional substitution (Santos-Oliveira et al., 2009).

Both plants, however, present some differences in their activity and composition. Accord-
ing to the Brazilian Pharmacopeia, “espinheira santa” samples should present at least 2.8 mg
of epicatechin per gram of dried leaves. However, according to Duarte et al. (2022),Maytenus
aquifolium, presented low amounts of epicatechin, which did not meet the quality control re-
quirements and did not present significant amounts of catechin. M. ilicifolia samples, on the
other hand, presented significant amounts of both catechin and epicatechin, which surpassed
the minimum requirement of the Brazilian Pharmacopeia. Therefore, such differences point
to the crucial need for the correct identification of the species (Antunes et al., 2019).

In terms of morphology, both species occur as large shrubs or trees, with glabrous leaves,
and serrated margins with thorns that can vary in size. The main difference between M. ili-
cifolia and M. aquifolium is that the first usually reaches a maximum height of 5 meters, has
monospermic fruits, and has larger marginal thorns on the leaves. In comparison, the second
has a maximum height of 12 meters, presents dispermic fruits, and slightly smaller marginal
thorns on the leaves (Reis, 2004). When the leaves are separated from the rest of the plant this
difference is harder to detect, which could be one reason behind the substitution practiced by
the general population, as shown in the Figure 2.

Mikania laevigata Sch. Bip ex Baker, and another similar species called Mikania glomer-
ata Spreng., both from the Asteraceae family, are popularly used for the treatment of asthma,
bronchitis, and cough (Borghi et al., 2023; de Lazzari Almeida et al., 2017b; Ueno e Sawaya,
2019). Both species present multiple morphological and anatomical similarities and therefore,
are also frequently used without distinction by the population, as with the Maytenus species.
(de Lazzari Almeida et al., 2017b; Ueno e Sawaya, 2019).

M. laevigata leaves are around 79.8 - 95.5mmlong, described as petiolate, oblong-lanceolate,
glabrous, and coriaceous with entire margins and occasional lobes. In contrast, the leaves of
M. glomerata are described as 29 - 69 mm long, oval lanceolate to deltoid with lobed margins,
presenting four lobes that differentiate its leaves from those of its counterpart species. If cul-
tivated in shaded environments, however, both species frequently present similar leaves and
become indistinguishable. See Figure 3 below (Costa et al., 2018).

Additionally, both species also present differences in their composition, especially related
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Figure 2: A-B:M. ilicifolia leaf and whole plant, respectively. C-D:M. aquifolium leaf and whole
plant, respectively.

Figure 3: A-B:M. glomerata leaf and whole plant, respectively. C-D:M. laevigata leaf and whole
plant, respectively.
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to the presence of coumarin, the chemical marker of ‘guaco’. According to Melo e Sawaya
(2015), M. laevigata presents significant amounts of coumarin, while M. glomerata produces
a higher level of caffeoylquinic acids and practically no coumarin. Therefore, in a similar case
to that of the Maytenus species, bothM. laevigata andM. glomerata need to be efficiently iden-
tified and clear quality control methods need to be applied to differentiate samples of both
species.

Given the importance of “espinheira-santa” and “guaco” in Brazil’s primary healthcare, both
have been included in Brazil’s reference list of medicine provided to the general population
(da Saúde, 2009). This reinforces the critical need and increased interest to ensure the quality of
herbal medicines derived from these species. Additionally, as substitutes for bothM. ilicifolia
and M. laevigata are often used interchangeably, the need for efficient and sensitive quality
control methods is further emphasized.

Therefore, using both species asmodels for a proof-of-concept, this study aimed to develop
a quality control method that associates metabolomics and machine learning. For this, M.
ilicifolia and M. laevigata were used as target species while their respective counterparts, M.
aquifolium and M. glomerata, were part of the negative class, to ensure the method would be
able to differentiate similar samples.

All samples were analyzed via Ultra High-Performance Liquid Chromatography cou-
pled with Mass Spectrometry (UPLC-MS). The resulting data, after properly processed by
Metabolomics methods, served as a training set for two Machine Learning algorithms, one for
each ‘official’ species.

The final models obtained present high MCC scores of 94% and 97%, respectively, for the
M. ilicifolia andM. laevigatamodels, proving the success of the method in identifying and dif-
ferentiating the ‘official’ species from their counterparts. Even though the present work has
limitations, the alternative presented herein, which associates Untargeted Metabolomics with
Machine Learning, offers an economical and more modern way to approach the challenges of
quality control of herbal medicines.

1.5 Objectives

The primary objective of this study is to develop a robust quality control method for Brazil-
ian medicinal plants by integrating untargeted metabolomics with machine learning. Specifi-
cally, the study aims to ensure the accurate identification and differentiation ofMaytenus ilici-
folia andMikania laevigata from their commonly used counterparts,Maytenus aquifolium and
Mikania glomerata, respectively. This approach seeks to address the limitations of current qual-
ity control methods that focus on isolated compounds and are often insensitive to the complex
chemical compositions of medicinal plants.

1.6 Research Question

The main research question that this work aims to answer is: How can untargeted
metabolomics be combined with machine learning to improve the quality control of Brazilian
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medicinal plants, specifically Maytenus ilicifolia and Mikania laevigata, and accurately distin-
guish them from their similar species,Maytenus aquifolium, andMikania glomerata?

1.7 Contributions

We summarize the main contributions of this study as follows:

1. We introduce a novel integration of untargeted metabolomics and machine learning for
the quality control of Brazilianmedicinal plants, addressing the limitations of traditional
methods.

2. We provide a practical quality control framework for twowidely used Brazilianmedicinal
plants, with MCC scores of 94% and 97% forM. ilicifolia andM. aquifolium, respectively,
demonstrating the effectiveness of machine learning in distinguishing between target
samples.

3. We reveal that the most important features for classification are not necessarily the tra-
ditional chemical markers, proving that focusing solely on these compounds is ineffi-
cient for quality control. This highlights the advantageof usinguntargetedmetabolomics,
which captures a broader range of metabolites and provides a more holistic view of the
sample’s chemical composition.

1.8 Outline

The remainder of this text is structured as follows:
In the Material and Methods section we describe the samples, equipment and tool used to

create the quality controlmethods for both target species. In the Results and Discussionwe de-
scribe the development cycle of bothmodels which started with theMetabolomics Experiment
and XCMS parameter optimization and preprocessing. After data treatment, the Exploratory
Data Analysis was performed only on the train set, and the first baselinemodel was performed,
described on the First Model Evaluation section.

All further steps taken to achieve thefinalmodelswere performedbased on the conclusions
of the previous steps and the evaluation of previous scores. The baseline model, for example,
demonstrated suspiciously high scores, whichmotivated the further separation of the train set
into train and validation sets, before theXCMSpreprocessing. Data Leakage Prevention section
describes the steps performed to avoid this issue.

Afterwards, the models were fine-tuned using GridsearchCV, described in Model Tuning
with GridSearchCV section. The scores obtained were still suspiciously high, therefore, in sec-
tion "Incorporating further data", further data was incorporated into the Maytenus model, by
using samples collected and analyzed previously by the research group. The hypothesis was
that themodelwas over-adjusting to the specific equipment conditions of the samples obtained
and analyzed during the development of this work.

After evaluating bothmodels, the next steps were Normalization of the feature’s relative in-
tensities , Feature Selection and testing theModel Robustness and ValidationMethods. Finally,
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the models were trained once more and the best-performing models for each target species
were selected, tested and analyzed, to obtain the most important features on each model (sec-
tions Final Model, Final Model Testing, and Final Model Analysis)

The final Machine Learning Application Proof-of-concept section, described the machine
learning application that was created to demonstrate how these models could be used without
the need to install and configure a systembyunfamiliar andnon-technical users, withoutmuch
programming expertise.
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2 Material andMethods

2.1 Experimental design and sample extraction

Maytenus ilicifolia,Maytenus aquifolium,Mikania glomerata andMikania laevigata leaf sam-
ples used in this studywere obtained from the Pluridisciplinary Center for Chemical, Biological
and Agricultural Research (CPQBA). In total, 600 leaf samples from 600 different plant individ-
uals were collected, of which 200 belonged toM. ilicifolia andM. laevigata each, and 100 were
collected fromM. aquifolium andM. glomerata, each. The samples were collected in Septem-
ber and December of 2021 and after harvest, the samples were frozen at -80ºC, lyophilized, and
ground.

Additional data used on M. ilicifolia model training was also obtained from samples har-
vested at CPQBA during a previous study from the research group. These samples were har-
vested during a year from November 2016 to October 2017, being collected once per month. In
total, 60 samples were harvested fromM. ilicifolia andM. aquifolium specimens, each. These
samples were also frozen at -80ºC, lyophilized, and ground and were kept in storage for around
5 years, before extraction for the present study (Antunes et al., 2019).

Table 1 demonstrates how the samples were separated for each experiment. Samples from
the negative class on each model were obtained from the same individuals in the other model.
For example: For the Maytenus model, as observed, 50 samples belonged toM. laevigata. The
plant individuals that provided these samples were also harvested to create theMikaniamodel.
Thiswas done due to logistics and the availability of driedmaterials, whichwas enough to cover
both models.

Table 1: Experiment design, specifying the amount of samples separated for each algorithm
and each group.

Maytenus algorithm Mikania algorithm
Species Number of samples Species Number of samples
Maytenus ilicifolia 260 Mikania laevigata 200
Maytenus aquifolium 160 Mikania glomerata 100
Mikania laevigata 50 Maytenus ilicifolia 50
Mikania glomerata 50 Maytenus aquifolium 50

As the project aimed to create oneMLmodel for each ‘target’ species, two extractionmeth-
ods were performed, one for theM. ilicifoliamodel and another for theM. laevigatamodel. All
samples in each experiment were extracted by their respective method.

The Brazilian Phytotherapy Formulary and previous studies were used for sample extrac-
tion as references. As stated in the Formulary, M. ilicifolia is used in the form of herbal tea
(ANVISA, 2019), therefore, for theM. ilicifoliamodel, the samples were extracted using water,
in a proportion previously defined in other studies. The extract was carried out using 2 mg of
freeze-dried ground leaves and 1 mL Milli-Q purified water in an ultrasonic bath for 30 min at
20 ◦C (Antunes et al., 2019, 2020).

For theM. laevigatamodel, as the Formulary preconizes its use as a hydroethanolic tincture,
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the samples were extracted using 70% ethanol (v/v). The extraction procedure was also carried
out following a method previously determined in the research group, in which 3 mg of dried
plant powder was extracted using 1mL of 70% ethanol (v/v), also assisted by an ultrasonic bath,
for 30 min, then centrifuged at 13,000× g for 5 min (Borghi et al., 2020).

2.2 Metabolomic analysis

Two untargeted metabolomic experiments were carried out, one for each of the target
species. The first analysis was performed with M. ilicifolia (200 samples), M. aquifolium (100
samples),M. laevigata, andM. glomerata (50 samples each). The second analysiswas performed
withM. laevigata (200 samples),M. glomerata (100 samples),M. ilicifolia, andM. aquifolium (50
samples each). All samples were analyzed in triplicate.

For both experiments, two types of quality control samples (QC) were used to track instru-
ment and extraction variations in the analysis. The first type of QC sample was created bymix-
ing 2mg of each dried sample, within each experiment, resulting in two pools of dried samples
that were, later, used to create 57 other QC samples by also weighing 2 mg of such pool and
extracting it according to each experiment. The secondmethod was to extract 10 µL from each
extract creating one single sample that was analyzed at regular intervals of every 66 samples,
resulting in 19 injections, also within each experiment.

Both analyses were carried out using an Ultra-High-Performance Liquid Chromatographer
(UPLC® Acquity from Waters) coupled with a TQD Acquity mass spectrometer, with an ESI
source. The analytical column was a C18 BEH Acquity Waters (1,7 µm × 2,1 mm × 50 mm),
with an oven temperature of 30ºC. The chromatographic methods applied were optimized in
previous studies (Antunes et al., 2019, 2020; de Lazzari Almeida et al., 2017c). The solvents used
were purified water with 0.1% of formic acid (A) and acetonitrile (B).

ForM. ilicifolia analysis, the gradient beganwith 95%A and 5%B, ramping to 7%A and 25%
B in 4 min, 50% A and 50% B in 6.10 min, 1% A and 99% B in 6.20 min, returning to 95% A and
5% B in 8.50 min, stabilizing until 10 min, at 200 µL/min flow rate. For M. laevigata analysis,
the gradient started with 90% A and 10% B, ramping to 75% A and 25% B in 4 min, 0% A and
100% B in 8 min, and returning to 90% A and 10% B in 8.51, stabilizing until 10 min, also at 200
µL/min flow rate.

The mass spectra for both analyses were acquired with electrospray ionization at negative
mode (ESI-), at full scan, with the following conditions: capillary at 3.00 kV, cone at 35 V, extrac-
tor at 1 V, source temperature at 150 ◦C, and desolvation temperature at 300 ◦C. The QC samples
were also analyzed at regular intervals throughout the LC-MS analysis, with other samples ran-
domized and analyzed in triplicate, for both experiments.

2.3 Data processing and feature extraction

After the metabolomic analysis, the data processing and feature extraction steps were car-
ried out. First, the rawdata (.raw)was converted intomzXML format (Pedrioli et al., 2004) using
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msconvert (Chambers et al., 2012). Subsequently, the fileswere separated into train, validation,
and test folders using the Python split-folders library (0.5.1, Python version 3.9.7).

For theM. ilicifoliamodel, samples acquired during a previous study were also divided into
train, validation, and test folders and included in the experimentation. The samples were ac-
quired using the same LC-MS and extraction methods but the acquisition occurred at the end
of 2017. The conversion of these files to mzXML was done using the same msconvert code.

Next, using only the training samples, the parameters for data extraction were optimized
using the R package IPO (1.14.0, R version 4.0.5) (Libiseller et al., 2015). The optimization was
done separately for each model.

Finally, the data was processed using the xcms and CAMERA R packages (3.10.1, 1.44.0, R
version 4.0.5), using their respective optimized parameters (Smith et al., 2006; Kuhl et al., 2012).
The preprocessing generated a table of mass feature intensity, with retention time and m/z
values for each sample analyzed. The code used for file conversion, IPO, and xcms steps is
available in the Supplementary Material section.

2.4 Algorithm selection andmodel construction

Before the algorithm selection and model construction, an initial exploratory analysis was
performed with the tabular data obtained by the XCMS preprocessing. For this, both R and
Python languages were used, with their respective packages and libraries. The code for all
exploratory analyses is also available in the Supplementary Material section.

For theMLmodel construction, all the experiments were implemented in Python program-
ming languageusing the scikit-learnpackage (version 1.3.2). The experiments followed a super-
vised approach, where the goal was to classify the samples asM. ilicifolia andM. laevigata, in
comparison to their counterpartsM. aquifolium, andM. glomerata. Well-known classification
algorithmswereused: SupportVectorClassification(SVC), K-NearestNeighboursClassifier, and
Random Forest (Pisner e Schnyer, 2020; Steinbach e Tan, 2009; Cutler et al., 2012).

Along with model training feature selection was performed using three distinct methods:
Mutual Information, Recursive Feature Elimination, and Boruta. Additionally, the data was
normalized using the Normalized method of the scikit-learn package. Finally, to aid the se-
lection of the best hyperparameter settings and feature selection method for each algorithm
and determine the best model, GridSearchCV was used along with inter-dataset validation and
intra-dataset validation.

To verify themodels performedwithin the GridsearchCV, a validation curve was plotted for
each hyperparameter tested. This allowed tracking the impact of each hyperparameter on the
models and determine when to stop the experimentation.

The algorithm performance was measured by the Matthews correlation coefficient (MCC)
and the F1 score, both during the cross-validation and testing steps. The MCC score measures
the quality of binary and multiclass classification and considers true and false positives and
negatives. The MCC score ranges from -1 to 1 in which 1 is a perfect prediction, 0 is an average
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random prediction, and -1 is an inverse prediction. MCC score is unaffected by the unbalanced
datasets issue and is defined as follows:

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)
, (1)

where TP is True Positives, FP False Positives, TN True Negatives, and FN False Negatives,
obtained from a confusion matrix.

The F1 score is given by the harmonic mean of the precision and the recall with equal
weights (importance) for both metrics, ranging from 0 to 1. The formula for the F1 score is:

F1 =
2 · TP

2 · TP + FP + FN
. (2)

2.5 Application

With the final ML models for each species, a web application was developed using the
Streamlit framework. Streamlit is an open-source Python library that permits the creation of
web applications for machine learning and data science.

The application architecture was designed to encapsulate the entire process after the file
conversion to mzXML. The goal was to serve as a proof-of-concept and user-friendly interface
to perform the quality control ofM. ilicifolia andM. laevigata. It performs various preprocess-
ing steps on mzXML files and returns the probability of a given sample being from one of the
‘target’ species. The user does not need to run any code and all the necessary configurations,
processing steps frommetabolomics, and data preparation for themachine learningmodel are
done on the “back-end”.

The core components of the application include target species selection, data uploading,
Metabolomics preprocessing, data preparation for the machine learning model, and sample
classification.

The application was deployed on a cloud-based server on Streamlit itself, ensuring accessi-
bility from any device with an internet connection. This allows users to easily interact with the
application and obtain classification results without requiring local installations of complex
software or programming knowledge.

2.6 Data availability

All the code is available at https://github.com/ElisaRMA/ML_metabolomics

and the repository for the application is at https://github.com/ElisaRMA/quality_
control_app

https://github.com/ElisaRMA/ML_metabolomics
https://github.com/ElisaRMA/quality_control_app
https://github.com/ElisaRMA/quality_control_app
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3 Results and Discussion

3.1 Metabolomics Experiment

While there is no universally used workflow in the field ofmetabolomics (Patti, 2011), some
steps are common and essential for all studies. Metabolomic experiments usually begin with
the biological question, experimental design, and sample analysis, which follow a very differ-
ent process depending on whether the study follows a targeted or untargeted metabolomics
approach.

Following sample analysis, a preprocessing tool is needed to extract the data from the re-
sulting chromatograms, especially for untargeted metabolomics data. The first step is usually
peak picking (or deconvolution) to later align and integrate peak data across multiple samples.
Upon completing preprocessing, a matrix of ‘metabolite features’ (mass-to-charge ratio and
retention time pairs) is obtained, and the results can be analyzed using different techniques
(Di Guida et al., 2016). The present study followed such workflow, which is presented in Figure
4.

As previously mentioned, for the data acquisition step, two experiments were performed
for each ‘target’ species. Table 1 in the Material and Methods section demonstrates how the
samples were separated for each experiment. The LC-MS methods used for each species were
previously developed and validated (Borghi et al., 2020; Duarte et al., 2022). Below are the
representative chromatograms for each species in both experiments (Figure 5 and 6)
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Figure 4: General metabolomics workflow.
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Figure 5: Chromatograms using the UHPLC-MS conditions forMaytenus samples. A)M. ilicifo-
lia, B)M. aquifolium, C)M. laevigata, D)M. glometara
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Figure 6: Chromatograms using the UHPLC-MS conditions for Mikania samples. A) M. laevi-
gata, B)M. glometara, C)M. ilicifolia, D)M. aquifolium

3.2 XCMS parameter optimization and preprocessing

After the chromatographic analysis, the files were converted to mzXML format. The
mzXML format is an open-source XML representation of mass spectrometry (MS) data that
allows the comparison of results obtained from different equipment. By converting the propri-
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etary file formats to mzXML and standardizing their use, it is possible to process and analyze
the chromatographic data using open-source tools instead of the software provided by the ven-
dors. A widely used preprocessing tool created for this purpose is XCMS (Pedrioli et al., 2004).

XCMS is a framework for processing and visualizing LC-MS data. The software is written in
R language and it is freely available under the open-source license, which enables the analy-
sis of LC-MS data derived from instruments of different manufacturers, as mentioned before.
The preprocessing strategy used by XCMS comprises four main steps: peak detection, peak
matching, retention time alignment, and filling of missing peaks (Smith et al., 2006).

The peak detection step starts by cutting the LC/MS data into slices with the width mea-
sured in themass-to-charge ratio (m/z). These slices are combined and filtered using a second-
derivative Gaussian as themodel peak shape. Peaks thatmatch this shape are thenfiltered once
more using a signal-to-noise ratio cutoff, to be classified as ‘valid’ peaks.

Subsequently, these peaks are matched across samples to allow retention time correction
and relative ion intensity comparisons. The algorithm calculates the overall distribution of
peaks and identifies the boundaries where many peaks have similar retention times. These
peaks are analyzed and the algorithm defines an interval in which all peaks inside would be
placed into a group, representing an analyte. Finally, these groups are filtered based on their
occurrence within the samples, and peaks that are not present in a significant amount of sam-
ple classes are removed. Alternatively, consistently present peaks across the samples are con-
sidered ‘well-behaved‘ peak groups .

After the peak matching and filtration, the retention time alignment can be performed.
First, the well-behaved groups determined previously are used as standards, and for every
group, the algorithm calculates the median and deviation of retention time on every sample
in that peak group. Then, the retention time drift is corrected using a local regression fitting
method. This correction is done simultaneously on all samples.

Finally, the last step is filling the missing peaks. For this, XCMS first identifies which sam-
ples are missing from each peak group. Then, using data collected on peak detection about
where peaks started and ended, along with their aligned retention times, the raw LC/MS data
are integrated to fill in intensity values for each missing data point.

After all steps, the XCMS preprocessing returns a peak table with the relative intensity of
eachanalyte alongwith themedian (‘mz’),minimum(‘mzmin’), andmaximum(‘mzmax’)m/z of
peaks in the groups, as well as median (‘rt’), minimum (‘rtmin’) and maximum (‘rtmax’) reten-
tion time of peaks in the group. In this context, the metabolite features are two-dimensional
vectors, formed from the combination of these m/z and rt values. For example, one feature
could have an m/z of 289 and an rt of 2.5 min, while another could have the same m/z but an
rt of 3.4. In such a case, both analytes would be considered different features as them/z and rt
combinations differ. Table 2 illustrates an example of a partial table of features extracted from
XCMS preprocessing.
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Table 2: Features table example obtained after XCMS preprocessing

mz mzmin mzmax rt rtmin rtmax npeaks sample1 sample2 sample3
106.26 105.89 106.62 559.48 554.90 566.20 898 4.38E+08 4.06E+08 4.13E+08
105.93 105.88 106.46 466.36 456.49 502.44 872 4.29E+08 3.54E+08 4.20E+08
113.77 113.13 114.12 53.00 36.06 116.69 147 2.85E+07 2.55E+07 2.65E+07
115.63 115.12 116.12 57.61 49.19 129.09 504 3.08E+07 2.84E+07 2.85E+07
116.40 116.12 117.11 55.73 49.40 176.88 112 2.82E+07 2.54E+07 2.68E+07
116.87 116.62 117.60 439.50 430.69 445.26 669 5.64E+07 6.30E+07 5.43E+07
117.62 117.13 118.12 109.92 75.06 177.31 133 2.12E+07 2.00E+07 2.23E+07
127.71 127.12 128.11 565.11 558.21 570.22 118 6.64E+07 6.10E+07 6.96E+07
128.65 128.12 129.12 562.51 555.60 568.50 255 8.22E+07 8.14E+07 8.58E+07

It is important to note that for each of the steps mentioned, XCMS takes a range of pa-
rameters to process the LC-MS data. Such parameters must be modified based on the anal-
ysis itself and to enhance the XCMS performance, these parameters can be optimized using
another open-source software called IPO (‘Isotopologue Parameter Optimization’) (Libiseller
et al., 2015).

IPO is another R package, that was created to determine the best set of parameters for the
XCMS experiments, increasing the reliability of the results of peak picking, retention time cor-
rection, and grouping. The optimization for the peak picking parameters is the first step, and
afterward, the retention time correction and grouping parameter optimization are done simul-
taneously, as grouping requires the correction of retention time, which in turn, can improve
the grouping as a whole Libiseller et al. (2015).

According to the authors, the parameters are determined by a design of experiments ap-
proach (DoE) in which specific modifications are made to the input variables (parameters) to
optimize or explain the changes in the response variable (feature table). For each parameter,
three different values are tested. The two outer values (smaller and larger values) determine
the range and the middle value determines the center. The values are tested and the result of
the DoE is evaluated based on two scores determined by the authors: one for peak picking and
one for retention time correction and grouping (Libiseller et al., 2015).

In summary, the parameters converge to increase the number of reliable peaks and reli-
able groups and simultaneously decrease the shift in retention time between peaks in a peak
group. Reliable peaks are defined as peaks belonging to an isotopologue (13C isotope peaks)
and reliable groups, according to the authors, “are assumed to show exactly one peak from
each injection of a pooled sample” (Libiseller et al., 2015).

The present study used the IPO package and the training samples to determine the XCMS
parameters for both species. In both cases, a slight modification was done to the optimized pa-
rameters to better represent the data. The XCMSfinal preprocessing generated 306 features for
theMaytenus experiment and 148 features for theMikania experiment thatwere used formodel
training. The parameters and code for IPO and XCMS steps are available in the Supplementary
Material.
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3.3 Exploratory Data Analysis

Before and during the algorithm selection and model construction, data exploration was
performed to better understand if further data processing was necessary. According to Géron
(2019), the initial steps of creating a Machine Learning model involve understanding the data
and studying the problem. Therefore, the first analysis was the MS total useful signal (MSTUS)
to verify if the samples suffered intensity drifts.

As LC-MS methods are subject to instrumental variations, differences in peak intensities
are common. According to Jiang et al. (2020) such variations can normally go beyond 10%
during an LC-MS series of runs. The reasons may include changes in detector sensitivity, and
variations in the electrospray process, among others (Jiang et al., 2020). If such variations are
too accentuated, the result of the analysis can be affected demanding further processing to
reduce the systematic variation. In the presentwork, a large number of sampleswere analyzed,
therefore, an inspection of the MSTUS plot was necessary.

The MSTUS plot uses the total intensity of all features for each sample, across the LC-MS
run and plots these intensities arranged by the injection order. If the points on the plot form a
pattern other than a random distribution, intensity drifts could have occurred in the analysis.
Some researchers use such analysis to clean the data, removing a samplewith anMSTUShigher
or lower than three standard deviations from the mean (Rodríguez-Coira et al., 2019).

In the case of the present work, fortunately, no significant changes occurred, as observed
in Figures 7 and 8, where all data points are evenly distributed along the plots and contained
within three standard deviations of themean. For theMSTUS of theMikania experiment in Fig-
ure 8, the only difference in intensities was shown by someMaytenus samples. This difference,
however, was not exacerbated, and, as mentioned, theMaytenus samples were still contained
within 3 standard deviations from the mean.
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Figure 7: Total Useful Signal for Maytenus experiment. The dashed lines represent the mean
(black) and the standard deviations (grey)

Figure 8: Total Useful Signal for Mikania experiment. The dashed lines represent the mean
(black) and the standard deviations (grey)

However, later in the experimentation, during the model training and fine-tuning, the vali-
dation scores obtained were too high, indicating to the possibility of overfitting, as will be dis-
cussed later. To address this issue, a normalization step was added in the processing pipeline
and a comparison between non-normalized and normalized data was done using the MSTUS
plot. This will be explained in more detail in the section 3.4.5
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It was observed that for each experiment, samples from the other genus presented lower
feature intensities, dividing the MSTUS plot into ‘groups’. For instance, in theMaytenus experi-
ment, samples from theMikania genus were significantly lower in the MSTUS plot in compar-
ison with samples from the Maytenus genus. This could have occurred due to the analytical
and extraction methods not being optimized for the Mikania genus, resulting in lower inten-
sities for these samples. The same effect was observed for theMikania experiment, in which
Maytenus samples presented lower intensities.

Such differences in feature intensity could be one of the reasons behind the high scores
obtained in later stages of themodel training andfine-tuning. This is because themodel created
couldbeover-adjusting to classify the samplesbasedongeneral intensity insteadof the features
themselves and the biological differences between the classes.

Figures 9 and 10 show the comparison between the previous MSTUS, color-coded by their
classes and their normalized counterparts, for both experiments. It is possible to notice, after
normalization, that the samples from the two classes were evenly distributed within the plot.
The consequence of the normalization on the model’s performance will be demonstrated in
the next sections.

Next, to verify how the classes were separated from each other, a PCA was plotted for both
experiments (Figures 11 and 12) just to inspect how the samples clustered. As observed, by
labeling the samples according to their species it is evident that the samples were clustered
together based on their genus, due to their higher similarity. For this reason, it was expected
that the machine learning algorithms would not have difficulties classifying the samples.

For theMaytenus experiment,M.laevigata andM. glomerata samples clustered together in
the upper left corner on the PCA scores plot in Figure 11 and for theMikania experiment, M.
aquifolium and M. ilicifolia samples clustered together on the right lower corner of the PCA
from Figure 12. When labeling the samples according to their class (positive or negative) some
overlap is observed, especially in the case of theMikania experiment, indicating that the clas-
sification model for this experiment might present lower scores.

Such overlap could have occurred due to human errors while identifying the species during
the harvesting step. As both species present many morphological similarities, identification
errors are common, and depending on the result from the machine learning algorithm, it is
possible that the M. laevigata samples clustered with M. glomerata (right upper corner of the
first PCA on Figure 12) may, in fact belong to such a group.

The PCA plot was also generated with normalized data, to compare the distribution after
the normalization step. Figures 13 and 14 show the PCA scores plot on the normalized data, the
same data used for the MSTUS shown previously. As observed, the grouping was maintained
after the normalization and, for theMikania data, the normalization resulted in a PCA scores
plot with groups further apart.

Additionally, both PC1 and PC2 values for the normalized plots were higher than for the
unprocessed data. For Maytenus, the PC1 and PC2 for the unprocessed data were 29.66% and
11.7%, and for the normalized data, the PC1 and PC2 were 29.83% and 13.76%, respectively. For
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Figure 9: MSTUS plot of non-normalized (Top) and normalized (bottom) Maytenus data. The
colors indicate the different classes (POS: samples from M. ilicifolia, NEG: samples from M.
aquifolium,M. laevigata andM. glomerata)
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Figure 10: MSTUS plot of non-normalized (Top) and normalized (Botton) Mikania data. The
colors indicate the different classes (POS: samples from M. laevigata, NEG: samples from M.
glomerata,M. aquifoliumandM. ilicifolia)

Mikania, the unprocessed data yielded a PC1 and PC2 of 29.46% and 16.81%, respectively, while
the normalized data yielded a PC1 and PC2 of 38.37% and 20.48% respectively.
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Figure 11: PCA scores plot for theMaytenusmodel unprocessed data. Label NEG and POS rep-
resent the group used for the machine learning model. POS is the target class, in this case,
samples from M. ilicifolia, while NEG is all other samples. AQ, IL, MG, and ML are the ab-
breviations for the species name, M. aquifolium M. ilicifolia, M. glomerata and M. leaevigata,
respectively.

Figure 12: PCA scores plot for the Mikania model unprocessed data. Label NEG and POS in-
dicate the group used for the machine learning model. POS is the target class, in this case,
samples from M. laevigata, while NEG is all other samples. AQ, IL, MG, and ML are the ab-
breviations for the species name, M. aquifolium M. ilicifolia, M. glomerata and M. leaevigata,
respectively.
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Figure 13: PCA for scores plot for the Maytenus model normalized data. Label NEG and POS
indicate the group used for the machine learning model. POS is the target class, in this case,
samples from M. ilicifolia, while NEG is all other samples. AQ, IL, MG, and ML are the ab-
breviations for the species name, M. aquifolium M. ilicifolia, M. glomerata and M. leaevigata,
respectively.

Figure 14: PCA scores plot for theMikaniamodel normalized data. Label NEG and POS indicate
the group used for the machine learning model. POS is the target class, in this case, samples
fromM. laevigata, while NEG is all other samples. AQ, IL, MG andML are the abbreviations for
the species name,M. aquifolium M. ilicifolia,M. glomerata andM. leaevigata, respectively.
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3.4 Algorithm selection andmodel construction experiments

After the initial data exploration and in possession of the feature table obtained in the pre-
processing step, the model training and fine-tuning could begin. As mentioned, the goal was
to create two models, one for each ‘target’ species (M. ilicifolia andM. laevigata). Many exper-
iments were performed to achieve this, with different hyperparameters, features, and strate-
gies.

However, it’s important to note that during experiments, a lot of back and forth was per-
formed between the XCMS preprocessing, data exploration, and model training. Since differ-
ent parameters onXCMSwould return a different dataset, smallmodifications to its parameters
were performed, to find the best final model with the highest reasonable score.

3.4.1 First Model Evaluation

In order to train themodel, for all experiments, the mzXML files were separated into train-
ing and test folders and the test was put aside. For the first experiment, however, the files in
the training folder were all used for IPO optimization and XCMS preprocessing, and, only af-
terward, the resulting table of features was split into training and validation sets. Therefore,
this split was initially performed in the traditional way, during the model training itself.

In this experiment, the model training began by using three initial classifiers with mini-
mal changes to algorithm parameters. The objective was to verify how these algorithms would
perform on the data, without any fine-tuning. The scores obtained would serve as a baseline
for further models. The classifiers used were: Support Vector Classification (SVC), K-Nearest
Neighbours Classifier (KNN), and Random Forest.

The SVC algorithm works by finding a line of separation, known as hyperplane, between
data from two classes. This line seeks to maximize the distance between the closest points
concerning each of the classes (Pisner e Schnyer, 2020). In this study, the classification was
binary, so the classes were either 1 or 0 for samples that were from the target species or not,
respectively.

The KNN algorithm works by initially finding the k-nearest neighbors of a given instance.
Then, the class of the given instance is determined based on the class that occurs most fre-
quently among its k neighbors. This algorithm has two parameters: the number of neighbors
(k) and the dissimilarity measure used to find the nearest neighbors. Euclidean distance is the
most widely used measure to determine neighbors, although there are several options (Stein-
bach e Tan, 2009).

Finally, the Random Forest is an ensemble of decision trees combined with bagging. When
using bagging, different trees see different portions of the data, therefore neither tree sees all
the training data. This means that each tree is trained with different data samples for the same
problem. By combining their results, the errors of some trees are compensated for with the
results of others, leading to a prediction that generalizes better (Cutler et al., 2012).

Table 3 summarizes the results of the first experiments obtained for both species with the
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three classifiers. The scores shown in the table are related to the training set. As observed,
all classifiers presented high scores, on both experiments, suggesting that overfitting or data
leakage could be happening.

Table 3: Scores for the first experiment

Model 1:
Identification of M. ilicifolia

Model 2:
Identification ofMikania laevigata

SVC
MCC 0.962 0.937
F1 0.980 0.967

RandomForestClassifier
MCC 0.981 0.927
F1 0.990 0.959

KNeighborsClassifier
MCC 1.0 0.994
F1 1.0 0.997

According to James et al. (2023), overfittingmeans themodel is following the errors or noise
in the data too closely. In this situation, the score of the model is usually very high, and a
perfect fit, as observed in Table 3, will almost certainly indicate it is overfitting the data. Ac-
cording to the authors, even though is possible to perfectly fit the data in a high dimensional
setting, the model will perform poorly on new independent data. Since for this initial exper-
iment, only small modifications were done on the XCMS parameters and no feature selection
was performed, it’s possible that the model was following errors or noise in the form of irrele-
vant features.

In addition, as mentioned, the high score may be due to a certain amount of data leakage.
According to the Pedregosa et al. (2011), andWalker (2022), data leakage occurs when informa-
tion not available at prediction is used to train a model. In other words, data from the test or
validation sets ‘leaks’ into the training set.

This problem usually happens during data preprocessing, for example, duringmissing val-
ues imputation by using themean. In this case, if imputation is done before the split, themean
values will be calculated using data from both the training and validation/test sets. In this sit-
uation, the model validation will not be efficient and its performance will be overly optimistic
during training.

In the present study, the preprocessing using XCMS, which served as a feature engineering
step was applied before the model training. As discussed previously, the XCMS preprocessing
method involves matching chromatographic peaks across samples to correct the deviation in
retention time and group such peaks to create features.

In this situation, if samples from training and validation are kept together for XCMSprepro-
cessing, data from both sets would be matched with each other to determine the peak groups.
Additionally, the retention time correction would take into account the drift on both sets and
as a result, this validation set wouldn’t serve as a reliable ‘simulation’ of the test set. Hence, the
first step taken to improve these scores and avoid data leakage was to split themzXMLfiles into
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training, validation, and test folders before any metabolomics preprocessing step.

3.4.2 Data Leakage Prevention

After splitting themzXMLfiles into training, validation, and test folders, the IPO parameter
optimization was performed again only on the training set, to determine the best parameters
for XCMS. Afterward, the training and validation sets were processed separately by XCMS, re-
sulting in two different feature tables. It is important to note that, at this point, the test set was
still put aside and the XCMS preprocessing for this data happened only at the end of the study,
which will be discussed in the next subsections.

However, since this XCMS preprocessing was done separately for train and validation, the
peak groups and retention time driftswere slightly different on both sets; therefore, the feature
names were not the same. As the process of validating a model requires the same features
used in training (Pedregosa et al., 2011), an expert system for feature correspondence had to
be created.

The expert system created considers the feature names from the training set as a standard
and applies the same name to the validation’s set features based on conditionals. These feature
names are obtained by concatenating the ‘mz’ and ‘rt’ values into one term (‘mz_rt’), used to
represent a given compound (‘mz’) at a given retention time (‘rt’), which is the feature itself in
the context of metabolomics, as mentioned before.

The first conditional test on the expert system is performed on the ‘mz’ values. If the ‘mz’
value of a given sample from validation is between ‘mzmax’ and ‘mzmin’ from the training set,
then, for those features that pass the condition, the evaluation continues to check the rt values.
In such a case, if any of the rt values from validation are between the ‘rtmin’ and ‘rtmax’ from
training, then the name of the corresponding feature is used on validation. Figure 15 illustrates
the expert system created.

It is possible that, during this conditional testing, a given feature on the validation set could
receive the name of more than one feature from the training set if their mz and rt values are
within the constraints. In the case of such ties, the ‘npeaks’ column is used to determine which
feature name will be used. The ‘npeaks’ column on the feature table provides information on
the number of samples that presented such a feature Smith et al. (2006). Consistent and valid
peaks are present inmost of the samples of a given class; therefore, peaks with a higher ‘npeak’
value are given preference in naming the validation feature.

After passing the data through the expert system pipeline and naming the validation fea-
tures, the model training could begin. In this second experiment, the hyperparameters of the
models were also not optimized and Table 4 summarizes the score for the models.
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Figure 15: Expert System to create feature names (mz_rt) for the validation and test sets
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Table 4: Scores for the second experiment

Model 1:
Identification ofM. ilicifolia

Model 2:
Identification ofMikania laevigata

SVC
MCC 1.0 0.404
F1 1.0 0.439

Random Forest Classifier
MCC 1.0 0.0
F1 1.0 0.0

K-Neighbors Classifier
MCC 0.969 0.802
F1 0.985 0.903

As observed, for all classifiersM. ilicifolia still presented a high score, indicating possible
overfitting. ForM. laevigata, the score on KNNwas still very high, but it significantly decreased
for SVC and Random Forest, indicating that splitting the data into training and validation had
a high impact on the model’s performance and the next step would be to improve the model
itself.

3.4.3 Model Tuning with GridSearchCV

Considering the results obtained in the previous experiment, ‘GridSearchCV’ with ‘Prede-
finedSplit’ was implemented in the third experiment. It is important to note that, since the
training and validation were separate datasets, the function ‘PredefinedSplit’ was used to ap-
ply the train and validation sets in the cross-validation process itself, instead of allowing the
function to split the training set.

In addition, to determine the best parameters and find the best model, the MCC score was
used under the ‘refit’ parameter of GridSearchCV. For cross-validation, since the Predefined-
Split was used, the inter-dataset validation was applied, instead of the traditional K-fold cross-
validation.

At the end of the experiment, Random Forest was chosen as the best algorithm forM. laevi-
gatawith a final score of 0.945 and KNNwas chosen forM. ilicifoliawith a score of 0.963. Below,
Table 5 summarizes the results of this experiment, with the mean scores returned by the Grid-
SearchCV. As observed, the scores were still very high and could still indicate overfitting, so the
next experiment aimed to test if these scores were overestimating the quality of the model.

3.4.4 Incorporating further data

To test for the overfitting hypothesis,M. ilicifolia sampler results obtained during a previous
study were used as preliminary testing to verify how the M. ilicifolia model would perform
on unseen data (Antunes et al., 2019). According to Jiang et al. (2020), LC-MS analysis suffers
from instrument variations that can affect the signals detected by the equipment over time.
These variations can include shifts in the electrospray process, changes in detector sensitivity,
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Table 5: Mean scores returned by GridSearchCV

Model 1:
Identification ofM. ilicifolia

Model 2:
Identification ofMikania laevigata

SVC
MCC 0.953± 0.047 0.937± 0.033
F1 0.975± 0.025 0.968± 0.017

Random Forest
MCC 0.950± 0.038 0.941± 0.028
F1 0.974± 0.020 0.969± 0.015

KNN
MCC 0.963± 0.037 0.920± 0.019
F1 0.981± 0.019 0.959± 0.009

changes in ion transfer, etc.

Since all the samples were analyzed at a given moment, all in the same equipment, the
model could be over-adjusting to classify samples in these specific conditions. As a result, since
LC-MS equipment are subject to variations, samples analyzed at different times and conditions,
or with different equipment, could be more challenging for the model to classify.

In addition, all sampleswere collected on a specific day, between September andDecember
of 2021. Although no seasonal metabolic changes were detected forM. ilicifolia orM. laevigata,
many studies indicate that their chemical composition changes in response to specific environ-
mental events (Antunes et al., 2019; de Lazzari Almeida et al., 2017a; Reis, 2004; Yariwake et al.,
2005; Flück, 1955). Hence, themodel could also be over-adjusting to classify samples harvested
in such specific environmental conditions, present in the harvest day, and providing themodel
with samples from different periods could expose such problems.

Therefore, the samples used for this preliminary testing were harvested from the same lo-
cation (CPQBA), but in a different period, montly between November 2016 and October 2017,
and were analyzed with the same equipment and chromatographic method, during the same
period. For M. laevigata, this test was not performed since there were no previous samples
analyzed using similar extraction and chromatographic methods.

TheseM. ilicifolia samples were converted and processed by XCMS using the same parame-
ters of the training data, and the testing was performed using themodel and parameters deter-
mined with GridSearchCV. After applying all necessary treatments to these samples, the MCC
score obtained was 0.0.

This score confirmed the overfit for theM. ilicifoliamodel and, therefore, the next step was
to retrain the model and add more variation into the training set. For this, the samples used
for the previous preliminary test were included in the training, and other samples from the
preliminary study were added to the validation and test folders.

With these additional samples, the model would have a more diverse set of examples to
train, therefore, it would be able to generalize better. Table 6 clarifies the sample distribution
for this experiment.
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Table 6: Sample distribution for each group with date of collection and analysis

Species Train Validation Test Date of collection and analysis
Maytenus ilicifolia 384 96 120 September, December of 2021
Maytenus ilicifolia 76 20 24 November 2016 - October 2017
Maytenus aquifolium 189 48 63 September, December of 2021
Maytenus aquifolium 76 20 24 November 2016 - October 2017
Mikania glomerata 108 21 21 September, December of 2021
Mikania laevigata 87 28 36 September, December of 2021

The ideal scenario, in this case, would be to also add samples collected fromother locations
and analyzed with different LC-MS equipment, at different labs and research groups, so this
variation between examples would be even higher. Due to logistic limitations, however, this
was not performed in this study.

With thenewadditional data, thepipeline frompreprocessing to training followed the same
steps as before. First, the data was converted using MSConvert, and then, the XCMS parame-
ters were optimized with IPO. For this optimization, the training data included the previous
samples, and afterward, training and validation were processed, separately, using XCMS.

Themodel trainingwas also performed using the same steps as before, usingGridSearchCV
andPredefinedSplit applying inter-dataset validation, then testing the SVC,RandomForest, and
KNN algorithms. In this experiment, the model forM. ilicifolia with the best performance was
the Random Forest with a final MCC score of 0.963, as shown in Table 7 with the mean score of
each model tested, returned by the GridSearchCV.

Table 7: Mean scores returned by GridSearchCV for the Maytenus experiment with previous
data

Model 1:
Identification ofM. ilicifolia

SVC
MCC 0.839± 0.026
F1 0.924± 0.010

Random Forest
MCC 0.803± 0.177
F1 0.934± 0.056

KNN
MCC 0.796± 0.126
F1 0.904± 0.055

As mentioned, the addition of new data to the M. laevigata model was not possible, as no
previous samples were available to add to the training and validation sets. Therefore, M. lae-
vigata’s final model, at this point, was also the Random Forest with an MCC score of 0.965, as
mentioned before. However, for both models, the scores were still high, and the next steps
involved normalizing the data and feature selection.
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3.4.5 Normalization of the feature’s relative intensities

After evaluating the results obtained from the previous experiments and the possible rea-
sons behind the high scores, the normalization stepwas tested. As observed in the firstMSTUS,
especially for M. laevigata model, some samples belonging to the negative classes presented
lower intensities and the reason for such differences could lie in the analytical methods.

Asmentionedbefore, the analyticalmethods usedhereinwere validated for their respective
target species, and, therefore, sampleswith a very distinct chemical composition could present
lower ion intensities due to a lower ionization. Therefore, it is possible that themodels obtained
so far were over-adjusting to classify the samples mostly based on the ion intensities, with the
positive samples in each experiment presenting higher intensities and the negative samples
presenting lower intensities.

According to Katajamaa e Orešič (2007) the goal of the normalization step in the context
of metabolomics is to remove systematic bias in ion intensities while retaining the biological
variation. According to Pedregosa et al. (2011), normalization is the process of scaling samples
to have a unit norm. This means adjusting the values of a dataset so that the Euclidean norm
(also known as the L2 norm) of each sample is equal to one.

Normalization ensures that the ion intensities of negative and positive classes within both
experiments would be more comparable. Without normalization, as mentioned before, a
model might classify samples based primarily on intensity differences, ignoring more mean-
ingful patterns. By applying normalization, the focus shifts to the relative differences in the
compound profiles rather than their absolute intensities, which could lead to a more robust
classification result.

Therefore, before training, the data was normalized within the ‘Pipeline’ object, by using
the Normalizer class, also from the scikit-learn package, which applies an l2 normalization to
the data. by default. Afterward, themodel training on this step was also performed using Grid-
SearchCV and PredefinedSplit, with inter-dataset validation, testing the SVC, Random Forest,
and KNN algorithms.

As mentioned before, Figures 9 and 10 show the MSTUS before and after normalization,
and it is possible to observe how the normalization affected the distribution of the samples for
both experiments. After normalization, the samples from different classes were more evenly
distributed, and the impact of this process is observable in the final scores obtained.

After this experiment, the final score for the Mikania experiment was 0.947, also with the
Random Forest selected as the best-performingmodel. For theMaytenus experiment, the final
score was 0.956 and the best-performingmodel was obtained by KNN. In both cases, the scores
dropped if compared with previous experiments. Table 8 illustrates the mean scores for both

experiments and all models.
For theMikania experiment, themean scores for SVCdropped for thenormalizeddatawhile

for theMaytenus experiment, the drop was for the Random Forest algorithm. Therefore, it is
noticeable that the normalization affected the overall score of the models, especially the best-
performing models chosen by the GridsearchCV but the difference was not exacerbated and
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Table 8: Mean scores returned by GridSearchCV on the normalized data for both experiments

Model 1:
Identification ofM. ilicifolia

Model 2:
Identification ofM. laevigata

SVC
MCC 0.808± 0.122 0.919± 0.020
F1 0.912± 0.052 0.958± 0.010

Random Forest
MCC 0.844± 0.050 0.945± 0.023
F1 0.924± 0.021 0.971± 0.012

KNN
MCC 0.833± 0.107 0.922± 0.009
F1 0.925± 0.045 0.960± 0.005

the scores remained high. The next experiment involved selecting a subset of features, as a
last attempt to generate more realistic scores and try to avoid any overfitting of the models.

3.4.6 Feature Selection

When working on plant metabolomics it is important to note the differences between pri-
mary and secondary metabolism. Plant primary metabolism is formed by a group of com-
pounds such as carbohydrates, lipids, and proteins which are the basic components involved
in fundamental processes such as plant growth, development, and reproduction. As a result,
the primary metabolism presents many similarities among different plant species and these
compounds can be detected in metabolomic analysis(van Dam e van der Meijden, 2011).

Secondary metabolism, on the other hand, is mostly responsible for the survival and inter-
action of the plants with their biotic environment, serving as a response, and defense mech-
anism. Consequently, different plant families, genera, species, and individuals often present
many differences in metabolite profiles. The secondary metabolome is, therefore, often con-
sidered the ‘fingerprint’ of plant species (van Dam e van der Meijden, 2011).

Since themetabolomic analysis can capture compounds of the primarymetabolism, which
is common to plants in general, the grouping and filtering steps of XCMS are not enough to
prune out features related to this metabolism. In addition, since LC-MS equipment presents
high sensitivity, ions present in the extraction liquid, mobile phase, and general sample con-
taminants can also be detected.

According to Walker (2022), unnecessary features can lead to overfitting and generate a
model/system that is computationally expensive. Therefore, a separate feature selection step
needed to be implemented to ensure that only relevant features would be used for sample clas-
sification. For this, three methods were chosen: Mutual Information, Recursive Feature Elim-
ination, and Boruta.

Mutual information is a univariate feature selectionmethod thatworks by selecting features
that perform better on a univariate statistical test. This method measures howmuch informa-
tion one variable provides about another and is classified as a “filter method”. In this context,
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for example, if two variables are independent, the mutual information score would be 0. Dur-
ing feature selection, features with a higher score are kept, as they are the ones that provide
the most information on the target variable. (Walker, 2022; Pedregosa et al., 2011)

Mutual information is a good starting point for feature selection, but most of the time we
often deal with multivariable relationships between the features and the target. For this rea-
son, other methods such as “wrapper methods” might be more efficient in selecting relevant
features. Three common types of wrapper methods are the forward, backward and exhaustive
methods (Walker, 2022).

While the forward feature selection recursively adds features to the training step if the score
of the estimator improves, the backward feature selection removes the feature that affected
the score negatively (Pedregosa et al., 2011). Their disadvantage is that the removed or added
features are not re-evaluated afterward, even though their importance and impact on themodel
might change depending on the feature combination. A solution to this problem is applying
other methods classified as “exhaustive feature selection methods” (Walker, 2022).

These methods evaluate a model on all possible combinations and select the best subset of
features but at the cost of system resources and time. Wrapper methods in general, including
the forward, backward, and exhaustive methods, all tax the system resources as they need
to train the model at each iteration and the more complex an algorithm is, the more this is
an issue. To solve this problem, Recursive Feature Elimination (RFE) can be applied (Walker,
2022).

RFE is also a wrapper feature selection method but uses the simplicity of filter methods,
while providing better information, much as the other wrapper methods mentioned before.
RFE works by removing the feature with the lowest importance measure and repeats this pro-
cess until the best-fitting model is found. When a feature is removed, it receives a rank score
reflecting the point at which it was removed (Walker, 2022). For scikit-learn’s implementation,
the feature ranking corresponds to the feature importance, and the best features are assigned
a rank 1 (Pedregosa et al., 2011). The benefit of the RFE is that it is easier to train than exhaus-
tive methods, but another popular method with a different and efficient approach is Boruta
(Walker, 2022).

Boruta is a feature selection method that also presents similarities with wrapper methods
and it was originally developed as an R package. For each feature, Boruta creates a ‘shadow
feature’ with its original values shuffled. To evaluate a feature, it compares the information
provided by the original and the ‘shadow’ version and gradually removes those that provided
less information than their artificial counterparts. The final output classifies the features into
confirmed, tentative, and rejected groups (Kursa e Rudnicki, 2010). The advantage of Boruta is
that if a feature is selected, then it probably does provide information on the target. The prob-
lem, however, is that, just as the exhaustivemethods, Boruta is also computationally expensive
(Kursa e Rudnicki, 2010; Walker, 2022).

As mentioned before, in this study, Mutual Information, RFE, and Boruta were the chosen
methods to help select the relevant features. Mutual Information was selected as an initial
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filter method, RFE was chosen as it is midway between filter and wrapper methods, providing
more input than Mutual Information but without taxing the system resources and Boruta was
applied for its unique approach. Together, all three techniques provide a good overview of
relevant features increasing the chances of finding a subset of features that can represent the
data in a lower dimensionality.

When applying these methods to select the features for both models, for the Maytenus
model, out of 306 features in total, 194 were selected by at least one of these methods. In con-
trast, for theMikaniamodel, out of 148 features in total, 115 were selected by at least one of the
methods.

For theMaytenus model, Mutual Information and RFE selected 153 features, while Boruta
selected 154. All three methods selected 156 unique features, and their Jaccard similarity was
around 58%, with RFE and Boruta’s methods being the most similar, with 80% similarity.

When comparing the feature sets for theMaytenusmodel with a previous study developed
by the group, most of the features detected in the study were also selected by at least one of the
methods (Antunes et al., 2019).

For the Mikania model, Mutual Information selected 74 features, RFE selected 103, and
Boruta selected 98 features in total. All three methods had 97 unique features and their Jac-
card similarity was around 56%. For this experiment, RFE and Boruta also present the highest
similarity, around 76%.

Comparing these results with previous studies with Mikania species, Umbelliferone,
Coumaric acid, Kaurenoic acid, Grandifloric acid, Chlorogenic acid, Dicaffeoylquinic acid, and
Mellilotoside were possibly selected as important features by these methods. Even though it is
not possible to identify the compounds detected in this study, it is possible to infer their pres-
ence based on their m/z, in comparison with previous data. These compounds were detected
in previous studies from the research group that utilized the same equipment and method ap-
plied herein, so even with different retention times, theirm/z and its relative position to other
compounds were maintained (Borghi et al., 2020; Costa et al., 2018). Tables 14 and 15 on the
Supplementary Material section illustrate the features selected for each method, for both ex-
periments.

Another way to evaluate the feature selection methods is by analyzing the data in a re-
duced dimensionality space by applying the Uniform Manifold Approximation and Projection
(UMAP) technique. UMAP, like any dimensionality reduction technique, transforms the data
into a lower-dimensional representation while attempting to preserve its essential topological
structure. According to the creators of the method, “UMAP is a flexible non-linear dimension
reduction algorithm based on manifold learning techniques and ideas from topological data
analysis” (McInnes et al., 2020).

Since feature selection methods aim to identify a subset of the relevant features from the
original set, the impact of this reduction can be visualized in a plot such as UMAP. Ascensión
et al. (2022) for instance, applied UMAP to evaluate their feature selection techniques and the
clusters formed by UMAP. In their work, to assess the quality of a feature selection represen-
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tation on UMAP plot they verified whether different groups appeared as different clusters on
UMAP. If two different groups appear mixed within UMAP they concluded that some of the
important features to differentiate the groups were not selected by the method.

In the present work, a similar approach was applied. Comparisons between the feature se-
lection representation on UMAP versus the original set representation were made to evaluate
the feature selection methods. If the clusters were maintained, the feature selection method
was considered efficient, if not, itwas concluded that themethod changed the topological struc-
ture of the data and, therefore, another iterationwas done, especially on thewrappermethods.
Figures 16 and 17 illustrate the UMAP plots on the original and reduced feature spaces for each
feature selection method.

Figure 16: UMAP on original and reducedMaytenus data for each feature selection method.
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Figure 17: UMAP on original and reducedMikania data for each feature selection method
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By analyzing the plots forMaytenus it is possible to observe that the groups present in the
original data set were maintained, with a slight change in shape and orientation of the groups
within the plot 16. ForMikania, the shapes of the groups changedmore drastically but the data
points remained grouped in the same manner 17.

Therefore, the UMAP plot for both species confirmed that the feature selection methods
were able to select a subset of the features without changing the overall characteristics of the
dataset, as both spaces, original and reduced, still present a lot of similarities and the sameclus-
ters. All methods, after iterations, presented similar results on the UMAP plot, with nomethod
being substantially worse or better in reducing the dimensionality space without information
loss.

However, by only evaluating the feature selection methods with UMAP, it is impossible to
predict which methods would better suit the model training and yield a better model. There-
fore, applying the feature selection methods on the GridSearchCV is a good strategy as they
would be evaluated alongside all other model parameters. Hence, this was the next experi-
ment applied, alongside the comparison of different validation techniques.

3.4.7 Model Robustness and ValidationMethods

During the model training and validation, two approaches are usually taken to evaluate
the model: intra-dataset validation or inter-dataset (or cross-dataset) validation. Intra-dataset
validation is done by evaluating themodel in a set taken from the training data, while the inter-
dataset is the evaluation performed on a separate dataset, in which the model had no previous
contact. (Nadimpalli e Rattani, 2022)

Traditionally, intra-dataset validation is more commonly applied, usually with the aid of a
k-fold cross-validation technique, in the basic approach (Pedregosa et al., 2011). For this tech-
nique, the training set is divided into k smaller sets and, at each iteration of themodel training,
a different set (fold) is used for validation while the remaining are used for training. The score
reported is the average of the values obtained in all iterations (Pedregosa et al., 2011).

However, a good number of studies already demonstrated that a higher performance can
be achievedwith this validationmethod, but at the cost of a poor generalization across datasets
(Nadimpalli e Rattani, 2022; Mohammadi et al., 2020). Additionally, according to Huang e
Zhang (2021), inter-dataset evaluation is a more challenging task and has not been regularly
applied in statistics or learning based papers, even though it presents amore realistic scenario.

For the present work, as mentioned, after some initial experiments, both training and val-
idation sets were separated before XCMS preprocessing. Since both datasets were completely
separate, during hyperparameter tuning using the GridsearchCV, the Predefined split function
had to be applied during cross-validation, and as a result, an inter-dataset validation technique
was used.

In the final steps of model training, however, as was done by Huang e Zhang (2021), a com-
parison between intra-dataset and inter-dataset validation was performed to verify themodel’s
robustness. The goal was to compare the model’s performances for both validation techniques
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and verify how they differed from each other.

Therefore, three experiments of model training and validation were performed for each
model. One intra-dataset validation was performed with the training set, another with the val-
idation set, and the final training was performed using the inter-dataset validation, with the
training set and validation sets used in their respective roles, all within the GridsearchCV.

Table 9 and 10 depict the mean scores and standard deviations between intra-dataset and
inter-dataset validation techniques for both models. As observed, the standard deviation be-
tween the techniques was very low, for both scoring functions, which demonstrates that the
model obtained in the inter-dataset validation technique is robust. If the standard deviation
were high, it would indicate the model over-adjusting to specific datasets, which was not the
case herein. The technique chosen to continue the experiments was the inter-dataset valida-
tion as it yields models with good generalization, as mentioned before.

Table 9: Mean scores +- standard deviation for all three validation techniques and each algo-
rithm for theMaytenusmodel

Model MCC F1
SVC 0.954 +- 0.047 0.975 +- 0.026
RFE 0.925 +- 0.052 0.962 +- 0.026
KNN 0.958 +- 0.037 0.978 +- 0.019

Table 10: Mean scores +- standard deviation for all three validation techniques and each algo-
rithm for theMikaniamodel

Model MCC F1
SVC 0.768 +- 0.170 0.858 +- 0.122
RFE 0.924 +- 0.028 0.956 +- 0.014
KNN 0.905 +- 0.028 0.947 +- 0.017

After verifying the model’s robustness by comparing the different validation methods, the
next step involved using this verification along with the GridSearchCV and Validation curves to
obtain thefinalmodel. So far, three feature selection and validationmethods have been applied
but, as mentioned before, there was no guarantee that the hyperparameter space tested on the
grid would yield the best-fitting models for both species. Therefore, a final implementation
into the code was the creation of validation plots, to keep track of the hyperparameters tested
on Gridsearch.

3.5 Final Model

According to Pedregosa et al. (2011), hyperparameters are parameters that are not learned
in the estimators. They are passed as arguments to the algorithm function implementation
on scikit-learn and control how the model is trained. Some examples include “C”, for Sup-
port Vector Classification, “model_weights” and “n_neightbors” for K-Nearest Neighbors, and
“min_samples_leaf” and “n_estimators” for Random Forests, which are some of the hyperpa-
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rameters tested on the present study.

According toArnold et al. (2023) hyperparameters critically affect themodel’s performance.
As a result, to develop a robust model, is it essential to search for the best hyperparameter
settings (Hoque e Aljamaan, 2021). Hoque e Aljamaan (2021), for example, demonstrated the
impact of hyperparameter tuning on forecastingmodels, and concluded that this step could be
the best choice for improving the model’s performance without overfitting.

There are multiple techniques to search the hyperparameter space for the ideal setting
(Hoque eAljamaan, 2021). The classicalmethod is the grid search, implemented on scikit-learn
by the GridSearchCV function. The grid search algorithm exhaustively searches for all possi-
ble combinations of hyperparameters, intending to improve a specific performance metric,
selected by the user. (Pedregosa et al., 2011; Hoque e Aljamaan, 2021). Once a hyperparameter
setting is found, there is a certainty that, from that hyperparameter space, the best combina-
tion to yield the best-performing model was found.

The disadvantage of the grid search is that since it searches for all possible combinations if
the hyperparameter space to be tested is too large, the exhaustive search will take too long. An
alternative technique is called Random Search, implemented on scikit-learn under the func-
tion RandomSearchCV. This technique searches the hyperparameter combinations at random
and as opposed to grid search, however, it might not find the best settings for that specific hy-
perparameter space (Bergstra e Bengio, 2012).

In the present work, asmentioned, the hyperparameter tuning technique of choice was the
grid search. According to Liashchynskyi e Liashchynskyi (2019), grid search is still state of the
art as it supports parallelization, it finds the best combinations of hyperparameters and if both
the dataset and hyperparameter spaces are not too large, it presents a good performance.

To help in the process of testing different hyperparameter spaces, without inputting too
many options at once, a good supporting strategy is to plot the validation curve. The valida-
tion curve is a plot that shows the influence of a single hyperparameter on the training and
validation scores, to determine if the hyperparameter value is causing the model to overfit or
underfit (Pedregosa et al., 2011). The hyperparameter value is plotted on the X-axis while the
score is plotted on the Y-axis.

If both the training and validation scores are low, the estimator is underfitting. If the train-
ing score is high but the validation score is low, the estimator is overfitting. And, finally, if both
scores are high and similar, with the validation only a bit lower, since a higher validation score
is usually not possible, the estimator is performing well (Pedregosa et al., 2011).

Figure 18 and 19 show the validation curve for bothMaytenus andMikania models and all
hyperparameters tested. For almost all the numeric hyperparameters a plateau on the MCC
score was achieved, which demonstrates that larger values would possibly not increase the
final score. For the hyperparameters "C” and "min_samples_leaf” for the SVC and Random
Forest algorithms, respectively, as their values increased, the validation score also increased,
until it reached a constant value.

If the validation score decreased too suddenly, this would be an indication of overfitting,
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while if it increased higher than the training score, it would indicate underfitting of themodel.
Since, as mentioned, the plateau was reached, trying different values would probably not yield
a better score and so the iterationwith GridsearchCV could be halted and the best-fittingmodel
found at this iteration would more certainly be the best one.

Hence, as mentioned before, a lot of iterations were done in the final code to achieve the
final model. With the help of the UMAP plots, small modifications were made to the wrapper
feature selection methods to achieve the best dimensionality reduction without information
loss. The different validation methods were also used to keep track of the model robustness,
aiming at lower standard deviations and analyzing which features and algorithms were chosen
each time. Finally, the validation curves were also plotted to help determine when the best
fitting model was found.

Figure 18: Validation Curves forMaytenusmodel



55

Figure 19: Validation Curves forMikaniamodel

Table 11 shows the mean scores for each model, at the last iteration of Gridsearch, with all
the implementations mentioned herein. The final model for both target species still presented
high scores but with all the experiments and improvements implemented, the confidence of
the score obtained was also higher. For Maytenus, the best-fitting algorithm was KNN with
a final score of 0.959. For Mikania, the best-fitting algorithm was the Random Forest with a
final score of 0.942. For both models, the feature selection method that yielded these best-
performing models was Mutual information.
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Table 11: Mean scores returned by GridSearchCV for the final experiment

Model 1:
Identification ofM. ilicifolia

Model 2:
Identification ofM. laevigata

SVC
MCC 0.904 0.906
F1 0.946 0.952

Random Forest
MCC 0.874 0.932
F1 0.937 0.964

KNN
MCC 0.922 0.915
F1 0.961 0.956

3.6 Final Model Analysis

According toAltmannet al. (2010), there are twopossible goals or outocomeswhenapplying
machine learning to a research field: generating a model (possibly a black box model, with
no interpretability) or generating insights into how the predictive features impact the variable
of interest. The second task of feature discovery or ranking is, according to the authors “the
essence of biomarker discovery in bioinformatics and life sciences”.

Even though the focus of the present work is creating a model able to classify samples and
aid the quality control ofM. ilicifolia andM. aquifolium, the algorithms applied herein are not
entirely considered black-box models, which means that interpreting their results is still pos-
sible. Therefore, the permutation and feature importance were extracted from both to under-
standwhich featureswere themost relevant in eachmodel. The code to obtain the permutation
score and feature importance are present in the Supplementary Material.

Since the best-performing model for Maytenus was the KNN, and this implementation on
scikit-learn does not have a feature importance attribute, the permutation importance function
was used to extract which features contributed the most to the final model.

To calculate the permutation importance, first, the model score is obtained on the features
used on the estimator. Then, the feature values are permuted and the model’s performance
is recorded. This is done for every feature and can be repeated multiple times. The permu-
tation score is the difference between the baseline metric and the metric after permutation.
The higher this value, the higher the importance of that given feature on the estimator, as the
permuted values had a higher effect on the model’s score (Pedregosa et al., 2011).

The permutation score for the Maytenus model was calculated both on the train and test
sets. Figures 20 and 21 show the top features for each set, and their permutation scores, with
mean and standard deviation for each feature. All permutation importance values are present
in the Supplementary Material (Table 16).
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Figure 20: Permutation Importance values for theMaytenus model calculated on the training
set. The box and whiskers are the distribution of the scores obtained in each iteration. On the
y-axis, the top 10 most important features
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Figure 21: Permutation Importance for theMaytenusmodel calculated on the test set. The The
box and whiskers are the distribution of the scores obtained in each iteration. On the y-axis,
the top 10 most important features

By analyzing both the table and the plots it is interesting to notice that features which im-
pactedmost of the grouping, when analyzing the test set, werem/z 739, 289, 561, and 579 which
werem/z values detected forM. ilicifolia both on this and previous studies. For the training set,
the m/z 739 was also the most important with m/z 289 as the third on this ranking. Other fea-
tures on the top of this ranking were also detected onMikania species, also presenting higher
importance for their model (m/z 133, 353, and 515, for instance)

Additionally, the permutation standard deviation on the training set was much higher than
for the test set, but the decrease in the accuracy score was lower. This indicates that the result
observed on the test set is much more consistent and the feature ranking for the test set could
be more trustworthy.

When comparing these features with those detected in previous studies, as mentioned be-
fore, some of them are noteworthy Catechin and/or Epicatechin (m/z 289) and a triglycosylated
flavonoid (m/z 739, formed by a Rhamnose- Rhamnose- Glucose-Kaempferol), for example,
were considered some of the most important features for theMaytenus model, by the permu-
tation importance on both datasets.

Catechin or Epicatechin, as mentioned before, are considered the chemical markers ofM.
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ilicifolia and usually serve as a standard for the quality control ofmedicinal herbs based on this
species. This compound, however, was not the most important feature for the models, as the
m/z 739 presented a much higher score.

This compound, which possibly represents a triglycosylated flavonoid, was also observed in
high amounts inM. ilicifolia in previous studies. When analyzing the permutation importance
calculated over the test set, this feature presented a higher score compared to others, followed
by the m/z 289 and 561. This reinforces the need to use other compounds in addition to the
chemical markers when testing the quality of a given herbal product. Such compounds could
be extremelyuseful forherbal drug identification andquality control, as their isolated chemical
compounds are not commercially available.

Both m/z 289 and 739, belonging to the flavonoids group, could contribute to the plant’s
adaptation to the environment and can also provide interesting pharmacological properties to
the plant. According to a comprehensive review by Salam et al. (2023), various environmental
factors canmediate the synthesis of flavonoids, which play a defensive role due to their antiox-
idant properties.

Flavonoids can be involved in the plant’s response to water deficit and UV stress, by con-
versing the osmotic potential of the plant cells and accumulating on the leaf, creating a ticker
epidermal layer that protects the plant from harmful radiation. Additionally, flavonoids have
been associated with adaptations to heavy metal stress, low temperature, and nutrient stress
as well (Salam et al., 2023).

Furthermore, flavonoids have demonstrated antifungal, antibacterial, antiviral, antimuta-
genic, antioxidant, and anti-inflammatory effects (Elshafie et al., 2023) . The antioxidant effect
has even been associatedwith the gastroprotective properties ofMaytenus, according to Suzuki
et al. (2011).

Other features with high permutation scores obtained such as m/z 133, 515, and 353 were
also observed to be important for theMikaniamodel andwere detected in previous studieswith
Mikania samples. This indicates that themodel used features from the negative class (Maytenus
andM. glomerata) to aid the sample classification, which could cause the model to overfit. In
this case, themodel could performbetter in a specific situation inwhich samples fromMikania
andMaytenus were analyzed and tested together.

For theMikaniamodel, since thebest-performingmodelwas theRandomForest, itwas pos-
sible to extract the feature importance via the feature_importances_ attribute. In this attribute,
the importance of a feature is the total reduction of the chosen criterion measure brought by
such a feature. If the criterion measure, for instance, was Gini impurity, the most important
features are those that reduced this impurity the most. This calculation is done on the training
set. Therefore, the higher the value, the more important the feature (Pedregosa et al., 2011).

Figures 22 and 23 show the top 10 feature and permutation importance scores for theMika-
nia model, respectively. Importance values obtained with both methods, for all features are
present in the Supplementary Material (Table 17).
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Figure 22: Top 10 most important features forMikania model according to the feature impor-
tances attribute of RandomForestClassifier
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Figure 23: Top 10 permutation importances forMikaniamodel on the training set. The box and
whiskers are the distribution of the scores obtained in each iteration. On the y-axis, the top 10
most important features

As mentioned before and similar to theMaytenus model, some of the most important fea-
tures obtained by permutation and feature importance were also observed in other studies.
The m/z values of 302, 163, and 516, for instance, could be tentatively identified as Kaurenoic
acid, Coumaric acid, and Dicaffeoylquinic acid, respectively, and were also detected by Borghi
et al. (2020) and Costa et al. (2018).

Even though the kaurenoic acid and dicaffeoylquinic acid have m/z values of 301 and 515,
respectively, given them/z rounding done by XCMS and all the preprocessing steps done previ-
ously to model training, a difference of around 2 m/z is acceptable to consider them the same
values and compounds.

From these ions, them/z 301, was tentatively identified as Kaurenoic acid, andm/z 163 was
tentatively identified as Coumaric acid. Bothwere considered important features by the feature
importance method, while Dicaffeoylquinic acid (m/z 515) was selected by the permutation
importance test. Other features could not be tentatively identified.

As observed, both methods returned very different results and this could be due to the bias
of the impurity-based feature importance methods, which can be misleading for high cardi-
nality features, with multiple unique values, which is the case for this study (Pedregosa et al.,
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2011).

According to Pedregosa et al. (2011) and Strobl et al. (2007), the impurity-based feature
importance methods might not be reliable in situations where the variables vary in scale or
present multiple categories. This, however, is often the case in genomics, bioinformatics, and
related disciplines, such as metabolomics. In the present study, the variables were measured
as relative abundances and therefore, they presented a high cardinality (unique values).

Taking this into account, the permutation importance method could present more reliable
results, especially when looking at the permutation importance of the test set. While the fea-
ture importance measure is obtained in the training set, and might not reflect the ability of a
feature to be useful for the model’s predictions and generalize to the test set, the permutation
importance can be performed on both sets.

Figure 24 shows the permutation importance calculated over the test set. For this test, it’s
possible to observe two features (m/z 516 and 326) were in common with the result of the pre-
vious permutation importance test, givingmore confidence in the importance of both features
for theMikaniamodel.

Figure 24: Top 10permutation importances forMikaniamodel on test set. Thebox andwhiskers
are the distribution of the scores obtained in each iteration. On the y-axis, the top 10 most
important features
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Finally, by analyzing the most important features obtained by both methods it is possible
to notice that for this model as well, no single feature was responsible for the model’s entire
performance. This also indicates the importance of analyzing multiple compounds when per-
forming the quality control of herbal medicines, reducing the possibility of intentional or un-
intentional adulteration going undetected.

As mentioned before, if a chemical marker was the best parameter to attest to the quality
control of herbalmedicines, one single feature would present amuch higher importance score
by suchmethods. Since thiswasnot the case, is possible to conclude that chemicalmarker anal-
ysis is not enough to guarantee the quality of herbal medicines, which is the main argument
of the present study in favor of applying other quality control techniques. In other words, a
general profile permits a more trustworthy plant identification method.

3.7 Final Model Testing

The last step to verify the model’s performance is to test the model on completely unseen
data called ‘test set’ (Géron, 2019; Walker, 2022). As mentioned before, the initial step taken
within this study was splitting the data into three folders: train, validation, and test, for both
models. To develop the final model only the train and validation folders were used.

To test the model the test set passed through the whole processing and machine learning
pipeline, as mentioned before. The first step was to convert the data into mzXML using the
MSConvert code present in the Supplementary Material section. Next, the data was processed
using the relevant XCMS script obtained with IPO and the training set. The script used is also
provided in the Supplementary Material section. Finally, the data passed through themachine
learning Pipeline object, where it was normalized, the features were selected and the classifi-
cation was applied.

The final score obtained for the Maytenus model was 0.938, while the final score for the
Mikania model was 0.975. As mentioned before, the training scores obtained by both models
on all experiments were still high, but the data processing steps taken before this final testing
guaranteed a good performance of the model on unseen data. Tables 12 and 13 represent the
confusion matrices for both models.

Table 12: Confusion matrix for Maytenus model. The number 1 represents the positive class,
therefore, only samples fromM. ilicifolia, 0 represents the negative class and any other species
would fall into this class.

Actual
1 0

Pr
ed
ic
te
d

1 137 2

0 7 142

As observed, there was a slightly bigger challenge to classify some samples from the posi-
tive class, for both models, in which seven samples fromM. ilicifolia species and two samples
from theM. laevigata species were classified into their respective negative groups. In terms of
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Table 13: Confusion matrix for Mikania model. The number 1 represents the positive class,
therefore, only samples fromM. laevigata, 0 represents the negative class and any other species
would fall into this class.

Actual
1 0

Pr
ed
ic
te
d

1 118 1

0 2 119

quality control, classifying a ‘good’ sample as an adulterator is safer than classifying adulterator
samples as belonging to the official and accepted species.

A similar misclassification issue was also observed with the models developed by Kharyuk
et al. (2018). In their study, up to 30% of samples weremisclassified on some algorithms, espe-
cially in cases where the differences between the species were subtle. Such issues might have
occurred due to the objective of their model, which was to identify a species among a large
group of options. In their case, to create such a model, the metabolomic method had to be
generic enough to analyze different samples, and therefore, sutle differences between samples
might not be captured. As a result, the data used to train their model would lack specific com-
pounds that could differentiate two similar samples. In other words, the model developed by
the authors was not as specialized as the one created herein.

In the present study, misclassification was much lower as the purpose of the model was to
be efficient in distinguishing a target species from their counterparts, with similar composi-
tion. . These results reinforce the importance of creating specialized quality control methods

for each species, instead of one universal method. Even though the latter would bemuchmore
practical, creating an LC-MS method applicable to a wide range of different samples is a chal-
lenging task. This might cause issues like those observed by Kharyuk et al. (2018), where the
methodmight not be efficient in differentiating the target sample from their counterparts used
as adulterators, which is the most important task in quality control.

However, even though the finalmodels obtained herein had high scores, this study presents
some limitations. The first limitation is that all samples were obtained from the same location
and were analyzed in the same equipment, within the same laboratory. Additionally, for the
M. laevigatamodel, all samples were also harvested on the same day.

For these reasons, it is possible that such high scores would only be obtained for samples in
similar situations. One way to verify such an assumption would be to test the present models
on samples harvested and analyzed in other locations and using different equipment.

Another limitation of this work is the analytical method itself. The LC-MS methods used
herein were optimized for each target species specifically, to detect the highest possible num-
ber of compounds possible. Like the issue mentioned before, the score obtained could be the
result of themodel over-adjusting to specific analytical conditions. It’s possible that if the sam-
ples were analyzed with different analytical methods, the final score would be much lower.
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To improve the work in this regard, it could be possible to develop a method in which the
Machine Learningmodel would be able to classify the samples correctly. However, if this study
was expanded to all Brazilianherbalmedicines andothermodelswere created for each species,
this unified method could become progressively harder to develop. Therefore it seems more
applicable to develop one method for each species of medicinal plant.

Finally, it is also possible that both models need to be retrained from time to time. Since
the objective of the models is to classify samples derived from living organisms, it is possible
that the species’ chemical composition changes over time, and metabolic patterns used by the
models to classify the samples become less distinguishable.

As mentioned before, numerous studies have demonstrated how plants react to environ-
mental changes (Eckardt et al., 2022). Since the overall global temperature has been gradually
increasing and changes in the climate have been observed (Harvey et al., 2023; Eckardt et al.,
2022), it is possible that the species will modify their chemical composition to better adapt
to these conditions and, therefore, the models would need to be retrained if their efficiency
dropped over time.

3.8 Machine Learning Application Proof-of-concept

Asmentioned before, the present study aims to create a system for quality control ofmedic-
inal plants combining Metabolomics and Machine Learning techniques. To achieve this goal,
a complex pipeline of data preprocessing and Machine Learning classification was created.

At the current state, if a user desired to test the solution presented herein on real samples,
the necessary elements to achieve this objective would be the mzXML code to transform the
raw data into mzXML format, the XCMS R script to process the data and generate the features
table, the Python script to process the data and generate the feature names, normalize the data,
select the relevant features and run the machine learning prediction. All these scripts would
require the necessary software installations, the correct packages and library versions, and the
expertise to use these programming languages.

To simplify and democratize this process, an application was developed to wrap around the
wholemetabolomics andmachine learning pipeline. With a user-friendly application, any user
would be able to test the system created in this study without much programming expertise or
the need to install and configure their system.

Additionally, creating an application and a virtual environment with all necessary config-
urations would enable reproducibility. According to (Strangfeld, 2022), “a computational envi-
ronment is a representation of everything that can influence computations done inside them
[...] including computer hardware, operating systems, and software libraries”. By providing
access to an application with the computational environment kept constant, reproducibility is
guaranteed.

To create this proof-of-concept the Python library Streamlit was used. Streamlit is a frame-
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work that allows building data applications using Python and fewer lines of code than tradi-
tional full-stack methods. With Streamlit there is no need to code the backend of the applica-
tion,manageHTTP requests, orwriteHTMLandCSS code for the frontend (Shukla et al., 2021).

Figure 25 illustrates the application´s interface, which can also be accessed via the link
https://medplant-ai.streamlit.app/.

The first step in the application is to select the target species. On the ‘backend’ of the ap-
plication, selecting a species will change the code that will be applied in the uploaded data, as
both XCMS and machine learning model codes are different for both species.

Figure 25: Machine Learning application’s interface. On the left side, an instructions panel
containing all the necessary steps the user needs to take to use the application properly. At the
center, the application’s interface is where the user will load the relevant data to be analyzed.

The next step is to upload the data into a zipped folder. Within the zipped folder, other sub-
folders have to be present, for each sample that will be tested. These folders are necessary for
XCMS preprocessing, which uses the folders to determine the groups.

As mentioned before, the groups within XCMS are important to determine which features
are ‘real’ and which ones will be trimmed. The data within the sub-folders must be in mzXML
format and the application and code needed to achieve this are provided in a left panel. This
step was not added to the application due to technical limitations.

Within the ’back-end’ of the application, the uploaded folderwill be unzipped and theXCMS
preprocessing will start, applying the relevant code depending on the selected species. Next,
the data will pass to the machine learning model to be tested and after the prediction is ob-
tained, it will be displayed on the screen, with the percentage of confidence for each sample to
belong to the target species.

https://medplant-ai.streamlit.app/
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4 Conclusion

Currently, the Brazilian Pharmacopoeia’s guidelines for quality control of regulated medic-
inal herbs rely on limited methods that focus on specific chemical markers, requiring ex-
pensive analytical standards. The alternative presented herein, which associates Untargeted
MetabolomicswithMachine Learning offers amore efficient, trustworthy, and cheaperway for
the quality control of Brazilian medicinal species, specificallyMaytenus ilicifolia andMaytenus
aquifolium.

By combining thesemethodologies, we have developed two robustmodels that offer several
advantages over traditional approaches, including efficiency, reliability, and cost-effectiveness.
Our results showcase the power of machine learning algorithms in accurately classifying sam-
ples, achieving impressive MCC scores of 94% and 97% forM. ilicifolia andM. aquifolium, re-
spectively.

These high scores highlight the efficacy of our approach in distinguishing between target
samples, even among closely related species. Moreover, the utilization ofmachine learning en-
ables rapid sample testing and data analysis, contributing to enhanced efficiency in the quality
control process.

Furthermore, the synergy betweenmachine learning andmetabolomics enhances the con-
sistency and reliability of results. By detecting abnormal patterns in sample composition,
our approach ensures more trustworthy outcomes, particularly in scenarios with variations
in growing conditions or the presence of adulterants. This aspect highlights the robustness of
our method and its potential for application in diverse real-world settings.

An additional advantage of applying machine learning to metabolomics data is the elimi-
nation of the need for compound identification. Instead, themodels can discern differences in
data patternswithout relying on specific analytical standards, significantly reducing costs com-
pared to traditional methods. This cost-effectiveness makes our approach highly appealing for
widespread adoption in the field of herbal medicine quality control. To the best of our knowl-
edge, no similar strategy has been proposed in this field yet, especially for Brazilian medicinal
species

Moreover, during the model training and validation, we employed both intra-dataset and
inter-dataset validation techniques to ensure the robustness of ourmodels. While intra-dataset
validation is more commonly used, our adoption of inter-dataset validation allowed for amore
realistic assessment ofmodel performance across different datasets. This comparative analysis
provided valuable insights into the generalization capabilities of our models and strengthened
their reliability in real-world scenarios.

However, the present work presents limitations that can be addressed in the future. The
next steps are to verify themodel’s performance on samples harvested and analyzed at different
locations, equipment, and analytical methods. If the models continue to perform well, the
next step is to improve/recreate the web application to allow the method to be used in actual
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scenarios of quality control testing.

Finally, should these methods gain widespread adoption, further models can be developed
for each Brazilian medicinal species described in the Brazilian Pharmacopoeia. This aims to
improve the quality control of regulated medicinal herbs and, hopefully, establish the associa-
tion between Untargeted Metabolomics and Machine Learning as the standard quality control
method.
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A Supplementary Material

1 msconvert *RAW --mzXML --zlib -o mzXML --filter peakPicking cwt snr=0.1 peakSpace

=0.1 msLevel=1-

Code Listing 1: MSConvert

1 library(xcms)

2 library(CAMERA)

3 library(IPO)

4

5 datafiles <- list.files("./[...]/mzXML",

6 recursive = TRUE, full.names = TRUE)

7

8 files_list <- list(datafiles)

9

10 # Peak picking parameters optimization

11 peakpickingParameters <- getDefaultXcmsSetStartingParams(’matchedFilter’)

12

13 time.xcmsSet <- system.time({

14 resultPeakpicking <-

15 optimizeXcmsSet(files = datafiles[1205:1280],

16 params = peakpickingParameters,

17 nSlaves = 1,

18 subdir = "./IPO",

19 plot = TRUE)

20 })

21

22 resultPeakpicking$best_settings$result

23

24 optimizedXcmsSetObject <- resultPeakpicking$best_settings$xset

25

26

27 # Retention time correction optimization

28 retcorGroupParameters <- getDefaultRetGroupStartingParams()

29 time.RetGroup <- system.time({

30 resultRetcorGroup <-

31 optimizeRetGroup(xset = optimizedXcmsSetObject,

32 params = retcorGroupParameters,

33 nSlaves = 1,

34 subdir = "./IPO",

35 plot = TRUE)

36 })

37

38 writeRScript(resultPeakpicking$best_settings$parameters,

39 resultRetcorGroup$best_settings)

40

41 time.xcmsSet
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42 time.RetGroup

Code Listing 2: IPO

1 splitfolders . --ratio 0.8 0.2 --group_prefix 3 --seed 2187

Code Listing 3: train test split

1 xset <- xcmsSet(

2 method = "matchedFilter",

3 fwhm = 18,

4 snthresh = 3,

5 step = 1,

6 steps = 5,

7 sigma = 12.9522677085103,

8 max = 5,

9 mzdiff = 1,

10 index = FALSE)

11

12 xset2 <- retcor(

13 xset,

14 method = "obiwarp",

15 plottype = "none",

16 distFunc = "cor_opt",

17 profStep = 1,

18 center = 13,

19 response = 1,

20 gapInit = 0.4,

21 gapExtend = 2.4,

22 factorDiag = 2,

23 factorGap = 1,

24 localAlignment = 1)

25

26 xset3 <- group(

27 xset2,

28 method = "density",

29 bw = 25,

30 mzwid = 0.1,

31 minfrac = 0.1,

32 minsamp = 10,

33 max = 100)

34

35 xset4 <- fillPeaks(xset3)

36

37 an <- xsAnnotate(xset4)

38 anF <- groupFWHM(an, perfwhm = 0.6)

39 anI <- findIsotopes(anF, mzabs=0.01)

40 anIC <- groupCorr(anI, cor_eic_th=0.75)

41 anFA <- findAdducts(anIC, polarity="negative")

42

43 write.csv(getPeaklist(anIC), file="maytenus.csv")

Code Listing 4: xcms experiment for Maytenus
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1 xset <- xcmsSet(

2 method = "matchedFilter",

3 fwhm = 28,

4 snthresh = 3,

5 step = 0.15,

6 steps = 3,

7 sigma = 11.8906064209275,

8 max = 5,

9 mzdiff = 0.35,

10 index = FALSE)

11

12 xset2 <- retcor(

13 xset,

14 method = "obiwarp",

15 plottype = "none",

16 distFunc = "cor_opt",

17 profStep = 1,

18 center = 68,

19 response = 1,

20 gapInit = 0.2,

21 gapExtend = 2.4,

22 factorDiag = 2,

23 factorGap = 1,

24 localAlignment = 0)

25

26 xset3 <- group(

27 xset2,

28 method = "density",

29 bw = 29.2,

30 mzwid = 0.015,

31 minfrac = 0.2,

32 minsamp = 1,

33 max = 50)

34

35 xset4 <- fillPeaks(xset3)

36

37 an <- xsAnnotate(xset4)

38 anF <- groupFWHM(an, perfwhm = 0.6)

39 anI <- findIsotopes(anF, mzabs=0.01)

40 anIC <- groupCorr(anI, cor_eic_th=0.75)

41 anFA <- findAdducts(anIC, polarity="negative")

42

43 write.csv(getPeaklist(anIC), file=’mikania.csv’)

Code Listing 5: xcms experiment for Mikania

1

2 library(ggfortify)

3 library(cluster)

4 library(patchwork)

5

6 # Maytenus plots

7
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8 data_posneg <- read.csv(’./maytenus_qc_posneglabel.csv’, sep = ",")

9 data_species <- read.csv(’./maytenus_qc_specieslabel.csv’, sep = ",")

10

11 pca_data_posneg = data_posneg[3:268]

12 pca_data_species = data_species[3:268]

13

14 pca_res_posneg <- prcomp(pca_data_posneg, scale. = TRUE, center = TRUE)

15 pca_res_species <- prcomp(pca_data_species, scale. = TRUE, center = TRUE)

16

17 png("PCA_maytenus.png", height = 480, width = 1080 )

18 posneg <- autoplot(pca_res_posneg, data = data_posneg,

19 colour = ’Label’, size=2)

20 species <- autoplot(pca_res_species, data = data_species,

21 colour = ’Label’, size=2)

22 posneg + species

23 dev.off()

24

25

26 # Mikania plots

27

28 data_posneg <- read.csv(’./mikania_qc_posneg.csv’, sep = ",")

29 data_species <- read.csv(’./mikania_ipoqc_species.csv’, sep = ",")

30

31 pca_data_posneg = data_posneg[3:166]

32 pca_data_species = data_species[3:166]

33

34 pca_res_posneg <- prcomp(pca_data_posneg, scale. = TRUE, center = TRUE)

35 pca_res_species <- prcomp(pca_data_species, scale. = TRUE, center = TRUE)

36

37 png("PCA_mikania.png", height = 480, width = 1080 )

38 posneg <- autoplot(pca_res_posneg, data = data_posneg,

39 colour = ’Label’, size=2)

40 species <- autoplot(pca_res_species, data = data_species,

41 colour = ’Label’, size=2)

42 posneg + species

43 dev.off()

Code Listing 6: PCA plot functions applied to create PCAs for both species

1

2 def Tus_normalized(injection_order, xcms_table, class_column, color_class = True,

color = ’dark_red’, plot_title = ’Total Useful Signal’, save_plot = True,

figure_name = ’TUS.tif’,figure_format = ’tif’, figure_resolution = 300,

directory = ’./’):

3

4 """

5 injection_order: Path to the injection order table - Must contain ONE column

named ’samples’ with the samples ordered according to the injection order

6 xcms_table: Path to the xcms table. The first column should be named ’samples’

and contain the sample names in the same format as the injection order table.

The following columns should each contain one feature (m/z and retention time).

7 plot_title: Title of the plot. Must be written between quotes (" ").

8 color: Color of the plot. Supported values are: aquamarine, green, light_blue,
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dark_blue, orange, red, dark_red, magenta, pink, purple, brown and grey

9 save_plot: If True, save the plot as a file

10 figure_name: File name. The name MUST contain the file extension

11 figure_format: File format such as ’png’, ’tif’, ’jpeg’ etc.

12 figure_resolution: File resolution in dpi. If ’figure’, the saved figure will

have the same resolution as the one presented

13 directory: Folder in which the plot will be saved

14

15 """

16

17 colors = {’aquamarine’: ’Dark2’,

18 ’green’: ’YlGn_r’,

19 ’light_blue’: ’Spectral_r’,

20 ’dark_blue’:’Blues_r’ ,

21 ’orange’: ’Wistia_r’,

22 ’red’: ’Set1’,

23 ’dark_red’: ’Reds_r’,

24 ’magenta’: ’PuRd_r’,

25 ’pink’: ’PiYG’ ,

26 ’purple’: ’Purples_r’ ,

27 ’brown’: ’Oranges_r’,

28 ’grey’: ’Greys_r’,

29 ’inferno’: ’inferno’,

30 ’red_blue’: ’RdBu’}

31

32 if color in colors.keys():

33 # loading the datasets

34 order = pd.read_csv(injection_order)

35 intensity_table = pd.read_csv(xcms_table)

36

37 # reordering the intensity table

38 ordered_table = pd.merge(order, intensity_table, how=’outer’)

39 ordered_table[’sum’] = ordered_table.sum(numeric_only=True, axis=1)

40

41 # indexes to list

42 index = ordered_table.index.tolist()

43

44 # PLOT

45

46 # figsize

47 plt.figure(figsize=(15,8))

48

49 plt.ylim(min(ordered_table[’sum’]), max(ordered_table[’sum’]))

50

51 # theme

52 custom_params = {"axes.spines.right": False, "axes.spines.top": False}

53 sns.set_theme(style = ’ticks’,rc=custom_params, palette=colors[color])

54

55 if color_class:

56

57 ax = sns.scatterplot(x=index , y = ordered_table[’sum’], hue =

ordered_table[class_column], legend = ’full’, alpha=0.7, s=80)
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58

59 else:

60 ax = sns.scatterplot(x=index , y = ordered_table[’sum’], alpha=0.7, s

=80)

61

62 # titles and axis labels

63 ax.set_xlabel("Injection Order", fontsize = 13)

64 ax.set_ylabel("Intensity", fontsize = 13)

65 ax.set_title(plot_title, fontsize = 15);

66

67 # mean and std lines

68 mean = [np.mean(ordered_table[’sum’])]*len(ordered_table[’sum’])

69 std = [np.std(ordered_table[’sum’])][0]

70

71 mean_line = ax.plot(index,mean, label=’Mean’, linestyle=’--’, color = ’k’)

72 mean_line_1 = ax.plot(index,([x+std for x in mean]), label=’Mean + 1 Std’,

linestyle=’--’, color = ’darkgrey’)

73 mean_line_2 = ax.plot(index,([x+2*std for x in mean]), label=’Mean + 2 Std’,

linestyle=’--’, color = ’darkgrey’)

74 mean_line_3 = ax.plot(index,([x+3*std for x in mean]), label=’Mean + 3 Std’,

linestyle=’--’, color = ’darkgrey’)

75 mean_line_m1 = ax.plot(index,([x-std for x in mean]), label=’Mean - 1 Std’,

linestyle=’--’, color = ’darkgrey’)

76 mean_line_m2 = ax.plot(index,([x-2*std for x in mean]), label=’Mean - 2 Std’

, linestyle=’--’, color = ’darkgrey’)

77 mean_line_m3 = ax.plot(index,([x-3*std for x in mean]), label=’Mean - 3 Std’

, linestyle=’--’, color = ’darkgrey’)

78

79 # save plot

80 if save_plot:

81 plt.savefig(directory + figure_name, format = figure_format, dpi =

figure_resolution)

82

83 return plt.show()

84

85 else:

86 print(f"Please enter a valid color. \nSupported values are: \n {’, ’.join

([*colors])}")

Code Listing 7: MSTUS plot function

Table 14: Features selected by the three methods for the Maytenus experiment

Mutual Information RFE Boruta
- 114_53.0 114_53.0
- - 116_55.7
118_109.9 118_109.9 118_109.9
- 132_560.4 -
133_55.4 133_55.4 133_55.4
- 143_560.1 143_560.1
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- 144_560.2 144_560.2
164_211.0 164_211.0 164_211.0
178_42.8 178_42.8 178_42.8
181_42.1 181_42.1 181_42.1
- 185_331.6 185_331.6
191_222.3 - 191_222.3
- 191_90.0 191_90.0
192_47.4 192_47.4 192_47.4
193_46.8 193_46.8 193_46.8
194_45.3 194_45.3 194_45.3
195_44.1 195_44.1 195_44.1
203_91.5 203_91.5 203_91.5
- 206_333.5 -
207_328.6 207_328.6 -
209_46.9 209_46.9 209_46.9
210_47.9 210_47.9 210_47.9
217_42.8 217_42.8 217_42.8
219_44.1 219_44.1 219_44.1
220_44.4 220_44.4 220_44.4
221_44.6 221_44.6 221_44.6
222_45.2 222_45.2 222_45.2
233_49.0 233_49.0 233_49.0
234_48.4 234_48.4 234_48.4
245_247.7 245_247.7 -
257_328.2 - 257_328.2
264_47.6 264_47.6 264_47.6
- 264_569.4 264_569.4
- 265_569.9 265_569.9
- 266_568.7 266_568.7
271_41.4 271_41.4 271_41.4
272_256.7 272_256.7 272_256.7
- 272_38.4 272_38.4
273_260.2 273_260.2 273_260.2
274_261.2 - 274_261.2
276_41.6 276_41.6 276_41.6
277_43.1 277_43.1 277_43.1
278_43.9 278_43.9 278_43.9
- 279_296.8 279_296.8
- 281_44.8 -
- - 283_108.4
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287_72.7 287_72.7 287_72.7
289_226.5 289_226.5 289_226.5
290_195.7 290_195.7 290_195.7
293_312.1 293_312.1 293_312.1
293_443.9 293_443.9 293_443.9
294_443.5 294_443.5 294_443.5
295_441.3 295_441.3 295_441.3
303_47.8 303_47.8 303_47.8
305_248.6 - -
309_127.7 - -
310_426.4 310_426.4 310_426.4
311_151.2 311_151.2 -
311_431.5 - 311_431.5
312_164.2 312_164.2 312_164.2
- 318_46.5 -
- 319_46.0 319_46.0
- 320_46.4 -
- 321_46.6 -
326_238.5 326_238.5 -
327_193.6 327_193.6 327_193.6
328_382.3 328_382.3 328_382.3
329_192.2 329_192.2 329_192.2
329_390.6 329_390.6 329_390.6
- - 330_239.4
- 332_228.4 -
335_229.4 - -
336_227.5 - 336_227.5
- 339_46.3 339_46.3
344_329.6 344_329.6 344_329.6
348_203.0 348_203.0 348_203.0
353_197.1 353_197.1 353_197.1
353_222.5 353_222.5 353_222.5
355_198.2 355_198.2 355_198.2
368_264.2 368_264.2 368_264.2
369_228.8 369_228.8 369_228.8
370_212.5 370_212.5 370_212.5
371_210.2 371_210.2 371_210.2
378_43.7 - -
379_43.1 - -
380_43.3 - -
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381_43.3 - -
382_43.7 - -
- 388_225.9 -
393_165.1 393_165.1 393_165.1
393_174.8 - 393_174.8
396_178.4 - -
410_366.5 410_366.5 410_366.5
- - 414_42.4
423_409.8 - 423_409.8
428_314.9 - 428_314.9
429_44.1 429_44.1 429_44.1
432_262.4 432_262.4 432_262.4
433_265.2 - -
439_374.3 439_374.3 439_374.3
- 440_48.3 -
- 451_169.5 -
452_222.3 452_222.3 452_222.3
453_221.5 453_221.5 453_221.5
456_168.3 456_168.3 456_168.3
- 457_167.9 457_167.9
463_281.8 463_281.8 463_281.8
464_252.1 464_252.1 464_252.1
- 469_132.8 469_132.8
474_46.0 - -
475_46.4 - -
476_47.3 - -
479_229.8 - 479_229.8
483_366.5 483_366.5 483_366.5
487_396.1 - -
515_327.3 515_327.3 515_327.3
- 516_44.6 -
517_326.3 517_326.3 517_326.3
- 517_43.9 -
525_290.2 525_290.2 525_290.2
526_360.5 526_360.5 526_360.5
533_250.6 533_250.6 533_250.6
535_44.2 - -
536_43.8 - -
538_43.7 - -
545_257.3 545_257.3 545_257.3
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547_256.5 547_256.5 547_256.5
548_256.2 548_256.2 548_256.2
560_299.9 560_299.9 560_299.9
561_208.6 561_208.6 561_208.6
561_236.1 561_236.1 561_236.1
562_259.5 562_259.5 562_259.5
564_239.2 564_239.2 564_239.2
- 566_134.7 566_134.7
- 569_280.4 569_280.4
574_146.2 574_146.2 574_146.2
577_177.9 577_177.9 577_177.9
578_221.3 578_221.3 578_221.3
579_224.5 579_224.5 579_224.5
579_225.8 - 579_225.8
593_276.4 593_276.4 593_276.4
594_271.9 594_271.9 594_271.9
597_205.6 597_205.6 597_205.6
- 598_207.0 598_207.0
607_43.4 - -
610_259.2 - 610_259.2
610_261.6 610_261.6 610_261.6
612_308.9 612_308.9 612_308.9
615_44.8 - 615_44.8
- 624_82.2 624_82.2
626_130.0 626_130.0 626_130.0
- 627_148.0 627_148.0
652_283.6 - -
669_437.4 669_437.4 669_437.4
688_300.8 688_300.8 688_300.8
690_299.8 690_299.8 690_299.8
690_432.3 690_432.3 690_432.3
691_299.4 691_299.4 691_299.4
691_300.9 691_300.9 691_300.9
691_433.7 691_433.7 691_433.7
692_432.8 692_432.8 692_432.8
704_436.3 704_436.3 704_436.3
705_436.4 705_436.4 705_436.4
707_222.0 707_222.0 707_222.0
723_301.1 723_301.1 723_301.1
725_314.3 725_314.3 725_314.3
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727_361.7 727_361.7 727_361.7
739_256.6 739_256.6 739_256.6
740_259.2 740_259.2 740_259.2
- 746_437.1 746_437.1
- 747_433.5 747_433.5
- 747_436.3 747_436.3
756_241.1 756_241.1 756_241.1
777_258.4 - -
778_255.7 - -
- - 818_320.2
- 827_42.9 -
830_291.0 830_291.0 830_291.0
831_278.4 831_278.4 831_278.4
832_275.7 832_275.7 832_275.7
833_166.8 833_166.8 833_166.8
833_291.0 833_291.0 833_291.0
834_230.7 834_230.7 834_230.7
835_202.6 835_202.6 835_202.6
836_273.8 836_273.8 836_273.8
848_182.7 848_182.7 848_182.7
849_190.0 849_190.0 849_190.0
850_216.6 - 850_216.6
851_228.7 851_228.7 851_228.7
866_204.8 - -
868_226.2 - -
- 893_42.7 893_42.7
902_221.9 902_221.9 902_221.9
918_205.7 918_205.7 918_205.7

Table 15: Features selected by the three methods for the Mikania experiment

Mutual Information RFE Boruta
- 1000_338.1 1000_338.1
- 101_572.8 -
111_45.2 111_45.2 111_45.2
115_46.5 115_46.5 115_46.5
117_572.4 117_572.4 117_572.4
119_337.1 119_337.1 119_337.1
- 119_41.3 -
121_320.5 121_320.5 121_320.5
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133_46.5 133_46.5 133_46.5
- 136_572.4 -
- 159_37.5 159_37.5
- 161_323.4 161_323.4
- 161_572.4 -
163_247.9 163_247.9 163_247.9
163_337.4 163_337.4 163_337.4
165_230.9 165_230.9 165_230.9
165_321.0 165_321.0 165_321.0
165_43.4 - 165_43.4
- 179_41.6 179_41.6
181_42.3 181_42.3 181_42.3
- 187_334.8 187_334.8
191_176.4 191_176.4 191_176.4
- 191_597.4 -
204_46.9 204_46.9 204_46.9
- 205_572.8 -
210_44.6 210_44.6 210_44.6
216_43.0 - 216_43.0
217_43.2 217_43.2 217_43.2
- 217_572.8 217_572.8
- 241_572.8 -
- 274_37.0 274_37.0
278_530.2 278_530.2 278_530.2
- - 290_229.7
302_547.3 302_547.3 -
306_209.5 306_209.5 -
318_433.7 318_433.7 318_433.7
326_181.2 326_181.2 326_181.2
326_247.9 326_247.9 326_247.9
328_231.5 328_231.5 328_231.5
- 338_337.0 338_337.0
- 342_40.8 -
- 345_578.0 345_578.0
- 350_172.5 350_172.5
354_176.4 354_176.4 354_176.4
354_323.2 354_323.2 354_323.2
362_247.4 362_247.4 362_247.4
372_250.1 372_250.1 372_250.1
- - 378_43.5
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- 380_43.1 -
- 388_39.7 -
388_515.4 388_515.4 388_515.4
390_515.1 390_515.1 390_515.1
- 400_522.1 400_522.1
406_328.8 406_328.8 406_328.8
- 410_348.7 410_348.7
424_380.9 424_380.9 424_380.9
434_279.6 434_279.6 434_279.6
440_356.3 440_356.3 440_356.3
442_356.4 - 442_356.4
- 448_317.3 -
448_530.3 448_530.3 448_530.3
- 450_298.3 -
- 472_40.0 -
478_319.0 478_319.0 478_319.0
482_269.5 482_269.5 482_269.5
- 484_349.2 484_349.2
488_348.4 488_348.4 488_348.4
490_371.4 490_371.4 490_371.4
492_344.6 492_344.6 492_344.6
494_299.4 - 494_299.4
- 500_338.9 500_338.9
- 508_338.3 -
- 514_350.0 514_350.0
516_323.2 516_323.2 516_323.2
518_327.1 518_327.1 518_327.1
526_269.6 526_269.6 526_269.6
- 530_342.2 530_342.2
534_211.1 534_211.1 534_211.1
- 534_43.5 534_43.5
548_530.5 548_530.5 548_530.5
- 550_343.8 550_343.8
560_332.3 560_332.3 560_332.3
562_243.2 562_243.2 562_243.2
562_321.3 562_321.3 562_321.3
572_353.1 572_353.1 572_353.1
574_377.6 574_377.6 574_377.6
- 578_210.6 578_210.6
580_230.9 580_230.9 580_230.9
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594_310.9 594_310.9 594_310.9
- - 610_280.1
626_333.6 626_333.6 626_333.6
640_284.1 640_284.1 640_284.1
652_181.2 652_181.2 652_181.2
652_247.9 652_247.9 652_247.9
652_319.3 652_319.3 652_319.3
654_247.9 654_247.9 654_247.9
655_331.2 655_331.2 655_331.2
656_231.0 - 656_231.0
674_247.9 674_247.9 674_247.9
680_179.4 680_179.4 680_179.4
708_176.2 708_176.2 708_176.2
- 726_341.4 726_341.4
740_274.3 - 740_274.3
756_258.9 756_258.9 756_258.9
834_287.1 834_287.1 834_287.1
876_360.2 876_360.2 876_360.2
904_381.6 904_381.6 904_381.6
918_353.8 918_353.8 918_353.8
920_360.1 920_360.1 920_360.1
- 923_330.0 923_330.0
- 940_376.4 940_376.4
946_391.7 - 946_391.7
962_367.5 - 962_367.5
- 988_298.7 988_298.7

Table 16: Permutation Importance for Maytenus model on train and test set

Feature Permutation Importance (train) Permutation Importance (test)
739_256.6 0.023640016 0.412407509
133_55.4 0.009833473 -0.001245575
289_226.5 0.005931235 0.044483909
515_327.3 0.004041797 0
561_208.6 0.002915579 0
353_222.5 0.002907578 0.004018015
487_396.1 0.002276546 0
579_224.5 0.001240925 0.005918971
370_212.5 0.001065229 0
578_221.3 0.000683383 0
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432_262.4 0.00063564 0
326_238.5 0.000569425 0
834_230.7 0.000426886 -0.001798233
329_390.6 0.000355981 0
310_426.4 0.000284785 0
192_47.4 0.000276801 0
368_264.2 0.000213589 0
433_265.2 0.000212281 0
193_46.8 0.000211026 0
194_45.3 0.000211026 0
423_409.8 0.000142392 0
439_374.3 0.000142392 0
652_283.6 0.000142392 0
203_91.5 7.12E-05 -0.000224779
328_382.3 7.12E-05 0
525_290.2 7.12E-05 0
533_250.6 7.12E-05 0
118_109.9 0 0
164_211.0 0 0
191_222.3 0 0
207_328.6 0 0
209_46.9 0 0
210_47.9 0 0
221_44.6 0 0
222_45.2 0 0
233_49.0 0 0
234_48.4 0 0
245_247.7 0 0
257_328.2 0 0
264_47.6 0 0
271_41.4 0 0
272_256.7 0 0
273_260.2 0 0.000238363
274_261.2 0 0
276_41.6 0 0
277_43.1 0 0
287_72.7 0 0
293_312.1 0 0
293_443.9 0 0
294_443.5 0 0
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295_441.3 0 0
303_47.8 0 0
305_248.6 0 0
309_127.7 0 0
311_431.5 0 0
329_192.2 0 0
336_227.5 0 0
344_329.6 0 0
348_203.0 0 0
371_210.2 0 0
378_43.7 0 0
379_43.1 0 0
380_43.3 0 0
381_43.3 0 0
382_43.7 0 0
393_165.1 0 0
393_174.8 0 0
396_178.4 0 0
410_366.5 0 0
428_314.9 0 0
429_44.1 0 0
456_168.3 0 0
463_281.8 0 0.000715088
464_252.1 0 0
474_46.0 0 0
475_46.4 0 0
476_47.3 0 0
479_229.8 0 0
483_366.5 0 0
517_326.3 0 0
526_360.5 0 0
535_44.2 0 0
536_43.8 0 0
538_43.7 0 0
545_257.3 0 0
547_256.5 0 0
548_256.2 0 0
560_299.9 0 0
564_239.2 0 0
574_146.2 0 0
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577_177.9 0 0
593_276.4 0 -0.002922128
594_271.9 0 0
597_205.6 0 0
607_43.4 0 0
610_259.2 0 0
610_261.6 0 0.000251946
612_308.9 0 0
615_44.8 0 0
626_130.0 0 0
669_437.4 0 0
690_432.3 0 0
691_433.7 0 0
692_432.8 0 0
704_436.3 0 0
705_436.4 0 0
723_301.1 0 0
725_314.3 0 0
727_361.7 0 0
777_258.4 0 0
778_255.7 0 0
833_166.8 0 0
835_202.6 0 0
848_182.7 0 0
849_190.0 0 0
850_216.6 0 0
866_204.8 0 0
868_226.2 0 0
195_44.1 -7.84E-06 0
327_193.6 -7.13E-05 0
335_229.4 -7.13E-05 0
278_43.9 -7.38E-05 0
311_151.2 -7.38E-05 0
355_198.2 -7.38E-05 0
707_222.0 -7.90E-05 0
353_197.1 -0.000147518 0
452_222.3 -0.000155207 0
851_228.7 -0.000214025 -0.003596465
691_300.9 -0.000285512 0
836_273.8 -0.000287784 0
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690_299.8 -0.000356708 0
831_278.4 -0.000374787 0
217_42.8 -0.000499391 0
220_44.4 -0.000499391 0
688_300.8 -0.000499391 0
830_291.0 -0.000499537 0
691_299.4 -0.000570733 0
312_164.2 -0.000590073 0
832_275.7 -0.000665715 0
178_42.8 -0.000934693 0
181_42.1 -0.000934693 -0.00537478
833_291.0 -0.001015251 0
756_241.1 -0.001455388 -0.000324231
290_195.7 -0.001506942 0
369_228.8 -0.001514776 -0.002249194
579_225.8 -0.001653519 0
562_259.5 -0.001713057 0
453_221.5 -0.001854882 0
561_236.1 -0.002102275 0.043213462
219_44.1 -0.0034285 -0.001348675
918_205.7 -0.003570154 0
902_221.9 -0.003746026 0
740_259.2 -0.006506251 0

Table 17: Feature Importance and Permutation importance of all Mikania’s features

Feature Feature Importance Permutation Importance (train set) Permutation Importance (test set)
111_45.2 0.064567327 0.002475816 0.00027443
115_46.5 0.081479406 0.003412564 0.004665311
117_572.4 0.099477111 0.004944364 0.003018731
119_337.1 0.025399968 0.000681905 0
121_320.5 0.115523472 0.001963578 0.006388028
133_46.5 0.093537334 0.004178571 0.003293161
163_247.9 0.039676307 0.002901396 0.003304352
163_337.4 0.077966985 0.003412353 0
165_230.9 0.044877252 0.00213411 0
165_321.0 0.017898948 0.001792832 0
165_43.4 0.032383974 0.002219697 0.007135182
181_42.3 0.005270267 0.003497082 0.003284225
191_176.4 0.055699771 0.002731506 0
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204_46.9 0.008988624 0.002048951 0.00192101
210_44.6 0.009694742 0.002219697 0.001639923
216_43.0 0.003172587 0.002561189 0.005214171
217_43.2 0.034463292 0.002390443 0
278_530.2 0.005646886 0.001878205 0.004937522
302_547.3 0.052815566 0.002561189 0.008232902
306_209.5 0.013979367 0.00230507 0.001084175
318_433.7 0.004973705 0.002816665 0.005223124
326_181.2 0.016297704 0.003667827 0
326_247.9 0.007370505 0.004348887 0.012233796
328_231.5 0.002219869 0.003412778 0.005760868
354_176.4 0.005380272 0.005008755 0.005927319
354_323.2 0.000962123 0.006899834 0
362_247.4 0.000362467 0.00145134 0.000294706
372_250.1 0.000619971 0.002390443 -0.000634658
388_515.4 0.001982654 0.003157301 -0.001975191
390_515.1 0.001573323 0.002134324 0.00192101
406_328.8 0.002194823 0.002560974 -0.00753783
424_380.9 0.001141995 0.003327405 0.000238307
434_279.6 0.000872619 0.002304856 0
440_356.3 0.002080603 0.004859842 0.001349669
442_356.4 0.002934182 0.002390443 0.00082329
448_530.3 0.000395911 0.002561189 -0.00479808
478_319.0 0.003327269 0.002475816 0.006037461
482_269.5 0.002705165 0.001109633 -0.002489843
488_348.4 0.000405449 0.002731506 0.001678028
490_371.4 0.000301747 0.002390443 0.001214085
492_344.6 0.004693607 0.002475816 0.003293161
494_299.4 0.00115183 0.003923305 -0.002249621
516_323.2 0.002053488 0.008191088 0.016071432
518_327.1 0.004382878 0.002561189 0.005488601
526_269.6 0.000133544 0.002730222 -0.004249094
534_211.1 0.001447268 0.002560974 0.008232902
548_530.5 0.001250009 0.000426865 -0.00479808
560_332.3 0.00201752 0.007324567 0
562_243.2 0.006543497 0.00238916 0
562_321.3 0.001128029 0.002475816 0
572_353.1 0.00184087 0.002390443 -0.003873089
574_377.6 0.000271956 0.000510943 -0.002528361
580_230.9 0.001577509 0.002475816 -0.000562405
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594_310.9 0.00386742 0.003242032 0.007684042
626_333.6 0.001351263 0.002390443 0.002737643
640_284.1 0.000978763 0.002560546 -0.003376254
652_181.2 0.000725123 0.003072142 0
652_247.9 0.000864124 0.00255969 0
652_319.3 0.001162718 0.002475816 -0.003873089
654_247.9 0.000295869 0.002048951 -0.003873089
655_331.2 0.002237538 0.002646347 0
656_231.0 0.001044332 0.002730222 0.00192101
674_247.9 0.003302076 0.001878205 0
680_179.4 0.000397582 0.001792618 0.002739862
708_176.2 0.000752331 0.003412565 0.004001385
740_274.3 0.001297653 0.002304642 0.002157058
756_258.9 0.003014177 0.001707245 0
834_287.1 0.000854902 0.001707459 0.003842021
876_360.2 0.003156157 0.002390443 -0.001936545
904_381.6 0.000692907 0.00213411 0.001363274
918_353.8 0.000403918 0.001963578 -0.003873089
920_360.1 0.000509524 0.004178996 0.00054886
946_391.7 0.002580331 0.002731292 0.002469871
962_367.5 0.001397738 0.001963578 0.006037461
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